Science.gov

Sample records for adenylyl cyclase involved

  1. A HCO(3)(-)-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca²⁺ currents in locus coeruleus neurons.

    PubMed

    Imber, Ann N; Santin, Joseph M; Graham, Cathy D; Putnam, Robert W

    2014-12-01

    Hypercapnic acidosis activates Ca²⁺ channels and increases intracellular Ca²⁺ levels in neurons of the locus coeruleus, a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca²⁺-activated K⁺ channels, in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in locus coeruleus neurons. Here, we present evidence that the Ca²⁺ current is activated by a HCO(3)(-)-sensitive pathway. The increase in HCO(3)(-) associated with hypercapnia activates HCO(3)(-)-sensitive adenylyl cyclase (soluble adenylyl cyclase). This results in an increase in cyclic adenosine monophosphate levels and activation of Ca²⁺ channels via cyclic adenosine monophosphate-activated protein kinase A. We also show the presence of soluble adenylyl cyclase in the cytoplasm of locus coeruleus neurons, and that the cyclic adenosine monophosphate analogue db-cyclic adenosine monophosphate increases Ca²⁺i. Disrupting this pathway by decreasing HCO(3)(-) levels during acidification or inhibiting either soluble adenylyl cyclase or protein kinase A, but not transmembrane adenylyl cyclase, can increase the magnitude of the firing rate response to hypercapnia in locus coeruleus neurons from older neonates to the same extent as inhibition of K⁺ channels. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modulation of adenylyl cyclase by FPP and adenosine involves stimulatory and inhibitory adenosine receptors and g proteins.

    PubMed

    Fraser, L R; Adeoya-Osiguwa, S

    1999-08-01

    FPP and adenosine modulate the adenylyl cyclase (AC)/cAMP signal transduction pathway in mammalian spermatozoa to elicit a biphasic response, initially stimulating capacitation and then inhibiting spontaneous acrosome loss. This study addressed the hypothesis that responses to FPP involve interactions between receptors for FPP and adenosine, the biphasic responses involving stimulatory and inhibitory adenosine receptors. Gln-FPP, a competitive inhibitor of FPP, significantly inhibited binding of an adenosine analogue and responses to adenosine, especially in capacitated suspensions, consistent with interaction between FPP and adenosine receptors. CGS-21680 (1 microM), a stimulatory A2a adenosine receptor agonist, significantly stimulated capacitation and cAMP in uncapacitated cells, while cyclopentyl adenosine (1 microM), an inhibitory A1 adenosine receptor agonist only affected capacitated cells, inhibiting spontaneous acrosome loss. Responses to FPP and adenosine were inhibited in uncapacitated cells by a selective A2a antagonist and in capacitated cells by a selective A1 antagonist; subsequent investigations indicated possible involvement of G proteins. Like FPP, cholera toxin stimulated capacitation and cAMP production in uncapacitated cells, suggesting involvement of a G protein with a Galphas subunit. In contrast, pertussis toxin prevented FPP's inhibition of both spontaneous acrosome loss and cAMP production, suggesting involvement of a Galphai/o subunit. Immunoblotting evidence revealed the presence of proteins of the appropriate molecular weights for Galphas, Galphai2, Galpha i3, and Galphao subunits. This study provides the first direct evidence suggesting the involvement of two different types of adenosine receptors and both Galphas and Galphai/o subunits in the regulation of capacitation, resulting in modulation of AC activity and availability of cAMP. Copyright 1999 Wiley-Liss, Inc.

  3. Molecular cloning and characterization of a novel adenylyl cyclase gene, HpAC1, involved in stress signaling in Hippeastrum x hybridum.

    PubMed

    Swieżawska, Brygida; Jaworski, Krzysztof; Pawełek, Agnieszka; Grzegorzewska, Weronika; Szewczuk, Piotr; Szmidt-Jaworska, Adriana

    2014-07-01

    Adenylyl cyclases (ACs) are enzymes that generate cyclic AMP, which is involved in different physiological and developmental processes in a number of organisms. Here, we report the cloning and characterization of a new plant adenylyl cyclases (AC) gene, designated HpAC1, from Hippeastrum x hybridum. This gene encodes a protein of 206 amino acids with a calculated molecular mass of 23 kD and an isoelectric point of 5.07. The predicted amino acid sequence contains all the typical features of and shows high identity with putative plant ACs. The purified, recombinant HpAC1 is able to convert ATP to cAMP. The complementation test that was performed to analyze the ability of HpAC1 to compensate for the AC deficiency in the Escherichia coli SP850 strain revealed that HpAC1 functions as an adenylyl cyclase and produces cyclic AMP. Moreover, it was shown that the transcript level of HpAC1 and cyclic AMP concentration changed during certain stress conditions. Both mechanical damage and Phoma narcissi infection lead to two sharp increases in HpAC1 mRNA levels during a 72-h test cycle. Changes in intracellular cAMP level were also observed. These results may indicate the participation of a cAMP-dependent pathway both in rapid and systemic reactions induced after disruption of symplast and apoplast continuity.

  4. Effect of association with adenylyl cyclase-associated protein on the interaction of yeast adenylyl cyclase with Ras protein.

    PubMed

    Shima, F; Yamawaki-Kataoka, Y; Yanagihara, C; Tamada, M; Okada, T; Kariya, K; Kataoka, T

    1997-03-01

    Posttranslational modification of Ras protein has been shown to be critical for interaction with its effector molecules, including Saccharomyces cerevisiae adenylyl cyclase. However, the mechanism of its action was unknown. In this study, we used a reconstituted system with purified adenylyl cyclase and Ras proteins carrying various degrees of the modification to show that the posttranslational modification, especially the farnesylation step, is responsible for 5- to 10-fold increase in Ras-dependent activation of adenylyl cyclase activity even though it has no significant effect on their binding affinity. The stimulatory effect of farnesylation is found to depend on the association of adenylyl cyclase with 70-kDa adenylyl cyclase-associated protein (CAP), which was known to be required for proper in vivo response of adenylyl cyclase to Ras protein, by comparing the levels of Ras-dependent activation of purified adenylyl cyclase with and without bound CAP. The region of CAP required for this effect is mapped to its N-terminal segment of 168 amino acid residues, which coincides with the region required for the in vivo effect. Furthermore, the stimulatory effect is successfully reconstituted by in vitro association of CAP with the purified adenylyl cyclase molecule lacking the bound CAP. These results indicate that the association of adenylyl cyclase with CAP is responsible for the stimulatory effect of posttranslational modification of Ras on its activity and that this may be the mechanism underlying its requirement for the proper in vivo cyclic AMP response.

  5. Isoform-targeted regulation of cardiac adenylyl cyclase.

    PubMed

    Ishikawa, Yoshihiro

    2003-01-01

    Numerous attempts have been made to develop strategies for regulating the intracellular cyclic AMP signal pharmacologically, with an intention to establish either new medical therapeutic methods or experimental tools. In the past decades, many pharmacological reagents have been identified that regulate this pathway at the level of the receptor. G protein, adenylyl cyclase, cyclic AMP, protein kinase A and phosphodiesterase. Since the cloning of adenylyl cyclase isoforms during the 1990s, investigators including ourselves have tried to find reagents that regulate the activity of this enzyme directly in an isoform-dependent manner. The ultimate goal of developing such reagents would be to regulate the cyclic AMP signal in an organ-dependent manner. Ourselves and other workers have reported that such reagents may vary from a simple cation to kinases. In a more recent study, using the results from crystallographic studies and computer-assisted drug design programs, we have identified subtype-selective regulators of adenylyl cyclase. Such regulators are mostly based upon forskolin, a diterpene compound obtained from Coleus forskolii, that acts directly on adenylyl cyclase to increase the intracellular levels of cyclic AMP. Similarly, novel reagents have been identified that inhibit a specific adenylyl cyclase isoform (e.g. type 5 adenylyl cyclase). Such reagents would potentially provide a new therapeutic strategy to treat hypertension, for example, as well as methods to selectively stimulate or inhibit this adenylyl cyclase isoform, which may be reminiscent of overexpression or knocking out of the cardiac adenylyl cyclase isoform by the use of a pharmacological method.

  6. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  7. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A HCO3−-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca2+ currents in locus coeruleus neurons

    PubMed Central

    Imber, Ann N.; Santin, Joseph M.; Graham, Cathy D.; Putnam, Robert W.

    2014-01-01

    Hypercapnic acidosis activates Ca2+ channels and increases intracellular Ca2+ levels in neurons of the locus coeruleus (LC), a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca2+-activated K+ channels (BK), in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in LC neurons. Here, we present evidence that the Ca2+ current is activated by a HCO3−-sensitive pathway. The increase in HCO3− associated with hypercapnia activates HCO3−-sensitive adenylyl cyclase (sAC). This results in an increase in cAMP levels and activation of Ca2+ channels via cAMP-activated protein kinase A (PKA). We also show the presence of sAC in the cytoplasm of LC neurons, and that the cAMP analogue db-cAMP increases Ca2+i. Disrupting this pathway by decreasing HCO3− levels during acidification or inhibiting either sAC or PKA, but not transmembrane adenylyl cyclase (tmAC), can increase the magnitude of the firing rate response to hypercapnia in LC neurons from older neonates to the same extent as inhibition of BK channels. PMID:25092170

  9. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis

    PubMed Central

    Zhang, Xuebin; Candas, Mehmet; Griko, Natalya B.; Taussig, Ronald; Bulla, Lee A.

    2006-01-01

    Many pathogenic organisms and their toxins target host cell receptors, the consequence of which is altered signaling events that lead to aberrant activity or cell death. A significant body of literature describes various molecular and cellular aspects of toxins associated with bacterial invasion, colonization, and host cell disruption. However, there is little information on the molecular and cellular mechanisms associated with the insecticidal action of Bacillus thuringiensis (Bt) Cry toxins. Recently, we reported that the Cry1Ab toxin produced by Bt kills insect cells by activating a Mg2+-dependent cytotoxic event upon binding of the toxin to its receptor BT-R1. Here we show that binding of Cry toxin to BT-R1 provokes cell death by activating a previously undescribed signaling pathway involving stimulation of G protein (Gαs) and adenylyl cyclase, increased cAMP levels, and activation of protein kinase A. Induction of the adenylyl cyclase/protein kinase A pathway is manifested by sequential cytological changes that include membrane blebbing, appearance of ghost nuclei, cell swelling, and lysis. The discovery of a toxin-induced cell death pathway specifically linked to BT-R1 in insect cells should provide insights into how insects evolve resistance to Bt and into the development of new, safer insecticides. PMID:16788061

  10. Salt-induced Na(+)/K(+)-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells.

    PubMed

    Mewes, Mirja; Nedele, Johanna; Schelleckes, Katrin; Bondareva, Olga; Lenders, Malte; Kusche-Vihrog, Kristina; Schnittler, Hans-Joachim; Brand, Stefan-Martin; Schmitz, Boris; Brand, Eva

    2017-05-26

    High dietary salt intake may lead to vascular stiffness, which predicts cardiovascular diseases such as heart failure, and myocardial and cerebral infarctions as well as renal impairment. The vascular endothelium is a primary target for deleterious salt effects leading to dysfunction and endothelial stiffness. We hypothesize that the Ca(2+)- and bicarbonate-activated soluble adenylyl cyclase (sAC) contributes to Na(+)/K(+)-ATPase expression regulation in vascular endothelial cells and is an important regulator of endothelial stiffness. In vitro stimulation of vascular endothelial cells with high sodium (150 mM Na(+))-induced Na(+)/K(+)-ATPase-α and Na(+)/K(+)-ATPase-β protein expression determined by western blot. Promoter analyses revealed increased cAMP response element (CRE)-mediated Na(+)/K(+)-ATPase-α transcriptional activity under high sodium concentrations. Inhibition of sAC by the specific inhibitor KH7 or siRNA reduced the sodium effects. Flame photometry revealed increased intracellular sodium concentrations in response to high sodium stimulations, which were paralleled by elevated ATP levels. Using atomic force microscopy, a nano-technique that measures cellular stiffness and deformability, we detected significant endothelial stiffening under increased sodium concentrations, which was prevented by inhibition of sAC using KH7 and Na(+)/K(+)-ATPase using ouabain. Furthermore, analysis of primary aortic endothelial cells in an in vitro aging model revealed an impaired Na(+)/K(+)-ATPase-α sodium response and elevated intracellular sodium levels with cellular aging. We conclude that sAC mediates sodium-induced Na(+)/K(+)-ATPase expression in vascular endothelium and is an important regulator of endothelial stiffness. The reactivity of Na(+)/K(+)-ATPase-α expression regulation in response to high sodium seems to be impaired in aging endothelial cells and might be a component of endothelial dysfunction.

  11. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps.

    PubMed

    Ostrom, Rennolds S; Bogard, Amy S; Gros, Robert; Feldman, Ross D

    2012-01-01

    Adenylyl cyclases are a ubiquitous family of enzymes and are critical regulators of metabolic and cardiovascular function. Multiple isoforms of the enzyme are expressed in a range of tissues. However, for many processes, the adenylyl cyclase isoforms have been thought of as essentially interchangeable, with their impact more dependent on their common actions to increase intracellular cyclic adenosine monophosphate content regardless of the isoform involved. It has long been appreciated that each subfamily of isoforms demonstrate a specific pattern of "upstream" regulation, i.e., specific patterns of ion dependence (e.g., calcium-dependence) and specific patterns of regulation by kinases (protein kinase A (PKA), protein kinase C (PKC), raf). However, more recent studies have suggested that adenylyl cyclase isoform-selective patterns of signaling are a wide-spread phenomenon. The determinants of these selective signaling patterns relate to a number of factors, including: (1) selective coupling of specific adenylyl cyclase isoforms with specific G protein-coupled receptors, (2) localization of specific adenylyl cyclase isoforms in defined structural domains (AKAP complexes, caveolin/lipid rafts), and (3) selective coupling of adenylyl cyclase isoforms with specific downstream signaling cascades important in regulation of cell growth and contractility. The importance of isoform-specific regulation has now been demonstrated both in mouse models as well as in humans. Adenylyl cyclase has not been viewed as a useful target for therapeutic regulation, given the ubiquitous expression of the enzyme and the perceived high risk of off-target effects. Understanding which isoforms of adenylyl cyclase mediate distinct cellular effects would bring new significance to the development of isoform-specific ligands to regulate discrete cellular actions.

  12. [Reactivity of the adenylyl cyclase system in rat tissues to biogenic amines and peptide hormones under starvation condition].

    PubMed

    Shpakov, A O; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2007-04-01

    Under starvation condition, sensitivity of the adenylyl cyclase system to regulatory action of biogenic amines and peptide hormones in rat tissues are changed. In the myocardium and skeletal muscles, after 2 and 4 days of starvation, the regulatory effects of isoproterenol and relaxin acting via G,-proteins on the adenylyl cyclase activity and the G-protein GTP-binding are significantly increased compared with control. At the same time, regulatory effects ofsomatostatin which are realized via Gi-proteins, on adenylyl cyclase system in the myocardium are decreased. Under prolonged starvation consisting of two consecutive 4-days periods, the effects of hormones acting via Gs-proteins on the adenylyl cyclase activity in muscle tissues are decreased to control value levels. The effects of hormones acting via Gi-proteins are largely reduced. In the brain, intensification of adenylyl cyclase stimulating hormonal effects was late and only observed after a 4-day starvation. Unlike muscle tissues, the increase of adenylyl cyclase stimulating effects in the brain is preserved after two-period starvation. The weakening of adenylyl cyclase inhibiting hormonal signals both in the brain and muscles is observed after a 2-day starvation and then the weakening is intensified. Possible role of glucose level and basal adenylyl cyclase activity in determination of the sensitivity of the adenylyl cyclase system to hormones under study is discussed. It is suggested that one of the key causes of physiological changes in animal organism under starvation involves alteration of hormonal signalling systems sensitivity, in particular that of the adenylyl cyclase system, to hormone regulatory action.

  13. Genetic and biochemical analysis of the adenylyl cyclase-associated protein, cap, in Schizosaccharomyces pombe.

    PubMed Central

    Kawamukai, M; Gerst, J; Field, J; Riggs, M; Rodgers, L; Wigler, M; Young, D

    1992-01-01

    We have identified, cloned, and studied a gene, cap, encoding a protein that is associated with adenylyl cyclase in the fission yeast Schizosaccharomyces pombe. This protein shares significant sequence homology with the adenylyl cyclase-associated CAP protein in the yeast Saccharomyces cerevisiae. CAP is a bifunctional protein; the N-terminal domain appears to be involved in cellular responsiveness to RAS, whereas loss of the C-terminal portion is associated with morphological and nutritional defects. S. pombe cap can suppress phenotypes associated with deletion of the C-terminal CAP domain in S. cerevisiae but does not suppress phenotypes associated with deletion of the N-terminal domain. Analysis of cap disruptants also mapped the function of cap to two domains. The functional loss of the C-terminal region of S. pombe cap results in abnormal cellular morphology, slow growth, and failure to grow at 37 degrees C. Increases in mating and sporulation were observed when the entire gene was disrupted. Overproduction of both cap and adenylyl cyclase results in highly elongated large cells that are sterile and have measurably higher levels of adenylyl cyclase activity. Our results indicate that cap is required for the proper function of S. pombe adenylyl cyclase but that the C-terminal domain of cap has other functions that are shared with the C-terminal domain of S. cerevisiae CAP. Images PMID:1550959

  14. Intracellular cAMP signaling by soluble adenylyl cyclase

    PubMed Central

    Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen

    2011-01-01

    Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cAMP. sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems which are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells. PMID:21490586

  15. Analysis of the function of the 70-kilodalton cyclase-associated protein (CAP) by using mutants of yeast adenylyl cyclase defective in CAP binding.

    PubMed

    Wang, J; Suzuki, N; Nishida, Y; Kataoka, T

    1993-07-01

    In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.

  16. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.

    PubMed

    Wang, J; Suzuki, N; Kataoka, T

    1992-11-01

    In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.

  17. Intracellular cAMP signaling by soluble adenylyl cyclase.

    PubMed

    Tresguerres, Martin; Levin, Lonny R; Buck, Jochen

    2011-06-01

    Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.

  18. Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores.

    PubMed

    van Es, S; Virdy, K J; Pitt, G S; Meima, M; Sands, T W; Devreotes, P N; Cotter, D A; Schaap, P

    1996-09-27

    Dictyostelium cells express a G-protein-coupled adenylyl cyclase, ACA, during aggregation and an atypical adenylyl cyclase, ACG, in mature spores. The ACG gene was disrupted by homologous recombination. acg- cells developed into normal fruiting bodies with viable spores, but spore germination was no longer inhibited by high osmolarity, a fairly universal constraint for spore and seed germination. ACG activity, measured in aca-/ACG cells, was strongly stimulated by high osmolarity with optimal stimulation occurring at 200 milliosmolar. RdeC mutants, which display unrestrained protein kinase A (PKA) activity and a cell line, which overexpresses PKA under a prespore specific promoter, germinate very poorly, both at high and low osmolarity. These data indicate that ACG is an osmosensor controlling spore germination through activation of protein kinase A.

  19. Regulation and organization of adenylyl cyclases and cAMP.

    PubMed Central

    Cooper, Dermot M F

    2003-01-01

    Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments. PMID:12940771

  20. Molecular basis for P-site inhibition of adenylyl cyclase.

    PubMed

    Tesmer, J J; Dessauer, C W; Sunahara, R K; Murray, L D; Johnson, R A; Gilman, A G; Sprang, S R

    2000-11-28

    P-site inhibitors are adenosine and adenine nucleotide analogues that inhibit adenylyl cyclase, the effector enzyme that catalyzes the synthesis of cyclic AMP from ATP. Some of these inhibitors may represent physiological regulators of adenylyl cyclase, and the most potent may ultimately serve as useful therapeutic agents. Described here are crystal structures of the catalytic core of adenylyl cyclase complexed with two such P-site inhibitors, 2'-deoxyadenosine 3'-monophosphate (2'-d-3'-AMP) and 2',5'-dideoxyadenosine 3'-triphosphate (2',5'-dd-3'-ATP). Both inhibitors bind in the active site yet exhibit non- or uncompetitive patterns of inhibition. While most P-site inhibitors require pyrophosphate (PP(i)) as a coinhibitor, 2',5'-dd-3'-ATP is a potent inhibitor by itself. The crystal structure reveals that this inhibitor exhibits two binding modes: one with the nucleoside moiety bound to the nucleoside binding pocket of the enzyme and the other with the beta and gamma phosphates bound to the pyrophosphate site of the 2'-d-3'-AMP.PP(i) complex. A single metal binding site is observed in the complex with 2'-d-3'-AMP, whereas two are observed in the complex with 2', 5'-dd-3'-ATP. Even though P-site inhibitors are typically 10 times more potent in the presence of Mn(2+), the electron density maps reveal no inherent preference of either metal site for Mn(2+) over Mg(2+). 2',5'-dd-3'-ATP binds to the catalytic core of adenylyl cyclase with a K(d) of 2.4 microM in the presence of Mg(2+) and 0.2 microM in the presence of Mn(2+). Pyrophosphate does not compete with 2',5'-dd-3'-ATP and enhances inhibition.

  1. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment.

    PubMed

    Steegborn, Clemens; Litvin, Tatiana N; Levin, Lonny R; Buck, Jochen; Wu, Hao

    2005-01-01

    In an evolutionarily conserved signaling pathway, 'soluble' adenylyl cyclases (sACs) synthesize the ubiquitous second messenger cyclic adenosine 3',5'-monophosphate (cAMP) in response to bicarbonate and calcium signals. Here, we present crystal structures of a cyanobacterial sAC enzyme in complex with ATP analogs, calcium and bicarbonate, which represent distinct catalytic states of the enzyme. The structures reveal that calcium occupies the first ion-binding site and directly mediates nucleotide binding. The single ion-occupied, nucleotide-bound state defines a novel, open adenylyl cyclase state. In contrast, bicarbonate increases the catalytic rate by inducing marked active site closure and recruiting a second, catalytic ion. The phosphates of the bound substrate analogs are rearranged, which would facilitate product formation and release. The mechanisms of calcium and bicarbonate sensing define a reaction pathway involving active site closure and metal recruitment that may be universal for class III cyclases.

  2. Central role of soluble adenylyl cyclase and cAMP in sperm physiology

    PubMed Central

    Buffone, Mariano G.; Wertheimer, Eva V.; Visconti, Pablo E.; Krapf, Dario

    2014-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cylases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. PMID:25066614

  3. Inhibition of adenylyl cyclase by neuronal P2Y receptors

    PubMed Central

    Unterberger, Ursula; Moskvina, Eugenia; Scholze, Thomas; Freissmuth, Michael; Boehm, Stefan

    2002-01-01

    P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y12. Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment.ADP and ATP (0.1 – 100 μM) left basal cyclic AMP accumulation unaltered, but reduced cyclic AMP synthesis stimulated by activation of endogenous A2A or recombinant β2 receptors. Forskolin-dependent cyclic AMP production was reduced by ⩽1 μM and enhanced by 10 – 100 μM ADP; this latter effect was turned into an inhibition when A2A receptors were blocked.The nucleotide inhibition of cyclic AMP synthesis was not altered when P2X receptors were blocked, but abolished by pertussis toxin.The rank order of agonist potencies for the reduction of cyclic AMP was (IC50 values): 2-methylthio-ADP (0.12 nM)=2-methylthio-ATP (0.13 nM)>ADPβS (71 nM)>ATP (164 nM)=ADP (244 nM). The inhibition by ADP was not antagonized by suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonic acid, or adenosine-3′-phosphate-5′-phosphate, but attenuated by reactive blue 2, ATPαS, and 2-methylthio-AMP.RT – PCR demonstrated the expression of P2Y2, P2Y4, P2Y6, and P2Y12, but not P2Y1, receptors in PC12 cells. In Northern blots, only P2Y2 and P2Y12 were detectable. Differentiation with NGF did not alter these hybridization signals and left the nucleotide inhibition of adenylyl cyclase unchanged.We conclude that P2Y12 receptors are expressed in neuronal cells and inhibit adenylyl cyclase activity. PMID:11834615

  4. A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant.

    PubMed

    Chen, Zhi-Hui; Raffelberg, Sarah; Losi, Aba; Schaap, Pauline; Gärtner, Wolfgang

    2014-12-10

    A light-regulated adenylyl cyclase, mPAC, was previously identified from the cyanobacterium Microcoleus chthonoplastes PCC7420. MPAC consists of a flavin-based blue light-sensing LOV domain and a catalytic domain. In this work, we expressed mPAC in an adenylate cyclase A null mutant (aca-) of the eukaryote Dictyostelium discoideum and tested to what extent light activation of mPAC could restore the cAMP-dependent developmental programme of this organism. Amoebas of Dictyostelium, a well-established model organism, generate and respond to cAMP pulses, which cause them to aggregate and construct fruiting bodies. mPAC was expressed under control of a constitutive actin-15 promoter in D. discoideum and displayed low basal adenylyl cyclase activity in darkness that was about five-fold stimulated by blue light. mPAC expression in aca- cells marginally restored aggregation and fruiting body formation in darkness. However, more and larger fruiting bodies were formed when mPAC expressing cells were incubated in light. Extending former applications of light-regulated AC, these results demonstrate that mPAC can be used to manipulate multicellular development in eukaryotes in a light dependent manner.

  5. [Adenylyl cyclase signaling mechanisms of the insulin superfamily peptide action and their impairment in myometrium of pregnant women with type 2 diabetes].

    PubMed

    Plesneva, S a; Kuznetsova, L A; Shpakov, A O; Sharova, T S; Pertseva, M N

    2008-10-01

    For the first time we found in myometrium of the women and pregnant women that adenylyl cyclase (AC) stimulating effects of relaxin, insulin and insulin growth factor 1 are realized via six-component AC signaling mechanisms involving the following signaling chain: receptor-tyrosine kinase ==> Gi protein (beta gamma dimmer) ==> phosphatidylinositol 3-kinase ==> protein kinase C (zeta) ==> Gs protein ==> adenylyl cyclase (AC), which are similar to the discovered adenylyl cyclase signaling mechanisms of insulin and relaxin action in vertebrates (rat) and invertebrates (mollusk). The effect of relaxin is more pronounced as compared with other peptides (relaxin > insulin > insulin-like growth factor-1) in myometrium of pregnant women. It is connected with the specific role ofrelaxin as main regulator of reproductive functions. For the first time we revealed the functional defects in distal parts of adenylyl cyclase signaling mechanisms of the insulin superfamily peptides action in the condition type-2 diabetes (the increase of the basal adenylyl cyclase activity and decrease of the peptide-stimulated AX activity in presence of guanilylimidodiphosphate). The defects are localized on the level of Gs protein, adenylyl cyclase and their functional coupling. The data obtained confirm our conception about molecular defects in hormoneregulated adenylyl cyclase system as a key reason of type-2 diabetes.

  6. The PI3K-mediated activation of CRAC independently regulates adenylyl cyclase activation and chemotaxis.

    PubMed

    Comer, Frank I; Lippincott, Christopher K; Masbad, Joseph J; Parent, Carole A

    2005-01-26

    The ability of a cell to detect an external chemical signal and initiate a program of directed migration along a gradient comprises the fundamental process called chemotaxis. Investigations in Dictyostelium discoideum and neutrophils have established that pleckstrin homology (PH) domain-containing proteins that bind to the PI3K products PI(3,4)P2 and PI(3,4,5)P3, such as CRAC (cytosolic regulator of adenylyl cyclase) and Akt/PKB, translocate specifically to the leading edge of chemotaxing cells. CRAC is essential for the chemoattractant-mediated activation of the adenylyl cyclase ACA, which converts ATP into cAMP, the primary chemoattractant for D. discoideum. The mechanisms by which CRAC activates ACA remain to be determined. We now show that in addition to its essential role in the activation of ACA, CRAC is involved in regulating chemotaxis. Through mutagenesis, we show that these two functions are independently regulated downstream of PI3K. A CRAC mutant that has lost the capacity to bind PI3K products does not support chemotaxis and shows minimal ACA activation. Finally, overexpression of CRAC and various CRAC mutants show strong effects on ACA activation with little effect on chemotaxis. These findings establish that chemoattractant-mediated activation of PI3K is important for the CRAC-dependent regulation of both chemotaxis and adenylyl cyclase activation.

  7. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    PubMed

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. beta-Adrenoceptor density and adenylyl cyclase activity in obese rabbit hearts.

    PubMed

    Carroll, J F; Kyser, C K; Martin, M M

    2002-05-01

    To determine whether decreased cardiac responsiveness to isoproterenol in obesity is associated with alterations in beta-receptors and/or adenylyl cyclase activity. ANIMALS AND DESIGN: After 12 weeks of control or ad libitum high-fat diets, left ventricular tissue from lean and obese female New Zealand white rabbits was assayed for beta-receptor binding density (11 lean, 11 obese) and isoproterenol-stimulated adenylyl cyclase activity (eight lean, 10 obese). Nonlinear least squares regression analysis was used to determine maximum density of beta-receptors and receptor affinity for (125)I-iodocyanopindolol. Four-parameter logistic regression was used to determine minimum, maximum, slope and EC(50) for isoproterenol-stimulated adenylyl cyclase activity. Obese rabbits had elevated resting blood pressure and heart rate, and higher ventricular weights. However, beta-adrenoceptor density and affinity were not significantly different in lean and obese rabbits. Basal and maximum isoproterenol-stimulated adenylyl cyclase activity did not differ between lean and obese rabbits. In addition, maximal stimulation in response to sodium flouride did not differ between lean and obese. EC(50) for isoproterenol-stimulated adenylyl cyclase activity did not differ between lean and obese rabbits. Obesity-related decreases in responsiveness of the isolated heart to isoproterenol are not associated with alterations in beta-receptor density and affinity. In addition, adenylyl cyclase activity appeared unchanged in ventricular preparations from obese rabbits. Decreased responsiveness to isoproterenol in obesity may be due to defects downstream of adenylyl cyclase activation of cyclic AMP.

  9. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase

    PubMed Central

    Ramos-Espiritu, Lavoisier; Kleinboelting, Silke; Navarrete, Felipe A.; Alvau, Antonio; Visconti, Pablo E.; Valsecchi, Federica; Starkov, Anatoly; Manfredi, Giovanni; Buck, Hannes; Adura, Carolina; Zippin, Jonathan H.; van den Heuvel, Joop; Glickman, J. Fraser; Steegborn, Clemens; Levin, Lonny R.; Buck, Jochen

    2016-01-01

    The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally within independently-regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP; G protein regulated transmembrane adenylyl cyclases and bicarbonate- calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, understanding cAMP signaling demands methods to distinguish between them. We developed a mass spectrometry based adenylyl cyclase assay which we used to identify a novel sAC-specific inhibitor, LRE1. LRE1 binds to the bicarbonate activator binding site and inhibits sAC via a unique allosteric mechanism. LRE1 prevents sAC-dependent processes in cellular and physiological systems and facilitates exploration of the therapeutic potential of sAC inhibition. PMID:27547922

  10. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase.

    PubMed

    Ramos-Espiritu, Lavoisier; Kleinboelting, Silke; Navarrete, Felipe A; Alvau, Antonio; Visconti, Pablo E; Valsecchi, Federica; Starkov, Anatoly; Manfredi, Giovanni; Buck, Hannes; Adura, Carolina; Zippin, Jonathan H; van den Heuvel, Joop; Glickman, J Fraser; Steegborn, Clemens; Levin, Lonny R; Buck, Jochen

    2016-10-01

    The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.

  11. Soluble Adenylyl Cyclase: Potential Role in Mineral Metabolism

    NASA Astrophysics Data System (ADS)

    Geng, Weidong; Moe, Orson W.

    2007-04-01

    The conversion of a signal of inorganic ion concentration to a second messenger is of fundamental biologic significance. The soluble adenylyl cyclase (sAC) serves such a purpose by transducing divalent cation concentrations and bicarbonate concentrations into intracellular cyclic AMP levels. sAC is widely expressed and may represent a generic bicarbonate sensor providing the afferent pathway to bicarbonate-regulated biologic processes. The best described action of sAC to date is in the mediation of bicarbonate-induced changes in sperm motility. Since a number of processes in mineral metabolism—such as bone formation, bone resorption, intestinal calcium absorption, and renal calcium transport in the distal convoluted tubule—are regulated by bicarbonate, sAC may play a role at multiple levels in mineral metabolism.

  12. Photoactivation Mechanism of a Bacterial Light-Regulated Adenylyl Cyclase.

    PubMed

    Lindner, Robert; Hartmann, Elisabeth; Tarnawski, Miroslaw; Winkler, Andreas; Frey, Daniel; Reinstein, Jochen; Meinhart, Anton; Schlichting, Ilme

    2017-03-21

    Light-regulated enzymes enable organisms to quickly respond to changing light conditions. We characterize a photoactivatable adenylyl cyclase (AC) from Beggiatoa sp. (bPAC) that translates a blue light signal into the production of the second messenger cyclic AMP. bPAC contains a BLUF photoreceptor domain that senses blue light using a flavin chromophore, linked to an AC domain. We present a dark state crystal structure of bPAC that closely resembles the recently published structure of the homologous OaPAC from Oscillatoria acuminata. To elucidate the structural mechanism of light-dependent AC activation by the BLUF domain, we determined the crystal structures of illuminated bPAC and of a pseudo-lit state variant. We use hydrogen-deuterium exchange measurements of secondary structure dynamics and hypothesis-driven point mutations to trace the activation pathway from the chromophore in the BLUF domain to the active site of the cyclase. The structural changes are relayed from the residues interacting with the excited chromophore through a conserved kink of the BLUF β-sheet to a tongue-like extrusion of the AC domain that regulates active site opening and repositions catalytic residues. Our findings not only show the specific molecular pathway of photoactivation in BLUF-regulated ACs but also have implications for the general understanding of signaling in BLUF domains and of the activation of ACs.

  13. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium.

    PubMed

    Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin

    2012-11-27

    Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  15. Control of Outflow Resistance by Soluble Adenylyl Cyclase

    PubMed Central

    Lee, Yong Suk

    2014-01-01

    Abstract Glaucoma is a leading cause of blindness in the United States affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure, even in patients with normal tension glaucoma. Typically, this is accomplished by reducing the rate of aqueous flow by limiting aqueous production or enhancing drainage using drugs and surgery. Whereas these strategies are effective in diminishing vision loss, some patients continue to lose vision and many discontinue use of their medications because of undesirable side effects. Drugs known to be effective in altering conventional outflow have for the most part been abandoned from modern clinical practice due to undesirable side effects. Identification of new drugs that could enhance conventional outflow, would offer additional options in the treatment of glaucoma and ocular hypertension. To this end, our laboratory has recently uncovered a novel pathway for regulation of conventional outflow by the ciliary body. This pathway is dependent on soluble adenylyl cyclase, an enzyme that catalyzes the generation of cyclic adenosine 3′,5′ monophosphate (cAMP) in response to bicarbonate. PMID:24320087

  16. Structure-based development of novel adenylyl cyclase inhibitors.

    PubMed

    Schlicker, Christine; Rauch, Annika; Hess, Ken C; Kachholz, Barbara; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2008-08-14

    In mammals, the second messenger cAMP is synthesized by a family of transmembrane isoforms (tmACs) and one known cytoplasmic enzyme, "soluble" adenylyl cyclase (sAC). Understanding the individual contributions of these families to cAMP signaling requires tools which can distinguish them. Here, we describe the structure-based development of isoform discriminating AC inhibitors. Docking calculations using a library of small molecules with the crystal structure of a sAC homologue complexed with the noncompetitive inhibitor catechol estrogen identified two novel inhibitors, 3,20-dioxopregn-4-en-21-yl4-bromobenzenesulfonate (2) and 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4a,4b,5,8,8a,12b-octahydro-11-sulfo-1,4:5,8-dimethanotriphenylene-10-carboxylic acid (3). In vitro testing revealed that 3 defines a novel AC inhibitor scaffold with high affinity for human sAC and less inhibitory effect on mammalian tmACs. 2 also discriminates between sAC and tmACs, and it appears to simultaneously block the original binding pocket and a neighboring interaction site. Our results show that compounds exploiting the catechol estrogen binding site can produce potent, isoform discriminating AC inhibitors.

  17. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc.

  18. Stimulation and inhibition of adenylyl cyclase by distinct 5-hydroxytryptamine receptors.

    PubMed

    De Vivo, M; Maayani, S

    1990-10-01

    5-Hydroxytryptamine (serotonin, 5-HT) stimulates basal adenylyl cyclase activity in membranes from guinea pig or rat hippocampi, but 5-HT inhibits forskolin-stimulated adenylyl cyclase activity in these same membranes. The opposing effects of 5-HT on adenylyl cyclase activity indicate that distinct 5-HT receptors, positively and negatively coupled to adenylyl cyclase, are present in these membranes. Stimulation of adenylyl cyclase activity is mediated by two distinct 5-HT receptors. The receptor with lower affinity for 5-HT, designated as RL, is apparently homologous with a 5-HT receptor present in rat collicular membranes, but it is not homologous with the stimulatory receptor characterized in neuroblastoma hybrid cell (NCB-20) membranes. The receptor with higher affinity for 5-HT is homologous with the 5-HT1A binding site. The magnitude of stimulation by 5-HT1A receptors is variable with respect to stimulation by RL and is sometimes completely absent. Inhibition of forskolin-stimulated adenylyl cyclase activity, in membranes from either rat or guinea pig hippocampus or rat cortex, is a functional correlate of the 5-HT1A binding site. This inhibitory response was used to determine the pharmacological characteristics of drugs that reportedly have high affinity for 5-HT1A binding sites, such as 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) and (-)pindolol. PAPP inhibited adenylyl cyclase activity in guinea pig hippocampal membranes with an EC50 value of 27 +/- 3 nM. (-)Pindolol was a partial agonist in inhibiting adenylyl cyclase activity in guinea pig and rat hippocampal membranes. Because of the low intrinsic activity of (-)pindolol, it was tested as an antagonist of the inhibition produced by 5-HT1A receptor agonists in rat hippocampal membranes. The Kb of (-)pindolol was 40 nM as measured by a Schild plot. (-)Propranolol was a simple competitive antagonist at the rat hippocampal receptor with a Kb value of 550 nM. In summary, guinea pig

  19. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice

    PubMed Central

    Tong, Tao; Shen, Ying; Lee, Han-Woong; Yu, Rina; Park, Taesun

    2016-01-01

    Adenylyl cyclase 3 (Adcy3), a member of the mammalian adenylyl cyclase family responsible for generating the second messenger cAMP, has long been known to play an essential role in olfactory signal transduction. Here, we demonstrated that Adcy3 heterozygous null mice displayed increased visceral adiposity in the absence of hyperphagia and developed abnormal metabolic features characterized by impaired insulin sensitivity, dyslipidemia, and increased plasma levels of proinflammatory cytokines on both chow and high-fat diet (HFD). Of note, HFD decreased the Adcy3 expression in white adipose tissue, liver, and muscle. We also report for the first time that Adcy3 haploinsufficiency resulted in reduced expression of genes involved in thermogenesis, fatty acid oxidation, and insulin signaling, with enhanced expression of genes related to adipogenesis in peripheral tissues of mice. In conclusion, these findings suggest that cAMP signals generated by Adcy3 in peripheral tissues may play a pivotal role in modulating obesity and insulin sensitivity. PMID:27678003

  20. Calcium Sensitive Adenylyl Cyclases in Depression and Anxiety: Behavioral and Biochemical Consequences of Isoform Targeting

    PubMed Central

    Krishnan, Vaishnav; Graham, Ami; Mazei-Robison, Michelle S.; Lagace, Diane C.; Kim, Kyoung-Shim; Birnbaum, Shari; Eisch, Amelia J.; Han, Pyung-Lim; Storm, Daniel R.; Zachariou, Venetia; Nestler, Eric J.

    2008-01-01

    Background Adenylyl cyclases (ACs) represent a diverse family of enzymes responsible for the generation of cAMP, a key intracellular second messenger. Ca2+/calmodulin-stimulated AC1 and AC8 isoforms, as well as the calcium-inhibited AC5 isoform, are abundantly expressed within limbic regions of the central nervous system. This study examines the contribution of these AC isoforms to emotional behavior. Methods Male and female AC1/8 double knockout mice (DKO) and AC5 knockout mice (AC5KO) were examined on a series of standard laboratory assays of emotionality. Mice were also assayed for hippocampal cell proliferation and for changes in BDNF signaling in the nucleus accumbens, amygdala, and hippocampus, three forebrain structures involved in the regulation of mood and affect. Results AC5KO mice showed striking anxiolytic and antidepressant phenotypes on standard behavioral assays. In contrast, AC1/8 DKO mice were hypoactive, exhibited diminished sucrose preference, and displayed alterations in neurotrophic signaling, generally consistent with a prodepressant phenotype. Neither line of mice displayed alterations in hippocampal cell proliferation. Conclusions These data illustrate the complex manner in which Ca2+/calmodulin-stimulated adenylyl cyclases contribute to emotional behavior. In addition, they support the possibility that a selective AC5 antagonist would be of therapeutic value against depression and anxiety disorders. PMID:18468583

  1. Inhibition of melanogenesis by 5,7-dihydroxyflavone (chrysin) via blocking adenylyl cyclase activity.

    PubMed

    Kim, Dong-Chan; Rho, Seong-Hwan; Shin, Jae-Choen; Park, Hyun Ho; Kim, Dongjin

    2011-07-22

    Due to its multiple biological activities, 5,7-dihydroxyflavone (chrysin) in propolis has gained attention as potentially useful therapeutics for various diseases. However, the efficacy of chrysin for the use of dermatological health has not been fully explored. To clarify the action mechanism of the skin protecting property of chrysin, we firstly investigated the molecular docking property of chrysin on the mammalian adenylyl cyclase, which is the key enzyme of cAMP-induced melanogenesis. We also examined the involvement of chrysin in alpha-MSH and forskolin-induced cAMP signaling within a cell based assay. In addition, we inquired into the inhibitory effect of chrysin on melanogenesis and found that the pretreatment with chrysin inhibited the forskolin-induced melanin contents significantly without annihilating the cell viability. These results strongly suggest that chrysin directly inhibits the activity of adenylyl cyclase, downregulates forskolin-induced cAMP-production pathway, consequently inhibiting melanogenesis. Thus, chrysin may also be used as an effective inhibitor of hyperpigmentation.

  2. Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis.

    PubMed

    Ntefidou, Maria; Iseki, Mineo; Watanabe, Masakatsu; Lebert, Michael; Häder, Donat-Peter

    2003-12-01

    Euglena gracilis, a unicellular freshwater protist exhibits different photomovement responses, such as phototaxis (oriented movement toward or away from the light source) and photophobic (abrupt turn in response to a rapid increase [step-up] or decrease [step-down] in the light fluence rate) responses. Photoactivated adenylyl cyclase (PAC) has been isolated from whole-cell preparations and identified by RNA interference (RNAi) to be the photoreceptor for step-up photophobic responses but not for step-down photophobic responses (M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, C. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe [2002] Nature 415: 1047-1051). The present study shows that knockdown of PAC by RNAi also effectively suppresses both positive and negative phototaxis, indicating for the first time that PAC or a PAC homolog is also the photoreceptor for photoorientation of wild-type E. gracilis. Recovery from RNAi occurred earlier for step-up photophobic responses than for positive and negative phototaxis. In addition, we investigated several phototaxis mutant strains of E. gracilis with different cytological features regarding the stigma and paraxonemal body (PAB; believed to be the location for the phototaxis photoreceptor) as well as Astasia longa, a close relative of E. gracilis. All of the E. gracilis mutant strains had PAC mRNAs, whereas in A. longa, a different but similar mRNA was found and designated AlPAC. Consistently, all of these strains showed no phototaxis but performed step-up photophobic responses, which were suppressed by RNAi of the PAC mRNA. The fact that some of these strains possess a cytologically altered or no PAB demonstrates that at least in these strains, the PAC photoreceptor responsible for the step-up photophobic responses is not located in the PAB.

  3. Photoactivated Adenylyl Cyclase Controls Phototaxis in the Flagellate Euglena gracilis

    PubMed Central

    Ntefidou, Maria; Iseki, Mineo; Watanabe, Masakatsu; Lebert, Michael; Häder, Donat-Peter

    2003-01-01

    Euglena gracilis, a unicellular freshwater protist exhibits different photomovement responses, such as phototaxis (oriented movement toward or away from the light source) and photophobic (abrupt turn in response to a rapid increase [step-up] or decrease [step-down] in the light fluence rate) responses. Photoactivated adenylyl cyclase (PAC) has been isolated from whole-cell preparations and identified by RNA interference (RNAi) to be the photoreceptor for step-up photophobic responses but not for step-down photophobic responses (M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, C. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe [2002] Nature 415: 1047-1051). The present study shows that knockdown of PAC by RNAi also effectively suppresses both positive and negative phototaxis, indicating for the first time that PAC or a PAC homolog is also the photoreceptor for photoorientation of wild-type E. gracilis. Recovery from RNAi occurred earlier for step-up photophobic responses than for positive and negative phototaxis. In addition, we investigated several phototaxis mutant strains of E. gracilis with different cytological features regarding the stigma and paraxonemal body (PAB; believed to be the location for the phototaxis photoreceptor) as well as Astasia longa, a close relative of E. gracilis. All of the E. gracilis mutant strains had PAC mRNAs, whereas in A. longa, a different but similar mRNA was found and designated AlPAC. Consistently, all of these strains showed no phototaxis but performed step-up photophobic responses, which were suppressed by RNAi of the PAC mRNA. The fact that some of these strains possess a cytologically altered or no PAB demonstrates that at least in these strains, the PAC photoreceptor responsible for the step-up photophobic responses is not located in the PAB. PMID:14630964

  4. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  5. Gαi/o-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later

    PubMed Central

    Brust, Tarsis F.; Conley, Jason M.; Watts, Val J.

    2015-01-01

    Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur, during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization. PMID:25981304

  6. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  7. Coiled-coil interaction of N-terminal 36 residues of cyclase-associated protein with adenylyl cyclase is sufficient for its function in Saccharomyces cerevisiae ras pathway.

    PubMed

    Nishida, Y; Shima, F; Sen, H; Tanaka, Y; Yanagihara, C; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    1998-10-23

    In the budding yeast Saccharomyces cerevisiae, association with the 70-kDa cyclase-associated protein (CAP) is required for proper response of adenylyl cyclase to Ras proteins. We show here that a small segment comprising the N-terminal 36 amino acid residues of CAP is sufficient for association with adenylyl cyclase as well as for its function in the Ras-adenylyl cyclase pathway as assayed by the ability to confer RAS2(Val-19)-dependent heat shock sensitivity to yeast cells. The CAP-binding site of adenylyl cyclase was mapped to a segment of 119 amino acid residues near its C terminus. Both of these regions contained tandem repetitions of a heptad motif alphaXXalphaXXX (where alpha represents a hydrophobic amino acid and X represents any amino acid), suggesting a coiled-coil interaction. When mutants of CAP defective in associating with adenylyl cyclase were isolated by screening of a pool of randomly mutagenized CAP, they were found to carry substitution mutations in one of the key hydrophobic residues in the heptad repeats. Furthermore, mutations of the key hydrophobic residues in the heptad repeats of adenylyl cyclase also resulted in loss of association with CAP. These results indicate the coiled-coil mechanism as a basis of the CAP-adenylyl cyclase interaction.

  8. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    SciTech Connect

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  9. Differences in type II, IV, V and VI adenylyl cyclase isoform expression between rat preadipocytes and adipocytes.

    PubMed

    Serazin-Leroy, V; Morot, M; de Mazancourt, P; Giudicelli, Y

    2001-11-26

    Adenylyl cyclase catalytic activity is low in preadipocyte membranes when compared to adipocytes. Under conditions promoting inhibition of adipocyte adenylyl cyclase activity by Gpp(NH)p, a stable GTP analog, a paradoxical increase in preadipocyte adenylyl cyclase activity was obtained. In order to explain this contradiction, expression of types II, IV, V and VI adenylyl cyclase isoforms was compared in adipocytes and undifferentiated preadipocytes both by western blots and by a semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) assay. Type II, IV, V and VI mRNAs and proteins were present in both adipocytes and preadipocytes. However, in undifferentiated preadipocytes, expression of type II mRNA and protein were significantly higher whereas expression of type IV, V and VI adenylyl cyclase mRNAs and proteins were significantly weaker than in adipocytes. In late differentiated preadipocytes, the adenylyl cyclase subtype mRNA expression pattern was intermediary between the undifferentiated and the full differentiation states except for type IV which remained weakly expressed. Moreover, one of the representative regulators of G-protein signaling (RGS protein), RGS4, was less expressed in undifferentiated preadipocyte membranes and cytosol extracts, which contrasts with adipocytes where RGS4 is clearly expressed. Thus, the preferential expression of type II adenylyl cyclase (G(betagamma) subunit-stimulated) in preadipocytes might explain why Gpp(NH)p elicits stimulation of adenylyl cyclase under conditions designed to promote inhibition. Conversely, the preferential expression of type V and VI adenylyl cyclases and the slightly higher expression of type IV adenylyl cyclase in adipocytes could contribute to explain the elevated total catalytic activity observed in mature fat cells compared to their precursor cells.

  10. Gi Proteins Regulate Adenylyl Cyclase Activity Independent of Receptor Activation

    PubMed Central

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs

  11. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    PubMed

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  12. Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium

    SciTech Connect

    Mou, Tung-Chung; Masada, Nanako; Cooper, Dermot M.F.; Sprang, Stephen R.

    2009-09-11

    Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca{sup 2+} at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca{sup 2+} channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca{sup 2+} inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing 'high-affinity' (K{sub i} = {approx}0.4 {mu}M) and 'low-affinity' (K{sub i} = {approx}100 {mu}M) modes of inhibition. At micromolar concentration, Ca{sup 2+} inhibition is nonexclusive with respect to pyrophosphate (PP{sub i}), a noncompetitive inhibitor with respect to ATP, but at >100 {mu}M Ca{sup 2+}, inhibition appears to be exclusive with respect to PP{sub i}. The 3.0 {angstrom} resolution structure of G{alpha}s{center_dot}GTP{gamma}S/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATP{alpha}S and 8 {mu}M free Ca{sup 2+} contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca{sup 2+} is not cyclized, and two calcium ions are observed in the 2.9 {angstrom} resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the 'open', catalytically inactive conformation characteristic of the apoenzyme, in contrast to the 'closed', active conformation seen in the presence of ATP analogues and Mg{sup 2+} or Mn{sup 2+}. Structures of the pyrophosphate (PP{sub i}) complex with 10 mM Mg{sup 2+} (2.8 {angstrom}) or 2 mM Ca{sup 2+} (2.7 {angstrom}) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca{sup 2+} and Mg{sup 2+} bind only to the high-affinity 'B' metal site associated with substrate/product stabilization. Ca{sup 2+} thus stabilizes the inactive conformation in both ATP- and PP{sub i

  13. Comparison of human CAP and CAP2, homologs of the yeast adenylyl cyclase-associated proteins.

    PubMed

    Yu, G; Swiston, J; Young, D

    1994-06-01

    We previously reported the identification of human CAP, a protein that is related to the Saccharomyces cerevisiae and Schizosaccharomyces pombe adenylyl cyclase-associated CAP proteins. The two yeast CAP proteins have similar functions: the N-terminal domains are required for the normal function of adenylyl cyclase, while loss of the C-terminal domains result in morphological and nutritional defects that are unrelated to the cAMP pathways. We have amplified and cloned cDNAs from a human glioblastoma library that encode a second CAP-related protein, CAP2. The human CAP and CAP2 proteins are 64% identical. Expression of either human CAP or CAP2 in S. cerevisiae cap- strains suppresses phenotypes associated with deletion of the C-terminal domain of CAP, but does not restore hyper-activation of adenylyl cyclase by RAS2val19. Similarly, expression of either human CAP or CAP2 in S. pombe cap- strains suppresses the morphological and temperature-sensitive phenotypes associated with deletion of the C-terminal domain of CAP in this yeast. In addition, expression of human CAP, but not CAP2, suppresses the propensity to sporulate due to deletion of the N-terminal domain of CAP in S. pombe. This latter observation suggests that human CAP restores normal adenylyl cyclase activity in S. pombe cap- cells. Thus, functional properties of both N-terminal and C-terminal domains are conserved between the human and S. pombe CAP proteins.

  14. Stimulation of renin secretion by catecholamines is dependent on adenylyl cyclases 5 and 6.

    PubMed

    Aldehni, Fadi; Tang, Tong; Madsen, Kirsten; Plattner, Michael; Schreiber, Andrea; Friis, Ulla G; Hammond, H Kirk; Han, Pyung Lim; Schweda, Frank

    2011-03-01

    The sympathetic nervous system stimulates renin release from juxtaglomerular cells via the β-adrenoreceptor-cAMP pathway. Recent in vitro studies have suggested that the calcium-inhibited adenylyl cyclases (ACs) 5 and 6 possess key roles in the control of renin exocytosis. To investigate the relative contribution of AC5 and AC6 to the regulation of renin release in vivo we performed experiments using AC5 and AC6 knockout mice. Male AC5(-/-) mice exhibited normal plasma renin concentrations, renal renin synthesis (mRNA and renin content), urinary volume, and systolic blood pressure. In male AC6(-/-) mice, plasma renin concentration (AC6(-/-): 732 ± 119; AC6 (+/+): 436 ± 78 ng of angiotensin I per hour*mL(-1); P<0.05), and renin synthesis were stimulated associated with an increased excretion of dilute urine (1.55-fold; P<0.05) and reduced blood pressure (-10.6 mm Hg; P<0.001). Stimulation of plasma renin concentration by a single injection of the β-adrenoreceptor agonist isoproterenol (10 mg/kg IP) was significantly attenuated in AC5(-/-) (male: -20%; female: -33%) compared with wild-type mice in vivo. The mitigation of the plasma renin concentration response to isoproterenol was even more pronounced in AC6(-/-) (male: -63%; female: -50% versus AC6(+/+)). Similarly, the effects of isoproterenol, prostaglandin E2, and pituitary adenylyl cyclase-activating polypeptide on renin release from isolated perfused kidneys were attenuated to a higher extent in AC6(-/-) (-51% to -98% versus AC6(+/+)) than in AC5(-/-) (-31% to 46% versus AC5(+/+)). In conclusion, both AC5 and AC6 are involved in the stimulation of renin secretion in vivo, and AC6 is the dominant isoforms in this process.

  15. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  16. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  17. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells

    PubMed Central

    2012-01-01

    Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP), an important regulator of cell polarity and F-actin/G-actin ratio in the aca- mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in aca- cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in aca- cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels. Conclusions Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis. PMID:22239817

  18. Importance of the region around lysine 196 for catalytic activity of adenylyl cyclase from Escherichia coli.

    PubMed

    Amin, N; Peterkofsky, A

    1994-12-09

    Escherichia coli adenylyl cyclase contains no sequence that corresponds to the previously defined ATP/GTP binding consensus (A,G)XXXXGK(S,T). Using a search for lysine residues located adjacent to glycine residues, three regions that were possible candidates for part of the ATP binding site were identified. These were the residues located at positions 59, 90, and 196. A plasmid vector capable of overexpressing the cya gene under the control of the lambda PL promoter was mutated at these three loci to convert those lysine residues to methionine. Assays for catalytic activity of the mutated hyperexpressed proteins revealed that only the mutation at position 196 led to loss of activity. Photoaffinity labeling experiments using 8-azido-ATP provided evidence that the loss of activity was associated with a loss of the capability of the enzyme to bind ATP. A further series of replacement mutations in the hyperexpression vector was created at position 196. Assays of the adenylyl cyclase activity of the mutated proteins showed that replacement of lysine 196 by arginine led to minimal change in the activity. Replacements by histidine, glutamine, or glutamic acid resulted in approximately 10-20-fold reductions in the activity; replacements by methionine, isoleucine, or aspartic acid resulted in total loss of activity. When the mutated forms of the cya gene were expressed under the control of the cya promoter, the activity of the wild-type protein was higher than that of all the mutants, including the arginine replacement mutant. All of the mutants that retained activity also retained the capability of adenylyl cyclase to be stimulated by either inorganic orthophosphate or GTP. A helical wheel analysis of the region of adenylyl cyclase around lysine 196 revealed a structure compatible with an amphipathic helix with one face enriched with basic amino acid residues. Assays for adenylyl cyclase activity of a series of replacement mutations of residues on the hydrophilic face of

  19. Relaxin adenylyl cyclase system of pregnant women with diabetes: functional defects in insulin and relaxin adenylyl cyclase signaling systems in myometrium of pregnant women with type 1 diabetes.

    PubMed

    Kuznetsova, Ludmila; Plesneva, Svetlana; Shpakov, Alexander; Pertseva, Marianna

    2005-05-01

    The study was conducted to reveal the functional disturbances in two novel insulin and relaxin adenylyl cyclase signaling mechanisms (ACSMs). It was shown for the first time that in myometrium of pregnant women with insulin insufficiency the functional defects of Gs-protein-AC coupling in insulin- and relaxin H2-regulated AC systems were developed. As a result, the sensitivity of the signaling systems to both hormones and potentiation of their AC effects by guanine nucleotides were markedly decreased compared with that in control group. These functional defects in ACSM may lead to violation of the process of insulin and relaxin signal transduction.

  20. Comparative study of biological activity of insulins of lower vertebrates in the novel adenylyl cyclase test-system.

    PubMed

    Kuznetsova, L; Shpakov, A; Rusakov, Yu; Plesneva, S; Bondareva, V; Pertseva, M

    2003-11-15

    The biological activity of insulins of lower vertebrates (teleosts-Oncorhynchus gorbuscha, Scorpaena porcus, chondrosteans-Acipenser guldenstaedti and cyclostomates-Lamperta fluviatilis) was studied and compared with that of standard pig insulin. The determination of biological activity was made using the novel adenylyl cyclase (AC) test-system based on the adenylyl cyclase signaling mechanism (ACSM) of insulin action discovered earlier by the authors. The biological activity of insulins was estimated as EC(50), i.e. concentration leading to half-maximal activating effect of the hormone (10(-11)-10(-7) M), in vitro, on adenylyl cyclase in two types of the target tissues: in membrane fractions of the muscles of rat and mollusc Anodonta cygnea. In rat, the efficiency of insulins was found to decrease in the following order: pig insulin>scorpaena insulin>gorbuscha insulin>sturgeon insulin>lamprey insulin. In the mollusc, the order was different: sturgeon insulin>scorpaena insulin>pig insulin>gorbuscha insulin. Lamprey insulin at the same concentrations did not apparently reach the maximal adenylyl cyclase activating effect. The suggestion was made that differences in the biological activity of insulins depend on the hormone structure and a number of indexes characteristic of the adenylyl cyclase test-system in the vertebrate and invertebrate tissues. The proposed adenylyl cyclase test-system is highly sensitive to insulin at physiological concentrations, has good reproduction and is easy to apply.

  1. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough.

    PubMed

    Soelaiman, Sandriyana; Wei, Binqing Q; Bergson, Pamela; Lee, Young-Sam; Shen, Yuequan; Mrksich, Milan; Shoichet, Brian K; Tang, Wei-Jen

    2003-07-11

    Edema factor (EF) and CyaA are adenylyl cyclase toxins secreted by pathogenic bacteria that cause anthrax and whooping cough, respectively. Using the structure of the catalytic site of EF, we screened a data base of commercially available, small molecular weight chemicals for those that could specifically inhibit adenylyl cyclase activity of EF. From 24 compounds tested, we have identified one quinazoline compound, ethyl 5-aminopyrazolo[1,5-a]quinazoline-3-carboxylate, that specifically inhibits adenylyl cyclase activity of EF and CyaA with approximately 20 microm Ki. This compound neither affects the activity of host resident adenylyl cyclases type I, II, and V nor exhibits promiscuous inhibition. The compound is a competitive inhibitor, consistent with the prediction that it binds to the adenine portion of the ATP binding site on EF. EF is activated by the host calcium sensor, calmodulin. Surface plasmon resonance spectroscopic analysis shows that this compound does not affect the binding of calmodulin to EF. This compound is dissimilar from a previously described, non-nucleoside inhibitor of host adenylyl cyclase. It may serve as a lead to design antitoxins to address the role of adenylyl cyclase toxins in bacterial pathogenesis and to fight against anthrax and whooping cough.

  2. Ca2+-Stimulated Adenylyl Cyclases Regulate ERK-Dependent Activation of MSK1 During Fear Conditioning

    PubMed Central

    Sindreu, Carlos Balet; Scheiner, Zachary S.; Storm, Daniel R.

    2007-01-01

    The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation have not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are co-activated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca2+-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory. PMID:17196532

  3. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  4. Muscarinic inhibition of hippocampal and striatal adenylyl cyclase is mainly due to the M(4) receptor.

    PubMed

    Sánchez, Gonzalo; Colettis, Natalia; Vázquez, Pablo; Cerveñansky, Carlos; Aguirre, Alejandra; Quillfeldt, Jorge A; Jerusalinsky, Diana; Kornisiuk, Edgar

    2009-08-01

    The five muscarinic acetylcholine receptors (M(1)-M(5)) are differentially expressed in the brain. M(2) and M(4) are coupled to inhibition of stimulated adenylyl cyclase, while M(1), M(3) and M(5) are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2-affinity order M(1) > or = M(4) > others-and MT3-highly selective M(4) antagonist-did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M(2), M(4) would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M(4) receptor would be responsible for this regulation.

  5. A new family of adenylyl cyclase genes in the male germline of Drosophila melanogaster.

    PubMed

    Cann, M J; Chung, E; Levin, L R

    2000-04-01

    We describe the cloning and characterization of a new gene family of adenylyl cyclase related genes in Drosophila. The five adenylyl cyclase-like genes that define this family are clearly distinct from previously known adenylyl cyclases. One member forms a unique locus on chromosome 3 whereas the other four members form a tightly clustered, tandemly repeated array on chromosome 2. The genes on chromosome 2 are transcribed in the male germline in a doublesex dependent manner and are expressed in postmitotic, meiotic, and early differentiating sperm. These genes therefore provide the first evidence for a role for the cAMP signaling pathway in Drosophila spermatogenesis. Expression from this locus is under the control of the always early, cannonball, meiosis arrest, and spermatocyte arrest genes that are required for the G2/M transition of meiosis I during spermatogenesis, implying a mechanism for the coordination of differentiation and proliferation. Evidence is also provided for positive selection at the locus on chromosome 2 which suggests this gene family is actively evolving and may play a novel role in spermatogenesis.

  6. Effects of dopamine on adenylyl cyclase activity and amylase secretion in rat parotid tissue.

    PubMed

    Hatta, S; Amemiya, N; Takemura, H; Ohshika, H

    1995-06-01

    Several previous studies have shown that dopamine causes amylase secretion from rat parotid tissue. However, the mechanism of this dopamine action is still unclear. The present study was designed to characterize dopamine action in rat parotid gland tissue by examining the effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release. Dopamine significantly enhanced accumulation of cyclic AMP in parotid slices and stimulated adenylyl cyclase activity in parotid membrane preparations. It also significantly stimulated amylase release from parotid slices. The stimulatory effects of dopamine on cyclic AMP accumulation, adenylyl cyclase activity, and amylase release were effectively blocked with propranolol, a beta-adrenergic antagonist, but not by either SCH 23390, a preferential D1 antagonist, or butaclamol, a preferential D2 antagonist. No substantial specific binding sites for D1 receptors were detectable by [3H]SCH 23390 binding in parotid membranes. These results suggest that the stimulatory effect of dopamine on amylase secretion in rat parotid tissue is not mediated through specific D1 dopamine receptors but rather through beta-adrenergic receptors.

  7. Short- and long-term regulation of adenylyl cyclase activity by delta-opioid receptor are mediated by Galphai2 in neuroblastoma N2A cells.

    PubMed

    Zhang, Lei; Tetrault, Joan; Wang, Wei; Loh, Horace H; Law, Ping-Yee

    2006-06-01

    Activation of the opioid receptor results in short-term inhibition of intracellular cAMP levels followed by receptor desensitization and subsequent increase of cAMP above the control level (adenylyl cyclase superactivation). Using adenovirus to deliver pertussis toxin-insensitive mutants of the alpha-subunits of G(i/o) that are expressed in neuroblastoma Neuro2A cells (Galpha(i2), Galpha(i3), and Galpha(o)), we examined the identities of the G proteins involved in the short- and long-term action of the delta-opioid receptor (DOR). Pertussis toxin pretreatment completely abolished the ability of [d-Pen(2), d-Pen(5)]-enkephalin (DPDPE) to inhibit forskolin-stimulated intracellular cAMP production. Expression of the C352L mutant of Galpha(i2), and not the C351L mutants of Galpha(i3) or Galpha(o), rescued the short-term effect of DPDPE after pertussis toxin treatment. The ability of Galpha(i2) in mediating DOR inhibition of adenylyl cyclase activity was also reflected in the ability of Galpha(i2), not Galpha(i3) or Galpha(o), to coimmunoprecipitate with DOR. Coincidently, after long-term DPDPE treatment, pertussis toxin treatment eliminated the antagonist naloxone-induced superactivation of adenylyl cyclase activity. Again, only the C352L mutant of Galpha(i2) restored the adenylyl cyclase superactivation after pertussis toxin treatment. More importantly, the C352L mutant of Galpha(i2) remained associated with DOR after long-term agonist and pertussis toxin treatment whereas the wild-type Galpha(i2) did not. These data suggest that Galpha(i2) serves as the signaling molecule in both DOR-mediated short- and long-term regulation of adenylyl cyclase activity.

  8. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved.

  9. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  10. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  11. Adenylyl cyclase expression and modulation of cAMP in rat taste cells.

    PubMed

    Abaffy, Tatjana; Trubey, Kristina R; Chaudhari, Nirupa

    2003-06-01

    cAMP is a second messenger implicated in sensory transduction for taste. The identity of adenylyl cyclase (AC) in taste cells has not been explored. We have employed RT-PCR to identify the AC isoforms present in taste cells and found that AC 4, 6, and 8 are expressed as mRNAs in taste tissue. These proteins are also expressed in a subset of taste cells as revealed by immunohistochemistry. Alterations of cAMP concentrations are associated with transduction of taste stimuli of several classes. The involvement of particular ACs in this modulation has not been investigated. We demonstrate that glutamate, which is a potent stimulus eliciting a taste quality termed umami, causes a decrease in cAMP in forskolin-treated taste cells. The potentiation of this response by inosine monophosphate, the lack of response to d-glutamate, and the lack of response to umami stimuli in nonsensory lingual epithelium all suggest that the cAMP modulation represents umami taste transduction. Because cAMP downregulation via ACs can be mediated through Galpha(i) proteins, we examined the colocalization of the detected ACs with Galpha(i) proteins and found that 66% of AC8 immunopositive taste cells are also positive for gustducin, a taste-specific Galpha(i) protein. Whether AC8 is directly involved in signal transduction of umami taste remains to be established.

  12. An adenylyl cyclase with a phosphodiesterase domain in basal plants with a motile sperm system

    PubMed Central

    Kasahara, Masahiro; Suetsugu, Noriyuki; Urano, Yuki; Yamamoto, Chiaki; Ohmori, Mikiya; Takada, Yuki; Okuda, Shujiro; Nishiyama, Tomoaki; Sakayama, Hidetoshi; Kohchi, Takayuki; Takahashi, Fumio

    2016-01-01

    Adenylyl cyclase (AC), which produces the signalling molecule cAMP, has numerous important cellular functions in diverse organisms from prokaryotes to eukaryotes. Here we report the identification and characterization of an AC gene from the liverwort Marchantia polymorpha. The encoded protein has both a C-terminal AC catalytic domain similar to those of class III ACs and an N-terminal cyclic nucleotide phosphodiesterase (PDE) domain that degrades cyclic nucleotides, thus we designated the gene MpCAPE (COMBINED AC with PDE). Biochemical analyses of recombinant proteins showed that MpCAPE has both AC and PDE activities. In MpCAPE-promoter-GUS lines, GUS activity was specifically detected in the male sexual organ, the antheridium, suggesting MpCAPE and thus cAMP signalling may be involved in the male reproductive process. CAPE orthologues are distributed only in basal land plants and charophytes that use motile sperm as the male gamete. CAPE is a subclass of class III AC and may be important in male organ and cell development in basal plants. PMID:27982074

  13. The adenylyl cyclase Rv2212 modifies the proteome and infectivity of Mycobacterium bovis BCG.

    PubMed

    Pedroza-Roldán, César; Aceves-Sánchez, Michel de Jesús; Zaveri, Anisha; Charles-Niño, Claudia; Elizondo-Quiroga, Darwin Eduardo; Hernández-Gutiérrez, Rodolfo; Allen, Kirk; Visweswariah, Sandhya S; Flores-Valdez, Mario Alberto

    2015-01-01

    All organisms have the capacity to sense and respond to environmental changes. These signals often involve the use of second messengers such as cyclic adenosine monophosphate (cAMP). This second messenger is widely distributed among organisms and coordinates gene expression related with pathogenesis, virulence, and environmental adaptation. Genomic analysis in Mycobacterium tuberculosis has identified 16 adenylyl cyclases (AC) and one phosphodiesterase, which produce and degrade cAMP, respectively. To date, ten AC have been biochemically characterized and only one (Rv0386) has been found to be important during murine infection with M. tuberculosis. Here, we investigated the impact of hsp60-driven Rv2212 gene expression in Mycobacterium bovis Bacillus Calmette-Guerin (BCG) during growth in vitro, and during macrophage and mice infection. We found that hsp60-driven expression of Rv2212 resulted in an increased capacity of replication in murine macrophages but an attenuated phenotype in lungs and spleen when administered intravenously in mice. Furthermore, this strain displayed an altered proteome mainly affecting proteins associated with stress conditions (bfrB, groEL-2, DnaK) that could contribute to the attenuated phenotype observed in mice.

  14. Inhibition of Adenylyl Cyclase Type 5 Increases Longevity and Healthful Aging through Oxidative Stress Protection

    PubMed Central

    Vatner, Stephen F.; Pachon, Ronald E.; Vatner, Dorothy E.

    2015-01-01

    Mice with disruption of adenylyl cyclase type 5 (AC5 knockout, KO) live a third longer than littermates. The mechanism, in part, involves the MEK/ERK pathway, which in turn is related to protection against oxidative stress. The AC5 KO model also protects against diabetes, obesity, and the cardiomyopathy induced by aging, diabetes, and cardiac stress and also demonstrates improved exercise capacity. All of these salutary features are also mediated, in part, by oxidative stress protection. For example, chronic beta adrenergic receptor stimulation induced cardiomyopathy was rescued by AC5 KO. Conversely, in AC5 transgenic (Tg) mice, where AC5 is overexpressed in the heart, the cardiomyopathy was exacerbated and was rescued by enhancing oxidative stress resistance. Thus, the AC5 KO model, which resists oxidative stress, is uniquely designed for clinical translation, since it not only increases longevity and exercise, but also protects against diabetes, obesity, and cardiomyopathy. Importantly, inhibition of AC5's action to prolong longevity and enhance healthful aging, as well as its mechanism through resistance to oxidative stress, is unique among all of the nine AC isoforms. PMID:25945149

  15. Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins.

    PubMed

    Shen, Yuequan; Lee, Young-Sam; Soelaiman, Sandriyana; Bergson, Pamela; Lu, Dan; Chen, Alice; Beckingham, Kathy; Grabarek, Zenon; Mrksich, Milan; Tang, Wei-Jen

    2002-12-16

    Edema factor (EF) and CyaA are calmodulin (CaM)-activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca(2+) concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca(2+) concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca(2+) concentrations. Despite the similarity in Ca(2+) sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100-fold higher affinity for CaM than EF. CaM has N- and C-terminal globular domains, each binding two Ca(2+) ions. CyaA can be fully activated by CaM mutants with one defective C-terminal Ca(2+)-binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca(2+)-CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.

  16. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    PubMed

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    PubMed Central

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2013-01-01

    SUMMARY Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3− entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K+]ext and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. PMID:22998876

  18. Acetylcholine inhibits Ca2+ current by acting exclusively at a site proximal to adenylyl cyclase in frog cardiac myocytes.

    PubMed

    Jurevicius, J; Fischmeister, R

    1996-03-15

    1. The effects of acetylcholine (ACh) on the L-type Ca2+ current (ICa) stimulated by isoprenaline (Iso) or forskolin (Fsk) were examined in frog ventricular myocytes using the whole-cell patch-clamp technique and a double capillary for extracellular microperfusion. 2. The exposure of one half of the cell to 1 microM Iso produced a half-maximal increase in ICa since a subsequent application of Iso to the other half induced an additional effect of nearly the same amplitude. Similarly, addition of 1 microM ACh to only one half of a cell exposed to Iso on both halves reduced the effect of Iso by only approximately 50%. 3. When 10 microM Iso or 30 microM Fsk were applied to a Ca(2+)-free solution on one half of the cell, ICa was increased in the remote part of the cell where adenylyl cyclase activity was not stimulated. However, addition of ACh (3-10 microM) to the remote part had no effect on ICa, while addition of ACh to the part of the cell exposed to Iso or Fsk strongly antagonized the stimulatory effects of these drugs. 4. Our data demonstrate that ACh regulates ICa by acting at a site proximal to adenylyl cyclase in frog ventricular cells. We conclude that the muscarinic regulation of ICa does not involve any additional cAMP-independent mechanisms occurring downstream from cAMP generation.

  19. Thalamic adenylyl cyclase 1 is required for barrel formation in the somatosensory cortex.

    PubMed

    Suzuki, A; Lee, L-J; Hayashi, Y; Muglia, L; Itohara, S; Erzurumlu, R S; Iwasato, T

    2015-04-02

    Cyclic AMP signaling is critical for activity-dependent refinement of neuronal circuits. Global disruption of adenylyl cyclase 1 (AC1), the major calcium/calmodulin-stimulated adenylyl cyclase in the brain, impairs formation of whisker-related discrete neural modules (the barrels) in cortical layer 4 in mice. Since AC1 is expressed both in the thalamus and the neocortex, the question of whether pre- or postsynaptic (or both) AC1 plays a role in barrel formation has emerged. Previously, we generated cortex-specific AC1 knockout (Cx-AC1KO) mice and found that these animals develop histologically normal barrels, suggesting a potentially more prominent role for thalamic AC1 in barrel formation. To determine this, we generated three new lines of mice: one in which AC1 is disrupted in nearly half of the thalamic ventrobasal nucleus cells in addition to the cortical excitatory neurons (Cx/pTh-AC1KO mouse), and another in which AC1 is disrupted in the thalamus but not in the cortex or brainstem nuclei of the somatosensory system (Th-AC1KO mouse). Cx/pTh-AC1KO mice show severe deficits in barrel formation. Th-AC1KO mice show even more severe disruption in barrel patterning. In these two lines, single thalamocortical (TC) axon labeling revealed a larger lateral extent of TC axons in layer 4 compared to controls. In the third line, all calcium-stimulated adenylyl cyclases (both AC1 and AC8) are deleted in cortical excitatory neurons. These mice have normal barrels. Taken together, these results indicate that thalamic AC1 plays a major role in patterning and refinement of the mouse TC circuitry.

  20. New insights concerning the molecular basis for defective glucoregulation in soluble adenylyl cyclase knockout mice.

    PubMed

    Holz, George G; Leech, Colin A; Chepurny, Oleg G

    2014-12-01

    Recently published findings indicate that a knockout (KO) of soluble adenylyl cyclase (sAC, also known as AC-10) gene expression in mice leads to defective glucoregulation that is characterized by reduced pancreatic insulin secretion and reduced intraperitoneal glucose tolerance. Summarized here are current concepts regarding the molecular basis for this phenotype, with special emphasis on the potential role of sAC as a determinant of glucose-stimulated insulin secretion. Highlighted is new evidence that in pancreatic beta cells, oxidative glucose metabolism stimulates mitochondrial CO₂production that in turn generates bicarbonate ion (HCO(3)(-)). Since HCO(3)(-) binds to and directly stimulates the activity of sAC, we propose that glucose-stimulated cAMP production in beta cells is mediated not simply by transmembrane adenylyl cyclases (TMACs), but also by sAC. Based on evidence that sAC is expressed in mitochondria, there exists the possibility that beta-cell glucose metabolism is linked to mitochondrial cAMP production with consequent facilitation of oxidative phosphorylation. Since sAC is also expressed in the cytoplasm, sAC catalyzed cAMP production may activate cAMP sensors such as PKA and Epac2 to control ion channel function, intracellular Ca²⁺ handling, and Ca²⁺-dependent exocytosis. Thus, we propose that the existence of sAC in beta cells provides a new and unexpected explanation for previously reported actions of glucose metabolism to stimulate cAMP production. It seems possible that alterations of sAC activity might be of importance when evaluating new strategies for the treatment of type 2 diabetes (T2DM), or when evaluating why glucose metabolism fails to stimulate insulin secretion in patients diagnosed with T2DM. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.

  1. A Role for Calmodulin-Stimulated Adenylyl Cyclases in Cocaine Sensitization

    PubMed Central

    DiRocco, Derek P.; Scheiner, Zachary S.; Sindreu, Carlos Balet; Chan, Guy C-K; Storm, Daniel R.

    2009-01-01

    Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that while AC1 and AC8 single knockout mice (AC1−/− and AC8−/−) exhibit Ca2+-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knockout (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization following chronic cocaine treatment. Because of the known role for the ERK/MAP kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated extracellular signal-regulated kinase (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase positive (ChAT+) interneurons in DKO mice relative to wild-type (WT) controls. Following acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581, and cAMP response element-binding protein (pCREB) at Ser133 following acute cocaine treatment. Our results demonstrate that the Ca2+-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs. PMID:19244515

  2. Glucose and GLP-1 Stimulate cAMP Production via Distinct Adenylyl Cyclases in INS-1E Insulinoma Cells

    PubMed Central

    Ramos, Lavoisier S.; Zippin, Jonathan Hale; Kamenetsky, Margarita; Buck, Jochen; Levin, Lonny R.

    2008-01-01

    In β cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein–responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades. PMID:18695009

  3. Adenylyl Cyclase-Associated Protein 1 in the Development of Head and Neck Squamous Cell Carcinomas.

    PubMed

    Kakurina, G V; Kondakova, I V; Cheremisina, O V; Shishkin, D A; Choinzonov, E L

    2016-03-01

    We compared the content of adenylyl cyclase-associated protein 1 (CAP1) in the blood and tissues of patients with head and neck squamous cell carcinomas (with and without regional metastases), patients with chronic inflammatory diseases aggravated by laryngeal and laryngopharyngeal dysplasia, and healthy individuals. The data suggest that serum CAP1 concentration correlated with the depth of primary tumor invasion and the presence of regional metastases. In cancer patients, the serum level of CAP1 was lower than in patients with laryngeal and laryngopharyngeal dysplasia, which can be of importance for differential and timely diagnostics of malignant tumors.

  4. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    SciTech Connect

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.; Sutkowski, E.M.; Seamon, K.B. )

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.

  5. Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory

    PubMed Central

    Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.

    2008-01-01

    Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980

  6. Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds.

    PubMed

    Brand, Cameron S; Hocker, Harrison J; Gorfe, Alemayehu A; Cavasotto, Claudio N; Dessauer, Carmen W

    2013-11-01

    Nine membrane-bound adenylyl cyclase (AC) isoforms catalyze the production of the second messenger cyclic AMP (cAMP) in response to various stimuli. Reduction of AC activity has well documented benefits, including benefits for heart disease and pain. These roles have inspired development of isoform-selective AC inhibitors, a lack of which currently limits exploration of functions and/or treatment of dysfunctions involving AC/cAMP signaling. However, inhibitors described as AC5- or AC1-selective have not been screened against the full panel of AC isoforms. We have measured pharmacological inhibitor profiles for all transmembrane AC isoforms. We found that 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22,536), 2-amino-7-(furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), and adenine 9-β-d-arabinofuranoside (Ara-A), described as supposedly AC5-selective, do not discriminate between AC5 and AC6, whereas the putative AC1-selective inhibitor 5-[[2-(6-amino-9H-purin-9-yl)ethyl]amino]-1-pentanol (NB001) does not directly target AC1 to reduce cAMP levels. A structure-based virtual screen targeting the ATP binding site of AC was used to identify novel chemical structures that show some preference for AC1 or AC2. Mutation of the AC2 forskolin binding pocket does not interfere with inhibition by SQ22,536 or the novel AC2 inhibitor, suggesting binding to the catalytic site. Thus, we show that compounds lacking the adenine chemical signature and targeting the ATP binding site can potentially be used to develop AC isoform-specific inhibitors, and discuss the need to reinterpret literature using AC5/6-selective molecules SQ22,536, NKY80, and Ara-A.

  7. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    PubMed Central

    Wang, Zhenshan; Zhou, Yanfen; Luo, Yingtao; Zhang, Jing; Zhai, Yunpeng; Yang, Dong; Zhang, Zhe; Li, Yongchao; Storm, Daniel R.; Ma, Runlin Z.

    2015-01-01

    Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/−) and wild-type (AC3+/+) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE. PMID:26633363

  8. Isolated dorsal root ganglion neurones inhibit receptor-dependent adenylyl cyclase activity in associated glial cells

    PubMed Central

    Ng, KY; Yeung, BHS; Wong, YH; Wise, H

    2013-01-01

    Background and Purpose Hyper-nociceptive PGE2 EP4 receptors and prostacyclin (IP) receptors are present in adult rat dorsal root ganglion (DRG) neurones and glial cells in culture. The present study has investigated the cell-specific expression of two other Gs-protein coupled hyper-nociceptive receptor systems: β-adrenoceptors and calcitonin gene-related peptide (CGRP) receptors in isolated DRG cells and has examined the influence of neurone–glial cell interactions in regulating adenylyl cyclase (AC) activity. Experimental Approach Agonist-stimulated AC activity was determined in mixed DRG cell cultures from adult rats and compared with activity in DRG neurone-enriched cell cultures and pure DRG glial cell cultures. Key Results Pharmacological analysis showed the presence of Gs-coupled β2-adrenoceptors and CGRP receptors, but not β1-adrenoceptors, in all three DRG cell preparations. Agonist-stimulated AC activity was weakest in DRG neurone-enriched cell cultures. DRG neurones inhibited IP receptor-stimulated glial cell AC activity by a process dependent on both cell–cell contact and neurone-derived soluble factors, but this is unlikely to involve purine or glutamine receptor activation. Conclusions and Implications Gs-coupled hyper-nociceptive receptors are readily expressed on DRG glial cells in isolated cell cultures and the activity of CGRP, EP4 and IP receptors, but not β2-adrenoceptors, in glial cells is inhibited by DRG neurones. Studies using isolated DRG cells should be aware that hyper-nociceptive ligands may stimulate receptors on glial cells in addition to neurones, and that variable numbers of neurones and glial cells will influence absolute measures of AC activity and affect downstream functional responses. PMID:22924655

  9. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  10. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  11. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis.

    PubMed

    Tresguerres, Martin; Parks, Scott K; Salazar, Eric; Levin, Lonny R; Goss, Greg G; Buck, Jochen

    2010-01-05

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.

  12. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis

    PubMed Central

    Tresguerres, Martin; Parks, Scott K.; Salazar, Eric; Levin, Lonny R.; Goss, Greg G.; Buck, Jochen

    2009-01-01

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO3−). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H+) and HCO3− at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO3− and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO3− levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H+ into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom. PMID:20018667

  13. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  14. Bicarbonate-sensitive soluble and transmembrane adenylyl cyclases in peripheral chemoreceptors

    PubMed Central

    Nunes, Ana R.; Holmes, Andrew P.S.; Sample, Vedangi; Kumar, Prem; Cann, Martin J.; Monteiro, Emília C.; Zhang, Jin; Gauda, Estelle B.

    2014-01-01

    Stimulation of the carotid body (CB) chemoreceptors by hypercapnia triggers a reflex ventilatory response via a cascade of cellular events, which includes generation of cAMP. However, it is not known if molecular CO2/HCO3− and/or H+ mediate this effect and how these molecules contribute to cAMP production. We previously reported that the CB highly expresses HCO3−-sensitive soluble adenylyl cyclase (sAC). In the present study we systematically characterize the role of sAC in the CB, comparing the effect of isohydric hypercapnia (IH) in cAMP generation through activation of sAC or transmembrane-adenylyl cyclase (tmAC). Pharmacological deactivation of sAC and tmAC decreased the CB cAMP content in normocapnia and IH with no differences between these two conditions. Changes from normocapnia to IH did not effect the degree of PKA activation and the carotid sinus nerve discharge frequency. sAC and tmAC are functional in CB but intracellular elevations in CO2/HCO3− in IH conditions on their own are insufficient to further activate these enzymes, suggesting that the hypercapnic response is dependent on secondary acidosis. PMID:23727159

  15. CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor.

    PubMed

    Zippin, Jonathan H; Chen, Yanqiu; Straub, Susanne G; Hess, Kenneth C; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G; Sharp, Geoffrey W G; Levin, Lonny R; Buck, Jochen

    2013-11-15

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo.

  16. Mice lacking adenylyl cyclase type 5 (AC5) show increased ethanol consumption and reduced ethanol sensitivity.

    PubMed

    Kim, Kyoung-Shim; Kim, Hannah; Baek, In-Sun; Lee, Ko-Woon; Han, Pyung-Lim

    2011-05-01

    The adenylyl cyclase (AC)/cAMP system is believed to be a key component in regulating alcohol-drinking behavior. It was reported that adenylyl cyclase-5 (AC5) is expressed widely in the brain, with a preferential concentration in the dorsal striatum and nucleus accumbens, brain regions which are important for addiction and emotion. AC5 has been shown to be an essential mediator of morphine addiction and dopamine receptor function; however, it remains unknown whether or not AC5 plays a role in ethanol preference and sensitivity in animals. This work was carried out to determine the role of AC5 in alcohol consumption and the hypnotic response to alcohol using AC5 knockout (KO) mice. In the test for ethanol preference employing a two-bottle free-choice paradigm, AC5 KO mice showed increased ethanol consumption and preference compared with the wild-type mice. Ethanol-induced hypothermia was weakly reduced in AC5 KO mice. AC5 KO mice exhibited sedation/behavioral sleep to high-dose ethanol, but their responses were greatly suppressed compared with the wild-type mice. These results suggest that AC5 is an important signaling molecule regulating alcohol sensitivity and preference in animals. These data provide critical information for AC5 activation as a candidate target for the treatment of alcoholism.

  17. Inhibition of adenylyl and guanylyl cyclase isoforms by the antiviral drug foscarnet.

    PubMed

    Kudlacek, O; Mitterauer, T; Nanoff, C; Hohenegger, M; Tang, W J; Freissmuth, M; Kleuss, C

    2001-02-02

    The pyrophosphate (PP(i)) analog foscarnet inhibits viral DNA-polymerases and is used to treat cytomegalovirus and human immunodeficiency vius infections. Nucleotide cyclases and DNA-polymerases catalyze analogous reactions, i.e. a phosphodiester bond formation, and have similar topologies in their active sites. Inhibition by foscarnet of adenylyl cyclase isoforms was therefore tested with (i) purified catalytic domains C1 and C2 of types I and VII (IC1 and VIIC1) and of type II (IIC2) and (ii) membrane-bound holoenzymes (from mammalian tissues and types I, II, and V heterologously expressed in Sf9 cell membranes). Foscarnet was more potent than PP(i) in suppressing forskolin-stimulated catalysis by both, IC1/IIC2 and VIIC1/IIC2. Stimulation of VIIC1/IIC2 by Galpha(s) relieved the inhibition by foscarnet but not that by PP(i). The IC(50) of foscarnet on membrane-bound adenylyl cyclases also depended on their mode of regulation. These findings predict that receptor-dependent cAMP formation is sensitive to inhibition by foscarnet in some, but not all, cells. This was verified with two cell lines; foscarnet blocked cAMP accumulation after A(2A)-adenosine receptor stimulation in PC12 but not in HEK-A(2A) cells. Foscarnet also inhibited soluble and, to a lesser extent, particulate guanylyl cylase. Thus, foscarnet interferes with the generation of cyclic nucleotides, an effect which may give rise to clinical side effects. The extent of inhibition varies with the enzyme isoform and with the regulatory input.

  18. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation.

    PubMed

    Kawai, M; Aotsuka, S; Uchimiya, H

    1998-12-01

    The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.

  19. A novel Gs alpha mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase.

    PubMed

    Schwindinger, W F; Miric, A; Zimmerman, D; Levine, M A

    1994-10-14

    Albright hereditary osteodystrophy (AHO) is an autosomal-dominant disorder characterized by decreased expression of Gs alpha and widespread tissue resistance to hormones that activate adenylyl cyclase. We identified a single mutation, R385H, in the Gs alpha gene of a subject with AHO who had evidence for a dysfunctional Gs alpha protein. The R385H substitution is near the carboxyl terminus of the Gs alpha protein and is located five amino acids upstream of the R389P mutation that uncouples Gs alpha from cell surface receptors in the unc clone of S49 murine lymphoma. To test the biological activity of the R385H mutant, we transiently expressed wild type, R385H, and R389P Gs alpha cDNAs in COS-1 cells. Neither of the mutant Gs alpha proteins stimulated adenylyl cyclase in response to l-isoproterenol (1 to 30 microM). By contrast, both mutant Gs alpha proteins showed activation of adenylyl cyclase in response to forskolin (10 microM) and fluoroaluminate (10 mM). We propose that the R385H mutation produces a Gs alpha molecule that is unable to interact with hormone receptors and results in uncoupling of adenylyl cyclase from cell surface receptors. This uncoupling mutation represents a new type of molecular defect that can result in AHO.

  20. The Diurnal Oscillation of MAP Kinase and Adenylyl Cyclase Activities in the Hippocampus Depends on the SCN

    PubMed Central

    Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.

    2011-01-01

    Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN two days after training for contextual fear memory reduced contextual memory measured two weeks after training indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus. PMID:21775607

  1. Lack of 5-hydroxytryptamine1A-mediated inhibition of adenylyl cyclase in dorsal raphe of male and female rats.

    PubMed

    Clarke, W P; Yocca, F D; Maayani, S

    1996-06-01

    In the rat hippocampus, 5-hydroxytryptamine (5-HT)1A receptors couple to two independent effector mechanisms, the inhibition of adenylyl cyclase activity and the opening of a K+ channel. In the dorsal raphe, 5-HT1A receptors also open K+ channels; however, coupling to adenylyl cyclase has not been demonstrated. In this study, the selective 5-HT1A agonists (+/-)- 8-hydroxy-2-(di-n-propylamino)tetralin, (R+)-8-hydroxy-2-(di-n-propylamino)tetralin and dipropyl-5-carboxamidotryptamine, did not inhibit forskolin-stimulated adenylyl cyclase (FSAC) activity in raphe region homogenates, although these drugs were efficacious in hippocampal homogenates. Other 5-HT1A agonists, NAN-190, BMY-7378, buspirone and gepirone, were also ineffective in raphe region homogenates. Estrogen-treatment of ovariectomized female rats, which is known to enhance 5-HT1A-mediated inhibition of FSAC in the hippocampus, did not promote the action of 5-HT1A agonists. Nor did activation of 5-HT1A receptors stimulate basal adenylyl cyclase activity in raphe homogenates as it does in the hippocampus. FSAC activity was inhibited in raphe region homogenates by activation of adenosine A1 or gamma-aminobutyric acidB receptors or by direct activation of the inhibitor G-protein, Gi, with guanyl-5'-6'-imidodiphosphate, indicating that the raphe homogenates have the biochemical machinery for inhibition of FSAC. High affinity binding studies showed that, in raphe homogenates, 5-HT1A receptors were expressed at a density comparable to that of adenosine A1 receptors and that they were coupled to G-proteins. It should be noted that our failure to observe 5-HT1A-mediated inhibition of adenylyl cyclase in the raphe does not prove that such coupling does not exist. However, a lack of 5-HT1A receptor coupling to adenylyl cyclase in the raphe would support contentions that coupling of the 5-HT1A receptor to adenylyl cyclase may be independent of its coupling to the K+ channel and that there may be distinct differences

  2. Exploring the inhibition mechanism of adenylyl cyclase type 5 by n-terminal myristoylated Gαi1.

    PubMed

    van Keulen, Siri Camee; Rothlisberger, Ursula

    2017-09-01

    Adenylyl cyclase (AC) is an important messenger involved in G-protein-coupled-receptor signal transduction pathways, which is a well-known target for drug development. AC is regulated by activated stimulatory (Gαs) and inhibitory (Gαi) G proteins in the cytosol. Although experimental studies have shown that these Gα subunits can stimulate or inhibit AC's function in a non-competitive way, it is not well understood what the difference is in their mode of action as both Gα subunits appear structurally very similar in a non-lipidated state. However, a significant difference between Gαs and Gαi is that while Gαs does not require any lipidation in order to stimulate AC, N-terminal myristoylation is crucial for Gαi's inhibitory function as AC is not inhibited by non-myristoylated Gαi. At present, only the conformation of the complex including Gαs and AC has been resolved via X-ray crystallography. Therefore, understanding the interaction between Gαi and AC is important as it will provide more insight into the unknown mechanism of AC regulation. This study demonstrates via classical molecular dynamics simulations that the myristoylated Gαi1 structure is able to interact with apo adenylyl cyclase type 5 in a way that causes inhibition of the catalytic function of the enzyme, suggesting that Gα lipidation could play a crucial role in AC regulation and in regulating G protein function by affecting Gαi's active conformation.

  3. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.

    PubMed

    Iwatsubo, Kousaku; Tsunematsu, Takashi; Ishikawa, Yoshihiro

    2003-06-01

    Adenylyl cyclase (AC) is a target enzyme of multiple G-protein-coupled receptors (GPCRs). In the past decade, the cloning, structure and biochemical properties of nine AC isoforms were reported, and each isoform of AC shows distinct patterns of tissue distribution and biochemical/pharmacological properties. In addition to the conventional regulators of this enzyme, such as calmodulin (CaM) or PKC, novel regulators, for example, caveolin, have been identified. Most importantly, these regulators work on AC in an isoform dependent manner. Recent studies have demonstrated that certain classic AC inhibitors, i.e., P-site inhibitors, show an isoform-dependent inhibition of AC. The side chain modifications of forskolin, a diterpene extract from Coleus forskolii, markedly enhance its isoform selectivity. When taken together, these findings suggest that it is feasible to develop new pharmacotherapeutic agents that target AC isoforms to regulate various neurohormonal signals in a highly tissue-/organ-specific manner.

  4. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  5. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.

    PubMed

    Watson, Richard L; Buck, Jochen; Levin, Lonny R; Winger, Ryan C; Wang, Jing; Arase, Hisashi; Muller, William A

    2015-06-29

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM.

  6. pH sensing via bicarbonate-regulated “soluble” adenylyl cyclase (sAC)

    PubMed Central

    Rahman, Nawreen; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role. PMID:24324443

  7. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects

    PubMed Central

    Acin-Perez, Rebeca; Salazar, Eric; Brosel, Sonja; Yang, Hua; Schon, Eric A; Manfredi, Giovanni

    2009-01-01

    Phosphorylation of respiratory chain components has emerged as a mode of regulation of mitochondrial energy metabolism, but its mechanisms are still largely unexplored. A recently discovered intramitochondrial signalling pathway links CO2 generated by the Krebs cycle with the respiratory chain, through the action of a mitochondrial soluble adenylyl cyclase (mt-sAC). Cytochrome oxidase (COX), whose deficiency causes a number of fatal metabolic disorders, is a key mitochondrial enzyme activated by mt-sAC. We have now discovered that the mt-sAC pathway modulates mitochondrial biogenesis in a reactive oxygen species dependent manner, in cultured cells and in animals with COX deficiency. We show that upregulation of mt-sAC normalizes reactive oxygen species production and mitochondrial biogenesis, thereby restoring mitochondrial function. This is the first example of manipulation of a mitochondrial signalling pathway to achieve a direct positive modulation of COX, with clear implications for the development of novel approaches to treat mitochondrial diseases. PMID:20049744

  8. Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity

    PubMed Central

    Cao, Hong; Chen, Xuanmao; Yang, Yimei; Storm, Daniel R

    2016-01-01

    Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance. PMID:27942392

  9. Characterization of the Blue-Light-Activated Adenylyl Cyclase mPAC by Flash Photolysis and FTIR Spectroscopy.

    PubMed

    Kerruth, Silke; Langner, Pit; Raffelberg, Sarah; Gärtner, Wolfgang; Heberle, Joachim

    2017-05-01

    The recently discovered photo-activated adenylyl cyclase (mPAC from Microcoleus chthonoplastes) is the first PAC that owes a light-, oxygen- and voltage-sensitive (LOV) domain for blue-light sensing. The photoreaction of the mPAC receptor was studied by time-resolved UV/vis and light-induced Fourier transform infrared (FTIR) absorption difference spectroscopy. The photocycle comprises of the typical triplet state LOV715 and the thio-adduct state LOV390 . While the adduct state decays with a time constant of 8 s, the lifetime of the triplet state is with 656 ns significantly shorter than in all other reported LOV domains. The light-induced FTIR difference spectrum shows the typical bands of the LOV390 and LOV450 intermediates. The negative S-H stretching vibration at 2573 cm(-1) is asymmetric suggesting two rotamer configurations of the protonated side chain of C194. A positive band at 3632 cm(-1) is observed, which is assigned to an internal water molecule. In contrast to other LOV domains, mPAC exhibits a second positive feature at 3674 cm(-1) which is due to the O-H stretch of a second intrinsic water molecule and the side chain of Y476. We conclude that the latter might be involved in the dimerization of the cyclase domain which is crucial for ATP binding. © 2017 The American Society of Photobiology.

  10. FPP modulates mammalian sperm function via TCP-11 and the adenylyl cyclase/cAMP pathway.

    PubMed

    Adeoya-Osiguwa, S A; Dudley, R K; Hosseini, R; Fraser, L R

    1998-12-01

    Fertilization promoting peptide (FPP; pGlu-Glu-ProNH2), which is found in seminal plasma, promotes capacitation but inhibits spontaneous acrosome loss in mammalian spermatozoa in vitro. Adenosine, known to modulate the adenylyl cyclase (AC)/cAMP pathway, elicits these same responses whereas FPP + adenosine produces an enhanced response, leading to the hypothesis that FPP and adenosine modulate the same signal transduction pathway but act via different receptors. TCP-11, the product of a t-complex gene, is the putative receptor for FPP: Fab fragments of anti-TCP-11 antibodies have the same effect as FPP on mouse spermatozoa and Gln-FPP, a competitive inhibitor of FPP, also competitively inhibits responses to the Fab fragments. In the present study, specific binding of 3H-FPP to sperm membranes was significantly inhibited by 200 nM Gln-FPP and anti-TCP-11 Fab fragments (1/25 dilution), thus confirming that FPP, Gln-FPP, and Fab fragments compete for the same binding site. In addition, spermatozoa treated with A23187 to induce the acrosome reaction bound significantly less 3H-FPP than untreated cells, suggesting that a large proportion of the FPP binding sites are associated with the acrosomal cap region; TCP-11 is located in this region. In other experiments, 100 nM FPP significantly stimulated cAMP production in mouse sperm membranes, permeabilized cells and intact cells. Furthermore, Gln-FPP inhibited production of cAMP in response to FPP but not to adenosine (10 microM) or its analogue NECA (100 nM), supporting the involvement of two different receptors. Finally, anti-TCP-11 Fab fragments (1/25 dilution) significantly stimulated cAMP production, whereas low Fab (1/200; nonstimulatory when used alone) plus adenosine (10 microM) significantly enhanced the stimulation of capacitation by adenosine. These results support the hypotheses that TCP-11 is the receptor for FPP and that FPP<-->TCP-11 interactions modulate AC/cAMP.

  11. Hippocampal somatostatin receptors and modulation of adenylyl cyclase activity in histamine-treated rats.

    PubMed

    Puebla, L; Rodríguez-Martín, E; Arilla, E

    1996-01-01

    In the present study, the effects of an intracerebroventricular (i.c.v.) dose of histamine (0.1, 1.0 or 10.0 micrograms) on the hippocampal somatostatin (SS) receptor/effector system in Wistar rats were investigated. In view of the rapid onset of histamine action, the effects of histamine on the somatostatinergic system were studied 2 h after its administration. Hippocampal SS-like immunoreactivity (SSLI) levels were not modified by any of the histamine doses studied. SS-mediated inhibition of basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activity was markedly increased in hippocampal membranes from rats treated with 10 micrograms of histamine (23% +/- 1% vs. 17% +/- 1% and 37% +/- 2% vs. 23% +/- 1%, respectively). In contrast, neither the basal nor the FK-stimulated enzyme activities were affected by histamine administration. The functional activity of the hippocampal guanine-nucleotide binding inhibitory protein (Gi protein), as assessed by the capacity of the stable GTP analogue 5'-guanylylimidodiphosphate (Gpp[NH]p) to inhibit FK-stimulated AC activity, was not modified by histamine administration. These data suggest that the increased response of the enzyme to SS was not related to an increased functional activity of Gi proteins. In fact, the increased AC response to SS in hippocampal membranes from histamine (10 micrograms)-treated rats was associated with quantitative changes in the SS receptors. Equilibrium binding data obtained with [125I]Tyr11-SS indicate an increase in the number with specific SS receptors (541 +/- 24 vs. 365 +/- 16 fmol/mg protein, P < 0.001) together with a decrease in their apparent affinity (0.57 +/- 0.04 vs. 0.41 +/- 0.03 nM, P < 0.05) in rat hippocampal membranes from histamine (10 micrograms)-treated rats as compared to control animals. With the aim of determining if these changes were related to histamine binding to its specific receptor sites, the histaminergic H1 and H2 receptor antagonists mepyramine and cimetidine

  12. Adenylyl cyclase 2 selectively couples to E prostanoid type 2 receptors, whereas adenylyl cyclase 3 is not receptor-regulated in airway smooth muscle.

    PubMed

    Bogard, Amy S; Adris, Piyatilake; Ostrom, Rennolds S

    2012-08-01

    Adenylyl cyclases (ACs) are important regulators of airway smooth muscle function, because β-adrenergic receptor (βAR) agonists stimulate AC activity and cAMP production. We have previously shown in a number of cell types that AC6 selectively couples to βAR and these proteins are coexpressed in lipid rafts. We overexpressed AC2, AC3, and AC6 in mouse bronchial smooth muscle cells (mBSMCs) and human embryonic kidney (HEK)-293 cells by using recombinant adenoviruses and assessed their localization and regulation by various G protein-coupled receptors (GPCRs). AC3 and AC6 were expressed primarily in caveolin-rich fractions, whereas AC2 expression was excluded from these domains. AC6 expression enhanced cAMP production in response to isoproterenol but did not increase responses to butaprost, reflecting the colocalization of AC6 with β(2)AR but not E prostanoid type 2 receptor (EP(2)R) in lipid raft fractions. AC2 expression enhanced butaprost-stimulated cAMP production but had no effect on the β(2)AR-mediated response. AC3 did not couple to any GPCR tested. Forskolin-induced arborization of mBSMCs was assessed as a functional readout of cAMP signaling. Arborization was enhanced by overexpression of AC6 and AC3, but AC2 had no effect. GPCR-stimulated arborization mirrored the selective coupling observed for cAMP production. With the addition of the phosphodiesterase 4 (PDE4) inhibitor rolipram AC2 accelerated forskolin-stimulated arborization. Thus, AC2 selectively couples to EP(2)R, but signals from this complex are limited by PDE4 activity. AC3 does not seem to couple to GPCR in either mBSMCs or HEK-293 cells, so it probably exists in a distinct signaling domain in these cells.

  13. In vitro metacyclogenesis of Trypanosoma cruzi induced by starvation correlates with a transient adenylyl cyclase stimulation as well as with a constitutive upregulation of adenylyl cyclase expression.

    PubMed

    Hamedi, Afsaneh; Botelho, Larisse; Britto, Constança; Fragoso, Stenio Perdigão; Umaki, Adriana Castilhos Souza; Goldenberg, Samuel; Bottu, Guy; Salmon, Didier

    2015-01-01

    The Trypanosoma cruzi adenylyl cyclase (AC) multigene family encodes different isoforms (around 15) sharing a variable large N-terminal domain, which is extracellular and receptor-like, followed by a transmembrane helix and a conserved C-terminal catalytic domain. It was proposed that these key enzymes in the cAMP signalling pathway allow the parasite to sense its changing extracellular milieu in order to rapidly adapt to its new environment, which is generally achieved through a differentiation process. One of the critical differentiation events the parasitic protozoan T. cruzi undergoes during its life cycle, known as metacyclogenesis, occurs in the digestive tract of the insect and corresponds to the differentiation from noninfective epimastigotes to infective metacyclic trypomastigote forms. By in vitro monitoring the activity of AC during metacyclogenesis, we showed that both the activity of AC and the intracellular cAMP content follow a similar pattern of transient stimulation in a two-step process, with a first activation peak occurring during the first hours of nutritional stress and a second peak between 6 and 48 h, corresponding to the cellular adhesion. During this differentiation process, a general mechanism of upregulation of AC expression of both mRNA and protein is triggered and in particular for a major subclass of these enzymes that are present in various gene copies commonly associated to the THT gene clusters. Although the scattered genome distribution of these gene copies is rather unusual in trypanosomatids and seems to be a recent acquisition in the evolution of the T. cruzi clade, their encoded product redistributed on the flagellum of the parasite upon differentiation could be important to sense the extracellular milieu. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Identification of an adenylyl cyclase inhibitor for treating neuropathic and inflammatory pain.

    PubMed

    Wang, Hansen; Xu, Hui; Wu, Long-Jun; Kim, Susan S; Chen, Tao; Koga, Kohei; Descalzi, Giannina; Gong, Bo; Vadakkan, Kunjumon I; Zhang, Xuehan; Kaang, Bong-Kiun; Zhuo, Min

    2011-01-12

    Neuropathic pain, often caused by nerve injury, is commonly observed among patients with different diseases. Because its basic mechanisms are poorly understood, effective medications are limited. Previous investigations of basic pain mechanisms and drug discovery efforts have focused mainly on early sensory neurons such as dorsal root ganglion and spinal dorsal horn neurons, and few synaptic-level studies or new drugs are designed to target the injury-related cortical plasticity that accompanies neuropathic pain. Our previous work has demonstrated that calcium-stimulated adenylyl cyclase 1 (AC1) is critical for nerve injury-induced synaptic changes in the anterior cingulate cortex. Through rational drug design and chemical screening, we have identified a lead candidate AC1 inhibitor, NB001, which is relatively selective for AC1 over other adenylate cyclase isoforms. Using a variety of behavioral tests and toxicity studies, we have found that NB001, when administered intraperitoneally or orally, has an analgesic effect in animal models of neuropathic pain, without any apparent side effects. Our study thus shows that AC1 could be a productive therapeutic target for neuropathic pain and describes a new agent for the possible treatment of neuropathic pain.

  15. Inhibitory role of monovalent ions on rat brain cortex adenylyl cyclase activity.

    PubMed

    Nikolic, Ivana; Mitrovic, Marina; Zelen, Ivanka; Zaric, Milan; Kastratovic, Tatjana; Stanojevic, Marijana; Nenadovic, Milutin; Stojanovic, Tomislav

    2013-10-01

    Adenylyl cyclases, comprise of a large family of enzymes that catalyze synthesis of the cyclic AMP from ATP. The aim of our study was to determine the effect of monovalent ions on both basal, stimulated adenylate cyclase EC 4.6.1.1 (AC) activity and C unit of AC and on GTPase active G-protein in the synaptic membranes of rat brain cortex. The effect of ion concentration from 30 to 200 mM (1 mM MgCl2) showed dose-dependent and significant inhibition of the basal AC activity, stimulated and unstimulated C unit activity. Stimulation of AC with 5 μM GTPγS in the presence of 50-200 mM of tested salts showed inhibitory effect on the AC activity. From our results it could be postulated that the investigated monovalent ions exert inhibitory effect on the AC complex activity by affecting the intermolecular interaction of the activated α subunit of G/F protein and the C unit of AC complex an inhibitory influence of tested monovalent ions on these molecular interaction.

  16. Soluble adenylyl cyclase accounts for high basal cCMP and cUMP concentrations in HEK293 and B103 cells.

    PubMed

    Hasan, Alan; Danker, Kerstin Y; Wolter, Sabine; Bähre, Heike; Kaever, Volkhard; Seifert, Roland

    2014-05-30

    Intact HEK293 cells and B103 neuroblastoma cells possess high basal concentrations of the established second messengers cAMP and cGMP and of the emerging second messengers cCMP and cUMP. We asked the question which nucleotidyl cyclase accounts for the high basal cNMP concentrations. Activators and inhibitors of soluble guanylyl cyclase had no major effects on cNMPs, and the activator of membranous adenylyl cyclase forskolin increased only cAMP. Addition of bicarbonate to medium increased, whereas removal of bicarbonate decreased levels of all four cNMPs. The inhibitor of soluble adenylyl cyclase, 2-(1H-benzo[d]imidazol-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide (KH7), reduced bicarbonate-stimulated cNMPs. In conclusion, bicarbonate-stimulated soluble adenylyl cyclase plays an important role in the regulation of basal cellular cNMP levels, most notably cCMP and cUMP.

  17. Somatic 'soluble' adenylyl cyclase isoforms are unaffected in Sacy tm1Lex/Sacy tm1Lex 'knockout' mice.

    PubMed

    Farrell, Jeanne; Ramos, Lavoisier; Tresguerres, Martin; Kamenetsky, Margarita; Levin, Lonny R; Buck, Jochen

    2008-09-22

    Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex) knockout allele. These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells.

  18. Protein-protein docking and analysis reveal that two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently.

    PubMed

    Guo, Qing; Jureller, Justin E; Warren, Julia T; Solomaha, Elena; Florián, Jan; Tang, Wei-Jen

    2008-08-29

    Calmodulin (CaM), a eukaryotic calcium sensor that regulates diverse biological activities, consists of N- and C-terminal globular domains (N-CaM and C-CaM, respectively). CaM serves as the activator of CyaA, a 188-kDa adenylyl cyclase toxin secreted by Bordetella pertussis, which is the etiologic agent for whooping cough. Upon insertion of the N-terminal adenylyl cyclase domain (ACD) of CyaA to its targeted eukaryotic cells, CaM binds to this domain tightly ( approximately 200 pm affinity). This interaction activates the adenylyl cyclase activity of CyaA, leading to a rise in intracellular cAMP levels to disrupt normal cellular signaling. We recently solved the structure of CyaA-ACD in complex with C-CaM to elucidate the mechanism of catalytic activation. However, the structure of the interface between N-CaM and CyaA, the formation of which contributes a 400-fold increase of binding affinity between CyaA and CaM, remains elusive. Here, we used site-directed mutations and molecular dynamic simulations to generate several working models of CaM-bound CyaA-ACD. The validity of these models was evaluated by disulfide bond cross-linking, point mutations, and fluorescence resonance energy transfer experiments. Our study reveals that a beta-hairpin region (amino acids 259-273) of CyaA-ACD likely makes contacts with the second calcium binding motif of the extended CaM. This mode of interaction differs from the interaction of N-CaM with anthrax edema factor, which binds N-CaM via its helical domain. Thus, two structurally conserved, bacterial adenylyl cyclase toxins have evolved to utilize distinct binding surfaces and modes of activation in their interaction with CaM, a highly conserved eukaryotic signaling protein.

  19. The role of adenylyl cyclase in the medial prefrontal cortex in cocaine-induced behavioral sensitization in rats.

    PubMed

    Liu, Kun; Steketee, Jeffery D

    2016-12-01

    Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Previous research has demonstrated that in the medial prefrontal cortex (mPFC) modulation of cocaine-induced motor activity by agonists of Gi-coupled receptors, such as dopamine D2, GABAB and Group II metabotropic glutamate receptors, is reduced in sensitized animals, suggesting a loss in receptor function. Stimulation of each of these receptors acts in part to inhibit adenylyl cyclase activity, and thus, the formation of cAMP. The present studies tested the hypothesis that intra-mPFC inhibition of adenylyl cyclase by infusion of an inhibitor, SQ22536, could bypass the loss of inhibitory receptor function seen in this region, and thereby inhibit the expression of cocaine sensitization. Additional studies determined whether activation of mPFC adenylyl cyclase with NKH 477 could enhance the motor-stimulant response to cocaine. Initial studies demonstrated that cocaine-induced (15 mg/kg, i.p.) motor activity was dose-dependently reduced by injection of SQ22536 (5-75 nmol/side) into the mPFC, whereas NKH 477 (1.25-40 nmol/side) produced no significant effects. Additional studies showed that intra-mPFC injection of SQ22536 (50 nmol/side) attenuated the initiation of cocaine-induced behavioral sensitization and blocked the expression of sensitization following 1, 7 or 30 days of abstinence from cocaine. Also, intra-mPFC injection of NKH 477 enhanced cocaine-induced behavioral sensitization following 21 days of abstinence from cocaine. The results of the present study suggest modulation of adenylyl cyclase in the medial prefrontal cortex plays a key role in the expression of cocaine sensitization. Copyright © 2016. Published by Elsevier Ltd.

  20. Interactions of Bordetella pertussis adenylyl cyclase toxin CyaA with calmodulin mutants and calmodulin antagonists: comparison with membranous adenylyl cyclase I.

    PubMed

    Schuler, Dominik; Lübker, Carolin; Lushington, Gerald H; Tang, Wei-Jen; Shen, Yuequan; Richter, Mark; Seifert, Roland

    2012-04-01

    The adenylyl cyclase (AC) toxin CyaA from Bordetella pertussis constitutes an important virulence factor for the pathogenesis of whooping cough. CyaA is activated by calmodulin (CaM) and compromises host defense by excessive cAMP production. Hence, pharmacological modulation of the CyaA/CaM interaction could constitute a promising approach to treat whooping cough, provided that interactions of endogenous effector proteins with CaM are not affected. As a first step toward this ambitious goal we examined the interactions of CyaA with wild-type CaM and four CaM mutants in which most methionine residues were replaced by leucine residues and studied the effects of the CaM antagonists calmidazolium, trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). CyaA/CaM interaction was monitored by CaM-dependent fluorescence resonance energy transfer (FRET) between tryptophan residues in CyaA and 2'-(N-methylanthraniloyl)-3'-deoxy-adenosine 5'-triphosphate and catalytic activity. Comparison of the concentration/response curves of CaM and CaM mutants for FRET and catalysis revealed differences, suggesting a two-step activation mechanism of CyaA by CaM. Even in the absence of CaM, calmidazolium inhibited catalysis, and it did so according to a biphasic function. Trifluoperazine and W-7 did not inhibit FRET or catalysis. In contrast to CyaA, some CaM mutants were more efficacious than CaM at activating membranous AC isoform 1. The slope of CyaA activation by CaM was much steeper than of AC1 activation. Collectively, the two-step activation mechanism of CyaA by CaM offers opportunities for pharmacological intervention. The failure of classic CaM inhibitors to interfere with CyaA/CaM interactions and the different interactions of CaM mutants with CyaA and AC1 point to unique CyaA/CaM interactions. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Differential coupling of the human P2Y11 receptor to phospholipase C and adenylyl cyclase

    PubMed Central

    Qi, Ai-Dong; Kennedy, Charles; Harden, T Kendall; Nicholas, Robert A

    2001-01-01

    The human P2Y11 (hP2Y11) receptor was stably expressed in two cell lines, 1321N1 human astrocytoma cells (1321N1-hP2Y11) and Chinese hamster ovary cells (CHO-hP2Y11), and its coupling to phospholipase C and adenylyl cyclase was assessed. In 1321N1-hP2Y11 cells, ATP promoted inositol phosphate (IP) accumulation with low μM potency (EC50=8.5±0.1 μM), whereas it was 15 fold less potent (130±10 μM) in evoking cyclic AMP production. In CHO-hP2Y11 cells, ATP promoted IP accumulation with slightly higher potency (EC50=3.6±1.3 μM) than in 1321N1-hP2Y11 cells, but it was still 15 fold less potent in promoting cyclic AMP accumulation (EC50=62.4±15.6 μM) than for IP accumulation. Comparable differences in potencies for promoting the two second messenger responses were observed with other adenosine nucleotide analogues. In 1321N1-hP2Y11 and CHO-hP2Y11 cells, down regulation of PKC by chronic treatment with phorbol ester decreased ATP-promoted cyclic AMP accumulation by 60 – 80% (P<0.001) with no change in its potency. Likewise, chelation of intracellular Ca2+ decreased ATP-promoted cyclic AMP accumulation by ∼45% in 1321N1-hP2Y11 cells, whereas chelation had no effect on either the efficacy or potency of ATP in CHO-hP2Y11 cells. We conclude that coupling of hP2Y11 receptors to adenylyl cyclase in these cell lines is much weaker than coupling to phospholipase C, and that activation of PKC and intracellular Ca2+ mobilization as consequences of inositol lipid hydrolysis potentiates the capacity of ATP to increase cyclic AMP accumulation in both 1321N1-hP2Y11 and CHO-hP2Y11 cells. PMID:11156592

  2. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome.

    PubMed Central

    Schwindinger, W F; Francomano, C A; Levine, M A

    1992-01-01

    McCune-Albright syndrome (MAS) is characterized by polyostotic fibrous dysplasia, café-au-lait lesions, and a variety of endocrine disorders, including precocious puberty, hyperthyroidism, hypercortisolism, growth hormone excess, and hyperprolactinemia. The diverse metabolic abnormalities seen in MAS share the involvement of cells that respond to extracellular signals through activation of the hormone-sensitive adenylyl cyclase system (EC 4.6.1.1). Mutations that lead to constitutive activation of Gs alpha, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase activity, have been identified in a subset of human growth hormone-secreting pituitary tumors and human thyroid tumors. We report here the identification of a mutation in the gene encoding Gs alpha in a patient with MAS. Denaturing gradient gel electrophoresis was used to analyze amplified DNA fragments including exon 8 or exon 9 of the Gs alpha gene. In one subject with MAS a G-to-A transition was found in exon 8 of one of the two alleles encoding Gs alpha. This single-base substitution results in the replacement of arginine by histidine at position 201 of the mature Gs alpha protein. Semiquantitative analysis of amplified DNA indicated that the mutant allele was less prevalent than the wild-type allele in peripheral leukocytes and was present in very low levels in skin. These findings support the previous contention that the segmental distribution and variable expression of the cutaneous, skeletal, and endocrine manifestations of MAS reflect an underlying somatic mosaicism. Further, these results suggest that the molecular basis of MAS is a postzygotic mutation in Gs alpha that causes constitutive activation of adenylyl cyclase. Images PMID:1594625

  3. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice.

    PubMed

    Bosse, Kelly E; Charlton, Jennifer L; Susick, Laura L; Newman, Brooke; Eagle, Andrew L; Mathews, Tiffany A; Perrine, Shane A; Conti, Alana C

    2015-12-01

    The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling

  4. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    PubMed Central

    Chang, Jung-Chin; Oude-Elferink, Ronald P. J.

    2014-01-01

    The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO−3/CO−2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment. PMID:24575049

  5. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis

    PubMed Central

    Zhou, Zhiwen; Tanaka, Kenji F.; Matsunaga, Shigeru; Iseki, Mineo; Watanabe, Masakatsu; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2016-01-01

    Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways. PMID:26795422

  6. Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+-stimulated adenylyl cyclases.

    PubMed

    Zhang, Ming; Storm, Daniel R; Wang, Hongbing

    2011-07-13

    When certain memory becomes obsolete, effective suppression of the previously established memory is essential for animals to adapt to the changing environment. At the cellular level, reversal of synaptic potentiation may be important for neurons to acquire new information and to prevent synaptic saturation. Here, we investigated the function of Ca(2+)-stimulated cAMP signaling in the regulation of bidirectional synaptic plasticity and spatial memory formation in double knock-out mice (DKO) lacking both type 1 and 8 adenylyl cyclases (ACs). In anesthetized animals, the DKO mutants showed defective long-term potentiation (LTP) after a single high-frequency stimulation (HFS) or two spaced HFSs at 100 Hz. However, DKO mice showed normal LTP after a single HFS at 200 Hz or two compressed HFSs at 100 Hz. Interestingly, reversal of synaptic potentiation as well as de novo synaptic depression was impaired in DKO mice. In the Morris water maze, DKO mice showed defective acquisition and memory retention, although the deficits could be attenuated by overtraining or compressed trainings with a shorter intertrial interval. In the reversal platform test, DKO animals were impaired in both relearning and old memory suppression. Furthermore, the extinction of the old spatial memory was not efficient in DKO mice. These data demonstrate that Ca(2+)-stimulated AC activity is important not only for LTP and spatial memory formation but also for the suppression of both previously established synaptic potentiation and old spatial memory.

  7. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect

    PubMed Central

    Esposito, Gloria; Jaiswal, Byjay S.; Xie, Fang; Krajnc-Franken, Magda A. M.; Robben, Tamara J. A. A.; Strik, Ankie M.; Kuil, Cor; Philipsen, Ria L. A.; van Duin, Marcel; Conti, Marco; Gossen, Jan A.

    2004-01-01

    To acquire the ability to fertilize, spermatozoa undergo complex, but at present poorly understood, activation processes. The intracellular rise of cAMP produced by the bicarbonate-dependent soluble adenylyl cyclase (sAC) has been suggested to play a central role in initiating the cascade of the events that culminates in spermatozoa maturation. Here, we show that targeted disruption of the sAC gene does not affect spermatogenesis but dramatically impairs sperm motility, leading to male sterility. sAC mutant spermatozoa are characterized by a total loss of forward motility and are unable to fertilize oocytes in vitro. Interestingly, motility in sAC mutant spermatozoa can be restored on cAMP loading, indicating that the motility defect observed is not caused by a structural defect. We, therefore, conclude that sAC plays an essential and nonredundant role in the activation of the signaling cascade controlling motility and, therefore, in fertility. The crucial role of sAC in fertility and the absence of any other obvious pathological abnormalities in sAC-deficient mice may provide a rationale for developing inhibitors that can be applied as a human male contraceptive. PMID:14976244

  8. Overexpression of Gs proteins and adenylyl cyclase in normal and diabetic islets.

    PubMed

    Portela-Gomes, Guida M; Abdel-Halim, Samy M

    2002-08-01

    Knowledge about the relation between G proteins and adenylyl cyclases (ACs) is important for the construction of signaling paradigms to increase our understanding of signal transduction in the normal state and its alterations in pathologic states, such as type-2 diabetes. The immunocytochemical expression patterns of the stimulatory Gs proteins (G alpha-s and G alpha-olf) and the in vitro Ca2+-stimulated ACs (AC1, 3, and 8) were studied in normal and spontaneously diabetic Goto-Kakizaki (GK) rat pancreatic islets with use of well-characterized antibodies. The expressions of G alpha-11 and AC2, abundant in pancreatic islets, were also studied. G alpha-s and G alpha-olf were mainly expressed in insulin cells, and G alpha-11 in glucagon cells. The immunoreactivity to G alpha-s and G alpha-olf and to AC1 and AC3 was higher in the GK islets than in the controls, whereas AC8 was found only in the diabetic islets. Strong G alpha-11 and AC2 immunoreactivity was seen equally in both animal groups. G alpha-s was colocalized with all ACs, whereas G alpha-olf was mainly colocalized with AC3, and G alpha-11 with AC1. The current findings may help in drawing a more specific signaling paradigm coupling Gs proteins to ACs.

  9. Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons.

    PubMed

    Nagahama, Tatsumi; Suzuki, Takeshi; Yoshikawa, Shinya; Iseki, Mineo

    2007-09-01

    In neural mechanisms of animal learning, intracellular cAMP has been known to play an important role. In the present experiments we attempted functional transplant of a photoactivated adenylyl cyclase (PAC) isolated from Euglena into Aplysia neurons, and explored whether PAC can produce cAMP in the neurons by light stimulation. Serotonergic modulation of mechanoafferent sensory neurons in Aplysia pleural ganglia has been reported to increase intracellular cAMP level and promotes synaptic transmission to motor neurons by increasing spike width of sensory neurons. When cAMP was directly injected into the sensory neurons, spike amplitude temporarily decreased while spike width temporarily increased. This effect was not substituted by injection of 5'AMP, and maintained longer in a bath solution containing IBMX, the phosphodiesterase inhibitor. We, therefore, explored these changes as indicators of appearance of the PAC function. PAC or the PAC expression vector (pNEX-PAC) was injected into cell bodies of sensory neurons. Spike amplitude decreased in both cases and spike width increased in the PAC injection when the neurons were stimulated with light, suggesting that the transplanted PAC works well in Aplysia neurons. These results indicate that we can control cAMP production in specific neurons with light by the functional transplant of PAC.

  10. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis.

    PubMed

    Zhou, Zhiwen; Tanaka, Kenji F; Matsunaga, Shigeru; Iseki, Mineo; Watanabe, Masakatsu; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2016-01-22

    Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways.

  11. Drug Target Exploitable Structural Features of Adenylyl Cyclase Activity in Schistosoma mansoni

    PubMed Central

    Mbah, Andreas N.; Kamga, Henri L.; Awofolu, Omotayo R.; Isokpehi, Raphael D.

    2012-01-01

    The draft genome sequence of the parasitic flatworm Schistosoma mansoni (S. mansoni), a cause of schistosomiasis, encodes a predicted guanosine triphosphate (GTP) binding protein tagged Smp_059340.1. Smp_059340.1 is predicted to be a member of the G protein alpha-s subunit responsible for regulating adenylyl cyclase activity in S. mansoni and a possible drug target against the parasite. Our structural bioinformatics analyses identified key amino acid residues (Ser53, Thr188, Asp207 and Gly210) in the two molecular switches responsible for cycling the protein between active (GTP bound) and inactive (GDP bound) states. Residue Thr188 is located on Switch I region while Gly210 is located on Switch II region with Switch II longer than Switch I. The Asp207 is located on the G3 box motif and Ser53 is the binding residue for magnesium ion. These findings offer new insights into the dynamic and functional determinants of the Smp_059340.1 protein in regulating the S. mansoni life cycle. The binding interfaces and their residues could be used as starting points for selective modulations of interactions within the pathway using small molecules, peptides or mutagenesis. PMID:23133313

  12. Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC.

    PubMed

    Wang, C; Jung, D; Cao, Z; Chung, C Y

    2015-09-25

    The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC(-) cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC(-) cells. racC(-) cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 μm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 μm/min was maintained in racC(-) cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell.

  13. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons

    PubMed Central

    Xu, Shiyu; Chan, Tammy; Shah, Vruntant; Zhang, Shixing; Pletcher, Scott D.; Roman, Gregg

    2012-01-01

    Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeding assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila demonstrates a significant preference for food containing between 5 and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in Drosophila melanogaster. PMID:22624869

  14. Adenylyl Cyclase Plays a Regulatory Role in Development, Stress Resistance and Secondary Metabolism in Fusarium fujikuroi

    PubMed Central

    García-Martínez, Jorge; Ádám, Attila L.; Avalos, Javier

    2012-01-01

    The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group. PMID:22291883

  15. Type 3 adenylyl cyclase: a key enzyme mediating the cAMP signaling in neuronal cilia

    PubMed Central

    Qiu, Liyan; LeBel, Robert P; Storm, Daniel R; Chen, Xuanmao

    2016-01-01

    Cilia are rigid, centriole-derived, microtubule-based organelles present in a majority of vertebrate cells including neurons. They are considered the cellular “antennae” attuned for detecting a range of extracellular signals including photons, odorants, morphogens, hormones and mechanical forces. The ciliary microenvironment is distinct from most actin-based subcellular structures such as microvilli or synapses. In the nervous system, there is no evidence that neuronal cilia process any synaptic structure. Apparently, the structural features of neuronal cilia do not allow them to harbor any synaptic connections. Nevertheless, a large number of G protein-coupled receptors (GPCRs) including odorant receptors, rhodopsin, Smoothened, and type 6 serotonin receptor are found in cilia, suggesting that these tiny processes largely depend on metabotropic receptors and their tuned signals to impact neuronal functions. The type 3 adenylyl cyclase (AC3), widely known as a cilia marker, is highly and predominantly expressed in olfactory sensory cilia and primary cilia throughout the brain. We discovered that ablation of AC3 in mice leads to pleiotropic phenotypes including anosmia, failure to detect mechanical stimulation of airflow, cognitive deficit, obesity, and depression-like behaviors. Multiple lines of human genetic evidence also demonstrate that AC3 is associated with obesity, major depressive disorder (MDD), sarcoidosis, and infertility, underscoring its functional importance. Here we review recent progress on AC3, a key enzyme mediating the cAMP signaling in neuronal cilia. PMID:27785336

  16. Bidirectional synaptic plasticity and spatial memory flexibility require Ca2+-stimulated adenylyl cyclases

    PubMed Central

    Zhang, Ming; Storm, Daniel R; Wang, Hongbing

    2011-01-01

    When certain memory becomes obsolete, effective suppression of the previously established memory is essential for animals to adapt to the changing environment. At the cellular level, reversal of synaptic potentiation may be important for neurons to acquire new information, and to prevent synaptic saturation. Here, we investigated the function of Ca2+-stimulated cAMP signaling in the regulation of bidirectional synaptic plasticity and spatial memory formation in double knockout mice (DKO) lacking both type 1 and 8 adenylyl cyclases (AC). In anaesthetized animals, the DKO mutants showed defective long-term potentiation (LTP) after a single high frequency stimulation (HFS) or two spaced HFSs at 100 Hz. However, DKO mice showed normal LTP after a single HFS at 200 Hz or two compressed HFSs at 100 Hz. Interestingly, reversal of synaptic potentiation as well as de novo synaptic depression was impaired in DKO mice. In the Morris water maze, DKO mice showed defective acquisition and memory retention, though the deficits could be attenuated by overtraining or compressed trainings with a shorter inter-trial interval. In the reversal platform test, DKO animals were impaired in both re-learning and old memory suppression. Furthermore, the extinction of the old spatial memory was not efficient in DKO mice. These data demonstrate that Ca2+-stimulated AC activity is not only important for LTP and spatial memory formation, but also for the suppression of both previously established synaptic potentiation and old spatial memory. PMID:21752993

  17. Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction.

    PubMed

    Li, Yong; Baldwin, Tanya A; Wang, Yan; Subramaniam, Janani; Carbajal, Anibal Garza; Brand, Cameron S; Cunha, Shane R; Dessauer, Carmen W

    2017-07-17

    Adenylyl cyclase type 9 (AC9) is found tightly associated with the scaffolding protein Yotiao and the IKs ion channel in heart. But apart from potential IKs regulation, physiological roles for AC9 are unknown. We show that loss of AC9 in mice reduces less than 3% of total AC activity in heart but eliminates Yotiao-associated AC activity. AC9(-/-) mice exhibit no structural abnormalities but show a significant bradycardia, consistent with AC9 expression in sinoatrial node. Global changes in PKA phosphorylation patterns are not altered in AC9(-/-) heart, however, basal phosphorylation of heat shock protein 20 (Hsp20) is significantly decreased. Hsp20 binds AC9 in a Yotiao-independent manner and deletion of AC9 decreases Hsp20-associated AC activity in heart. In addition, expression of catalytically inactive AC9 in neonatal cardiomyocytes decreases isoproterenol-stimulated Hsp20 phosphorylation, consistent with an AC9-Hsp20 complex. Phosphorylation of Hsp20 occurs largely in ventricles and is vital for the cardioprotective effects of Hsp20. Decreased Hsp20 phosphorylation suggests a potential baseline ventricular defect for AC9(-/-). Doppler echocardiography of AC9(-/-) displays a decrease in the early ventricular filling velocity and ventricular filling ratio (E/A), indicative of grade 1 diastolic dysfunction and emphasizing the importance of local cAMP production in the context of macromolecular complexes.

  18. Modulation of Escherichia coli Adenylyl Cyclase Activity by Catalytic-Site Mutants of Protein IIAGlc of the Phosphoenolpyruvate:Sugar Phosphotransferase System

    PubMed Central

    Reddy, Prasad; Kamireddi, Madhavi

    1998-01-01

    It is demonstrated here that in Escherichia coli, the phosphorylated form of the glucose-specific phosphocarrier protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system is an activator of adenylyl cyclase and that unphosphorylated IIAGlc has no effect on the basal activity of adenylyl cyclase. To elucidate the specific role of IIAGlc phosphorylation in the regulation of adenylyl cyclase activity, both the phosphorylatable histidine (H90) and the interactive histidine (H75) of IIAGlc were mutated by site-directed mutagenesis to glutamine and glutamate. Wild-type IIAGlc and the H75Q mutant, in which the histidine in position 75 has been replaced by glutamine, were phosphorylated by the phosphohistidine-containing phosphocarrier protein (HPr∼P) and were equally potent activators of adenylyl cyclase. Neither the H90Q nor the H90E mutant of IIAGlc was phosphorylated by HPr∼P, and both failed to activate adenylyl cyclase. Furthermore, replacement of H75 by glutamate inhibited the appearance of a steady-state level of phosphorylation of H90 of this mutant protein by HPr∼P, yet the H75E mutant of IIAGlc was a partial activator of adenylyl cyclase. The H75E H90A double mutant, which cannot be phosphorylated, did not activate adenylyl cyclase. This suggests that the H75E mutant was transiently phosphorylated by HPr∼P but the steady-state level of the phosphorylated form of the mutant protein was decreased due to the repulsive forces of the negatively charged glutamate at position 75 in the catalytic pocket. These results are discussed in the context of the proximity of H75 and H90 in the IIAGlc structure and the disposition of the negative charge in the modeled glutamate mutants. PMID:9457881

  19. Association of adenylyl cyclase 6 rs3730070 polymorphism and hemolytic level in patients with sickle cell anemia.

    PubMed

    Cita, Kizzy-Clara; Ferdinand, Séverine; Connes, Philippe; Brudey, Laura; Tressières, Benoit; Etienne-Julan, Maryse; Lemonne, Nathalie; Tarer, Vanessa; Elion, Jacques; Romana, Marc

    2016-05-01

    A recent study suggested that adenosine signaling pathway could promote hemolysis in patients with sickle cell anemia (SCA). This signaling pathway involves several gene coding enzymes for which variants have been described. In this study, we analyzed the genotype-phenotype relationships between functional polymorphisms or polymorphisms associated with altered expression of adenosine pathway genes, namely adenosine deaminase (ada; rs73598374), adenosine A2b receptor (adora2b; rs7208480), adenylyl cyclase6 (adcy6; rs3730071, rs3730070, rs7300155), and hemolytic rate in SCA patients. One hundred and fifty SCA patients were genotyped for adcy6, ada, and adora2b variants as well as alpha-globin gene, a genetic factor known to modulate hemolytic rate. Hematological and biochemical data were obtained at steady-state. Lactate dehydrogenase, aspartate aminotransferase, reticulocytes and total bilirubin were used to calculate a hemolytic index. Genotype-phenotype relationships were investigated using parametric tests and multivariate analysis. SCA patients carrying at least one allele of adcy6 rs3730070-G exhibited lower hemolytic rate than non-carriers in univariate analysis (p=0.006). The presence of adcy6 rs3730070-G variant was associated with a decreased hemolytic rate in adjusted model for age and alpha-thalassemia (p=0.032). Our results support a protective effect of adcy6 rs3730070-G variant on hemolysis in SCA patients.

  20. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  1. Gbeta subunit interacts with a peptide encoding region 956-982 of adenylyl cyclase 2. Cross-linking of the peptide to free Gbetagamma but not the heterotrimer.

    PubMed

    Weng, G; Li, J; Dingus, J; Hildebrandt, J D; Weinstein, H; Iyengar, R

    1996-10-25

    The region encoded by amino acids 956-982 of adenylyl cyclase 2 is important for Gbetagamma stimulation. Interactions of a peptide encoding the 956-982 region of adenylyl cyclase 2 (QEHAQEPERQYMHIGTMVEFAYALVGK (QEHA peptide)) with Gbetagamma subunits were studied. QEHA peptide was covalently attached to beta subunit of free Gbetagamma by the cross-linker N-succinimidyl(4-iodoacetyl)aminobenzoate. Cross-linking was proportional to the amount of QEHA peptide added; other control peptides cross-linked minimally. When Go was used, very little cross-linking was observed with GDP and EDTA, but upon activation by guanosine 5'-3-O-(thio)triphosphate and Mg2+, specific cross-linking of the QEHA peptide to Gbeta was observed. We conclude that beta subunits of G proteins contain effector interaction domains that are occluded by Galpha subunits in the heterotrimer. Molecular modeling studies used to dock the QEHA peptide on to Gbeta indicate that amino acids 75-165 of Gbeta may be involved in effector interactions.

  2. Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning.

    PubMed

    Chang, Ching-Pang; Lee, Cheng-Ta; Hou, Wen-Hsien; Lin, Meng-Syuan; Lai, Hsing-Lin; Chien, Chen-Li; Chang, Chen; Cheng, Pei-Lin; Lien, Cheng-Chang; Chern, Yijuang

    2016-03-02

    The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca(2+) and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6(-/-) mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus.

  3. Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning

    PubMed Central

    Chang, Ching-Pang; Lee, Cheng-Ta; Hou, Wen-Hsien; Lin, Meng-Syuan; Lai, Hsing-Lin; Chien, Chen-Li; Chang, Chen; Cheng, Pei-Lin; Lien, Cheng-Chang; Chern, Yijuang

    2016-01-01

    The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca2+ and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6−/− mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus. PMID:26932446

  4. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity.

    PubMed

    Reim, Tina; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang; Thamm, Markus; Scheiner, Ricarda

    2017-01-01

    The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP]i). Type 2 tyramine receptors can mediate Ca(2+) signals or both Ca(2+) signals and effects on [cAMP]i. We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP]i. The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus.

    PubMed

    Poulsen, Søren Brandt; Kristensen, Tina Bøgelund; Brooks, Heddwen L; Kohan, Donald E; Rieg, Timo; Fenton, Robert A

    2017-04-06

    Psychiatric patients treated with lithium (Li(+)) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li(+)-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li(+) inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6(-/-)) mice and potentially novel connecting tubule/principal cell-specific AC6 knockout (AC6(loxloxCre)) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li(+) administration increased water intake and reduced urine osmolality in control, AC6(-/-), and AC6(loxloxCre) mice. Consistent with AC6(-/-) mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6(loxloxCre) mice compared with controls under standard conditions, and levels were further reduced after Li(+) administration. AC6(loxloxCre) and control mice had a similar increase in the numbers of proliferating cell nuclear antigen-positive cells in response to Li(+). However, AC6(loxloxCre) mice had a higher number of H(+)-ATPase B1 subunit-positive cells under standard conditions and after Li(+) administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell-to-principal cell ratio.

  6. Stimulation of hippocampal adenylyl cyclase activity dissociates memory consolidation processes for response and place learning.

    PubMed

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were examined in mice given post-training intrahippocampal injections of forskolin (FK) aiming at stimulating hippocampal adenylyl cyclases (ACs). The injection was given at different time points over a period of 9 h following acquisition in either an appetitive bar-pressing task or water-maze tasks challenging respectively "response memory" and "place memory." Retention testing (24 h) showed that FK injection altered memory formation only when given within a 3- to 6-h time window after acquisition but yielded opposite memory effects as a function of task demands. Retention of the spatial task was impaired, whereas retention of both the cued-response in the water maze and the rewarded bar-press response were improved. Intrahippocampal injections of FK produced an increase in pCREB immunoreactivity, which was strictly limited to the hippocampus and lasted less than 2 h, suggesting that early effects (0-2 h) of FK-induced cAMP/CREB activation can be distinguished from late effects (3-6 h). These results delineate a consolidation period during which specific cAMP levels in the hippocampus play a crucial role in enhancing memory processes mediated by other brain regions (e.g., dorsal or ventral striatum) while eliminating interference by the formation of hippocampus-dependent memory.

  7. Role of adenylyl cyclase 6 in the development of lithium-induced nephrogenic diabetes insipidus

    PubMed Central

    Poulsen, Søren Brandt; Kristensen, Tina Bøgelund; Brooks, Heddwen L.; Kohan, Donald E.; Rieg, Timo

    2017-01-01

    Psychiatric patients treated with lithium (Li+) may develop nephrogenic diabetes insipidus (NDI). Although the etiology of Li+-induced NDI (Li-NDI) is poorly understood, it occurs partially due to reduced aquaporin-2 (AQP2) expression in the kidney collecting ducts. A mechanism postulated for this is that Li+ inhibits adenylyl cyclase (AC) activity, leading to decreased cAMP, reduced AQP2 abundance, and less membrane targeting. We hypothesized that Li-NDI would not develop in mice lacking AC6. Whole-body AC6 knockout (AC6–/–) mice and potentially novel connecting tubule/principal cell–specific AC6 knockout (AC6loxloxCre) mice had approximately 50% lower urine osmolality and doubled water intake under baseline conditions compared with controls. Dietary Li+ administration increased water intake and reduced urine osmolality in control, AC6–/–, and AC6loxloxCre mice. Consistent with AC6–/– mice, medullary AQP2 and pS256-AQP2 abundances were lower in AC6loxloxCre mice compared with controls under standard conditions, and levels were further reduced after Li+ administration. AC6loxloxCre and control mice had a similar increase in the numbers of proliferating cell nuclear antigen–positive cells in response to Li+. However, AC6loxloxCre mice had a higher number of H+-ATPase B1 subunit–positive cells under standard conditions and after Li+ administration. Collectively, AC6 has a minor role in Li-NDI development but may be important for determining the intercalated cell–to–principal cell ratio. PMID:28405619

  8. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase.

    PubMed

    Xu, Z; Seidler, F J; Cousins, M M; Slikker, W; Slotkin, T A

    2002-10-04

    Nicotine is a neuroteratogen that targets synaptic function during critical developmental stages and recent studies indicate that CNS vulnerability extends into adolescence, the age at which smoking typically commences. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined 5HT receptors and related cell signaling during nicotine administration (PN45) and in the post-treatment period (PN50, 60, 75). Adolescent nicotine decreased 5HT(2) receptor binding in brain regions containing 5HT projections (hippocampus and cerebral cortex), with selectivity for females in the cerebral cortex; regions containing 5HT cell bodies showed either an increase (midbrain in males) or no change (brainstem). In contrast, there were no significant changes in 5HT(1A) receptors; however, the ability of the receptors to signal through adenylyl cyclase (AC) showed a switch from stimulatory to inhibitory effects in females during the post-treatment period. There were also transient alterations in AC responses to beta-adrenergic receptor stimulation, as well as pronounced induction of the AC response to the non-receptor-mediated stimulant, forskolin. Our results indicate that adolescent nicotine exposure alters the concentrations and functions of postsynaptic 5HT receptors in a manner commensurate with impaired 5HT synaptic function. The direction of change, emergence of defects after the cessation of nicotine administration, and sex-preference for effects in females, all support a relationship of impaired 5HT function to the higher incidence of depression seen in adolescent smokers.

  9. Regulation of Anterior Chamber Drainage by Bicarbonate-sensitive Soluble Adenylyl Cyclase in the Ciliary Body*

    PubMed Central

    Lee, Yong S.; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y.; Levin, Lonny R.; Buck, Jochen; Marmorstein, Alan D.

    2011-01-01

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (Ct). Modulation of “inflow” and “outflow” pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in Ct with no effect on inflow. In mice deficient in sAC IOP is elevated, and Ct is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or Ct in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate Ct and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure. PMID:21994938

  10. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body.

    PubMed

    Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D

    2011-12-02

    Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.

  11. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.

    PubMed

    Head, Brian P; Patel, Hemal H; Roth, David M; Murray, Fiona; Swaney, James S; Niesman, Ingrid R; Farquhar, Marilyn G; Insel, Paul A

    2006-09-08

    Microtubules and actin filaments regulate plasma membrane topography, but their role in compartmentation of caveolae-resident signaling components, in particular G protein-coupled receptors (GPCR) and their stimulation of cAMP production, has not been defined. We hypothesized that the microtubular and actin cytoskeletons influence the expression and function of lipid rafts/caveolae, thereby regulating the distribution of GPCR signaling components that promote cAMP formation. Depolymerization of microtubules with colchicine (Colch) or actin microfilaments with cytochalasin D (CD) dramatically reduced the amount of caveolin-3 in buoyant (sucrose density) fractions of adult rat cardiac myocytes. Colch or CD treatment led to the exclusion of caveolin-1, caveolin-2, beta1-adrenergic receptors (beta1-AR), beta2-AR, Galpha(s), and adenylyl cyclase (AC)5/6 from buoyant fractions, decreasing AC5/6 and tyrosine-phosphorylated caveolin-1 in caveolin-1 immunoprecipitates but in parallel increased isoproterenol (beta-AR agonist)-stimulated cAMP production. Incubation with Colch decreased co-localization (by immunofluorescence microscopy) of caveolin-3 and alpha-tubulin; both Colch and CD decreased co-localization of caveolin-3 and filamin (an F-actin cross-linking protein), decreased phosphorylation of caveolin-1, Src, and p38 MAPK, and reduced the number of caveolae/mum of sarcolemma (determined by electron microscopy). Treatment of S49 T-lymphoma cells (which possess lipid rafts but lack caveolae) with CD or Colch redistributed a lipid raft marker (linker for activation of T cells (LAT)) and Galpha(s) from lipid raft domains. We conclude that microtubules and actin filaments restrict cAMP formation by regulating the localization and interaction of GPCR-G(s)-AC in lipid rafts/caveolae.

  12. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    PubMed

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  13. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10

    PubMed Central

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica

    2013-01-01

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients. PMID:23686854

  14. Impact of divalent metal ions on regulation of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Erdorf, Miriam; Mou, Tung-Chung; Seifert, Roland

    2011-12-01

    Mammalian membranous adenylyl cyclases (mACs) play an important role in transmembrane signalling events in almost every cell and represent an interesting drug target. Forskolin (FS) is an invaluable research tool, activating AC isoforms 1-8. However, there is a paucity of AC isoform-selective FS analogs. Therefore, we examined the effects of FS and six FS derivatives on recombinant ACs 1, 2 and 5, representing members of different mAC families. Correlations of the pharmacological properties of the different AC isoforms revealed pronounced differences between ACs 1, 2 and 5. Additionally, potencies and efficacies of FS derivatives changed for any given AC isoform, depending on the metal ion, Mg(2+) or Mn(2+). The most striking effects of Mg(2+) and Mn(2+) on the diterpene profile were observed for AC2 where the large inhibitory effect of BODIPY-FS in the presence of Mg(2+) was considerably reduced in the presence of Mn(2+). Sequence alignment and docking experiments confirmed an exceptional position of AC2 compared to ACs 1 and 5 with respect to the structural environment of the catalytic core and cation-dependent diterpene effects. In conclusion, mAC isoforms 1, 2 and 5 exhibit a distinct pharmacological diterpene profile, depending on the divalent cation present. mAC crystal structures and modelling/docking studies provided an explanation for the pharmacological differences between the AC isoforms. Our study constitutes an important step towards the development of isoform-specific diterpenes exhibiting stimulatory or inhibitory effects.

  15. Rhes and AGS1/Dexras1 Affect Signaling by Dopamine D1 Receptors Through Adenylyl Cyclase

    PubMed Central

    Harrison, Laura M.; He, YouE

    2011-01-01

    The GTP binding proteins Rhes and AGS1/Dexras1 define a subfamily of the Ras superfamily and have been shown to affect signaling by G protein-coupled receptors. We tested the effects of both proteins at an early stage of signaling by dopamine receptors—activation of adenylyl cyclase. Rhes decreased dopamine D1 receptor agonist-stimulated cAMP accumulation in a pertussis toxin-sensitive manner. It had no effect on cAMP accumulation in the absence of agonist. AGS1/Dexras1, on the other hand, decreased cAMP accumulation in both vehicle-treated and agonist-treated cells, resulting in a higher percent stimulation by agonist, or a higher signal-to-noise ratio. The effects of AGS1/Dexras1 on cAMP accumulation were not blocked by pertussis toxin, suggesting that it may produce these effects through interaction with a Gαi monomer. Both Rhes and AGS1/Dexras1 associated with GTP-bound Gαi in pull-down assays. However, Rhes had no effect on the ability of activated D2 receptor to inhibit cAMP. Neither Rhes nor AGS1/Dexras1 interacted with the D1 receptor in pull-down assays. These findings show that in addition to its well-known effects on signaling through Gi-coupled receptors, AGS1/Dexras1 can affect signaling through a Gs/olf-coupled receptor. Furthermore, they suggest that Rhes exerts some of its effects by interacting with Gαi. PMID:21374700

  16. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model

    PubMed Central

    Kang, Wen-bo; Yang, Qi; Guo, Yan-yan; Wang, Lu; Wang, Dong-sheng; Cheng, Qiang; Li, Xiao-ming; Tang, Jun; Zhao, Jian-ning; Liu, Gang; Zhuo, Min

    2016-01-01

    Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex. PMID:27612915

  17. Molecular and biochemical evidence for the presence of type III adenylyl cyclase in human platelets.

    PubMed

    Katsel, Pavel L; Tagliente, Thomas M; Schwarz, Todd E; Craddock-Royal, Barbara D; Patel, Nayana D; Maayani, Saul

    2003-02-01

    The isoform(s) of adenylyl cyclase (AC) present in human platelets has not been identified, and evidence supporting a role for AC in platelet aggregation is equivocal. We recently characterized deaggregation as an active component of the platelet aggregation response that may be an important determinant of the extent and duration of aggregation. G(i)-coupled receptors are linked to the inhibition of AC and are targets of antiplatelet drugs. They also affect platelet aggregation by modulating deaggregation, suggesting a role for AC in modulating this response. The purpose of this study was to identify the AC isoform(s) present in human platelets and to identify its physiological modulators. RT-PCR screening of platelet, buffy coat layer cell and bone marrow megakaryocyte cDNA, and Western blot analysis with AC type III (AC-III) antibodies identified AC-III in platelets and in megakaryocytes. Human platelet AC-III was cloned and expressed in HEK293 cells and its characteristics compared to native platelet AC. Both platelet AC and cloned AC-III required Mg(2+) for activity, were insensitive to Ca(2+) and were G(s)- and G(i)-coupled. Zn(2+) and SQ22536 inhibited platelet AC activity. The affinity of SQ22536 was increased with Mg(2+)-related stimulation of AC, while that of Zn(2+) was unchanged, which is consistent with a non-competitive interaction between the two metal ions on AC. The Zn(2+) chelator TPEN reversed the inhibitory effects of Zn(2+). This study identified AC-III as the predominant AC isoform in human platelets, the activity of which may affect the extent and duration of the net aggregation response by modulating deaggregation.

  18. Inhibition of Osteoclast Formation and Function by Bicarbonate: Role of Soluble Adenylyl Cyclase

    PubMed Central

    Geng, Weidong; Hill, Kathy; Zerwekh, Joseph; Kohler, Thomas; Müller, Ralph; Moe, Orson W.

    2010-01-01

    High [HCO3−] inhibits and low [HCO3−] stimulates bone resorption which mediates part of the effect of chronic acidosis or acid feeding on bone. Soluble adenylyl cyclase (sAC) is a bicarbonate sensor that can potentially mediate the effect of bicarbonate on osteoclasts. Osteoclasts were incubated in 0, 12, 24 mM HCO3− at pH 7.4 for 7–8 days and assayed for tartrate-resistant acid phosphatase (TRAP) and vacuolar-ATPase expression, and H+ accumulation. Total number and area of TRAP (+) multinucleated osteoclasts was decreased by HCO3− in a dose-dependent manner. V-ATPase expression and H+ accumulation normalized to cell cross-sectional area or protein were not significantly changed. The HCO3−-induced inhibition of osteoclast growth and differentiation was blocked by either 2-hydroxyestradiol, an inhibitor of sAC or sAC knock-down by sAC specific siRNA. The model of HCO3− inhibiting osteoclast via sAC was further supported by the fact that the HCO3− dose-response on osteoclasts is flat when cells were saturated with 8-bromo-cAMP, a permeant cAMP analog downstream from sAC thus simulating sAC activation. To confirm our in vitro findings in intact bone, we developed a one-week mouse calvaria culture system where osteoclasts were shown to be viable. Bone volume density (BV/TV) determined by micro-computed tomography (µCT), was higher in 24mM HCO3− compared to 12 mM HCO3− treated calvaria. This HCO3− effect on BV/TV was blocked by 2-hydroxyestradiol. In summary, sAC mediates the inhibition of osteoclast function by HCO3−, by acting as a HCO3− sensor. PMID:19360717

  19. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenylyl cyclase.

    PubMed

    Geng, Weidong; Hill, Kathy; Zerwekh, Joseph E; Kohler, Thomas; Müller, Ralph; Moe, Orson W

    2009-08-01

    High [HCO(3)(-)] inhibits and low [HCO(3)(-)] stimulates bone resorption, which mediates part of the effect of chronic acidosis or acid feeding on bone. Soluble adenylyl cyclase (sAC) is a bicarbonate sensor that can potentially mediate the effect of bicarbonate on osteoclasts. Osteoclasts were incubated in 0, 12, and 24 mM HCO(3)(-) at pH 7.4 for 7-8 days and assayed for tartrate-resistant acid phosphatase (TRAP) and vacuolar-ATPase expression, and H+ accumulation. Total number and area of TRAP (+) multinucleated osteoclasts was decreased by HCO(3)(-) in a dose-dependent manner. V-ATPase expression and H+ accumulation normalized to cell cross-sectional area or protein were not significantly changed. The HCO(3)(-) -induced inhibition of osteoclast growth and differentiation was blocked by either 2-hydroxyestradiol, an inhibitor of sAC or sAC knockdown by sAC specific siRNA. The model of HCO(3)(-) inhibiting osteoclast via sAC was further supported by the fact that the HCO(3)(-) dose-response on osteoclasts is flat when cells were saturated with 8-bromo-cAMP, a permeant cAMP analog downstream from sAC thus simulating sAC activation. To confirm our in vitro findings in intact bone, we developed a 1-week mouse calvaria culture system where osteoclasts were shown to be viable. Bone volume density (BV/TV) determined by micro-computed tomography (microCT), was higher in 24 mM HCO(3)(-) compared to 12 mM HCO(3)(-) treated calvaria. This HCO(3)(-) effect on BV/TV was blocked by 2-hydroxyestradiol. In summary, sAC mediates the inhibition of osteoclast function by HCO(3)(-), by acting as a HCO(3)(-) sensor.

  20. Multiple developmental roles for CRAC, a cytosolic regulator of adenylyl cyclase.

    PubMed

    Wang, B; Shaulsky, G; Kuspa, A

    1999-04-01

    Receptor-mediated activation of adenylyl cyclase (ACA) in Dictyostelium requires CRAC protein. Upon translocation to the membrane, this pleckstrin homology (PH) domain protein stimulates ACA and thereby mediates developmental aggregation. CRAC may also have roles later in development since CRAC-null cells can respond to chemotactic signals and participate in developmental aggregation when admixed with wild-type cells, but they do not complete development within such chimeras. To test whether the role of CRAC in postaggregative development is related to the activation of ACA, chemotactic aggregation was bypassed in CRAC-null cells by activating the cAMP-dependent protein kinase (PKA). While such strains formed mounds, they did not complete fruiting body morphogenesis or form spores. Expression of CRAC in the prespore cells of these strains rescued sporulation and fruiting body formation. This later function of CRAC does not appear to require its PH domain since the C-terminal portion of the protein (CRAC-DeltaPH) can substitute for full-length CRAC in promoting spore cell formation and morphogenesis. No detectable ACA activation was observed in any of the CRAC-null strains rescued by PKA activation and expression of CRAC-DeltaPH. Finally, we found that the development of CRAC-null ACA-null double mutants could be rescued by the activation of PKA together with the expression of CRAC-DeltaPH. Thus, there appears to be a required function for CRAC in postaggregative development that is independent of its previously described function in the ACA activation pathway.

  1. Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8

    PubMed Central

    2012-01-01

    Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca2+ signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca2+ signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca2+ ions. These two lobes have differing affinities for Ca2+, and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca2+]i. We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca2+-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca2+ binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca2+-CaM activation of AC1 and AC8, which may underpin their different physiological roles. PMID:22971080

  2. A Structural Basis for the Role of Nucleotide Specifying Residues in Regulating the Oligomerization of the RV1625C Adenylyl Cyclase from M. Tuberculosis

    SciTech Connect

    Ketkar,A.; Shenoy, A.; Ramagopal, U.; Visweswariah, S.; Suguna, K.

    2006-01-01

    The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7 Angstroms. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase.

  3. Sensitivity of adenylyl cyclase signaling system of the mollusk Anodonta cygnea ganglions to serotonin and adrenergic agonists.

    PubMed

    Shpakov, A O; Shipilov, V N; Bondareva, V M

    2005-04-01

    For the first time, the adenylyl cyclase system (ACS) sensitive to biogenic amines in the mollusk Anodonta cygnea ganglions was revealed and characterized. Serotonin and isoproterenol stimulated AC activity and GTP-binding activity of heterotrimeric G-proteins. The AC-stimulating action of serotonin and isoproterenol was blocked by cyproheptadine and adrenergic antagonists, respectively. Using synthetic C-terminal peptides of G-protein alpha-subunit, it was shown that the biogenic amines realized their action on the ACS through different G-protein types: serotonin and isoproterenol activate G(s)-protein, while adrenaline preferably activates G(i)-protein.

  4. Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

    PubMed

    Selley, Dana E; Cassidy, Michael P; Martin, Billy R; Sim-Selley, Laura J

    2004-11-01

    Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this signaling pathway to influence motor function. Previous studies have shown that brain CB(1) receptors are desensitized and down-regulated by long-term THC treatment, but few studies have examined the effects of long-term THC treatment on downstream effector activity in brain. Therefore, these studies examined the relationship between CB(1), adenosine A(1), and GABA(B) receptors in cerebella of mice undergoing prolonged treatment with vehicle or THC at the level of G protein activation and adenylyl cyclase inhibition. In control cerebella, CB(1) receptors produced less than additive inhibition of adenylyl cyclase with GABA(B) and A(1) receptors, indicating that these receptors are localized on overlapping populations of cells. Long-term THC treatment produced CB(1) receptor down-regulation and desensitization of both cannabinoid agonist-stimulated G protein activation and inhibition of forskolin-stimulated adenylyl cyclase. However, G protein activation by GABA(B) or A(1) receptors was unaffected. It is noteworthy that heterologous attenuation of GABA(B) and A(1) receptor-mediated inhibition of adenylyl cyclase was observed, even though absolute levels of basal and forskolin- or G(s)-stimulated activity were unchanged. These results indicate that long-term THC administration produces a disruption of inhibitory receptor control of cerebellar adenylyl cyclase and suggest a potential mechanism of cross-tolerance to the motor incoordinating effects of cannabinoid, GABA(B), and A(1) agonists.

  5. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Ksiazek, Dorota; Brandstetter, Hans; Israel, Lars; Bourenkov, Gleb P; Katchalova, Galina; Janssen, Klaus-Peter; Bartunik, Hans D; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2003-09-01

    Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric.

  6. Protein kinase C and epidermal growth factor stimulation of Raf1 potentiates adenylyl cyclase type 6 activation in intact cells.

    PubMed

    Beazely, Michael A; Alan, Jamie K; Watts, Val J

    2005-01-01

    Adenylyl cyclase type 6 (AC6) activity is inhibited by protein kinase C (PKC) in vitro; however, in intact cells, PKC activation does not inhibit the activity of transiently expressed AC6. To investigate the effects of PKC activation on AC6 activity in intact cells, we constructed human embryonic kidney (HEK) 293 cells that stably express wild-type AC6 (AC6-WT) or an AC6 mutant lacking a PKC and cyclic AMP-dependent protein kinase (PKA) phosphorylation site, Ser674 (AC6-S674A). In contrast to in vitro observations, we observed a PKC-mediated enhancement of forskolin- and isoproterenol-stimulated cyclic AMP accumulation in HEK-AC6 cells. Phorbol 12-myristate 13-acetate also potentiated cyclic AMP accumulation in cells expressing endogenous AC6, including Chinese hamster ovary cells and differentiated Cath.a differentiated cells. In HEK-AC6-S674A cells, the potentiation of AC6 stimulation was significantly greater than in cells expressing AC6-WT. The positive effect of PKC activation on AC6 activity seemed to involve Raf1 kinase because the Raf1 inhibitor 3-(3,5-dibromo-4-hydroxybenzylidene-5-iodo-1,3-dihydro-indol-2-one (GW5074) inhibited the PKC potentiation of AC6 activity. Furthermore, the forskolin-stimulated activity of a recombinant AC6 in which the putative Raf1 regulatory sites have been eliminated was not potentiated by activation of PKC. The ability of Raf1 to regulate AC6 may involve a direct interaction because AC6 and a constitutively active Raf1 construct were coimmunoprecipitated. In addition, we report that epidermal growth factor receptor activation also enhances AC6 signaling in a Raf1-dependent manner. These data suggest that Raf1 potentiates drug-stimulated cyclic AMP accumulation in cells expressing AC6 after activation of multiple signaling pathways.

  7. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC.

    PubMed

    Rieg, Timo; Tang, Tong; Uchida, Shinichi; Hammond, H Kirk; Fenton, Robert A; Vallon, Volker

    2013-01-01

    Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Modulation of NaCl absorption by [HCO(3)(-)] in the marine teleost intestine is mediated by soluble adenylyl cyclase.

    PubMed

    Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; Grosell, Martin

    2010-07-01

    Intestinal HCO(3)(-) secretion and NaCl absorption are essential for counteracting dehydration in marine teleost fish. We investigated how these two processes are coordinated in toadfish. HCO(3)(-) stimulated a luminal positive short-circuit current (I(sc)) in intestine mounted in Ussing chamber, bathed with the same saline solution on the external and internal sides of the epithelium. The I(sc) increased proportionally to the [HCO(3)(-)] in the bath up to 80 mM NaHCO(3), and it did not occur when NaHCO(3) was replaced with Na(+)-gluconate or with NaHCO(3) in Cl(-)-free saline. HCO(3)(-) (20 mM) induced a approximately 2.5-fold stimulation of I(sc), and this [HCO(3)(-)] was used in all subsequent experiments. The HCO(3)(-)-stimulated I(sc) was prevented or abolished by apical application of 10 muM bumetanide (a specific inhibitor of NKCC) and by 30 microM 4-catechol estrogen [CE; an inhibitor of soluble adenylyl cyclase (sAC)]. The inhibitory effects of bumetanide and CE were not additive. The HCO(3)(-)-stimulated I(sc) was prevented by apical bafilomycin (1 microM) and etoxolamide (1 mM), indicating involvement of V-H(+)-ATPase and carbonic anhydrases, respectively. Immunohistochemistry and Western blot analysis confirmed the presence of an NKCC2-like protein in the apical membrane and subapical area of epithelial intestinal cells, of Na(+)/K(+)-ATPase in basolateral membranes, and of an sAC-like protein in the cytoplasm. We propose that sAC regulates NKCC activity in response to luminal HCO(3)(-), and that V-H(+)-ATPase and intracellular carbonic anhydrase are essential for transducing luminal HCO(3)(-) into the cell by CO(2)/HCO(3)(-) hydration/dehydration. This mechanism putatively coordinates HCO(3)(-) secretion with NaCl and water absorption in toadfish intestine.

  9. Type 5 adenylyl cyclase plays a major role in stabilizing heart rate in response to microgravity induced by parabolic flight

    PubMed Central

    Okumura, Satoshi; Tsunematsu, Takashi; Bai, Yunzhe; Jiao, Qibin; Ono, Shinji; Suzuki, Sayaka; Kurotani, Reiko; Sato, Motohiko; Minamisawa, Susumu; Umemura, Satoshi; Ishikawa, Yoshihiro

    2008-01-01

    It is well known that autonomic nervous activity is altered under microgravity, leading to disturbed regulation of cardiac function, such as heart rate. Autonomic regulation of the heart is mostly determined by β-adrenergic receptors/cAMP signal, which is produced by adenylyl cyclase, in cardiac myocytes. To examine a hypothesis that a major cardiac isoform, type 5 adenylyl cyclase (AC5), plays an important role in regulating heart rate during parabolic flights, we used transgenic mouse models with either disrupted (AC5KO) or overexpressed AC5 in the heart (AC5TG) and analyzed heart rate variability. Heart rate had a tendency to decrease gradually in later phases within one parabola in each genotype group, but the magnitude of decrease was smaller in AC5KO than that in the other groups. The inverse of heart rate, i.e., the R-R interval, was much more variable in AC5KO and less variable in AC5TG than that in wild-type controls. The standard deviation of normal R-R intervals, a marker of total autonomic variability, was significantly greater in microgravity phase in each genotype group, but the magnitude of increase was much greater in AC5KO than that in the other groups, suggesting that heart rate regulation became unstable in the absence of AC5. In all, AC5 plays a major role in stabilizing heat rate under microgravity. PMID:18450980

  10. Bicarbonate-sensing soluble adenylyl cyclase is present in the cell cytoplasm and nucleus of multiple shark tissues.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2017-01-01

    The enzyme soluble adenylyl cyclase (sAC) is directly stimulated by bicarbonate (HCO3(-)) to produce the signaling molecule cyclic adenosine monophosphate (cAMP). Because sAC and sAC-related enzymes are found throughout phyla from cyanobacteria to mammals and they regulate cell physiology in response to internal and external changes in pH, CO2, and HCO3(-), sAC is deemed an evolutionarily conserved acid-base sensor. Previously, sAC has been reported in dogfish shark and round ray gill cells, where they sense and counteract blood alkalosis by regulating the activity of V-type H(+)- ATPase. Here, we report the presence of sAC protein in gill, rectal gland, cornea, intestine, white muscle, and heart of leopard shark Triakis semifasciata Co-expression of sAC with transmembrane adenylyl cyclases supports the presence of cAMP signaling microdomains. Furthermore, immunohistochemistry on tissue sections, and western blots and cAMP-activity assays on nucleus-enriched fractions demonstrate the presence of sAC protein in and around nuclei. These results suggest that sAC modulates multiple physiological processes in shark cells, including nuclear functions. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Adenylyl cyclase activating polypeptide reduces phosphorylation and toxicity of the polyglutamine-expanded androgen receptor in spinobulbar muscular atrophy.

    PubMed

    Polanco, Maria Josè; Parodi, Sara; Piol, Diana; Stack, Conor; Chivet, Mathilde; Contestabile, Andrea; Miranda, Helen C; Lievens, Patricia M-J; Espinoza, Stefano; Jochum, Tobias; Rocchi, Anna; Grunseich, Christopher; Gainetdinov, Raul R; Cato, Andrew C B; Lieberman, Andrew P; La Spada, Albert R; Sambataro, Fabio; Fischbeck, Kenneth H; Gozes, Illana; Pennuto, Maria

    2016-12-21

    Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser(96) Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser(96) phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.

  12. Molecular Characterization of Adenylyl Cyclase Complex Proteins Using Versatile Protein-Tagging Plasmid Systems in Cryptococcus neoformans.

    PubMed

    So, Yee-Seul; Yang, Dong-Hoon; Jung, Kwang-Woo; Huh, Won-Ki; Bahn, Yong-Sun

    2017-02-28

    In this study, we aimed to generate a series of versatile tagging plasmids that can be used in diverse molecular biological studies of the fungal pathogen Cryptococcus neoformans. We constructed 12 plasmids that can be used to tag a protein of interest with a GFP, mCherry, 4×FLAG, or 6×HA, along with nourseothricin-, neomycin-, or hygromycin-resistant selection markers. Using this tagging plasmid set, we explored the adenylyl cyclase complex (ACC), consisting of adenylyl cyclase (Cac1) and its associated protein Aca1, in the cAMP-signaling pathway, which is critical for the pathogenicity of C. neoformans. We found that Cac1-mCherry and Aca1-GFP were mainly colocalized as punctate forms in the cell membrane and nonnuclear cellular organelles. We also demonstrated that Cac1 and Aca1 interacted in vivo by coimmunoprecipitation, using Cac1-6×HA and Aca1-4×FLAG tagging strains. Bimolecular fluorescence complementation further confirmed the in vivo interaction of Cac1 and Aca1 in live cells. Finally, protein pull-down experiments using aca1Δ::ACA1-GFP and aca1Δ::ACA1- GFP cac1Δ strains and comparative mass spectrometry analysis identified Cac1 and a number of other novel ACC-interacting proteins. Thus, this versatile tagging plasmid system will facilitate diverse mechanistic studies in C. neoformans and further our understanding of its biology.

  13. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  14. DIFERENTIALLY EXPRESSED ADENYLYL CYCLASE ISOFORMS MEDIATE SECRETORY FUNCTIONS IN CHOLANGIOCYTE SUBPOPULATION

    PubMed Central

    Strazzabosco, Mario; Fiorotto, Romina; Melero, Saida; Glaser, Shannon; Francis, Heather; Spirlì, Carlo; Alpini, Gianfranco

    2009-01-01

    cAMP is generated by adenylyl cyclases (ACs) a group of enzymes with different tissue specificity and regulation. We hypothesized that AC isoforms are heterogeneously expressed along the biliary tree, are associated with specific secretory stimuli and are differentially modulated in cholestasis. Methods: Small (SDC) and large (LDC) cholangiocytes were isolated from controls and from lipopolysaccharide-treated (LPS) or α-naphthylisothiocyanate-treated (ANIT) rats. ACs isoforms expression was assessed by real-time PCR. Secretion and cAMP levels were measured in intrahepatic bile duct units after stimulation with secretin, forskolin, HCO3−/CO2, cholinergic and β-adrenergic agonists, with or without selected inhibitors or after silencing of AC8 or sAC with siRNA. Results: Gene expression of the Ca2+-insensitive isoforms (AC4, AC7) was higher in SDC, while that of the Ca2+-inhibitable (AC5, AC6, AC9), the Ca2+/calmodulin stimulated AC8, and the soluble sAC, was higher in LDC. Ca2+/calmodulin-inhibitors and AC8 gene silencing inhibited choleresis and cAMP production stimulated by secretin and acetylcholine, but not by forskolin. Secretion stimulated by isoproterenol and calcineurin-inibitors was cAMP-dependent and GABA-inhibitable, consistent with activation of AC9. Cholangiocyte secretion stimulated by isohydric changes in [HCO3−]i, was cAMP-dependent and inhibited by sAC-inhibitior and by sAC gene silencing. Treatment with LPS or ANIT increased expression of AC7 and sAC, while decreasing that of the others ACs. Conclusion: These studies demonstrate a previously unrecognized role of AC in biliary pathophysiology. In fact: 1) ACs isoforms are differentially expressed in cholangiocyte subpopulations, 2) AC8, AC9, and sAC mediate cholangiocyte secretion in response to secretin, β-adrenergic agonists, or changes in [HCO3−]i, respectively, 3) ACs gene expression is modulated in experimental cholestasis. PMID:19444869

  15. Selective inhibition of adenylyl cyclase by octopamine via a human cloned α2A-adrenoceptor

    PubMed Central

    Airriess, Chris N; Rudling, Jane E; Midgley, John M; Evans, Peter D

    1997-01-01

    min incubation period. Since octopamine and synephrine occur naturally in, and are co-released with catecholamines from, mammalian tissues, the results of the present study suggest that the human cloned α2A-adrenoceptor can be coupled selectively by different endogenous agonists to G-protein pathways mediating the regulation of adenylyl cyclase activity. PMID:9313925

  16. Differential Interactions of the Catalytic Subunits of Adenylyl Cyclase with Forskolin Analogs

    PubMed Central

    Pinto, Cibele; Hübner, Melanie; Gille, Andreas; Richter, Mark; Mou, Tung-Chung; Sprang, Stephen R.; Seifert, Roland

    2009-01-01

    The diterpene forskolin (FS) binds to, and activates, mammalian membranous adenylyl cyclase (AC) isoforms I–VIII. Diterpenes without C1-OH group do not activate ACs. The C1-OH group forms a hydrogen bond with the backbone oxygen of Val506 of the C1 catalytic subunit of AC (isoform V numbering). To better understand the mechanism of AC activation we examined the interactions of FS and eight FS analogs with purified catalytic AC subunits C1 (AC V) and C2 (AC II) by fluorescence spectroscopy, using 2′,3′-O-(N-methylanthraniloyl)-guanosine 5′-triphosphate (MANT-GTP) as fluorescent reporter probe, and by enzymatic activity. FS analogs induced C1/C2 assembly as assessed by fluorescence resonance energy transfer from Trp1020 of C2 to MANT-GTP and by increased direct MANT-GTP fluorescence in the order of efficacy FS ~ 7-deacetyl-FS ~ 6-acetyl-7-deacetyl-FS ~ 9-deoxy-FS > 7-deacetyl-7-(N-methylpiperazino-γ-butyryloxy)-FS > 1-deoxy-FS ~ 1,9-dideoxy-FS ~ 7-deacetyl-1-deoxy-FS ~ 7-deacetyl-1,9-dideoxy-FS. In contrast, FS analogs activated catalysis in the order of efficacy FS > 7-deacety-FS ~ 6-acetyl-7-deacetyl-FS ~ 9-deoxy-FS > 7-deacetyl-7-(N-methylpiperazino-γ-butyryloxy)-FS ≫ 1-deoxy-FS, 1,9-dideoxy-FS, 7-deacetyl-1-deoxy-FS and 7-deacetyl-1,9-dideoxy-FS (all ineffective). 1-Deoxy-FS analogs inhibited FS-stimulated catalysis by an apparently non-competitive mechanism. Our data suggest a two-step mechanism of AC activation by diterpenes. In the first step, diterpenes, regardless of their substitution pattern, promote C1/C2 assembly. In the second and yet poorly understood step, diterpenes that form a hydrogen bond between C1-OH and Val506 promote a conformational switch that results in activation of catalysis. The apparent non-competitive interaction of FS with 1-deoxy-FS analogs is explained by impaired ligand exchange due to strong hydrophobic interactions with C1/C2. PMID:19447224

  17. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    PubMed

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Molecular cloning and characterization of a rat homolog of CAP, the adenylyl cyclase-associated protein from Saccharomyces cerevisiae.

    PubMed

    Zelicof, A; Gatica, J; Gerst, J E

    1993-06-25

    We have isolated a rat cDNA whose expression suppresses the physiological consequences of the chromosomal disruption of CAP, the gene encoding the adenylyl cyclase-associated protein of Saccharomyces cerevisiae. Yeast CAP is a bifunctional protein: the NH2 terminus is necessary and sufficient for cellular responsiveness to activated RAS proteins, while the COOH terminus is required for normal cellular morphology and growth control. The rat MCH1 cDNA encodes a protein of 474 amino acids that is 36% identical to S. cerevisiae CAP and is capable of suppressing the loss of the COOH-terminal functions of CAP when expressed in yeast. The MCH1 protein therefore appears to be a structural and functional homolog of the yeast cyclase-associated proteins. Northern analysis of MCH1 gene expression shows it to be constitutively expressed in all cell and tissue types examined. The cloning of a rat homolog of CAP, in addition to the cloning of a human CAP homolog by Matviw et al. (Matviw, H., Yu, G., and Young, D. (1992) Mol. Cell. Biol. 12, 5033-5040), demonstrates that both cyclase-associated proteins and their functions may have evolved with mammalian cells.

  19. Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora.

    PubMed

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-09-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.

  20. Intracoronary Gene Transfer of Adenylyl Cyclase 6 in Patients With Heart Failure

    PubMed Central

    Hammond, H. Kirk; Penny, William F.; Traverse, Jay H.; Henry, Timothy D.; Watkins, Matthew W.; Yancy, Clyde W.; Sweis, Ranya N.; Adler, Eric D.; Patel, Amit N.; Murray, David R.; Ross, Robert S.; Bhargava, Valmik; Maisel, Alan; Barnard, Denise D.; Lai, N. Chin; Dalton, Nancy D.; Lee, Martin L.; Narayan, Sanjiv M.; Blanchard, Daniel G.; Gao, Mei Hua

    2017-01-01

    Importance Gene transfer has rarely been tested in randomized clinical trials. Objective To evaluate the safety and efficacy of intracoronary delivery of adenovirus 5 encoding adenylyl cyclase 6 (Ad5.hAC6) in heart failure. Design, Setting, and Participants A randomized, double-blind, placebo-controlled, phase 2 clinical trial was conducted in US medical centers (randomization occurred from July 19, 2010, to October 30, 2014). Participants 18 to 80 years with symptomatic heart failure (ischemic and nonischemic) and an ejection fraction (EF) of 40% or less were screened; 86 individuals were enrolled, and 56 were randomized. Data analysis was of the intention-to-treat population. Participants underwent exercise testing and measurement of left ventricular EF (echocardiography) and then cardiac catheterization, where left ventricular pressure development (+dP/dt)and decline (−dP/dt) were recorded. Participants were randomized (3:1 ratio) to receive 1 of 5 doses of intracoronary Ad5.hAC6 or placebo. Participants underwent a second catheterization 4 weeks later for measurement of dP/dt. Exercise testing and EF were assessed 4 and 12 weeks after randomization. Interventions Intracoronary administration of Ad5.hAC6 (3.2 × 109 to 1012 virus particles) or placebo. Main Outcomes and Measures Primary end points included exercise duration and EF before and 4 and 12 weeks after randomization and peak rates of +dP/dt and −dP/dt before and 4 weeks after randomization. Fourteen placebo participants were compared (intention to treat) with 24 Ad5.hAC6 participants receiving the highest 2 doses (D4 + 5). Results Fifty-six individuals were randomized and monitored for up to 1 year. Forty-two participants (75%) received Ad5.hAC6 (mean [SE] age, 63 [1] years; EF, 30% [1%]), and 14 individuals (25%) received placebo (age, 62 [1] years; EF, 30% [2%]). Exercise duration showed no significant group differences (4 weeks, P = .27; 12 weeks, P = .47, respectively). The D4 + 5 participants

  1. Identification of 5-hydroxytryptamine receptors positively coupled to adenylyl cyclase in rat cultured astrocytes

    PubMed Central

    Hirst, Warren D; Price, Gary W; Rattray, Marcus; Wilkin, Graham P

    1997-01-01

    investigated. Primers specific for the 5-HT6 receptor also amplified a cDNA fragment from the same samples.From these findings, we conclude that astrocytes cultured from a number of brain regions express functional 5-HT receptors positively coupled to adenylyl cyclase and that the level of receptor expression or the efficiency of receptor coupling is regionally-dependent. The pharmacological profile of the receptor on thalamic/hypothalamic astrocytes suggests that the 5-HT7 receptor is the dominant receptor that is functionally expressed even though astrocyte cultures have the capacity to express both 5-HT6 and 5-HT7 receptor messenger RNA. PMID:9031757

  2. Glucagon receptor of human liver. Studies of its molecular weight and binding properties, and its ability to activate hepatic adenylyl cyclase of non-obese and obese subjects.

    PubMed Central

    Livingston, J N; Einarsson, K; Backman, L; Ewerth, S; Arner, P

    1985-01-01

    The glucagon receptor and the adenylyl cyclase system of human liver membranes were studied in six non-obese and six obese subjects who had elevated insulin and plasma glucagon levels. Analysis of specific glucagon binding by the method of Scatchard demonstrated a linear (monocomponent) plot with a dissociation constant of 2-3 nM, and the binding at low hormone concentrations was sensitive to guanosine triphosphate (GTP). The molecular weight of the glucagon receptor was 63,000 D as determined by an affinity labeling procedure and sodium dodecyl sulfate gel electrophoresis. Affinity labeling of this structure was specific for glucagon and inhibited by GTP. Glucagon stimulated the production of cyclic adenosine monophosphate (cAMP) by human membranes with half-maximal activation elicited by 6 nM hormone. The human cyclase system required GTP to facilitate an optimal glucagon response. NaF (10 mM) also activated the cyclase system and produced the same magnitude of response as maximum glucagon activation. A comparison of the liver adenylyl cyclase system of non-obese and obese subjects was made using glucagon (5 nM and 1 microM) and NaF (10 mM). No significant differences in cAMP production were noted between the two groups, regardless of the agent used to activate the enzyme. These findings agree with the glucagon binding studies that showed similar amounts of binding activity in the membranes from the two groups. Also, there was no influence of either age or sex of the subjects on the adenylyl cyclase response. In conclusion, human liver membranes contain a glucagon receptor and an adenylyl cyclase system that correspond closely to the well-studied system in animal liver. This system in human obesity is not altered by the approximately twofold elevation in plasma glucagon that occurs in this metabolic disorder. Images PMID:2982913

  3. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  4. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role.

    PubMed

    Barott, K L; Helman, Y; Haramaty, L; Barron, M E; Hess, K C; Buck, J; Levin, L R; Tresguerres, M

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels.

  5. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role

    PubMed Central

    Barott, K. L.; Helman, Y.; Haramaty, L.; Barron, M. E.; Hess, K. C.; Buck, J.; Levin, L. R.; Tresguerres, M.

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels. PMID:23459251

  6. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation.

    PubMed

    Shima, F; Okada, T; Kido, M; Sen, H; Tanaka, Y; Tamada, M; Hu, C D; Yamawaki-Kataoka, Y; Kariya, K; Kataoka, T

    2000-01-01

    Posttranslational modification, in particular farnesylation, of Ras is crucial for activation of Saccharomyces cerevisiae adenylyl cyclase (CYR1). Based on the previous observation that association of CYR1 with cyclase-associated protein (CAP) is essential for its activation by posttranslationally modified Ras, we postulated that the associated CAP might contribute to the formation of a Ras-binding site of CYR1, which mediates CYR1 activation, other than the primary Ras-binding site, the leucine-rich repeat domain. Here, we observed a posttranslational modification-dependent association of Ras with a complex between CAP and CYR1 C-terminal region. When CAP mutants defective in Ras signaling but retaining the CYR1-binding activity were isolated by screening of a pool of randomly mutagenized CAP, CYR1 complexed with two of the obtained three mutants failed to be activated efficiently by modified Ras and exhibited a severely impaired ability to bind Ras, providing a genetic evidence for the importance of the physical association with Ras at the second Ras-binding site. On the other hand, CYR1, complexed with the other CAP mutant, failed to be activated by Ras but exhibited a greatly enhanced binding to Ras. Conversely, a Ras mutant E31K, which exhibits a greatly enhanced binding to the CYR1-CAP complex, failed to activate CYR1 efficiently. Thus, the strength of interaction at the second Ras-binding site appears to be a critical determinant of CYR1 regulation by Ras: too-weak and too-strong interactions are both detrimental to CYR1 activation. These results, taken together with those obtained with mammalian Raf, suggest the importance of the second Ras-binding site in effector regulation.

  7. The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia.

    PubMed

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R

    2011-04-13

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects, and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein-coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase, this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3(-/-) mice for several forms of learning and memory. Here, we report that AC3(-/-) mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociative passive avoidance. Since AC3 is exclusively expressed in primary cilia, we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory, including extinction of contextual fear conditioning.

  8. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade.

    PubMed

    Bahn, Yong-Sun; Hicks, Julie K; Giles, Steven S; Cox, Gary M; Heitman, Joseph

    2004-12-01

    The evolutionarily conserved cyclic AMP (cAMP) signaling pathway controls cell functions in response to environmental cues in organisms as diverse as yeast and mammals. In the basidiomycetous human pathogenic fungus Cryptococcus neoformans, the cAMP pathway governs virulence and morphological differentiation. Here we identified and characterized adenylyl cyclase-associated protein, Aca1, which functions in parallel with the Galpha subunit Gpa1 to control the adenylyl cyclase (Cac1). Aca1 interacted with the C terminus of Cac1 in the yeast two-hybrid system. By molecular and genetic approaches, Aca1 was shown to play a critical role in mating by regulating cell fusion and filamentous growth in a cAMP-dependent manner. Aca1 also regulates melanin and capsule production via the Cac1-cAMP-protein kinase A pathway. Genetic epistasis studies support models in which Aca1 and Gpa1 are necessary and sufficient components that cooperate to activate adenylyl cyclase. Taken together, these studies further define the cAMP signaling cascade controlling virulence of this ubiquitous human fungal pathogen.

  9. Stimulation of Trypanosoma cruzi adenylyl cyclase by an alpha D-globin fragment from Triatoma hindgut: effect on differentiation of epimastigote to trypomastigote forms.

    PubMed Central

    Fraidenraich, D; Peña, C; Isola, E L; Lammel, E M; Coso, O; Añel, A D; Pongor, S; Baralle, F; Torres, H N; Flawia, M M

    1993-01-01

    A peptide from hindguts of the Triatoma hematophagous Chagas insect vector activates adenylyl cyclase activity in Trypanosoma cruzi epimastigote membranes and stimulates the in vitro differentiation of epimastigotes to metacyclic trypomastigotes. Hindguts were obtained from insects fed 2 days earlier with chicken blood. Purification was performed by gel filtration and HPLC on C18 and C4 columns. SDS/PAGE of the purified peptide showed a single band of about 10 kDa. The following sequence was determined for the 20 amino-terminal residues of this peptide: H2N-Met-Leu-Thr-Ala-Glu-Asp-Lys-Lys-Leu-Ile-Gln- Gln-Ala-Trp-Glu-Lys-Ala-Ala-Ser-His. This sequence is identical to the amino terminus of chicken alpha D-globin. On a Western blot, the peptide immunoreacted with a polyclonal antibody against chicken globin D. A synthetic peptide corresponding to residues 1-40 of the alpha D-globin amino terminus also stimulated adenylyl cyclase activity and promoted differentiation. This 125I-labeled synthetic peptide bound specifically to T. cruzi epimastigote cells. Activation of epimastigote adenylyl cyclase by the hemoglobin-derived peptide may play an important role in T. cruzi differentiation and consequently in the transmission of Chagas disease. Images Fig. 2 PMID:8234267

  10. The Type 3 Adenylyl Cyclase is Required for Novel Object Learning and Extinction of Contextual Memory: Role of cAMP Signaling in Primary Cilia

    PubMed Central

    Wang, Zhenshan; Phan, Trongha; Storm, Daniel R.

    2011-01-01

    Although primary cilia are found on neurons throughout the brain, their physiological function remains elusive. Human ciliopathies are associated with cognition defects and transgenic mice lacking proteins expressed in primary cilia exhibit defects in learning and memory. Recently, it was reported that mice lacking the G-protein coupling receptor somatostatin receptor-3 (SSTR3), a protein expressed predominately in the primary cilia of neurons, have defective memory for novel object recognition and lower cAMP levels in the brain. Since SSTR3 is coupled to regulation of adenylyl cyclase this suggests that adenylyl cyclase activity in primary cilia of CNS neurons may be critical for some forms of learning and memory. Because the type 3 adenylyl cyclase (AC3) is expressed in primary cilia of hippocampal neurons, we examined AC3−/− mice for several forms of learning and memory. Here, we report that AC3−/− mice show no short-term memory for novel objects and fail to exhibit extinction of contextual fear conditioning. They also show impaired learning and memory for temporally dissociated passive avoidance (TDPA). Since AC3 is exclusively expressed in primary cilia we conclude that cAMP signals generated within primary cilia contribute to some forms of learning and memory including extinction of contextual fear conditioning. PMID:21490195

  11. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases.

    PubMed

    Dessauer, Carmen W; Watts, Val J; Ostrom, Rennolds S; Conti, Marco; Dove, Stefan; Seifert, Roland

    2017-04-01

    Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.

  12. Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes.

    PubMed

    Ostrom, Rennolds S; Bundey, Richard A; Insel, Paul A

    2004-05-07

    Several cell types, including cardiac myocytes and vascular endothelial cells, produce nitric oxide (NO) via both constitutive and inducible isoforms of NO synthase. NO attenuates cardiac contractility and contributes to contractile dysfunction in heart failure, although the precise molecular mechanisms for these effects are poorly defined. Adenylyl cyclase (AC) isoforms type 5 and 6, which are preferentially expressed in cardiac myocytes, may be inhibited via a direct nitrosylation by NO. Because endothelial NO synthase (eNOS and NOS3), beta-adrenergic (betaAR) receptors, and AC6 all can localize in lipid raft/caveolin-rich microdomains, we sought to understand the role of lipid rafts in organizing components of betaAR-G(s)-AC signal transduction together with eNOS. Using neonatal rat cardiac myocytes, we found that disruption of lipid rafts with beta-cyclodextrin inhibited forskolin-stimulated AC activity and cAMP production, eliminated caveolin-3-eNOS interaction, and increased NO production. betaAR- and G(s)-mediated activation of AC activity were inhibited by beta-cyclodextrin treatment, but prostanoid receptor-stimulated AC activity, which appears to occur outside caveolin-rich microdomains, was unaffected unless eNOS was overexpressed and lipid rafts were disrupted. An NO donor, SNAP, inhibited basal and forskolin-stimulated cAMP production in both native cardiac myocytes and cardiac myocytes and pulmonary artery endothelial cells engineered to overexpress AC6. These effects of SNAP were independent of guanylyl cyclase activity and were mimicked by overexpression of eNOS. The juxtaposition of eNOS with betaAR and AC types 5 and 6 results in selective regulation of betaAR by eNOS activity in lipid raft domains over other G(s)-coupled receptors localized in nonraft domains. Thus co-localization of multiple signaling components in lipid rafts provides key spatial regulation of AC activity.

  13. Three α-Subunits of Heterotrimeric G Proteins and an Adenylyl Cyclase Have Distinct Roles in Fruiting Body Development in the Homothallic Fungus Sordaria macrospora

    PubMed Central

    Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich

    2008-01-01

    Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884

  14. Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion.

    PubMed

    Zhang, Haitao; Ghai, Pooja; Wu, Huhehasi; Wang, Changhui; Field, Jeffrey; Zhou, Guo-Lei

    2013-07-19

    CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.

  15. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice

    PubMed Central

    Zhang, Zhe; Yang, Dong; Zhang, Mengdi; Zhu, Ning; Zhou, Yanfen; Storm, Daniel R.; Wang, Zhenshan

    2017-01-01

    Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood. PMID:28154525

  16. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    SciTech Connect

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  17. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis.

    PubMed

    Chang, Jung-Chin; Go, Simei; Verhoeven, Arthur J; Beuers, Ulrich; Oude Elferink, Ronald P J

    2017-09-26

    Primary biliary cholangitis (PBC) is a chronic fibrosing cholangiopathy characterized by an autoimmune stereotype and defective biliary bicarbonate secretion due to down-regulation of anion exchanger 2 (AE2). Despite the autoimmune features, immunosuppressants are ineffective while two bile acid-based therapies (ursodeoxycholic acid and obeticholic acid) have been shown to improve biochemical and histological features of cholestasis and long-term prognosis. However, the etiology and pathogenesis of PBC is largely unknown. Recently, it has been shown that microRNA-506 (miR-506) on chromosome X is up-regulated in PBC cholangiocytes and suppresses AE2 expression, which sensitizes cholangiocytes to bile salt-induced apoptosis by activating soluble adenylyl cyclase (sAC), an evolutionarily conserved bicarbonate sensor. In this review, we discuss the experimental evidence for the emerging role of the miR-506-AE2-sAC axis in PBC pathogenesis. We further hypothesize that the initial disease trigger induces an X-linked epigenetic change, leading to a female-biased activation of the miR-506-AE2-sAC axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen. Copyright © 2017. Published by Elsevier B.V.

  18. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  19. Adenylyl cyclase-associated protein 1 is a receptor for human resistin and mediates inflammatory actions of human monocytes.

    PubMed

    Lee, Sahmin; Lee, Hyun-Chae; Kwon, Yoo-Wook; Lee, Sang Eun; Cho, Youngjin; Kim, Joonoh; Lee, Soobeom; Kim, Ju-Young; Lee, Jaewon; Yang, Han-Mo; Mook-Jung, Inhee; Nam, Ky-Youb; Chung, Junho; Lazar, Mitchell A; Kim, Hyo-Soo

    2014-03-04

    Human resistin is a cytokine that induces low-grade inflammation by stimulating monocytes. Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis, and other cardiometabolic diseases. Nevertheless, the receptor for human resistin has not been clarified. Here, we identified adenylyl cyclase-associated protein 1 (CAP1) as a functional receptor for human resistin and clarified its intracellular signaling pathway to modulate inflammatory action of monocytes. We found that human resistin directly binds to CAP1 in monocytes and upregulates cyclic AMP (cAMP) concentration, protein kinase A (PKA) activity, and NF-κB-related transcription of inflammatory cytokines. Overexpression of CAP1 in monocytes enhanced the resistin-induced increased activity of the cAMP-dependent signaling. Moreover, CAP1-overexpressed monocytes aggravated adipose tissue inflammation in transgenic mice that express human resistin from their monocytes. In contrast, suppression of CAP1 expression abrogated the resistin-mediated inflammatory activity both in vitro and in vivo. Therefore, CAP1 is the bona fide receptor for resistin leading to inflammation in humans.

  20. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9.

    PubMed

    Cauwe, Bénédicte; Martens, Erik; Van den Steen, Philippe E; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  1. Association of elongation factor 1 alpha and ribosomal protein L3 with the proline-rich region of yeast adenylyl cyclase-associated protein CAP.

    PubMed

    Yanagihara, C; Shinkai, M; Kariya, K; Yamawaki-Kataoka, Y; Hu, C D; Masuda, T; Kataoka, T

    1997-03-17

    CAP is a multifunctional protein; the N-terminal region binds adenylyl cyclase and controls its response to Ras while the C-terminal region is involved in cytoskeletal regulation. In between the two regions, CAP possesses two proline-rich segments, P1 and P2, resembling a consensus sequence for binding SH3 domains. We have identified two yeast proteins with molecular sizes of 48 and 46 kDa associated specifically with P2. Determination of partial protein sequences demonstrated that the 48-kDa and 46-kDa proteins correspond to EF1 alpha and rL3, respectively, neither of which contains any SH3-domain-like sequence. Deletion of P2 from CAP resulted in loss of the activity to bind the two proteins either in vivo or in vitro. Yeast cells whose chromosomal CAP was replaced by the P2-deletion mutant displayed an abnormal phenotype represented by dissociated localizations of CAP and F-actin, which were colocalized in wild-type cells. These results suggest that these associations may have functional significance.

  2. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.

    PubMed

    Blum, Ailisa; Benfield, Aurélie H; Stiller, Jiri; Kazan, Kemal; Batley, Jacqueline; Gardiner, Donald M

    2016-05-01

    Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  3. Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner.

    PubMed

    Yamaoka, Kumiko; Yano, Akiko; Kuroiwa, Kenji; Morimoto, Kazushi; Inazumi, Tomoaki; Hatae, Noriyuki; Tabata, Hiroyuki; Segi-Nishida, Eri; Tanaka, Satoshi; Ichikawa, Atsushi; Sugimoto, Yukihiko

    2009-11-27

    We previously demonstrated that prostaglandin EP3 receptor augments EP2-elicited cAMP formation in COS-7 cells in a G(i/o)-insensitive manner. The purpose of our current study was to identify the signaling pathways involved in EP3-induced augmentation of receptor-stimulated cAMP formation. The enhancing effect of EP3 receptor was irrespective of the C-terminal structure of the EP3 isoform. This EP3 action was abolished by treatment with inhibitors for phospholipase C and intracellular Ca(2+)-related signaling molecules such as U73122, staurosporine, 2-APB and SK&F 96365. Indeed, an EP3 agonist stimulated IP(3) formation and intracellular Ca(2+) mobilization, which was blocked by U73122, but not by pertussis toxin. The enhancing effect by EP3 on cAMP formation was mimicked by both a Ca(2+) ionophore and the activation of a typical G(q)-coupled receptor. Moreover, EP3 was exclusively localized to the raft fraction in COS-7 cells and EP3-elicited augmentation of cAMP formation was abolished by cholesterol depletion and introduction of a dominant negative caveolin-1 mutant. These results suggest that EP3 elicits adenylyl cyclase superactivation via G(q)/phospholipase C activation and intracellular Ca(2+) mobilization in a lipid raft microdomain-dependent manner.

  4. Genetic evidence for adenylyl cyclase 1 as a target for preventing neuronal excitotoxicity mediated by N-methyl-D-aspartate receptors.

    PubMed

    Wang, Hansen; Gong, Bo; Vadakkan, Kunjumon I; Toyoda, Hiroki; Kaang, Bong-Kiun; Zhuo, Min

    2007-01-12

    The excessive activation of N-methyl-D-aspartate (NMDA) receptors by glutamate results in neuronal excitotoxicity. cAMP is a key second messenger and contributes to NMDA receptor-dependent synaptic plasticity. Adenylyl cyclases 1 (AC1) and 8 (AC8) are the two major calcium-stimulated ACs in the central nervous system. Previous studies demonstrate AC1 and AC8 play important roles in synaptic plasticity, memory, and persistent pain. However, little is known about the possible roles of these two ACs in glutamate-induced neuronal excitotoxicity. Here, we report that genetic deletion of AC1 significantly attenuated neuronal death induced by glutamate in primary cultures of cortical neurons, whereas AC8 deletion did not produce a significant effect. AC1, but not AC8, contributes to intracellular cAMP production following NMDA receptor activation by glutamate in cultured cortical neurons. AC1 is involved in the dynamic modulation of cAMP-response element-binding protein activity in neuronal excitotoxicity. To explore the possible roles of AC1 in cell death in vivo, we studied neuronal excitotoxicity induced by an intracortical injection of NMDA. Cortical lesions induced by NMDA were significantly reduced in AC1 but not in AC8 knock-out mice. Our findings provide direct evidence that AC1 plays an important role in neuronal excitotoxicity and may serve as a therapeutic target for preventing excitotoxicity in stroke and neurodegenerative diseases.

  5. Effects of metformin on cell growth and AMPK activity in pituitary adenoma cell cultures, focusing on the interaction with adenylyl cyclase activating signals.

    PubMed

    Faggi, Lara; Giustina, Andrea; Tulipano, Giovanni

    2017-09-27

    For a few years we have been investigating AMP-activated protein kinase (AMPK) as a target for drug therapy of GH-secreting pituitary adenomas. Aim of this study was to investigate the direct effects of metformin, which causes AMPK activation in different cell types, on rat pituitary adenoma cell growth and on related cell signalling pathways. Our results suggest that metformin can exert a growth-inhibitory activity in rat pituitary tumor cells mediated by AMPK activation, although multiple mechanisms are most likely involved. Membrane proteins, including growth factor receptors, are valuable targets of AMPK. The inhibition of the mTOR-p70S6 kinase signalling pathway plays a role in the suppressive effect of metformin on pituitary tumor cell growth. Metformin did not affect the MTT reduction activity in energetic stress conditions. Finally, metformin was still able to induce AMPK activation and to inhibit cell growth in cells treated with forskolin and in transfected cells overexpressing GHRH-receptor and treated with GHRH. Hence, adenylyl cyclase over-activation does not account for the lack of response of some human pituitary tumors to AMPK-activating compounds in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  7. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  8. Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson's disease.

    PubMed

    Park, Hye-Yeon; Kang, Young-Mi; Kang, Young; Park, Tae-Shin; Ryu, Young-Kyoung; Hwang, Jung-Hwan; Kim, Yong-Hoon; Chung, Bong-Hyun; Nam, Ki-Hoan; Kim, Mee-Ree; Lee, Chul-Ho; Han, Pyung-Lim; Kim, Kyoung-Shim

    2014-08-27

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is widely used as a therapeutic choice for the treatment of patients with Parkinson's disease. However, the long-term use of L-DOPA leads to the development of debilitating involuntary movements, called L-DOPA-induced dyskinesia (LID). The cAMP/protein kinase A (PKA) signaling in the striatum is known to play a role in LID. However, from among the nine known adenylyl cyclases (ACs) present in the striatum, the AC that mediates LID remains unknown. To address this issue, we prepared an animal model with unilateral 6-hydroxydopamine lesions in the substantia nigra in wild-type and AC5-knock-out (KO) mice, and examined behavioral responses to short-term or long-term treatment with L-DOPA. Compared with the behavioral responses of wild-type mice, LID was profoundly reduced in AC5-KO mice. The behavioral protection of long-term treatment with L-DOPA in AC5-KO mice was preceded by a decrease in the phosphorylation levels of PKA substrates ERK (extracellular signal-regulated kinase) 1/2, MSK1 (mitogen- and stress-activated protein kinase 1), and histone H3, levels of which were all increased in the lesioned striatum of wild-type mice. Consistently, FosB/ΔFosB expression, which was induced by long-term L-DOPA treatment in the lesioned striatum, was also decreased in AC5-KO mice. Moreover, suppression of AC5 in the dorsal striatum with lentivirus-shRNA-AC5 was sufficient to attenuate LID, suggesting that the AC5-regulated signaling cascade in the striatum mediates LID. These results identify the AC5/cAMP system in the dorsal striatum as a therapeutic target for the treatment of LID in patients with Parkinson's disease.

  9. Temporal and Regional Regulation of Gene Expression by Calcium-Stimulated Adenylyl Cyclase Activity during Fear Memory

    PubMed Central

    Wieczorek, Lindsay; Maas, James W.; Muglia, Lisa M.; Vogt, Sherri K.; Muglia, Louis J.

    2010-01-01

    Background The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1−/−Adcy8−/−; DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown. Methodology/Principal Findings We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expression changes associated with conditioned fear (CF) memory in wild-type and DKO mice to identify AC-dependent gene regulatory changes that occur in the amygdala and hippocampus at baseline and different time points after CF learning. We observed an overall decrease in transcriptional changes in DKO mice across all time points, but most strikingly, at periods when memory consolidation and retention should be occurring. Further, we identified a shared set of transcription factor binding sites in genes upregulated in wild-type mice that were associated with downregulated genes in DKO mice. To prove the temporal and regional importance of AC activity on different stages of memory processing, the tetracycline-off system was used to produce mice with forebrain-specific inducible expression of AC8 on a DKO background. CF behavioral results reveal that adult restoration of AC8 activity in the forebrain is sufficient for intact learning, while cessation of this expression at any time point across learning causes memory deficits. Conclusions/Significance Overall, these studies demonstrate that the Ca2+-stimulated ACs contribute to the formation and maintenance of fear memory by a network of long-term transcriptional changes. PMID:20976279

  10. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains.

    PubMed

    Bogard, Amy S; Xu, Congfeng; Ostrom, Rennolds S

    2011-04-01

    Adenylyl cyclases (AC) are important regulators of airway smooth muscle function, because β-adrenergic receptor (AR) agonists stimulate AC activity and increase airway diameter. We assessed expression of AC isoforms in human bronchial smooth muscle cells (hBSMC). Reverse transcriptase-polymerase chain reaction and immunoblot analyses detected expression of AC2, AC4, and AC6. Forskolin-stimulated AC activity in membranes from hBSMC displayed Ca(2+)-inhibited and G(βγ)-stimulated AC activity, consistent with expression of AC6, AC2, and AC4. Isoproterenol-stimulated AC activity was inhibited by Ca(2+) but unaltered by G(βγ), whereas butaprost-stimulated AC activity was stimulated by G(βγ) but unaffected by Ca(2+) addition. Using sucrose density centrifugation to isolate lipid raft fractions, we found that only AC6 localized in lipid raft fractions, whereas AC2 and AC4 localized in nonraft fractions. Immunoisolation of caveolae using caveolin-1 antibodies yielded Ca(2+)-inhibited AC activity (consistent with AC6 expression), whereas the nonprecipitated material displayed G(βγ)-stimulated AC activity (consistent with expression of AC2 and/or AC4). Overexpression of AC6 enhanced cAMP production in response to isoproterenol and beraprost but did not increase responses to prostaglandin E(2) or butaprost. β(2)AR, but not prostanoid EP(2) or EP(4) receptors, colocalized with AC5/6 in lipid raft fractions. Thus, particular G protein-coupled receptors couple to discreet AC isoforms based, in part, on their colocalization in membrane microdomains. These different cAMP signaling compartments in airway smooth muscle cells are responsive to different hormones and neurotransmitters and can be regulated by different coincident signals such as Ca(2+) and G(βγ).

  11. Soluble adenylyl cyclase mediates mitochondrial pathway of apoptosis and ATP metabolism in oyster Crassostrea gigas exposed to elevated CO2.

    PubMed

    Wang, Xiudan; Wang, Mengqiang; Xu, Jiachao; Jia, Zhihao; Liu, Zhaoqun; Wang, Lingling; Song, Linsheng

    2017-07-01

    Ocean acidification (OA) has deleterious impacts on immune response and energy homeostasis status of Mollusca. In the present study, the apoptosis ratio of hemocytes and the adenosine triphosphate (ATP) allocation in gill tissues were determined after Pacific oysters Crassostrea gigas were exposed to elevated CO2 environment (pH = 7.50) for 16 days.The apoptosis ratio in CO2 exposure group (35.2%) was significantly higher (p < 0.05) than that in the control group, and the increased apoptosis ratio induced by elevated CO2 could be significantly inhibited (p < 0.05) by KH7, a specific inhibitor of a bicarbonate sensor soluble adenylyl cyclase (sAC). After CO2 exposure, sAC in oyster (CgsAC) was found to be clustered with mitochondria in the cytoplasm, and the pro-caspase-3 was cleaved into two small fragments. Moreover, the activities of caspase-3 and caspase-9 also increased post CO2 exposure and these increases could be inhibited by KH7. However, the activities of caspase-8 did not change significantly compared with that in the control group. After CO2 exposure, the ATP content in the gill increased significantly (p < 0.05) and such increase could also be inhibited by KH7. The ATP content in purified gill mitochondria decreased significantly (p < 0.05) after CO2 exposure, which was also inhibited by KH7. These results implied that the elevated CO2 could activate the mitochondria-CgsAC pathway of apoptosis and ATP metabolism in oyster, and this pathway played essential roles in maintaining the homeostasis and the balance of energy metabolism in response to OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Adenylyl Cyclase Subtype-Specific Compartmentalization: Differential Regulation of L-type Ca2+ Current in Ventricular Myocytes

    PubMed Central

    Timofeyev, Valeriy; Myers, Richard E.; Kim, Hyo Jeong; Woltz, Ryan L.; Sirish, Padmini; Heiserman, James P.; Li, Ning; Singapuri, Anil; Tang, Tong; Yarov-Yarovoy, Vladimir; Yamoah, Ebenezer N.; Hammond, H. Kirk; Chiamvimonvat, Nipavan

    2013-01-01

    Rationale Adenylyl cyclase (AC) represents one of the principal molecules in the β-adrenergic receptor (βAR) signaling pathway, responsible for the conversion of ATP to the second messenger, cAMP. AC type 5 (ACV) and 6 (ACVI) are the two main isoforms in the heart. While highly homologous in sequence, these two proteins nevertheless play different roles during the development of heart failure. Caveolin-3 is a scaffolding protein, integrating many intracellular signaling molecules in specialized areas called caveolae. In cardiomyocytes, caveolin is predominantly located along invaginations of the cell membrane known as t-tubules. Objective We take advantage of ACV and ACVI knockout mouse models to test the hypothesis that there is distinct compartmentalization of these two isoforms in ventricular myocytes. Methods and Results We demonstrate that ACV and ACVI isoforms exhibit distinct subcellular localization. ACVI isoform is localized in the plasma membrane outside of the t-tubular region, and is responsible for β1AR signaling-mediated enhancement of the L-type Ca2+ current (ICa,L) in ventricular myocytes. In contrast, ACV isoform is localized mainly in the t-tubular region where its influence on ICa,L is restricted by phosphodiesterase (PDE). We further demonstrate that the interaction between caveolin-3 with ACV and PDE is responsible for the compartmentalization of ACV signaling. Conclusions Our results provide new insights into the compartmentalization of the two AC isoforms in the regulation of ICa,L in ventricular myocytes. Since caveolae are found in most mammalian cells, the mechanism of βAR and AC compartmentalization may also be important for βAR signaling in other cell types. PMID:23609114

  13. Endogenous regulators of G protein signaling differentially modulate full and partial mu-opioid agonists at adenylyl cyclase as predicted by a collision coupling model.

    PubMed

    Clark, M J; Linderman, J J; Traynor, J R

    2008-05-01

    Regulator of G protein signaling (RGS) proteins accelerate the endogenous GTPase activity of Galpha(i/o) proteins to increase the rate of deactivation of active Galpha-GTP and Gbetagamma signaling molecules. Previous studies have suggested that RGS proteins are more effective on less efficiently coupled systems such as with partial agonist responses. To determine the role of endogenous RGS proteins in functional responses to mu-opioid agonists of different intrinsic efficacy, Galpha(i/o) subunits with a mutation at the pertussis toxin (PTX)-sensitive cysteine (C351I) and with or without a mutation at the RGS binding site (G184S) were stably expressed in C6 glioma cells expressing a mu-opioid receptor. Cells were treated overnight with PTX to inactivate endogenous G proteins. Maximal inhibition of forskolin-stimulated adenylyl cyclase by the low-efficacy partial agonists buprenorphine and nalbuphine was increased in cells expressing RGS-insensitive Galpha(o)(CIGS), Galpha(i2)(CIGS), or Galpha(i3)(CIGS) compared with their Galpha(CI) counterparts, but the RGS-insensitive mutation had little or no effect on the maximal inhibition by the higher efficacy agonists DAMGO and morphine. The potency of all the agonists to inhibit forskolin-stimulated adenylyl cyclase was increased in cells expressing RGS-insensitive Galpha(o)(CIGS), Galpha(i2)(CIGS), or Galpha(i3)(CIGS), regardless of efficacy. These data are comparable with predictions based on a collision coupling model. In this model, the rate of G protein inactivation, which is modulated by RGS proteins, and the rate of G protein activation, which is affected by agonist intrinsic efficacy, determine the maximal agonist response and potency at adenylyl cyclase under steady state conditions.

  14. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells.

    PubMed

    Yang, Lei; Wang, Yan-Li; Liu, Shang; Zhang, Pei-Pei; Chen, Zheng; Liu, Min; Tang, Hua

    2014-01-03

    MicroRNAs are a class of small, endogenous, non-coding RNAs that function as post-transcriptional regulators. In this study, we found that miR-181b promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells. And we validated a new miR-181b target gene, adenylyl cyclase 9 (AC9). miR-181b restricted cAMP production by post-transcriptionally downregulating AC9 expression. Phenotypic experiments indicated that miR-181b and AC9 exerted opposite effects on cell proliferation and apoptosis.

  15. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed

    Lila, T; Drubin, D G

    1997-02-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.

  16. Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation.

    PubMed

    Carvalho, Edison S M; Gregório, Sílvia F; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2012-12-01

    In the marine fish intestine luminal, HCO₃⁻ can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO₃⁻ secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH-Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 μM FK + 500 μM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO₃⁻ results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 μM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.

  17. Long-term enhancement of REM sleep by the pituitary adenylyl cyclase-activating polypeptide (PACAP) in the pontine reticular formation of the rat.

    PubMed

    Ahnaou, A; Basille, M; Gonzalez, B; Vaudry, H; Hamon, M; Adrien, J; Bourgin, P

    1999-11-01

    In rats, rapid eye movement (REM) sleep can be elicited by microinjection of vasoactive intestinal polypeptide (VIP) into the oral pontine reticular nucleus (PnO). In the present study, we investigated whether this area could also be a REM-promoting target for a peptide closely related to VIP: the pituitary adenylyl cyclase-activating polypeptide (PACAP). When administered into the posterior part of the PnO, but not in nearby areas, of freely moving chronically implanted rats, PACAP-27 and PACAP-38 (0.3 and 3 pmol) induced a marked enhancement (60-85% over baseline) of REM sleep for 8 h that could be prevented by prior infusion of the antagonist PACAP-(6-27) (3 pmol) into the same site. Moreover, injections of PACAP into the centre of the posterior PnO resulted in REM sleep enhancement which could last for up to 11 consecutive days. Quantitative autoradiography using [125I]PACAP-27 revealed the presence in the PnO of specific binding sites with high affinity for PACAP-27 and PACAP-38 (IC50 = 2.4 and 3.2 nM, respectively), but very low affinity for VIP (IC50 > 1 microM). These data suggest that PACAP within the PnO may play a key role in REM sleep regulation, and provide evidence for long-term (several days) mechanisms involved in such a control. PAC1 receptors which have a much higher affinity for PACAP than for VIP might mediate this long-term action of PACAP on REM sleep.

  18. Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton.

    PubMed Central

    Lila, T; Drubin, D G

    1997-01-01

    In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions. Images PMID:9190214

  19. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    PubMed

    Beste, Kerstin Y; Spangler, Corinna M; Burhenne, Heike; Koch, Karl-Wilhelm; Shen, Yuequan; Tang, Wei-Jen; Kaever, Volkhard; Seifert, Roland

    2013-01-01

    Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis possess nucleotidyl cyclase (NC) activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  20. Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp.

    PubMed

    Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter

    2014-11-01

    The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined.

  1. Somatic ‘Soluble’ Adenylyl Cyclase Isoforms Are Unaffected in Sacytm1Lex/Sacytm1Lex ‘Knockout’ Mice

    PubMed Central

    Tresguerres, Martin; Kamenetsky, Margarita; Levin, Lonny R.; Buck, Jochen

    2008-01-01

    Background Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacytm1Lex/Sacytm1Lex knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. Principal Findings We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which ‘escapes’ the design of the Sacytm1Lex knockout allele. Conclusions/Significance These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells. PMID:18806876

  2. The C1 and C2 domains target human type 6 adenylyl cyclase to lipid rafts and caveolae.

    PubMed

    Thangavel, Muthusamy; Liu, Xiaoqiu; Sun, Shu Qiang; Kaminsky, Joseph; Ostrom, Rennolds S

    2009-02-01

    Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.

  3. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: I. Novel role of CaMKs and interactions between calcium- and adenylyl cyclase-dependent pathways.

    PubMed

    Benninghoff, Abby D; Thomas, Peter

    2006-07-01

    Theca and granulosa cells for in vitro primary culture were obtained by enzymatic digestion of mature ovarian tissue from Atlantic croaker (Micropogonias undulatus) and separation from the other cell types by Percoll density-gradient centrifugation. Histochemical staining and treatment with pregnenolone confirmed the presence in the cultured cells of enzymes involved in synthesizing the major sex steroids in croaker ovaries: testosterone, estradiol, and 17alpha,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S). Croaker theca and granulosa cells maintained their steroidogenic response to gonadotropin when cultured with serum-supplemented media and produced high levels of testosterone for up to 5 days, although estradiol production was low. Multiple signal transduction pathways mediating gonadotropin stimulation of androgen production were identified in Atlantic croaker ovarian theca and granulosa cells in primary co-culture. Inhibitors of voltage-sensitive calcium channels (VSCCs) and calmodulin decreased the steroidogenic response to gonadotropin, whereas activators of adenylyl cyclase and protein kinase A (PKA) increased testosterone production, indicating that both calcium and PKA-dependent signaling pathways are involved in the regulation of follicular steroid production. In addition, the first evidence in vertebrates for an involvement of calcium/calmodulin-dependent protein kinases (CaMKs) in gonadal steroidogenesis was obtained, since the stimulatory effects of gonadotropin on testosterone media accumulation were attenuated by specific inhibitors of CaMKs. Some interactions among the signaling pathways were observed as demonstrated by the positive effect of elevated intracellular calcium on adenylyl cyclase activity and the reduction of forskolin- and dbcAMP-induced testosterone production by inhibitors of VSCCs, calmodulin, and CaMKs.

  4. Cocaine-amphetamine-regulated transcript expression in the rat nucleus accumbens is regulated by adenylyl cyclase and the cyclic adenosine 5'-monophosphate/protein kinase a second messenger system.

    PubMed

    Jones, Douglas C; Kuhar, Michael J

    2006-04-01

    Cocaine-amphetamine-regulated transcript (CART), a neuropeptide involved in the brain's reward/reinforcement circuit, modulates the effects of psychostimulants, including cocaine. The CART gene has been characterized, and binding sites for multiple transcription factors have been identified within the promoter region, including the cAMP-response element, which serves as a binding site for cAMP-response element-binding protein (CREB). CART expression appears to be regulated via cAMP/protein kinase A (PKA)/CREB-mediated signaling in cell culture. Therefore, the goal of these studies was to examine the involvement of cAMP/PKA/CREB-mediated signaling in CART mRNA and peptide expression in vivo in the rat nucleus accumbens. Intra-accumbal injections of forskolin, an adenylyl cyclase activator, stimulated the phosphorylation of CREB and increased both CART mRNA and peptide levels, an effect attenuated by inhibition of PKA with H89 [N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline-sulfonamide hydrochloride] and adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In addition, Rp-cAMPS alone decreased CART mRNA compared with saline-injected controls, suggesting that CART expression may be tonically regulated by PKA. Under certain conditions, cocaine increases CART mRNA levels; thus, we examined the effects of cocaine on forskolin-induced CART mRNA expression in the rat nucleus accumbens. Cocaine plus forskolin significantly increased CART mRNA over either of the drugs administered independently, suggesting that under conditions of heightened cAMP signaling, cocaine may impact CART gene expression. These results suggest that CART expression in vivo in the rat nucleus accumbens is regulated by adenylyl cyclase and cAMP/PKA-mediating signaling and, likely, through the activation of CREB.

  5. Adenylyl cyclase-cyclicAMP signaling in mood disorders: Role of the crucial phosphorylating enzyme protein kinase A

    PubMed Central

    Dwivedi, Yogesh; Pandey, Ghanshyam N

    2008-01-01

    Mood disorders are among the most prevalent and recurrent forms of psychiatric illnesses. In the last decade, there has been increased understanding of the biological basis of mood disorders. In fact, novel mechanistic concepts of the neurobiology of unipolar and bipolar disorders are evolving based on recent pre-clinical and clinical studies, most of which now focus on the role of signal transduction mechanisms in these psychiatric illnesses. Particular investigative emphasis has been given to the role of phosphorylating enzymes, which are crucial in regulating gene expression and neuronal and synaptic plasticity. Among the most important phosphorylating enzyme is protein kinase A (PKA), a component of adenylyl cyclase–cyclic adenosine monophosphate (AC–cAMP) signaling system. In this review, we critically and comprehensively discuss the role of various components of AC–cAMP signaling in mood disorders, with a special focus on PKA, because of the interesting observation that have been made about its involvement in unipolar and bipolar disorders. We also discuss the functional significance of the findings regarding PKA by discussing the role of important PKA substrates, namely, Rap-1, cyclicAMP-response element binding protein, and brain-derived neurotrophic factor. These studies suggest the interesting possibility that PKA and related signaling molecules may serve as important neurobiological factors in mood disorders and may be relevant in target-specific therapeutic interventions for these disorders. PMID:18728821

  6. Lactam formation increases receptor binding, adenylyl cyclase stimulation and bone growth stimulation by human parathyroid hormone (hPTH)(1-28)NH2.

    PubMed

    Whitfield, J F; Morley, P; Willick, G E; Isaacs, R J; MacLean, S; Ross, V; Barbier, J R; Divieti, P; Bringhurst, F R

    2000-05-01

    Human parathyroid hormone (1-28)NH2 [hPTH(1-28)NH2] is the smallest of the PTH fragments that can fully stimulate adenylyl cyclase in ROS 17/2 rat osteoblast-like osteosarcoma cells. This fragment has an IC50 of 110 nM for displacing 125I-[Nle8,18,Tyr34]bovine PTH(1-34)NH2 from HKRK B7 porcine kidney cells, which stably express 950,000 human type 1 PTH/PTH-related protein (PTHrP) receptors (PTH1Rs) per cell. It also has an EC50 of 23.9 nM for stimulating adenylyl cyclase in ROS 17/2 cells. Increasing the amphiphilicity of the alpha-helix in the residue 17-28 region by replacing Lys27 with Leu and stabilizing the helix by forming a lactam between Glu22 and Lys26 to produce the [Leu27]cyclo(Glu22-Lys26)hPTH(1-28)NH2 analog dramatically reduced the IC50 for displacing 125I-[Nle8,18,Tyr34]bPTH(1-34)NH2 from hPTH1Rs from 110 to 6 nM and dropped the EC50 for adenylyl cyclase stimulation in ROS 17/2 cells from 23.9 to 9.6 nM. These modifications also increased the osteogenic potency of hPTH(1-28)NH2. Thus, hPTH(1-28)NH2 did not significantly stimulate either femoral or vertebral trabecular bone growth in rats when injected daily at a dose of 5 nmol/100 g body weight for 6 weeks, beginning 2 weeks after ovariectomy (OVX), but it strongly stimulated the growth of trabeculae in the cancellous bone of the distal femurs and L5 vertebrae when injected at 25 nmol/100 g body weight. By contrast [Leu27]cyclo(Glu22-Lys26)hPTH(1-28)NH2 significantly stimulated trabecular bone growth when injected at 5 nmol/100 g of body weight. Thus, these modifications have brought the bone anabolic potency of hPTH(1-28)NH2 considerably closer to the potencies of the larger PTH peptides and analogs.

  7. Adenylate cyclases involvement in pathogenicity, a minireview.

    PubMed

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.

  8. Adenylyl cyclase type 6 overexpression selectively enhances beta-adrenergic and prostacyclin receptor-mediated inhibition of cardiac fibroblast function because of colocalization in lipid rafts.

    PubMed

    Liu, Xiaoqiu; Thangavel, Muthusamy; Sun, Shu Qiang; Kaminsky, Joseph; Mahautmr, Penden; Stitham, Jeremiah; Hwa, John; Ostrom, Rennolds S

    2008-06-01

    Cardiac fibroblasts produce and degrade extracellular matrix and are critical in regulating cardiac remodeling and hypertrophy. Fibroblasts are activated by factors such as transforming growth factor beta and inhibited by agents that elevate 3',5'-cyclic adenosine monophosphate (cAMP) levels. cAMP signal generation and response is known to be compartmentalized in many cell types in part through the colocalization of receptors and specific adenylyl cyclase isoforms in lipid rafts and caveolae. The present study sought to define the localization of key G protein-coupled receptors with adenylyl cyclase type 6 (AC6) in lipid rafts of rat cardiac fibroblasts and to determine if this colocalization was functionally relevant. We found that cardiac fibroblasts produce cAMP in response to agonists for beta-adrenergic (isoproterenol), prostaglandin EP2 (butaprost), adenosine (adenosine-5'-N-ethylcarboxamide, NECA), and prostacyclin (beraprost) receptors. Overexpression of AC6 increased cAMP production stimulated by isoproterenol and beraprost but not by butaprost or NECA. A key function of fibroblasts is the production of collagen. Isoproterenol- and beraprostmediated inhibition of collagen synthesis was also enhanced by AC6 overexpression, while inhibition by butaprost and NECA were unaltered. Lipid raft fractions from cardiac fibroblasts contain the preponderance of beta-adrenergic receptors and AC6 but exclude EP2 receptors. While we could not determine the localization of native prostacyclin receptors, we were able to determine that epitope-tagged prostanoid IP receptors (IPR) expressed in COS7 cells did localize, in part, in lipid raft fractions. These findings indicate that IP receptors are expressed in lipid rafts and can activate raft-localized AC isoforms. AC6 is completely compartmentized in lipid raft domains where it is activated solely by coresident G protein-coupled receptors to regulate cardiac fibroblast function.

  9. Adenylyl cyclase is required for cAMP production, growth, conidial germination, and virulence in the citrus green mold pathogen Penicillium digitatum.

    PubMed

    Wang, Weili; Wang, Mingshuang; Wang, Jiye; Zhu, Congyi; Chung, Kuang-Ren; Li, Hongye

    2016-11-01

    Penicillium digitatum is the causative agent of green mold decay on citrus fruit. The cAMP-mediated signaling pathway plays an important role in the transduction of extracellular signals and has been shown to regulate a wide range of developmental processes and pathogenicity in fungal pathogens. We cloned and characterized a Pdac1 gene of P. digitatum, which encodes a polypeptide similar to fungal adenylyl cyclases. Using a loss-of-function mutation in the Pdac1 gene we demonstrated a critical requirement for hyphal growth and conidial germination. Deletion of Pdac1 resulted in decreased accumulation of cAMP and down-regulation of genes encoding a G protein α subunit, both catalytic and regulatory subunits of PKA, and two transcriptional regulators StuA and Som1. Fungal mutants lacking Pdac1 produced abundant conidia, which failed to germinate effectively and displayed an elevated sensitivity to heat treatment. Pdac1 mutant failed to utilize carbohydrates effectively and thus displayed severe growth retardation on rich and synthetic media. Slow growth seen in the Pdac1 mutants could be due to a defect in nutrient sensing and acquisition. Quantitative RT-PCR analysis revealed that Pdac1 was primarily expressed at the early stage of infection. Fungal pathogenicity assayed on citrus fruit revealed that P. digitatum strains impaired for Pdac1 delayed lesion formation. Our results highlight important regulatory roles of adenylyl cyclase-mediated cAMP production in P. digitatum and provide insights into the critical role of cAMP in fungal growth, development and virulence. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver.

    PubMed

    Ebara, Shuhei; Nakao, Motoyuki; Tomoda, Mayuko; Yamaji, Ryoichi; Watanabe, Fumio; Inui, Hiroshi; Nakano, Yoshihisa

    2008-03-01

    The aim of the present study was to elucidate the mechanism of the vitamin B(12) deficiency-induced changes of the serine dehydratase (SDH) and tyrosine aminotransferase (TAT) activities in the rat liver. When rats were maintained on a vitamin B(12)-deficient diet, the activities of these two enzymes in the liver were significantly reduced compared with those in the B12-sufficient control rats (SDH 2.8 (sd 0.56) v. 17.5 (sd 6.22) nmol/mg protein per min (n 5); P < 0.05) (TAT 25.2 (sd 5.22) v. 41.3 (sd 8.11) nmol/mg protein per min (n 5); P < 0.05). In the B(12)-deficient rats, the level of SDH induction in response to the administration of glucagon and dexamethasone was significantly lower than in the B(12)-sufficient controls. Dexamethasone induced a significant increase in TAT activity in the primary culture of the hepatocytes prepared from the deficient rats, as well as in the cells from the control rats. However, a further increase in TAT activity was not observed in the hepatocytes from the deficient rats, in contrast to the cells from the controls, when glucagon was added simultaneously with dexamethasone. The glucagon-stimulated production of cAMP was significantly reduced in the hepatocytes from the deficient rats relative to the cells from the control rats. Furthermore, the glucagon-stimulated adenylyl cyclase activity in the liver was significantly lower in the deficient rats than in the controls. These results suggest that vitamin B(12) deficiency results in decreases in SDH and TAT activities correlated with the impairment of the glucagon signal transduction through the activation of the adenylyl cyclase system in the liver.

  11. [Peptide 612-627 of thyrotropin receptor and its modified derivatives as the regulators of adenylyl cyclase in the rat thyroid gland].

    PubMed

    Shpakov, A O; Shpakova, E A; Tarasenko, I I; Derkach, K V

    2014-01-01

    The regulation of the specific activity of the thyroid gland is carried by thyroid-stimulating hormone (TSH) through TSH receptor (TSHR). This receptor is coupled to different types of G-proteins, including the G(s)-proteins, through which TSH stimulates the enzyme adenylyl cyclase (AC). As the application of TSH in medicine is limited, the development of selective regulators of TSHR with agonistic and antagonistic activity is carried out. One of the approaches to their creation is to develop the peptides corresponding to functionally important regions of TSHR which are located in its intracellular loops (ICL) and are involved in the binding and activation of G-proteins. We have synthesized peptide corresponding to the C-terminal region 612-627 of the third ICL of TSHR and its derivatives modified by palmitic acid residue (at the N- or the C-terminus) or by polylysine dendrimer (at the N-terminus), and studied their effect on the basal and TSH-stimulated AC activity in the membrane fraction isolated from the rat thyroid. The most active was peptide 612-627-K(Pal)A modified by palmitate at the C-terminus, where in TSHR the hydrophobic transmembrane region is located. At the micromolar concentrations the peptide increased AC activity and reduced the AC stimulating effect of TSH. The action of the 612-627-K(Pal)A has been directed onto TSHR homologous to it, as indicated by the following facts: 1) the inhibition of G(s)-protein, the downstream component of AC system, by treating the membranes with cholera toxin led to the blocking of peptide AC effect, 2) this effect was not detected in the tissues where no TSHR, 3) the peptide did not significantly affect the AC stimulating effects of hormones acting via other receptors. The unmodified peptide and the peptide with N-terminal dendrimer are far behind the 612-627-K(Pal)A in their ability to activate AC in the thyroid, while the peptide modified by palmitate at the N-terminus was inactive. At the same time, the peptide

  12. Modulation of NaCl absorption by [HCO3−] in the marine teleost intestine is mediated by soluble adenylyl cyclase

    PubMed Central

    Levin, Lonny R.; Buck, Jochen; Grosell, Martin

    2010-01-01

    Intestinal HCO3− secretion and NaCl absorption are essential for counteracting dehydration in marine teleost fish. We investigated how these two processes are coordinated in toadfish. HCO3− stimulated a luminal positive short-circuit current (Isc) in intestine mounted in Ussing chamber, bathed with the same saline solution on the external and internal sides of the epithelium. The Isc increased proportionally to the [HCO3−] in the bath up to 80 mM NaHCO3, and it did not occur when NaHCO3 was replaced with Na+-gluconate or with NaHCO3 in Cl−-free saline. HCO3− (20 mM) induced a ∼2.5-fold stimulation of Isc, and this [HCO3−] was used in all subsequent experiments. The HCO3−-stimulated Isc was prevented or abolished by apical application of 10 μM bumetanide (a specific inhibitor of NKCC) and by 30 μM 4-catechol estrogen [CE; an inhibitor of soluble adenylyl cyclase (sAC)]. The inhibitory effects of bumetanide and CE were not additive. The HCO3−-stimulated Isc was prevented by apical bafilomycin (1 μM) and etoxolamide (1 mM), indicating involvement of V-H+-ATPase and carbonic anhydrases, respectively. Immunohistochemistry and Western blot analysis confirmed the presence of an NKCC2-like protein in the apical membrane and subapical area of epithelial intestinal cells, of Na+/K+-ATPase in basolateral membranes, and of an sAC-like protein in the cytoplasm. We propose that sAC regulates NKCC activity in response to luminal HCO3−, and that V-H+-ATPase and intracellular carbonic anhydrase are essential for transducing luminal HCO3− into the cell by CO2/HCO3− hydration/dehydration. This mechanism putatively coordinates HCO3− secretion with NaCl and water absorption in toadfish intestine. PMID:20410468

  13. The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat

    PubMed Central

    Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

    2014-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1). The ΔFgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ΔFgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ΔFgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ΔFgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ΔFgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the

  14. Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons

    PubMed Central

    Nair, Anu G.; Eriksson, Olivia; Vincent, Pierre

    2015-01-01

    Transient changes in striatal dopamine (DA) concentration are considered to encode a reward prediction error (RPE) in reinforcement learning tasks. Often, a phasic DA change occurs concomitantly with a dip in striatal acetylcholine (ACh), whereas other neuromodulators, such as adenosine (Adn), change slowly. There are abundant adenylyl cyclase (AC) coupled GPCRs for these neuromodulators in striatal medium spiny neurons (MSNs), which play important roles in plasticity. However, little is known about the interaction between these neuromodulators via GPCRs. The interaction between these transient neuromodulator changes and the effect on cAMP/PKA signaling via Golf- and Gi/o-coupled GPCR are studied here using quantitative kinetic modeling. The simulations suggest that, under basal conditions, cAMP/PKA signaling could be significantly inhibited in D1R+ MSNs via ACh/M4R/Gi/o and an ACh dip is required to gate a subset of D1R/Golf-dependent PKA activation. Furthermore, the interaction between ACh dip and DA peak, via D1R and M4R, is synergistic. In a similar fashion, PKA signaling in D2+ MSNs is under basal inhibition via D2R/Gi/o and a DA dip leads to a PKA increase by disinhibiting A2aR/Golf, but D2+ MSNs could also respond to the DA peak via other intracellular pathways. This study highlights the similarity between the two types of MSNs in terms of high basal AC inhibition by Gi/o and the importance of interactions between Gi/o and Golf signaling, but at the same time predicts differences between them with regard to the sign of RPE responsible for PKA activation. SIGNIFICANCE STATEMENT Dopamine transients are considered to carry reward-related signal in reinforcement learning. An increase in dopamine concentration is associated with an unexpected reward or salient stimuli, whereas a decrease is produced by omission of an expected reward. Often dopamine transients are accompanied by other neuromodulatory signals, such as acetylcholine and adenosine. We highlight the

  15. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat.

    PubMed

    Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

    2014-01-01

    Cyclic 3',5'-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1). The ΔFgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ΔFgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ΔFgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ΔFgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ΔFgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the first

  16. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  17. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee.

    PubMed

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-04-16

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO-cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca(2+)/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO-cGMP and cAMP-PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors.

  18. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants.

    PubMed

    Zhou, G L; Miyazaki, Y; Nakagawa, T; Tanaka, K; Shishido, K; Matsuda, H; Kawamukai, M

    1998-04-01

    The adenylyl-cyclase-associated protein, CAP, was originally identified in yeasts as a protein that functions in both signal transduction and cytoskeletal organization. This paper reports the identification of a cDNA and genomic DNA that encodes a CAP homologue from the mushroom Lentinus edodes. The L. edodes cap gene contains eight introns and an ORF encoding a 518 amino acid protein. The L. edodes CAP is 35.5% and 40.9% identical at the amino acid level with Saccharomyces cerevisiae CAP and Schizosaccharomyces pombe CAP, respectively. The C-terminal domain shows greater homology (39-46% identity) with yeast CAPs than does the N-terminal domain (27-35% identity). Southern blotting and Northern blotting results suggest that L. edodes cap is a single-copy gene and uniformly expressed. Expression of the L. edodes CAP in both Schiz. pombe and Sacch. cerevisiae complemented defects associated with the loss of the C-terminal domain function of the endogenous CAP. By using a yeast two-hybrid assay, an interaction was demonstrated between the L. edodes CAP and Schiz. pombe actin. This result and the functional complementation test indicate that CAP from L. edodes has a conserved C-terminal domain function.

  19. Adenylyl Cyclase-Associated Protein 1(CAP1) is a Receptor for Human Resistin and Mediates Inflammatory Actions of Human Monocytes

    PubMed Central

    Lee, Sahmin; Lee, Hyun-Chae; Kwon, Yoo-Wook; Lee, Sang Eun; Cho, Youngjin; Kim, Joonoh; Lee, Soobeom; Kim, Ju-Young; Lee, Jaewon; Yang, Han-Mo; Mook-Jung, Inhee; Nam, Ky-Youb; Chung, Junho; Lazar, Mitchell A.; Kim, Hyo-Soo

    2014-01-01

    SUMMARY Resistin is a cytokine that induces low-grade inflammation by stimulating monocytes in human. Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis and other cardiometabolic disease. Nevertheless, the receptor for human resistin has not yet been clarified. Here, we identified adenylyl cyclase-associated protein 1(CAP1) as a functional receptor for human resistin and clarified its intracellular signaling pathway to modulate inflammatory action of monocytes. We found that human resistin directly binds to CAP1 in monocytes and up-regulates intracellular cAMP concentration, PKA activity and NF-kB-related transcription of inflammatory cytokines. Over-expression of CAP1 in monocytes enhanced resistin-induced increased activity of cAMP-dependent signaling pathway. Moreover, CAP1-over-expressed monocytes aggravated adipose tissue inflammation in transgenic mice that express human resistin from their monocytes. In contrast, suppression of CAP1 expression abrogated the resistin-mediated inflammatory activity both in vitro and in vivo. Our results highlight CAP1 as the bona fide receptor for resistin leading to inflammation in human. PMID:24606903

  20. Effects of the adenylyl cyclase inhibitor SQ22536 on iloprost-induced vasorelaxation and cyclic AMP elevation in isolated guinea-pig aorta

    PubMed Central

    Turcato, Sally; Clapp, Lucie H

    1999-01-01

    The stable prostacyclin analogue, iloprost relaxes a variety of blood vessels and increases cyclic AMP, although the relationship between adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) and vasorelaxation remains unclear. We therefore investigated the effect of the adenylyl cyclase inhibitor, 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) on iloprost-mediated relaxation and cyclic AMP elevation in endothelium-denuded aortic strips. Iloprost (1–1000 nM) caused a concentration-dependent inhibition of phenylephrine (1–6 μM) contractions, the responses being unaffected by pre-incubation with SQ22536 (100 μM) for 30 min. In other experiments 60 nM iloprost caused a 64% inhibition of phenylephrine contractions concomitant with a 3 fold rise in cyclic AMP. SQ22536 completely abolished the iloprost-induced elevation in cyclic AMP while having no significant effect on relaxation. Our results therefore strongly suggest that cyclic AMP-independent pathways are responsible for the vasorelaxant effects of iloprost in guinea-pig aorta. PMID:10193763

  1. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    PubMed

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA.

  2. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  3. Differential involvement of cyclase- versus non-cyclase-coupled D1-like dopamine receptors in orofacial movement topography in mice: studies with SKF 83822.

    PubMed

    Makihara, Yasuyuki; Okuda, Yaeko; Kawada, Chieko; Matsumoto, Mitsuhiko; Waddington, John L; Koshikawa, Noriaki; Tomiyama, Katsunori

    2007-03-19

    Though orofacial movements are fundamental motor patterns that are known to be regulated critically by D1-like dopamine receptors, these processes remain poorly understood. This uncertainty is heightened by evidence for putative D1-like receptors that are linked not only to adenylyl cyclase (AC) but also to phospholipase C (PLC). Using a new method, we have characterised four topographies of orofacial movement in the mouse using the novel D1-like agonist SKF 83822, which stimulates AC but not PLC. These were compared with responses to SKF 83959, which stimulates PLC but not AC. Also, effects were characterised using the D1-like antagonist SCH 23390 and the D2-like antagonist YM 09151-2. SKF 83822 induced vertical jaw movements with incisor chattering but inhibited horizontal jaw movements; there was little effect on tongue protrusions. Vertical jaw movements induced by SKF 83822 were inhibited by SCH 23390 but uninfluenced by YM 09151-2, while YM 09151-2 released horizontal jaw movements; thus, D1-like agonist-induced, AC-mediated vertical jaw movements constitute a 'pure' D1-like-dependent process that does not involve D1-like:D2-like interactions, while horizontal jaw movements involve oppositional interactions. Orofacial movements in mice appear to consist of at least four phenomenologically dissociable topographies that are mechanistically distinct. They are regulated differentially by AC- and/or PLC-dependent processes and these processes involve distinct D1-like:D2-like interactions.

  4. Crystallization of cyclase-associated protein from Dictyostelium discoideum.

    PubMed

    Hofmann, Andreas; Hess, Sonja; Noegel, Angelika A; Schleicher, Michael; Wlodawer, Alexander

    2002-10-01

    Cyclase-associated protein (CAP) is a conserved two-domain protein that helps to activate the catalytic activity of adenylyl cyclase in the cyclase-bound state through interaction with Ras, which binds to the cyclase in a different region. With its other domain, CAP can bind monomeric actin and therefore also carries a cytoskeletal function. The protein is thus involved in Ras/cAMP-dependent signal transduction and most likely serves as an adapter protein translocating the adenylyl cyclase complex to the actin cytoskeleton. Crystals belonging to the orthorhombic space group C222, with unit-cell parameters a = 71.2, b = 75.1, c = 162.9 A, have been obtained from Dictyostelium discoideum CAP carrying a C-terminal His tag. A complete native data set extending to 2.2 A resolution was collected from a single crystal using an in-house X-ray system. The asymmetric unit contains one molecule of CAP.

  5. Neonatal Parathion Exposure and Interactions with a High-Fat Diet in Adulthood: Adenylyl Cyclase-Mediated Cell Signaling in Heart, Liver and Cerebellum

    PubMed Central

    Adigun, Abayomi A.; Wrench, Nicola; Levin, Edward D.; Seidler, Frederic J.; Slotkin, Theodore A.

    2010-01-01

    Organophosphates are developmental neurotoxicants but recent evidence points to additional adverse effects on metabolism and cardiovascular function. One common mechanism is disrupted cell signaling mediated through cyclic AMP, targeting neurohumoral receptors, G-proteins and adenylyl cyclase (AC) itself. Earlier, we showed that neonatal parathion evokes later upregulation of the hepatic AC pathway in adolescence but that the effect wanes by young adulthood; nevertheless metabolic changes resembling prediabetes persist. Here, we administered parathion to neonatal rats (postnatal days 1-4, 0.1 or 0.2 mg/kg/day), straddling the threshold for cholinesterase inhibition, but we extended the studies to much later, 5 months of age. In addition, we investigated whether metabolic challenge imposed by consuming a high-fat diet for 7 weeks would exacerbate neonatal parathion’s effects. Parathion alone increased the expression or function of Gi, thus reducing AC responses to fluoride. Receptors controlling AC activity were also affected: β-adrenergic receptors (βARs) in skeletal muscle were increased, whereas those in the heart were decreased, and the latter also showed an elevation of m2-muscarinic acetylcholine receptors, which inhibit AC. The high-fat diet also induced changes in AC signaling, enhancing the hepatic AC response to glucagon while impairing the cardiac response to fluoride or forskolin, and suppressing βARs and m2-muscarinic receptors; the only change in the cerebellum was a decrease in βARs. Although there were no significant interactions between neonatal parathion exposure and a high-fat diet, their convergent effects on the same signaling cascade indicate that early OP exposure, separately or combination with dietary factors, may contribute to the worldwide increase in the incidence of obesity and diabetes. PMID:20074626

  6. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.

    PubMed

    Chen, Tao; O'Den, Gerile; Song, Qian; Koga, Kohei; Zhang, Ming-Ming; Zhuo, Min

    2014-10-10

    Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain.

  7. Bis-Halogen-Anthraniloyl-Substituted Nucleoside 5′-Triphosphates as Potent and Selective Inhibitors of Bordetella pertussis Adenylyl Cyclase Toxin

    PubMed Central

    Geduhn, Jens; Dove, Stefan; Shen, Yuequan; Tang, Wei-Jen; König, Burkhard

    2011-01-01

    Whooping cough is caused by Bordetella pertussis and still constitutes one of the top five causes of death in young children, particularly in developing countries. The calmodulin-activated adenylyl cyclase (AC) toxin CyaA substantially contributes to disease development. Thus, potent and selective CyaA inhibitors would be valuable drugs for the treatment of whooping cough. However, it has been difficult to obtain potent CyaA inhibitors with selectivity relative to mammalian ACs. Selectivity is important for reducing potential toxic effects. In a previous study we serendipitously found that bis-methylanthraniloyl (bis-MANT)-IMP is a more potent CyaA inhibitor than MANT-IMP (Mol Pharmacol 72:526–535, 2007). These data prompted us to study the effects of a series of 32 bulky mono- and bis-anthraniloyl (ANT)-substituted nucleotides on CyaA and mammalian ACs. The novel nucleotides differentially inhibited CyaA and ACs 1, 2, and 5. Bis-ANT nucleotides inhibited CyaA competitively. Most strikingly, bis-Cl-ANT-ATP inhibited CyaA with a potency ≥100-fold higher than ACs 1, 2, and 5. In contrast to MANT-ATP, bis-MANT-ATP exhibited low intrinsic fluorescence, thereby substantially enhancing the signal-to noise ratio for the analysis of nucleotide binding to CyaA. The high sensitivity of the fluorescence assay revealed that bis-MANT-ATP binds to CyaA already in the absence of calmodulin. Molecular modeling showed that the catalytic site of CyaA is sufficiently spacious to accommodate both MANT substituents. Collectively, we have identified the first potent CyaA inhibitor with high selectivity relative to mammalian ACs. The fluorescence properties of bis-ANT nucleotides facilitate development of a high-throughput screening assay. PMID:20962032

  8. Gi/o-Coupled Receptors Compete for Signaling to Adenylyl Cyclase in SH-SY5Y Cells and Reduce Opioid-Mediated cAMP Overshoot

    PubMed Central

    Levitt, Erica S.; Purington, Lauren C.

    2011-01-01

    Organization of G protein-coupled receptors and cognate signaling partners at the plasma membrane has been proposed to occur via multiple mechanisms, including membrane microdomains, receptor oligomerization, and protein scaffolding. Here, we investigate the organization of six types of Gi/o-coupled receptors endogenously expressed in SH-SY5Y cells. The most abundant receptor in these cells was the μ-opioid receptor (MOR), the activation of which occluded acute inhibition of adenylyl cyclase (AC) by agonists to δ-opioid (DOR), nociceptin/orphanin FQ peptide (NOPr), α2-adrenergic (α2AR), cannabinoid 1, and serotonin 1A receptors. We further demonstrate that all receptor pairs share a common pool of AC. The MOR agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) also occluded the ability of DOR agonist to stimulate G proteins. However, at lower agonist concentrations and at shorter incubation times when G proteins were not limiting, the relationship between MOR and DOR agonists was additive. The additive relationship was confirmed by isobolographic analysis. Long-term coadministration of MOR and DOR agonists caused cAMP overshoot that was not additive, suggesting that sensitization of AC mediated by these two receptors occurs by a common pathway. Furthermore, heterologous inhibition of AC by agonists to DOR, NOPr, and α2AR reduced the expression of cAMP overshoot in DAMGO-dependent cells. However, this cross-talk did not lead to heterologous tolerance. These results indicate that multiple receptors could be tethered into complexes with cognate signaling proteins and that access to shared AC by multiple receptor types may provide a means to prevent opioid withdrawal. PMID:21098043

  9. Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons.

    PubMed

    Fan, Peidong; Jiang, Zhan; Diamond, Ivan; Yao, Lina

    2009-09-01

    Effective medical treatment of opiate addiction is limited by a high relapse rate in abstinent addicts. Opiate withdrawal causes cAMP superactivation, but the underlying molecular mechanisms are not clear. Recent evidence implicates an activator of G-protein signaling 3 (AGS3) in opiate addiction. We found previously that during a 10-min activation of opioid receptors, AGS3 binds G alpha(i)-GDP to promote free G betagamma stimulation of adenylyl cyclase (AC) 2 and 4, and/or inactivate G alpha(i) inhibitory function, thereby transiently enhancing cAMP-dependent protein kinase A (PKA) activity. In contrast, we report here that in nucleus accumbens/striatal neurons, morphine withdrawal induces cAMP superactivation, which requires up-regulation of AGS3. cAMP increases as a function of withdrawal time, by approximately 20% at 10 min and 75% at 5 h. However, cAMP superactivation does not require G betagamma. Instead, adenosine A2A receptor activation of G alpha(s/olf) seems to initiate cAMP superactivation and promote AGS3 up-regulation. Elevated AGS3 binds to G alpha(i) to prevent its inhibition on AC activation. Moreover, withdrawal-induced increases in cAMP/PKA activate phospholipase C and epsilon protein kinase C to further stimulate AC5 and AC7, causing cAMP superactivation. Our findings identify a critical role for AC 5 and 7 and A2A receptors for up-regulation of AGS3 in morphine withdrawal-induced cAMP superactivation.

  10. The adenylyl cyclase inhibitor MDL-12,330A potentiates insulin secretion via blockade of voltage-dependent K(+) channels in pancreatic beta cells.

    PubMed

    Li, Xiaodong; Guo, Qing; Gao, Jingying; Yang, Jing; Zhang, Wan; Liang, Yueqin; Wu, Dongmei; Liu, Yunfeng; Weng, Jianping; Li, Qingshan; Zhang, Yi

    2013-01-01

    Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms. Patch-clamp recording, Ca(2+) fluorescence imaging and radioimmunoassay were used to measure outward K(+) currents, action potentials (APs), intracellular Ca(2+) ([Ca(2+)]i) and insulin secretion from rat pancreatic beta cells. MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K(+) (KV) channels, leading to an increase in [Ca(2+)]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion. The putative AC inhibitor MDL-12,330A enhances [Ca(2+)]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.

  11. Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3 on renal Na+ and water excretion or arterial pressure

    PubMed Central

    Kittikulsuth, Wararat; Stuart, Deborah; Van Hoek, Alfred N.; Stockand, James D.; Bugaj, Vladislav; Mironova, Elena; Blount, Mitsi A.

    2014-01-01

    cAMP is a key mediator of connecting tubule and collecting duct (CD) Na+ and water reabsorption. Studies performed in vitro have suggested that CD adenylyl cyclase (AC)3 partly mediates the actions of vasopressin; however, the physiological role of CD AC3 has not been determined. To assess this, mice were developed with CD-specific disruption of AC3 [CD AC3 knockout (KO)]. Inner medullary CDs from these mice exhibited 100% target gene recombination and had reduced ANG II- but not vasopressin-induced cAMP accumulation. However, there were no differences in urine volume, urinary urea excretion, or urine osmolality between KO and control mice during normal water intake or varying degrees of water restriction in the presence or absence of chronic vasopressin administration. There were no differences between CD AC3 KO and control mice in arterial pressure or urinary Na+ or K+ excretion during a normal or high-salt diet, whereas plasma renin and vasopressin concentrations were similar between the two genotypes. Patch-clamp analysis of split-open cortical CDs revealed no difference in epithelial Na+ channel activity in the presence or absence of vasopressin. Compensatory changes in AC6 were not responsible for the lack of a renal phenotype in CD AC3 KO mice since combined CD AC3/AC6 KO mice had similar arterial pressure and renal Na+ and water handling compared with CD AC6 KO mice. In summary, these data do not support a significant role for CD AC3 in the regulation of renal Na+ and water excretion in general or vasopressin regulation of CD function in particular. PMID:24431204

  12. Ca-stimulated type 8 adenylyl cyclase is required for rapid acquisition of novel spatial information and for working/episodic-like memory

    PubMed Central

    Zhang, Ming; Moon, Changjong; Chan, Guy C.-K.; Yang, Lan; Zheng, Fei; Conti, Alana C.; Muglia, Lisa; Muglia, Louis J.; Storm, Daniel R.; Wang, Hongbing

    2010-01-01

    Ca-stimulated adenylyl cyclases (AC) transduce neuronal stimulation-evoked increase in calcium to the production of cyclic AMP (cAMP), which impinges on the regulation of many aspects of neuronal function. Type 1 and type 8 AC (AC1 and AC8) are the only ACs that are directly stimulated by Ca. Although AC1 function was implicated in regulating reference spatial memory, the function of AC8 in memory formation is not known. Due to the different biochemical properties of AC1 and AC8, these two enzymes may have distinct functions. For example, AC1 activity is regulated by both Ca and G proteins. In contrast, AC8 is a pure Ca sensor. It is neither stimulated by Gs, nor inhibited by Gi. Recent studies also suggested that AC1 and AC8 were differentially concentrated at different sub-cellular domains, implicating that Ca-stimulated signaling might be compartmentalized. In this study, we used AC8 knockout (KO) mice and found behavioral deficits in memory retention for temporal dissociative passive avoidance and object recognition memory. When examined by Morris water maze, AC8 KO mice showed normal reference memory. However, the acquisition of newer spatial information was defective in AC8 KO mice. Furthermore, AC8 KO mice were severely impaired in hippocampus-dependent episodic-like memory when examined by the delayed matching-to-place task. Because AC8 is preferentially localized at the presynaptic active zone, our results suggest a novel role of presynaptic cAMP signaling in memory acquisition and retention, as well as distinct mechanisms underlying reference and working/episodic-like memory. PMID:18448650

  13. Disruption of type 5 adenylyl cyclase prevents β-adrenergic receptor cardiomyopathy: a novel approach to β-adrenergic receptor blockade.

    PubMed

    Yan, Lin; Vatner, Stephen F; Vatner, Dorothy E

    2014-11-15

    β-Adrenergic receptor (β-AR) blockade is widely used to treat heart failure, since the adverse effects of chronic β-AR stimulation are central to the pathogenesis of this disease state. Transgenic (Tg) mice, where β-AR signaling is chronically enhanced by overexpression of cardiac β₂-ARs, is a surrogate for this mechanism, since these mice develop cardiomyopathy as reflected by reduced left ventricular (LV) function, increased fibrosis, apoptosis, and myocyte hypertrophy. We hypothesized that disruption of type 5 adenylyl cyclase (AC5), which is in the β-AR signaling pathway in the heart, but exerts only a minor β-AR blocking effect, could prevent the cardiomyopathy in β₂-AR Tg mice without the negative effects of full β-AR blockade. Accordingly, we mated β₂-AR Tg mice with AC5 knockout (KO) mice. The β₂-AR Tg × AC5 KO bigenic mice prevented the cardiomyopathy as reflected by improved LV ejection fraction, reduced apoptosis, fibrosis, and myocyte size and preserved exercise capacity. The rescue was not simply due to a β-blocking effect of AC5 KO, since neither baseline LV function nor the response to isoproterenol was diminished substantially compared with the negative inotropic effects of β-blockade. However, AC5 disruption in β₂-AR Tg activates the antioxidant, manganese superoxide dismutase, an important mechanism protecting the heart from cardiomyopathy. These results indicate that disruption of AC5 prevents the cardiomyopathy induced by chronically enhanced β-AR signaling in mice with overexpressed β₂-AR, potentially by enhancing resistance to oxidative stress and apoptosis, suggesting a novel, alternative approach to β-AR blockade. Copyright © 2014 the American Physiological Society.

  14. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    PubMed

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  15. Structural Basis for the High-Affinity Inhibition of Mammalian Membranous Adenylyl Cyclase by 2′,3′-O-(N-Methylanthraniloyl)-Inosine 5′-TriphosphateS⃞

    PubMed Central

    Hübner, Melanie; Dixit, Anshuman; Mou, Tung-Chung; Lushington, Gerald H.; Pinto, Cibele; Gille, Andreas; Geduhn, Jens; König, Burkhard; Sprang, Stephen R.

    2011-01-01

    2′,3′-O-(N-Methylanthraniloyl)-ITP (MANT-ITP) is the most potent inhibitor of mammalian membranous adenylyl cyclase (mAC) 5 (AC5, Ki, 1 nM) yet discovered and surpasses the potency of MANT-GTP by 55-fold (J Pharmacol Exp Ther 329:1156–1165, 2009). AC5 inhibitors may be valuable drugs for treatment of heart failure. The aim of this study was to elucidate the structural basis for the high-affinity inhibition of mAC by MANT-ITP. MANT-ITP was a considerably more potent inhibitor of the purified catalytic domains VC1 and IIC2 of mAC than MANT-GTP (Ki, 0.7 versus 18 nM). Moreover, there was considerably more efficient fluorescence resonance energy transfer between Trp1020 of IIC2 and the MANT group of MANT-ITP compared with MANT-GTP, indicating optimal interaction of the MANT group of MANT-ITP with the hydrophobic pocket. The crystal structure of MANT-ITP in complex with the Gsα- and forskolin-activated catalytic domains VC1:IIC2 compared with the existing MANT-GTP crystal structure revealed only subtle differences in binding mode. The higher affinity of MANT-ITP to mAC compared with MANT-GTP is probably due to fewer stereochemical constraints upon the nucleotide base in the purine binding pocket, allowing a stronger interaction with the hydrophobic regions of IIC2 domain, as assessed by fluorescence spectroscopy. Stronger interaction is also achieved in the phosphate-binding site. The triphosphate group of MANT-ITP exhibits better metal coordination than the triphosphate group of MANT-GTP, as confirmed by molecular dynamics simulations. Collectively, the subtle differences in ligand structure have profound effects on affinity for mAC. PMID:21498658

  16. [Regulation of adenylyl cyclase signaling system by insulin, biogenic amines, and glucagon at their separate and combined action in the muscle membranes of the mollusc Anodonta cygnea].

    PubMed

    Kuznetsova, L A; Plesneva, S A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2013-01-01

    In smooth muscles of mollusc Anodonta cygnea, hormones produce regulatory effects on the adenylyl cyclase (AC) signaling system via receptors of the serpentine (biogenic amine, isoproterenol, glucagon) and of tyrosine kinase (insulin) types. Intracellular mechanisms of their action are interconnected. Use of hormones, their antagonists, and pertussis toxin at the combined action of insulin and biogenic amines or of glucagon on the AC activity allows revealing possible intersection points in mechanisms of their action. The combined effect of insulin and serotonin or of glucagon leads to a decrease of stimulation of AC by these hormones, whereas at action of insulin and isoproterenol the AC-stimulatory effect of insulin is blocked, while the AC-inhibitory effect of isoproterenol is preserved both in the presence and in the absence of the non-hydrolyzed GTP analog - guanylylimidodiphosphate (GppNHp). Specific blocking of the AC-stimulatory serotonin effect by cyproheptadine - an antagonist of serotonin receptors - did not affect stimulation of AC by insulin. Beta-adrenoblockers (propranolol and alprenolol) interfered with inhibition of the AC activity by isoproterenol, but did not change the AC stimulation by insulin. Pertussis toxin blocked the AC-inhibitory effect of isoproterenol and attenuated the AC-stimulatory effect of insulin. Thus, in muscles of the mollusc Anodonta cygnea there have been revealed negative interrelations between the AC system, which are realized at the combined effect of insulin and serotonin or of glucagon, probably at the level of receptor of the serpentine type (serotonin, glucagon), while at action of insulin and isoproterenol - at the level of interaction of G1 protein and AC.

  17. Disruption of adenylyl cyclase type V does not rescue the phenotype of cardiac-specific overexpression of Gαq protein-induced cardiomyopathy

    PubMed Central

    Timofeyev, Valeriy; Porter, Cliff A.; Tuteja, Dipika; Qiu, Hong; Li, Ning; Tang, Tong; Singapuri, Anil; Han, Pyung-Lim; Lopez, Javier E.; Hammond, H. Kirk

    2010-01-01

    Adenylyl cyclase (AC) is the principal effector molecule in the β-adrenergic receptor pathway. ACV and ACVI are the two predominant isoforms in mammalian cardiac myocytes. The disparate roles among AC isoforms in cardiac hypertrophy and progression to heart failure have been under intense investigation. Specifically, the salutary effects resulting from the disruption of ACV have been established in multiple models of cardiomyopathy. It has been proposed that a continual activation of ACV through elevated levels of protein kinase C could play an integral role in mediating a hypertrophic response leading to progressive heart failure. Elevated protein kinase C is a common finding in heart failure and was demonstrated in murine cardiomyopathy from cardiac-specific overexpression of Gαq protein. Here we assessed whether the disruption of ACV expression can improve cardiac function, limit electrophysiological remodeling, or improve survival in the Gαq mouse model of heart failure. We directly tested the effects of gene-targeted disruption of ACV in transgenic mice with cardiac-specific overexpression of Gαq protein using multiple techniques to assess the survival, cardiac function, as well as structural and electrical remodeling. Surprisingly, in contrast to other models of cardiomyopathy, ACV disruption did not improve survival or cardiac function, limit cardiac chamber dilation, halt hypertrophy, or prevent electrical remodeling in Gαq transgenic mice. In conclusion, unlike other established models of cardiomyopathy, disrupting ACV expression in the Gαq mouse model is insufficient to overcome several parallel pathophysiological processes leading to progressive heart failure. PMID:20709863

  18. Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3 on renal Na+ and water excretion or arterial pressure.

    PubMed

    Kittikulsuth, Wararat; Stuart, Deborah; Van Hoek, Alfred N; Stockand, James D; Bugaj, Vladislav; Mironova, Elena; Blount, Mitsi A; Kohan, Donald E

    2014-03-15

    cAMP is a key mediator of connecting tubule and collecting duct (CD) Na(+) and water reabsorption. Studies performed in vitro have suggested that CD adenylyl cyclase (AC)3 partly mediates the actions of vasopressin; however, the physiological role of CD AC3 has not been determined. To assess this, mice were developed with CD-specific disruption of AC3 [CD AC3 knockout (KO)]. Inner medullary CDs from these mice exhibited 100% target gene recombination and had reduced ANG II- but not vasopressin-induced cAMP accumulation. However, there were no differences in urine volume, urinary urea excretion, or urine osmolality between KO and control mice during normal water intake or varying degrees of water restriction in the presence or absence of chronic vasopressin administration. There were no differences between CD AC3 KO and control mice in arterial pressure or urinary Na(+) or K(+) excretion during a normal or high-salt diet, whereas plasma renin and vasopressin concentrations were similar between the two genotypes. Patch-clamp analysis of split-open cortical CDs revealed no difference in epithelial Na(+) channel activity in the presence or absence of vasopressin. Compensatory changes in AC6 were not responsible for the lack of a renal phenotype in CD AC3 KO mice since combined CD AC3/AC6 KO mice had similar arterial pressure and renal Na(+) and water handling compared with CD AC6 KO mice. In summary, these data do not support a significant role for CD AC3 in the regulation of renal Na(+) and water excretion in general or vasopressin regulation of CD function in particular.

  19. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    PubMed

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  20. Ocean acidification stimulates alkali signal pathway: A bicarbonate sensing soluble adenylyl cyclase from oyster Crassostrea gigas mediates physiological changes induced by CO2 exposure.

    PubMed

    Wang, Xiudan; Wang, Mengqiang; Jia, Zhihao; Wang, Hao; Jiang, Shuai; Chen, Hao; Wang, Lingling; Song, Linsheng

    2016-12-01

    Ocean acidification (OA) has been demonstrated to have severe effects on marine organisms, especially marine calcifiers. However, the impacts of OA on the physiology of marine calcifiers and the underlying mechanisms remain unclear. Soluble adenylyl cyclase (sAC) is an acid-base sensor in response to [HCO3(-)] and an intracellular source of cyclic AMP (cAMP). In the present study, an ortholog of sAC was identified from pacific oyster Crassostrea gigas (designated as CgsAC) and the catalytic region of CgsAC was cloned and expressed. Similar to the native CgsAC from gill tissues, the recombinant CgsAC protein (rCgsAC) exhibited [HCO3(-)] mediated cAMP-forming activity, which could be inhibited by a small molecule KH7. After 16days of CO2 exposure (pH=7.50), the mRNA transcripts of CgsAC increased in muscle, mantle, hepatopancreas, gill, male gonad and haemocytes, and two truncated CgsAC forms of 45kD and 20kD were produced. Cytosolic CgsAC could be translocated from the cytoplasm and nuclei to the membrane in response to CO2 exposure. Besides, CO2 exposure could increase the production of cAMP and intracellular pH of haemocytes, which was regulated by CgsAC (p<0.05), suggesting the existence of a [HCO3(-)]/CgsAC/cAMP signal pathway in oyster. The elevated CO2 could induce an increase of ROS level (p<0.05) and a decrease of phagocytic rate of haemocytes (p<0.05), which could be inhibited by KH7. The results collectively suggest that CgsAC is an important acid-base sensor in oyster and the [HCO3(-)]/CgsAC/cAMP signal pathway might be responsible for intracellular alkalization effects on oxidative phosphorylation and innate immunity under CO2 exposure. The changes of intracellular pH, ROS, and phagocytosis mediated by CgsAC might help us to further understand the effects of ocean acidification on marine calcifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder

    PubMed Central

    Susick, Laura L.; Chrumka, Alexandria C.; Hool, Steven M.; Conti, Alana C.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5–7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCγ1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCγ1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate

  2. Dysregulation of TrkB phosphorylation and proBDNF protein in adenylyl cyclase 1 and 8 knockout mice in a model of fetal alcohol spectrum disorder.

    PubMed

    Susick, Laura L; Chrumka, Alexandria C; Hool, Steven M; Conti, Alana C

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) mediates neuron growth and is regulated by adenylyl cyclases (ACs). Mice lacking AC1/8 (DKO) have a basal reduction in the dendritic complexity of medium spiny neurons in the caudate putamen and demonstrate increased neurotoxicity in the striatum following acute neonatal ethanol exposure compared to wild type (WT) controls, suggesting a compromise in BDNF regulation under varying conditions. Although neonatal ethanol exposure can negatively impact BDNF expression, little is known about the effect on BDNF receptor activation and its downstream signaling, including Akt activation, an established neuroprotective pathway. Therefore, here we determined the effects of AC1/8 deletion and neonatal ethanol administration on BDNF and proBDNF protein expression, and activation of tropomyosin-related kinase B (TrkB), Akt, ERK1/2, and PLCγ. WT and DKO mice were treated with a single dose of 2.5 g/kg ethanol or saline at postnatal days 5-7 to model late-gestational alcohol exposure. Striatal and cortical tissues were analyzed using a BDNF enzyme-linked immunosorbent assay or immunoblotting for proBDNF, phosphorylated and total TrkB, Akt, ERK1/2, and PLCɣ1. Neither postnatal ethanol exposure nor AC1/8 deletion affected total BDNF protein expression at any time point in either region examined. Neonatal ethanol increased the expression of proBDNF protein in the striatum of WT mice 6, 24, and 48 h after exposure, with DKO mice demonstrating a reduction in proBDNF expression 6 h after exposure. Six and 24 h after ethanol administration, phosphorylation of full-length TrkB in the striatum was significantly reduced in WT mice, but was significantly increased in DKO mice only at 24 h. Interestingly, 48 h after ethanol, both WT and DKO mice demonstrated a reduction in phosphorylated full-length TrkB. In addition, Akt and PLCɣ1 phosphorylation was also decreased in ethanol-treated DKO mice 48 h after injection. These data demonstrate

  3. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    PubMed

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  4. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices.

    PubMed

    Kim, Hannah; Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Yunjin; Kang, Minkyung; Kim, Kyoung-Shim; Han, Pyung-Lim

    2014-11-07

    Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such

  5. [Comparative study of molecular mechanisms of natural and synthetic polycationic peptides action on the activity of the adenylyl cyclase signaling system].

    PubMed

    Shpakov, A O; Gur'ianov, I A; Kuznetsova, L A; Plesneva, S A; Zakharova, E T; Vlasov, G P; Pertseva, M N

    2006-01-01

    The molecular mechanisms of action of natural and synthetic polycationic peptides, forming amphiphilic helices, on the heterotrimeric G-proteins and enzyme adenylyl cyclase (AC), components of hormone-sensitive AC system, were studied. It is shown that synthetic peptides C-epsilonAhx-WKK(C10)-KKK(C10)-KKKK(C10)-YKK(C10)-KK (peptide I) and (GRGDSGRKKRRQRRRPPQ)2-K-epsilonAhx-C(Acm)(peptide II) in dose-dependent manner stimulate the basal AC activity, inhibit forskolin-stimulated AC activity and decrease both stimulating and inhibiting AC effects of the hormones in the tissues (brain striatum, heart muscle) of rat and in smooth muscles of the mollusc Anodonta cygnea. AC effects of these peptides are decreased after membrane treatment by cholera and pertussis toxins and are inhibited in the presence of the peptides, corresponding to C-terminal regions 385-394 alphas- and 346-355 alphai2-subunits of G-proteins. These data give evidence that the peptides I and II act on the signaling pathways which are realized through Gs- and Gi-proteins. At the same time, natural polycationic peptide mastoparan acts on AC system through Gi-proteins and blocks hormonal signals mediated via Gi-proteins only. Consequently, the action of mastoparan on G-proteins is selective and differs from the action of the synthetic peptides. It is also shown that peptide II, with branched structure, directly interacts not only with G-proteins (less effective in comparison with peptide I with hydrophobic radicals and mastoparan), but also with enzyme AC, the catalytic component of AC system. On the basis of data obtained the following conclusions were made: 1) the formation of amphiphilic helices is not enough for selective activation of G-protein by polycationic peptides, and 2) the primary structure of the peptides, the distribution of positive charged amino acids and hydrophobic radicals in them are very important for selective interaction between polycationic peptides and G-proteins.

  6. MD simulations of anthrax edema factor: calmodulin complexes with mutations in the edema factor "switch a" region and docking of 3'-deoxy ATP into the adenylyl cyclase active site of wild-type and mutant edema factor variants.

    PubMed

    Zhao, Jingyan; Roy, Stephanie A; Nelson, Donald J

    2003-10-01

    Bacillus anthracis, a spore-forming infectious bacterium, produces an exotoxin, called the edema factor (EF), that functions in part by disrupting internal signalling pathways. When complexed with human host cell calmodulin (CaM), EF becomes an active adenylyl cyclase, producing the internal signal substance cyclic-AMP in an uncontrolled fashion. Recently, the crystal structures for uncomplexed EF and EF:CaM complexes in the presence and absence of a substrate analog (3'-deoxy-ATP), were reported. EF mutational studies have implicated a number of residues important in CaM binding and/or in the generation of the adenylyl cyclase active site, formed by the movements of the EF switch A, B and C regions upon CaM binding. Here we report on the results of molecular dynamics (MD) simulations on two EF:CaM complexes, one containing wild-type EF and the other containing EF in which a cluster of residues in the switch A region (L523, K525, Q526 and V529) have been mutated to alanine. The switch A mutations cause a large increase in the flexibility of the switch C region, the rupture of a number of EF-CaM interactions, an expansion of the carboxyl-terminal domain of CaM, and a change in the Ca(2+) ion binding abilities of the CaM that is in complex with EF. The results indicate the importance of the mutated switch A residues in maintaining a compact EF:CaM complex that appears to be a prerequisite for the generation of a fully-functional adenylyl cyclase active site. The effects of mutating key residues (K346, K353, H577, E588, D590 and N639) in the active site region of EF (to alanine) on the ability of EF to bind the 3'-deoxy-ATP substrate analog were also examined. Active-site residue substitutions at positions 583 (N583A) and 577 (H577A) were found to be particularly disruptive for the placement of the adenine ring moiety into the position found in the x-ray crystal structure of the ligand-protein complex.

  7. Functional role of Calcium-stimulated adenylyl cyclase 8 in adaptations to psychological stressors in the mouse: implications for mood disorders.

    PubMed

    Razzoli, M; Andreoli, M; Maraia, G; Di Francesco, C; Arban, R

    2010-10-13

    The Ca(2+)/calmodulin stimulated adenylyl cylcase 8 (AC8) is a pure Ca(2+) sensor, catalyzing the conversion of ATP to cAMP, with a critical role in neuronal plasticity. A role for AC8 in modulating complex behavioral outcomes has been demonstrated in AC8 knock out (KO) mouse models in which anxiety-like responses were differentially modulated following repeated stress experiences, suggesting an involvement of AC8 in stress adaptation and mood disorders. To further investigate the role of this enzyme in phenotypes relevant for psychiatric conditions, AC8 KO mice were assessed for baseline behavioral and hormonal parameters, responses to repeated restraint stress experience, and long-term effects of chronic social defeat stress. The lack of AC8 conferred a hyperactive-phenotype both in home-cage behaviors and the forced swim test response as well as lower leptin plasma levels and adrenal hypertrophy. AC8 KO mice showed baseline "anxiety" levels similar to wild type littermates in a variety of procedures, but displayed decreased anxiety-like responses following repeated restraint stress. This increased stress resilience was not seen during the chronic social defeat procedure. AC8 KO did not differ from wild type mice in response to social stress; similar alterations in body weight, food intake and increased social avoidance were found in all defeated subjects. Altogether these results support a complex role of cAMP signaling pathways confirming the involvement of AC8 in the modulation of stress responses. Furthermore, the hyperactivity and the increased risk taking behavior observed in AC8 KO mice could be related to a manic-like behavioral phenotype that warrants further investigation.

  8. [Attenuation of inhibitory influence of hormones on adenylyl cyclase systems in the myocardium and brain of rats with obesity and type 2 diabetes mellitus and effect of intranasal insulin on it].

    PubMed

    Kuznetsova, L A; Plesneva, S A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2014-01-01

    The functional state of the adenylyl cyclase signaling system (ACSS) and its regulation by hormones, the inhibitors of adenylyl cyclase (AC)--somatostatin (SST) in the brain and myocardium and 5-nonyloxytryptamine (5-NOT) in the brain of rats of different ages (5- and 7-month-old) with experimental obesity and a combination of obesity and type 2 diabetes mellitus (DM2), and the effect of long-term treatment of animals with intranasally administered insulin (II) on ACSS were studied. It was shown that the basal AC activity in rats with obesity and DM2 was increased in the myocardium, and to the lesser extent in the brain, the treatment with II reducing this parameter. The AC stimulating effects of forskolin are decreased in the myocardium, but not in the brain, of rats with obesity and DM2. The treatment with II restored the AC action of forskolin in the 7-month-old animals, but has little effect on it in the 5-month-old rats. In obesity the basal AC activity and its stimulation by forskolin varied insignificantly and weakly changed in treatment of animals with II. The AC inhibitory effects of SST and 5-NOT in the investigated pathology are essentially attenuated, the effect of SST to the greatest extent, which we believe to be associated with a reduction in the functional activity of Gi-proteins. The II treatment of animals with obesity and with a combination of obesity and DM2 restored completely or partially the AC inhibiting effects of hormones, to the greatest extent in the brain. Since impaired functioning of ACSS is one of the causes of the metabolic syndrome and DM2, their elimination by treatments with II can be an effective approach to treat these diseases and their CNS and cardiovascular system complications.

  9. [The influence of two-month treatment with bromocryptine on activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes mellitus].

    PubMed

    Derkach, K V; Bondareva, V M; Moyseyuk, I V; Shpakov, A O

    2014-01-01

    One of the common complications of type 2 diabetes mellitus (DM2) are cardiovascular diseases and dysfunctions of the reproductive system, indicating the urgency of developing new approaches to their correction. Last years for the treatment of DM2 began to use bromocryptine (BC), the agonist of type 2 dopamine receptors, which not only restores the energy metabolism, but also prevents the development of cardiovascular diseases. However, the mechanisms and targets of BC action are poorly understood. The purpose of this study was to investigate the effect of BC treatment on functional activity of adenylyl cyclase signaling system (ACSS) in the myocardium and testes of male rats with DM2, which is caused by high-fat diet and treatment with streptozotocin (25 mg/kg). The treatment with BC (60 days, orally at a dose of 0.6 mg/kg once every two days) was started 90 days after the beginning of high-fat diet. Diabetic rats had an increased body weight, elevated triglycerides level, impaired glucose tolerance, and insulin resistance. The treatment with BC resulted in the restoration of glycometabolic indicators and in the improvement of insulin sensitivity. Adenylyl cyclase (AC) stimulating effects of guanylylimidodiphosphate (GppNHp), relaxin, and agonists of β-adrenergic receptors (β3-AR)--isoproterenol and norepinephrine were decreased in the miocardium of the diabetic rats. The corresponding effects of the β-agonists BRL-37344 and CL-316243 was preserved. The inhibitory effect of somatostatin on forskolin-stimulated AC activity was attenuated, while the inhibitory effect of noradrenaline mediated through α2-AR increased. The treatment with BC resulted in the normalization of the adrenergic signaling in the myocardium and partially restoration of AC effects of relaxin and somatostatin. In the testes of diabetic rats, the basal and stimulated by GppNHp, forskolin, human chorionic gonadotropin and pituitary AC-activating polypeptide AC activity were decreased, and the

  10. [Effects of intranasal insulin and serotonin on functional activity of the adenylyl cyclase system in the myocardium, ovaries, and uterus of rats with prolonged neonatal model of diabetes mellitus].

    PubMed

    Shpakov, A O; Derkach, K V; Chistiakova, O V; Moĭseiuk, I V; Sukhov, I B; Bondareva, V M

    2013-01-01

    Disturbances in hormonal signaling systems, in the adenylyl cyclase system (ACS) in particular, occur at early stages of diabetes mellitus (DM) and are one of the key causes of its complications. Since there is a correlation between the severity of DM and of disturbances in the ACS, the study of the ACS activity can be used to monitor DM and its complications and to evaluate effectiveness of their treatment. Comparatively recently, for treatment of the type 2 DM, there began to be used the intranasal insulin (I-I) and drugs increasing brain serotonin level, which effectively restore CNS functions. However, mechanisms of their action on peripheral tissues and organs with DM remain to be not understood. The goal of this work was to study effects. of I-I and intranasal serotonin (I-S) on the ACS functional activity in myocardium, ovary, and uterus of rats with a neonatal model of the type 2 DM. In tissues of diabetic rats there were revealed changes in regulation of adenylyl cyclase (AC) by guanine nucleotides and hormones that both stimulated and inhibited this enzyme, such changes being characterized by the receptor and tissue specificity. In diabetic rats, I-I restored the AC stimulating effects of isoproterenol in the myocardium, guanine nucleotides and gonadotropin in ovaries and relaxin in uterus, as well as the AC inhibitory effects of somatostatin in all tissues, and of noradrenaline in myocardium. Treatment with IS led to a partial restoration of the AC-inhibitory effect of noradrenalin in the diabetic myocardium, but did not affect regulation of AC by other hormones. These data indicate that I-I normalizes the ACS functional activity in myocardium and in tissues of the reproductive system of female rats with neonatal DM, whereas the effect of I-S on in the studied tissues is less pronounced. These results are necessary to be taken into account at development and optimization of strategy of use of I-I and I-S for treatment of DM and of its complications.

  11. [THE EFFECTS OF LONG-TERM METFORMIN TREATMENT ON THE ACTIVITY OF ADENYLYL CYCLASE SYSTEM AND NO-SYNTHASES IN THE BRAIN AND THE MYOCARDIUM OF RATS WITH OBESITY].

    PubMed

    Derkach, K V; Kuznetsova, L A; Sharova, T S; Ignatieva, P A; Bondareva, V M; Shpakov, A O

    2015-01-01

    Biguanide metformin, which is widely used for the treatment of type 2 diabetes mellitus, improves carbohydrate and lipid metabolism and shows a pronounced cardio- and neuroprotective effects. It is assumed that an important role in these effects of metformin plays its ability to positively influence the activity of NO-synthase catalyzing the synthesis of NO, the most important vasodilator, and the activity of hormone-sensitive adenylyl cyclase signaling system (ACSS. To prove this, we have carried out a study whose purpose was to study the effect of long-term metformin treatment on the metabolic rates in obese rats, as well as on the activity of ACSS and NO-synthase in the myocardium and the brain of these animals. The metformin treatment of Wistar rats with obesity induced by high-fat diet was carried out for 2 months (daily dose of 200 mg/kg). The treatment with metformin led to a decrease in body weight and body fat, reduced glucose and insulin levels as well as reduced insulin resistance index HOMA-IR, improved glucose tolerance, and decreased the level of atherogenic forms of cholesterol. In the myocardium of obese rats, the attenuation of ACSS stimulation induced by the agonists of β1/β2-adrenergic receptors (AR) and the strengthening of β3-AR signaling has been found. At the same time, in the myocardium of animals treated with metformin, the regulation of ACSS by adrenergic agonists was restored, and the ratio of β-AR-signaling pathways returned to normal. In the brain of rats treated with metformin, adenylyl cyclase stimulating effects of serotonin and agonists of type 4 melanocortin receptors, which had been weakenend for obesity, were restored. Metformin treatment completely restored activity of total and endothelial NO-synthase in the myocardium decreased in obesity. It as also shown that metformin treatment induced hyperactivation of NO-synthase in the myocardium and brain of healthy animals. Thus, we conclude that the effects of metformin

  12. [BETA-ADRENERGIC REGULATION OF THE ADENYLYL CYCLASE SIGNALING SYSTEM IN MYOCARDIUM AND BRAIN OF RATS WITH OBESITY AND TYPES 2 DIABETES MELLITUS AND THE EFFECT OF LONG-TERM INTRANASAL INSULIN TREATMENT].

    PubMed

    Kuznetsova, L A; Sharova, T S; Pertseva, M N; Shpakov, A O

    2015-01-01

    The stimulating effect of norepinephrine, isoproterenol and selective β-adrenoceptor (β3-AR) agonists BRL 37344 and CL 316.243 on the adenylyl cyclase signaling system (ACSS) in the brain and myocardium of young and mature rats (disease induction at 2 and 4 months, respectively) with experimental obesity and type 2 diabetes mellitus (DM2), and the influence of long-term treatment of animals with intranasal insulin (I-I) were studied. The AC stimulatory effects of β-agonist isoproterenol in animals with obesity and DM2 was shown to be practically unchanged. The respective effects of norepinephrine on the AC activity were attenuated in the brain of young and mature rats and in the myocardium if mature rats, and the I-I treatment led to their partial recovery. In the brain and myocardium of mature rats with obesity and DM2, the enhancement of the AC stimulatory effects of β3-AR agonists was observed, white in young rats the influence of the same pathological conditions was lacking. The I-I treatment decreased the AC stimulatory effects of β3-agonists to their levels in the control. Since functional disruption of the adrenergic agonist-sensitive ACSS can lead to metabolic syndrome and DM2, the recovery of this system by the I-I treatment offers one of the ways to correct these diseases and their complications in the nervous and cardiovascular systems.

  13. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms.

    PubMed

    Bogard, Amy S; Birg, Anna V; Ostrom, Rennolds S

    2014-04-01

    Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.

  14. The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in Dictyostelium.

    PubMed

    Noegel, Angelika A; Blau-Wasser, Rosemarie; Sultana, Hameeda; Müller, Rolf; Israel, Lars; Schleicher, Michael; Patel, Hitesh; Weijer, Cornelis J

    2004-02-01

    Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and found that the mutant cells have normal levels of the aggregation phase-specific adenylyl cyclase and that receptor-mediated activation is intact. However, cAMP relay that is responsible for the generation of propagating cAMP waves that control the chemotactic aggregation of starving Dictyostelium cells was altered, and the cAMP-induced cGMP production was significantly reduced. The data suggest an interaction of CAP with adenylyl cyclase in Dictyostelium and an influence on signaling pathways directly as well as through its function as a regulatory component of the cytoskeleton.

  15. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  16. 1,25-Dihydroxyvitamin D3 attenuates adenylyl cyclase activity in rat thyroid cells: reduction of thyrotropin receptor number and increase in guanine nucleotide-binding protein Gi-2 alpha.

    PubMed

    Berg, J P; Sandvik, J A; Ree, A H; Sørnes, G; Bjøro, T; Torjesen, P A; Gordeladze, J O; Haug, E

    1994-08-01

    1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the most potent of the naturally occurring vitamin D metabolites. In rat thyroid FRTL-5 cells, 1,25-(OH)2D3 attenuated the increase in TSH-stimulated adenylyl cyclase activity obtained by removing TSH from the culture medium. When cells were incubated with 1,25-(OH)2D3 (10 nmol/liter; 4 days), the binding capacity for specific [125I]TSH binding decreased from 20.1 +/- 1.8 to 8.8 +/- 1.6 fmol/10(6) cells (mean +/- SEM; n = 4; P < 0.01) compared to that in control cells. The Kd did not change (mean +/- SEM, 0.46 +/- 0.09 vs. 0.25 +/- 0.07 nmol/liter; n = 4; P = NS). Western blotting revealed no change in the membrane content of the adenylyl cyclase (AC) stimulatory guanine nucleotide-binding protein (G-protein) alpha-subunit (Gs alpha) during 1,25-(OH)2D3 treatment. Similarly, levels of the AC inhibitory G-protein Gi-3 alpha- and G-protein beta-subunits were not altered by 1,25-(OH)2D3. However, Western blotting with antibodies recognizing both Gi-1 alpha and Gi-2 alpha was augmented 4-fold, presumably representing an increase in Gi-2 alpha only, as Gi-1 alpha messenger RNA (mRNA) was not detected in FRTL-5 cells. 1,25-(OH)2D3 (10 nmol/liter; 4 days) reduced cholera toxin (10 nmol/liter)-stimulated AC activity to 85% of the control value (P < 0.05), whereas forskolin (100 mumol/liter)-stimulated direct activation of AC was inhibited by 39%. The TSH receptor mRNA level correlated to the beta-actin mRNA was 2-fold higher in control cells compared to that in 1,25-(OH)2D3-treated cells 12 h after TSH removal. Only minor alterations in the Gs alpha mRNA/beta-actin mRNA and Gi-3 alpha mRNA/beta-actin mRNA ratios were observed during 1,25-(OH)2D3 treatment, whereas Gi-2 alpha mRNA increased 3-fold compared to that in control cells. No change in the resting intracellular Ca2+ concentration could be detected after 4 days of 1,25-(OH)2D3 treatment. Our studies show that 1,25-(OH)2D3 attenuates AC activity by reducing the TSH receptor

  17. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation.

    PubMed

    Keuylian, Zela; de Baaij, Jeroen H F; Gueguen, Marie; Glorian, Martine; Rouxel, Clotilde; Merlet, Elise; Lipskaia, Larissa; Blaise, Régis; Mateo, Véronique; Limon, Isabelle

    2012-07-20

    Vascular smooth muscle cell (VSMC) trans-differentiation, or their switch from a contractile/quiescent to a secretory/inflammatory/migratory state, is known to play an important role in pathological vascular remodeling including atherosclerosis and postangioplasty restenosis. Several reports have established the Notch pathway as tightly regulating VSMC response to various stress factors through growth, migration, apoptosis, and de-differentiation. More recently, we showed that alterations of the Notch pathway also govern VSMC acquisition of the inflammatory state, one of the major events accelerating atherosclerosis. We also evidenced that the inflammatory context of atherosclerosis triggers a de novo expression of adenylyl cyclase isoform 8 (AC8), associated with the properties developed by trans-differentiated VSMCs. As an initial approach to understanding the regulation of AC8 expression, we examined the role of the Notch pathway. Here we show that inhibiting the Notch pathway enhances the effect of IL1β on AC8 expression, amplifies its deleterious effects on the VSMC trans-differentiated phenotype, and decreases Notch target genes Hrt1 and Hrt3. Conversely, Notch activation resulted in blocking AC8 expression and up-regulated Hrt1 and Hrt3 expression. Furthermore, overexpressing Hrt1 and Hrt3 significantly decreased IL1β-induced AC8 expression. In agreement with these in vitro findings, the in vivo rat carotid balloon-injury model of restenosis evidenced that AC8 de novo expression coincided with down-regulation of the Notch3 pathway. These results, demonstrating that the Notch pathway attenuates IL1β-mediated AC8 up-regulation in trans-differentiated VSMCs, suggest that AC8 expression, besides being induced by the proinflammatory cytokine IL1β, is also dependent on down-regulation of the Notch pathway occurring in an inflammatory context.

  18. [Streptozocin model of diabetes mellitus in the mollusc Anodonta cygnea: functional state of the adenylyl cyclase mechanisms of action of peptides of the insulin superfamily and their effect on carbohydrate metabolism enzymes].

    PubMed

    Kuznetsova, L A; Plesneva, S A; Chistiakova, O V; Shpakov, A O; Bondareva, V M; Pertseva, M N

    2007-01-01

    In terms of development of evolutionary biomedicine using invertebrate animals as models for study of molecular grounds of various human diseases, for the first time the streptozocin (ST) model of insulin-dependent diabetes in the mollusc Anodonta cygnea has been developed. This model is based on the following authors' data: (1) redetection of insulin-related peptides (IRP) in mollusk tissues: (2) discovery of the adenylyl cyclase signal mechanism (ACSM) of action of insulin and other peptides of the insulin superfamily in tissues of mammals, human, and mollusc. A. cygnea; (3) concept of molecular defects in hormonal signal systems as causes of endocrine diseases. Studies on the ST model have revealed in mollusc smooth muscle on the background of hyperglycemia at the 2nd, 4th, and 8th day after the ST administration a decrease of the ACSM response to activating action of insulin, IGF-1, and relaxin. These functional disturbances were the most pronounced at the 2nd day of development and rather less marked at the 4th and 8th day. Analysis of data on effect of hormonal and non-hormonal (NaF, GIDP, and forskolin) ACSM activators has shown that the causes of impair of signal-transducing function of this mechanism are (1) a hyperglycemia-induced increase of the basal AC activity and as a consequence--a decrease of the enzyme catalytic potentials in response to hormone; (2) a decrease of functions of Gs-protein and of its coupling with AC. Besides, administration of ST produced in the mollusc muscles an attenuation of regulation by insulin of carbohydrate metabolism enzyme (glucose-6-phosphate dehydrogenase, glycogensynthase). The pattern of disturbances in the studied parameters in the mollusc is very similar to that revealed by the authors in rat and human muscle tissues in type 1 diabetes.

  19. A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family in Mycobacterium tuberculosis

    PubMed Central

    Sivakumar, K.; Krupa, A.; Srinivasan, N.

    2004-01-01

    Cyclic nucleotides are well-known second messengers involved in the regulation of important metabolic pathways or virulence factors. There are six different classes of nucleotide cyclases that can accomplish the task of generating cAMP, and four of these are restricted to the prokaryotes. The role of cAMP has been implicated in the virulence and regulation of secondary metabolites in the phylum Actinobacteria, which contains important pathogens, such as Mycobacterium tuberculosis, M. leprae, M. bovis and Corynebacterium, and industrial organisms from the genus Streptomyces. We have analysed the actinobacterial genome sequences found in current databases for the presence of different classes of nucleotide cyclases, and find that only class III cyclases are present in these organisms. Importantly, prominent members such as M. tuberculosis and M. leprae have 17 and 4 class III cyclases, respectively, encoded in their genomes, some of which display interesting domain fusions seen for the first time. In addition, a pseudogene corresponding to a cyclase from M. avium has been identified as the only cyclase pseudogene in M. tuberculosis and M. bovis. The Corynebacterium and Streptomyces genomes encode only a single adenylyl cyclase each, both of which have corresponding orthologues in M. tuberculosis. A clustering of the cyclase domains in Actinobacteria reveals the presence of typical eukaryote-like, fungi-like and other bacteria-like class III cyclase sequences within this phylum, suggesting that these proteins may have significant roles to play in this important group of organisms. PMID:18629044

  20. Impairment of adenylyl cyclase 2 function and expression in hypoxanthine phosphoribosyltransferase-deficient rat B103 neuroblastoma cells as model for Lesch-Nyhan disease: BODIPY-forskolin as pharmacological tool.

    PubMed

    Kinast, Liz; von der Ohe, Juliane; Burhenne, Heike; Seifert, Roland

    2012-07-01

    Hypoxanthine phosphoribosyl transferase (HPRT) deficiency results in Lesch-Nyhan disease (LND). The link between the HPRT defect and the self-injurious behavior in LND is still unknown. HPRT-deficient rat B103 neuroblastoma cells serve as a model system for LND. In B103 cell membranes, HPRT deficiency is associated with a decrease of basal and guanosine triphosphate-stimulated adenylyl cyclase (AC) activity (Pinto and Seifert, J Neurochem 96:454-459, 2006). Since recombinant AC2 possesses a high basal activity, we tested the hypothesis that AC2 function and expression is impaired in HPRT deficiency. We examined AC regulation in B103 cell membranes, cAMP accumulation in intact B103 cells, AC isoform expression, and performed morphological studies. As most important pharmacological tool, we used 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene forskolin (BODIPY-FS) that inhibits recombinant AC2 but activates ACs 1 and 5 (Erdorf et al., Biochem Pharmacol 82:1673-1681, 2011). In B103 control membranes, BODIPY-FS reduced catalysis, but in HPRT(-) membranes, BODIPY-FS was rather stimulatory. 2'(3')-O-(N-methylanthraniloyl) (MANT)-nucleoside 5'-[γ-thio]triphosphates inhibit recombinant ACs 1 and 5 more potently than AC2. In B103 control membranes, MANT-guanosine 5'-[γ-thio]triphosphate inhibited catalysis in control membranes less potently than in HPRT(-) membranes. Quantitative real-time PCR revealed that in HPRT deficiency, AC2 was virtually absent. In contrast, AC5 was up-regulated. Forskolin (FS) and BODIPY-FS induced cell clustering and rounding and neurite extension in B103 cells. The effects of FS and BODIPY-FS were much more prominent in control than in HPRT(-) cells, indicative for a differentiation defect in HPRT deficiency. Neither FS nor BODIPY-FS significantly changed cAMP concentrations in intact B103 cells. Collectively, our data show that HPRT deficiency in B103 cells is associated with impaired AC2 function and expression and reduced sensitivity to

  1. Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle.

    PubMed

    Mahavadi, Sunila; Nalli, Ancy D; Kumar, Divya P; Hu, Wenhui; Kuemmerle, John F; Grider, John R; Murthy, Karnam S

    2014-08-15

    This study identified a distinctive pattern of expression and activity of adenylyl cyclase (AC) and phosphodiesterase (PDE) isoforms in mouse colonic longitudinal smooth muscle cells and determined the changes in their expression and/or activity in response to proinflammatory cytokines (IL-1β and TNF-α) in vitro and 2,4,6 trinitrobenzene sulphonic acid (TNBS)-induced colonic inflammation in vivo. AC5/6 and PDE4D5, expressed in circular muscle cells, were also expressed in longitudinal smooth muscle. cAMP formation was tightly regulated via feedback phosphorylation of AC5/6 and PDE4D5 by PKA. Inhibition of PKA activity by myristoylated PKI blocked phosphorylation of AC5/6 and PDE4D5 and enhanced cAMP formation. TNBS treatment in vivo and IL-1β and TNF-α in vitro induced inducible nitric oxide synthase (iNOS) expression, stimulated ERK1/2 activity, caused iNOS-mediated S-nitrosylation and inhibition of AC5/6, and induced phosphorylation of PDE4D5 and stimulated its activity. The resultant decrease in AC5/6 activity and increase in PDE4D5 activity decreased cAMP formation and smooth muscle relaxation. S-nitrosylation and inhibition of AC5/6 activity were reversed by the iNOS inhibitor 1400W, whereas phosphorylation and activation of PDE4D5 were reversed by the phosphatidylinositol 3-kinase inhibitor LY294002 and the ERK1/2 inhibitor PD98059. The effects of IL-1β or TNF-α on forskolin-stimulated cAMP formation and smooth muscle relaxation reflected inhibition of AC5/6 activity and activation of PDE4D5 and were partly reversed by 1400W or PD98059 and completely reversed by a combination of the two inhibitors. The changes in the cAMP/PKA signaling and smooth muscle relaxation contribute to colonic dysmotility during inflammation.

  2. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-02-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.

  3. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed Central

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-01-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin. PMID:8552082

  4. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    NASA Astrophysics Data System (ADS)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  5. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    PubMed

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  6. Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice.

    PubMed

    Qin, Yonghua; Shen, Xin; Wang, Nili; Ding, Xipeng

    2015-06-01

    A novel cyclase-like gene family (CYL) encodes proteins containing cyclase domain, but their functions are largely unknown. We report the systematic identification and characterization of CYL genes in the rice genome. Five putative CYL protein sequences (OsCYL1 to 4b) were identified. These sequences and other CYL homologs were classified into four subgroups based on phylogenetic analysis. Distinct diversification of these CYL proteins exists between plants and non-plants. The CYL family has conserved exon-intron structures, and the organizations of putative motifs in plants are specifically diverse. All OsCYL genes were expressed in a wide range of tissues or organs and were responsive to at least one of the abiotic stresses and hormone treatments applied. Protein OsCYL4a is targeted to the cell membrane. The overexpression of one stress-responsive gene OsCYL4a in rice resulted in decreased tolerance to salt, drought, cold, and oxidative stress. The expression levels of some abiotic stress-responsive factors, including H2O2-accumulating negative factors DST and OsSKIPa in OsCYL4a-overexpressing plants, were reduced compared with the wild type under normal condition and drought stress. These results suggest that rice CYL family may be functionally conserved polyketide cyclase, resulting in the rapid accumulation of reactive oxygen species to decrease tolerance to abiotic stresses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    PubMed Central

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.; Clark, Douglas S.

    2017-01-01

    ABSTRACT The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. PMID:28096492

  8. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes

    DOE PAGES

    Wu, Vincent W.; Dana, Craig M.; Iavarone, Anthony T.; ...

    2017-01-17

    The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identifiedmore » two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability.« less

  9. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.

  10. Diguanylate cyclase DgcP is involved in plant and human Pseudomonas spp. infections.

    PubMed

    Aragon, Isabel M; Pérez-Mendoza, Daniel; Moscoso, Joana A; Faure, Emmanuel; Guery, Benoit; Gallegos, María-Trinidad; Filloux, Alain; Ramos, Cayo

    2015-11-01

    The second messenger cyclic di-GMP (c-di-GMP) controls the transition between different lifestyles in bacterial pathogens. Here, we report the identification of DgcP (diguanylate cyclase conserved in Pseudomonads), whose activity in the olive tree pathogen Pseudomonas savastanoi pv. savastanoi is dependent on the integrity of its GGDEF domain. Furthermore, deletion of the dgcP gene revealed that DgcP negatively regulates motility and positively controls biofilm formation in both the olive tree pathogen P. savastanoi pv. savastanoi and the human opportunistic pathogen Pseudomonas aeruginosa. Overexpression of the dgcP gene in P. aeruginosa PAK led to increased exopolysaccharide production and upregulation of the type VI secretion system; in turn, it repressed the type III secretion system, which is a hallmark of chronic infections and persistence for P. aeruginosa. Deletion of the dgcP gene in P. savastanoi pv. savastanoi NCPPB 3335 and P. aeruginosa PAK reduced their virulence in olive plants and in a mouse acute lung injury model respectively. Our results show that diguanylate cyclase DgcP is a conserved Pseudomonas protein with a role in virulence, and confirm the existence of common c-di-GMP signalling pathways that are capable of regulating plant and human Pseudomonas spp. infections. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Cardiac dysrhythmia produced by Mesobuthus tamulus venom involves NO-dependent G-Cyclase signaling pathway.

    PubMed

    Kanoo, Sadhana; Mandal, Maloy B; Alex, Anitha B; Deshpande, Shripad B

    2009-05-01

    Role of G-protein coupled pathways in modulating the cardiotoxic effects produced by Indian red scorpion (Mesobuthus tamulus) venom were examined. The isometric contractions of spontaneously beating or paced (3.5 Hz) rat right atrial preparations in vitro were recorded. The cumulative concentration (0.01-3.0 microg/ml)-response of venom on spontaneously beating atria exhibited a marked decrease in rate (by 55%) and an increase in force (by 92%) only at a higher concentration (3.0 microg/ml). The venom-induced decrease in rate and increase in force were sensitive to atropine, N-omega-nitro-L-arginine methylester (NO synthase inhibitor) and methylene blue (guanylyl cyclase inhibitor). Further, nifedipine, a Ca(2+) channel antagonist, blocked the force changes but not the rate changes induced by venom. In the paced atrium, on the other hand, a concentration-dependent decrease in force was observed, and at 3 microg/ml, the decrease was 50%. Pretreatment with nifedipine, but not with methylene blue, significantly attenuated the venom-induced force changes in paced atrium. The observations of this study demonstrate that the venom-induced atrial dysrhythmia is mediated through the muscarinic receptor-dependent NO-G-cyclase cell-signaling pathways.

  12. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes.

    PubMed

    Wu, Vincent W; Dana, Craig M; Iavarone, Anthony T; Clark, Douglas S; Glass, N Louise

    2017-01-17

    The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We

  13. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids.

    PubMed

    Krubasik, P; Sandmann, G

    2000-04-01

    The carotenogenic (crt) gene cluster from Brevibacterium linens, a member of the commercially important group of coryneform bacteria, was cloned and identified. An expression library of B. linens genes was constructed and a fragment of the crt cluster was obtained by functional complementation of a colourless B. flavum mutant, screening transformed cells for production of a yellow pigment. Subsequent screening of a cosmid library resulted in the cloning of the whole crt cluster from B. linens. All genes necessary for the synthesis of the aromatic carotenoid isorenieratene were identified on the basis of sequence homologies. In addition a novel type of lycopene cyclase was identified by complementation of a lycopene-accumulating B. flavum mutant. Two genes, named crt Yc and crt Yd, which code for polypeptides of 125 and 107 amino acids, respectively, are necessary to convert lycopene to beta-carotene. The amino acid sequences of these polypeptides show no similarity to any of the known lycopene cyclases. This is the first example of a carotenoid biosynthetic conversion in which two different gene products are involved, probably forming a heterodimer.

  14. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  15. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  16. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  17. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    PubMed

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  18. Characterization of a novel sesquiterpene cyclase involved in (+)-caryolan-1-ol biosynthesis in Streptomyces griseus.

    PubMed

    Nakano, Chiaki; Horinouchi, Sueharu; Ohnishi, Yasuo

    2011-08-12

    Most terpenoids have been isolated from plants and fungi and only a few from bacteria. However, an increasing number of genome sequences indicate that bacteria possess a variety of terpenoid cyclase genes. We characterized a sesquiterpene cyclase gene (SGR2079, named gcoA) found in Streptomyces griseus. When expressed in Streptomyces lividans, gcoA directed production of a sesquiterpene, isolated and determined to be (+)-caryolan-1-ol using spectroscopic analyses. (+)-Caryolan-1-ol was also detected in the crude cell lysate of wild-type S. griseus but not in a gcoA knockout mutant, indicating that GcoA is a genuine (+)-caryolan-1-ol synthase. Enzymatic properties were characterized using N-terminally histidine-tagged GcoA, produced in Escherichia coli. As expected, incubation of the recombinant GcoA protein with farnesyl diphosphate yielded (+)-caryolan-1-ol. However, a small amount of another sesquiterpene was also detected. This was identified as the bicyclic sesquiterpene hydrocarbon (+)-β-caryophyllene by comparison with an authentic sample using GC-MS. Incorporation of a deuterium atom into the C-9 methylene of (+)-caryolan-1-ol in an in vitro GcoA reaction in deuterium oxide indicated that (+)-caryolan-1-ol was synthesized by a proton attack on the C-8/C-9 double bond of (+)-β-caryophyllene. Several β-caryophyllene synthases have been identified from plants, but these cannot synthesize caryolan-1-ol. Although caryolan-1-ol has been isolated previously from several plants, the enzyme responsible for its biosynthesis has not been identified previously. GcoA is thus the first known caryolan-1-ol synthase. Isolation of caryolan-1-ol from microorganisms is unprecedented.

  19. Characterization of a Novel Sesquiterpene Cyclase Involved in (+)-Caryolan-1-ol Biosynthesis in Streptomyces griseus*

    PubMed Central

    Nakano, Chiaki; Horinouchi, Sueharu; Ohnishi, Yasuo

    2011-01-01

    Most terpenoids have been isolated from plants and fungi and only a few from bacteria. However, an increasing number of genome sequences indicate that bacteria possess a variety of terpenoid cyclase genes. We characterized a sesquiterpene cyclase gene (SGR2079, named gcoA) found in Streptomyces griseus. When expressed in Streptomyces lividans, gcoA directed production of a sesquiterpene, isolated and determined to be (+)-caryolan-1-ol using spectroscopic analyses. (+)-Caryolan-1-ol was also detected in the crude cell lysate of wild-type S. griseus but not in a gcoA knockout mutant, indicating that GcoA is a genuine (+)-caryolan-1-ol synthase. Enzymatic properties were characterized using N-terminally histidine-tagged GcoA, produced in Escherichia coli. As expected, incubation of the recombinant GcoA protein with farnesyl diphosphate yielded (+)-caryolan-1-ol. However, a small amount of another sesquiterpene was also detected. This was identified as the bicyclic sesquiterpene hydrocarbon (+)-β-caryophyllene by comparison with an authentic sample using GC-MS. Incorporation of a deuterium atom into the C-9 methylene of (+)-caryolan-1-ol in an in vitro GcoA reaction in deuterium oxide indicated that (+)-caryolan-1-ol was synthesized by a proton attack on the C-8/C-9 double bond of (+)-β-caryophyllene. Several β-caryophyllene synthases have been identified from plants, but these cannot synthesize caryolan-1-ol. Although caryolan-1-ol has been isolated previously from several plants, the enzyme responsible for its biosynthesis has not been identified previously. GcoA is thus the first known caryolan-1-ol synthase. Isolation of caryolan-1-ol from microorganisms is unprecedented. PMID:21693706

  20. Formycin triphosphate as a probe for the ATP binding site involved in the activation of guanylate cyclase.

    PubMed

    Chang, C H; Yu, Z N; Song, D L

    1992-10-01

    Formycin A triphosphate (FTP), a fluorescent analog of ATP, slightly increased basal guanylate cyclase activity, but significantly potentiated guanylate cyclase activity stimulated by atrial natriuretic factor (ANF) in rat lung membranes. FTP potentiated ANF-stimulated guanylate cyclase activity with an EC50 at about 90 microM and inhibited ATP-stimulated guanylate cyclase activity with an IC50 at about 100 microM. These results indicate that FTP binds more tightly than ATP for the same binding site. Therefore, FTP would be an excellent tool for studying the ATP binding site.

  1. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism.

    PubMed

    Wu, Xiumei; Flatt, Patricia M; Schlörke, Oliver; Zeeck, Axel; Dairi, Tohru; Mahmud, Taifo

    2007-01-22

    Sugar phosphate cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, for example, aromatic amino acids, and clinically relevant secondary metabolites, for example, aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically labeled cyclitols revealed that cetoniacytone A, a unique C(7)N-aminocyclitol antibiotic isolated from an insect endophytic Actinomyces sp., is derived from 2-epi-5-epi-valiolone, a product of SPC. By using heterologous probes from the 2-epi-5-epi-valiolone synthase class of SPCs, an SPC homologue gene, cetA, was isolated from the cetoniacytone producer. cetA is closely related to BE-orf9 found in the BE-40644 biosynthetic gene cluster from Actinoplanes sp. strain A40644. Recombinant expression of cetA and BE-orf9 and biochemical characterization of the gene products confirmed their function as 2-epi-5-epi-valiolone synthases. Further phylogenetic analysis of SPC sequences revealed a new clade of SPCs that might regulate the biosynthesis of a novel set of secondary metabolites.

  2. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke.

    PubMed

    Matsumoto, Minako; Nakamachi, Tomoya; Watanabe, Jun; Sugiyama, Koichi; Ohtaki, Hirokazu; Murai, Norimitsu; Sasaki, Shun; Xu, Zhifang; Hashimoto, Hitoshi; Seki, Tamotsu; Miyazaki, Akira; Shioda, Seiji

    2016-06-01

    In the subgranular zone (SGZ) of the hippocampus, neurogenesis persists throughout life and is upregulated following ischemia. Accumulating evidence suggests that enhanced neurogenesis stimulated by ischemic injury contributes to recovery after stroke. However, the mechanisms underlying the upregulation of neurogenesis are unclear. We have demonstrated that a neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), exerts a wide range of effects on neural stem cells (NSCs) during neural development. Here, we examined the effects of endogenous and exogenous PACAP in adult NSCs of the SGZ. Immunostaining showed expression of the PACAP receptor PAC1R in nestin-positive NSCs of adult naive mice. PACAP injection into the lateral ventricle increased bromodeoxyuridine (BrdU)-positive proliferative cells in the SGZ. These data suggest that PACAP promoted the proliferation of NSCs. In global ischemia model mice, the number of BrdU-positive cells was increased in wild-type mice but not in PACAP heterozygous knockout mice. The BrdU-positive cells that increased in number after ischemia were immunopositive for SOX2, a marker of NSCs, and differentiated into NeuN-positive mature neurons at 4 weeks after ischemia. These findings suggest that PACAP contributes to the proliferation of NSCs and may be associated with recovery after brain injury.

  3. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis.

    PubMed

    Hamelink, Carol; Tjurmina, Olga; Damadzic, Ruslan; Young, W Scott; Weihe, Eberhard; Lee, Hyeon-Woo; Eiden, Lee E

    2002-01-08

    The adrenal gland is important for homeostatic responses to metabolic stress: hypoglycemia stimulates the splanchnic nerve, epinephrine is released from adrenomedullary chromaffin cells, and compensatory glucogenesis ensues. Acetylcholine is the primary neurotransmitter mediating catecholamine secretion from the adrenal medulla. Accumulating evidence suggests that a secretin-related neuropeptide also may function as a transmitter at the adrenomedullary synapse. Costaining with highly specific antibodies against the secretin-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP) and the vesicular acetylcholine transporter (VAChT) revealed that PACAP is found in nerve terminals at all mouse adrenomedullary cholinergic synapses. Mice with a targeted deletion of the PACAP gene had otherwise normal cholinergic innervation and morphology of the adrenal medulla, normal adrenal catecholamine and blood glucose levels, and an intact initial catecholamine secretory response to insulin-induced hypoglycemia. However, insulin-induced hypoglycemia was more profound and longer-lasting in PACAP knock-outs, and was associated with a dose-related lethality absent in wild-type mice. Failure of PACAP-deficient mice to adequately counterregulate plasma glucose levels could be accounted for by impaired long-term secretion of epinephrine, secondary to a lack of induction of tyrosine hydroxylase, normally occurring after insulin hypoglycemia in wild-type mice, and a consequent depletion of adrenomedullary epinephrine stores. Thus, PACAP is needed to couple epinephrine biosynthesis to secretion during metabolic stress. PACAP appears to function as an "emergency response" cotransmitter in the sympathoadrenal axis, where the primary secretory response is controlled by a classical neurotransmitter but sustained under paraphysiological conditions by a neuropeptide.

  4. The Hippeastrum hybridum PepR1 gene (HpPepR1) encodes a functional guanylyl cyclase and is involved in early response to fungal infection.

    PubMed

    Świeżawska, Brygida; Jaworski, Krzysztof; Duszyn, Maria; Pawełek, Agnieszka; Szmidt-Jaworska, Adriana

    2017-09-01

    It is generally known that cyclic GMP widespread in prokaryotic and eukaryotic cells, is involved in essential cellular processes and stress signal transduction. However, in contrast to animals the knowledge about plant guanylyl cyclases (GCs) which catalyze the formation of cGMP from GTP is still quite obscure. Recent studies of plant GCs are focused on identification and functional analysis of a new family of membrane proteins called "moonlighting kinases with GC activity" with guanylyl cyclase catalytic center encapsulated within intracellular kinase domain. Here we report identification and characterization of plasma membrane receptor of peptide signaling molecules - HpPepR1 in Hippeastrum hybridum. Both bioinformatic analysis of amimo acid sequence and in vitro studies revealed that the protein can act as guanylyl cyclase. The predicted amino acid sequence contains highly conserved 14 aa-long search motif in the catalytic center of GCs from lower and higher eukaryotes. Here, we provide experimental evidence to show that the intracellular domain of HpPepR1 can generate cGMP in vitro. Moreover, it was shown that the accumulation of HpPepR1 transcript was sharply increased after Peyronellaea curtisii (=Phoma narcissi) fungal infection, whereas mechanical wounding has no influence on expression profile of studied gene. These results may indicate the participation of cGMP-dependent pathway in rapid, alarm plant reactions induced by pathogen infection. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Two separate functions are encoded by the carboxyl-terminal domains of the yeast cyclase-associated protein and its mammalian homologs. Dimerization and actin binding.

    PubMed

    Zelicof, A; Protopopov, V; David, D; Lin, X Y; Lustgarten, V; Gerst, J E

    1996-07-26

    The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.

  6. Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression.

    PubMed

    Effendi, Kathryn; Yamazaki, Ken; Mori, Taisuke; Masugi, Yohei; Makino, Shinji; Sakamoto, Michiie

    2013-01-01

    Cyclase-associated protein 2 (CAP2) is a conserved protein that is found up-regulated in hepatocellular carcinoma (HCC). By using zebrafish, combined with HCC cell lines, we further investigated the role of CAP2. The zebrafish CAP2 sequence was 60% identical to human CAP2 with 77% homology in the C-terminal actin-binding domain, and 58% in the N-terminal cyclase-binding domain. CAP2 expression was observed during zebrafish development and was preferentially expressed in the skeletal muscle and heart. Knockdown using two different morpholinos against CAP2 resulted in a short-body morphant zebrafish phenotype with pericardial edema. CAP2 was observed co-localized with actin in zebrafish skeletal muscle, and in the leading edge of lamellipodium in HCC cell lines. CAP2 silencing resulted in a defect in lamellipodium formation and decreased cell motility in HCC cell lines. Strongly positive expression of CAP2 was observed in 10 of 16 (63%) poorly, 30 of 68 (44%) moderately, and 2 of 21 (10%) well differentiated HCC. CAP2 expression was significantly associated with tumor size, poor differentiation, portal vein invasion, and intrahepatic metastasis. Our results indicate that an important conserved function of CAP2 in higher vertebrates may be associated with the process of skeletal muscle development. CAP2 also played an important role in enhancing cell motility, which may promote a more invasive behavior in the progression of HCC. These findings highlight the link between development and cancer.

  7. Divergent interactions involving the oxidosqualene cyclase and the steroid-3-ketoreductase in the sterol biosynthetic pathway of mammals and yeasts.

    PubMed

    Taramino, Silvia; Teske, Brian; Oliaro-Bosso, Simonetta; Bard, Martin; Balliano, Gianni

    2010-11-01

    In mammals and yeasts, oxidosqualene cyclase (OSC) catalyzes the formation of lanosterol, the first cyclic intermediate in sterol biosynthesis. We used a murine myeloma cell line (NS0), deficient in the 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), as a model to study the potential interaction of the HSD17B7 with the OSC in mammals. HSD17B7 is the orthologue of the yeast steroid-3-ketoreductase (ERG27), an enzyme of ergosterol biosynthesis that plays a protective role towards OSC. Tracer experiments with NS0 cells showed that OSC is fully active in these mammalian cells, suggesting that in mammals the ketosteroid reductase is not required for OSC activity. Mouse and human HSD17B7 were overexpressed in ERG27-deletant yeast cells, and recombinant strains were tested for (i) the ability to grow on different media, (ii) steroid-3-ketoreductase activity, and (iii) OSC activity. Recombinant strains grew more slowly than the control yeast ERG27-overexpressing strain on sterol-deficient media, whereas the growth rate was normal on media supplemented with a 3-ketoreductase substrate. The full enzymatic functionality of mammalian steroid-3-ketoreductase expressed in yeast along with the lack of (yeast) OSC activity point to an inability of the mammalian reductase to assist yeast OSC. Results demonstrate that in mammals, unlike in yeast, OSC and steroid-3-ketoreductase are non-interacting proteins.

  8. A Signaling Pathway Involving the Diguanylate Cyclase CelR and the Response Regulator DivK Controls Cellulose Synthesis in Agrobacterium tumefaciens

    PubMed Central

    Barnhart, D. Michael; Su, Shengchang

    2014-01-01

    The production of cellulose fibrils is involved in the attachment of Agrobacterium tumefaciens to its plant host. Consistent with previous studies, we reported recently that a putative diguanylate cyclase, celR, is required for synthesis of this polymer in A. tumefaciens. In this study, the effects of celR and other components of the regulatory pathway of cellulose production were explored. Mutational analysis of celR demonstrated that the cyclase requires the catalytic GGEEF motif, as well as the conserved aspartate residue of a CheY-like receiver domain, for stimulating cellulose production. Moreover, a site-directed mutation within the PilZ domain of CelA, the catalytic subunit of the cellulose synthase complex, greatly reduced cellulose production. In addition, deletion of divK, the first gene of the divK-celR operon, also reduced cellulose production. This requirement for divK was alleviated by expression of a constitutively active form of CelR, suggesting that DivK acts upstream of CelR activation. Based on bacterial two-hybrid assays, CelR homodimerizes but does not interact with DivK. The mutation in divK additionally affected cell morphology, and this effect was complementable by a wild-type copy of the gene, but not by the constitutively active allele of celR. These results support the hypothesis that CelR is a bona fide c-di-GMP synthase and that the nucleotide signal produced by this enzyme activates CelA via the PilZ domain. Our studies also suggest that the DivK/CelR signaling pathway in Agrobacterium regulates cellulose production independent of cell cycle checkpoint systems that are controlled by divK. PMID:24443526

  9. Computational identification of candidate nucleotide cyclases in higher plants.

    PubMed

    Wong, Aloysius; Gehring, Chris

    2013-01-01

    In higher plants guanylyl cyclases (GCs) and adenylyl cyclases (ACs) cannot be identified using BLAST homology searches based on annotated cyclic nucleotide cyclases (CNCs) of prokaryotes, lower eukaryotes, or animals. The reason is that CNCs are often part of complex multifunctional proteins with different domain organizations and biological functions that are not conserved in higher plants. For this reason, we have developed CNC search strategies based on functionally conserved amino acids in the catalytic center of annotated and/or experimentally confirmed CNCs. Here we detail this method which has led to the identification of >25 novel candidate CNCs in Arabidopsis thaliana, several of which have been experimentally confirmed in vitro and in vivo. We foresee that the application of this method can be used to identify many more members of the growing family of CNCs in higher plants.

  10. Transcriptional control of vitamin C defective 2 and tocopherol cyclase genes by light and plastid-derived signals: the partial involvement of GENOMES UNCOUPLED 1.

    PubMed

    Tanaka, Hiroyuki; Maruta, Takanori; Tamoi, Masahiro; Yabuta, Yukinori; Yoshimura, Kazuya; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-02-01

    Previous findings have suggested that light and plastid-derived signals are involved in the regulation of biosynthetic pathways for l-ascorbic acid (AsA) and tocopherols (Toc). Photosynthetic electron transport (PET) activity, plastid gene expression (PGE), and the tetrapyrrole metabolism have been identified as signals that regulate nuclear gene expression through the GENOMES UNCOUPLED 1 (GUN1) protein. Here, we examined the effects of disrupting GUN1 on these pathways. The expression of vitamin C defective 2 (VTC2) and tocopherol cyclase (TC) genes, which encode key enzymes in the AsA and Toc biosynthetic pathways, respectively, was affected by illumination and darkness in parallel with the levels of both these antioxidants. However, the GUN1 disruption had no effect on these biosynthetic pathways under light-dark conditions. All treatments that inhibited PET, PGE, and the tetrapyrrole metabolism interrupted both biosynthetic pathways; however, this was partially mitigated by the GUN1 disruption. The expression patterns of VTC2 and TC reflected the levels of both antioxidants under most of the conditions examined. Our results suggest that the transcriptional control of VTC2 and TC by light and plastid-derived signals is important for the regulation of the biosynthetic pathways, and that GUN1 is at least partially involved in the plastid-derived signals-dependent regulation.

  11. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway.

    PubMed

    Portugal, Leivi; Muñóz-Garay, Carlos; Martínez de Castro, Diana L; Soberón, Mario; Bravo, Alejandra

    2017-01-01

    Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K(+) ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K(+) ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.

  12. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.

    PubMed

    Gottwald, U; Brokamp, R; Karakesisoglou, I; Schleicher, M; Noegel, A A

    1996-02-01

    In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.

  13. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics

    PubMed Central

    Kurtz, Kristine H.; Moor, Andrea N.; Souza-Smith, Flavia M.; Breslin, Jerome W.

    2014-01-01

    Objective This study investigated the roles of the H1 and H2 histamine receptors, nitric oxide (NO) synthase, and soluble guanylate (sGC) cyclase in histamine-induced modulation of rat mesenteric collecting lymphatic pumping. Methods Isolated rat mesenteric collecting lymphatics were treated with 1–100 μM histamine. Histamine receptors were blocked with either the H1 antagonist mepyramine or the H2 antagonist cimetidine. The role of NO/sGC signaling was tested using the arginine analog L-NAME, the sGC inhibitor ODQ, and sodium nitroprusside (SNP) as a positive control. Results Histamine applied at 100 μM decreased tone and contraction frequency (CF) of isolated rat mesenteric collecting lymphatics. Pharmacologic blockade of either H1 or H2 histamine receptors significantly inhibited the response to histamine. Pretreatment with ODQ, but not L-NAME, completely inhibited the histamine-induced decrease in tone. ODQ pretreatment also significantly inhibited SNP-induced lymphatic relaxation. Conclusions H1 and H2 histamine receptors are both involved in histamine-induced relaxation of rat mesenteric collecting lymphatics. NO synthesis does not appear to contribute to the histamine-induced response. However, sGC is critical for the histamine-induced decrease in tone and contributes to the drop in CF. PMID:24702851

  14. Conserved hydrophobic residues in the CARP/β-sheet domain of cyclase-associated protein are involved in actin monomer regulation.

    PubMed

    Iwase, Shohei; Ono, Shoichiro

    2017-09-01

    Cyclase-associated protein (CAP) is a multidomain protein that promotes actin filament dynamics. The C-terminal region of CAP contains a CAP and X-linked retinitis pigmentosa 2 protein (CARP) domain (or a β-sheet domain), which binds to actin monomer and is essential for enhancing exchange of actin-bound nucleotides. However, how the CARP domain binds to actin is not clearly understood. Here, we report that conserved hydrophobic residues in the CARP domain play important roles in the function of CAP to regulate actin dynamics. Single mutations of three conserved surface-exposed hydrophobic residues in the CARP domain of CAS-2, a Caenorhabditis elegans CAP, significantly reduce its binding to actin monomers and suppress its nucleotide exchange activity on actin. As a result, these mutants are weaker than wild-type to compete with ADF/cofilin to promote recycling of actin monomers for polymerization. A double mutation (V367A/I373A) eliminates these actin-regulatory functions of CAS-2. These hydrophobic residues and previously identified functional residues are scattered on a concave β-sheet of the CARP domain, suggesting that a wide area of the β-sheet is involved in binding to actin. These observations suggest that the CARP domain of CAP binds to actin in a distinct manner from other known actin-binding proteins. © 2017 Wiley Periodicals, Inc.

  15. PACAP stimulation of maturational gonadotropin secretion in goldfish involves extracellular signal-regulated kinase, but not nitric oxide or guanylate cyclase, signaling.

    PubMed

    Chang, John P; Sawisky, Grant R; Mitchell, Gabriel; Uretsky, Aubrey D; Kwong, Patrick; Grey, Caleb L; Meints, Amanda N; Booth, Morgan

    2010-01-01

    In goldfish, nitric oxide synthase (NOS) immunoreactivity is present in gonadotropes and extracellular signal-regulated protein kinase (ERK) mediates GnRH stimulation of gonadotropin release and synthesis. In this study, we tested the possible involvement of nitric oxide (NO) and ERK in mediating PACAP-stimulated maturational gonadotropin (GTH-II) release from primary cultures of dispersed goldfish pituitary cells. In static incubation experiments, PACAP-induced GTH-II release was unaffected by two inhibitors of NOS synthase, AGH and 1400W; whereas addition of a NO donor, SNAP, elevated GTH-II secretion. In perifusion experiments, neither NOS inhibitors (AGH, 1400W and 7-Ni) nor NO scavengers (PTIO and rutin hydrate) attenuated the GTH-II response to pulse applications of PACAP. In addition, the GTH-II responses to PACAP and the NO donor SNP were additive while PTIO blocked SNP action. Although dibutyryl cGMP increased GTH-II secretion in static incubation, inhibition of guanylate cyclase (GC), a known down-stream target for NO signaling, did not reduce the GTH-II response to pulse application of PACAP. On the other hand, GTH-II responses to PACAP in perifusion were attenuated in the presence of two inhibitors of ERK kinase (MEK), U 0126 and PD 98059. These results suggest that although increased availability of NO and cGMP can lead to increased GTH-II secretion, MEK/ERK signaling, rather than NOS/NO/GC activation, mediates PACAP action on GTH-II release in goldfish.

  16. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice.

    PubMed

    Lopatina, Olga; Liu, Hong-Xiang; Amina, Sarwat; Hashii, Minako; Higashida, Haruhiro

    2010-01-01

    Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.

  17. A cytoskeletal localizing domain in the cyclase-associated protein, CAP/Srv2p, regulates access to a distant SH3-binding site.

    PubMed

    Yu, J; Wang, C; Palmieri, S J; Haarer, B K; Field, J

    1999-07-09

    In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.

  18. Plant adenylate cyclases.

    PubMed

    Lomovatskaya, Lidiya A; Romanenko, Anatoliy S; Filinova, Nadejda V

    2008-01-01

    Adenylate cyclase (AC) (ATP diphosphate-lyase cyclizing; EC 4.6.1.1) is a key component of the adenylate cyclase signaling system and catalyzes the generation of cyclic adenosine monophosphate (cAMP) from ATP. This review summarizes data from the literature and the authors' laboratory on the investigation of plant transmembrane (tmAC) and soluble (sAC) adenylate cyclases, in comparison with some key characteristics of adenylate cyclases of animal cells. Plant sAC has been demonstrated to exhibit similarities with animal sAC with respect to certain characteristics. External factors, such as far-red and red light, temperature, exogenous phytohormones, as well as specific triggering compounds of fungal and bacterial origin exert a significant influence on the activity of plant tmAC and sAC.

  19. Different cAMP sources are critically involved in G protein–coupled receptor CRHR1 signaling

    PubMed Central

    dos Santos Claro, Paula A.; Senin, Sergio A.; Maccarrone, Giuseppina; Turck, Christoph W.

    2016-01-01

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein–dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. PMID:27402953

  20. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    PubMed

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP.

  1. Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides

    PubMed Central

    Chen, Guangyu E.; Martin, Elizabeth C.; Hunter, C. Neil

    2016-01-01

    ABSTRACT The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides. We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3. We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for

  2. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism

    PubMed Central

    González-Mariscal, Isabel; Krzysik-Walker, Susan M.; Doyle, Máire E.; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D.; Witek, Rafal P.; O’Connell, Jennifer F.; Egan, Josephine M.

    2016-01-01

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism. PMID:27641999

  3. Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Doyle, Máire E; Liu, Qing-Rong; Cimbro, Raffaello; Santa-Cruz Calvo, Sara; Ghosh, Soumita; Cieśla, Łukasz; Moaddel, Ruin; Carlson, Olga D; Witek, Rafal P; O'Connell, Jennifer F; Egan, Josephine M

    2016-09-19

    Therapeutics aimed at blocking the cannabinoid 1 (CB1) receptor for treatment of obesity resulted in significant improvements in liver function, glucose uptake and pancreatic β-cell function independent of weight loss or CB1 receptor blockade in the brain, suggesting that peripherally-acting only CB1 receptor blockers may be useful therapeutic agents. Neuropsychiatric side effects and lack of tissue specificity precluded clinical use of first-generation, centrally acting CB1 receptor blockers. In this study we specifically analyzed the potential relevance to diabetes of human CB1 receptor isoforms in extraneural tissues involved in glucose metabolism. We identified an isoform of the human CB1 receptor (CB1b) that is highly expressed in β-cells and hepatocytes but not in the brain. Importantly, CB1b shows stronger affinity for the inverse agonist JD-5037 than for rimonabant compared to CB1 full length. Most relevant to the field, CB1b is a potent regulator of adenylyl cyclase activity in peripheral metabolic tissues. CB1b blockade by JD-5037 results in stronger adenylyl cyclase activation compared to rimonabant and it is a better enhancer of insulin secretion in β-cells. We propose this isoform as a principal pharmacological target for the treatment of metabolic disorders involving glucose metabolism.

  4. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.

    PubMed Central

    Gottwald, U; Brokamp, R; Karakesisoglou, I; Schleicher, M; Noegel, A A

    1996-01-01

    In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner. Images PMID

  5. Localization of soluble guanylate cyclase activity in the guinea pig cochlea suggests involvement in regulation of blood flow and supporting cell physiology.

    PubMed

    Fessenden, J D; Schacht, J

    1997-10-01

    Although the nitric oxide/cGMP pathway has many important roles in biology, studies of this system in the mammalian cochlea have focused on the first enzyme in the pathway, nitric oxide synthase (NOS). However, characterization of the NO receptor, soluble guanylate cyclase (sGC), is crucial to determine the cells targeted by NO and to develop rational hypotheses of the function of this pathway in auditory processing. In this study we characterized guinea pig cochlear sGC by determining its enzymatic activity and cellular localization. In cytosolic fractions of auditory nerve, lateral wall tissues, and cochlear neuroepithelium, addition of NO donors resulted in three- to 15-fold increases in cGMP formation. NO-stimulated sGC activity was not detected in particulate fractions. We also localized cochlear sGC activity through immunocytochemical detection of NO-stimulated cGMP. sGC activity was detected in Hensen's and Deiters' cells of the organ of Corti, as well as in vascular pericytes surrounding small capillaries in the lateral wall tissues and sensory neuroepithelium. sGC activity was not observed in sensory cells. Using NADPH-diaphorase histochemistry, NOS was localized to pillar cells and nerve fibers underlying hair cells. These results indicate that the NO/cGMP pathway may influence diverse elements of the auditory system, including cochlear blood flow and supporting cell physiology.

  6. HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme.

    PubMed

    Okada, Kazunori; Kawaide, Hiroshi; Miyamoto, Koji; Miyazaki, Sho; Kainuma, Ryosuke; Kimura, Honoka; Fujiwara, Kaoru; Natsume, Masahiro; Nojiri, Hideaki; Nakajima, Masatoshi; Yamane, Hisakazu; Hatano, Yuki; Nozaki, Hiroshi; Hayashi, Ken-Ichiro

    2016-05-03

    Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme.

  7. HpDTC1, a Stress-Inducible Bifunctional Diterpene Cyclase Involved in Momilactone Biosynthesis, Functions in Chemical Defence in the Moss Hypnum plumaeforme

    PubMed Central

    Okada, Kazunori; Kawaide, Hiroshi; Miyamoto, Koji; Miyazaki, Sho; Kainuma, Ryosuke; Kimura, Honoka; Fujiwara, Kaoru; Natsume, Masahiro; Nojiri, Hideaki; Nakajima, Masatoshi; Yamane, Hisakazu; Hatano, Yuki; Nozaki, Hiroshi; Hayashi, Ken-ichiro

    2016-01-01

    Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme. PMID:27137939

  8. Ovarian superstimulation using FSH combined with equine chorionic gonadotropin (eCG) upregulates mRNA-encoding proteins involved with LH receptor intracellular signaling in granulosa cells from Nelore cows.

    PubMed

    Castilho, A C S; Nogueira, M F G; Fontes, P K; Machado, M F; Satrapa, R A; Razza, E M; Barros, C M

    2014-12-01

    The LH plays a key role in controlling physiological processes in the ovary acting via LH receptor (LHR). In general, the effects of LHR on the regulation of granulosa cell differentiation are mediated mainly via the Gs-protein/adenylyl cyclase/cAMP system; however, the LHR activation could also induce phospholipase C (PLC)/inositol trisphosphate (IP3) via Gq/11 system. Additionally, the expression of G-proteins (GNAS, GNAQ, and GNA11) and PLC β has been showed in bovine antral follicle, concomitant with an increase in LHR expression. To gain insight into the effects of superstimulation with FSH (P-36 protocol) or FSH combined with equine chorionic gonadotropin (eCG; P-36/eCG protocol) on the mRNA expression of proteins involved in LHR signaling in bovine granulosa cells, Nelore cows (Bos indicus) were treated with two superstimulatory protocols: P-36 protocol or P-36/eCG protocol (replacement of the FSH by eCG administration on the last day of treatment). Nonsuperstimulated cows were only submitted to estrous synchronization without ovarian superstimulation. The granulosa cells were harvested from follicles and mRNA abundance of GNAS, GNAQ, GNA11, PLCB1, PLCB, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, ADCY8, and ADCY9) was measured by real-time reserve transcription followed by polymerase chain reaction. No differences on mRNA abundance of target genes were observed in granulosa cells of cows submitted to P-36 protocol compared with control group. However, the cows submitted to P-36/eCG protocol showed upregulation on the mRNA abundance of target genes (except ADCY8) in granulosa cells. Although the P-36 protocol did not regulate mRNA expression of the proteins involved in the signaling mechanisms of the cAMP and IP3 systems, the constant presence of GNAS, GNAQ, GNA11, PLCB1, PLCB3, PLCB4, and adenylyl cyclase isoforms (ADCY3, ADCY4, ADCY6, and ADCY9) mRNA and the upregulation of these genes in granulosa cells from cows submitted to P-36/e

  9. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii.

    PubMed

    Trieu, Melissa M; Devine, Erin L; Lamarche, Lindsey B; Ammerman, Aaron E; Greco, Jordan A; Birge, Robert R; Theobald, Douglas L; Oprian, Daniel D

    2017-06-23

    RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus Blastocladiella emersonii It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λmax = 390 nm; D380N, λmax = 506 nm) and one with red-shifted (D380E, λmax = 533 nm) absorption maxima relative to the wild-type protein (λmax = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Alcohol stimulates ciliary motility of isolated airway axonemes through a nitric oxide, cyclase, and cyclic nucleotide-dependent kinase mechanism.

    PubMed

    Sisson, Joseph H; Pavlik, Jacqueline A; Wyatt, Todd A

    2009-04-01

    Lung mucociliary clearance provides the first line of defense from lung infections and is impaired in individuals who consume heavy amounts of alcohol. Previous studies have demonstrated that this alcohol-induced ciliary dysfunction occurs through impairment of nitric oxide (NO) and cyclic nucleotide-dependent kinase-signaling pathways in lung airway ciliated epithelial cells. Recent studies have established that all key elements of this alcohol-driven signaling pathway co-localize to the apical surface of the ciliated cells with the basal bodies. These findings led us to hypothesize that alcohol activates the cilia stimulation pathway at the organelle level. To test this hypothesis we performed experiments exposing isolated demembranated cilia (isolated axonemes) to alcohol and studied the effect of alcohol-stimulated ciliary motility on the pathways involved with isolated axoneme activation. Isolated demembranated cilia were prepared from bovine trachea and activated with adenosine triphosphate. Ciliary beat frequency, NO production, adenylyl and guanylyl cyclase activities, cAMP- and cGMP-dependent kinase activities were measured following exposure to biologically relevant concentrations of alcohol. Alcohol rapidly stimulated axoneme beating 40% above baseline at very low concentrations of alcohol (1 to 10 mM). This activation was specific to ethanol, required the synthesis of NO, the activation of soluble adenylyl cyclase (sAC), and the activation of both cAMP- and cGMP-dependent kinases (PKA and PKG), all of which were present in the isolated organelle preparation. Alcohol rapidly and sequentially activates the eNOS-->NO-->GC-->cGMP-->PKG and sAC-->cAMP--> PKA dual signaling pathways in isolated airway axonemes. These findings indicate a direct effect of alcohol on airway cilia organelle function and fully recapitulate the alcohol-driven activation of cilia known to exist in vivo and in intact lung ciliated cells in vitro following brief moderate alcohol

  11. Identification of bacterial guanylate cyclases.

    PubMed

    Ryu, Min-Hyung; Youn, Hwan; Kang, In-Hye; Gomelsky, Mark

    2015-05-01

    The ability of bacteria to use cGMP as a second messenger has been controversial for decades. Recently, nucleotide cyclases from Rhodospirillum centenum, GcyA, and Xanthomonas campestris, GuaX, have been shown to possess guanylate cyclase activities. Enzymatic activities of these guanylate cyclases measured in vitro were low, which makes interpretation of the assays ambiguous. Protein sequence analysis at present is insufficient to distinguish between bacterial adenylate and guanylate cyclases, both of which belong to nucleotide cyclases of type III. We developed a simple method for discriminating between guanylate and adenylate cyclase activities in a physiologically relevant bacterial system. The method relies on the use of a mutant cAMP receptor protein, CRPG , constructed here. While wild-type CRP is activated exclusively by cAMP, CRPG can be activated by either cAMP or cGMP. Using CRP- and CRPG -dependent lacZ expression in two E. coli strains, we verified that R. centenum GcyA and X. campestris GuaX have primarily guanylate cyclase activities. Among two other bacterial nucleotide cyclases tested, one, GuaA from Azospillrillum sp. B510, proved to have guanylate cyclase activity, while the other one, Bradyrhizobium japonicum CyaA, turned out to function as an adenylate cyclase. The results obtained with this reporter system were in excellent agreement with direct measurements of cyclic nucleotides secreted by E. coli expressing nucleotide cyclase genes. The simple genetic screen developed here is expected to facilitate identification of bacterial guanylate cyclases and engineering of guanylate cyclases with desired properties.

  12. Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP).

    PubMed

    Yusof, Adlina Mohd; Hu, Nien-Jen; Wlodawer, Alexander; Hofmann, Andreas

    2005-02-01

    Cyclase-associated protein (CAP) is a highly conserved and widely distributed protein that links the nutritional response signaling to cytoskeleton remodeling. In yeast, CAP is a component of the adenylyl cyclase complex and helps to activate the Ras-mediated catalytic cycle of the cyclase. While the N-terminal domain of CAP (N-CAP) provides a binding site for adenylyl cyclase, the C-terminal domain (C-CAP) possesses actin binding activity. Our attempts to crystallize full-length recombinant CAP from Dictyostelium discoideum resulted in growth of orthorhombic crystals containing only the N-terminal domain (residues 42-227) due to auto-proteolytic cleavage. The structure was solved by molecular replacement with data at 2.2 A resolution. The present crystal structure allows the characterization of a head-to-tail N-CAP dimer in the asymmetric unit and a crystallographic side-to-side dimer. Comparison with previously published structures of N-CAP reveals variable modes of dimerization of this domain, but the presence of a common interface for the side-to-side dimer.

  13. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  14. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  15. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes.

    PubMed

    Novak, Jakub; Cerny, Ondrej; Osickova, Adriana; Linhartova, Irena; Masin, Jiri; Bumba, Ladislav; Sebo, Peter; Osicka, Radim

    2017-09-24

    Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.

  16. Pseudomonas aeruginosa Exotoxin Y Is a Promiscuous Cyclase That Increases Endothelial Tau Phosphorylation and Permeability*

    PubMed Central

    Ochoa, Cristhiaan D.; Alexeyev, Mikhail; Pastukh, Viktoriya; Balczon, Ron; Stevens, Troy

    2012-01-01

    Exotoxin Y (ExoY) is a type III secretion system effector found in ∼ 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY causes inter-endothelial gaps and vascular leak, the mechanisms by which this occurs are poorly understood. Using both a bacteria-delivered and a codon-optimized conditionally expressed ExoY, we report that this toxin is a dual soluble adenylyl and guanylyl cyclase that results in intracellular cAMP and cGMP accumulation. The enzymatic activity of ExoY caused phosphorylation of endothelial Tau serine 214, accumulation of insoluble Tau, inter-endothelial cell gap formation, and increased macromolecular permeability. To discern whether the cAMP or cGMP signal was responsible for Tau phosphorylation and barrier disruption, pulmonary microvascular endothelial cells were engineered for the conditional expression of either wild-type guanylyl cyclase, which synthesizes cGMP, or a mutated guanylyl cyclase, which synthesizes cAMP. Sodium nitroprusside stimulation of the cGMP-generating cyclase resulted in transient Tau serine 214 phosphorylation and gap formation, whereas stimulation of the cAMP-generating cyclase induced a robust increase in Tau serine 214 phosphorylation, gap formation, and macromolecular permeability. These results indicate that the cAMP signal is the dominant stimulus for Tau phosphorylation. Hence, ExoY is a promiscuous cyclase and edema factor that uses cAMP and, to some extent, cGMP to induce the hyperphosphorylation and insolubility of endothelial Tau. Because hyperphosphorylated and insoluble Tau are hallmarks in neurodegenerative tauopathies such as Alzheimer disease, acute Pseudomonas infections cause a pathophysiological sequela in endothelium previously recognized only in chronic neurodegenerative diseases. PMID:22637478

  17. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases.

    PubMed

    Bondarenko, Vladimir A; Hayashi, Fumio; Usukura, Jiro; Yamazaki, Akio

    2010-01-01

    Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.

  18. Actin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins

    PubMed Central

    Belyy, Alexander; Raoux-Barbot, Dorothée; Saveanu, Cosmin; Namane, Abdelkader; Ogryzko, Vasily; Worpenberg, Lina; David, Violaine; Henriot, Veronique; Fellous, Souad; Merrifield, Christien; Assayag, Elodie; Ladant, Daniel; Renault, Louis; Mechold, Undine

    2016-01-01

    The nucleotidyl cyclase toxin ExoY is one of the virulence factors injected by the Pseudomonas aeruginosa type III secretion system into host cells. Inside cells, it is activated by an unknown eukaryotic cofactor to synthesize various cyclic nucleotide monophosphates. ExoY-like adenylate cyclases are also found in Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) toxins produced by various Gram-negative pathogens. Here we demonstrate that filamentous actin (F-actin) is the hitherto unknown cofactor of ExoY. Association with F-actin stimulates ExoY activity more than 10,000 fold in vitro and results in stabilization of actin filaments. ExoY is recruited to actin filaments in transfected cells and alters F-actin turnover. Actin also activates an ExoY-like adenylate cyclase MARTX effector domain from Vibrio nigripulchritudo. Finally, using a yeast genetic screen, we identify actin mutants that no longer activate ExoY. Our results thus reveal a new sub-group within the class II adenylyl cyclase family, namely actin-activated nucleotidyl cyclase (AA-NC) toxins. PMID:27917880

  19. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis.

    PubMed

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael

    2011-05-01

    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  20. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins.

    PubMed

    Jiang, Jing; Fan, Ling Wen; Wu, Wei Hua

    2005-08-01

    Although there were reports suggesting the involvement of endogenous cAMP in plant defense signaling cascades, there is no direct evidence supporting this notion yet and the detailed mechanism is unclear. In the present study, we have used pathogenic fungi Verticillium dahliae and Arabidopsis plants as a model system of plant-microb interaction to demonstrate the function of endogenous cAMP in Arabidopsis defense responses. Both V. dahliae inoculation and Verticillium toxins injection induced typical "wilt" symptoms in Arabidopsis seedlings. When either 8-Br-AMP (a membrane permeable cAMP analogue) or salicylic acid (SA) was applied to Arabidopsis, the plants became resistant to V. dahliae toxins. However, addition of 8-Br-AMP did not increase the resistance of Arabidopsis transgenic plants deficient in SA to the toxins, suggesting that cAMP might act upstream of SA in plant defense signaling pathway. Indeed, 8-Br-cAMP and forskolin, an activator of adenylyl cyclase, significantly stimulated the endogenous SA level in plants, whereas DDA, an inhibitor of adenylyl cyclase dramatically reduced toxin-induced SA increase. Both the endogenous cAMP and SA increased significantly in Arabidopsis seedlings treated with toxins. Furthermore, transcription level of pathogenesis-related protein 1 gene (PR1) was strongly induced by both 8-Br-cAMP and the toxin treatment. Taken together, our data demonstrate that endogenous cAMP is involved in plant defense responses against Verticillium-secreted toxins by regulating the production of the known signal SA in plant defense pathway.

  1. [Structure, regulation and functions of particulate guanylyl cyclase type A].

    PubMed

    Mitkiewicz, Małgorzata

    2015-04-09

    Guanylyl cyclase type A (GC-A) belongs to the particulate guanylyl cyclases (pGC), which, like the soluble guanylyl cyclases (sGC), catalyze the synthesis of a common secondary messenger, namely cyclic GMP (cGMP), involved in many cellular processes. Although both forms of guanylyl cyclases produce the same secondary messenger, activation of each of them triggers different signaling pathways leading to different cellular effects. This indicates that the final effect of cGMP depends on the site of its synthesis in the cell (cytosol or cell membrane). Particulate guanylyl cyclase type A is a homodimeric protein activated by natriuretic peptides (ANP - atrial natriuretic peptide and BNP - brain natriuretic peptide) binding in the extracellular domain of the enzyme. The widespread expression of GC-A in different cell types and tissues suggests that this protein may regulate many cellular processes. Besides the role of GC-A in the cardiovascular system, which is the most thoroughly documented in the literature, it was observed that this protein is also involved in carcinogenesis and regulation of inflammatory reactions. This review describes important information about the structure, functions and regulation of GC-A catalytic activity, and the regulation of GC-A gene expression.

  2. [Intracellular cAMP involvement in the synchronized activity of noradrenaline in response to evoked release of the transmitter quanta in the frog synapses].

    PubMed

    Bukharaeva, E A; Samigullin, D V; Nikol'skiĭ, E E; Vyskocil, F

    2000-04-01

    An analogue of cyclic AMP (db-cAMP) penetrating into the frog neuromuscular junction's cell, as well as the adenylyl cyclase activator forskolin, and inhibitor of nucleotide-depending phosphodiesterase isobutilmethylxantine alter the kinetics of the quanta secretion resulting in synchronizing of the process of the transmitter release. Following a db-cAMP preliminary action, no such synchronizing of the transmitter release occurred. Action of noradrenaline on the time course of the secretion seems to be realised through activation of presynaptic beta-adrenoreceptors, augmentation of the adenylyl cyclase activity, and the rise of the intracellular cAMP.

  3. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  4. Characterization of soluble forms of nonchimeric type V adenylyl cyclases

    PubMed Central

    Scholich, Klaus; Barbier, Ann J.; Mullenix, Jason B.; Patel, Tarun B.

    1997-01-01

    Type V adenylyl cyclase (ACV) belongs to the family of Ca2+- inhibited cyclases. We have generated two soluble forms of the enzyme containing the C1 or C1a region (which lacks the C-terminal 112 amino acids) linked to the C2 domain and compared their regulation with the full-length ACV. All three forms of ACV were stimulated by the α subunit of the stimulatory G protein Gs (Gsα) and forskolin. However, the synergistic stimulation by both these activators was markedly enhanced in the soluble enzymes. Moreover, the α subunit of the inhibitory G protein Gi (Giα) inhibited all forms of the enzyme, indicating that the regions for Gsα and Giα interaction are preserved in the soluble forms. Ca2+ inhibited forskolin-stimulated adenylyl cyclase (AC) activity of the full-length and C1-C2 forms of ACV but did not alter the activity of the C1a-C2 form. Maximal stimulation of AC activity by combination of Gsα and forskolin obliterated the Ca2+-mediated inhibition of the full-length and C1-C2 forms of ACV. In 45Ca2+ overlay experiments, the C1-C2 but not the C1a-C2 soluble ACV bound Ca2+. Moreover, proteins corresponding to the C1a and C2 domains did not bind calcium. On the other hand, the proteins corresponding to C1 and its C-terminal 112 amino acids (C1b) bound 45Ca2+. To our knowledge, this is the first report of nonchimeric soluble forms of AC in which regulation by Gsα and Giα is preserved. Moreover, we demonstrate that the 112 amino acid C1b region of ACV is responsible for the binding of Ca2+ and inhibition of enzyme activity. PMID:9096321

  5. Conformational basis for the activation of adenylate cyclase by adenosine

    PubMed Central

    Miles, D. L.; Miles, D. W.; Eyring, H.

    1977-01-01

    The ability of adenosine to stimulate adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] and increase adenosine 3′:5′-cyclic monophosphate (cAMP) levels has important biochemical consequences. These include the suppression of immune responses and cardiovascular effects. Recent investigations involving the ability of adenosine and adenosine analogs to stimulate adenylate cyclase provided experimental data that appear to be correlated with the ability of adenosine and analogs of adenosine to exist in the glycosidic high anti conformation. 9-β-D-Arabinofuranosyladenine, which is not stable in the high anti conformation, is inactive as a stimulator of adenylate cyclase. 2′-Deoxyadenosine is also not stable in the high anti conformation but its instability may be significantly decreased by intramolecular adjustments promoted by receptor or active site interactions. 2′-Deoxyadenosine does not activate adenylate cyclase in lymphocytes when ATP is the substrate but is able to activate adenylate cyclase when 2-fluoro ATP is the substrate. The inability of certain analogs of adenosine, with bulky groups substituted for hydrogen at the 8 position of the adenine base, to activate adenylate cyclase and increase either lymphocyte or cardiac cell cAMP levels is consistent with the designation of the high anti conformation as being the conformation required for the activation of adenylate cyclase. An understanding of the glycosidic conformation required by the extracellular adenosine receptor of the adenosine molecule provides the basis for designing nucleoside analogs of adenosine that will exert a desired effect on cAMP levels. The avoidance of unwanted immunosuppressive or cardiotoxic effects can be arranged by structural changes that prohibit the high anti conformation. PMID:267918

  6. Dual role of cAMP and involvement of both G-proteins and ras in regulation of ERK2 in Dictyostelium discoideum.

    PubMed

    Knetsch, M L; Epskamp, S J; Schenk, P W; Wang, Y; Segall, J E; Snaar-Jagalska, B E

    1996-07-01

    Dictyostelium discoideum expresses two Extracellular signal Regulated Kinases, ERK1 and ERK2, which are involved in growth, multicellular development and regulation of adenylyl cyclase. Binding of extracellular cAMP to cAMP receptor 1, a G-protein coupled cell surface receptor, transiently stimulates phosphorylation, activation and nuclear translocation of ERK2. Activation of ERK2 by cAMP is dependent on heterotrimeric G-proteins, since activation of ERK2 is absent in cells lacking the Galpha4 subunit. The small G-protein rasD also activates ERK2. In cells overexpressing a mutated, constitutively active rasD, ERK2 activity is elevated prior to cAMP stimulation. Intracellular cAMP and cAMP-dependent protein kinase (PKA) are essential for adaptation of the ERK2 response. This report shows that multiple signalling pathways are involved in regulation of ERK2 activity in D.discoideum.

  7. Restoration of adenylate cyclase responsiveness in murine myeloid leukemia permits inhibition of proliferation by hormone. Butyrate augments catalytic activity of adenylate cyclase.

    PubMed

    Inhorn, L; Fleming, J W; Klingberg, D; Gabig, T G; Boswell, H S

    1988-04-01

    Mechanisms of leukemic cell clonal dominance may include aberrations of transmembrane signaling. In particular, neoplastic transformation has been associated with reduced capacity for hormone-stimulated adenylate cyclase activity. In the present study, prostaglandin E, a hormonal activator of adenylate cyclase that has antiproliferative activity in myeloid cells, and cholera toxin, an adenylate cyclase agonist that functions at a postreceptor site by activating the adenylate cyclase stimulatory GTP-binding protein (Gs), were studied for antiproliferative activity in two murine myeloid cell lines. FDC-P1, an interleukin 3 (IL 3)-dependent myeloid cell line and a tumorigenic IL 3-independent subline, FI, were resistant to these antiproliferative agents. The in vitro ability of the "differentiation" agent, sodium butyrate, to reverse their resistance to adenylate cyclase agonists was studied. The antiproliferative action of butyrate involved augmentation of transmembrane adenylate cyclase activity. Increased adenylate cyclase catalyst activity was the primary alteration of this transmembrane signaling group leading to the functional inhibitory effects on leukemia cells, although alterations in regulatory G-proteins appear to play a secondary role.

  8. Microscopical localization on adenylate cyclase: a historical review of methodologies.

    PubMed

    Richards, P A; Richards, P D

    1998-03-15

    The histochemistry technique for localizing adenylate cyclase has been developed over the past two decades. Early efforts were directed at overcoming the criticism of the lead capture technique, the inhibition of the enzyme by fixation, and problems associated with the substrate. The introduction of alternative metal ions, strontium and cerium, offered solutions to the criticism of the lead capture technique. The inhibition of the enzyme by the various fixation methods used has been rarely overcome satisfactorily and the use of non-fixed material during incubation is one of the alternatives that has been suggested. The introduction of adenylate (beta-gamma-methylene) diphosphate as an alternative substrate offers a solution to the problems associated with commercially available adenylyl imidodiphosphate. Although no standard medium or method has been accepted by all researchers, the histochemical technique still has a place in the arsenal of the modern cell biologist. The technique localizes the active enzyme, as opposed to the protein, active and nonactive, by immunocytochemistry and the precursors of the protein by in situ hybridization methods.

  9. Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice1,2,3

    PubMed Central

    Arakawa, Hiroyuki; Akkentli, Fatih

    2014-01-01

    Abstract Cover Figure Region-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the “barrelless”/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning

  10. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: II. Involvement of a mitogen-activated protein kinase pathway.

    PubMed

    Benninghoff, Abby D; Thomas, Peter

    2006-07-01

    Previous investigations in Atlantic croaker ovaries and primary co-cultured theca and granulosa cells have identified multiple signal transduction pathways involved in the control of gonadotropin-induced steroidogenesis, including adenylyl cyclase- and calcium-dependent signaling pathways. In the present study, evidence was obtained for an involvement of a third signal transduction pathway, a mitogen-activated protein kinase (MAP kinase) signaling cascade, in the regulation of gonadal steroidogenesis in this lower vertebrate teleost model. Gonadotropin-stimulated testosterone synthesis was markedly attenuated by two antagonists of mitogen-activated protein kinase kinases 1/2 (MEK1/2, also known as Map2k1/Map2k2). Moreover, treatment with gonadotropin-induced MEK1/2-dependent phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2, also known as Mapk3/Mapk1) in a concentration- and time-dependent manner in co-cultured croaker theca and granulosa cells. Active MEK1/2 was required for a complete steroidogenic response to activators of the adenylyl cyclase pathway, including forskolin and dbcAMP, suggesting that the target(s) of MAP kinase signaling are distal to cAMP generation and activation of cAMP-dependent protein kinase (PKA). Interestingly, dbcAMP caused a similar increase of ERK1/2 phosphorylation as was observed with gonadotropin treatment, although an inhibitor of PKA did not attenuate this response. Finally, there was no evidence of cross-talk between calcium-dependent signaling pathways and this MAP kinase cascade. While drugs that block calcium-dependent signal transduction, including inhibitors of voltage-sensitive calcium channels, calmodulin, and calcium/calmodulin-dependent kinases, significantly reduced gonadotropin-induced testosterone accumulation, these drugs had no apparent effect on hCG-induced ERK1/2 phosphorylation.

  11. [Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases].

    PubMed

    Świeżawska, Brygida; Marciniak, Katarzyna; Szmidt-Jaworska, Adriana

    2015-01-01

    Cyclic 3',5'-guanosine monophosphate (cGMP) is involved in many physiological processes in plants. Concentration of this second messenger in plant cell is determined by guanylyl cyclases (GCs) responsible for cGMP synthesis and phosphodiesterases (PDEs) involved in cGMP inactivation. First discovered plant GCs were localized in cytosol, but few years ago a new family of plasma membrane proteins with guanylyl cyclase activity was identified in Arabidopsis thaliana. These proteins belong to the family of a leucine-rich repeat receptor-like kinases (LRR-RLK) with extracellular leucine-rich repeat domain, a transmembrane-spanning domain, and an intracellular kinase domain. A novel class of guanylyl cyclases contain the GC catalytic center encapsulated within the intracellular kinase domain. These molecules are different to animal GCs in that the GC catalytic center is nested within the kinase domain. In presented paper we summarized the most recent data concerning plant guanylyl cyclases.

  12. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios.

    PubMed

    Blatt, Andreas; Bauch, Matthias E; Pörschke, Yvonne; Lohr, Martin

    2015-05-01

    Biosynthesis of asymmetric carotenoids such as α-carotene and lutein in plants and green algae involves the two enzymes lycopene β-cyclase (LCYB) and lycopene ε-cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C-terminal light-harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α-carotene and β-carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C-terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α-carotene-to-β-carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α-carotene or lutein in bacteria or fungi. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  14. Guanylyl cyclase structure, function and regulation.

    PubMed

    Potter, Lincoln R

    2011-12-01

    Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies.

  15. Calmodulin independence of human duodenal adenylate cyclase.

    PubMed Central

    Smith, J A; Griffin, M; Mireylees, S E; Long, R G

    1991-01-01

    The calmodulin and calcium dependence of human adenylate cyclase from the second part of the duodenum was assessed in washed particulate preparations of biopsy specimens by investigating (a) the concentration dependent effects of free [Ca2+] on enzyme activity, (b) the effects of exogenous calmodulin on enzyme activity in ethylene glycol bis (b-aminoethyl ether)N,N'-tetra-acetic acid (EGTA) washed particulate preparations, and (c) the effects of calmodulin antagonists on enzyme activity. Both basal (IC50 = 193.75 (57.5) nmol/l (mean (SEM)) and NaF stimulated (IC50 = 188.0 (44.0) nmol/l) adenylate cyclase activity was strongly inhibited by free [Ca2+] greater than 90 nmol/l. Free [Ca2+] less than 90 nmol/l had no effect on adenylate cyclase activity. NaF stimulated adenylate cyclase activity was inhibited by 50% at 2.5 mmol/l EGTA. This inhibition could not be reversed by free Ca2+. The addition of exogenous calmodulin to EGTA (5 mmol/l) washed particulate preparations failed to stimulate adenylate cyclase activity. Trifluoperazine and N-(8-aminohexyl)-5-IODO-1-naphthalene-sulphonamide (IODO 8) did not significantly inhibit basal and NaF stimulated adenylate cyclase activity when measured at concentrations of up to 100 mumol/l. These results suggest that human duodenal adenylate cyclase activity is calmodulin independent but is affected by changes in free [Ca2+]. PMID:1752461

  16. Regulation of brain adenylate cyclase by calmodulin

    SciTech Connect

    Harrison, J.K.

    1988-01-01

    This thesis examined the interaction between the Ca{sup 2+}-binding protein, calmodulin (CaM), and the cAMP synthesizing enzyme, adenylate cyclase. The regulation of guanyl nucleotide-dependent adenylate cyclase by CaM was examined in a particulate fraction from bovine striatum. CaM stimulated basal adenylate cyclase activity and enhanced the stimulation of the enzyme by GTP and dopamine (DA). The potentiation of GTP- and DA-stimulated adenylate cyclase activities by CaM was more sensitive to the concentration of CaM than was the stimulation of basal activity. A photoreactive CaM derivative was developed in order to probe the interactions between CaM and the adenylate cyclase components of bovine brain. Iodo-({sup 125}I)-CaM-diazopyruvamide ({sup 125}I-CAM-DAP) behaved like native CaM with respect to Ca{sup 2+}-enhanced mobility on sodium dodecyl sulfate-polyacrylamide gels and Ca{sup 2+}-dependent stimulation of adenylate cyclase. {sup 125}I-CaM-DAP cross-linked to CaM-binding proteins in a Ca{sup 2+}-dependent, concentration-dependent, and CaM-specific manner. Photolysis of {sup 125}I-CaM-DAP and forskolin-agarose purified CaM-sensitive adenylate cyclase produced an adduct with a molecular weight of 140,000.

  17. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    PubMed

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.

  18. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase.

    PubMed

    Kotaka, Masayo; Graeff, Richard; Chen, Zhe; Zhang, Li He; Lee, Hon Cheung; Hao, Quan

    2012-01-20

    Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.

  19. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis.

    PubMed

    Skopova, Karolina; Tomalova, Barbora; Kanchev, Ivan; Rossmann, Pavel; Svedova, Martina; Adkins, Irena; Bibova, Ilona; Tomala, Jakub; Masin, Jiri; Guiso, Nicole; Osicka, Radim; Sedlacek, Radislav; Kovar, Marek; Sebo, Peter

    2017-06-01

    The adenylate cyclase toxin-hemolysin (CyaA, ACT, or AC-Hly) of Bordetella pertussis targets phagocytic cells expressing the complement receptor 3 (CR3, Mac-1, αMβ2 integrin, or CD11b/CD18). CyaA delivers into cells an N-terminal adenylyl cyclase (AC) enzyme domain that is activated by cytosolic calmodulin and catalyzes unregulated conversion of cellular ATP into cyclic AMP (cAMP), a key second messenger subverting bactericidal activities of phagocytes. In parallel, the hemolysin (Hly) moiety of CyaA forms cation-selective hemolytic pores that permeabilize target cell membranes. We constructed the first B. pertussis mutant secreting a CyaA toxin having an intact capacity to deliver the AC enzyme into CD11b-expressing (CD11b(+)) host phagocytes but impaired in formation of cell-permeabilizing pores and defective in cAMP elevation in CD11b(-) cells. The nonhemolytic AC(+) Hly(-) bacteria inhibited the antigen-presenting capacities of coincubated mouse dendritic cells in vitro and skewed their Toll-like receptor (TLR)-triggered maturation toward a tolerogenic phenotype. The AC(+) Hly(-) mutant also infected mouse lungs as efficiently as the parental AC(+) Hly(+) strain. Hence, elevation of cAMP in CD11b(-) cells and/or the pore-forming capacity of CyaA were not required for infection of mouse airways. The latter activities were, however, involved in bacterial penetration across the epithelial layer, enhanced neutrophil influx into lung parenchyma during sublethal infections, and the exacerbated lung pathology and lethality of B. pertussis infections at higher inoculation doses (>10(7) CFU/mouse). The pore-forming activity of CyaA further synergized with the cAMP-elevating activity in downregulation of major histocompatibility complex class II (MHC-II) molecules on infiltrating myeloid cells, likely contributing to immune subversion of host defenses by the whooping cough agent. Copyright © 2017 American Society for Microbiology.

  20. A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a Type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase.

    PubMed

    Pérez-Mendoza, Daniel; Coulthurst, Sarah J; Humphris, Sonia; Campbell, Emma; Welch, Martin; Toth, Ian K; Salmond, George P C

    2011-11-01

    Cyclic diguanylate (c-di-GMP) is a second messenger controlling many important bacterial processes. The phytopathogen Pectobacterium atrosepticum SCRI1043 (Pba1043) possesses a Type I secretion system (T1SS) essential for the secretion of a proteinaceous multi-repeat adhesin (MRP) required for binding to the host plant. The genes encoding the MRP and the T1SS are tightly linked to genes encoding several putative c-di-GMP regulatory components. We show that c-di-GMP regulates secreted MRP levels in Pba1043 through the action of two genes encoding predicted diguanylate cyclase (DGC) and phosphodiesterase proteins (ECA3270 and ECA3271). Phenotypic analyses and quantification of c-di-GMP levels demonstrated that ECA3270 and ECA3271 regulate secreted MRP levels by increasing and decreasing, respectively, the intracellular levels of c-di-GMP. Moreover, ECA3270 represents the first active DGC reported to have an alternative active-site motif from the 'canonical' GG[D/E]EF. ECA3270 has an A-site motif of SGDEF and analysis of single amino acid replacements demonstrated that the first position of this motif can tolerate functional substitution. Serine in position one of the A-site is also observed in many other DGCs. Finally, another T1SS-linked regulator (ECA3265) also plays an important role in regulating secreted MRP, with an altered localization of MRP observed in an ECA3265 mutant background. Mutants defective in these three T1SS-linked regulators exhibit a reduction in root binding and virulence, confirming that this complex, finely tuned regulation system is crucial in the interaction with host plants.

  1. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding.

    PubMed

    Wills, Zachary; Emerson, Mark; Rusch, Jannette; Bikoff, Jay; Baum, Buzz; Perrimon, Norbert; Van Vactor, David

    2002-11-14

    We demonstrate that Drosophila capulet (capt), a homolog of the adenylyl cyclase-associated protein that binds and regulates actin in yeast, associates with Abl in Drosophila cells, suggesting a functional relationship in vivo. We find a robust and specific genetic interaction between capt and Abl at the midline choice point where the growth cone repellent Slit functions to restrict axon crossing. Genetic interactions between capt and slit support a model where Capt and Abl collaborate as part of the repellent response. Further support for this model is provided by genetic interactions that both capt and Abl display with multiple members of the Roundabout receptor family. These studies identify Capulet as part of an emerging pathway linking guidance signals to regulation of cytoskeletal dynamics and suggest that the Abl pathway mediates signals downstream of multiple Roundabout receptors.

  2. Mechanistic investigations on six bacterial terpene cyclases

    PubMed Central

    Rabe, Patrick; Schmitz, Thomas

    2016-01-01

    Summary The products obtained by incubation of farnesyl diphosphate (FPP) with six purified bacterial terpene cyclases were characterised by one- and two-dimensional NMR spectroscopic methods, allowing for a full structure elucidation. The absolute configurations of four terpenes were determined based on their optical rotary powers. Incubation experiments with 13C-labelled isotopomers of FPP in buffers containing water or deuterium oxide allowed for detailed insights into the cyclisation mechanisms of the bacterial terpene cyclases. PMID:27829890

  3. Structural and Chemical Biology of Terpenoid Cyclases

    PubMed Central

    2017-01-01

    The year 2017 marks the twentieth anniversary of terpenoid cyclase structural biology: a trio of terpenoid cyclase structures reported together in 1997 were the first to set the foundation for understanding the enzymes largely responsible for the exquisite chemodiversity of more than 80000 terpenoid natural products. Terpenoid cyclases catalyze the most complex chemical reactions in biology, in that more than half of the substrate carbon atoms undergo changes in bonding and hybridization during a single enzyme-catalyzed cyclization reaction. The past two decades have witnessed structural, functional, and computational studies illuminating the modes of substrate activation that initiate the cyclization cascade, the management and manipulation of high-energy carbocation intermediates that propagate the cyclization cascade, and the chemical strategies that terminate the cyclization cascade. The role of the terpenoid cyclase as a template for catalysis is paramount to its function, and protein engineering can be used to reprogram the cyclization cascade to generate alternative and commercially important products. Here, I review key advances in terpenoid cyclase structural and chemical biology, focusing mainly on terpenoid cyclases and related prenyltransferases for which X-ray crystal structures have informed and advanced our understanding of enzyme structure and function. PMID:28841019

  4. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells.

    PubMed

    Bähre, Heike; Danker, Kerstin Y; Stasch, Johannes-Peter; Kaever, Volkhard; Seifert, Roland

    2014-01-24

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface.

    PubMed

    Peshenko, Igor V; Olshevskaya, Elena V; Dizhoor, Alexander M

    2015-08-07

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met(823) was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg(822). The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met(823) or Arg(822) was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg(822) and Met(823). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Dimerization Domain of Retinal Membrane Guanylyl Cyclase 1 (RetGC1) Is an Essential Part of Guanylyl Cyclase-activating Protein (GCAP) Binding Interface*

    PubMed Central

    Peshenko, Igor V.; Olshevskaya, Elena V.; Dizhoor, Alexander M.

    2015-01-01

    The photoreceptor-specific proteins guanylyl cyclase-activating proteins (GCAPs) bind and regulate retinal membrane guanylyl cyclase 1 (RetGC1) but not natriuretic peptide receptor A (NPRA). Study of RetGC1 regulation in vitro and its association with fluorescently tagged GCAP in transfected cells showed that R822P substitution in the cyclase dimerization domain causing congenital early onset blindness disrupted RetGC1 ability to bind GCAP but did not eliminate its affinity for another photoreceptor-specific protein, retinal degeneration 3 (RD3). Likewise, the presence of the NPRA dimerization domain in RetGC1/NPRA chimera specifically disabled binding of GCAPs but not of RD3. In subsequent mapping using hybrid dimerization domains in RetGC1/NPRA chimera, multiple RetGC1-specific residues contributed to GCAP binding by the cyclase, but the region around Met823 was the most crucial. Either positively or negatively charged residues in that position completely blocked GCAP1 and GCAP2 but not RD3 binding similarly to the disease-causing mutation in the neighboring Arg822. The specificity of GCAP binding imparted by RetGC1 dimerization domain was not directly related to promoting dimerization of the cyclase. The probability of coiled coil dimer formation computed for RetGC1/NPRA chimeras, even those incapable of binding GCAP, remained high, and functional complementation tests showed that the RetGC1 active site, which requires dimerization of the cyclase, was formed even when Met823 or Arg822 was mutated. These results directly demonstrate that the interface for GCAP binding on RetGC1 requires not only the kinase homology region but also directly involves the dimerization domain and especially its portion containing Arg822 and Met823. PMID:26100624

  7. WR-2721 inhibits parathyroid adenylate cyclase

    SciTech Connect

    Weaver, M.E.; Morrissey, J.; McConkey, C. Jr.; Goldfarb, S.; Slatopolsky, E.; Martin, K.J.

    1987-02-01

    WR-2721 (S-2-(3-aminopropylamino)ethylphosphorothioic acid) is a chemoprotective and radioprotective agent that has been shown to lower serum calcium in dogs and in humans. This is secondary both to impaired release of CaS from bone and diminished secretion of parathyroid hormone (PTH) from parathyroid glands. Because cAMP plays a role in the regulation of PTH secretion and WR-2721 has been shown to lower cAMP levels in radiated mouse spleen, the authors investigated the effects of WR-2721 on cAMP production in dispersed bovine parathyroid cells. Additional, they studied the adenylate cyclase in plasma membranes from normal bovine parathyroid glands after exposure to WR-2721. With parathyroid cells incubated at 0.5 mM CaS , addition of Wr-2721 in concentrations ranging from 0.02 to 2.0 mM resulted in a progressive decrease in intracellular cAMP measured by radioimmunoassay. In plasma membranes of bovine parathyroid cells a dose-dependent decrease in adenylate cyclase activity was noted. Inhibition of the cyclase was seen over a wide range of MgS concentrations. WR-2721 inhibited both basal and NaF, Gpp(NH)(, forskolin, and pertussin toxin-stimulated adenylate cyclase. These data suggest that WR-2721 inhibits the activity of parathyroid adenylate cyclase.

  8. Ability of nonenzymic nitration or acetylation of E. coli glutamine synthetase to produce effects analogous to enzymic adenylylation.

    PubMed

    Cimino, F; Anderson, W B; Stadtman, E R

    1970-06-01

    Treatment of unadenylylated glutamine synthetase from Escherichia coli with tetranitromethane or with N-acetylimidazole produces alterations in catalytic parameters that are similar to alterations caused by the physiologically important process of adenylylation. All three modification reactions lead to a change in divalent ion requirement for biosynthetic activity; the unmodified enzyme requires Mg(2+) for activity, whereas the modified enzymes exhibit increased activity with Mn(2+). The gamma-glutamyl transferase activity of the modified enzyme is more sensitive to feedback inhibition by tryptophan, histidine, CTP, and AMP, and to inhibition by Mg(2+) or to inactivation by 5 M urea. Finally, the pH optimum for the unmodified enzyme is 7.9, while the modified enzymes are more active at pH 6.8. Since treatment of the enzyme with N-acetylimidazole results in a decrease in absorbancy at 278 mmu and treatment with tetranitromethane causes an increase in absorbancy at 428 mmu, the effects of these reagents are probably due to modification of certain tyrosyl groups on the enzyme. However, other evidence indicates that the tyrosyl residues which are susceptible to adenylylation in the adenylyltransferase-catalyzed reaction are not involved in the acetylation or nitration reactions.

  9. Ability of Nonenzymic Nitration or Acetylation of E. coli Glutamine Synthetase to Produce Effects Analogous to Enzymic Adenylylation

    PubMed Central

    Cimino, Filiberto; Anderson, Wayne B.; Stadtman, E. R.

    1970-01-01

    Treatment of unadenylylated glutamine synthetase from Escherichia coli with tetranitromethane or with N-acetylimidazole produces alterations in catalytic parameters that are similar to alterations caused by the physiologically important process of adenylylation. All three modification reactions lead to a change in divalent ion requirement for biosynthetic activity; the unmodified enzyme requires Mg2+ for activity, whereas the modified enzymes exhibit increased activity with Mn2+. The γ-glutamyl transferase activity of the modified enzyme is more sensitive to feedback inhibition by tryptophan, histidine, CTP, and AMP, and to inhibition by Mg2+ or to inactivation by 5 M urea. Finally, the pH optimum for the unmodified enzyme is 7.9, while the modified enzymes are more active at pH 6.8. Since treatment of the enzyme with N-acetylimidazole results in a decrease in absorbancy at 278 mμ and treatment with tetranitromethane causes an increase in absorbancy at 428 mμ, the effects of these reagents are probably due to modification of certain tyrosyl groups on the enzyme. However, other evidence indicates that the tyrosyl residues which are susceptible to adenylylation in the adenylyltransferase-catalyzed reaction are not involved in the acetylation or nitration reactions. PMID:4317919

  10. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation

    PubMed Central

    Williams, Kerstin J.; Bennett, Mark H.; Barton, Geraint R.; Jenkins, Victoria A.; Robertson, Brian D.

    2013-01-01

    Summary PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation. PMID:23352854

  11. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    PubMed

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Pituitary Adenylate Cyclase Activating Polypeptide

    PubMed Central

    Seeliger, Stephan; Buddenkotte, Jörg; Schmidt-Choudhury, Anjona; Rosignoli, Carine; Shpacovitch, Victoria; von Arnim, Ulrike; Metze, Dieter; Rukwied, Roman; Schmelz, Martin; Paus, Ralf; Voegel, Johannes J.; Schmidt, Wolfgang E.; Steinhoff, Martin

    2010-01-01

    Pituitary adenylate cyclase-activating peptide (PACAP) is an important neuropeptide and immunomodulator in various tissues. Although this peptide and its receptors (ie, VPAC1R, VPAC2R, and PAC1R) are expressed in human skin, their biological roles are unknown. Therefore, we tested whether PACAP regulates vascular responses in human skin in vivo. When injected intravenously, PACAP induced a significant, concentration-dependent vascular response (ie, flush, erythema, edema) and mediated a significant and concentration-dependent increase in intrarectal body temperature that peaked at 2.7°C. Topical application of PACAP induced marked concentration-dependent edema. Immunohistochemistry revealed a close association of PACAP-immunoreactive nerve fibers with mast cells and dermal blood vessels. VPAC1R was expressed by dermal endothelial cells, CD4+ and CD8+ T cells, mast cells, and keratinocytes, whereas VPAC2R was expressed only in keratinocytes. VPAC1R protein and mRNA were also detected in human dermal microvascular endothelial cells. The PACAP-induced change in cAMP production in these cells demonstrated VPAC1R to be functional. PACAP treatment of organ-cultured human skin strongly increased the number of CD31+ vessel cross-sections. Taken together, these results suggest that PACAP directly induces vascular responses that may be associated with neurogenic inflammation, indicating for the first time that PACAP may be a crucial vascular regulator in human skin in vivo. Antagonists to PACAP function may be beneficial for the treatment of inflammatory skin diseases with a neurogenic component. PMID:20889562

  13. [The aspects of adenylate cyclase activity regulation in myocardium cell membranes during hypokinesia].

    PubMed

    Bulanova, K Ia; Komar, E S; Lobanok, L M

    1999-01-01

    Nonstimulated and isoproterenol, GTF, GITF, NaF stimulated activities of the adenylate cyclase in sarcolemma in white rats' myocardium was studied after two weeks of hypokinesia. As was established, in restrained animals the sensitivity of adenylate cyclase to the specified agents was increased and transition to the bimodal GTF regulation took place. It is hypothesised that involvement of membrane-bound Gi-proteins in the adrenergic effects on cardiomyocytes is one of mechanisms of the cardiotropic effects of restraint and heart distresses.

  14. Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly.

    PubMed

    Freeman, N L; Field, J

    2000-02-01

    Control of cell shape and motility requires rearrangements of the actin cytoskeleton. One cytoskeletal protein that may regulate actin dynamics is CAP (cyclase associated protein; CAP/Srv2p; ASP-56). CAP was first isolated from yeast as an adenylyl cyclase associated protein required for RAS regulation of cAMP signaling. In addition, CAP also regulates the actin cytoskeleton primarily through an actin monomer binding activity. CAP homologs are found in many eukaryotes, including mammals where they also bind actin, but little is known about their biological function. We, therefore, designed experiments to address CAP1 regulation of the actin cytoskeleton. CAP1 localized to membrane ruffles and actin stress fibers in fixed cells of various types. To address localization in living cells, we constructed GFP-CAP1 fusion proteins and found that fusion proteins lacking the actin-binding region localized like the wild type protein. We also performed microinjection studies with affinity-purified anti-CAP1 antibodies in Swiss 3T3 fibroblasts and found that the antibodies attenuated serum stimulation of stress fibers. Finally, CAP1 purified from platelets through a monoclonal antibody affinity purification step stimulated the formation of stress fiber-like filaments when it was microinjected into serum-starved Swiss 3T3 cells. Taken together, these data suggest that CAP1 promotes assembly of the actin cytoskeleton.

  15. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein.

    PubMed

    Freeman, N L; Chen, Z; Horenstein, J; Weber, A; Field, J

    1995-03-10

    The Saccharomyces cerevisiae adenylyl cyclase complex contains at least two subunits, a 200-kDa catalytic subunit and a 70-kDa cyclase-associated protein, CAP (also called Srv2p). Genetic studies suggested two roles for CAP, one as a positive regulator of cAMP levels in yeast and a second role as a cytoskeletal regulator. We present evidence showing that CAP sequesters monomeric actin (Kd in the range of 0.5-5 microM), decreasing actin incorporation into actin filaments. Anti-CAP monoclonal antibodies co-immunoprecipitate a protein with a molecular size of about 46 kDa. When CAP was purified from yeast using an anti-CAP monoclonal antibody column, the 46-kDa protein co-purified with a stoichiometry of about 1:1 with CAP. Western blots identified the 46-kDa protein as yeast actin. CAP also bound to muscle actin in vitro in immunoprecipitation assays and falling ball viscometry assays. Experiments with pyrene-labeled actin demonstrated that CAP sequesters actin monomers. The actin monomer binding activity is localized to the carboxyl-terminal half of CAP. Together, these data suggest that yeast CAP regulates the yeast cytoskeleton by sequestering actin monomers.

  16. Adenylate Cyclase 6 Determines cAMP Formation and Aquaporin-2 Phosphorylation and Trafficking in Inner Medulla

    PubMed Central

    Tang, Tong; Murray, Fiona; Schroth, Jana; Insel, Paul A.; Fenton, Robert A.; Hammond, H. Kirk

    2010-01-01

    Arginine vasopressin (AVP) enhances water reabsorption in the renal collecting duct by vasopressin V2 receptor (V2R)-mediated activation of adenylyl cyclase (AC), cAMP-promoted phosphorylation of aquaporin-2 (AQP2), and increased abundance of AQP2 on the apical membrane. Multiple isoforms of adenylate cyclase exist, and the roles of individual AC isoforms in water homeostasis are not well understood. Here, we found that levels of AC6 mRNA, the most highly expressed AC isoform in the inner medulla, inversely correlate with fluid intake. Moreover, mice lacking AC6 had lower levels of inner medullary cAMP, reduced abundance of phosphorylated AQP2 (at both serine-256 and serine-269), and lower urine osmolality than wild-type mice. Water deprivation or administration of the V2R agonist dDAVP did not increase urine osmolality of AC6-deficient mice to the levels of wild-type mice. Furthermore, AC6-deficient mice lacked dDAVP-promoted inner medullary cAMP formation and phosphorylation of serine-269 and had attenuated increases in both phosphorylation of serine-256 and apical membrane AQP2 trafficking. In summary, AC6 expression determines inner medullary cAMP formation and AQP2 phosphorylation and trafficking, the absence of which causes nephrogenic diabetes insipidus. PMID:20864687

  17. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  18. The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology.

    PubMed

    Osborn, Andrew R; Kean, Kelsey M; Karplus, P Andrew; Mahmud, Taifo

    2017-08-02

    Covering up to: 1999-2016This highlight covers a family of enzymes of growing importance, the sedoheptulose 7-phosphate cyclases, initially of interest due to their involvement in the biosynthesis of pharmaceutically relevant secondary metabolites. More recently, these enzymes have been found throughout Prokarya and Eukarya, suggesting their broad potential biological roles in nature.

  19. CCK receptors-related signaling involved in nitric oxide production caused by gastrin 17 in porcine coronary endothelial cells.

    PubMed

    Grossini, Elena; Caimmi, Philippe; Molinari, Claudio; Uberti, Francesca; Mary, David; Vacca, Giovanni

    2012-03-05

    In anesthetized pigs gastrin-17 increased coronary blood flow through CCK1/CCK2 receptors and β(2)-adrenoceptors-related nitric oxide (NO) release. Since the intracellular pathway has not been investigated the purpose of this study was to examine in coronary endothelial cells the CCK1/CCK2 receptors-related signaling involved in the effects of gastrin-17 on NO release. Gastrin-17 caused a concentration-dependent increase of NO production (17.3-62.6%; p<0.05), which was augmented by CCK1/CCK2 receptors agonists (p<0.05). The effect of gastrin-17 was amplified by the adenylyl-cyclase activator and β(2)-adrenoceptors agonist (p<0.05), abolished by cAMP/PKA and β(2)-adrenoceptors and CCK1/CCK2 receptors blockers, and reduced by PLC/PKC inhibitor. Finally, Western-blot revealed the preferential involvement of PKA vs. PKC as downstream effectors of CCK1/CCK2 receptors activation leading to Akt, ERK, p38 and endothelial NOS (eNOS) phosphorylation. In conclusion, in coronary endothelial cells, gastrin-17 induced eNOS-dependent NO production through CCK1/CCK2 receptors- and β(2)-adrenoceptors-related pathway. The intracellular signaling involved a preferential PKA pathway over PKC.

  20. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    PubMed

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  1. Reversible adenylylation of glutamine synthetase is dynamically counterbalanced during steady-state growth of Escherichia coli.

    PubMed

    Okano, Hiroyuki; Hwa, Terence; Lenz, Peter; Yan, Dalai

    2010-12-03

    Glutamine synthetase (GS) is the central enzyme for nitrogen assimilation in Escherichia coli and is subject to reversible adenylylation (inactivation) by a bifunctional GS adenylyltransferase/adenylyl-removing enzyme (ATase). In vitro, both of the opposing activities of ATase are regulated by small effectors, most notably glutamine and 2-oxoglutarate. In vivo, adenylyltransferase (AT) activity is critical for growth adaptation when cells are shifted from nitrogen-limiting to nitrogen-excess conditions and a rapid decrease of GS activity by adenylylation is needed. Here, we show that the adenylyl-removing (AR) activity of ATase is required to counterbalance its AT activity during steady-state growth under both nitrogen-excess and nitrogen-limiting conditions. This conclusion was established by studying AR(-)/AT(+) mutants, which surprisingly displayed steady-state growth defects in nitrogen-excess conditions due to excessive GS adenylylation. Moreover, GS was abnormally adenylylated in the AR(-) mutants even under nitrogen-limiting conditions, whereas there was little GS adenylylation in wild-type strains. Despite the importance of AR activity, we establish that AT activity is significantly regulated in vivo, mainly by the cellular glutamine concentration. There is good general agreement between quantitative estimates of AT regulation in vivo and results derived from previous in vitro studies except at very low AT activities. We propose additional mechanisms for the low AT activities in vivo. The results suggest that dynamic counterbalance by reversible covalent modification may be a general strategy for controlling the activity of enzymes such as GS, whose physiological output allows adaptation to environmental fluctuations.

  2. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  3. Receptor guanylyl cyclases in mammalian olfactory function

    PubMed Central

    Zufall, Frank; Munger, Steven D.

    2009-01-01

    The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as β-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system. PMID:19941039

  4. Bordetella adenylate cyclase toxin: entry of bacterial adenylate cyclase into mammalian cells.

    PubMed

    Confer, D L; Slungaard, A S; Graf, E; Panter, S S; Eaton, J W

    1984-01-01

    We have identified an adenylate cyclase toxin in urea extracts and culture supernatant fluids of Bordetella pertussis (2). The ability of this toxin and the lack of a strong correlation between its activity and adenylate cyclase activity found in urea extracts suggest that it is an oligomer of readily dissociable subunits. The mechanism by which Bordetella adenylate cyclase toxin interacts with target cells is unknown, but polyvalent cations are necessary. Neutrophils exposed to the toxin acquire a 39,000 Mr protein that can also be photoaffinity labeled with 32P-ATP. We anticipate that this protein will prove to be a catalytic component of Bordetella adenylate cyclase toxin. Susceptible cells exposed to Bordetella adenylate cyclase toxin are functionally aberrant. In phagocytes, decreased bactericidal capacity may be important in the pathogenesis of human whooping cough and other Bordetella infections occurring in domestic animals. The effects of the toxin on neoplastic cells may offer new insights into the factors controlling their growth and differentiation. Bordetella adenylate cyclase toxin is a unique bacterial product. Further purification and characterization of this toxin will add to our understanding of cell-protein interactions and pathogen-host relationships.

  5. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses.

    PubMed

    Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio

    2013-09-01

    -synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement. © 2013 International Society for Neurochemistry.

  6. [The role of sulfhydryl groups in functioning of components of adenylate cyclase signal system in smooth muscles of the mollusk Anodonta cygnea (effect of N-ethylmaleimide and p-chloromercuribenzoic acid)].

    PubMed

    Shpakov, A O; Derkach, K V

    1999-01-01

    The alkylating agent N-ethylameimide and the sulfhydryl group blocker p-chloromercuribenzoic acid (CPMA) inhibited in dose-dependent manner both basal activity of adenylyl cyclase (AC) and its activity stimulated by non-hormonal substances (forskolin, sodium fluoride, guanylilimidodiphosphate) in smooth muscles of the freshwater bivalve mollusk Anodonta cygnea. The double increase (from 30 to 60 min) in the time of preincubation of a sarcolemmal membrane fraction with ethylmaleimide and CPMA led to an essential increase in enzyme inhibition (especially for CPMA). 50 mM SH-containing reagent beta-mercaptoethanol (ME) partially restored the AC activity, inhibited by N-ethylmaleimide and CPMA, except when these two latter reagents were in high concentrations (1-10 and 0.5 mM, respectively). The data obtained point to the key role of cysteine SH-groups in regulation of the functional activity of proteins, components of the adenylyl cyclase system--AC and heterotrimeric G-proteins.

  7. A Role for Calcium-Activated Adenylate Cyclase and Protein Kinase A in the Lens Src Family Kinase and Na,K-ATPase Response to Hyposmotic Stress.

    PubMed

    Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A

    2017-09-01

    Na,K-ATPase activity in lens epithelium is subject to control by Src family tyrosine kinases (SFKs). Previously we showed hyposmotic solution causes an SFK-dependent increase in Na,K-ATPase activity in the epithelium. Here we explored the role of cAMP in the signaling mechanism responsible for the SFK and Na,K-ATPase response. Intact porcine lenses were exposed to hyposmotic Krebs solution (200 mOsm) then the epithelium was assayed for cAMP, SFK phosphorylation (activation) or Na,K-ATPase activity. An increase of cAMP was observed in the epithelium of lenses exposed to hyposmotic solution. In lenses exposed to hyposmotic solution SFK phosphorylation in the epithelium approximately doubled as did Na,K-ATPase activity and both responses were prevented by H89, a protein kinase A inhibitor. The magnitude of the SFK response to hyposmotic solution was reduced by a TRPV4 antagonist HC067047 added to prevent TRPV4-mediated calcium entry, and by a cytoplasmic Ca2+ chelator BAPTA-AM. The Na,K-ATPase activity response in the epithelium of lenses exposed to hyposmotic solution was abolished by BAPTA-AM. As a direct test of cAMP-dependent SFK activation, intact lenses were exposed to 8-pCPT-cAMP, a cell-permeable cAMP analog. 8-pCPT-cAMP caused robust SFK activation. Using Western blot, two calcium-activated adenylyl cyclases, ADCY3 and ADCY8, were detected in lens epithelium. Calcium-activated adenylyl cyclases are expressed in the lens epithelium and SFK activation is linked to a rise of cAMP that occurs upon hyposmotic challenge. The findings point to cAMP as a link between TRPV4 channel-mediated calcium entry, SFK activation, and a subsequent increase of Na,K-ATPase activity.

  8. Membrane guanylyl cyclase receptors: an update

    PubMed Central

    Garbers, David L.; Chrisman, Ted D.; Wiegn, Phi; Katafuchi, Takeshi; Albanesi, Joseph P.; Bielinski, Vincent; Barylko, Barbara; Redfield, Margaret M.; Burnett, John C.

    2007-01-01

    Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance. PMID:16815030

  9. Hyaluronic acid as capacitation inductor: metabolic changes and membrane-associated adenylate cyclase regulation.

    PubMed

    Fernández, S; Córdoba, M

    2014-12-01

    The aim of this research was to study the effect of hyaluronic acid on bovine cryopreserved spermatozoa compared with heparin as regards the variation of capacitation induction, cellular oxidative metabolism and intracellular signal induced by membrane-associated adenylate cyclase to propose hyaluronic acid as a capacitation inductor. Heparin or hyaluronic acid and lysophosphatidylcholine were used to induce sperm capacitation and acrosome reaction, respectively. 2',5'-dideoxyadenosine was used as a membrane-associated adenylate cyclase inhibitor. The highest percentages of capacitated spermatozoa and live spermatozoa with acrosome integrity were obtained by incubating sperm for 60 min using 1000 μg/ml hyaluronic acid. In these conditions, capacitation induced by hyaluronic acid was lower compared with heparin; nonetheless both glycosaminoglycans promote intracellular changes that allow true acrosome reaction in vitro induced by lysophosphatidylcholine in bovine spermatozoa. Oxygen consumption in heparin-capacitated spermatozoa was significantly higher than in hyaluronic acid-treated spermatozoa. With all treatments, mitochondrial coupling was observed when a specific uncoupler of the respiratory chain was added. The inhibition of membrane-associated adenylate cyclase significantly blocked capacitation induction produced by hyaluronic acid, maintaining a basal sperm oxygen uptake in contrast to heparin effect in which both sperm parameters were inhibited, suggesting that the membrane-associated adenylate cyclase activation is involved in the intracellular signal mechanisms induced by both capacitation inductors, but only regulates mitochondrial oxidative phosphorylation in heparin-capacitated spermatozoa.

  10. Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis.

    PubMed Central

    Glaser, P; Munier, H; Gilles, A M; Krin, E; Porumb, T; Bârzu, O; Sarfati, R; Pellecuer, C; Danchin, A

    1991-01-01

    Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis. PMID:2050107

  11. Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate.

    PubMed

    Sun, Liming; Wang, Huayi; Hu, Ji; Han, Jinlong; Matsunami, Hiroaki; Luo, Minmin

    2009-02-10

    Atmospheric CO(2) is an important environmental cue that regulates several types of animal behavior. In mice, CO(2) responses of the olfactory sensory neurons (OSNs) require the activity of carbonic anhydrase to catalyze the conversion of CO(2) to bicarbonate and the opening of cGMP-sensitive ion channels. However, it remains unknown how the enhancement of bicarbonate levels results in cGMP production. Here, we show that bicarbonate activates cGMP-producing ability of guanylyl cyclase-D (GC-D), a membrane GC exclusively expressed in the CO(2)-responsive OSNs, by directly acting on the intracellular cyclase domain of GC-D. Also, the molecular mechanism for GC-D activation is distinct from the commonly believed model of "release from repression" for other membrane GCs. Our results contribute to our understanding of the molecular mechanisms of CO(2) sensing and suggest diverse mechanisms of molecular activation among membrane GCs.

  12. Differential expression of functional guanylyl cyclases in melanocytes: absence of nitric-oxide-sensitive isoform in metastatic cells.

    PubMed

    Ivanova, K; Das, P K; van den Wijngaard, R M; Lenz, W; Klockenbring, T; Malcharzyk, V; Drummer, C; Gerzer, R

    2001-03-01

    Nitric oxide (NO) is a reactive endogenous molecule with multiple functions and its cellular signaling activity is mainly mediated by activation of the soluble isoform of guanylyl cyclase, a heterodimeric (alpha/beta) hemeprotein. The expression of the NO-sensitive soluble isoform of guanylyl cyclase was studied in various cultured melanocytic cells by measuring the accumulation of guanosine 3',5'-cyclic monophosphate in the presence and absence of NO donors. Here we report that 3-morpholino-sydnonimine, a donor of NO redox species, and (Z)-1-[2- (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, a direct NO donor, induced a 20-fold increase in intracellular guanosine 3',5'-cyclic monophosphate in nonmetastatic melanoma cells and normal melanocytes in culture that could be related to cellular melanin content in a concentration-dependent manner. The increased intracellular guanosine 3',5'-cyclic monophosphate was due to stimulation of the activity of soluble guanylyl cyclase as such increase was completely abolished by using a specific inhibitor of soluble guanylyl cyclase. The involvement of functional soluble guanylyl cyclase was further confirmed by the presence of alpha1 and beta1 subunits in these cells at both mRNA and protein levels. In contrast, none of the NO donors induced guanosine 3',5'-cyclic monophosphate production in metastatic melanoma cells, which could be attributed to the absence of the beta1 subunit that is essential for catalytic activity of the soluble isoform of guanylyl cyclase. Metastatic melanoma cells produced higher levels of intracellular guanosine 3',5'-cyclic monophosphate in response to natriuretic peptides than other cell types, however, due to upregulation of membrane-bound guanylyl cyclase activities, but they are less pigmented or unpigmented. The present finding suggests that NO signaling in association with melanogenesis is dependent on the soluble isoform of guanylyl cyclase, whereas absence of soluble guanylyl

  13. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site.

    PubMed

    Xu, Yibin; Carr, Paul D; Vasudevan, Subhash G; Ollis, David L

    2010-02-26

    The X-ray structure of the C-terminal fragment, containing residues 449-946, of Escherichia coli glutamine synthetase adenylyl transferase (ATase) has been determined. ATase is part of the cascade that regulates the enzymatic activity of E. coli glutamine synthetase, a key component of the cell's machinery for the uptake of ammonia. It has two enzymatic activities, adenylyl removase (AR) and adenylyl transferase (AT), which are located in distinct catalytic domains that are separated by a regulatory (R) domain. We previously reported the three-dimensional structure of the AR domain (residues 1-440). The present structure contains both the R and AT domains. AR and AT share 24% sequence identity and also contain the beta-polymerase motif that is characteristic of many nucleotidylyl transferase enzymes. The structures overlap with an rmsd of 2.4 A when the superhelical R domain is omitted. A model for the complete ATase molecule is proposed, along with some refinements of domain boundaries. A rather more speculative model for the complex of ATase with glutamine synthetase and the nitrogen signal transduction protein PII is also presented.

  14. Adenylate cyclase in striatal cholinergic interneurons regulates acetylcholine release.

    PubMed

    Login, I S; Hewlett, E L

    1996-10-07

    Fractional [3H]ACH efflux from dissociated rat striata tested whether tonic inhibition prevents stimulation of acetylcholine (ACH) release by adenylate cyclase. Forskolin stimulated release from the dissociated cells (threshold at 300 nM; EC50 > or = 1 MicroM). Release was also stimulated by 3-isobutyl-1-methylxanthine and was additive with forskolin. The 1,9-dideoxy forskolin analog that lacks cyclase-stimulating activity was ineffective. Thus, stimulation of adenylate cyclase within striatal cholinergic interneurons increases ACH secretion but is tonically inhibited by endogenous striatal transmitters. Disinhibition of the excitatory cyclase by denervation of striatal cholinergic interneurons in situ could contribute to supersensitivity without receptor upregulation.

  15. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase.

    PubMed

    Olesen, S P; Drejer, J; Axelsson, O; Moldt, P; Bang, L; Nielsen-Kudsk, J E; Busse, R; Mülsch, A

    1998-01-01

    umbilical vein endothelial cells was inhibited by NS 2028 (IC50 30 nM). 5 In prostaglandin F2alpha-constricted, endothelium-intact porcine coronary arteries NS 2028 elicited a concentration-dependent increase (65%) in contractile tone (EC50 170 nM), which was abolished by removal of the endothelium. NS 2028 (1 microM) suppressed the relaxant response to nitroglycerin from 88.3+/-2.1 to 26.8+/-6.4% and induced a 9 fold rightward shift (EC50 15 microM) of the concentration-relaxation response curve to nitroglycerin. It abolished the relaxation to sodium nitroprusside (1 microM), but did not affect the vasorelaxation to the KATP channel opener cromakalim. Approximately 50% of the relaxant response to sodium nitroprusside was recovered after 2 h washout of NS 2028. 6 In phenylephrine-preconstricted, endothelium-denuded aorta of the rabbit NS 2028 (1 microM) did not affect relaxant responses to atrial natriuretic factor, an activator of particulate guanylyl cyclase, or forskolin, an activator of adenylyl cyclase. 7 NO-dependent relaxant responses in non-vascular smooth muscle were also inhibited by NS 2028. The nitroglycerin-induced relaxation of guinea-pig trachea preconstricted by histamine was fully inhibited by NS 2028 (1 microM), whereas the relaxations to terbutaline, theophylline and vasoactive intestinal polypeptide (VIP) were not affected. The relaxant responses to electrical field stimulation of non-adrenergic, non-cholinergic nerves in the same tissue were attenuated by 50% in the presence of NS 2028 (1 microM). 8 NS 2028 and its analogues, one of which is the previously characterized 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), appear to be potent and specific inhibitors of soluble guanylyl cyclase present in various cell types. Oxidation and/or a change in the coordination of the haeme-iron of guanylyl cyclase is a likely inhibitory mechanism.

  16. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases

    PubMed Central

    Cunningham, Francis X.; Gantt, Elisabeth

    2001-01-01

    Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures. PMID:11226339

  17. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions.

    PubMed

    Wu, Tung-Kung; Yu, Mei-Ting; Liu, Yuan-Ting; Chang, Cheng-Hsian; Wang, Hsing-Ju; Diau, Eric Wei-Guang

    2006-03-30

    [reaction: see text] Oxidosqualene-lanosterol cyclases convert oxidosqualene to lanosterol in yeast and mammals. Site-saturated mutants' construction of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase, at Trp232 exchanges against proteinogenic amino acids, and product profiles are shown. All mutants, except Lys and Arg, produced protosta-12,24-dien-3beta-ol, lanosterol, and parkeol. Overall, Trp232 plays a catalytic role in the influence of rearrangement process and determination of deprotonation position but does not involve intervention in the cyclization steps.

  18. Antineoplastic effects of Bordetella pertussis adenylate cyclase.

    PubMed

    Slungaard, A; Confer, D L; Jacob, H S; Eaton, J W

    1983-01-01

    Urea extracts of B. pertussis, but not B. bronchiseptica, cause large and sustained intracellular cAMP elevation in several neoplastic cell lines. These cAMP elevations are associated with growth inhibition (HL-60, Friend erythroleukemia) and a phenotypic change/differentiation (HL-60, L1210). B. pertussis extract injections prolong survival of L1210 tumor-bearing mice. Pretreatment of L1210 cells with B. pertussis extract both delays mortality and induces growth of solid tumors instead of ascites in subsequently inoculated mice. We conclude that B. pertussis adenylate cyclase is capable of invading a variety of neoplastic cells to catalyze the intracellular formation of large amounts of cAMP. These cAMP elevations are durable and promote growth arrest, differentiation, or phenotypic alterations reflected in altered biologic behavior. B. pertussis adenylate cyclase should prove to be a useful tool for manipulating cAMP levels in neoplastic cells to elucidate the role of cAMP in malignant transformation.

  19. The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C.

    PubMed

    Saha, Sayanti; Biswas, Kabir Hassan; Kondapalli, Chandana; Isloor, Nishitha; Visweswariah, Sandhya S

    2009-10-02

    Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of approximately 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand- and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.

  20. Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required in beta3-adrenergic receptor-induced primary smooth muscle cell proliferation.

    PubMed

    Hadi, Tarik; Barrichon, Marina; Mourtialon, Pascal; Wendremaire, Maeva; Garrido, Carmen; Sagot, Paul; Bardou, Marc; Lirussi, Frédéric

    2013-05-01

    The beta3 adrenergic receptor (B3-AR) reportedly induces cell proliferation, but the signaling pathways that were proposed, involving either Gs or Gi coupling, remain controversial. To further investigate the role of G protein coupling in B3-AR induced proliferation, we stimulated primary human myometrial smooth muscle cells with SAR150640 (B3-AR agonist) in the absence or presence of variable G-protein inhibitors. Specific B3-AR stimulation led to an Erk1/2 induced proliferation. We observed that the proliferative effects of B3-AR require two Erk1/2 activation peaks (the first after 3min, the second at 8h). Erk1/2 activation at 3min was mimicked by forskolin (adenylyl-cyclase activator), and was resistant to pertussis toxin (Gi inhibitor), suggesting a Gs protein signaling. This first signaling also required the downstream Gs signaling effectors PKA and Src. However, Erk1/2 activation at 8h turned out to be pertussis toxin-dependent, and PKA-independent, indicating a Gi signaling pathway in which Src and PI3K were required. The pharmacological inhibition of both the Gs and Gi pathway abolished B3-AR-induced proliferation. Altogether, these data indicate that B3-AR-induced proliferation depends on the biphasic activation of Erk1/2 sequentially induced by the Gs/PKA/Src and Gi/Src/PI3K signaling pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Inhibition of Heat-Stable Toxin-Induced Intestinal Salt and Water Secretion by a Novel Class of Guanylyl Cyclase C Inhibitors.

    PubMed

    Bijvelds, Marcel J C; Loos, Michaela; Bronsveld, Inez; Hellemans, Ann; Bongartz, Jean-Pierre; Ver Donck, Luc; Cox, Eric; de Jonge, Hugo R; Schuurkes, Jan A J; De Maeyer, Joris H

    2015-12-01

    Many enterotoxigenic Escherichia coli strains produce the heat-stable toxin, STa, which, by activation of the intestinal receptor-enzyme guanylyl cyclase (GC) C, triggers an acute, watery diarrhea. We set out to identify GCC inhibitors that may be of benefit for the treatment of infectious diarrheal disease. Compounds that inhibit STa-induced cyclic guanosine 3',5'-monophosphate (cGMP) production were selected by performing cyclase assays on cells and membranes containing GCC, or the related GCA. The effect of leads on STa/GCC-dependent activation of the cystic fibrosis transmembrane conductance regulator anion channel was investigated in T84 cells, and in porcine and human intestinal tissue. Their effect on STa-provoked fluid transport was assessed in ligated intestinal loops in piglets. Four N-2-(propylamino)-6-phenylpyrimidin-4-one-substituted piperidines were shown to inhibit GCC-mediated cellular cGMP production. The half maximal inhibitory concentrations were ≤ 5 × 10(-7) mol/L, whereas they were >10 times higher for GCA. In T84 monolayers, these leads blocked STa/GCC-dependent, but not forskolin/adenylyl cyclase-dependent, cystic fibrosis transmembrane conductance regulator activity. GCC inhibition reduced STa-provoked anion secretion in pig jejunal tissue, and fluid retention and cGMP levels in STa-exposed loops. These GCC inhibitors blocked STa-provoked anion secretion in rectal biopsy specimens. We have identified a novel class of GCC inhibitors that may form the basis for development of future therapeutics for (infectious) diarrheal disease. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Activation of fat cell adenylate cyclase by protein kinase C

    SciTech Connect

    Naghshineh, S.; Noguchi, M.; Huang, K.P.; Londos, C.

    1986-05-01

    Purified protein kinase C (C-kinase) from guinea pig pancreas and rat brain stimulated adenylate cyclase activity in purified rat adipocyte membranes. Cyclase stimulation occurred over 100 to 1000 mU/ml of C-kinase activity, required greater than 10 ..mu..M calcium, proceeded without a lag, was not readily reversible, and required no exogenous phospholipid. Moreover, C-kinase inhibitors, such as chlorpromazine and palmitoyl carnitine, inhibited selectively adenylate cyclase which was activated by C-kinase and calcium. Depending on assay conditions, 10 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) either enhanced or was required for kinase action on cyclase. Also, TPA plus calcium promoted the quantitative association of C-kinase with membranes. Adenylate cyclase activation by C-kinase was seen both in the presence and absence of exogenous GTP, indicating that the kinase effect does not result from an action on the GTP-binding, inhibitory regulatory component (N/sub i/) of the cyclase system. Moreover, the kinase effect was seen in the presence of non-phosphorylating ATP analogs, such as AppNHp and AppCH/sub 2/p, suggesting that the effects of C-kinase described herein may result from association with, rather than phosphorylation of, adenylate cyclase.

  3. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  4. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase.

    PubMed

    Ciment, G; de Vellis, J

    1978-11-17

    C6 glioma cells and B104 neuroblastoma cells both possess adenylate cyclase activity, but only C6 cells have beta-adrenergic receptors. However, when cocultured with B104 cells, C6 cells show a marked decrease in their ability to accumulate adenosine 3', 5'-monophosphate upon stimulation with beta receptor agonists. Since both beta receptors and cholera toxin-stimulated adenylate cyclase activities are present in C6/B104 cocultures, we conclude that the beta receptor/adenylate cyclase transduction mechanism in cocultured C6 cells is uncoupled.

  5. Compressive Stress Induces Dephosphorylation of the Myosin Regulatory Light Chain via RhoA Phosphorylation by the Adenylyl Cyclase/Protein Kinase A Signaling Pathway

    PubMed Central

    Takemoto, Kenji; Ishihara, Seiichiro; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells. PMID:25734240

  6. GH4ZD10 cells expressing rat 5-HT1A receptors coupled to adenylyl cyclase are a model for the postsynaptic receptors in the rat hippocampus.

    PubMed Central

    Fowler, C. J.; Ahlgren, P. C.; Brännström, G.

    1992-01-01

    1. Vasoactive intestinal polypeptide (VIP) stimulated adenosine 3':5'-cyclic monophosphate (cyclic AMP) production by cultured GH4ZD10 cells with an EC50 value of about 7 nM. The extracellularly recovered cyclic AMP predominated, and was reduced by co-incubation with 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) and 5-hydroxytryptamine (5-HT), whereas dopamine (0.1-30 microM) did not reduce VIP-stimulated cyclic AMP production. 2. The responses to 5-HT and 8-OH-DPAT were blocked by (-)-alprenolol and NAN 190. The antagonism by (-)-alprenolol was competitive in nature with a pA2 value of 7.0. 3. The responsiveness of the cells to 5-HT agonists was highly dependent upon the culturing conditions used. Thus, 8-OH-DPAT inhibition of VIP (30 nM)-stimulated cyclic AMP production decreased with increasing passage number of the cells. Reduction of the zinc concentration used to promote expression of the 5-HT1A receptor gene produced a greater sensitivity of the cells to 5-HT agonists. 4. Under such conditions, the following efficacies (5-HT = 100) were found: lisuride 106, (+)-lysergic-acid diethylamide 100, 5-methoxy-N,N-dimethyltryptamine 98, RU 24949 98, 5-carboxamidotryptamine 97, (+/-)-8-OH-DPAT 90, (+)-8-OH-DPAT 87, 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine 86, flesinoxan 79/88, (-)-8-OH-DPAT 62, buspirone 43/50, ipsapirone 46. Spiroxatrine and spiperone had a low intrinsic activity, but reduced the response to 5-HT. These efficacies are similar to those reported in the literature for post-synaptically localized 5-HT1A receptors in the rat hippocampus.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1330157

  7. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    PubMed

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.

  8. Cannabinoid CB1 receptors fail to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle

    PubMed Central

    Holland, Michael; Challiss, R A John; Standen, Nicholas B; Boyle, John P

    1999-01-01

    The aim of the current study was to characterize which cannabinoid receptors, if any, are present on rat carotid artery smooth muscle. Additionally, the effects of cannabinoids on carotid artery tone, on cyclic AMP accumulation and on forskolin-induced relaxation were examined in the same tissue.Stimulation of carotid arteries with forskolin (10 μM) significantly increased cyclic AMP accumulation, an effect that was inhibited in a concentration-dependent manner by the cannabinoid receptor agonist, methanandamide.Similar inhibition was seen with the CB1 agonist HU-210 but this inhibition was not mimicked by the CB2 agonist, WIN 55,2212-2.The inhibitory effect of methanandamide on cyclic AMP accumulation was prevented by incubation of the arteries with pertussis toxin and was significantly reduced by LY320135, a selective CB1 antagonist, but not by SR 144528, a CB2-selective antagonist.Methanandamide failed to relax carotid arteries pre-contracted with phenylephrine, but inhibited forskolin-induced relaxation of these arteries. This functional inhibition of relaxation by methanandamide was inhibited by CB1-selective (LY320135 and SR 141716A), but not a CB2-selective antagonist (SR 144528).These data demonstrate the presence of functional G protein-linked cannabinoid receptors of the CB1 subtype in the rat carotid artery, but show that these receptors inhibit cyclic AMP accumulation rather than cause relaxation. PMID:10516638

  9. The Involvement of Ser1898 of the Human L-Type Calcium Channel in Evoked Secretion

    PubMed Central

    Bachnoff, Niv; Cohen-Kutner, Moshe; Atlas, Daphne

    2011-01-01

    A PKA consensus phosphorylation site S1928 at the α11.2 subunit of the rabbit cardiac L-type channel, CaV1.2, is involved in the regulation of CaV1.2 kinetics and affects catecholamine secretion. This mutation does not alter basal CaV1.2 current properties or regulation of CaV1.2 current by PKA and the beta-adrenergic receptor, but abolishes CaV1.2 phosphorylation by PKA. Here, we test the contribution of the corresponding PKA phosphorylation site of the human α11.2 subunit S1898, to the regulation of catecholamine secretion in bovine chromaffin cells. Chromaffin cells were infected with a Semliki-Forest viral vector containing either the human wt or a mutated S1898A α11.2 subunit. Both subunits harbor a T1036Y mutation conferring nifedipine insensitivity. Secretion evoked by depolarization in the presence of nifedipine was monitored by amperometry. Depolarization-triggered secretion in cells infected with either the wt α11.2 or α11.2/S1898A mutated subunit was elevated to a similar extent by forskolin. Forskolin, known to directly activate adenylyl-cyclase, increased the rate of secretion in a manner that is largely independent of the presence of S1898. Our results are consistent with the involvement of additional PKA regulatory site(s) at the C-tail of α11.2, the pore forming subunit of CaV1.2. PMID:22216029

  10. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.

    PubMed

    Gao, Yuansheng

    2016-05-01

    Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated.

  11. Adenylate Cyclase Activity Not Found in Soybean Hypocotyl and Onion Meristem 1

    PubMed Central

    Yunghans, Wayne N.; Morré, D. James

    1977-01-01

    Tissue, homogenates, and purified cell fractions prepared from hypocotyls of a dicot, soybean (Glycine max), and meristematic tissue of a monocot, onion (Allium cepa), were examined critically for evidence of adenylate cyclase activity. Three assay methods were used: chemical analysis, isotope dilution analysis, and enzyme cytochemistry. In both crude extracts or whole tissue, as well as purified membranes, with or without auxin, no adenylate cyclase was detected by any of the three methods. For plasma membranes, the specific activity was less than 1/40 or 1/25,000 that of rat liver plasma membranes, depending on the assay procedure, i.e. below the limits of detection. Using comparable methods, we could detect neither cyclic adenosine 3′:5′-monophosphate nor the phosphodiesterase responsible for its degradation in either purified membranes or homogenates. The results suggest that hormone responses in plants are not generally mediated by a mechanism involving the obligate production of cyclic adenosine 3′:5′-monophosphate by a plasma membrane associated adenylate cyclase. Images PMID:16660026

  12. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    SciTech Connect

    Azarkan, Mohamed; Clantin, Bernard; Bompard, Coralie; Belrhali, Hassan; Baeyens-Volant, Danielle; Looze, Yvan; Wintjens, René

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  13. Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments.

    PubMed

    Imbert, M; Chabardès, D; Montégut, M; Clique, A; Morel, F

    1975-01-01

    A method is described, which allows adenylate cyclase activity measurement in single pieces of various nephron segments. Tubular samples of 0.5 to 2 mm length were isolated by microdissection from collagenase treated slices of rabbit kidney. A photograph of each piece was taken in order to measure its length. After a permeabilisation treatment involving preincubation in a hypoosmotic medium and a freezing step, each sample was incubated for 30 mm at 30 degrees C in a medium containing high specific (alpha-32-P)-ATP 3-10-4 M, final volume 2.5 mu 1. The (32P)-cAMP formed was separated from the other labelled nucleotides by filtering the incubate on a dry aluminium oxide microcolumn, 3H cAMP was added as a tracer for measuring cAMP recovery. The sensitivity of the method was found to be a few fentomoles (10-15 M) cAMP. cAMP generation increased linearly as a function of the incubation time up to more than 30 min, and as a function of the length of the segment used. Control and fluoride (5 mM) stimulated adenvlate cyclase activities were measured in the following segments of the nephron: early proximal convoluted tubule (PCT), pars recta of the proximal tubule (PR), thin descending limb of the loop (TDL), cortical portion of the thick ascending limb (CAL), distal convoluted tubule (dct), first branched portion of the collecting tubule (BCT), further cortical (CCT) and medullary (MCT) portions of the collecting tubule. Mean control adenylate cyclase activity varied from 7 (PR) to 75 (BCT) fmoles/mm/30 min. Flouride addition resulted in a 10 (BCT) to 50 (PR) fold increase in enzyme activity. Series of replicates gave a scatter equal to plus or minus 20% (S.D. as a per cent of the mean). The method described appears to be suitable to determine which nephron segments contain hormone-dependent adenylate cyclase.

  14. The guanylate cyclase signaling system in zebrafish photoreceptors.

    PubMed

    Koch, Karl-Wilhelm

    2013-06-27

    Zebrafish express in the retina a large variety of three different membrane-bound guanylate cyclases and six different guanylate cyclase-activating proteins (zGCAPs) belonging to the family of neuronal calcium sensor proteins. Although these proteins are predominantly localized in rod and cone photoreceptor cells of the retina, they differ in their spatial-temporal expression profiles. Further, each zGCAP has a different affinity for Ca(2+) and displays different Ca(2+)-sensitivities of guanylate cyclase activation. Thus, zGCAPs operate as cytoplasmic Ca(2+)-sensors that sense incremental changes of cytoplasmic Ca(2+)-concentration in rod and cone cells and control the activity of their target guanylate cyclases in a Ca(2+)-relay mode fashion. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  16. Control of guanylate cyclase activity in the rod outer segment.

    PubMed

    Pannbacker, R G

    1973-12-14

    Mammalian photoreceptors contain a guanylate cyclase which has a high specific activity and is inhibited by exposure of the rod outer segment to light. Several minutes are required for this inhibition to take effect, indicating that it is not a step in visual excitation. The activity of the enzyme is sensitive to the concentration of calcium ion in the medium, suggesting that light-induced changes in calcium distribution in the photoreceptor could control guanylate cyclase activity.

  17. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  18. Immunohistochemical Localization of Guanylate Cyclase within Neurons of Rat Brain

    NASA Astrophysics Data System (ADS)

    Ariano, Marjorie A.; Lewicki, John A.; Brandwein, Harvey J.; Murad, Ferid

    1982-02-01

    The immunohistochemical localization of guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] has been examined in rat neocortex, caudate-putamen, and cerebellum by using specific monoclonal antibodies. Immunofluorescence could be seen within somata and proximal dendrites of neurons in these regions. A nuclear immunofluorescence reaction to guanylate cyclase was characteristically absent. The staining pattern for guanylate cyclase was coincident with previously described localizations of cyclic GMP immunofluorescence within medium spiny neurons of the caudate-putamen and pyramidal cells of the neocortex. Cerebellar guanylate cyclase immunoreactivity was primarily confined to Purkinje cells and their primary dendrites, similar to the pattern reported for cyclic GMP-dependent protein kinase localization. Guanylate cyclase immunofluorescence was abolished when the monoclonal antibodies were exposed to purified enzyme prior to incubation of the tissue slices or when control antibody was substituted for the primary antibody. Immunohistochemical localization of cyclic AMP in these same tissues was readily distinguished from that of guanylate cyclase or cyclic GMP, showing uniform fluorescence throughout the cell bodies of neurons and glial elements.

  19. Ultraviolet radiation augments epidermal beta-adrenergic adenylate cyclase response

    SciTech Connect

    Iizuka, H.; Kajita, S.; Ohkawara, A.

    1985-05-01

    Pig skin was irradiated in vivo with fluorescent sunlamp tubes (peak emission at 305 nm). A significant increase in epidermal beta-adrenergic adenylate cyclase response was observed as early as 12 h following 1-2 minimum erythema doses (MEDs) UVB exposure, which lasted at least 48 h. The augmentation of adenylate cyclase response was relatively specific to the beta-adrenergic system and there was no significant difference in either adenosine- or histamine-adenylate cyclase response of epidermis. The increased beta-adrenergic adenylate cyclase response was less marked at higher doses of UVB exposure (5 MEDs); in the latter condition, a significant reduction in adenosine- or histamine-adenylate cyclase response was observed. There was no significant difference in either low- or high-Km cyclic AMP phosphodiesterase activity between control and UVB-treated skin at 1-2 MEDs. These data indicate that the epidermal adenylate cyclase responses are affected in vivo by UVB irradiation, which might be a significant regulatory mechanism of epidermal cyclic AMP systems.

  20. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells

    PubMed Central

    Martín, César; Etxaniz, Asier; Uribe, Kepa B.; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M.; Aréchaga, Juan; Ostolaza, Helena

    2015-01-01

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of “toxin-coated bacteria” proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or “free” in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca2+-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system. PMID:26346097

  1. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis.

    PubMed

    Porfirova, Svetlana; Bergmuller, Eveline; Tropf, Susanne; Lemke, Rainer; Dormann, Peter

    2002-09-17

    Tocopherol (vitamin E) is a plant chloroplast lipid presumed to be involved in the response to oxidative stress. A tocopherol-deficient mutant (vte1) was isolated from Arabidopsis thaliana by using a TLC-based screening approach. Mutant plants lacked all four tocopherol forms and were deficient in tocopherol cyclase activity. Genetic mapping of vte1 and a genomics-based approach led to the identification of the ORF At4g32770 as a candidate gene for tocopherol cyclase. In vte1, At4g32770 contains a splicing site mutation and the corresponding mRNA expression is reduced. Expression of VTE1 in Escherichia coli resulted in the production of a protein with high tocopherol cyclase and tocotrienol cyclase activity. The VTE1 sequence shows no similarities to genes with known function, but is similar to that of SXD1, a gene that was recently isolated based on the availability of the sucrose export defective1 maize mutant (sxd1). Growth of the vte1 mutant, chlorophyll content, and photosynthetic quantum yield were similar to wild type under optimal growth conditions. Therefore, absence of tocopherol has no large impact on photosynthesis or plant viability, suggesting that other antioxidants can compensate for the loss of tocopherol. During photo-oxidative stress, chlorophyll content and photosynthetic quantum yield were slightly reduced in vte1 as compared with wild type indicating a potential role for tocopherol in maintaining an optimal photosynthesis rate under high-light stress.

  2. Novel hopanoid cyclases from the environment.

    PubMed

    Pearson, Ann; Flood Page, Sarah R; Jorgenson, Tyler L; Fischer, Woodward W; Higgins, Meytal B

    2007-09-01

    Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record.

  3. Adenyl cyclase in the human placenta.

    PubMed

    Sato, K; Ryan, K J

    1971-09-21

    This study demonstrated that the human placenta possesses an adenyl cyclase system responsive to catecholamines and sodium flouride (NaF). 2.5 gm human term placentas were homogenized, centrifuged, washed, resuspended, and used as the enzyme system when placed with various agents. Incubations and the determination of adenosine 3', 5' monophosphate (cyclic AMP) formed were performed. Samples stimulated by .0001 M catecholamines (L-epinephrine or L-norepinephrine) or .01 M NaF had higher levels of cyclic AMP than the controls (p. 005 for catecholamine-treated samples and p. 001 for NaF-treated samples). A concentration of .0001 M L-epinephrine or L-norepinephrine appeared to be a maximum effective dose and .0000001 M a minimum. L=epinephrine was 10 times as effective in the stimulation as L-norepinephrine. With .0001 M, 499 and 439 pmoles/10 minutes per 25 mg of tissue was formed, whereas in the control (no added hormones) 256 pmoles/10 minutes were formed. 3.2% ethanol activated the system by a small amount (p.02). Propranolol alone did not appear to have any effect; however, the effect of .0001 M L-epinephrine was reduced by 95% in the presence of .00001 M propranolol. Propranolol had no effect on NaF-stimulated activity.

  4. Receptor Guanylyl Cyclases in Sensory Processing

    PubMed Central

    Maruyama, Ichiro N.

    2017-01-01

    Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3′,5′-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review. PMID:28123378

  5. Phospholipase A activity of adenylate cyclase toxin mediates translocation of its adenylate cyclase domain

    PubMed Central

    González-Bullón, David; Uribe, Kepa B.; Martín, César

    2017-01-01

    Adenylate cyclase toxin (ACT or CyaA) plays a crucial role in respiratory tract colonization and virulence of the whooping cough causative bacterium Bordetella pertussis. Secreted as soluble protein, it targets myeloid cells expressing the CD11b/CD18 integrin and on delivery of its N-terminal adenylate cyclase catalytic domain (AC domain) into the cytosol, generates uncontrolled toxic levels of cAMP that ablates bactericidal capacities of phagocytes. Our study deciphers the fundamentals of the heretofore poorly understood molecular mechanism by which the ACT enzyme domain directly crosses the host cell membrane. By combining molecular biology, biochemistry, and biophysics techniques, we discover that ACT has intrinsic phospholipase A (PLA) activity, and that such activity determines AC translocation. Moreover, we show that elimination of the ACT–PLA activity abrogates ACT toxicity in macrophages, particularly at toxin concentrations close to biological reality of bacterial infection. Our data support a molecular mechanism in which in situ generation of nonlamellar lysophospholipids by ACT–PLA activity into the cell membrane would form, likely in combination with membrane-interacting ACT segments, a proteolipidic toroidal pore through which AC domain transfer could directly take place. Regulation of ACT–PLA activity thus emerges as novel target for therapeutic control of the disease. PMID:28760979

  6. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    PubMed

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.

  7. Role of glutaminyl cyclases in thyroid carcinomas.

    PubMed

    Kehlen, Astrid; Haegele, Monique; Menge, Katja; Gans, Kathrin; Immel, Uta-Dorothee; Hoang-Vu, Cuong; Klonisch, Thomas; Demuth, Hans-Ulrich

    2013-02-01

    CCL2 is a chemokine known to recruit monocytes/macrophages to sites of inflammation. CCL2 is also associated with tumor progression in several cancer types. Recently, we showed that the N-terminus of CCL2 is modified to a pyroglutamate (pE)-residue by both glutaminyl cyclases (QC (QPCT)) and its isoenzyme (isoQC (QPCTL)). The pE-residue increases stability against N-terminal degradation by aminopeptidases. Here, we report an upregulation of QPCT expression in tissues of patients with thyroid carcinomas compared with goiter tissues, whereas QPCTL was not regulated. In thyroid carcinoma cell lines, QPCT gene expression correlates with the mRNA levels of its substrate CCL2. Both QPCT and CCL2 are regulated in a NF-κB-dependent pathway shown by stimulation with TNFa and IL1b as well as by inhibition with the IKK2 inhibitor and RNAi of p50. In the culture supernatant of thyroid carcinoma cells, equal amounts of pECCL2 and total CCL2 were detected by two ELISAs discriminating between total CCL2 and pECCL2, concluding that all CCL2 is secreted as pECCL2. Activation of the CCL2/CCR2 pathway by recombinant CCL2 increased tumor cell migration of FTC238 cells in scratch assays as well as thyroid carcinoma cell-derived CCL2-induced migration of monocytic THP1 cells. Suppression of CCL2 signaling by CCR2 antagonist, IKK2 inhibitor, and QPCT RNAi reduced FTC238 cell growth measured by WST8 proliferation assays. Our results reveal new evidence for a novel role of QC in thyroid carcinomas and provide an intriguing rationale for the use of QC inhibitors as a means of blocking pECCL2 formation and preventing thyroid cancer metastasis.

  8. Functional analysis of the two interacting cyclase domains in ent-kaurene synthase from the fungus Phaeosphaeria sp. L487 and a comparison with cyclases from higher plants.

    PubMed

    Kawaide, H; Sassa, T; Kamiya, Y

    2000-01-28

    We report here kinetic analysis and identification of the two cyclase domains in a bifunctional diterpene cyclase, Phaeosphaeria ent-kaurene synthase (FCPS/KS). Kinetics of a recombinant FCPS/KS protein indicated that the affinity for copalyl diphosphate is higher than that for geranylgeranyl diphosphate (GGDP). ent-Kaurene production from GGDP by FCPS/KS was enhanced by the addition of a plant ent-kaurene synthase (KS) but not by plant CDP synthase (CPS), suggesting that the rate of ent-kaurene production of FCPS/KS may be limited by the KS activity. Site-directed mutagenesis of aspartate-rich motifs in FCPS/KS indicated that the (318)DVDD motif near the N terminus and the (656)DEFFE motif near the C terminus may be part of the active site for the CPS and KS reactions, respectively. The other aspartate-rich (132)DDVLD motif near the N terminus is thought to be involved in both reactions. Functional analysis of the N- and C-terminal truncated mutants revealed that a N-terminal 59-kDa polypeptide catalyzed the CPS reaction and a C-terminal 66-kDa polypeptide showed KS activity. A 101-kDa polypeptide lacking the first 43 amino acids of the N terminus reduced KS activity severely without CPS activity. These results indicate that there are two separate interacting domains in the 106-kDa polypeptide of FCPS/KS.

  9. Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer

    PubMed Central

    Cui, Chunhui; Qi, Jia; Deng, Quanwen; Chen, Rihong; Zhai, Duanyang; Yu, Jinlong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC. PMID:27218101

  10. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases.

    PubMed

    Dupont, Lisa L; Glynos, Constantinos; Bracke, Ken R; Brouckaert, Peter; Brusselle, Guy G

    2014-10-01

    Nitric oxide (NO) is a gaseotransmitter, which is involved in many signaling processes in health and disease. Three enzymes generate NO from l-arginine, with citrulline formed as a by-product: neuronal NO synthase (nNOS or NOS1), endothelial NOS (eNOS or NOS3) and inducible NOS (iNOS or NOS2). NO is a ligand of soluble guanylyl cyclase (sGC), an intracellular heterodimer enzyme that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic GMP (cGMP). cGMP further activates protein kinase G that eventually reduces the smooth muscle tone in bronchi or vessels. Phosphodiesterase 5 (PDE5) degrades cGMP to GMP. However, NO reacts with superoxide anion (O2(-)), leading to formation of the pro-inflammatory molecule peroxynitrite. Under physiological conditions, NO plays a homeostatic bronchoprotective role in healthy subjects. In obstructive airway diseases, NO can be beneficial by its bronchodilating effect, but could also be detrimental by the formation of peroxynitrite. Since asthma and COPD are associated with increased levels of exhaled NO, chronic inflammation and increased airway smooth muscle tone, the NO/sGC/cGMP pathway could be involved in these highly prevalent obstructive airway diseases. Here we review the involvement of NO, NO synthases, guanylyl cyclases, cGMP and phophodiesterase-5 in asthma and COPD and potential therapeutic approaches to modulate this pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Oligomeric state affects oxygen dissociation and diguanylate cyclase activity of globin coupled sensors.

    PubMed

    Burns, Justin L; Deer, D Douglas; Weinert, Emily E

    2014-11-01

    Bacterial biofilm formation is regulated by enzymes, such as diguanylate cyclases, that respond to environmental signals and alter c-di-GMP levels. Diguanylate cyclase activity of two globin coupled sensors is shown to be regulated by gaseous ligands, with cyclase activity and O2 dissociation affected by protein oligomeric state.

  12. Characterization of the active site of ADP-ribosyl cyclase.

    PubMed

    Munshi, C; Thiel, D J; Mathews, I I; Aarhus, R; Walseth, T F; Lee, H C

    1999-10-22

    ADP-ribosyl cyclase synthesizes two Ca(2+) messengers by cyclizing NAD to produce cyclic ADP-ribose and exchanging nicotinic acid with the nicotinamide group of NADP to produce nicotinic acid adenine dinucleotide phosphate. Recombinant Aplysia cyclase was expressed in yeast and co-crystallized with a substrate, nicotinamide. x-ray crystallography showed that the nicotinamide was bound in a pocket formed in part by a conserved segment and was near the central cleft of the cyclase. Glu(98), Asn(107) and Trp(140) were within 3.5 A of the bound nicotinamide and appeared to coordinate it. Substituting Glu(98) with either Gln, Gly, Leu, or Asn reduced the cyclase activity by 16-222-fold, depending on the substitution. The mutant N107G exhibited only a 2-fold decrease in activity, while the activity of W140G was essentially eliminated. The base exchange activity of all mutants followed a similar pattern of reduction, suggesting that both reactions occur at the same active site. In addition to NAD, the wild-type cyclase also cyclizes nicotinamide guanine dinucleotide to cyclic GDP-ribose. All mutant enzymes had at least half of the GDP-ribosyl cyclase activity of the wild type, some even 2-3-fold higher, indicating that the three coordinating amino acids are responsible for positioning of the substrate but not absolutely critical for catalysis. To search for the catalytic residues, other amino acids in the binding pocket were mutagenized. E179G was totally devoid of GDP-ribosyl cyclase activity, and both its ADP-ribosyl cyclase and the base exchange activities were reduced by 10,000- and 18,000-fold, respectively. Substituting Glu(179) with either Asn, Leu, Asp, or Gln produced similar inactive enzymes, and so was the conversion of Trp(77) to Gly. However, both E179G and the double mutant E179G/W77G retained NAD-binding ability as shown by photoaffinity labeling with [(32)P]8-azido-NAD. These results indicate that both Glu(179) and Trp(77) are crucial for catalysis and

  13. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana

    PubMed Central

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores. PMID:20610397

  14. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  15. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure

    PubMed Central

    Susick, Laura L.; Lowing, Jennifer L.; Bosse, Kelly E.; Hildebrandt, Clara C.; Chrumka, Alexandria C.; Conti, Alana C.

    2014-01-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  16. A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus

    PubMed Central

    Avelar, Gabriela M.; Schumacher, Robert I.; Zaini, Paulo A.; Leonard, Guy; Richards, Thomas A.; Gomes, Suely L.

    2014-01-01

    Summary Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  17. Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus.

    PubMed

    Sawai, Satoru; Uchiyama, Hiroshi; Mizuno, Syuhei; Aoki, Toshio; Akashi, Tomoyoshi; Ayabe, Shin-ichi; Takahashi, Takeyoshi

    2011-04-06

    Shionone is the major triterpenoid component of Aster tataricus possessing a unique all six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure. To clarify its biosynthetic process, an oxidosqualene cyclase cDNA was isolated from A. tataricus, and the function of the enzyme was determined in lanosterol synthase-deficient yeast. The cyclase yielded ca. 90% shionone and small amounts o