Science.gov

Sample records for adenylyl cyclase sac

  1. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals.

    PubMed

    Tresguerres, Martin; Barott, Katie L; Barron, Megan E; Roa, Jinae N

    2014-03-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3(-), and sAC has been confirmed to be a HCO3(-) sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3(-)-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H(+) absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  2. Established and potential physiological roles of bicarbonate-sensing soluble adenylyl cyclase (sAC) in aquatic animals

    PubMed Central

    Tresguerres, Martin; Barott, Katie L.; Barron, Megan E.; Roa, Jinae N.

    2014-01-01

    Soluble adenylyl cyclase (sAC) is a recently recognized source of the signaling molecule cyclic AMP (cAMP) that is genetically and biochemically distinct from the classic G-protein-regulated transmembrane adenylyl cyclases (tmACs). Mammalian sAC is distributed throughout the cytoplasm and it may be present in the nucleus and inside mitochondria. sAC activity is directly stimulated by HCO3−, and sAC has been confirmed to be a HCO3− sensor in a variety of mammalian cell types. In addition, sAC can functionally associate with carbonic anhydrases to act as a de facto sensor of pH and CO2. The two catalytic domains of sAC are related to HCO3−-regulated adenylyl cyclases from cyanobacteria, suggesting the cAMP pathway is an evolutionarily conserved mechanism for sensing CO2 levels and/or acid/base conditions. Reports of sAC in aquatic animals are still limited but are rapidly accumulating. In shark gills, sAC senses blood alkalosis and triggers compensatory H+ absorption. In the intestine of bony fishes, sAC modulates NaCl and water absorption. And in sea urchin sperm, sAC may participate in the initiation of flagellar movement and in the acrosome reaction. Bioinformatics and RT-PCR results reveal that sAC orthologs are present in most animal phyla. This review summarizes the current knowledge on the physiological roles of sAC in aquatic animals and suggests additional functions in which sAC may be involved. PMID:24574382

  3. Soluble Adenylyl Cyclase in Health and Disease

    PubMed Central

    Schmid, Andreas; Meili, Dimirela; Salathe, Matthias

    2014-01-01

    The second messenger cAMP is integral for many physiological processes. Soluble adenylyl cyclase (sAC) was recently identified as a widely expressed intracellular source of cAMP in mammalian cells. sAC is evolutionary, structurally, and biochemically distinct from the G-protein-responsive transmembranous adenylyl cyclases (tmAC). The structure of the catalytic unit of sAC is similar to tmAC, but sAC does not contain transmembranous domains, allowing localizations independent of the membranous compartment. sAC activity is stimulated by HCO3-, Ca2+ and is sensitive to physiologically relevant ATP fluctuations. sAC functions as a physiological sensor for carbon dioxide and bicarbonate, and therefore indirectly for pH. Here we review the physiological role of sAC in different human tissues with a major focus on the lung. PMID:25064591

  4. A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC)

    PubMed Central

    Wang, Dan; Hu, Jie; Bobulescu, I. Alexandru; Quill, Timothy A.; McLeroy, Paul; Moe, Orson W.; Garbers, David L.

    2007-01-01

    We previously identified a sperm-specific Na+/H+ exchanger (sNHE) principally localized to the flagellum. Disruption of the sNHE gene in mice resulted in absolute male infertility associated with a complete loss of sperm motility. Here, we show that the sNHE-null spermatozoa fail to develop the cAMP-dependent protein tyrosine phosphorylation that coincides with the functional maturation occurring upon incubation in capacitating conditions in vitro. Both the sperm motility defect and the lack of induced protein tyrosine phosphorylation are rescued by the addition of cell-permeable cAMP analogs, suggesting that cAMP metabolism is impaired in spermatozoa lacking sNHE. Our analyses of the bicarbonate-dependent soluble adenylyl cyclase (sAC) signaling pathway in sNHE-null sperm cells reveal that sNHE is required for the expression of full-length sAC, and that it is important for the bicarbonate stimulation of sAC activity in spermatozoa. Furthermore, both codependent expression and coimmunoprecipitation experiments indicate that sNHE and sAC associate with each other. Thus, these two proteins appear to be components of a signaling complex at the sperm flagellar plasma membrane. We propose that the formation of this complex efficiently modulates intracellular pH and bicarbonate levels through the rapid and effective control of sAC and sNHE activities to facilitate sperm motility regulation. PMID:17517652

  5. Role of soluble adenylyl cyclase in the heart

    PubMed Central

    Chen, Jonathan; Levin, Lonny R.

    2012-01-01

    This review discusses the potential place of soluble adenylyl cyclase (sAC) in the framework of signaling in the cardiovascular system. cAMP has been studied as a critical and pleiotropic second messenger in cardiomyocytes, endothelial cells, and smooth muscle vascular cells for many years. It is involved in the transduction of signaling by catecholamines, prostaglandins, adenosine, and glucagon, just to name a few. These hormones can act via cAMP by binding to a G protein-coupled receptor on the plasma membrane with subsequent activation of a heterotrimeric G protein and its downstream effector, transmembrane adenylyl cyclase. This has long been the canonical standard for cAMP production in a cell. However, the relatively recent discovery of a unique source of cAMP, sAC, creates the potential for a shift in this signaling paradigm. In fact, sAC has been shown to play a role in apoptosis in coronary endothelial cells and cardiomyocytes. Additionally, it links nutrient utilization with ATP production in the liver and brain, which suggests one of many potential roles for sAC in cardiac function. The possibility of producing cAMP from a source distal to the plasma membrane provides a critical new building block for reconstructing the cellular signaling infrastructure. PMID:22058150

  6. Expression of soluble adenylyl cyclase in acral melanomas.

    PubMed

    Li, H; Kim, S M; Savkovic, V; Jin, S A; Choi, Y D; Yun, S J

    2016-06-01

    Soluble adenylyl cyclase (sAC) regulates melanocytic cells, and is a diagnostic marker for pigmented skin lesions. Because only a few studies on sAC expression in acral melanomas have been performed, we investigated the histopathological significance of sAC expression in 33 cases of acral melanoma, and assessed its diagnostic value in distinguishing melanoma in situ (MIS, n = 17) from acral invasive melanomas (n = 16) and melanocytic naevi (n = 11). Acral melanomas exhibited more marked nuclear immunopositivity compared with acral melanocytic naevi. sAC expression significantly correlated with the nuclear morphology of melanocytes and melanoma cells, namely, hyperchromatic nuclei and prominent nucleoli within vesicular nuclei. sAC expression was predominantly observed in the hyperchromatic nuclei of MIS and the prominent nucleoli invasive melanomas, respectively. In vitro culture models of melanocytes and melanoma cell lines exhibited sAC staining patterns similar to those of acral melanomas. Differentiation induction showed that nuclear and nucleolar expression varied depending on cell morphology. sAC immunostaining may be useful for the differential diagnosis of acral melanocytic lesions, and sAC expressed in the nucleus and nucleolus might be related to cytological and nuclear changes associated with invasion and progression of acral melanomas. PMID:26290224

  7. Adenylyl cyclases in the digestive system

    PubMed Central

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2015-01-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca2+ and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  8. Adenylyl cyclases in the digestive system.

    PubMed

    Sabbatini, Maria Eugenia; Gorelick, Fred; Glaser, Shannon

    2014-06-01

    Adenylyl cyclases (ACs) are a group of widely distributed enzymes whose functions are very diverse. There are nine known transmembrane AC isoforms activated by Gαs. Each has its own pattern of expression in the digestive system and differential regulation of function by Ca(2+) and other intracellular signals. In addition to the transmembrane isoforms, one AC is soluble and exhibits distinct regulation. In this review, the basic structure, regulation and physiological roles of ACs in the digestive system are discussed. PMID:24521753

  9. Functional non-nucleoside adenylyl cyclase inhibitors.

    PubMed

    Lelle, Marco; Hameed, Abdul; Ackermann, Lisa-Maria; Kaloyanova, Stefka; Wagner, Manfred; Berisha, Filip; Nikolaev, Viacheslav O; Peneva, Kalina

    2015-05-01

    In this study, we describe the synthesis of novel functional non-nucleoside adenylyl cyclase inhibitors, which can be easily modified with thiol containing biomolecules such as tumour targeting structures. The linkage between inhibitor and biomolecule contains cleavable bonds to enable efficient intracellular delivery in the reductive milieu of the cytosol as well as in the acidic environment within endosomes and lysosomes. The suitability of this synthetic approach was shown by the successful bioconjugation of a poor cell-permeable inhibitor with a cell-penetrating peptide. Additionally, we have demonstrated the excellent inhibitory effect of the compounds presented here in a live-cell Förster resonance energy transfer-based assay in human embryonic kidney cells. PMID:25319071

  10. A Soluble Adenylyl Cyclase Form Targets to Axonemes and Rescues Beat Regulation in Soluble Adenylyl Cyclase Knockout Mice

    PubMed Central

    Chen, Xi; Baumlin, Nathalie; Buck, Jochen; Levin, Lonny R.; Fregien, Nevis

    2014-01-01

    Ciliary beating is important for effective mucociliary clearance. Soluble adenylyl cyclase (sAC) regulates ciliary beating, and a roughly 50-kD sAC variant is expressed in axonemes. Normal human bronchial epithelial (NHBE) cells express multiple sAC splice variants: full-length sAC; variants with catalytic domain 1 (C1) deletions; and variants with partial C1. One variant, sACex5v2-ex12v2, contains two alternative splices creating new exons 5 (ex5v2) and 12 (ex12v2), encoding a roughly 45-kD protein. It is therefore similar in size to ciliary sAC. The variant increases in expression upon ciliogenesis during differentiation at the air–liquid interface. When expressed in NHBE cells, this variant was targeted to cilia. Exons 5v2–7 were important for ciliary targeting, whereas exons 2–4 prevented it. In vitro, cytoplasmic sACex2-ex12v2 (containing C1 and C2) was the only variant producing cAMP. Ciliary sACex5v2-ex12v2 was not catalytically active. Airway epithelial cells isolated from wild-type mice revealed sAC-dependent ciliary beat frequency (CBF) regulation, analogous to NHBE cells: CBF rescue from HCO3−/CO2–mediated intracellular acidification was sensitive to the sAC inhibitor, KH7. Compared with wild type, sAC C2 knockout (KO) mice revealed lower CBF baseline, and the HCO3−/CO2–mediated CBF decrease was not inhibited by KH7, confirming lack of functional sAC. Human sACex5v2-ex12v2 was targeted to cilia and sACex2-ex12v2 to the cytoplasm in these KO mice. Introduction of the ciliary sACex5v2-ex12v2 variant, but not the cytoplasmic sACex2-ex12v2, restored functional sAC activity in C2 KO mice. Thus, we show, for the first time, a mammalian axonemal targeting sequence that localizes a sAC variant to cilia to regulate CBF. PMID:24874272

  11. Central role of soluble adenylyl cyclase and cAMP in sperm physiology

    PubMed Central

    Buffone, Mariano G.; Wertheimer, Eva V.; Visconti, Pablo E.; Krapf, Dario

    2014-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cylases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. PMID:25066614

  12. Regulation of adenylyl cyclase from Blastocladiella emersonii by guanine nucleotides.

    PubMed

    Terenzi, H; Maia, J C

    1993-11-01

    GTP gamma S stimulates adenylyl cyclase in particulate fractions of Blastocladiella emersonii zoospores. Cholera toxin catalyses the ADP-ribosylation of a membrane protein of a molecular weight (46,000) similar to that of the alpha subunit of Gs found in vertebrate cells. A membrane protein of 46 kDa can also be recognized in Western blots by an antipeptide antiserum (RM/1) raised against the C-terminus of G alpha 2-subunits. These results suggest that a G-protein mediates the regulation of Blastocladiella adenylyl cyclase by guanine nucleotides. PMID:8224237

  13. Regulation and organization of adenylyl cyclases and cAMP.

    PubMed Central

    Cooper, Dermot M F

    2003-01-01

    Adenylyl cyclases are a critically important family of multiply regulated signalling molecules. Their susceptibility to many modes of regulation allows them to integrate the activities of a variety of signalling pathways. However, this property brings with it the problem of imparting specificity and discrimination. Recent studies are revealing the range of strategies utilized by the cyclases to solve this problem. Microdomains are a consequence of these solutions, in which cAMP dynamics may differ from the broad cytosol. Currently evolving methodologies are beginning to reveal cAMP fluctuations in these various compartments. PMID:12940771

  14. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. PMID:27335168

  15. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  16. Requirements for the adenylyl cyclases in the development of Dictyostelium.

    PubMed

    Anjard, C; Söderbom, F; Loomis, W F

    2001-09-01

    It has been suggested that all intracellular signaling by cAMP during development of Dictyostelium is mediated by the cAMP-dependent protein kinase, PKA, since cells carrying null mutations in the acaA gene that encodes adenylyl cyclase can develop so as to form fruiting bodies under some conditions if PKA is made constitutive by overexpressing the catalytic subunit. However, a second adenylyl cyclase encoded by acrA has recently been found that functions in a cell autonomous fashion during late development. We have found that expression of a modified acaA gene rescues acrA- mutant cells indicating that the only role played by ACR is to produce cAMP. To determine whether cells lacking both adenylyl cyclase genes can develop when PKA is constitutive we disrupted acrA in a acaA- PKA-C(over) strain. When developed at high cell densities, acrA- acaA- PKA-C(over) cells form mounds, express cell type-specific genes at reduced levels and secrete cellulose coats but do not form fruiting bodies or significant numbers of viable spores. Thus, it appears that synthesis of cAMP is required for spore differentiation in Dictyostelium even if PKA activity is high. PMID:11566867

  17. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  18. Differential effects of ceramides upon adenylyl cyclase subtypes.

    PubMed

    Bösel, A; Pfeuffer, T

    1998-01-30

    Ceramides are reported to stimulate different effector systems, among them atypical protein kinases C (PKCs). When HEK 293 cells, stably expressing adenylyl cyclase type II (AC II), were treated with various ceramide derivatives, adenylyl cyclase activity was enhanced 8-15-fold. The stimulation by the most potent analog, C18/C24 ceramide, was comparable to that by the phorbolester TPA. The stimulatory effect of ceramide was not restricted to AC II, although the type I and type V enzymes were affected less dramatically. Unexpectedly, the dihydro derivatives of ceramides, generally serving as non-activating controls, exhibited only slightly lower stimulation than ceramides, whereas short-chain ceramides (e.g. C2) were without effect. The action of ceramides was at least partially inhibited by okadaic acid, suggesting involvement of a phosphatase. Furthermore, ceramides and TPA operated synergistically. While the PKC inhibitor staurosporine counteracted the action of phorbol-esters, it significantly (2.5x) enhanced the effect of ceramides. PMID:9490008

  19. Crystallization of the class IV adenylyl cyclase from Yersinia pestis

    SciTech Connect

    Smith, Natasha; Kim, Sook-Kyung; Reddy, Prasad T.; Gallagher, D. Travis

    2006-03-01

    The class IV adenylyl cyclase from Y. pestis has been crystallized in an orthorhombic form suitable for structure determination. The class IV adenylyl cyclase from Yersinia pestis has been cloned and crystallized in both a triclinic and an orthorhombic form. An amino-terminal His-tagged construct, from which the tag was removed by thrombin, crystallized in a triclinic form diffracting to 1.9 Å, with one dimer per asymmetric unit and unit-cell parameters a = 33.5, b = 35.5, c = 71.8 Å, α = 88.7, β = 82.5, γ = 65.5°. Several mutants of this construct crystallized but diffracted poorly. A non-His-tagged native construct (179 amino acids, MW = 20.5 kDa) was purified by conventional chromatography and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. These crystals have unit-cell parameters a = 56.8, b = 118.6, c = 144.5 Å, diffract to 3 Å and probably have two dimers per asymmetric unit and V{sub M} = 3.0 Å{sup 3} Da{sup −1}. Both crystal forms appear to require pH below 5, complicating attempts to incorporate nucleotide ligands into the structure. The native construct has been produced as a selenomethionine derivative and crystallized for phasing and structure determination.

  20. Prenatal exposure to cocaine decreases adenylyl cyclase activity in embryonic mouse striatum.

    PubMed

    Unterwald, Ellen M; Ivkovic, Sanja; Cuntapay, Marie; Stroppolo, Antonella; Guinea, Barbara; Ehrlich, Michelle E

    2003-12-30

    Adenylyl cyclase activity was measured in the striatum of naive mice as a function of age and in mice exposed in utero to cocaine. In naive Swiss-Webster mice, basal and forskolin-stimulated adenylyl cyclase activity increased gradually from embryonic day 13 (E13) until 2-3 weeks of age when activity peaked before decreasing slightly to adult levels. The ability of the dopamine D1 receptor agonist, SKF 82958, to stimulate adenylyl cyclase activity also increased in magnitude until P15. In a separate study, pregnant Swiss-Webster mice were injected twice daily with cocaine (15 mg/kg, s.c.) or an equal volume of saline from E10 to E17. Adenylyl cyclase activity was measured in the striatum of E18 embryos. Basal adenylyl cyclase activity was significantly reduced following prenatal exposure to cocaine. Likewise, the ability of forskolin or SKF 82958 to stimulate adenylyl cyclase was attenuated following cocaine exposure. DeltaFosB was not induced, contrary to what is seen in adult mice. These results demonstrate a functional change in a critical signal transduction pathway following chronic in utero exposure to cocaine that might have profound effects of the development of the brain. Alterations in the cAMP system may underlie some of the deficits seen in humans exposed in utero to cocaine. PMID:14741752

  1. Cloning, chromosomal mapping, and expression of human fetal brain type I adenylyl cyclase

    SciTech Connect

    Villacres, E.C.; Xia, Z.; Bookbinder, L.H.; Edelhoff, S.; Disteche, C.M.; Storm, D.R.

    1993-05-01

    The neural-specific calmodulin-sensitive adenylyl cyclase (type I), which was first cloned from bovine brain, has been implicated in learning and memory. The objective of this study was to clone and determine the chromosomal localization of human fetal brain type I adenylyl cyclase. A 3.8-kb cDNA clone was isolated that contained sequence coinciding with the 3{prime} end 2553 nucleotides of the bovine open reading frame. This clone shows 87% nucleotide and 92% translated amino acid sequence identity to the bovine clone. The most significant sequence differences were in the carboxy-terminal 100 amino acid residues. This region contains one of several possible calmodulin binding domains and the only putative cAMP-dependent protein kinase A phosphorylation site. A chimera was constructed that contained the 5{prime} half of the bovine type I adenylyl cyclase and the 3{prime} half of the human type I adenylyl cyclase. The activity of the chimeric gene product and its sensitivity to calmodulin and calcium were indistinguishable from those of the bovine type I adenylyl cyclase. In situ hybridization was used to localize the human type I adenylyl cyclase gene to the proximal portion of the short arm of chromosome 7. 36 refs., 4 figs.

  2. Bithionol Potently Inhibits Human Soluble Adenylyl Cyclase through Binding to the Allosteric Activator Site.

    PubMed

    Kleinboelting, Silke; Ramos-Espiritu, Lavoisier; Buck, Hannes; Colis, Laureen; van den Heuvel, Joop; Glickman, J Fraser; Levin, Lonny R; Buck, Jochen; Steegborn, Clemens

    2016-04-29

    The signaling molecule cAMP regulates functions ranging from bacterial transcription to mammalian memory. In mammals, cAMP is synthesized by nine transmembrane adenylyl cyclases (ACs) and one soluble AC (sAC). Despite similarities in their catalytic domains, these ACs differ in regulation. Transmembrane ACs respond to G proteins, whereas sAC is uniquely activated by bicarbonate. Via bicarbonate regulation, sAC acts as a physiological sensor for pH/bicarbonate/CO2, and it has been implicated as a therapeutic target, e.g. for diabetes, glaucoma, and a male contraceptive. Here we identify the bisphenols bithionol and hexachlorophene as potent, sAC-specific inhibitors. Inhibition appears mostly non-competitive with the substrate ATP, indicating that they act via an allosteric site. To analyze the interaction details, we solved a crystal structure of an sAC·bithionol complex. The structure reveals that the compounds are selective for sAC because they bind to the sAC-specific, allosteric binding site for the physiological activator bicarbonate. Structural comparison of the bithionol complex with apo-sAC and other sAC·ligand complexes along with mutagenesis experiments reveals an allosteric mechanism of inhibition; the compound induces rearrangements of substrate binding residues and of Arg(176), a trigger between the active site and allosteric site. Our results thus provide 1) novel insights into the communication between allosteric regulatory and active sites, 2) a novel mechanism for sAC inhibition, and 3) pharmacological compounds targeting this allosteric site and utilizing this mode of inhibition. These studies provide support for the future development of sAC-modulating drugs. PMID:26961873

  3. Catalytic Mechanism of Mammalian Adenylyl Cyclase: A Computational Investigation.

    PubMed

    Hahn, David K; Tusell, Jose R; Sprang, Stephen R; Chu, Xi

    2015-10-13

    Adenylyl cyclase (AC) catalyzes the synthesis of cyclic AMP, an important intracellular regulatory molecule, from ATP. We propose a catalytic mechanism for class III mammalian AC based on density functional theory calculations. We employ a model of the AC active site derived from a crystal structure of mammalian AC activated by Gα·GTP and forskolin at separate allosteric sites. We compared the calculated activation free energies for 13 possible reaction sequences involving proton transfer, nucleophilic attack, and elimination of pyrophosphate. The proposed most probable mechanism is initiated by deprotonation of 3'OH and water-mediated transfer of the 3'H to the γ-phosphate. Proton transfer is followed by changes in coordination of the two magnesium ion cofactors and changes in the conformation of ATP to enhance the role of 3'O as a nucleophile and to bring 3'O close to Pα. The subsequent phosphoryl transfer step is concerted and rate-limiting. Comparison of the enzyme-catalyzed and nonenzymatic reactions reveals that the active site residues lower the free energy barrier for both phosphoryl transfer and proton transfer and significantly shift the proton transfer equilibrium. Calculations for mutants K1065A and R1029A demonstrate that K1065 plays a significant role in shifting the proton transfer equilibrium, whereas R1029 is important for making the transition state of concerted phosphoryl transfer tight rather than loose. PMID:26393535

  4. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    PubMed Central

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2013-01-01

    SUMMARY Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO3− entry via the electrogenic NaHCO3 cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K+]ext and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. PMID:22998876

  5. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee.

    PubMed

    Wachten, Sebastian; Schlenstedt, Jana; Gauss, Renate; Baumann, Arnd

    2006-03-01

    Cyclic AMP (cAMP) serves as an important messenger in virtually all organisms. In the honeybee (Apis mellifera), cAMP-dependent signal transduction has been implicated in behavioural processes as well as in learning and memory. Key components of cAMP-signalling cascades are adenylyl cyclases. However, the molecular identities and biochemical properties of adenylyl cyclases are completely unknown in the honeybee. We have cloned a cDNA (Amac3) from honeybee brain that encodes a membrane-bound adenylyl cyclase. The Amac3 gene is an orthologue of the Drosophila ac39E gene. The corresponding proteins share an overall amino acid similarity of approximately 62%. Phylogenetically, AmAC3 belongs to group 1 adenylyl cyclases. Heterologously expressed AmAC3 displays basal enzymatic activity and efficient coupling to endogenous G protein signalling pathways. Stimulation of beta-adrenergic receptors induces AmAC3 activity with an EC(50) of about 3.1 microm. Enzymatic activity is also increased by forskolin (EC(50) approximately 15 microm), a specific agonist of membrane-bound adenylyl cyclases. Similar to certain biogenic amine receptor genes of the honeybee, Amac3 transcripts are expressed in many somata of the brain, especially in mushroom body neurones. These results suggest that the enzyme serves in biogenic amine signal transduction cascades and in higher brain functions that contribute to learning and memory of the bee. PMID:16464235

  6. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  7. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation

    PubMed Central

    Chang, Jung-Chin; Oude-Elferink, Ronald P. J.

    2014-01-01

    The evolutionarily conserved soluble adenylyl cyclase (sAC, adcy10) was recently identified as a unique source of cAMP in the cytoplasm and the nucleus. Its activity is regulated by bicarbonate and fine-tuned by calcium. As such, and in conjunction with carbonic anhydrase (CA), sAC constitutes an HCO−3/CO−2/pH sensor. In both alpha-intercalated cells of the collecting duct and the clear cells of the epididymis, sAC is expressed at significant level and involved in pH homeostasis via apical recruitment of vacuolar H+-ATPase (VHA) in a PKA-dependent manner. In addition to maintenance of pH homeostasis, sAC is also involved in metabolic regulation such as coupling of Krebs cycle to oxidative phosphorylation via bicarbonate/CO2 sensing. Additionally, sAC also regulates CFTR channel and plays an important role in regulation of barrier function and apoptosis. These observations suggest that sAC, via bicarbonate-sensing, plays an important role in maintaining homeostatic status of cells against fluctuations in their microenvironment. PMID:24575049

  8. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  9. Purification and assay of cell-invasive form of calmodulin-sensitive adenylyl cyclase from Bordetella pertussis

    SciTech Connect

    Masure, H.R.; Donovan, M.G.; Storm, D.R.

    1991-01-01

    An invasive form of the CaM-sensitive adenylyl cyclase from Bordetella pertussis can be isolated from bacterial culture supernatants. This isolation is achieved through the use of QAE-Sephadex anion-exchange chromatography. It has been demonstrated that the addition of exogenous Ca{sup 2}{sup +} to the anion-exchange gradient buffers will affect elution from the column and will thereby affect the isolation of invasive adenylyl cyclase. This is probably due to a Ca2(+)-dependent interaction of the catalytic subunit with another component in the culture supernatant. Two peaks of adenylyl cyclase activity are obtained. The Pk1 adenylyl cyclase preparation is able to cause significant increases in intracellular cAMP levels in animal cells. This increase occurs rapidly and in a dose-dependent manner in both N1E-115 mouse neuroblastoma cells and human erythrocytes. The Pk2 adenylyl cyclase has catalytic activity but is not cell invasive. This material can serve, therefore, as a control to ensure that the cAMP which is measured is, indeed, intracellular. A second control is to add exogenous CaM to the Pk1 adenylyl cyclase preparation. The 45-kDa catalytic subunit-CaM complex is not cell invasive. Although the mechanism for membrane translocation of the adenylyl cyclase is unknown, there is evidence that the adenylyl cyclase enters animal cells by a mechanism distinct from receptor-mediated endocytosis. Calmodulin-sensitive adenylyl cyclase activity can be removed from preparations of the adenylyl cyclase that have been subjected to SDS-polyacrylamide gel electrophoresis. This property of the enzyme has enabled purification of the catalytic subunit to apparent homogeneity. The purified catalytic subunit from culture supernatants has a predicted molecular weight of 45,000. This polypeptide interacts directly with Ca{sup 2}{sup +} and this interaction may be important for its invasion into animal cells.

  10. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate

    PubMed Central

    Kleinboelting, Silke; Diaz, Ana; Moniot, Sebastien; van den Heuvel, Joop; Weyand, Michael; Levin, Lonny R.; Buck, Jochen; Steegborn, Clemens

    2014-01-01

    cAMP is an evolutionary conserved, prototypic second messenger regulating numerous cellular functions. In mammals, cAMP is synthesized by one of 10 homologous adenylyl cyclases (ACs): nine transmembrane enzymes and one soluble AC (sAC). Among these, only sAC is directly activated by bicarbonate (HCO3−); it thereby serves as a cellular sensor for HCO3−, carbon dioxide (CO2), and pH in physiological functions, such as sperm activation, aqueous humor formation, and metabolic regulation. Here, we describe crystal structures of human sAC catalytic domains in the apo state and in complex with substrate analog, products, and regulators. The activator HCO3− binds adjacent to Arg176, which acts as a switch that enables formation of the catalytic cation sites. An anionic inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, inhibits sAC through binding to the active site entrance, which blocks HCO3− activation through steric hindrance and trapping of the Arg176 side chain. Finally, product complexes reveal small, local rearrangements that facilitate catalysis. Our results provide a molecular mechanism for sAC catalysis and cellular HCO3− sensing and a basis for targeting this system with drugs. PMID:24567411

  11. An Adenylyl Cyclase, CyaB, Acts as an Osmosensor in Myxococcus xanthus

    PubMed Central

    Kimura, Yoshio; Ohtani, Mika; Takegawa, Kaoru

    2005-01-01

    We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant. PMID:15866951

  12. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  13. A HCO3−-dependent mechanism involving soluble adenylyl cyclase for the activation of Ca2+ currents in locus coeruleus neurons

    PubMed Central

    Imber, Ann N.; Santin, Joseph M.; Graham, Cathy D.; Putnam, Robert W.

    2014-01-01

    Hypercapnic acidosis activates Ca2+ channels and increases intracellular Ca2+ levels in neurons of the locus coeruleus (LC), a known chemosensitive region involved in respiratory control. We have also shown that large conductance Ca2+-activated K+ channels (BK), in conjunction with this pathway, limits the hypercapnic-induced increase in firing rate in LC neurons. Here, we present evidence that the Ca2+ current is activated by a HCO3−-sensitive pathway. The increase in HCO3− associated with hypercapnia activates HCO3−-sensitive adenylyl cyclase (sAC). This results in an increase in cAMP levels and activation of Ca2+ channels via cAMP-activated protein kinase A (PKA). We also show the presence of sAC in the cytoplasm of LC neurons, and that the cAMP analogue db-cAMP increases Ca2+i. Disrupting this pathway by decreasing HCO3− levels during acidification or inhibiting either sAC or PKA, but not transmembrane adenylyl cyclase (tmAC), can increase the magnitude of the firing rate response to hypercapnia in LC neurons from older neonates to the same extent as inhibition of BK channels. PMID:25092170

  14. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light. PMID:24201148

  15. An Adenylyl Cyclase, CyaA, of Myxococcus xanthus Functions in Signal Transduction during Osmotic Stress

    PubMed Central

    Kimura, Yoshio; Mishima, Yukako; Nakano, Hiromi; Takegawa, Kaoru

    2002-01-01

    An adenylyl cyclase gene (cyaA) present upstream of an osmosensor protein gene (mokA) was isolated from Myxococcus xanthus. cyaA encoded a polypeptide of 843 amino acids with a predicted molecular mass of 91,187 Da. The predicted cyaA gene product had structural similarity to the receptor-type adenylyl cyclases that are composed of an amino-terminal sensor domain and a carboxy-terminal catalytic domain of adenylyl cyclase. In reverse transcriptase PCR experiments, the transcript of the cyaA gene was detected mainly during development and spore germination. A cyaA mutant, generated by gene disruption, showed normal growth, development, and germination. However, a cyaA mutant placed under conditions of ionic (NaCl) or nonionic (sucrose) osmostress exhibited a marked reduction in spore formation and spore germination. When wild-type and cyaA mutant cells at developmental stages were stimulated with 0.2 M NaCl or sucrose, the mutant cells increased cyclic AMP accumulation at levels similar to those of the wild-type cells. In contrast, the mutant cells during spore germination had mainly lost the ability to respond to high-ionic osmolarity. In vegetative cells, the cyaA mutant responded normally to osmotic stress. These results suggested that M. xanthus CyaA functions mainly as an ionic osmosensor during spore germination and that CyaA is also required for osmotic tolerance in fruiting formation and sporulation. PMID:12057952

  16. H2S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway.

    PubMed

    Li, Sen; Ping, Na-Na; Cao, Lei; Mi, Yan-Ni; Cao, Yong-Xiao

    2015-12-15

    Hydrogen sulfide (H2S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H2S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H2S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-type Ca(2+) channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H2S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. PMID:26524654

  17. Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases.

    PubMed Central

    Premont, R T; Chen, J; Ma, H W; Ponnapalli, M; Iyengar, R

    1992-01-01

    cDNA encoding a hormone- and guanine nucleotide-stimulated adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] (type 6) from rat liver and kidney has been cloned and expressed. This enzyme is stimulated by forskolin, guanosine 5'-[gamma-thio]triphosphate, and isoproterenol plus GTP but is not stimulated by beta gamma subunits of guanine nucleotide-binding proteins. A second form (type 5), which is 75% similar to type 6, has also been cloned. Both types 5 and 6 cDNAs have multiple messages. PCR-based detection of the mRNA for the type 5 and 6 enzymes indicates that both are widely distributed. Homology analyses indicate at least four distinct subfamilies of guanine nucleotide stimulatory protein-regulated adenylyl cyclases. Types 5 and 6 enzymes define one distinct subfamily of mammalian adenylyl cyclases. Diversity of one guanine nucleotide-binding protein-regulated effector may allow different modes of regulation of cell-surface signal transmission. Images PMID:1409703

  18. HAMP domain-mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter.

    PubMed

    Mondéjar, Laura García; Lupas, Andrei; Schultz, Anita; Schultz, Joachim E

    2012-01-01

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function. PMID:22094466

  19. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation

    PubMed Central

    López-Canales, O.A.; Castillo-Hernandez, M.C.; Vargas-Robles, H.; Rios, A.; López-Canales, J.S.; Escalante, B.

    2016-01-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  20. Role of adenylyl cyclase in reduced β-adrenoceptor-mediated vasorelaxation during maturation.

    PubMed

    López-Canales, O A; Castillo-Hernandez, M C; Vargas-Robles, H; Rios, A; López-Canales, J S; Escalante, B

    2016-07-01

    Beta-adrenergic receptor (βAR)-dependent blood vessel relaxation is impaired in older animals and G protein activation has been suggested as the causative mechanism. Here, we investigated the role of βAR subtypes (β1AR, β2AR, and β3AR) and cAMP in maturation-dependent vasorelaxation impairment. Aortic rings from 15 Sprague-Dawley male rats (3 or 9 weeks old) were harvested and left intact or denuded of the endothelium. Vascular relaxation in aortic rings from younger and older groups was compared in the presence of βAR subtype agonists and antagonists along with cAMP and cGMP antagonists. Isolated aortic rings were used to evaluate relaxation responses, protein expression was evaluated by western blot or real time PCR, and metabolites were measured by ELISA. Expression of βAR subtypes and adenylyl cyclase was assessed, and cAMP activity was measured in vascular tissue from both groups. Isoproterenol- and BRL744-dependent relaxation in aortic rings with and without endothelium from 9-week-old rats was impaired compared with younger rats. The β1AR antagonist CGP20712A (10-7 M) did not affect isoproterenol or BRL744-dependent relaxation in arteries from either group. The β2AR antagonist ICI-118,551 (10-7 M) inhibited isoproterenol-dependent aortic relaxation in both groups. The β3AR antagonist SR59230A (10-7 M) inhibited isoproterenol- and BRL744-dependent aortic ring relaxation in younger but not in older rats. All βAR subtypes were expressed in both groups, although β3AR expression was lower in the older group. Adenylyl cyclase (SQ 22536) or protein kinase A (H89) inhibitors prevented isoproterenol-induced relaxation in younger but not in older rats. Production of cAMP was reduced in the older group. Adenylyl cyclase III and RyR3 protein expression was higher in the younger group. In conclusion, altered expression of β3AR and adenylyl cyclase III may be responsible for reduced cAMP production in the older group. PMID:27383122

  1. Nerve growth factor-induced differentiation of PC12 cells is accompanied by elevated adenylyl cyclase activity.

    PubMed

    Yung, H S; Lai, K H; Chow, K B S; Ip, N Y; Tsim, K W K; Wong, Y H; Wu, Z; Wise, H

    2010-01-01

    Rat pheochromocytoma (PC12) cells characteristically undergo differentiation when cultured with nerve growth factor (NGF). Here we show that NGF dramatically increased the adenylyl cyclase-activating property of forskolin in PC12 cells. This effect of NGF was well maintained even when NGF was removed after 4 days, even though the morphological features of neuronal differentiation were rapidly lost on removal of NGF. The enhanced cAMP production in response to forskolin could be due to a synergistic interaction between forskolin and endogenously released agonists acting on G(s)-coupled receptors. However, responses to forskolin were not attenuated by antagonists of adenosine A2 receptors or pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, suggesting that adenosine and PACAP were not involved. Adenylyl cyclases 3, 6 and 9 were the predominant isoforms expressed in PC12 cells, but we found no evidence for NGF-induced changes in expression levels of any of the 9 adenylyl cyclase isoforms, nor in the expression of Gα(s). These findings highlight that NGF has a subtle influence on adenylyl cyclase activity in PC12 cells which may influence more than the neurite extension process classically associated with neuronal differentiation. PMID:20389133

  2. Phorbol ester-induced sensitisation of adenylyl cyclase type II is related to phosphorylation of threonine 1057.

    PubMed

    Böl, G F; Gros, C; Hülster, A; Bösel, A; Pfeuffer, T

    1997-08-18

    Following up the results from previous studies on chemical fragmentation of TPA-treated, [32P]phosphate labeled adenylyl cyclase type II (AC II) (Böl, G. F., Hülster, A., and Pfeuffer, T. in press) we have replaced serine 871 or threonine 1057 by alanine using site directed mutagenesis. Both mutants had unimpaired catalytic activity, however enhancement by phorbolester TPA was reduced by 60-80 % in the T1057A mutant, but not in the S871A mutant. The stimulation of adenylyl cyclase type II by betagamma subunits of heterotrimeric G-pro teins and that by PKC have been previously shown to be mutually exclusive (Zimmermann and Taussig (1996), J. Biol. Chem. 271, 27161-27166). This is in line with the present findings that AC II expressed in COS-1 cells was only barely stimulated (10%) by coexpressed betagamma-subunits in presence of TPA. Mutation of threonine 1057 to alanine however caused partial regain of betagamma-stimulation in the presence of TPA by 40%, as compared to that of WT adenylyl cyclase type II which was 70% in the absence of TPA. These data strongly implicate the importance of threonine 1057 as phosphate acceptor following PKC-mediated sensitisation of adenylyl cyclase type II. PMID:9268695

  3. Development of a High-Throughput Screening Paradigm for the Discovery of Small-Molecule Modulators of Adenylyl Cyclase: Identification of an Adenylyl Cyclase 2 Inhibitor

    PubMed Central

    Conley, Jason M.; Brand, Cameron S.; Bogard, Amy S.; Pratt, Evan P. S.; Xu, Ruqiang; Hockerman, Gregory H.; Ostrom, Rennolds S.; Dessauer, Carmen W.

    2013-01-01

    Adenylyl cyclase (AC) isoforms are implicated in several physiologic processes and disease states, but advancements in the therapeutic targeting of AC isoforms have been limited by the lack of potent and isoform-selective small-molecule modulators. The discovery of AC isoform-selective small molecules is expected to facilitate the validation of AC isoforms as therapeutic targets and augment the study of AC isoform function in vivo. Identification of chemical probes for AC2 is particularly important because there are no published genetic deletion studies and few small-molecule modulators. The present report describes the development and implementation of an intact-cell, small-molecule screening approach and subsequent validation paradigm for the discovery of AC2 inhibitors. The NIH clinical collections I and II were screened for inhibitors of AC2 activity using PMA-stimulated cAMP accumulation as a functional readout. Active compounds were subsequently confirmed and validated as direct AC2 inhibitors using orthogonal and counterscreening assays. The screening effort identified SKF-83566 [8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide] as a selective AC2 inhibitor with superior pharmacological properties for selective modulation of AC2 compared with currently available AC inhibitors. The utility of SKF-83566 as a small-molecule probe to study the function of endogenous ACs was demonstrated in C2C12 mouse skeletal muscle cells and human bronchial smooth muscle cells. PMID:24008337

  4. Efficacy of inverse agonists in cells overexpressing a constitutively active β2-adrenoceptor and type II adenylyl cyclase

    PubMed Central

    Stevens, Patricia A; Milligan, Graeme

    1998-01-01

    Maximal stimulant output from the adenylyl cyclase cascade in neuroblastoma × glioma hybrid, NG108-15, cells is limited by the levels of expression of isoforms of adenylyl cyclase. Stable expression in these cells of a constitutively active mutant (CAM) version of the human β2-adrenoceptor resulted in higher basal adenylyl cyclase activity than following expression of the human wild type β2-adrenoceptor. Isoprenaline acted as a full agonist in membranes from both wild type and CAM β2-adrenoceptor expressing clones.Expression of type II adenylyl cyclase resulted in a substantially elevated capacity of isoprenaline to stimulate [3H]-forskolin binding, whereas in CAM β2-adrenoceptor expressing cells the basal high affinity [3H]-forskolin binding represented a markedly greater % of the maximal effect which could be produced by addition of isoprenaline, and the EC50 for isoprenaline was some 10 fold lower than in cells expressing the wild type β2-adrenoceptor.Further transfection of the CAM β2-adrenoceptor expressing cells with type II adenylyl cyclase greatly increased both absolute basal and agonist-stimulated levels of adenylyl cyclase activity.Betaxolol, ICI 118,551, sotalol and timolol acted as inverse agonists with varying degrees of efficacy, whereas propranolol functioned as a neutral antagonist and alprenolol as a partial agonist.Pretreatment of the CAM β2-adrenoceptor and type II adenylyl cyclase expressing clones with the irreversible alkylating agent BAAM (1 μM) did not reduce the efficacy of isoprenaline but eliminated efficacy from all the inverse agonist ligands. This effect was dependent upon the concentration of BAAM employed, with half-maximal effects being produced between 10 nM and 100 nM of the alkylating agent, which is similar to the concentrations required to prevent subsequent ligand access to some 50% of the CAM β2-adrenoceptor population.These data demonstrate that inverse agonist efficacy can be modulated by receptor

  5. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus.

    PubMed

    Hurwitz, N; Segal, M; Marbach, I; Levitzki, A

    1995-11-21

    Although both Ras1 and Ras2 activate adenylyl cyclase in yeast, a number of differences can be observed regarding their function in the cAMP pathway. To explore the relative contribution of conserved and variable domains in determining these differences, chimeric RAS1-RAS2 or RAS2-RAS1 genes were constructed by swapping the sequences encoding the variable C-terminal domains. These constructs were expressed in a cdc25ts ras1 ras2 strain. Biochemical data show that the difference in efficacy of adenylyl cyclase activation between the two Ras proteins resides in the highly conserved N-terminal domain. This finding is supported by the observation that Ras2 delta, in which the C-terminal domain of Ras2 has been deleted, is a more potent activator of the yeast adenylyl cyclase than Ras1 delta, in which the C-terminal domain of Ras1 has been deleted. These observations suggest that amino acid residues other than the highly conserved residues of the effector domain within the N terminus may determine the efficiency of functional interaction with adenylyl cyclase. Similar levels of intracellular cAMP were found in Ras1, Ras1-Ras2, Ras1 delta, Ras2, and Ras2-Ras1 strains throughout the growth curve. This was found to result from the higher expression of Ras1 and Ras1-Ras2, which compensate for their lower efficacy in activating adenylyl cyclase. These results suggest that the difference between the Ras1 and the Ras2 phenotype is not due to their different efficacy in activating the cAMP pathway and that the divergent C-terminal domains are responsible for these differences, through interaction with other regulatory elements. PMID:7479926

  6. The YHS-Domain of an Adenylyl Cyclase from Mycobacterium phlei Is a Probable Copper-Sensor Module

    PubMed Central

    Linder, Jürgen Ulrich

    2015-01-01

    YHS-domains are small protein modules which have been proposed to bind transition-metal ions like the related TRASH-domains. They are found in a variety of enzymes including copper-transporting ATPases and adenylyl cyclases. Here we investigate a class IIIc adenylyl cyclase from Mycobacterium phlei which contains a C-terminal YHS-domain linked to the catalytic domain by a peptide of 8 amino acids. We expressed the isolated catalytic domain and the full-length enzyme in E. coli. The catalytic domain requires millimolar Mn2+ as a cofactor for efficient production of cAMP, is unaffected by low micromolar concentrations of Cu2+ and inhibited by concentrations higher than 10 μM. The full-length enzyme also requires Mn2+ in the absence of an activator. However, 1–10 μM Cu2+ stimulate the M. phlei adenylyl cyclase sixfold when assayed with Mn2+. With Mg2+ as the probable physiological cofactor of the adenylyl cyclase Cu2+ specifically switches the enzyme from an inactive to an active state. Other transition-metal ions do not elicit activity with Mg2+. We favor the view that the YHS-domain of M. phlei adenylyl cyclase acts as a sensor for copper ions and signals elevated levels of the transition-metal via cAMP. By analogy to TRASH-domains binding of Cu2+ probably occurs via one conserved aspartate and three conserved cysteine-residues in the YHS-domain. PMID:26512893

  7. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice

    PubMed Central

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-01-01

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca2+-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine1076 of ACIII, the only residue responsible for Ca2+-induced phosphorylation and inhibition of ACIII (Wei et al., 1996; Wei et al., 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wildtype and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine1076 plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  8. Phosphorylation of adenylyl cyclase III at serine1076 does not attenuate olfactory response in mice.

    PubMed

    Cygnar, Katherine D; Collins, Sarah Ellen; Ferguson, Christopher H; Bodkin-Clarke, Chantal; Zhao, Haiqing

    2012-10-17

    Feedback inhibition of adenylyl cyclase III (ACIII) via Ca(2+)-induced phosphorylation has long been hypothesized to contribute to response termination and adaptation of olfactory sensory neurons (OSNs). To directly determine the functional significance of this feedback mechanism for olfaction in vivo, we genetically mutated serine(1076) of ACIII, the only residue responsible for Ca(2+)-induced phosphorylation and inhibition of ACIII (Wei et al., 1996, 1998), to alanine in mice. Immunohistochemistry and Western blot analysis showed that the mutation affects neither the cilial localization nor the expression level of ACIII in OSNs. Electroolfactogram analysis showed no differences in the responses between wild-type and mutant mice to single-pulse odorant stimulations or in several stimulation paradigms for adaptation. These results suggest that phosphorylation of ACIII on serine(1076) plays a far less important role in olfactory response attenuation than previously thought. PMID:23077041

  9. Measles virus modulates human T-cell somatostatin receptors and their coupling to adenylyl cyclase.

    PubMed Central

    Krantic, S; Enjalbert, A; Rabourdin-Combe, C

    1997-01-01

    The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM

  10. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo

    PubMed Central

    Lee, Kristen L.; Hoey, David A.; Spasic, Milos; Tang, Tong; Hammond, H. Kirk; Jacobs, Christopher R.

    2014-01-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction.—Lee, K. L., Hoey, D. A., Spasic, M., Tang, T., Hammond, H. K., Jacobs, C. R. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo. PMID:24277577

  11. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  12. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice.

    PubMed

    Wong, S T; Trinh, K; Hacker, B; Chan, G C; Lowe, G; Gaggar, A; Xia, Z; Gold, G H; Storm, D R

    2000-09-01

    Cyclic nucleotide-gated ion channels in olfactory sensory neurons (OSNs) are hypothesized to play a critical role in olfaction. However, it has not been demonstrated that the cAMP signaling is required for olfactory-based behavioral responses, and the contributions of specific adenylyl cyclases to olfaction have not been defined. Here, we report the presence of adenylyl cyclases 2, 3, and 4 in olfactory cilia. To evaluate the role of AC3 in olfactory responses, we disrupted the gene for AC3 in mice. Interestingly, electroolfactogram (EOG) responses stimulated by either cAMP- or inositol 1,4,5-triphosphate- (IP3-) inducing odorants were completely ablated in AC3 mutants, despite the presence of AC2 and AC4 in olfactory cilia. Furthermore, AC3 mutants failed several olfaction-based behavioral tests, indicating that AC3 and cAMP signaling are critical for olfactory-dependent behavior. PMID:11055432

  13. Soluble adenylyl cyclase is not required for axon guidance to netrin-1.

    PubMed

    Moore, Simon W; Lai Wing Sun, Karen; Xie, Fang; Barker, Philip A; Conti, Marco; Kennedy, Timothy E

    2008-04-01

    During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on netrin-1 action are well accepted, but the critical issue of whether cAMP production is activated by a netrin-1 induced signaling cascade remains uncertain. A previous report has suggested that axon guidance in response to netrin-1 requires cAMP production mediated by soluble adenyl cyclase (sAC). We have used genetic, molecular and biochemical strategies to assess this issue. Surprisingly, we found only extremely weak expression of sAC in embryonic neurons and determined that, under conditions where netrin-1 directs axonal pathfinding, exposure to netrin-1 does not alter cAMP levels. Furthermore, although netrin-1-deficient mice exhibit major axon guidance defects, we show that pathfinding is normal in sAC-null mice. Therefore, although cAMP can alter the response of axons to netrin-1, we conclude that netrin-1 does not alter cAMP levels in axons attracted by this cue, and that sAC is not required for axon attraction to netrin-1. PMID:18400890

  14. Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation

    PubMed Central

    Bavencoffe, Alexis; Li, Yong; Wu, Zizhen; Yang, Qing; Herrera, Juan; Kennedy, Eileen J.

    2016-01-01

    Little is known about intracellular signaling mechanisms that persistently excite neurons in pain pathways. Persistent spontaneous activity (SA) generated in the cell bodies of primary nociceptors within dorsal root ganglia (DRG) has been found to make major contributions to chronic pain in a rat model of spinal cord injury (SCI) (Bedi et al., 2010; Yang et al., 2014). The occurrence of SCI-induced SA in a large fraction of DRG neurons and the persistence of this SA long after dissociation of the neurons provide an opportunity to define intrinsic cell signaling mechanisms that chronically drive SA in pain pathways. The present study demonstrates that SCI-induced SA requires continuing activity of adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA), as well as a scaffolded complex containing AC5/6, A-kinase anchoring protein 150 (AKAP150), and PKA. SCI caused a small but significant increase in the expression of AKAP150 but not other AKAPs. DRG membranes isolated from SCI animals revealed a novel alteration in the regulation of AC. AC activity stimulated by Ca2+-calmodulin increased, while the inhibition of AC activity by Gαi showed an unexpected and dramatic decrease after SCI. Localized enhancement of the activity of AC within scaffolded complexes containing PKA is likely to contribute to chronic pathophysiological consequences of SCI, including pain, that are promoted by persistent hyperactivity in DRG neurons. SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major clinical problem with poorly understood mechanisms and inadequate treatments. Recent findings indicate that chronic pain in a rat SCI model depends upon hyperactivity in dorsal root ganglia (DRG) neurons. Although cAMP signaling is involved in many forms of neural plasticity, including hypersensitivity of nociceptors in the presence of inflammatory mediators, our finding that continuing cAMP-PKA signaling is required for persistent SA months after SCI and long after isolation of

  15. Extracellular Regulation of Sperm Transmembrane Adenylyl Cyclase by a Forward Motility Stimulating Protein

    PubMed Central

    Dey, Souvik; Roy, Debarun; Majumder, Gopal C.; Bhattacharyya, Debdas

    2014-01-01

    Forward motility stimulating factor (FMSF), a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC) of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA) and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tmAC-dependent profound activation

  16. Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC.

    PubMed

    Wang, C; Jung, D; Cao, Z; Chung, C Y

    2015-09-25

    The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC(-) cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC(-) cells. racC(-) cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 μm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 μm/min was maintained in racC(-) cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell. PMID:26315268

  17. Laboratory evolution of adenylyl cyclase independent learning in Drosophil and missing heritability

    PubMed Central

    Cressy, M.; Valente, D.; Altick, A; Kockenmeister, E.; Honegger, K.; Qin, H.; Mitra, P.P.; Dubnau, J

    2014-01-01

    Gene interactions are acknowledged to be a likely source of missing heritability in large-scale genetic studies of complex neurological phenotypes. However, involvement of rare variants, de novo mutations, genetic lesions that are not easily detected with commonly used methods and epigenetic factors also are possible explanations. We used a laboratory evolution study to investigate the modulatory effects of background genetic variation on the phenotypic effect size of a null mutation with known impact on olfactory learning. To accomplish this, we first established a population that contained variation at just 23 loci and used selection to evolve suppression of the learning defect seen with null mutations in the rutabaga adenylyl cyclase. We thus biased the system to favor relatively simplified outcomes by choosing a Mendelian trait and by restricting the genetic variation segregating in the population. This experimental design also assures that the causal effects are among the known 23 segregating loci. We observe a robust response to selection that requires the presence of the 23 variants. Analyses of the underlying genotypes showed that interactions between more than two loci are likely to be involved in explaining the selection response, with implications for the missing heritability problem. PMID:24888634

  18. Structure of the Class IV Adenylyl Cyclase Reveals a Novel Fold

    SciTech Connect

    Gallagher,D.; Smith, N.; Kim, S.; Heroux, A.; Robinson, H.; Reddy, P.

    2006-01-01

    The crystal structure of the class IV adenylyl cyclase (AC) from Yersinia pestis (Yp) is reported at 1.9 {angstrom} resolution. The class IV AC fold is distinct from the previously described folds for class II and class III ACs. The dimeric AC-IV folds into an antiparallel eight-stranded barrel whose connectivity has been seen in only three previous structures: yeast RNA triphosphatase and two proteins of unknown function from Pyrococcus furiosus and Vibrio parahaemolyticus. Eight highly conserved ionic residues E10, E12, K14, R63, K76, K111, D126, and E136 lie in the barrel core and form the likely binding sites for substrate and divalent cations. A phosphate ion is observed bound to R63, K76, K111, and R113 near the center of the conserved cluster. Unlike the AC-II and AC-III active sites that utilize two-Asp motifs for cation binding, the AC-IV active site is relatively enriched in glutamate and features an ExE motif as its most conserved element. Homologs of Y. pestis AC-IV, including human thiamine triphosphatase, span the three kingdoms of life and delineate an ancient family of phosphonucleotide processing enzymes.

  19. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity.

    PubMed

    Yan, Lin; Park, Ji Yeon; Dillinger, Jean-Guillaume; De Lorenzo, Mariana S; Yuan, Chujun; Lai, Lo; Wang, Chunbo; Ho, David; Tian, Bin; Stanley, William C; Auwerx, Johan; Vatner, Dorothy E; Vatner, Stephen F

    2012-12-01

    Adenylyl cyclase type 5 knockout mice (AC5 KO) live longer and are stress resistant, similar to calorie restriction (CR). AC5 KO mice eat more, but actually weigh less and accumulate less fat compared with WT mice. CR applied to AC5 KO results in rapid decrease in body weight, metabolic deterioration, and death. These data suggest that despite restricted food intake in CR, but augmented food intake in AC5 KO, the two models affect longevity and metabolism similarly. To determine shared molecular mechanisms, mRNA expression was examined genome-wide for brain, heart, skeletal muscle, and liver. Significantly more genes were regulated commonly rather than oppositely in all the tissues in both models, indicating commonality between AC5 KO and CR. Gene ontology analysis identified many significantly regulated, tissue-specific pathways shared by the two models, including sensory perception in heart and brain, muscle function in skeletal muscle, and lipid metabolism in liver. Moreover, when comparing gene expression changes in the heart under stress, the glutathione regulatory pathway was consistently upregulated in the longevity models but downregulated with stress. In addition, AC5 and CR shared changes in genes and proteins involved in the regulation of longevity and stress resistance, including Sirt1, ApoD, and olfactory receptors in both young- and intermediate-age mice. Thus, the similarly regulated genes and pathways in AC5 KO and CR mice, particularly related to the metabolic phenotype, suggest a unified theory for longevity and stress resistance. PMID:23020244

  20. Adenylyl cyclase 6 mediates loading-induced bone adaptation in vivo.

    PubMed

    Lee, Kristen L; Hoey, David A; Spasic, Milos; Tang, Tong; Hammond, H Kirk; Jacobs, Christopher R

    2014-03-01

    Primary cilia are single, nonmotile, antenna-like structures extending from the apical membrane of most mammalian cells. They may mediate mechanotransduction, the conversion of external mechanical stimuli into biochemical intracellular signals. Previously we demonstrated that adenylyl cyclase 6 (AC6), a membrane-bound enzyme enriched in primary cilia of MLO-Y4 osteocyte-like cells, may play a role in a primary cilium-dependent mechanism of osteocyte mechanotransduction in vitro. In this study, we determined whether AC6 deletion impairs loading-induced bone formation in vivo. Skeletally mature mice with a global knockout of AC6 exhibited normal bone morphology and responded to osteogenic chemical stimuli similar to wild-type mice. Following ulnar loading over 3 consecutive days, bone formation parameters were assessed using dynamic histomorphometry. Mice lacking AC6 formed significantly less bone than control animals (41% lower bone formation rate). Furthermore, there was an attenuated flow-induced increase in COX-2 mRNA expression levels in primary bone cells isolated from AC6 knockout mice compared to controls (1.3±0.1- vs. 2.6±0.2-fold increase). Collectively, these data indicate that AC6 plays a role in loading-induced bone adaptation, and these findings are consistent with our previous studies implicating primary cilia and AC6 in a novel mechanism of osteocyte mechanotransduction. PMID:24277577

  1. In silico prediction of tyrosinase and adenylyl cyclase inhibitors from natural compounds.

    PubMed

    Fong, Pedro; Tong, Henry H Y; Chao, Chi M

    2014-02-01

    Although many herbal medicines are effective in the treatment of hyperpigmentation, the potency of different constituents remains unknown. In this work, more than 20,000 herbal ingredients from 453 herbs were docked into the crystal structures of adenylyl cyclase and a human homology tyrosinase model using Surflex-Dock. These two enzymes are responsible for melanin production and inhibition of them may attain a skin-whitening effect superior to currently available agents. The essential drug properties for topical formulation of the herbal ingredients, including skin permeability, sensitization, irritation, corrosive and carcinogenic properties were predicted by Dermwin, Skin Sensitization Alerts (SSA), Skin Irritation Corrosion Rules Estimation Tool (SICRET) and Benigni/Bossa rulebase module of Toxtree. Moreover, similarity ensemble and pharmacophore mapping approaches were used to forecast other potential targets for these herbal compounds by the software, SEArch and PharmMapper. Overall, this study predicted seven compounds to have advanced drug-like properties over the well-known effective tyrosinase inhibitors, arbutin and kojic acid. These seven compounds have the highest potential for further in vitro and in vivo investigation with the aim of developing safe and high-efficacy skin-whitening agents. PMID:24689287

  2. Disruption of Epac1 protects the heart from adenylyl cyclase type 5-mediated cardiac dysfunction.

    PubMed

    Cai, Wenqian; Fujita, Takayuki; Hidaka, Yuko; Jin, Huiling; Suita, Kenji; Prajapati, Rajesh; Liang, Chen; Umemura, Masanari; Yokoyama, Utako; Sato, Motohiko; Okumura, Satoshi; Ishikawa, Yoshihiro

    2016-06-17

    Type 5 adenylyl cyclase (AC5) plays an important role in the development of chronic catecholamine stress-induced heart failure and arrhythmia in mice. Epac (exchange protein activated by cAMP), which is directly activated by cAMP independent of protein kinase A, has been recently identified as a novel mediator of cAMP signaling in the heart. However, the role of Epac in AC5-mediated cardiac dysfunction and arrhythmias remains poorly understood. We therefore generated AC5 transgenic mice (AC5TG) with selective disruption of the Epac1 gene (AC5TG-Epac1KO), and compared their phenotypes with those of AC5TG after chronic isoproterenol (ISO) infusion. Decreased cardiac function as well as increased susceptibility to pacing-induced atrial fibrillation (AF) in response to ISO were significantly attenuated in AC5TG-Epac1KO mice, compared to AC5TG mice. Increased cardiac apoptosis and cardiac fibrosis were also concomitantly attenuated in AC5TG-Epac1KO mice compared to AC5TG mice. These findings indicate that Epac1 plays an important role in AC5-mediated cardiac dysfunction and AF susceptibility. PMID:27117748

  3. Dominant regulation of interendothelial cell gap formation by calcium-inhibited type 6 adenylyl cyclase

    PubMed Central

    Cioffi, Donna L.; Moore, Timothy M.; Schaack, Jerry; Creighton, Judy R.; Cooper, Dermot M.F.; Stevens, Troy

    2002-01-01

    Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation. PMID:12082084

  4. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis

    PubMed Central

    Zhou, Zhiwen; Tanaka, Kenji F.; Matsunaga, Shigeru; Iseki, Mineo; Watanabe, Masakatsu; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2016-01-01

    Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways. PMID:26795422

  5. Correlation between Activity and Domain Complementation in Adenylyl Cyclase Demonstrated with a Novel Fluorescence Resonance Energy Transfer Sensor.

    PubMed

    Ritt, Michael; Sivaramakrishnan, Sivaraj

    2016-04-01

    Adenylyl cyclase (AC) activity relies on multiple effectors acting through distinct binding sites. Crystal structures have revealed the location of these sites, and biochemical studies have explored the kinetics of ACs, but the interplay between conformation and activity remains incompletely understood. Here, we describe a novel fluorescence resonance energy transfer (FRET) sensor that functions both as a soluble cyclase and a reporter of complementation within the catalytic domain. We report a strong linear correlation between catalytic domain complementation and cyclase activity upon stimulation with forskolin and Gαs. Exploiting this, we dissect the mechanism of action of a series of forskolin analogs and a P-site inhibitor, 2'-d3'-AMP. Finally, we demonstrate that this sensor is functional in live cells, wherein it reports forskolin-stimulated activity of AC. PMID:26801393

  6. Type VI adenylyl cyclase negatively regulates GluN2B-mediated LTD and spatial reversal learning

    PubMed Central

    Chang, Ching-Pang; Lee, Cheng-Ta; Hou, Wen-Hsien; Lin, Meng-Syuan; Lai, Hsing-Lin; Chien, Chen-Li; Chang, Chen; Cheng, Pei-Lin; Lien, Cheng-Chang; Chern, Yijuang

    2016-01-01

    The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca2+ and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6−/− mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus. PMID:26932446

  7. Adenylyl cyclase regulation in heart failure due to myocardial infarction in rats.

    PubMed

    Bräunig, Jörg H; Albrecht-Küpper, Barbara; Seifert, Roland

    2014-04-01

    Cardiac adenylyl cyclase (AC) activity was described to be differentially regulated in left and right ventricles (LVs and RVs) of rats with heart failure (HF) due to LV myocardial infarction (MI) (Sethi et al. Am J Physiol 272:H884-H893, 1997). AC activities in LVs and RVs were increased and decreased respectively in rats 8 and 16 weeks post MI under basal and stimulatory conditions including AC activation via β-adrenergic receptors (β-ARs), stimulatory G protein (Gs), and direct AC activation with forskolin (FS). The current study aimed to detect alterations in rat heart AC activities in a comparable model of HF 9 weeks post LV MI. Therefore, cardiac AC activities were measured under basal and β-AR-, Gs-, or FS-stimulated conditions as well as under inhibition with various MANT [2'(3')-O-(N-methylanthraniloyl)]-nucleotide AC inhibitors and the P-site AC inhibitors NKY80 [2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone] and vidarabine (9-β-D-arabinosyladenine, AraAde). Basal and stimulated AC activities along with AC inhibition experiments did not reveal evidence for changes in AC activity in LVs and RVs from MI group animals despite the presence of congestive HF. However, our study is indeterminate. Further studies are required to identify the factors responsible for previously described changes in cardiac AC activity in MI induced HF and to elucidate the role of altered AC regulation in the pathophysiology of HF. In order to detect small changes in AC regulation, larger group sizes than the ones used in our present study are required. PMID:24276219

  8. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    PubMed Central

    Wang, Zhenshan; Zhou, Yanfen; Luo, Yingtao; Zhang, Jing; Zhai, Yunpeng; Yang, Dong; Zhang, Zhe; Li, Yongchao; Storm, Daniel R.; Ma, Runlin Z.

    2015-01-01

    Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/−) and wild-type (AC3+/+) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE. PMID:26633363

  9. Distinct Mechanisms of Calmodulin Binding and Regulation of Adenylyl Cyclases 1 and 8

    PubMed Central

    2012-01-01

    Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca2+ signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca2+ signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca2+ ions. These two lobes have differing affinities for Ca2+, and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca2+]i. We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca2+-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca2+ binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca2+-CaM activation of AC1 and AC8, which may underpin their different physiological roles. PMID:22971080

  10. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene

    PubMed Central

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. PMID:26840347

  11. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene.

    PubMed

    Rodriguez-Centeno, Javier; Sastre, Leandro

    2016-01-01

    Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation. PMID:26840347

  12. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model

    PubMed Central

    Kang, Wen-bo; Yang, Qi; Guo, Yan-yan; Wang, Lu; Wang, Dong-sheng; Cheng, Qiang; Li, Xiao-ming; Tang, Jun; Zhao, Jian-ning; Liu, Gang; Zhuo, Min

    2016-01-01

    Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex. PMID:27612915

  13. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    Gallagher, D.T.; Robinson, H.; Kim, S.-K.; Reddy, P. T.

    2011-01-21

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV)-two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  14. Active-Site Structure of Class IV Adenylyl Cyclase and Transphyletic Mechanism

    SciTech Connect

    D Gallagher; S Kim; H Robinson; P Reddy

    2011-12-31

    Adenylyl cyclases (ACs) belonging to three nonhomologous classes (II, III, and IV) have been structurally characterized, enabling a comparison of the mechanisms of cyclic adenosine 3',5'-monophosphate biosynthesis. We report the crystal structures of three active-site complexes for Yersinia pestis class IV AC (AC-IV) - two with substrate analogs and one with product. Mn{sup 2+} binds to all three phosphates, and to Glu12 and Glu136. Electropositive residues Lys14, Arg63, Lys76, Lys111, and Arg113 also form hydrogen bonds to phosphates. The conformation of the analogs is suitable for in-line nucleophilic attack by the ribose O3' on {alpha}-phosphate (distance {approx} 4 {angstrom}). In the product complex, a second Mn ion is observed to be coordinated to both ribose 2' oxygen and ribose 3' oxygen. Observation of both metal sites, together with kinetic measurements, provides strong support for a two-cation mechanism. Eleven active-site mutants were also made and kinetically characterized. These findings and comparisons with class II and class III enzymes enable a detailed transphyletic analysis of the AC mechanism. Consistent with its lack of coordination to purine, Y. pestis AC-IV cyclizes both ATP and GTP. As in other classes of AC, the ribose is loosely bound, and as in class III, no base appears to ionize the O3' nucleophile. Different syn/anti conformations suggest that the mechanism involves a conformational transition, and further evidence suggests a role for ribosyl pseudorotation. With resolutions of 1.6-1.7 {angstrom}, these are the most detailed active-site ligand complexes for any class of this ubiquitous signaling enzyme.

  15. Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in Fusarium proliferatum.

    PubMed

    Kohut, Gábor; Oláh, Brigitta; Adám, Attila L; García-Martínez, Jorge; Hornok, László

    2010-02-01

    A homologue of the adenylyl cyclase (AC) gene of Neurospora crassa, named Fpacy1 was cloned from the genomic library of Fusarium proliferatum ITEM 2287 by screening the library with a DNA fragment amplified by using PCR primers designed from conserved sequences of the catalytic domain of AC genes from other fungi. The deduced FPACY1 protein had 53-77% identity with the AC proteins of other fungi. DeltaFpacy1 mutants obtained by targeted gene disruption showed retarded vegetative growth, increased conidiation and delayed conidial germination. Colonization capability of the mutants, assessed on maize seedlings and tomato fruits also was adversely affected. In sexual crosses the AC mutants retained full male fertility, but their female fertility decreased significantly. Disruption of Fpacy1 abolished vegetative self-incompatibility, suggesting that the AC gene is involved in multiple developmental processes related to vegetative growth, as well as sexual and parasexual events. The elevated thermo- and H(2)O(2)-tolerance of the DeltaFpacy1 mutants was coupled to an increased sensitivity towards Cd and Cu, indicating that the cAMP signaling pathway may have both negative and positive regulatory roles on the stress response mechanisms of fungal cells. When grown under nitrogen limitation conditions, the DeltaFpacy1 mutants produced an average of approximately 274 microg g(-1) bikaverin, whereas only traces of this metabolite was detected in the wild type. This finding provides further evidence of the role of the cAMP-PKA pathway in regulating bikaverin production. PMID:20082366

  16. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  17. Mice Overexpressing Type 1 Adenylyl Cyclase Show Enhanced Spatial Memory Flexibility in the Absence of Intact Synaptic Long-Term Depression

    ERIC Educational Resources Information Center

    Zhang, Ming; Wang, Hongbing

    2013-01-01

    There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…

  18. An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells.

    PubMed

    Drescher, M J; Cho, W J; Folbe, A J; Selvakumar, D; Kewson, D T; Abu-Hamdan, M D; Oh, C K; Ramakrishnan, N A; Hatfield, J S; Khan, K M; Anne, S; Harpool, E C; Drescher, D G

    2010-12-29

    Adenylyl cyclase (AC) signaling pathways have been identified in a model hair cell preparation from the trout saccule, for which the hair cell is the only intact cell type. The use of degenerate primers targeting cDNA sequence conserved across AC isoforms, and reverse transcription-polymerase chain reaction (RT-PCR), coupled with cloning of amplification products, indicated expression of AC9, AC7 and AC5/6, with cloning efficiencies of 11:5:2. AC9 and AC5/6 are inhibited by Ca(2+), the former in conjunction with calcineurin, and message for calcineurin has also been identified in the trout saccular hair cell layer. AC7 is independent of Ca(2+). Given the lack of detection of calcium/calmodulin-activated isoforms previously suggested to mediate AC activation in the absence of Gαs in mammalian cochlear hair cells, the issue of hair-cell Gαs mRNA expression was re-examined in the teleost vestibular hair cell model. Two full-length coding sequences were obtained for Gαs/olf in the vestibular type II-like hair cells of the trout saccule. Two messages for Gαi have also been detected in the hair cell layer, one with homology to Gαi1 and the second with homology to Gαi3 of higher vertebrates. Both Gαs/olf protein and Gαi1/Gαi3 protein were immunolocalized to stereocilia and to the base of the hair cell, the latter consistent with sites of efferent input. Although a signaling event coupling to Gαs/olf and Gαi1/Gαi3 in the stereocilia is currently unknown, signaling with Gαs/olf, Gαi3, and AC5/6 at the base of the hair cell would be consistent with transduction pathways activated by dopaminergic efferent input. mRNA for dopamine receptors D1A4 and five forms of dopamine D2 were found to be expressed in the teleost saccular hair cell layer, representing information on vestibular hair cell expression not directly available for higher vertebrates. Dopamine D1A receptor would couple to Gαolf and activation of AC5/6. Co-expression with dopamine D2 receptor, which

  19. High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central physiological role.

    PubMed

    Barott, K L; Helman, Y; Haramaty, L; Barron, M E; Hess, K C; Buck, J; Levin, L R; Tresguerres, M

    2013-01-01

    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had >1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels. PMID:23459251

  20. Modulation of β-Adrenergic Receptor Signaling in Heart Failure and Longevity: Targeting Adenylyl Cyclase Type 5

    PubMed Central

    Ho, David; Yan, Lin; Iwatsubo, Kousaku; Vatner, Dorothy E.; Vatner, Stephen F.

    2011-01-01

    Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced β-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic β-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsα or β-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of β-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the β-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering β-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC. PMID:20658186

  1. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a mammalian type 10 adenylyl cyclase

    PubMed Central

    Kleinboelting, Silke; van den Heuvel, Joop; Kambach, Christian; Weyand, Michael; Leipelt, Martina; Steegborn, Clemens

    2014-01-01

    The second messenger cAMP is synthesized in mammals by ten differently regulated adenylyl cyclases (AC1–10). These ACs are grouped into nucleotidyl cyclase class III based on homologies in their catalytic domains. The catalytic domain of AC10 is unique, however, in being activated through direct interaction with calcium and bicarbonate. Here, the production, crystallization and X-ray diffraction analysis of the catalytic domain of human AC10 are described as a basis for structural studies of regulator binding sites and mechanisms. The recombinant protein had high specific AC activity, and crystals of AC10 in space group P63 diffracted to ∼2.0 Å resolution on a synchrotron beamline. A complete diffraction data set revealed unit-cell parameters a = b = 99.65, c = 98.04 Å, indicating one AC10 catalytic domain per asymmetric unit, and confirmed that the obtained crystals are suitable for structure solution and mechanistic studies. PMID:24699740

  2. Retigeric Acid B Attenuates the Virulence of Candida albicans via Inhibiting Adenylyl Cyclase Activity Targeted by Enhanced Farnesol Production

    PubMed Central

    Chang, Wenqiang; Li, Ying; Zhang, Li; Cheng, Aixia; Lou, Hongxiang

    2012-01-01

    Candida albicans, the most prevalent fungal pathogen, undergoes yeast-to-hyphal switch which has long been identified as a key fungal virulence factor. We showed here that the lichen-derived small molecule retigeric acid B (RAB) acted as an inhibitor that significantly inhibited the filamentation of C. albicans, leading to the prolonged survival of nematodes infected by C. albicans. Quantitative real-time PCR analysis and intracellular cAMP measurement revealed RAB regulated the Ras1-cAMP-Efg1 pathway by reducing cAMP level to inhibit the hyphae formation. Confocal microscopic observation showed RAB induced the expression of Dpp3, synthesizing more farnesol, which was confirmed by gas chromatography-mass spectroscopy detection. An adenylyl cyclase activity assay demonstrated RAB could repress the activity of Cdc35 through stimulating farnesol synthesis, thus causing a decrease in cAMP synthesis, leading to retarded yeast-to-hyphal transition. Moreover, reduced levels of intracellular cAMP resulted in the inhibition of downstream adhesins. Together, these findings indicate that RAB stimulates farnesol production that directly inhibits the Cdc35 activity, reducing the synthesis of cAMP and thereby causing the disruption of the morphologic transition and attenuating the virulence of C. albicans. Our work illustrates the underlying mechanism of RAB-dependent inhibition of the yeast-to-hyphal switch and provides a potential application in treating the infection of C. albicans. PMID:22848547

  3. Adenylyl cyclase-associated protein-1/CAP1 as a biological target substrate of gelatinase B/MMP-9

    SciTech Connect

    Cauwe, Benedicte; Martens, Erik; Van den Steen, Philippe E.; Proost, Paul; Van Aelst, Ilse; Blockmans, Daniel; Opdenakker, Ghislain

    2008-09-10

    Matrix metalloproteinases (MMPs) are classically associated with the turnover of secreted structural and functional proteins. Although MMPs have been shown to process also a kaleidoscope of membrane-associated substrates, little is known about the processing of intracellular proteins by MMPs. Physiological and pathological cell apoptosis, necrosis and tumor lysis by chemotherapy, radiotherapy or immunological cytotoxicity, are examples of conditions in which an overload of intracellular proteins becomes accessible to the action of MMPs. We used a model system of dying human myelomonocytic cells to study the processing of intracellular protein substrates by gelatinase B/MMP-9 in vitro. Adenylyl cyclase-associated protein-1 or CAP1 was identified as a novel and most efficient substrate of gelatinase B/MMP-9. The presence of CAP1 in the extracellular milieu in vivo was documented by analysis of urine of patients with systemic autoimmune diseases. Whereas no active MMP-9 could be detected in urines of healthy controls, all urine samples of patients with clinical parameters of renal failure contained activated MMP-9 and/or MMP-2. In addition, in some of these patients indications of CAP1 cleavage are observed, implying CAP1 degradation in vivo. The high turnover rate of CAP1 by MMP-9, comparable to that of gelatin as the natural extracellular substrate of this enzyme, may be critical to prevent pathological conditions associated with considerable cytolysis.

  4. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.

    1997-01-01

    The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.

  5. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573

  6. Association of adenylyl cyclase 6 rs3730070 polymorphism and hemolytic level in patients with sickle cell anemia.

    PubMed

    Cita, Kizzy-Clara; Ferdinand, Séverine; Connes, Philippe; Brudey, Laura; Tressières, Benoit; Etienne-Julan, Maryse; Lemonne, Nathalie; Tarer, Vanessa; Elion, Jacques; Romana, Marc

    2016-05-01

    A recent study suggested that adenosine signaling pathway could promote hemolysis in patients with sickle cell anemia (SCA). This signaling pathway involves several gene coding enzymes for which variants have been described. In this study, we analyzed the genotype-phenotype relationships between functional polymorphisms or polymorphisms associated with altered expression of adenosine pathway genes, namely adenosine deaminase (ada; rs73598374), adenosine A2b receptor (adora2b; rs7208480), adenylyl cyclase6 (adcy6; rs3730071, rs3730070, rs7300155), and hemolytic rate in SCA patients. One hundred and fifty SCA patients were genotyped for adcy6, ada, and adora2b variants as well as alpha-globin gene, a genetic factor known to modulate hemolytic rate. Hematological and biochemical data were obtained at steady-state. Lactate dehydrogenase, aspartate aminotransferase, reticulocytes and total bilirubin were used to calculate a hemolytic index. Genotype-phenotype relationships were investigated using parametric tests and multivariate analysis. SCA patients carrying at least one allele of adcy6 rs3730070-G exhibited lower hemolytic rate than non-carriers in univariate analysis (p=0.006). The presence of adcy6 rs3730070-G variant was associated with a decreased hemolytic rate in adjusted model for age and alpha-thalassemia (p=0.032). Our results support a protective effect of adcy6 rs3730070-G variant on hemolysis in SCA patients. PMID:27067484

  7. Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose

    PubMed Central

    Challis, Rosemary C.; Tian, Huikai; Yin, Wenbin; Ma, Minghong

    2016-01-01

    We recently reported that olfactory sensory neurons in the dorsal zone of the mouse olfactory epithelium exhibit drastic location-dependent differences in cilia length. Furthermore, genetic ablation of type III adenylyl cyclase (ACIII), a key olfactory signaling protein and ubiquitous marker for primary cilia, disrupts the cilia length pattern and results in considerably shorter cilia, independent of odor-induced activity. Given the significant impact of ACIII on cilia length in the dorsal zone, we sought to further investigate the relationship between cilia length and ACIII level in various regions throughout the mouse olfactory epithelium. We employed whole-mount immunohistochemical staining to examine olfactory cilia morphology in phosphodiesterase (PDE) 1C-/-;PDE4A-/- (simplified as PDEs-/- hereafter) and ACIII-/- mice in which ACIII levels are reduced and ablated, respectively. As expected, PDEs-/- animals exhibit dramatically shorter cilia in the dorsal zone (i.e., where the cilia pattern is found), similar to our previous observation in ACIII-/- mice. Remarkably, in a region not included in our previous study, ACIII-/- animals (but not PDEs-/- mice) have dramatically elongated, comet-shaped cilia, as opposed to characteristic star-shaped olfactory cilia. Here, we reveal that genetic ablation of ACIII has drastic, location-dependent effects on cilia architecture in the mouse nose. These results add a new dimension to our current understanding of olfactory cilia structure and regional organization of the olfactory epithelium. Together, these findings have significant implications for both cilia and sensory biology. PMID:26942602

  8. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  9. Inhibition of atrial natriuretic peptide (ANP) C receptor expression by antisense oligodeoxynucleotides in A10 vascular smooth-muscle cells is associated with attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase.

    PubMed Central

    Palaparti, A; Li, Y; Anand-Srivastava, M B

    2000-01-01

    Atrial natriuretic peptide (ANP) mediates a variety of physiological effects through its interaction with ANP-A, ANP-B or ANP-C receptors. However, controversies exist regarding the involvement of ANP-C receptor and adenylyl cyclase/cAMP signal-transduction systems to which these receptors are coupled in mediating these responses. In the present studies, we have employed an antisense approach to eliminate the ANP-C receptor and to examine the effect of this elimination on adenylyl cyclase inhibition. An 18-mer antisense phosphorothioate oligodeoxynucleotide (OH-2) targeted at the initiation codon of the ANP-C receptor was used to examine its effects on the expression of the ANP-C receptor and ANP-C-receptor-mediated inhibition of adenylyl cyclase in vascular smooth-muscle cells (A10). Treatment of the cells with antisense oligonucleotide resulted in complete attenuation of C-ANP(4-23) [des(Gln(18), Ser(19), Gln(20), Leu(21), Gly(22))ANP(4-23)-NH(2)]-mediated inhibition of adenylyl cyclase, whereas sense and missense oligomers did not affect the inhibition of adenylyl cyclase by C-ANP(4-23). In addition, the stimulatory effects of guanine nucleotides, isoproterenol, sodium fluoride and forskolin as well as the inhibitory effects of angiotensin II on adenylyl cyclase were not affected by antisense-oligonucleotide treatment. The attenuation of C-ANP(4-23)-mediated inhibition of adenylyl cyclase by antisense oligonucleotide was dose- and time-dependent. A complete attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase was observed at 2.5 microM. In addition, treatment of the cells with antisense oligonucleotide and not with sense or missense oligomers resulted in the inhibition of the levels of ANP-C-receptor protein and mRNA as determined by immunoblotting and Northern blotting using antisera against the ANP-C receptor and a cDNA probe of the ANP-C receptor respectively. On the other hand, ANP-A/B-receptor-mediated increases in cGMP levels were not

  10. Effect of overexpressed adenylyl cyclase VI on β1- and β2-adrenoceptor responses in adult rat ventricular myocytes

    PubMed Central

    Stark, Joalice C C; Haydock, Stephen F; Foo, Roger; Brown, Morris J; Harding, Sian E

    2004-01-01

    Adenylyl cyclase VI (ACVI) is one of the most abundantly expressed β adrenergic receptor (βAR)-coupled cyclases responsible for cyclic AMP (cAMP) production within the mammalian myocardium. We investigated the role of ACVI in the regulation of cardiomyocyte contractility and whether it is functionally coupled with β1 adrenergic receptor (β1AR). Recombinant adenoviruses were generated for ACVI and for antisense to ACVI (AS). Adult rat ventricular myocytes were transfected with ACVI virus, AS or both (SAS). Adenovirus for green fluorescent protein (GFP) served as control. Myocyte contraction amplitudes (% shortening) and relaxation times (R50) were analysed. ACVI function was determined using cAMP assays. ACVI-transfected cells demonstrated a strong 139 kDa ACVI protein band compared to controls. ACVI myocytes had higher steady-state intracellular cAMP levels than GFP myocytes when unstimulated (GFP vs ACVI=6.60±0.98 vs 14.2±2.1 fmol cAMP/viable cell, n=4, P<0.05) and in the presence of 1 μM isoprenaline or 10 μM forskolin. ACVI myocytes had increased basal contraction (% shortening: GFP vs ACVI: 1.90±1.36 vs 3.91±2.29, P<0.0001) and decreased basal R50 (GFP vs ACVI: 62.6±24.2 ms (n=50) vs 45.0±17.2 ms (n=248), P<0.0001). ACVI myocyte responses were increased for forskolin (Emax: GFP=6.70±1.59 (n=6); ACVI=9.06±0.69 (n=14), P<0.01) but not isoprenaline. ACVI myocyte responses were increased (Emax: GFP vs ACVI=3.16±0.77 vs 5.10±0.60, P<0.0001) to xamoterol (a partial β1AR-selective agonist) under β2AR blockade (+50 nM ICI 118, 551). AS decreased both control and ACVI-stimulated xamoterol responses (Emax: AS=2.59±1.42, SAS=1.38±0.5). ACVI response was not mimicked by IBMX. Conversely, response through β2 adrenergic receptor (β2AR) was decreased in ACVI myocytes. In conclusion, ACVI overexpression constitutively increases myocyte contraction amplitudes by raising cAMP levels. Native ACVI did not contribute to basal cAMP production or contraction

  11. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor

    PubMed Central

    Lübker, Carolin; Seifert, Roland

    2015-01-01

    Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca2+-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential target to enhance or impair the AC activity of AC1 and EF to intervene in above (patho)physiological mechanisms. Thus, we analyzed the impact of 39 compounds including typical CaM-inhibitors, an anticonvulsant, an anticholinergic, antidepressants, antipsychotics and Ca2+-antagonists on CaM-stimulated catalytic activity of AC1 and EF. Compounds were tested at 10 μM, i.e., a concentration that can be reached therapeutically for certain antidepressants and antipsychotics. Calmidazolium chloride decreased CaM-stimulated AC1 activity moderately by about 30%. In contrast, CaM-stimulated EF activity was abrogated by calmidazolium chloride and additionally decreased by chlorpromazine, felodipine, penfluridol and trifluoperazine by about 20–40%. The activity of both ACs was decreased by calmidazolium chloride in the presence and absence of CaM. Thus, CaM-stimulated AC1 activity is more insensitive to inhibition by small molecules than CaM-stimulated EF activity. Inhibition of AC1 and EF by calmidazolium chloride is largely mediated via a CaM-independent allosteric mechanism. PMID:25946093

  12. β3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    PubMed Central

    Faden, Ashley A.; Knott, Thomas K.

    2011-01-01

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298

  13. Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis.

    PubMed

    Tan, Yossan-Var; Abad, Catalina; Lopez, Robert; Dong, Hongmei; Liu, Shen; Lee, Alice; Gomariz, Rosa P; Leceta, Javier; Waschek, James A

    2009-02-10

    Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a widely expressed neuropeptide originally discovered in the hypothalamus. It closely resembles vasoactive intestinal peptide (VIP), a neuropeptide well known to inhibit macrophage activity, promote Th2-type responses, and enhance regulatory T cell (Treg) production. Recent studies have shown that administration of PACAP, like VIP, can attenuate dramatically the clinical and pathological features of murine models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis. However, specific roles (if any) of endogenous VIP and PACAP in the protection against autoimmune diseases have not been explored. Here, we subjected PACAP-deficient mice to myelin oligodendrocyte glycoprotein (MOG(35-55))-induced EAE. MOG immunization of PACAP-deficient mice triggered heightened clinical and pathological manifestations of EAE compared to wild-type mice. The increased sensitivity was accompanied by enhanced mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, IFN-gamma, IL-12p35, IL-23p19, and IL-17), chemokines (MCP-1/CCL2, MIP-1alpha/CCL3, and RANTES/CCL5), and chemotactic factor receptors (CCR1, CCR2, and CCR5), but downregulation of the anti-inflammatory cytokines (IL-4, IL-10, and TGF-beta) in the spinal cord. Moreover, the abundance of CD4(+)CD25(+)FoxP3(+) Tregs in lymph nodes and levels of FoxP3 mRNA in the spinal cord were also diminished. The reduction in Tregs was associated with increased proliferation and decreased TGF-beta secretion in lymph node cultures stimulated with MOG. These results demonstrate that endogenous PACAP provides protection in EAE and identify PACAP as an intrinsic regulator of Treg abundance after inflammation. PMID:19190179

  14. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia

    PubMed Central

    Guadiana, Sarah M.; Parker, Alexander K.; Filho, Gileno F.; Sequeira, Ashton; Semple-Rowland, Susan; Shaw, Gerry; Mandel, Ronald J.; Foster, Thomas C.; Kumar, Ashok; Sarkisian, Matthew R.

    2016-01-01

    The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain

  15. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock

    PubMed Central

    Chen, Dong; Buchanan, Gordon F.; Ding, Jian M.; Hannibal, Jens; Gillette, Martha U.

    1999-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light. PMID:10557344

  16. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.

    PubMed

    Prather, P L; Song, L; Piros, E T; Law, P Y; Hales, T G

    2000-11-01

    Opioid receptors often couple to multiple effectors within the same cell. To examine potential mechanisms that contribute to the specificity by which delta-receptors couple to distinct intracellular effectors, we stably transfected rat pituitary GH(3) cells with cDNAs encoding for delta-opioid receptors. In cells transfected with a relatively low delta-receptor density of 0.55 pmol/mg of protein (GH(3)DOR), activation of delta-receptors produced inhibition of adenylyl cyclase activity but was unable to alter L-type Ca(2+) current. In contrast, activation of delta-receptors in a clone that contained a higher density of delta-receptors (2.45 pmol/mg of protein) and was also coexpressed with mu-opioid receptors (GH(3)MORDOR), resulted in not only the expected inhibition of adenylyl cyclase activity but also produced inhibition of L-type Ca(2+) current. The purpose of the present study was to determine whether these observations resulted from differences in delta-opioid receptor density between clones or interaction between delta- and mu-opioid receptors to allow the activation of different G proteins and signaling to Ca(2+) channels. Using the delta-opioid receptor alkylating agent SUPERFIT, reduction of available delta-opioid receptors in GH(3)MORDOR cells to a density similar to that of delta-opioid receptors in the GH(3)DOR clone resulted in abolishment of coupling to Ca(2+) channels, but not to adenylyl cyclase. Furthermore, although significantly greater amounts of all G proteins were activated by delta-opioid receptors in GH(3)MORDOR cells, delta-opioid receptor activation in GH(3)DOR cells resulted in coupling to the identical pattern of G proteins seen in GH(3)MORDOR cells. These findings suggest that different threshold densities of delta-opioid receptors are required to activate critical amounts of G proteins needed to produce coupling to specific effectors and that delta-opioid receptors couple more efficiently to adenylyl cyclase than to L-type Ca(2

  17. Pivotal role for aspartate-80 in the regulation of dopamine D2 receptor affinity for drugs and inhibition of adenylyl cyclase.

    PubMed

    Neve, K A; Cox, B A; Henningsen, R A; Spanoyannis, A; Neve, R L

    1991-06-01

    An aspartate residue corresponding to aspartate-80 of dopamine D2 receptors is strictly conserved among receptors that couple to guanine nucleotide-binding proteins. Mutation of this residue alters the function of several classes of neurotransmitter receptors. Dopamine D2 receptors couple to the guanine nucleotide-binding protein Gi to inhibit adenylyl cyclase (ATP-pyrophosphate-lyase, cyclizing; EC 4.6.1.1). Like other Gi-coupled receptors, the binding of agonists and some antagonists to D2 receptors is sensitive to pH and sodium. In the present report, we demonstrate that substitution of an alanine or glutamate residue for aspartate-80 severely impairs inhibition of adenylyl cyclase by D2 receptors and also abolishes or decreases the regulation of the affinity of D2 receptors for agonists and substituted benzamide antagonists by sodium and pH. Our data support the hypothesis that the conformation of D2 receptors is maintained by interactions of monovalent cations with aspartate-80. The regulation of D2 receptors by this interaction has important consequences for the affinity of D2 receptors for ligands and for signal transduction by D2 receptors. PMID:1828858

  18. Identification of a human cDNA encoding a protein that is structurally and functionally related to the yeast adenylyl cyclase-associated CAP proteins

    SciTech Connect

    Matviw, Yu, G.; Young, D. )

    1992-11-01

    The adenylyl cyclases of both Saccharomyces cerevisiae and Schizosaccharomyces pombe are associated with related proteins named CAP. In S. cerevisiae, CAP is required for cellular responses mediated by the RAS/cyclic AMP pathway. Both yeast CAPs appear to be bifunctional proteins: The N-terminal domains are required for the proper function of adenylyl cyclase, while loss of the C-terminal domains results in morphological and nutritional defects that appear to be unrelated to the cAMP pathways. Expression of either yeast CAP in the heterologous yeast suppresses phenotypes associated with loss of the C-terminal domain of the endogenous CAP but does not suppress loss of the N-terminal domain. On the basis of the homology between the two yeast CAP proteins, we have designed degenerate oligonucleotides that we used to detect, by the polymerase chain reaction method, a human cDNA fragment encoding a CAP-related peptide. Using the polymerase chain reaction fragment as a probe, we isolated a human cDNA clone encoding a 475-amino-acid protein that is homologous to the yeast CAP proteins. Expressions of the human CAP protein in S. cerevisiae suppresses the phenotypes associated with loss of the C-terminal domain of CAP but does not suppress phenotypes associated with loss of the N-terminal domain. Thus, CAP proteins have been structurally and, to some extent, functionally conserved in evolution between yeasts and mammals. 42 refs., 5 figs.

  19. Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu

    PubMed Central

    Ayling, Laura J.; Briddon, Stephen J.; Halls, Michelle L.; Hammond, Gerald R. V.; Vaca, Luis; Pacheco, Jonathan; Hill, Stephen J.; Cooper, Dermot M. F.

    2012-01-01

    The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub. PMID:22399809

  20. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  1. Differentiation of photocycle characteristics of flavin-binding BLUF domains of α- and β-subunits of photoactivated adenylyl cyclase of Euglena gracilis.

    PubMed

    Ito, Shinji; Murakami, Akio; Iseki, Mineo; Takahashi, Tetsuo; Higashi, Shoichi; Watanabe, Masakatsu

    2010-10-28

    Photoactivated adenylyl cyclase (PAC), an FAD-containing photoreceptor of Euglena gracilis, appears to be a heterotetrameric structure composed of 2 homologous subunits (PACα and PACβ), each with a pair of BLUF domains (F1 and F2). PAC promotes blue light-induced activation of adenylyl cyclase. In our previous report, we demonstrated that a recombinant version of the PACαF2 domain displays blue light-induced photocycle similar to those of prokaryotic BLUFs (Ito et al., Photochem. Photobiol. Sci., 2005, 4, 762-769). Here, we further examine the recombinant PACβF2 domain, which like PACαF2 exhibits a blue light-induced photocycle. The estimated quantum efficiency for the phototransformation of PACβF2 was 0.06-0.08, and the half-life for dark relaxation was 3-6 s while the corresponding values for the PACαF2 were 0.28-0.32 and 34-44 s. The remarkable differences between PACαF2 and PACβF2 may be related to the sensitivity of the photoactivation. In PACαF2, amino acid position 556, which is equivalent to Trp104 in the BLUF domain of the purple bacterial AppA protein, is occupied by a Leu residue, while in PACβF2 the equivalent BLUF domain site is conserved as Trp560. Amino acid substitution at this site in PACβF2-Trp560Leu markedly increased the estimated quantum efficiency (0.23) and accelerated the half-life of the dark-relaxation (2 s). These results indicate that Trp560 in PACβF2 plays a main role in suppressing the quantum efficiency. PMID:20842310

  2. [A change of hormonal regulation of adenylyl cyclase in the epididymal adipose tissue of rats with experimental models of diabetes mellitus].

    PubMed

    Derkach, K V; Chistyakova, O V; Shpakov, A O

    2014-01-01

    One of the key causes of diabetes mellitus (DM) and its complications are hormonal disturbances in functioning of hormonal signaling systems, including the adenylyl cyclase signaling system (ACSS). The goal of this work was to study the functional state and hormonal sensitivity of ACSS in the epididymal adipose tissue of male rats in the 7-month model of mild type 1 DM (DM1), in the 18-month neonatal model of type 2 DM (DM2), and in the taken for comparison model of the 30-day acute DM1. It is shown for the first time that in adipocytes from the epididymal fat of rats with the studied DM models the basal AC activity and its stimulation by forskolin were decreased, which indicates a weakening of the catalytic function of the enzyme adenylyl cyclase (AC). Stimulation of AC by guanine nucleotides in DM changed to the lesser extent, which speaks in favor of preservation of functions of heterotrimeric G(s)-proteins in the epididymal fat. In rats with DM1 the sensitivity of AC of adipocytes to agonists of β-adrenergic receptors (β-AR), activators of lipolysis, remained practically unchanged, while in animals with DM2 the AC stimulating effects of β-AR-agonists were reduced or completely blocked, like in the case of β3-AR-agonist BRL-37344 and CL-316243. In adipocytes of rats with DM1 the AC inhibitory effect of N6-cyclopentyladenosine, agonist of type 1 adenosine receptors (Aden1R), an inhibitor of lipolysis, was attenuated, whe- reas in DM2 this effect was completely preserved. Thus, in the epididymal adipose tissue of rats with DM1 the antilipolytic AC cascades including Aden1R were decreased and the stimulation of AC by β-AR-agonists was preserved, whereas in rats with DM2 the β-AR-mediated AC cascades activating lipolysis were reduced, but Aden1R-mediated AC cascades inhibiting lipolysis did not change. The changes of hormonal regulation of ACSS in adipocytes from the epididymal fat lead to disturbances of the metabolic status of animal with DM1 and DM2 and

  3. The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat

    PubMed Central

    Bormann, Jörg; Boenisch, Marike Johanne; Brückner, Elena; Firat, Demet; Schäfer, Wilhelm

    2014-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1). The ΔFgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ΔFgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ΔFgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ΔFgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ΔFgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the

  4. Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons

    PubMed Central

    Nair, Anu G.; Eriksson, Olivia; Vincent, Pierre

    2015-01-01

    Transient changes in striatal dopamine (DA) concentration are considered to encode a reward prediction error (RPE) in reinforcement learning tasks. Often, a phasic DA change occurs concomitantly with a dip in striatal acetylcholine (ACh), whereas other neuromodulators, such as adenosine (Adn), change slowly. There are abundant adenylyl cyclase (AC) coupled GPCRs for these neuromodulators in striatal medium spiny neurons (MSNs), which play important roles in plasticity. However, little is known about the interaction between these neuromodulators via GPCRs. The interaction between these transient neuromodulator changes and the effect on cAMP/PKA signaling via Golf- and Gi/o-coupled GPCR are studied here using quantitative kinetic modeling. The simulations suggest that, under basal conditions, cAMP/PKA signaling could be significantly inhibited in D1R+ MSNs via ACh/M4R/Gi/o and an ACh dip is required to gate a subset of D1R/Golf-dependent PKA activation. Furthermore, the interaction between ACh dip and DA peak, via D1R and M4R, is synergistic. In a similar fashion, PKA signaling in D2+ MSNs is under basal inhibition via D2R/Gi/o and a DA dip leads to a PKA increase by disinhibiting A2aR/Golf, but D2+ MSNs could also respond to the DA peak via other intracellular pathways. This study highlights the similarity between the two types of MSNs in terms of high basal AC inhibition by Gi/o and the importance of interactions between Gi/o and Golf signaling, but at the same time predicts differences between them with regard to the sign of RPE responsible for PKA activation. SIGNIFICANCE STATEMENT Dopamine transients are considered to carry reward-related signal in reinforcement learning. An increase in dopamine concentration is associated with an unexpected reward or salient stimuli, whereas a decrease is produced by omission of an expected reward. Often dopamine transients are accompanied by other neuromodulatory signals, such as acetylcholine and adenosine. We highlight the

  5. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  6. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production.

    PubMed

    Blum, Ailisa; Benfield, Aurélie H; Stiller, Jiri; Kazan, Kemal; Batley, Jacqueline; Gardiner, Donald M

    2016-05-01

    Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes. PMID:26932301

  7. Adenylyl cyclase-associated protein 1 in metastasis of squamous cell carcinoma of the head and neck and non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Kakurina, G. V.; Kolegova, E. S.; Cheremisina, O. V.; Zavyalov, A. A.; Shishkin, D. A.; Kondakova, I. V.; Choinzonov, E. L.

    2016-08-01

    Progression of tumors and metastasis in particular is one of the main reasons of the high mortality rate among cancer patients. The primary role in developing metastases plays cell locomotion which requires remodeling of the actin cytoskeleton. Form, dynamics, localization and mechanical properties of the actin cytoskeleton are regulated by a variety of actin-binding proteins, which include the adenylyl cyclase-associated protein 1 (CAP1). The study is devoted to the investigation of CAP1 level depending on the presence or absence of metastases in patients with squamous cell carcinoma of the head and neck (SCCHN) and non-small cell lung cancer (NSCLC). The results show the contribution of CAP1 to SCCHN and NSCLC progression. We detected the connection between the tissue protein CAP1 level and the stage of NSCLC and SCCHN disease. Also the levels of the CAP1 protein in tissues of primary tumors and metastases in lung cancer were different. Our data showed that CAP is important in the development of metastases, which suggests further perspectives in the study of this protein for projecting metastasis of NSCLC and SCCHN.

  8. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants.

    PubMed

    Zhou, G L; Miyazaki, Y; Nakagawa, T; Tanaka, K; Shishido, K; Matsuda, H; Kawamukai, M

    1998-04-01

    The adenylyl-cyclase-associated protein, CAP, was originally identified in yeasts as a protein that functions in both signal transduction and cytoskeletal organization. This paper reports the identification of a cDNA and genomic DNA that encodes a CAP homologue from the mushroom Lentinus edodes. The L. edodes cap gene contains eight introns and an ORF encoding a 518 amino acid protein. The L. edodes CAP is 35.5% and 40.9% identical at the amino acid level with Saccharomyces cerevisiae CAP and Schizosaccharomyces pombe CAP, respectively. The C-terminal domain shows greater homology (39-46% identity) with yeast CAPs than does the N-terminal domain (27-35% identity). Southern blotting and Northern blotting results suggest that L. edodes cap is a single-copy gene and uniformly expressed. Expression of the L. edodes CAP in both Schiz. pombe and Sacch. cerevisiae complemented defects associated with the loss of the C-terminal domain function of the endogenous CAP. By using a yeast two-hybrid assay, an interaction was demonstrated between the L. edodes CAP and Schiz. pombe actin. This result and the functional complementation test indicate that CAP from L. edodes has a conserved C-terminal domain function. PMID:9579081

  9. Anti-Cdc25 antibodies inhibit guanyl nucleotide-dependent adenylyl cyclase of Saccharomyces cerevisiae and cross-react with a 150-kilodalton mammalian protein.

    PubMed Central

    Gross, E; Marbach, I; Engelberg, D; Segal, M; Simchen, G; Levitzki, A

    1992-01-01

    The CDC25 gene product of the yeast Saccharomyces cerevisiae has been shown to be a positive regulator of the Ras protein. The high degree of homology between yeast RAS and the mammalian proto-oncogene ras suggests a possible resemblance between the mammalian regulator of Ras and the regulator of the yeast Ras (Cdc25). On the basis of this assumption, we have raised antibodies against the conserved C-terminal domain of the Cdc25 protein in order to identify its mammalian homologs. Anti-Cdc25 antibodies raised against a beta-galactosidase-Cdc25 fusion protein were purified by immunoaffinity chromatography and were shown by immunoblotting to specifically recognize the Cdc25 portion of the antigen and a truncated Cdc25 protein, also expressed in bacteria. These antibodies were shown both by immunoblotting and by immunoprecipitation to recognize the CDC25 gene product in wild-type strains and in strains overexpressing Cdc25. The anti-Cdc25 antibodies potently inhibited the guanyl nucleotide-dependent and, approximately 3-fold less potently, the Mn(2+)-dependent adenylyl cyclase activity in S. cerevisiae. The anti-Cdc25 antibodies do not inhibit cyclase activity in a strain harboring RAS2Val-19 and lacking the CDC25 gene product. These results support the view that Cdc25, Ras2, and Cdc35/Cyr1 proteins are associated in a complex. Using these antibodies, we were able to define the conditions to completely solubilize the Cdc25 protein. The results suggest that the Cdc25 protein is tightly associated with the membrane but is not an intrinsic membrane protein, since only EDTA at pH 12 can solubilize the protein. The anti-Cdc25 antibodies strongly cross-reacted with the C-terminal domain of the Cdc25 yeast homolog, Sdc25. Most interestingly, these antibodies also cross-reacted with mammalian proteins of approximately 150 kDa from various tissues of several species of animals. These interactions were specifically blocked by the beta-galactosidase-Cdc25 fusion protein. Images

  10. Separate Elements within a Single IQ-like Motif in Adenylyl Cyclase Type 8 Impart Ca2+/Calmodulin Binding and Autoinhibition*

    PubMed Central

    MacDougall, David A.; Wachten, Sebastian; Ciruela, Antonio; Sinz, Andrea; Cooper, Dermot M. F.

    2009-01-01

    The ubiquitous Ca2+-sensing protein calmodulin (CaM) fulfills its numerous signaling functions through a wide range of modular binding and activation mechanisms. By activating adenylyl cyclases (ACs) 1 and 8, Ca2+ acting via calmodulin impacts on the signaling of the other major cellular second messenger cAMP. In possessing two CaM-binding domains, a 1-5-8-14 motif at the N terminus and an IQ-like motif (IQlm) at the C terminus, AC8 offers particularly sophisticated regulatory possibilities. The IQlm has remained unexplored beyond the suggestion that it bound CaM, and the larger C2b region of which it is part was involved in the relief of autoinhibition of AC8. Here we attempt to distinguish the function of individual residues of the IQlm. From a complementary approach of in vitro and cell population AC activity assays, as well as CaM binding, we propose that the IQlm alone, and not the majority of the C2b, imparts CaM binding and autoinhibitory functions. Moreover, this duality of function is spatially separated and depends on amino acid side-chain character. Accordingly, residues critical for CaM binding are positively charged and clustered toward the C terminus, and those essential for the maintenance of autoinhibition are hydrophobic and more N-terminal. Secondary structure prediction of the IQlm supports this separation, with an ideally placed break in the α-helical nature of the sequence. We additionally find that the N and C termini of AC8 interact, which is an association specifically abrogated by fully Ca2+-bound, but not Ca2+-free, CaM. These data support a sophisticated activation mechanism of AC8 by CaM, in which the duality of the IQlm function is critical. PMID:19305019

  11. Cecal ligation and puncture sepsis is associated with attenuated expression of adenylyl cyclase 9 and increased miR142-3p.

    PubMed

    Risøe, Petter K; Ryg, Una; Wang, Yun Yong; Rutkovskiy, Arkady; Smedsrød, Bård; Valen, Guro; Dahle, Maria K

    2011-10-01

    The host inflammatory response in sepsis may be resolved by endogenous anti-inflammatory immune cell responses, avoiding fatal pathogenesis, organ injury, and death. The intracellular signaling mediator cyclic 3'5'-adenosine monophosphate is a potent modulator of inflammatory responses and initiates the polarization of immune cells in a direction that suppresses inflammatory activation. Cyclic 3'5'-adenosine monophosphate is enzymatically produced by adenylyl cyclases (ACs). The expression of ACs is previously shown to be reduced in rat organs after in vivo endotoxemia, concurrent with the progressing systemic inflammation. In the present study, tissue AC gene expression and regulation are explored in a rat model of cecal ligation and puncture (CLP) sepsis. Eighteen hours after CLP operation, expression of several AC isoforms in the liver, spleen, and kidney was reduced, significantly so for AC9 in all tissues. AC9 expression is regulated by the microRNA miR142-3p in T cells. When microRNA was extracted and amplified for miR142-3p expression, it was increasingly expressed 18 h after CLP. A correlation between increased miR142-3p and decreased AC9 expression was found in the liver, kidney, and spleen, and when hepatocytes, Kupffer cells (KCs), and liver sinusoidal endothelial cells were isolated after CLP, reduced AC expression and increased miR142-3p expression were found in KCs and liver sinusoidal endothelial cells. Transfecting a miR142-3p inhibitor probe in rat KCs abolished LPS-mediated AC9 inhibition in vitro. These results indicate that CLP leads to miR142-3p-mediated AC9 reduction in liver macrophages, which may further limit cyclic 3'5'-adenosine monophosphate signaling and the ability of macrophages to resolve the proinflammatory response. PMID:21701418

  12. Critical periods for chlorpyrifos-induced developmental neurotoxicity: alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure.

    PubMed Central

    Meyer, Armando; Seidler, Frederic J; Aldridge, Justin E; Tate, Charlotte A; Cousins, Mandy M; Slotkin, Theodore A

    2004-01-01

    Developmental exposure to chlorpyrifos (CPF) alters the function of a wide variety of neural systems. In the present study we evaluated the effects in adulthood of CPF exposure of rats during different developmental windows, using the adenylyl cyclase (AC) signaling cascade, which mediates the cellular responses to numerous neurotransmitters. Animals were exposed on gestational days (GD) 9-12 or 17-20 or on postnatal days (PN) 1-4 or 11-14 and assessed at PN60. In addition to basal AC activity, we evaluated the responses to direct AC stimulants (forskolin, Mn2+) and to isoproterenol, which activates signaling through ss-adrenoceptors coupled to stimulatory G-proteins. CPF exposure in any of the four periods elicited significant changes in AC signaling in a wide variety of brain regions in adulthood. In general, GD9-12 was the least sensitive stage, requiring doses above the threshold for impaired maternal weight gain, whereas effects were obtained at subtoxic doses for all other regimens. Most of the effects were heterologous, involving signaling elements downstream from the receptors, and thus shared by multiple stimulants; superimposed on this basic pattern, there were also selective alterations in receptor-mediated responses, in G-protein function, and in AC expression and subtypes. Exposures conducted at GD17-20 and later all produced sex-selective alterations. These results suggest that developmental exposure to CPF elicits long-lasting alterations in cell-signaling cascades that are shared by multiple neurotransmitter and hormonal inputs; the resultant abnormalities of synaptic communication are thus likely to occur in widespread neural circuits and their corresponding behaviors. PMID:14998743

  13. Comparative involvement of cyclic nucleotide phosphodiesterases and adenylyl cyclase on adrenocorticotropin-induced increase of cyclic adenosine monophosphate in rat and human glomerulosa cells.

    PubMed

    Côté, M; Payet, M D; Rousseau, E; Guillon, G; Gallo-Payet, N

    1999-08-01

    The present study investigated the role and identity of cyclic nucleotide phosphodiesterases (PDEs) in the regulation of basal and ACTH-stimulated levels of intracellular cAMP in human and rat adrenal glomerulosa cells. Comparative dose-response curves indicated that maximal hormone-stimulated cAMP accumulation was 11- and 24-fold higher in human and rat cells, compared with cAMP production obtained in corresponding membranes, respectively. Similarly to 3-isobutyl-1-methyl-xanthine, 25 microM erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA, a specific PDE2 inhibitor), caused a large increase in ACTH-stimulated cAMP accumulation; by contrast, it did not change cAMP production in membranes. Moreover, in membrane fractions, addition of 10 microM cGMP inhibited ACTH-induced cAMP production, an effect completely reversed by addition of 25 microM EHNA. These results indicate that PDE2 activity is involved in the regulation of cAMP accumulation induced by ACTH, and suggest that ACTH inhibits this activity. Indeed, time-course studies indicated that ACTH induced a rapid decrease in cGMP production, resulting in PDE2 inhibition, which in turn, contributed [with adenylyl cyclase (AC) activation] to an accumulation in cAMP for 15 min. Thereafter, cAMP content decreased, because of cAMP-stimulated PDE2, as confirmed by measurement of PDE activity that was activated by ACTH, but only after a 10-min incubation. Hence, we demonstrate that the ACTH-induced increase in intracellular cAMP is the result of a balance between activation of AC and direct modulation of PDE2 activity, an effect mediated by cGMP content. Although similar results were observed in both models, PDE2 involvement is more important in rat than in human adrenal glomerulosa cells, whereas AC is more stimulated in human than in rat glomerulosa cells. PMID:10433216

  14. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice.

    PubMed

    Chen, Tao; O'Den, Gerile; Song, Qian; Koga, Kohei; Zhang, Ming-Ming; Zhuo, Min

    2014-01-01

    Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain. PMID:25304256

  15. Some sweet and bitter tastants stimulate inhibitory pathway of adenylyl cyclase via melatonin and alpha 2-adrenergic receptors in Xenopus laevis melanophores.

    PubMed

    Zubare-Samuelov, Meirav; Peri, Irena; Tal, Michael; Tarshish, Mark; Spielman, Andrew I; Naim, Michael

    2003-11-01

    The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation. PMID:12839835

  16. Adenylyl cyclase 6 mediates the action of cyclic AMP-dependent secretagogues in mouse pancreatic exocrine cells via protein kinase A pathway activation

    PubMed Central

    Sabbatini, Maria E; D’Alecy, Louis; Lentz, Stephen I; Tang, Tong; Williams, John A

    2013-01-01

    Both secretin and vasoactive intestinal polypeptide (VIP) receptors are responsible for the activation of adenylyl cyclases (ACs), which increase intracellular cyclic AMP (cAMP) levels in the exocrine pancreas. There are nine membrane-associated isoforms, each with its own pattern of expression and regulation. In this study we sought to establish which AC isoforms play a regulatory role in pancreatic exocrine cells. Using RT-PCR, AC3, AC4, AC6, AC7 and AC9 were found to be expressed in the pancreas. AC3, AC4, AC6 and AC9 were expressed in both pancreatic acini and ducts, whereas AC7 was expressed only in pancreatic ducts. Based on known regulation by intracellular signals, selective inhibitors and stimulators were used to suggest which isoforms play an important role in the induction of cAMP formation. AC6 appeared to be an important isoform because protein kinase A (PKA), PKC and calcium all inhibited VIP-induced cAMP formation, whereas calcineurin or calmodulin did not modify the response to VIP. Mice with genetically deleted AC6 were studied and showed reduced cAMP formation and PKA activation in both isolated pancreatic acini and duct fragments. The absence of AC6 reduced cAMP-dependent secretagogue-stimulated amylase secretion, and abolished fluid secretion in both in vivo and isolated duct fragments. In conclusion, several AC isoforms are expressed in pancreatic acini and ducts. AC6 mediates a significant part of pancreatic amylase and fluid secretion in response to secretin, VIP and forskolin through cAMP/PKA pathway activation. PMID:23753526

  17. [Peptide 612-627 of thyrotropin receptor and its modified derivatives as the regulators of adenylyl cyclase in the rat thyroid gland].

    PubMed

    Shpakov, A O; Shpakova, E A; Tarasenko, I I; Derkach, K V

    2014-01-01

    The regulation of the specific activity of the thyroid gland is carried by thyroid-stimulating hormone (TSH) through TSH receptor (TSHR). This receptor is coupled to different types of G-proteins, including the G(s)-proteins, through which TSH stimulates the enzyme adenylyl cyclase (AC). As the application of TSH in medicine is limited, the development of selective regulators of TSHR with agonistic and antagonistic activity is carried out. One of the approaches to their creation is to develop the peptides corresponding to functionally important regions of TSHR which are located in its intracellular loops (ICL) and are involved in the binding and activation of G-proteins. We have synthesized peptide corresponding to the C-terminal region 612-627 of the third ICL of TSHR and its derivatives modified by palmitic acid residue (at the N- or the C-terminus) or by polylysine dendrimer (at the N-terminus), and studied their effect on the basal and TSH-stimulated AC activity in the membrane fraction isolated from the rat thyroid. The most active was peptide 612-627-K(Pal)A modified by palmitate at the C-terminus, where in TSHR the hydrophobic transmembrane region is located. At the micromolar concentrations the peptide increased AC activity and reduced the AC stimulating effect of TSH. The action of the 612-627-K(Pal)A has been directed onto TSHR homologous to it, as indicated by the following facts: 1) the inhibition of G(s)-protein, the downstream component of AC system, by treating the membranes with cholera toxin led to the blocking of peptide AC effect, 2) this effect was not detected in the tissues where no TSHR, 3) the peptide did not significantly affect the AC stimulating effects of hormones acting via other receptors. The unmodified peptide and the peptide with N-terminal dendrimer are far behind the 612-627-K(Pal)A in their ability to activate AC in the thyroid, while the peptide modified by palmitate at the N-terminus was inactive. At the same time, the peptide

  18. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  19. The vasorelaxant effect of 8(17),12E,14-labdatrien-18-oic acid involves stimulation of adenylyl cyclase and cAMP/PKA pathway: Evidences by pharmacological and molecular docking studies.

    PubMed

    Ribeiro, Luciano A A; Alencar Filho, Edilson B; Coelho, Maisa C; Silva, Bagnólia A

    2015-10-01

    The relaxant effect of 8(17),12E,14-labdatrien-18-oic acid (LBD) was investigated on isolated aortic rings and compared with forskolin (FSK), a standard and potent activator of adenylyl cyclase (AC) with relaxing effect. The presence of potassium channel blockers, such as glibenclamide (ATP-blocker), apamin (SKCa-blocker), charybdotoxin (BKCa-blocker) did not significantly affect either the LBD or FSK concentration-response curves. However, in the presence of 4-aminopyridine (KV-blocker), the relaxant effect for both diterpenes was significantly attenuated, with reduction of its relative potencies. Moreover, the relaxation induced by 8-Br-cAMP, an analog of cAMP, was also significantly attenuated in the same conditions, i.e., in the presence of 4-aminopyridine. The presence of aminophylline, a nonselective phosphodiesterase inhibitor, caused a significant increasing in the potency for both LBD and FSK. On the other hand, the presence of Rp-cAMPS, a selective PKA-inhibitor, significantly attenuated the relaxant effect of LBD. In this work, in the same experimental conditions, both labdane-type diterpenes presented remarkably similar results; FSK, however, presented a higher potency (100-fold) than LBD. Thus, the hypothesis that LBD could be a novel AC-activator emerged. To assess that hypothesis, computational molecular docking studies were performed. Crystallographic structure of adenylyl cyclase/forskolin complex (1AB8) was obtained from RSCB Protein Data Bank and used to compare the modes of interaction of the native ligand and LBD. The computational data shows many similarities between LBD and FSK concerning the interaction with the regulatory site of AC. Taken together, the results presented here pointed to LBD as a novel AC-activator. PMID:26144373

  20. Cyclic nucleotide–gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee

    PubMed Central

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO–cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca2+/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO–cGMP and cAMP–PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors. PMID:24741108

  1. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin-mediated activation of the 5-HT(1A) receptor-adenylyl cyclase axis.

    PubMed

    Stewart, Adele; Maity, Biswanath; Wunsch, Amanda M; Meng, Fantao; Wu, Qi; Wemmie, John A; Fisher, Rory A

    2014-04-01

    Targeting serotonin (5-HT) bioavailability with selective 5-HT reuptake inhibitors (SSRIs) remains the most widely used treatment for mood disorders. However, their limited efficacy, delayed onset of action, and side effects restrict their clinical utility. Endogenous regulator of G-protein signaling (RGS) proteins have been implicated as key inhibitors of 5-HT(1A)Rs, whose activation is believed to underlie the beneficial effects of SSRIs, but the identity of the specific RGS proteins involved remains unknown. We identify RGS6 as the critical negative regulator of 5-HT(1A)R-dependent antidepressant actions. RGS6 is enriched in hippocampal and cortical neurons, 5-HT(1A)R-expressing cells implicated in mood disorders. RGS6(-/-) mice exhibit spontaneous anxiolytic and antidepressant behavior rapidly and completely reversibly by 5-HT(1A)R blockade. Effects of the SSRI fluvoxamine and 5-HT(1A)R agonist 8-OH-DPAT were also potentiated in RGS6(+/-) mice. The phenotype of RGS6(-/-) mice was associated with decreased CREB phosphorylation in the hippocampus and cortex, implicating enhanced Gα(i)-dependent adenylyl cyclase inhibition as a possible causative factor in the behavior observed in RGS6(-/-) animals. Our results demonstrate that by inhibiting serotonergic innervation of the cortical-limbic neuronal circuit, RGS6 exerts powerful anxiogenic and prodepressant actions. These findings indicate that RGS6 inhibition may represent a viable means to treat mood disorders or enhance the efficacy of serotonergic agents. PMID:24421401

  2. Cooperative substrate binding by a diguanylate cyclase.

    PubMed

    Oliveira, Maycon C; Teixeira, Raphael D; Andrade, Maxuel O; Pinheiro, Glaucia M S; Ramos, Carlos H I; Farah, Chuck S

    2015-01-30

    XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo. PMID:25463434

  3. Bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  4. Stimulation of Hippocampal Adenylyl Cyclase Activity Dissociates Memory Consolidation Processes for Response and Place Learning

    ERIC Educational Resources Information Center

    Martel, Guillaume; Millard, Annabelle; Jaffard, Robert; Guillou, Jean-Louis

    2006-01-01

    Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were…

  5. Recent developments in SAC2000

    SciTech Connect

    Goldstein, P.; Dodge, D.; Firpo, M

    1997-07-01

    Before discussing recent developments in SAC2000, I will summarize what SAC2000 is/does. SAC2000 is the rebirth and evolution of Lawrence Livermore National Laboratory`s (LLNL`s) Seismic Analysis Code (SAC) developed during the 1980`s for a variety of geophysical applications. Primary funding for the development of SAC2000 has been through the LLNL as part of the Department of Energy`s (DOE`s) CTBT R&D program. The primary development goals for SAC2000 have been to meet the seismic signal processing and analysis needs of the DOE CTBT R&D teams and the rest of the CTBT R&D community. SAC2000`s strengths include its ability to process a diverse range of data types, its extensive, well documented signal processing capabilities (both on-line and on the web at http://www-ep.es.llnl.gov/tvp/sac.html), its macro language, and its ability to do both branch and interactive processing. Its extensive usage (over 200 institutions worldwide) had also made it much easier for researchers to develop collaborative research projects. SAC2000`s extensive signal processing capabilities include: data inspection, signal correction, and quality control, unary and binary data operations, travel-time analysis, spectral analysis including high-resolution spectral estimation, spectrograms and binary sonograms, and array and three-component analysis. Recent development in SAC2000 include: enhanced compatibility with the CSS3.0 database schema, complete compatibility with the widely used SEED data format instrument responses, map making capabilities via an interface to GMT, a new three component polarization and phase identification tool, an external interface that allows users to define their own commands, and an interface to MATLAB that allows the user to use MATLAB commands and scripts on SAC data from within SAC2000. We have also implemented a number of commands to enhance user efficiency and numerous improvements and enhancements to many individual SAC commands. Current development in SAC

  6. Primary omental yolk sac tumor.

    PubMed

    Lim, Seon Hwa; Kim, Yon Hee; Yim, Ga Won; Nam, Eun Ji; Kim, Young Tae; Kim, Sunghoon

    2013-11-01

    Extra-ovarian yolk sac tumor arising in the omentum is extremely rare. As yolk sac tumor originated from the omentum has been rarely reported, its clinical information is very limited. The authors encountered a case of yolk sac tumor originated from the omentum, and reported the case herein. A 32-year-old woman was presented with developed low abdominal distension for a month. Magnetic resonance imaging findings were suggestive of ovarian malignancy with ascites and peritoneal seeding nodules. Explorative laparotomy was performed and then the findings from frozen biopsy of omentum were suggestive of poorly differentiated tumor though whether it was primary or metastatic was uncertain. Thus, staging laparotomy were performed. Histopathology confirmed that the tumor was a yolk sac tumor of omentum origin. Then, 6 cycles of postoperative adjuvant chemotherapy at intervals of 3 weeks were performed using bleomycin, etoposide, and cisplatin regimen. Four-year outpatient follow-up thereafter showed no relapse. PMID:24396822

  7. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    SciTech Connect

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S.

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  8. Haemangiopericytoma of the lacrimal sac.

    PubMed

    Watanabe, Akihide; Wu, Albert; Sun, Michelle T; Inatani, Masaru; Katori, Nobutada; Selva, Dinesh

    2016-08-01

    Haemangiopericytomas (HPCs) are rare tumours which infrequently occur in the lacrimal sac. Only 8 cases of lacrimal sac HPC have previously been reported. The authors report 2 additional cases presenting clinically with epiphora and a mass. One case recurred 3 times during an 18-year period. The other case did not recur during 51 months of follow-up. The tumours showed immunohistochemical features consistent with a diagnosis of HPC. The authors recommend wide excision for these tumours and careful long-term follow-up to detect recurrence which is not uncommon. PMID:27322416

  9. Sensitization of olfactory guanylyl cyclase to a specific imprinted odorant in coho salmon.

    PubMed

    Dittman, A H; Quinn, T P; Nevitt, G A; Hacker, B; Storm, D R

    1997-08-01

    The role of cGMP in olfactory signaling is not fully understood, but it is believed to play a modulatory role in intracellular signaling in vertebrate olfactory receptor neurons (ORNs). Here, we present evidence that cGMP in ORNs may play an important role in recognition of biologically relevant odors and olfactory learning. Specifically, we investigated the cellular mechanisms underlying olfactory imprinting in salmon. Salmon learn odors associated with their natal site as juveniles and later use these odors to guide their homing migration. This imprinting is believed to involve sensitization of the peripheral olfactory system to specific homestream odorants. We imprinted juvenile salmon to the odorant beta-phenylethyl alcohol (PEA) and examined the sensitivity of olfactory adenylyl and guanylyl cyclases to PEA during development. Stimulation of guanylyl cyclase activity by PEA was significantly greater in olfactory cilia isolated from PEA-imprinted salmon compared with PEA-naive fish only at the time of the homing migration, 2 years after PEA exposure. These results suggest that sensitization of olfactory guanylyl cyclase may play an important role in olfactory imprinting by salmon. PMID:9292727

  10. Cul-de-Sac Kids

    ERIC Educational Resources Information Center

    Hochschild, Thomas R., Jr.

    2013-01-01

    Previous research indicates that adults who live on cul-de-sac streets are more likely to have positive experiences with neighbors than residents of other street types (Brown and Werner, 1985; Hochschild Jr, 2011; Mayo Jr, 1979; Willmott, 1963). The present research ascertains whether street design has an impact on children's neighborhood…

  11. Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase.

    PubMed Central

    Roelofs, J; Snippe, H; Kleineidam, R G; Van Haastert, P J

    2001-01-01

    The core of adenylate and guanylate cyclases is formed by an intramolecular or intermolecular dimer of two cyclase domains arranged in an antiparallel fashion. Metazoan membrane-bound adenylate cyclases are composed of 12 transmembrane spanning regions, and two cyclase domains which function as a heterodimer and are activated by G-proteins. In contrast, membrane-bound guanylate cyclases have only one transmembrane spanning region and one cyclase domain, and are activated by extracellular ligands to form a homodimer. In the cellular slime mould, Dictyostelium discoideum, membrane-bound guanylate cyclase activity is induced after cAMP stimulation; a G-protein-coupled cAMP receptor and G-proteins are essential for this activation. We have cloned a Dictyostelium gene, DdGCA, encoding a protein with 12 transmembrane spanning regions and two cyclase domains. Sequence alignment demonstrates that the two cyclase domains are transposed, relative to these domains in adenylate cyclases. DdGCA expressed in Dictyostelium exhibits high guanylate cyclase activity and no detectable adenylate cyclase activity. Deletion of the gene indicates that DdGCA is not essential for chemotaxis or osmo-regulation. The knock-out strain still exhibits substantial guanylate cyclase activity, demonstrating that Dictyostelium contains at least one other guanylate cyclase. PMID:11237875

  12. Endolymphatic sac involvement in bacterial meningitis.

    PubMed

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian; Caye-Thomasen, Per

    2015-04-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham-inoculated. The rats were killed when reaching terminal illness or on day 7, followed by light microscopy preparation and PAS-Alcian blue staining. The endolymphatic sac was examined for bacterial invasion and leukocyte infiltration. Neither bacteria nor leukocytes infiltrated the endolymphatic sac during the first days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges was found. Leukocyte infiltration of the sac occurred prior to bacterial invasion. During meningitis, bacteria do not invade the endolymphatic sac through the dura, but solely through the endolymphatic duct, following the invasion of the vestibular system. Leukocyte infiltration of the sac occurs prior to, as well as concurrent with bacterial invasion. The findings support the endolymphatic sac as part of an innate immune defense system protecting the inner ear from infection. PMID:24452771

  13. Apparent dopamine D1 and D2 receptors in the weaver mutant mouse: receptor binding and coupling to adenylyl cyclase.

    PubMed

    Dewar, K M; Paquet, M; Sequeira, A

    1999-01-01

    Weaver mutant mice have a selective degeneration of the nigrostriatal dopamine pathway arising between 7-21 days after birth. The goal of this study was to investigate the effects of this mutation on different parameters of the nigrostriatal and mesolimbic dopamine system: apparent D1 and D2 receptor binding sites as well as their signal transduction pathway. Using quantitative autoradiography of ligands for dopamine D1, D2 receptors and the dopamine uptake site, we found a significant loss in apparent D1 receptor binding sites throughout the neostriatum, significant increase of apparent D2 receptor binding in the dorsal aspect of the neostriatum, and almost complete loss of DA uptake sites in these regions of the weaver mouse. In contrast to the neostriatum, the density of dopamine receptors and uptake sites in the nucleus accumbens of the weaver mouse did not differ from controls. Despite alterations in the binding of apparent D1 and D2 receptors, there was no significant difference in either basal, DA stimulated or GTPgammaS stimulated cAMP production. These findings suggest the down-regulation of apparent D1 receptor binding sites reported in this model, probably does not reflect an important physiological mechanism through which these animals compensate for loss of dopamine innervation. PMID:10443552

  14. Performance Analysis of Wavelength Multiplexed Sac Ocdma Codes in Beat Noise Mitigation in Sac Ocdma Systems

    NASA Astrophysics Data System (ADS)

    Alhassan, A. M.; Badruddin, N.; Saad, N. M.; Aljunid, S. A.

    2013-07-01

    In this paper we investigate the use of wavelength multiplexed spectral amplitude coding (WM SAC) codes in beat noise mitigation in coherent source SAC OCDMA systems. A WM SAC code is a low weight SAC code, where the whole code structure is repeated diagonally (once or more) in the wavelength domain to achieve the same cardinality as a higher weight SAC code. Results show that for highly populated networks, the WM SAC codes provide better performance than SAC codes. However, for small number of active users the situation is reversed. Apart from their promising improvement in performance, these codes are more flexible and impose less complexity on the system design than their SAC counterparts.

  15. Adenylate cyclase 3: a new target for anti-obesity drug development.

    PubMed

    Wu, L; Shen, C; Seed Ahmed, M; Östenson, C-G; Gu, H F

    2016-09-01

    Obesity has become epidemic worldwide, and abdominal obesity has a negative impact on health. Current treatment options on obesity, however, still remain limited. It is then of importance to find a new target for anti-obesity drug development based upon recent molecular studies in obesity. Adenylate cyclase 3 (ADCY3) is the third member of adenylyl cyclase family and catalyses the synthesis of cAMP from ATP. Genetic studies with candidate gene and genome-wide association study approaches have demonstrated that ADCY3 genetic polymorphisms are associated with obesity in European and Chinese populations. Epigenetic studies have indicated that increased DNA methylation levels in the ADCY3 gene are involved in the pathogenesis of obesity. Furthermore, biological analyses with animal models have implicated that ADCY3 dysfunction resulted in increased body weight and fat mass, while reduction of body weight is partially explained by ADCY3 activation. In this review, we describe genomic and biological features of ADCY3, summarize genetic and epigenetic association studies of the ADCY3 gene with obesity and discuss dysfunction and activation of ADCY3. Based upon all data, we suggest that ADCY3 is a new target for anti-obesity drug development. Further investigation on the effectiveness of ADCY3 activator and its delivery approach to treat abdominal obesity has been taken into our consideration. PMID:27256589

  16. Guanylyl cyclase structure, function and regulation

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies. PMID:21914472

  17. Comparative morphology of the marrow sac.

    PubMed

    Bi, L X; Simmons, D J; Hawkins, H K; Cox, R A; Mainous, E G

    2000-12-01

    Electron microscopic techniques have been used to profile the morphologies of marrow sacs in different laboratory species. These structures all comprise a condensed layer of overlapping fibroblast-like stromal cells and apparently confine the medullary and endosteal osteoblast/lining cells to separate histiotypic compartments. There were some variations in the morphology of the sac cells in the different species. In rats, cats, and sheep, scanning electron microscopy (SEM) showed a seamless arrangement of marrow sac cells which resembled a thin, flat simple squamous epithelium; they displayed few intercellular cytoplasmic processes. In the rabbit and pigeon, the sac comprised a more woven, multilayered fabric of broadly elongate flat fibroblast-like cells which displayed numerous intercellular processes. Transmission electron microscopy (TEM) showed that all marrow sac cells were attenuated with elongated nuclei, a few small round mitochondria, and a sparse rough endoplasmic reticulum. In the majority of animals, the sac was one to two cell layers thick. The rabbit and pigeon sacs were multilayered, and never less than three to four cells deep. The cell layers were not closely apposed. Tight or gap junctions were absent at the points of intercellular contact. These morphological results suggest that marrow sacs are common elements of the vertebrate skeleton with species specific morphologies. PMID:11074407

  18. SACS: Spitzer Archival Cluster Survey

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    Emerging from the cosmic web, galaxy clusters are the most massive gravitationally bound structures in the universe. Thought to have begun their assembly at z > 2, clusters provide insights into the growth of large-scale structure as well as the physics that drives galaxy evolution. Understanding how and when the most massive galaxies assemble their stellar mass, stop forming stars, and acquire their observed morphologies in these environments remain outstanding questions. The redshift range 1.3 < z < 2 is a key epoch in this respect: elliptical galaxies start to become the dominant population in cluster cores, and star formation in spiral galaxies is being quenched. Until recently, however, this redshift range was essentially unreachable with available instrumentation, with clusters at these redshifts exceedingly challenging to identify from either ground-based optical/nearinfrared imaging or from X-ray surveys. Mid-infrared (MIR) imaging with the IRAC camera on board of the Spitzer Space Telescope has changed the landscape. High-redshift clusters are easily identified in the MIR due to a combination of the unique colors of distant galaxies and a negative k-correction in the 3-5 μm range which makes such galaxies bright. Even 90-sec observations with Spitzer/IRAC, a depth which essentially all extragalactic observations in the archive achieve, is sufficient to robustly detect overdensities of L* galaxies out to z~2. Here we request funding to embark on a ambitious scientific program, the “SACS: Spitzer Archival Cluster Survey”, a comprehensive search for the most distant galaxy clusters in all Spitzer/IRAC extragalactic pointings available in the archive. With the SACS we aim to discover ~2000 of 1.3 < z < 2.5 clusters, thus provide the ultimate catalog for high-redshift MIR selected clusters: a lasting legacy for Spitzer. The study we propose will increase by more than a factor of 10 the number of high-redshift clusters discovered by all previous surveys

  19. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation

    PubMed Central

    Williams, Kerstin J.; Bennett, Mark H.; Barton, Geraint R.; Jenkins, Victoria A.; Robertson, Brian D.

    2013-01-01

    Summary PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation. PMID:23352854

  20. Glutamine Synthetase Regulation, Adenylylation State, and Strain Specificity Analyzed by Polyacrylamide Gel Electrophoresis

    PubMed Central

    Bender, Robert A.; Streicher, Stanley L.

    1979-01-01

    We used polyacrylamide gel electrophoresis to examine the regulation and adenylylation states of glutamine synthetases (GSs) from Escherichia coli (GSE) and Klebsiella aerogenes (GSK). In gels containing sodium dodecyl sulfate (SDS), we found that GSK had a mobility which differed significantly from that of GSE. In addition, for both GSK and GSE, adenylylated subunits (GSK-adenosine 5′-monophosphate [AMP] and GSE-AMP) had lesser mobilities in SDS gels than did the corresponding non-adenylylated subunits. The order of mobilities was GSK-AMP < GSK < GSE-AMP < GSE. We were able to detect these mobility differences with purified and partially purified preparations of GS, crude cell extracts, and whole cell lysates. SDS gel electrophoresis thus provided a means of estimating the adenylylation state and the quantity of GS present independent of enzymatic activity measurements and of determining the strain origin. Using SDS gels, we showed that: (i) the constitutively produced GS in strains carrying the glnA4 allele was mostly adenylylated, (ii) the GS-like polypeptide produced by strains carrying the glnA51 allele was indistinguishable from wild-type GSK, and (iii) strains carrying the glnA10 allele contained no polypeptide having the mobility of GSK or GSK-AMP. Using native polyacrylamide gels, we detected the increased amount of dodecameric GS present in cells grown under nitrogen limitation compared with cells grown under conditions of nitrogen excess. In native gels there was neither a significant difference in the mobilities of adenylylated and non-adenylylated GSs nor a GS-like protein in cells carrying the glnA10 allele. Images PMID:33958

  1. A Surprise in the Lacrimal Sac

    PubMed Central

    Yuksel, Nilay; Akcay, Emine; Kilicarslan, Aydan; Ozen, Umut; Ozturk, Faruk

    2016-01-01

    To present a case with recurrent dacryocystitis as an unusual complication of medial orbital wall fracture repair with cartilage tissue graft. A 20-year-old male had facial trauma and underwent surgery to reconstruct right medial orbital wall fracture. During follow–up, he presented with continuous epiphora, mucopurulent discharge from the right eye. A thorough history taking indicated that medial orbital fracture was reconstructed with postauricular cartilage. We planned a standard external dacryocystorhinostomy (DCR). During the creation of lacrimal sac flaps, hard tissue was noted in the lacrimal sac. This tissue was excised and sent for pathological examination. The pathological examination revealed cartilage tissue. There were no further ipsilateral symptoms or complications after DCR. In patients with lacrimal system injury related to orbital wall fracture, iatrogenic foreign bodies in the lacrimal sac should be considered in patients with recurrent dacryocystitis who had reconstructive surgery for facial and orbital trauma. PMID:27555715

  2. SAC-B, Argentine scientific satellite

    NASA Technical Reports Server (NTRS)

    Gulich, J. M.; White, C.

    1994-01-01

    The project and the missions of the Argentine scientific satellite, SAC-B, are summarized. SAC-B is an international cooperative project between NASA and the Secretariat of State of Science and Technology of the Argentine Republic. The objective of SAC-B is to advance the study of solar physics and astrophysics through the examination of solar flares, gamma ray burst sources and the diffuse soft X-ray cosmic background. The scientific payload comprises an instrument to measure the temporal evolution of X-ray emissions from solar flares as well as nonsolar gamma ray bursts, a combined soft X-ray and gamma ray burst detector, a diffuse X-ray background detector, and an energetic neutral atoms detector.

  3. Histopathology after Endolymphatic Sac Surgery for Meniere’s Syndrome

    PubMed Central

    Chung, Jong Woo; Fayad, Jose; Linthicum, Fred; Ishiyama, Akira; Merchant, Saumil N.

    2011-01-01

    Background The putative goal of sac surgery in Meniere’s syndrome is to promote the flow of endolymph from the labyrinth to the endolymphatic sac, and thereby relieving hydrops. There is scant published histopathological data whether sac surgery actually accomplishes this goal. Objective To determine if sac surgery relieves hydrops by examining the histopathologic changes in temporal bones obtained from individuals who had undergone sac surgery during life for Meniere’s syndrome. Methods Temporal bones were examined from 15 patients who had sac surgery. Data was collected on presence and severity of hydrops, histology of the sac, and whether the procedure relieved vertigo. Results The surgery failed to expose the sac in 5 cases; 4 of the 5 had relief from vertigo. The sac was exposed, but the shunt failed to reach the lumen of the sac in 8 cases; 4 of the 8 had relief from vertigo. The shunt was successfully placed within the lumen of the sac in two cases; both cases failed to experience relief from vertigo. Endolymphatic hydrops was present in all 15 cases. Conclusion Endolymphatic sac surgery does not relieve hydrops in patients with Meniere’s syndrome. Yet, sac surgery relieves vertigo in some patients, but the mechanism of such symptomatic relief remains unknown. PMID:21436748

  4. Surveillance Analysis Computer System (SACS) software requirements specification (SRS)

    SciTech Connect

    Glasscock, J.A.; Flanagan, M.J.

    1995-09-01

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) Database, an Impact Level 3Q system. The purpose is to provide the customer and the performing organization with the requirements for the SACS Project.

  5. 60. SAC emblem on side of missile, front lawn, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. SAC emblem on side of missile, front lawn, building 500, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  6. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  7. 63. Aerial view of SAC command post construction, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Aerial view of SAC command post construction, looking west - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  8. 67. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. Aerial view of SAC command post, building 500, looking northeast, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  9. 62. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Aerial view of SAC command post, building 500, looking east - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  10. 3. Threequarter view of building 500 looking southeast from SAC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of building 500 looking southeast from SAC Boulevard - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  11. 68. Aerial view of SAC command post, building 500, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. Aerial view of SAC command post, building 500, looking northeast, spring, 1957 - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Headquarters Building, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  12. Quantitative assessment of gestational sac shape: the gestational sac shape score

    PubMed Central

    Deter, R.L.; Li, J.; Lee, W.; Liu, S.; Romero, R.

    2012-01-01

    Objective To develop a quantitative method for characterizing gestational sac shape. Methods Twenty first-trimester gestational sacs in normal pregnancies were studied with three-dimensional (3D) ultrasonography. The 3D coordinates of surface-point sets were obtained for each sac using 30-, 15- and six-slice sampling. Cubic spline interpolation was used with the 15- and six-slice surface-point samples to generate coordinates for those 30-slice surface points not measured. Interpolated and measured values, the latter from the 30-slice sample, were compared and the percent error calculated. Cubic spline interpolation was used to determine the coordinates of a standard surface-point sample (3660) for each sac in each slice sample. These coordinate data were used to give each sac a standard configuration by moving its center of gravity to the origin, aligning its inertial axes along the coordinate axes and converting its volume to 1.0 mL. In this form, a volume shape descriptor could be generated for each sac that was then transformed into a vector containing only shape information. The 20 shape vectors of each slice sample were subjected to principal components analysis, and principal component scores (PCSs) calculated. The first four PCSs were used to define a gestational sac shape score (GSSS-30, GSSS-15 or GSSS-6) for each sac in a given slice sample. The characteristics of each set of GSSSs were determined and those for the GSSS-15 and GSSS-6 were compared with the GSSS-30 characteristics. Results Cubic spline interpolations were very accurate in most cases, with means close to 0%, and approximately 95% of the errors being less than 10%. GSSS-30 accounted for 67.6% of the shape variance, had a mean of zero and an SD of 1.1, was normally distributed and was not related to menstrual age (R = −0.16, P = 0.51). GSSS-15 and GSSS-6 had essentially the same characteristics. No significant differences between individual GSSS-30 values and those for GSSS-15 or GSSS-6

  13. What is inside the hernia sac?

    PubMed Central

    Virgínia, Ana Araújo; Santos, Cláudia; Contente, Helena; Branco, Cláudia

    2016-01-01

    Most ovarian inguinal hernias occur in children and are frequently associated with congenital genitalia defects. The authors present the case of a multiparous 89-year-old woman, without any genitalia defect, who was brought to the emergency department with an irreducible inguinal hernia. The patient was proposed for emergency surgery during which we encountered an ovary and a fallopian tube inside the hernial sac. An oophorosalpingectomy and a Lichtenstein procedure were carried out and the postoperative period was uneventful. This case shows that, even though it is rare, a hernial sac may contain almost any intra-abdominal organ, including those least frequent such as the appendix, an ovary or the fallopian tubes. PMID:27511751

  14. Aquarius/SAC-D Mission Overview

    NASA Technical Reports Server (NTRS)

    Sen, Amit; Kim, Yunjin; Caruso, Daniel; Lagerloef, Gary; Colomb, Raul; Yueh, Simon; LeVine, David

    2006-01-01

    Aquarius/SAC-D is a cooperative international mission developed between the National Aeronautics and Space Administration (NASA) of United States of America (USA) and the Comision Nacional de Actividades Espaciales (CONAE) of Argentina. The overall mission objective is to contribute to the understanding of the total Earth system and the consequences of the natural and man-made changes in the environment of the planet. Major themes are: ocean surface salinity, water cycle, climate, natural hazards and cryosphere.

  15. Diterpene Cyclases and the Nature of the Isoprene Fold

    PubMed Central

    Cao, Rong; Zhang, Yonghui; Mann, Francis M.; Huang, Cancan; Mukkamala, Dushyant; Hudock, Michael P.; Mead, Matthew; Prisic, Sladjana; Wang, Ke; Lin, Fu-Yang; Chang, Ting-Kai; Peters, Reuben; Oldfield, Eric

    2013-01-01

    The structures and mechanism of action of many terpene cyclases are known, but there are no structures of diterpene cyclases. Here, we propose structural models based on bioinformatics, site-directed mutagenesis, domain swapping, enzyme inhibition and spectroscopy that help explain the nature of diterpene cyclase structure, function, and evolution. Bacterial diterpene cyclases contain ∼20 α-helices and the same conserved “QW” and DxDD motifs as in triterpene cyclases, indicating the presence of a βγ barrel structure. Plant diterpene cyclases have a similar catalytic motif and βγ-domain structure together with a third, α-domain, forming an αβγ structure, and in H+-initiated cyclases, there is an EDxxD-like Mg2+/diphosphate binding motif located in the γ-domain. The results support a new view of terpene cyclase structure and function and suggest evolution from ancient (βγ) bacterial triterpene cyclases to (βγ) bacterial and thence to (αβγ) plant diterpene cyclases. PMID:20602361

  16. Membrane guanylyl cyclase receptors: an update

    PubMed Central

    Garbers, David L.; Chrisman, Ted D.; Wiegn, Phi; Katafuchi, Takeshi; Albanesi, Joseph P.; Bielinski, Vincent; Barylko, Barbara; Redfield, Margaret M.; Burnett, John C.

    2007-01-01

    Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance. PMID:16815030

  17. Primary Nasopharngeal Yolk Sac Tumor: A Case Report

    PubMed Central

    Arumugam, Dhanalakshmi; Chidambaram, Lalitha; Boj, Sudha; Marudasalam, Sumathi

    2016-01-01

    Yolk sac tumour also known as primitive endodermal tumour is the most common malignant germ cell tumour (GCT) in the paediatric age group. Most common sites of involvement are ovaries and testes, but rarely can occur in the extragonadal sites. In the head and neck region, yolk sac tumours have been reported in the nasopharynx, sinonasal tract, orbit, ear and parotid gland. Nasopharynx is an uncommon site for yolk sac tumour and very few cases of nasopharngeal pure yolk sac tumour have been reported so far. Yolk sac tumours are highly malignant and have a poor prognosis. This is a case of pure GCT in a three-year-old female child who presented with a rapidly growing nasopharyngeal mass. Histopathological examination followed by immunohistochemistry and serum AFP study clinched the diagnosis of yolk sac tumour. The tumour responded well to chemotherapy as evidenced by decrease in serum AFP levels. PMID:27437234

  18. Primary Nasopharngeal Yolk Sac Tumor: A Case Report.

    PubMed

    Arumugam, Dhanalakshmi; Thandavarayan, Pavithra; Chidambaram, Lalitha; Boj, Sudha; Marudasalam, Sumathi

    2016-05-01

    Yolk sac tumour also known as primitive endodermal tumour is the most common malignant germ cell tumour (GCT) in the paediatric age group. Most common sites of involvement are ovaries and testes, but rarely can occur in the extragonadal sites. In the head and neck region, yolk sac tumours have been reported in the nasopharynx, sinonasal tract, orbit, ear and parotid gland. Nasopharynx is an uncommon site for yolk sac tumour and very few cases of nasopharngeal pure yolk sac tumour have been reported so far. Yolk sac tumours are highly malignant and have a poor prognosis. This is a case of pure GCT in a three-year-old female child who presented with a rapidly growing nasopharyngeal mass. Histopathological examination followed by immunohistochemistry and serum AFP study clinched the diagnosis of yolk sac tumour. The tumour responded well to chemotherapy as evidenced by decrease in serum AFP levels. PMID:27437234

  19. Progressive myoclonus epilepsy associated with SACS gene mutations.

    PubMed

    Nascimento, Fábio A; Canafoglia, Laura; Aljaafari, Danah; Muona, Mikko; Lehesjoki, Anna-Elina; Berkovic, Samuel F; Franceschetti, Silvana; Andrade, Danielle M

    2016-08-01

    Pathogenic variants in the SACS gene (OMIM #604490) cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). ARSACS is a neurodegenerative early-onset progressive disorder, originally described in French Canadians, but later observed elsewhere.(1) Whole-exome sequencing of a large group of patients with unclassified progressive myoclonus epilepsies (PMEs) identified 2 patients bearing SACS gene mutations.(2) We detail the PME clinical features associated with SACS mutations and suggest the inclusion of the SACS gene in diagnostic screening of PMEs. PMID:27433545

  20. Whisker Formation on SAC305 Soldered Assemblies

    NASA Astrophysics Data System (ADS)

    Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.

    2014-11-01

    This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.

  1. Comparative analysis of plant lycopene cyclases.

    PubMed

    Koc, Ibrahim; Filiz, Ertugrul; Tombuloglu, Huseyin

    2015-10-01

    Carotenoids are essential isoprenoid pigments produced by plants, algae, fungi and bacteria. Lycopene cyclase (LYC) commonly cyclize carotenoids, which is an important branching step in the carotenogenesis, at one or both end of the backbone. Plants have two types of LYC (β-LCY and ϵ-LCY). In this study, plant LYCs were analyzed. Based on domain analysis, all LYCs accommodate lycopene cyclase domain (Pf05834). Furthermore, motif analysis indicated that motifs were conserved among the plants. On the basis of phylogenetic analysis, β-LCYs and ϵ-LCYs were classified in β and ϵ groups. Monocot and dicot plants separated from each other in the phylogenetic tree. Subsequently, Oryza sativa Japonica Group and Zea mays of LYCs as monocot plants and Vitis vinifera and Solanum lycopersicum of LYCs as dicot plants were analyzed. According to nucleotide diversity analysis of β-LCY and ϵ-LCY genes, nucleotide diversities were found to be π: 0.30 and π: 0.25, respectively. The result highlighted β-LCY genes showed higher nucleotide diversity than ϵ-LCY genes. LYCs interacting genes and their co-expression partners were also predicted using String server. The obtained data suggested the importance of LYCs in carotenoid metabolism. 3D modeling revealed that depicted structures were similar in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs. Likewise, the predicted binding sites were highly similar between O. sativa, Z mays, S. lycopersicum, and V. vinifera LCYs. Most importantly, analysis elucidated the V/IXGXGXXGXXXA motif for both type of LYC (β-LCY and ϵ-LCY). This motif related to Rossmann fold domain and probably provides a flat platform for binding of FAD in O. sativa, Z mays, S. lycopersicum, and V. vinifera β-LCYs and ϵ-LCYs with conserved structure. In addition to lycopene cyclase domain, the V/IXGXGXXGXXXA motif can be used for exploring LYCs proteins and to annotate the function of unknown proteins containing lycopene cyclase

  2. Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Signal via Phospholipase C Pathway to Block Apoptosis in Newborn Rat Retina.

    PubMed

    Lakk, Monika; Denes, Viktoria; Gabriel, Robert

    2015-07-01

    Glutamate induced cell death mechanisms gained considerable attention lately as excessive release of extracellular glutamate was reported to cause neurodegeneration in brain areas including the retina. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to provide neuroprotection through anti-apoptotic effects in the glutamate-model and also in other degeneration assays. Although PACAP is known to orchestrate complex intracellular signaling primarily through cAMP production, the mechanism that mediates the anti-apoptotic effect in glutamate excitotoxicity remains to be clarified. To study this mechanism we induced retinal neurodegeneration in newborn Wistar rats by subcutaneous monosodium-glutamate injection. 100 pmol PACAP and enzyme inhibitors were administered intravitreally. Levels of caspase 3, 9, and phospho-protein kinase A were assessed by Western blots. Changes in cAMP levels were detected employing a competitive immunoassay. We found that cAMP blockade by an adenylyl-cyclase inhibitor (2',4'-dideoxy-adenosine) did not abrogate the neuroprotective effect of PACAP1-38. We show that following intravitreal PACAP1-38 treatment cAMP was unaltered, consistent with the inhibitor results and phospho-protein kinase A, an effector of the cAMP pathway was also unaffected. On the other hand, blockade of the alternative phosphatidylcholine-specific PLC pathway using an inhibitor (D609CAS) abrogated the neuroprotective effects of PACAP1-38. Our results highlight PACAP1-38 ability in protecting retinal cells against apoptosis through diverse signaling cascades. It seems that at picomolar concentrations, PACAP does not trigger cAMP production, but nonetheless, exerts a significant anti-apoptotic effect through PLC activation. In conclusion, PACAP1-38 may signal via both AC and PLC activation producing the same protective outcome. PMID:25975365

  3. Cobinamides Are Novel Coactivators of Nitric Oxide Receptor That Target Soluble Guanylyl Cyclase Catalytic Domain

    PubMed Central

    Sharina, Iraida; Sobolevsky, Michael; Doursout, Marie-Francoise; Gryko, Dorota

    2012-01-01

    Soluble guanylyl cyclase (sGC), a ubiquitously expressed heme-containing receptor for nitric oxide (NO), is a key mediator of NO-dependent processes. In addition to NO, a number of synthetic compounds that target the heme-binding region of sGC and activate it in a NO-independent fashion have been described. We report here that dicyanocobinamide (CN2-Cbi), a naturally occurring intermediate of vitamin B12 synthesis, acts as a sGC coactivator both in vitro and in intact cells. Heme depletion or heme oxidation does not affect CN2-Cbi-dependent activation. Deletion mutagenesis demonstrates that CN2-Cbi targets a new regulatory site and functions though a novel mechanism of sGC activation. Unlike all known sGC regulators that target the N-terminal regulatory regions, CN2-Cbi directly targets the catalytic domain of sGC, resembling the effect of forskolin on adenylyl cyclases. CN2-Cbi synergistically enhances sGC activation by NO-independent regulators 3-(4-amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY41-2272), 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]-acid (cinaciguat or BAY58-2667), and 5-chloro-2-(5-chloro-thiophene-2-sulfonylamino-N-(4-(morpholine-4-sulfonyl)-phenyl)-benzamide sodium salt (ataciguat or HMR-1766). BAY41-2272 and CN2-Cbi act reciprocally by decreasing the EC50 values. CN2-Cbi increases intracellular cGMP levels and displays vasorelaxing activity in phenylephrine-constricted rat aortic rings in an endothelium-independent manner. Both effects are synergistically potentiated by BAY41-2272. These studies uncover a new mode of sGC regulation and provide a new tool for understanding the mechanism of sGC activation and function. CN2-Cbi also offers new possibilities for its therapeutic applications in augmenting the effect of other sGC-targeting drugs. PMID:22171090

  4. Laparoscopic management of hydatid cyst in the lesser sac

    PubMed Central

    Sahoo, Manash Ranjan; Kumar, Saurabh; Panda, Srikanta; Shameel, P. Ahammed

    2016-01-01

    Hydatid cyst is a disease caused by Echinococcus granulosus. Various anatomical location of hydatid cyst has been described in literature. Liver is the most common site of hydatid cyst and lungs are the second most common site. Hydatid cyst of lesser sac is a rare entity. Here we present a rare case report of laparoscopic management of hydatid cyst in lesser sac. PMID:27073313

  5. On the robustness of SAC silencing in closed mitosis

    NASA Astrophysics Data System (ADS)

    Ruth, Donovan; Liu, Jian

    Mitosis equally partitions sister chromatids to two daughter cells. This is achieved by properly attaching these chromatids via their kinetochores to microtubules that emanate from the spindle poles. Once the last kinetochore is properly attached, the spindle microtubules pull the sister chromatids apart. Due to the dynamic nature of microtubules, however, kinetochore-microtubule attachment often goes wrong. When this erroneous attachment occurs, it locally activates an ensemble of proteins, called the spindle assembly checkpoint proteins (SAC), which halts the mitotic progression until all the kinetochores are properly attached by spindle microtubules. The timing of SAC silencing thus determines the fidelity of chromosome segregation. We previously established a spatiotemporal model that addresses the robustness of SAC silencing in open mitosis for the first time. Here, we focus on closed mitosis by examining yeast mitosis as a model system. Though much experimental work has been done to study the SAC in cells undergoing closed mitosis, the processes responsible are not well understood. We leverage and extend our previous model to study SAC silencing mechanism in closed mitosis. We show that a robust signal of the SAC protein accumulation at the spindle pole body can be achieved. This signal is a nonlinear increasing function of number of kinetochore-microtubule attachments, and can thus serve as a robust trigger to time the SAC silencing. Together, our mechanism provides a unified framework across species that ensures robust SAC silencing and fidelity of chromosome segregation in mitosis. Intramural research program in NHLBI at NIH.

  6. Pituitary carcinoma with endolymphatic sac metastasis.

    PubMed

    Balili, Irida; Sullivan, Steven; Mckeever, Paul; Barkan, Ariel

    2014-06-01

    Pituitary carcinoma is characterized by the presence of a metastatic lesion(s) in a location non-contiguous with the original pituitary tumor. The mechanism(s) of malignant transformation are not known. A 15 year-old male was diagnosed in 1982 with a pituitary macroadenoma and acromegaly (random GH 67 ng/ml and no suppression by oral glucose). His prolactin was normal between 18 and 23 ng/ml. Transcranial resection in July 1983 was followed by radiation therapy. The tumor was immunopositive for GH and prolactin. The proliferation MIB-1 index was 0-1%. With aqueous Octreotide 100 mcg 4× daily both GH and IGF-1 became normal. The patient was lost to follow-up and was treated by his local physician. In 2001, his IGF-1 level was 1271 ng/ml, and his random GH was 1.8-2.4 ng/ml by ILMA despite progressive increase in the dose of Sandostatin LAR to 140 mg/month in divided doses. Prolactin remained normal or minimally increased between 15 and 25 ng/ml. In 2009 he was diagnosed with the tumor in the location of left endolymphatic sac. Histological examination showed low grade pituitary carcinoma strongly immunopositive for prolactin but negative for GH. MIB-1 antibody labeled 0-5% cells. In 2012 endoscopic resection of the pituitary tumor remnant was attempted. Immunohistochemical stains were strongly immunopositive for both prolactin and GH, similar to his original pituitary tumor. The MIB-1 proliferation index was low from 0 to 1%. To our knowledge this is the first case of pituitary carcinoma in the endolymphatic sac region. The dichotomy between the cell population of the pituitary lesion (GH/prolactin producing) and the metastasis (purely prolactin-producing) may suggest that the metastatic pituitary lesion derived from a clone distinct from the original one. PMID:23645293

  7. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  8. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1-7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase A.

    PubMed

    Tetzner, Anja; Gebolys, Kinga; Meinert, Christian; Klein, Sabine; Uhlich, Anja; Trebicka, Jonel; Villacañas, Óscar; Walther, Thomas

    2016-07-01

    Angiotensin (Ang)-(1-7) has cardiovascular protective effects and is the opponent of the often detrimental Ang II within the renin-angiotensin system. Although it is well accepted that the G-protein-coupled receptor Mas is a receptor for the heptapeptide, the lack in knowing initial signaling molecules stimulated by Ang-(1-7) prevented definitive characterization of ligand/receptor pharmacology as well as identification of further hypothesized receptors for the heptapeptide. The study aimed to identify a second messenger stimulated by Ang-(1-7) allowing confirmation as well as discovery of the heptapeptide's receptors. Ang-(1-7) elevates cAMP concentration in primary cells, such as endothelial or mesangial cells. Using cAMP as readout in receptor-transfected human embryonic kidney (HEK293) cells, we provided pharmacological proof that Mas is a functional receptor for Ang-(1-7). Moreover, we identified the G-protein-coupled receptor MrgD as a second receptor for Ang-(1-7). Consequently, the heptapeptide failed to increase cAMP concentration in primary mesangial cells with genetic deficiency in both Mas and MrgD Mice deficient in MrgD showed an impaired hemodynamic response after Ang-(1-7) administration. Furthermore, we excluded the Ang II type 2 receptor as a receptor for the heptapeptide but discovered that the Ang II type 2 blocker PD123319 can also block Mas and MrgD receptors. Our results lead to an expansion and partial revision of the renin-angiotensin system, by identifying a second receptor for Ang-(1-7), by excluding Ang II type 2 as a receptor for the heptapeptide, and by enforcing the revisit of such publications which concluded Ang II type 2 function by only using PD123319. PMID:27217404

  9. Differential air sac pressures in diving tufted ducks Aythya fuligula.

    PubMed

    Boggs, D F; Butler, P J; Wallace, S E

    1998-09-01

    The air in the respiratory system of diving birds contains a large proportion of the body oxygen stores, but it must be in the lungs for gas exchange with blood to occur. To test the hypothesis that locomotion induces mixing of air sac air with lung air during dives, we measured differential pressures between the interclavicular and posterior thoracic air sacs in five diving tufted ducks Aythya fuligula. The peak differential pressure between posterior thoracic and interclavicular air sacs, 0.49+/-0.13 kPa (mean +/- s.d.), varied substantially during underwater paddling as indicated by gastrocnemius muscle activity. These data support the hypothesis that locomotion, perhaps through associated abdominal muscle activity, intermittently compresses the posterior air sacs more than the anterior ones. The result is differential pressure fluctuations that might induce the movement of air between air sacs and through the lungs during dives. PMID:9716518

  10. Adenylate cyclases involvement in pathogenicity, a minireview.

    PubMed

    Costache, Adriana; Bucurenci, Nadia; Onu, Adrian

    2013-01-01

    Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed. PMID:23947014

  11. A Novel Link between Fic (Filamentation Induced by cAMP)-mediated Adenylylation/AMPylation and the Unfolded Protein Response*

    PubMed Central

    Sanyal, Anwesha; Chen, Andy J.; Nakayasu, Ernesto S.; Lazar, Cheri S.; Zbornik, Erica A.; Worby, Carolyn A.; Koller, Antonius; Mattoo, Seema

    2015-01-01

    The maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction. The human genome encodes a single Fic protein, called HYPE (Huntingtin yeast interacting protein E), with adenylyltransferase activity but unknown physiological target(s). Here, we demonstrate that HYPE localizes to the lumen of the endoplasmic reticulum via its hydrophobic N terminus and adenylylates the ER molecular chaperone, BiP, at Ser-365 and Thr-366. BiP functions as a sentinel for protein misfolding and maintains ER homeostasis. We found that adenylylation enhances BiP's ATPase activity, which is required for refolding misfolded proteins while coping with ER stress. Accordingly, HYPE expression levels increase upon stress. Furthermore, siRNA-mediated knockdown of HYPE prevents the induction of an unfolded protein response. Thus, we identify HYPE as a new UPR regulator and provide the first functional data for Fic-mediated adenylylation in mammalian signaling. PMID:25601083

  12. [Ovarian yolk sac tumour: general review].

    PubMed

    Even, Caroline; Lhommé, Catherine; Duvillard, Pierre; Morice, Philippe; Balleyguier, Corinne; Pautier, Patricia; Troalen, Frédéric; de La Motte Rouge, Thibault

    2011-08-01

    Ovarian yolk sac tumour (OYST) is a very rare malignancy arising most often in young women. Preoperative clinical, biological (alpha-foetoprotein) and radiological findings should help to establish the diagnosis of OYST, in order to propose adequate surgical treatment. The aim of surgery is to remove the primary tumour, to obtain an accurate histological diagnosis and to assess the disease extent. In young women, fertility-sparing surgery should be performed, in order to preserve the possibility of pregnancy later on. Chemotherapy has substantially modified the prognosis of these tumours, and practically all patients will be cured. The overall 5-year survival rate is 94% when patients are treated with BEP chemotherapy. Depending on the clinical situation, two to four cycles of the BEP regimen should be administered after surgery. Identification of prognostic factors may help to propose risk-adapted treatment in order to increase the cure rate in patients with a poor prognosis and to decrease toxicity in patients with a low risk of relapse. Fertility preservation represents a major objective in women treated for OYSTs. PMID:21708513

  13. Transdifferentiation of mouse visceral yolk sac cells into parietal yolk sac cells in vitro.

    PubMed

    Yagi, Shinomi; Tagawa, Yoh-Ichi; Shiojiri, Nobuyoshi

    2016-02-19

    The mouse embryonic yolk sac is an extraembryonic membrane that consists of a visceral yolk sac (VYS) and parietal yolk sac (PYS), and functions in hematopoietic-circulation in the fetal stage. The present study was undertaken to examine the normal development of both murine VYS and PYS tissues using various molecular markers, and to establish a novel VYS cell culture system in vitro for analyzing differentiation potentials of VYS cells. RT-PCR and immunohistochemical analyses of gene expression in VYS and PYS tissues during development revealed several useful markers for their identification: HNF1β, HNF4α, Cdh1 (E-cadherin), Krt8 and Krt18 for VYS epithelial cells, and Stra6, Snail1, Thbd and vimentin for PYS cells. PYS cells exhibited mesenchymal characteristics in gene expression and morphology. When VYS cells at 11.5 days of gestation were cultured in vitro for 7 days, the number of HNF1β-, HNF4α-, E-cadherin- and cytokeratin-positive VYS epithelial cells was significantly reduced and, instead, Stra6-and vimentin-positive PYS-like cells increased with culture. RT-PCR analyses also demonstrated that gene expression of VYS markers decreased, whereas that of PYS markers increased in the primary culture of VYS cells. These data indicate that VYS epithelial cells rapidly transdifferentiate into PYS cells having mesenchymal characteristics in vitro, which may provide a culture system suitable for studying molecular mechanisms of VYS transdifferentiation into PYS cells and also epithelial-mesenchymal transition. PMID:26820538

  14. Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa).

    PubMed Central

    Carricarte, V C; Bianchini, G M; Muschietti, J P; Téllez-Iñón, M T; Perticari, A; Torres, N; Flawiá, M M

    1988-01-01

    An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105,000 g and shows in crude extracts an apparent Mr of about 84,000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase. PMID:3128270

  15. Immunohistochemical Localization of Guanylate Cyclase within Neurons of Rat Brain

    NASA Astrophysics Data System (ADS)

    Ariano, Marjorie A.; Lewicki, John A.; Brandwein, Harvey J.; Murad, Ferid

    1982-02-01

    The immunohistochemical localization of guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] has been examined in rat neocortex, caudate-putamen, and cerebellum by using specific monoclonal antibodies. Immunofluorescence could be seen within somata and proximal dendrites of neurons in these regions. A nuclear immunofluorescence reaction to guanylate cyclase was characteristically absent. The staining pattern for guanylate cyclase was coincident with previously described localizations of cyclic GMP immunofluorescence within medium spiny neurons of the caudate-putamen and pyramidal cells of the neocortex. Cerebellar guanylate cyclase immunoreactivity was primarily confined to Purkinje cells and their primary dendrites, similar to the pattern reported for cyclic GMP-dependent protein kinase localization. Guanylate cyclase immunofluorescence was abolished when the monoclonal antibodies were exposed to purified enzyme prior to incubation of the tissue slices or when control antibody was substituted for the primary antibody. Immunohistochemical localization of cyclic AMP in these same tissues was readily distinguished from that of guanylate cyclase or cyclic GMP, showing uniform fluorescence throughout the cell bodies of neurons and glial elements.

  16. Carnosine as a regulator of soluble guanylate cyclase.

    PubMed

    Severina, I S; Bussygina, O G; Pyatakova, N V

    2000-07-01

    The molecular mechanism of the participation of carnosine in the functioning of soluble guanylate cyclase is discussed. It is shown that carnosine inhibits the activation of soluble guanylate cyclase by sodium nitroprusside and a derivative of furoxan--1,2,5-oxadiazolo-trioxide (an NO donor). However, carnosine has no effect on stimulation of the enzyme by a structural analog of the latter compound, a furazan derivative (1,2,5-oxadiazolo-dioxide) that is not an NO donor; nor was carnosine involved in the enzyme activation by protoporphyrin IX, whose stimulatory effect is not associated with the guanylate cyclase heme. The inhibition by carnosine of guanylate cyclase activation by an NO donor is due to the interaction of carnosine with heme iron with subsequent formation of a chelate complex. It was first demonstrated that carnosine is a selective inhibitor of NO-dependent activation of guanylate cyclase and may be used for suppression of activity of the intracellular signaling system NO-soluble guanylate cyclase-cGMP, whose sharp increase is observed in malignant tumors, sepsis, septic shock, asthma, and migraine. PMID:10951096

  17. 79. Sac digital network (Sacdin), summary fault indicator at top, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Sac digital network (Sacdin), summary fault indicator at top, south side - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  18. Giant prosthetic reinforcement of the visceral sac.

    PubMed

    Wantz, G E

    1989-11-01

    One hundred and seventy-nine patients with 237 hernias of the groin who were at high risk for recurrence after classic hernioplasty were operated upon; the procedure of giant prosthetic reinforcement of the visceral sac (GPRVS) was used. The patients in this series had predominantly recurrent and re-recurrent hernias. However, a few were obese with bilateral primary direct hernias and some had associated connective tissue disorders, such as Marfan and Ehlers-Danlos syndromes. GPRVS eliminates hernias of the groin by rendering the peritoneum inextensible by placing, in the preperitoneal space, a large prosthesis that extends far beyond the borders of the myopectineal orifice. The myopectineal orifice is the weak spot at which all hernias of the groin begin and is bounded by the rectus, oblique abdominal and iliopsoas muscles and the pectin of the pubis. In bilateral GPRVS, the peritoneum of both groins is reinforced with a single prosthesis inserted in the preperitoneal space through the midline. In unilateral GPRVS, the mesh envelops the peritoneum of a single groin. This simplifies the operation and makes it suitable for surgical centers that perform outpatient operations. The prosthesis with the best physical characteristics for GPRVS is Mersilene (polyester fiber). Unsutured prostheses of polypropylene and Teflon (polytetrafluoroethylene) may not adhere at the far edges, leading to a failure and recurrence. The over-all recurrence rate in this series of problem hernias was 3.7 per cent, which is extremely good. However, the rate becomes outstanding if recurrences resulting from meshes unsuitable for GPRVS are excluded. PMID:2814751

  19. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    NASA Astrophysics Data System (ADS)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  20. Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer

    PubMed Central

    Cui, Chunhui; Qi, Jia; Deng, Quanwen; Chen, Rihong; Zhai, Duanyang; Yu, Jinlong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC. PMID:27218101

  1. Novel hopanoid cyclases from the environment.

    PubMed

    Pearson, Ann; Flood Page, Sarah R; Jorgenson, Tyler L; Fischer, Woodward W; Higgins, Meytal B

    2007-09-01

    Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record. PMID:17686016

  2. Intraoperative Sac Pressure Measurement During Endovascular Abdominal Aortic Aneurysm Repair

    SciTech Connect

    Ishibashi, Hiroyuki; Ishiguchi, Tsuneo; Ohta, Takashi; Sugimoto, Ikuo; Iwata, Hirohide; Yamada, Tetsuya; Tadakoshi, Masao; Hida, Noriyuki; Orimoto, Yuki; Kamei, Seiji

    2010-10-15

    PurposeIntraoperative sac pressure was measured during endovascular abdominal aortic aneurysm repair (EVAR) to evaluate the clinical significance of sac pressure measurement.MethodsA microcatheter was placed in an aneurysm sac from the contralateral femoral artery, and sac pressure was measured during EVAR procedures in 47 patients. Aortic blood pressure was measured as a control by a catheter from the left brachial artery.ResultsThe systolic sac pressure index (SPI) was 0.87 {+-} 0.10 after main-body deployment, 0.63 {+-} 0.12 after leg deployment (P < 0.01), and 0.56 {+-} 0.12 after completion of the procedure (P < 0.01). Pulse pressure was 55 {+-} 21 mmHg, 23 {+-} 15 mmHg (P < 0.01), and 16 {+-} 12 mmHg (P < 0.01), respectively. SPI showed no significant differences between the Zenith and Excluder stent grafts (0.56 {+-} 0.13 vs. 0.54 {+-} 0.10, NS). Type I endoleak was found in seven patients (15%), and the SPI decreased from 0.62 {+-} 0.10 to 0.55 {+-} 0.10 (P = 0.10) after fixing procedures. Type II endoleak was found in 12 patients (26%) by completion angiography. The SPI showed no difference between type II endoleak positive and negative (0.58 {+-} 0.12 vs. 0.55 {+-} 0.12, NS). There were no significant differences between the final SPI of abdominal aortic aneurysms in which the diameter decreased in the follow-up and that of abdominal aortic aneurysms in which the diameter did not change (0.53 {+-} 0.12 vs. 0.57 {+-} 0.12, NS).ConclusionsSac pressure measurement was useful for instant hemodynamic evaluation of the EVAR procedure, especially in type I endoleaks. However, on the basis of this small study, the SPI cannot be used to reliably predict sac growth or regression.

  3. Neurohypophyseal Hormone-Responsive Adenylate Cyclase from Mammalian Kidney

    PubMed Central

    Douša, Thomas; Hechter, Oscar; Schwartz, Irving L.; Walter, Roderich

    1971-01-01

    The investigation was undertaken to evaluate the direct stimulatory effects of neurohypophyseal hormones upon adenylate cyclase activity in a cell-free, particulate fraction derived from the kidney medulla of various mammalian species. The relative affinity of neurohypophyseal hormones for the receptor component of the adenylate cyclase system (as defined by the concentration of hormone required for half-maximal stimulation) had the order [8-arginine]-vasopressin > [8-lysine]-vasopressin ≫ oxytocin (AVP > LVP ≫ OT) for rat, mouse, rabbit, and ox; in the pig, the order was LVP > AVP ≫ OT. The relative affinities of the three hormones in rat and pig cyclase systems were found to correspond with the relative antidiuretic potencies of these hormones in the intact rat and pig. These findings show that the renal receptor for neurohypophyseal hormones in a particular species exhibits the highest affinity for the specific antidiuretic hormone that occurs naturally in that species. Some of the molecular requirements for the stimulation of rabbit adenylate cyclase were defined by studies of several neurohypophyseal analogs possessing structural changes in positions 1, 2, 3, 4, 5, 8, and 9. This investigation introduces the particulate preparation of renal medullary adenylate cyclase as a tool for the analysis of neurohypophyseal hormone-receptor interactions and indicates that this preparation can be adapted to serve as an in vitro bioassay system for antidiuretic hormonal activity. PMID:4331557

  4. Glucagon and adenylate cyclase: binding studies and requirements for activation.

    PubMed

    Levey, G S; Fletcher, M A; Klein, I

    1975-01-01

    Solubilization of myocardial adenylate cyclase abolished responsiveness to glucagon and catecholamines, two of the hormones which activate the membrane-bound enzyme. Adenylate cyclase freed of detergent by DEAE-cellulose chromatography continues to remain unresponsive to hormone stimulation. However, adding purified bovine brain phospholipids--phosphotidylserine and monophosphatidylinositol--restored responsiveness to glucagon and catecholamines, respectively. 125-i-glucagon binding appeared to be independent of phospholipid, since equal binding was observed in the presence or absence of detergent and in the presence or absence of phospholipids. Chromatography of the solubilized preparation on Sephadex G-100 WAS CHARACTERIZED BY 125-I-glucagon binding and fluoride-stimulatable adenylate cyclase activity appearing in the fractions consistent with the void volume, suggesting a molecular weight greater than 100,000 for the receptor-adenylate cyclase complex. Prior incubation of the binding peak with 125-I-glucagon and rechromatography of the bound glucagon on Sephadex G-100 shifted its elution to a later fraction consistent with a smaller-molecular-weight peak. The molecular weight of this material was 24,000 to 28,000, as determined by SDS polyacrylamide gel electrophoresis. The latter findings are consistent with a dissociable receptor site for glucagon on myocardial adenylate cyclase. PMID:165684

  5. Protein kinase C sensitizes olfactory adenylate cyclase.

    PubMed

    Frings, S

    1993-02-01

    Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory

  6. Identification of sea urchin sperm adenylate cyclase

    PubMed Central

    1990-01-01

    Calmodulin (CaM) affinity chromatography of a detergent extract of sea urchin sperm yielded approximately 20 major proteins. One of these proteins, of Mr 190,000, was purified and used to immunize rabbits. After absorption with living sperm, the serum reacted monospecifically on one- and two-dimensional Western immunoblots with the Mr 190,000 protein. The anti-190-kD serum inhibited 94% of the adenylate cyclase (AC) activity of the CaM eluate. An immunoaffinity column removed 95% of the AC activity, and the purified (but inactive) Mr 190,000 protein was eluted from the column. The antiserum also inhibited 23% of the activity of bovine brain CaM-sensitive AC and 90% of the activity of horse sperm CaM-sensitive AC. These data support the hypothesis that the Mr 190,000 protein is sea urchin sperm AC. Although this AC bound to CaM, it was not possible to demonstrate directly a Ca2+ or CaM sensitivity. However, two CaM antagonists, calmidazolium and chlorpromazine, both inhibited AC activity, and the inhibition was released by added CaM, suggesting the possibility of regulation of this AC by CaM. Indirect immunofluorescence showed the Mr 190,000 protein to be highly concentrated on only the proximal half of the sea urchin sperm flagellum. This asymmetric localization of AC may be important to its function in flagellar motility. This is the first report of the identification of an AC from animal spermatozoa. PMID:2121742

  7. Molecular Physiology of Membrane Guanylyl Cyclase Receptors.

    PubMed

    Kuhn, Michaela

    2016-04-01

    cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field. PMID:27030537

  8. The anuran vocal sac: a tool for multimodal signalling

    PubMed Central

    Starnberger, Iris; Preininger, Doris; Hödl, Walter

    2014-01-01

    Although in anurans the predominant mode of intra- and intersexual communication is vocalization, modalities used in addition to or instead of acoustic signals range from seismic and visual to chemical. In some cases, signals of more than one modality are produced through or by the anuran vocal sac. However, its role beyond acoustics has been neglected for some time and nonacoustic cues such as vocal sac movement have traditionally been seen as an epiphenomenon of sound production. The diversity in vocal sac coloration and shape found in different species is striking and recently its visual properties have been given a more important role in signalling. Chemosignals seem to be the dominant communication mode in newts, salamanders and caecilians and certainly play a role in the aquatic life phase of anurans, but airborne chemical signalling has received less attention. There is, however, increasing evidence that at least some terrestrial anuran species integrate acoustic, visual and chemical cues in species recognition and mate choice and a few secondarily mute anuran species seem to fully rely on volatile chemical cues produced in glands on the vocal sac. Within vertebrates, frogs in particular are suitable organisms for investigating multimodal communication by means of experiments, since they are tolerant of disturbance by observers and can be easily manipulated under natural conditions. Thus, the anuran vocal sac might be of great interest not only to herpetologists, but also to behavioural biologists studying communication systems. PMID:25389375

  9. The anuran vocal sac: a tool for multimodal signalling.

    PubMed

    Starnberger, Iris; Preininger, Doris; Hödl, Walter

    2014-11-01

    Although in anurans the predominant mode of intra- and intersexual communication is vocalization, modalities used in addition to or instead of acoustic signals range from seismic and visual to chemical. In some cases, signals of more than one modality are produced through or by the anuran vocal sac. However, its role beyond acoustics has been neglected for some time and nonacoustic cues such as vocal sac movement have traditionally been seen as an epiphenomenon of sound production. The diversity in vocal sac coloration and shape found in different species is striking and recently its visual properties have been given a more important role in signalling. Chemosignals seem to be the dominant communication mode in newts, salamanders and caecilians and certainly play a role in the aquatic life phase of anurans, but airborne chemical signalling has received less attention. There is, however, increasing evidence that at least some terrestrial anuran species integrate acoustic, visual and chemical cues in species recognition and mate choice and a few secondarily mute anuran species seem to fully rely on volatile chemical cues produced in glands on the vocal sac. Within vertebrates, frogs in particular are suitable organisms for investigating multimodal communication by means of experiments, since they are tolerant of disturbance by observers and can be easily manipulated under natural conditions. Thus, the anuran vocal sac might be of great interest not only to herpetologists, but also to behavioural biologists studying communication systems. PMID:25389375

  10. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  11. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  12. SAC-C mission, an example of international cooperation

    NASA Astrophysics Data System (ADS)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Nollmann, I.

    2004-01-01

    The SAC-C is an international Earth observing satellite mission developed as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. The SAC-C satellite was successfully launched by a Delta II rocket on November 21, 2000, from Vandenberg AFB, California, USA. The purpose of this mission is to carry out observations which bear interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The inclusion of SAC-C in the "morning constellation", jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of an important international cooperation which strengthens the output of any single mission.

  13. Aquarius and the Aquarius/SAC-D Mission

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Torrusio, S.

    2010-01-01

    Aquarius is a combination L-band radiometer and scatterometer designed to map the salinity field at the ocean surface from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA space agency (NASA) and Argentine space agency (CONAE). The mission is composed of two parts: (a) The Aquarius instrument being developed as part of NASA.s Earth System Science Pathfinder (ESSP) program; and (b) SAC-D the fourth spacecraft service platform in the CONAE Satellite de Aplicaciones Cientificas (SAC) program. The primary focus of the mission is to monitor the seasonal and interannual variations of the salinity field in the open ocean. The mission also meets the needs of the Argentine space program for monitoring the environment and for hazard detection and includes several instruments related to these goals.

  14. Multiple splice variants of the pituitary adenylate cyclase-activating polypeptide type 1 receptor detected by RT-PCR in single rat pituitary cells.

    PubMed

    Bresson-Bépoldin, L; Jacquot, M C; Schlegel, W; Rawlings, S R

    1998-10-01

    Alternative splicing of the rat type 1 pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PVR1) produces variants that couple either to both adenylyl cyclase (AC) and phospholipase C (PLC) (PVR1 short, PVR1 hop, PVR1 hiphop), or to AC alone (PVR1 hip). We have previously shown that populations of clonal alphaT3-1 gonadotrophs express PVR1 hop and PVR1 short mRNAs, whereas clonal GH4C1 somatotrophs do not. Here we have used the single cell RT-PCR technique to investigate whether normal rat gonadotrophs and somatotrophs express PVR1 mRNA, whether a single cell co-expresses multiple splice variant forms, and whether differential PVR1 mRNA expression correlates with differences in PACAP-stimulated Ca2+ signalling. We found that individual rat gonadotrophs expressed mRNA either for PVR1 hop, for PVR1 short, or co-expressed the two forms. Although we found no differences between the splice variant(s) expressed and the characteristics of PACAP-stimulated Ca2+ responses, the expression of PVR1 mRNA is consistent with the known PACAP stimulation of the PLC system in gonadotrophs. Individual rat somatotrophs also expressed PVR1 hop or PVR1 short (but not PVR1 hip) mRNAs although these forms were never co-expressed. The expression of PVR1 mRNA in somatotrophs can explain in part the activation by PACAP of the AC system in such cells. In conclusion, the single cell RT-PCR technique was used to demonstrate expression of multiple PVR1 splice variants in single identified pituitary cells. These findings open up important questions on the role of alternative splicing in cell biology. PMID:9801454

  15. Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice1,2,3

    PubMed Central

    Arakawa, Hiroyuki; Akkentli, Fatih

    2014-01-01

    Abstract Cover Figure Region-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the “barrelless”/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning

  16. Region-Specific Disruption of Adenylate Cyclase Type 1 Gene Differentially Affects Somatosensorimotor Behaviors in Mice(1,2,3).

    PubMed

    Arakawa, Hiroyuki; Akkentli, Fatih; Erzurumlu, Reha S

    2014-01-01

    Cover FigureRegion-specific adenylyl cyclase 1 (AC1) loss of function differentially affects both patterning and sensorimotor behaviors in mice. AC1 is expressed at all levels of the somatosensory pathway and plays a major role in refinement and patterning of topographic sensory maps. Cortex-specific AC1 loss of function (CxAC1KO mice) does not affect barrel patterning and activation of specific barrels corresponding to stimulated whiskers and does not impair sensorimotor behaviors. While global (AC1KO) and thalamus-specific (ThAC1KO) AC1 loss of function leads to absence of barrel patterns, selective whisker stimulation activates topographically aligned cortical loci. Despite functional topography of the whisker-barrel cortex, sensorimotor and social behaviors are impaired, indicating the importance of patterning of topographical sensory maps in the neocortex. Adenylate cyclase type I (AC1) is primarily, and, abundantly, expressed in the brain. Intracellular calcium/calmodulin increases regulate AC1 in an activity-dependent manner. Upon stimulation, AC1 produces cAMP and it is involved in the patterning and the refinement of neural circuits. In mice, spontaneous mutations or targeted deletion of the Adcy1 gene, which encodes AC1, resulted in neuronal pattern formation defects. Neural modules in the primary somatosensory (SI) cortex, the barrels, which represent the topographic distribution of the whiskers on the snout, failed to form (Welker et al., 1996; Abdel-Majid et al., 1998). Cortex- or thalamus-specific Adcy1 deletions led to different cortical pattern phenotypes, with thalamus-specific disruption phenotype being more severe (Iwasato et al., 2008; Suzuki et al., 2013). Despite the absence of barrels in the "barrelless"/Adcy1 null mice, thalamocortical terminal bouton density and activation of cortical zones following whisker stimulation were roughly topographic (Abdel-Majid et al., 1998; Gheorghita et al., 2006). To what extent does patterning of the

  17. Prognosis of hepatoid yolk sac tumor in women: what's up, Doc?

    PubMed

    Rittiluechai, Kristsanamon; Wilcox, Rebecca; Lisle, Jennifer; Everett, Elise; Wallace, H James; Verschraegen, Claire F

    2014-04-01

    Ovarian yolk sac tumors are highly malignant germ cell tumors that commonly occur in young women. The hepatoid yolk sac tumor is a variant form of yolk sac tumor in which there has been extensive tumor differentiation to early liver tissue. Hepatoid differentiation is traditionally considered to signify a poor prognosis. This review focuses on diagnostic criteria and establishes the optimal treatment for patients with hepatoid yolk sac tumor. Immunohistochemical stains are useful for distinguishing hepatoid yolk sac tumor from the other hepatoid-appearing tumors. With a multidisciplinary treatment approach using platinum-based regimens, the outcome is similar to those of any yolk sac tumor. PMID:24462393

  18. Unusual presentation of Enterobius vermicularis in conjunctival sac.

    PubMed

    Mallick, Sanjay Kumar; Sengupta, Ranadeep; Banerjee, Arup Kumar

    2015-10-01

    We report an unusual case of extraintestinal infection with adult Enterobius vermicularis worms in the conjunctival sac of a two-and-a-half year old boy from Alipurduar, West Bengal, India. Only two other similar cases have been reported in the English literature, one from Assam, India in 1976, and the other from Illinois and California in 2011. PMID:25540166

  19. The annular hematoma of the shrew yolk-sac placenta.

    PubMed

    King, B F; Enders, A C; Wimsatt, W A

    1978-05-01

    The annular hematoma of the shrew, Blarina brevicauda, is a specialized portion of the yolk-sac wall. In this study, we have examined the fine structure of the different cellular components of the anular hematoma. Small pieces of the gestation sacs from seven pregnant shrews were fixed in glutaraldehyde and osmium tetroxide and processed for transmission electron microscopy. In the area of the trophoblastic curtain, the maternal capillary endothelial cells were hypertrophied and syncytial trophoblast surrounded the capillaries. Cellular trophoblast covered part of the luminal surface of the curtain region, whereas masses of apparently degenerating syncytium were present on other areas of the surface. Maternal erythrocytes, released into the uterine lumen from the curtain region, were phagocytized and degraded by the columnar cells of the trophoblastic annulus. No evidence of iron or pigment accumulation was evident in the parietal endodermal cells underlying the annular trophoblast. Parietal endodermal cells were characterized by cuboidal shape, widely dilated intercellular spaces, and cytoplasm containing granular endoplasmic reticulum. Endodermal cells of the visceral yolk-sac accumulated large numbers of electron-dense granules as well as glycogen in their cytoplasm. Hemopoietic areas and vitelline capillaries were found subjacent to the visceral endoderm. The various portions of the yolk-sac wall of Blarina appear to perform complementary functions which are probably important in maternal-fetal iron transfer. PMID:677046

  20. Placentation in mammals: Definitive placenta, yolk sac, and paraplacenta.

    PubMed

    Carter, A M; Enders, A C

    2016-07-01

    An overview is given of variations in placentation with particular focus on yolk sac, paraplacenta, and other structures important to histotrophic nutrition. The placenta proper varies in general shape, internal structure, and the number of tissues in the interhemal barrier. Yolk sac membranes persist to term in insectivores, colugos, rodents, and lagomorphs. In the latter two orders, they are of known importance for maternal-fetal transfer of antibodies, vitamins, lipids, and proteins. The detached yolk sac of bats is also active throughout gestation. A vascular paraplacenta, or smooth chorioallantois, has known functions in ruminants and carnivores and is found in several other orders of mammal where its function has yet to be explored. In human gestation, the chorion (avascular chorioallantois) is important for hormone synthesis. The true chorion of squirrels and hedgehogs is avascular but may nevertheless allow transfer from mother to fetus through the exocelom. Hemophagous areas with columnar trophoblast are paraplacental structures in carnivores and elephants but occur also within the placenta as in hyenas and moles. In shrews, it is the yolk sac that ingests and processes red cells. Areolas and chorionic vesicles are other structures important for absorption of uterine secretions and ingestion of cellular debris. In conclusion, we find that paraplacental structures, while showing less variation than the placenta proper, contribute not just to the integrity of overall placentation, but in various ways to maternal-fetal interrelationships. PMID:27155730

  1. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    SciTech Connect

    Ho, L.T.; Nie, Z.M.; Mende, T.J.; Richardson, S.; Chavan, A.; Kolaczkowska, E.; Watt, D.S.; Haley, B.E.; Ho, R.J. )

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography following SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.

  2. Adenylylation of Tyr77 stabilizes Rab1b GTPase in an active state: A molecular dynamics simulation analysis

    PubMed Central

    Luitz, Manuel P.; Bomblies, Rainer; Ramcke, Evelyn; Itzen, Aymelt; Zacharias, Martin

    2016-01-01

    The pathogenic pathway of Legionella pneumophila exploits the intercellular vesicle transport system via the posttranslational attachment of adenosine monophosphate (AMP) to the Tyr77 sidechain of human Ras like GTPase Rab1b. The modification, termed adenylylation, is performed by the bacterial enzyme DrrA/SidM, however the effect on conformational properties of the molecular switch mechanism of Rab1b remained unresolved. In this study we find that the adenylylation of Tyr77 stabilizes the active Rab1b state by locking the switch in the active signaling conformation independent of bound GTP or GDP and that electrostatic interactions due to the additional negative charge in the switch region make significant contributions. The stacking interaction between adenine and Phe45 however, seems to have only minor influence on this stabilisation. The results may also have implications for the mechanistic understanding of conformational switching in other signaling proteins. PMID:26818796

  3. 38 CFR Appendix A to Part 41 - Data Collection Form (Form SF-SAC)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Data Collection Form (Form SF-SAC) A Appendix A to Part 41 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS.... Appendix A to Part 41—Data Collection Form (Form SF-SAC) Note: Data Collection Form SF-SAC and...

  4. Teratogenic effects of amniotic sac puncture: a mouse model.

    PubMed Central

    MacIntyre, D J; Chang, H H; Kaufman, M H

    1995-01-01

    The possibility of an association between chorionic villus sampling (cvs) and limb abnormalities has prompted a review of the relevant experimental data. Although a vascular aetiology is favoured by many at present, the possibility exists that a proportion of cases may be caused by oligohydramnios secondary to inadvertent amniotic sac puncture. A mouse model of amniotic puncture syndrome has been developed to study the craniofacial and limb abnormalities produced by this procedure. Pregnant mice were anaesthetised and a laparotomy performed. One uterine horn was exteriorised, and the amniotic sacs punctured through the wall of the uterus with either a 21 gauge or a 25 gauge needle. The conceptuses in the contralateral uterine horn acted as controls. The mice were all killed on d 19 of pregnancy (day of finding a vaginal plug = d 1 of pregnancy) by cervical dislocation, and the morphological features of the embryos examined in detail. In a preliminary study, amniotic sac puncture was carried out on d 12, 13, 14, 15 or 16 of pregnancy, with either a 21 or a 25 gauge needle. Since the highest rates of palatal defects and limb deformities were observed following amniotic sac puncture using a 21 gauge needle, when this procedure was carried out on either d 13 or 14 of pregnancy, the main study was undertaken using a 21 gauge needle on these two days of pregnancy. Of 102 embryos in which amniotic sac puncture was carried out on d 13, 53% survived to d 19. Of the latter, 35% had a cleft palate, 61% had one or more morphologically abnormal limbs, and 43% had an abnormal tail. When amniotic sac puncture was carried out on d 14 of pregnancy, of 83 embryos subjected to this procedure, 81% survived to d 19. Of the latter, 27% had a cleft palate, 39% had one or more morphologically abnormal limbs, and 19% had an abnormal tail. In the controls, of 86 and 61 embryos isolated respectively from the d 13 and 14 mice, the survival rates were 97 and 90%, respectively. Palatal, limb

  5. Efficacy of Several Pesticide Products on Brown Widow Spider (Araneae: Theridiidae) Egg Sacs and Their Penetration Through the Egg Sac Silk.

    PubMed

    Vetter, Richard S; Tarango, Jacob; Campbell, Kathleen A; Tham, Christine; Hayashi, Cheryl Y; Choe, Dong-Hwan

    2016-02-01

    Information on pesticide effects on spiders is less common than for insects; similar information for spider egg sacs is scarcer in the open literature. Spider egg sacs are typically covered with a protective silk layer. When pesticides are directly applied to egg sacs, the silk might prevent active ingredients from reaching the eggs, blocking their insecticidal effect. We investigated the impact of six water-based pesticide sprays and four oil-based aerosol products against egg sacs of brown widow spiders, Latrodectus geometricus C. L. Koch. All water-based spray products except one failed to provide significant mortality to egg sacs, resulting in successful spiderling emergence from treated egg sacs at a similar rate to untreated egg sacs. In contrast to water-based sprays, oil-based aerosols provided almost complete control, with 94-100% prevention of spiderling emergence. Penetration studies using colored pesticide products indicated that oil-based aerosols were significantly more effective in penetrating egg sac silk than were the water-based sprays, delivering the active ingredients on most (>99%) of the eggs inside the sac. The ability of pesticides to penetrate spider egg sac silk and deliver lethal doses of active ingredients to the eggs is discussed in relation to the chemical nature of egg sac silk proteins. Our study suggests that pest management procedures primarily relying on perimeter application of water-based sprays might not provide satisfactory control of brown widow spider eggs. Determination of the most effective active ingredients and carrier characteristics warrant further research to provide more effective control options for spider egg sacs. PMID:26530954

  6. Investigation of sulfonated aromatic compound (SAC) modification to nylon film. 2. Study of SAC sorption isotherm and atomic force microscopic characterization of nylon surfaces

    SciTech Connect

    Zhang, J.; Watson, B.A.; Keown, R.W.; Malone, C.P.; Barteau, M.A.

    1995-08-01

    Nylon 6 and nylon 66 films have been treated with aqueous sulfonated aromatic compound (SAC) solutions at concentrations ranging from 0.005 to 1.0 wt%. SAC uptakes at different treatment concentrations were measured and found to follow a BET isotherm. The surface morphologies of nylon film samples, including the original and SAC-treated films, have been characterized by atomic force microscopy (AFM). For untreated nylon 6 and nylon 66 films, AFM images show a randomly distributed fibrillar surface structure. Characteristic widths of fibrils in the nylon 66 and 6 films were 150-225 and 75-150 nm, respectively. For SAC-treated nylon films, the AFM images revealed that the surfaces of the films became covered with nodule-like features having a diameter range of 25-60 nm. AFM analysis provides evidence that SAC treatment deposited a surface coating on nylon films. AFM images of SAC-treated nylon films suggest a mechanism for stain resistance in which the SAC first forms a thin coating on the nylon via bondings between attractive groups in the SAC and nylon polymers. After treatment at increased SAC concentration, the surface is covered with nodule-like deposits which likely serve as a physical barrier to dye permeation. 20 refs., 8 figs.

  7. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpol.

    PubMed Central

    Neufeld, K L; Galarza, J M; Richards, O C; Summers, D F; Ehrenfeld, E

    1994-01-01

    A terminal adenylyl transferase (TATase) activity has been identified in preparations of purified poliovirus RNA-dependent RNA polymerase (3Dpol). Highly purified 3Dpol is capable of adding [32P]AMP to the 3' ends of chemically synthesized 12-nucleotide (nt)-long RNAs. The purified 52-kDa polypeptide, isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured, retained the TATase activity. Two 3Dpol mutants, purified from Escherichia coli expression systems, displayed no detectable polymerase activity and were unable to catalyze TATase activity. Likewise, extracts from the parental E. coli strain that harbored no expression plasmid were unable to catalyze formation of the TATase products. With the RNA oligonucleotide 5'-CCUGCUUUUGCA-3' used as an acceptor, the products formed by wild-type 3Dpol were 9 and 18 nt longer than the 12-nt oligomer. GTP, CTP, and UTP did not serve as substrates for transfer to this RNA, either by themselves or when all deoxynucleoside triphosphates were present in the reaction. Results from kinetic and stoichiometric analyses suggest that the reaction is catalytic and shows substrate and enzyme dependence. The 3'-terminal 13 nt of poliovirus minus-strand RNA also served as an acceptor for TATase activity, raising the possibility that this activity functions in poliovirus RNA replication. The efficiency of utilization and the nature of the products formed during the reaction were dependent on the acceptor RNA. Images PMID:8057462

  8. SAC-C Mission and the Morning Constellation

    NASA Astrophysics Data System (ADS)

    Colomb, F. R.; Alonso, C.; Hofmann, C.; Frulla, L.; Nollmann, I.; Milovich, J.; Kuba, J.; Ares, F.; Kalemkarian, M.

    2002-01-01

    SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, but with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. SAC-C has been designed primarily to fulfill the requirements of countries with large extension of territory or scarcely populated like Argentina. Its design is a good compromise between resolution and swath width that makes SAC-C an appropriate tool for global and high dynamic phenomena studies. There are ten instruments on board of SAC-C that will perform different studies, the Multispectral Medium Resolution Scanner (MMRS), provided by CONAE, Argentina, will help in the studies about desertification processes evaluation and their evolution in time (i.e., Patagonia, Argentina), to identify and predict agriculture production, to monitor flood areas and to make studies in coastal and fluvial areas. The MMRS will be associated with a High Resolution Technological Camera (HRTC), also provided by CONAE that will permit improvement in the MMRS resolution in the areas where it will be required. A High Sensitivity Technological Camera (HSTC) is also included in the mission. SAC-C also carries instruments to monitor the condition and dynamics of the terrestrial and marine biosphere and environment (GPS OccuLtation and Passive reflection Experiment (GOLPE)) from NASA/JPL. The Magnetic Mapping Payload, (MMP) developed by the Danish Space Research Institute helps to better understand the Earth's magnetic field and related Sun -Earth interactions .Italian Star Tracker (IST) and Italian Navigation Experiment (INES) developed by the Italian Space Agency, constitute a technological payload that will permit testing a fully autonomous system for attitude and orbit determination. Influence of space radiation on advanced

  9. Spectral Amplitude Coding (SAC)-OCDMA Network with 8DPSK

    NASA Astrophysics Data System (ADS)

    Aldhaibani, A. O.; Aljunid, S. A.; Fadhil, Hilal A.; Anuar, M. S.

    2013-09-01

    Optical code division multiple access (OCDMA) technique is required to meet the increased demand for high speed, large capacity communications in optical networks. In this paper, the transmission performance of a spectral amplitude coding (SAC)-OCDMA network is investigated when a conventional single-mode fiber (SMF) is used as the transmission link using 8DPSK modulation. The DW has a fixed weight of two. Simulation results reveal that the transmission distance is limited mainly by the fiber dispersion when high coding chip rate is used. For a two-user SAC-OCDMA network operating with 2 Gbit/s data rate and two wavelengths for each user, the maximum allowable transmission distance is about 15 km.

  10. Hydrocele of Femoral Hernial Sac-an Extremely Rare Case.

    PubMed

    Madhivanan, S; Jain, Ravindra Kumar

    2016-06-01

    A previously healthy 40-year-old woman presented with a right groin swelling for the last 2 years. Diagnosed preoperatively as uncomplicated, irreducible epiplocele of right femoral hernia, later per-operatively was diagnosed as hydrocele of femoral hernial sac also known as "femorocele"; ultrasound abdomen and groin demonstrated as a cystic mass right groin with no precise origin. All other basic line investigations within normal limits, except anemia 7 gm %, corrected to 10 gm %, by preoperative transfusions of 2 units of complete fresh blood. After low approach incision, excision of hydrocele sac, and feormal hernia repair were done with approximation of iliopectineal ligament to inguinal ligament, patient was discharged on 5th postoperative day with satisfactory wound healing and uneventful hospitalization. PMID:27358521

  11. Positional cloning of the mouse saccharin preference (Sac) locus

    PubMed Central

    Bachmanov, Alexander A.; Li, Xia; Reed, Danielle R.; Ohmen, Jeffery D.; Li, Shanru; Chen, Zhenyu; Tordoff, Michael G.; de Jong, Pieter J.; Wu, Chenyan; West, David B.; Chatterjee, Alu; Ross, David A.; Beauchamp, Gary K.

    2013-01-01

    Differences in sweetener intake among inbred strains of mice are partially determined by allelic variation of the saccharin preference (Sac) locus. Genetic and physical mapping limited a critical genomic interval containing Sac to a 194-kb DNA fragment. Sequencing and annotation of this region identified a gene (Tas1r3) encoding the third member of the T1R family of putative taste receptors, T1R3. Introgression by serial backcrossing of the 194-kb chromosomal fragment containing the Tas1r3 allele from the high-sweetener preferring C57BL/6ByJ strain onto the genetic background of the low-sweetener preferring 129P3/J strain rescued its low sweetener preference phenotype. Polymorphisms of Tas1r3 that are likely to have functional significance were identified using analysis of genomic sequences and sweetener preference phenotypes of genealogically distant mouse strains. Tas1r3 has two common haplotypes, consisting of six single nucleotide polymorphisms: one haplotype was found in mouse strains with elevated sweetener preference and the other in strains relatively indifferent to sweeteners. This study provides compelling evidence that Tas1r3 is equivalent to the Sac locus and that the T1R3 receptor responds to sweeteners. PMID:11555487

  12. Oblique sectional planes of block plastinates eased by Sac Plastination.

    PubMed

    Kürtül, Ibrahim; Hammer, Niels; Rabi, Suganthy; Saito, Toshiyuki; Böhme, Jörg; Steinke, Hanno

    2012-07-01

    To find an oblique cutting plane of a plastinate, e.g. to cut gamma-nails in the femur, the Block Plastination technique was modified. After CT and MRI examination, the specimens were plastinated with the standard resin mixture E6/E12/E600. Instead of using a box to form a block during the casting and curing stage, we embedded the specimen in a sac made of polyester foil. A polymerized wooden block was attached to the specimen. The sac was wrapped with tape to the embedded specimen with the block. This approach limited the amount of required resin to the inner volume of the plastinate. Then, the plastination sac was put in the incubator for further polymerization and curing. When the foil was removed from the plastinated specimen, the wooden block served as a socket for the grip when sawing. The outer shape of the specimen remained visible. Doing so, the adequate cutting plane could be determined easily. PMID:22209028

  13. Educational report: A case of lacrimal sac rhinosporidiosis.

    PubMed

    Jamison, Aaron; Crofts, Kevin; Roberts, Fiona; Gregory, Maria Elena

    2016-10-01

    This article reports a presentation of lacrimal sac rhinosporidiosis and informs the reader of this uncommon but important diagnosis. A 36-year-old man from Pakistan presented with a 3-month history of swelling at the nasal aspect of the left lower lid. This was associated with occasional crepitus and slight localised discomfort, but no epiphora. There was a palpable fullness near the left medial canthus associated with telecanthus but a normal sac washout and normal eye examination otherwise. Previous medical history included an ipsilateral nasal polypectomy and inferior meatal antrostomy around 10 years previously, whilst living in Pakistan. Various imaging modalities were useful in identifying a soft tissue mass within the left nasolacrimal duct. Following excision biopsy, histological examination confirmed the presence of rhinosporidiosis, likely caused by the organism Rhinosporidium seeberi. Rhinosporidiosis should be considered as a potential cause in any case of lacrimal sac pathology. Imaging studies may be helpful in measuring the extent of disease, although histological examination is required to confirm the diagnosis. Although rare, the complications of rhinosporidiosis can be potentially blinding or fatal. As discussed in this case, the presence of telecanthus may represent a lacrimal system tumour, either malignant or benign, and should always prompt further investigation. PMID:27541939

  14. Endometriosis in a spigelian hernia sac: an unexpected finding.

    PubMed

    Moris, Demetrios; Michalinos, Adamantios; Vernadakis, Spiridon

    2015-01-01

    Describes the existence of endometrioma in a spigelian hernia sac. Spigelian Hernia is a rare ventral hernia, presenting difficulties in diagnosis and carrying a high incarceration and obstruction risk. Endometriomas occur due to implantation of endometrial cells into a surgical wound, most often after a cesarean delivery. A 37-year-old woman presented to our department with persistent abdominal pain, exacerbating during menses, and vomiting for 2 days. Physical examination revealed a mass-like lesion in the border between the left-upper and left-lower quadrant. Ultrasound examination was inconclusive and a computed tomography scan of the abdomen revealed an abdominal wall mass. During surgery, a spigelian hernia was found 5 to 7 cm above a previous cesarean incision. Tissue like "chocolate cysts" was present at the hernia sac. Hernia was repaired while tissue was excised and sent for histological examination that confirmed the diagnosis. Spigelian hernia is a hernia presenting difficulties in diagnosis and treatment. Endometrioma in a spigelian hernia sac is a rare diagnosis, confirmed only histologically. Clinical suspicion can be posed only through symptoms and thorough investigation. PMID:25594648

  15. Endoscopic examination of snakes by access through an air sac.

    PubMed

    Jekl, V; Knotek, Z

    2006-03-25

    Sixteen boa constrictors (Boa constrictor), three royal pythons (Python regius) and 15 Burmese pythons (Python molurus bivittatus) were examined endoscopically by access through the air sac. The snakes were immobilised in a ventral position using a half-open anaesthetic system with assisted ventilation and a mixture of isoflurane and oxygen. The rigid endoscope was introduced percutaneously and the internal structure of the lungs and the air sac, and the shape, size and external surface of the liver were visible in the cranial direction. In the smaller snakes the bifurcation and caudal part of the trachea could be viewed, provided the endoscope was positioned in a retrograde orientation. The caudal orientation of the endoscope made it possible to view the gall bladder and the size, shape and surface of the spleen. In some cases, the pancreas and the surface of the stomach and colon could be monitored. Endoscopy through the air sac also made it possible to check the major veins in the coelom. The snakes were monitored for at least 30 days after the intervention and no changes in their respiratory function or general health were observed. PMID:16565339

  16. Endometriosis in a Spigelian Hernia Sac: An Unexpected Finding

    PubMed Central

    Moris, Demetrios; Michalinos, Adamantios; Vernadakis, Spiridon

    2015-01-01

    Describes the existence of endometrioma in a spigelian hernia sac. Spigelian Hernia is a rare ventral hernia, presenting difficulties in diagnosis and carrying a high incarceration and obstruction risk. Endometriomas occur due to implantation of endometrial cells into a surgical wound, most often after a cesarean delivery. A 37-year-old woman presented to our department with persistent abdominal pain, exacerbating during menses, and vomiting for 2 days. Physical examination revealed a mass-like lesion in the border between the left-upper and left-lower quadrant. Ultrasound examination was inconclusive and a computed tomography scan of the abdomen revealed an abdominal wall mass. During surgery, a spigelian hernia was found 5 to 7 cm above a previous cesarean incision. Tissue like “chocolate cysts” was present at the hernia sac. Hernia was repaired while tissue was excised and sent for histological examination that confirmed the diagnosis. Spigelian hernia is a hernia presenting difficulties in diagnosis and treatment. Endometrioma in a spigelian hernia sac is a rare diagnosis, confirmed only histologically. Clinical suspicion can be posed only through symptoms and thorough investigation. PMID:25594648

  17. Mechanism of activation of adenylate cyclase by Vibrio cholerae enterotoxin.

    PubMed

    Bennett, V; Cuatrecasas, P

    1975-06-01

    The kinetics and properties of the activation of adenylate cyclase by cholera enterotoxin have been examined primarily in toad erythrocytes, but also in avian erythrocytes, rat fat cells and cultured melanoma cells. When cholera toxin is incubated with intact cells it stimulates adenylate cyclase activity, as measured in the subsequently isolated plasma membranes, according to a triphasic time course. This consists of a true lag period of about 30 min, followed by a stage of exponentially increasing adenylate cyclase activity which continues for 110 to 130 min, and finally a period of slow activation which may extend as long as 30 hr in cultured melanoma cells. The progressive activation of adenylate cyclase activity by cholera toxin is interrupted by cell lysis; continued incubation of the isolated membranes under nearly identical conditions does not lead to further activation of the enzyme. The delay in the action of the toxin is not grossly dependent of the number of toxin-receptor (GM1 ganglioside) complexes, and is still seen upon adding a second dose of toxin to partially stimulated cells. Direct measurements indicate negligible intracellular levels of biologically active radioiodinated toxin in either a soluble or a nuclear-bound form. The effects are not prevented by Actinomycin D (20 mug/ml), uromycin (30 mug/ml), cycloheximide (30 mug/ml), sodium fluoride (10 mM) or sodium azide (1 mM); KCN, however, almost completely prevents the action of cholera toxin. The action of the toxin is temperature dependent, occurring at very slow or negligible rates below certain critical temperatures, the values of which depend on the specific animal species. Thetransition for toad erythrocytes occurs at 15 to 17 degrees C, while rat adipocytes and turkey erythrocytes demonstrate a discontinuity at 26 to 30 degrees C. The temperature effects are evident during the lag period as well as during the exponential phase of activation. The rate of decay of the stimulated adenylate

  18. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  19. High skeletal muscle adenylate cyclase in malignant hyperthermia.

    PubMed Central

    Willner, J H; Cerri, C G; Wood, D S

    1981-01-01

    Malignant hyperthermia occurs in humans with several congenital myopathies, usually in response to general anesthesia. Commonly, individuals who develop this syndrome lack symptoms of muscle disease, and their muscle lacks specific pathological changes. A biochemical marker for this myopathy has not previously been available; we found activity of adenylate cyclase and content of cyclic AMP to be abnormally high in skeletal muscle. Secondary modification of protein phosphorylation could explain observed abnormalities of phosphorylase activation and sarcoplasmic reticulum function. PMID:6271806

  20. Yeast mating pheromone alpha factor inhibits adenylate cyclase.

    PubMed Central

    Liao, H; Thorner, J

    1980-01-01

    The pheromone alpha factor, secreted by Saccharomyces cerevisiae cells of the alpha mating type, serves to synchronize the opposite mating type (a cells) at G1 as a prelude to fusion of the two cell types. We found that, in vitro, alpha factor inhibited the membrane-bound adenylate cyclase of these cells in a dose-dependent manner. Moreover, one class (ste5) of a cell mutants that grow normally at either 23 degrees or 34 degrees C but that are unable to respond to alpha factor or to mate at the higher temperature possessed an adenylate cyclase activity that was not inhibited by alpha factor at 34 degrees C but was fully sensitive to inhibition at 23 degrees C. Furthermore, addition of cyclic AMP to a cell culture medium shortened the period of pheromone-induced G1 arrest. We conclude that inhibition of adenylate cyclase activity by alpha factor may constitute, at least in part, the biochemical mode of action of the pheromone in vivo. PMID:6246513

  1. Dephosphorylation of sperm guanylate cyclase during sea urchin fertilization

    SciTech Connect

    Ward, G.E.

    1985-01-01

    When intact Arbacia punctulata spermatozoa are exposed to solubilized egg jelly, the electrophoretic mobility of an abundant sperm flagellar membrane protein changes from an apparent molecular mass of 160 kDa to 150 kDa. A. punctulata spermatozoa can be labeled in vivo with /sup 32/P-labeled cells it was demonstrated that the mobility shift of the 160-kDa protein is due to dephosphorylation. The peptide resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH/sub 2/) is the component of egg jelly which is responsible for inducing the dephosphorylation. The 160/150-kdal sperm membrane protein has been purified to homogeneity by affinity chromatography on concanavalin A-agarose, and identified as sperm guanylate cyclase. The enzymatic activity of the guanylate cyclase is tightly coupled to its phosphorylation state. Resact has been shown to act as a potent chemoattractant for A. punctulata spermatozoa. The chemotactic response is concentration-dependent, is abolished by pretreatment of the spermatozoa with resact, and shows an absolute requirement for external calcium. This work represents the first demonstration of animal sperm chemotaxis in response to a precisely-defined molecule of egg origin. The results established a new, biologically meaningful function for resact, and may implicate sperm guanylate cyclase and cGMP in flagellar function and the chemotactic response.

  2. Adenylate cyclase mediates olfactory transduction for a wide variety of odorants.

    PubMed Central

    Lowe, G; Nakamura, T; Gold, G H

    1989-01-01

    An odor-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] is thought to mediate olfactory transduction in vertebrates. However, it is not known whether the adenylate cyclase serves this function for all odorants or for only certain classes of odorants. To investigate this question, we have compared the abilities of 35 odorants to stimulate the adenylate cyclase and to elicit an electrophysiological response. We report a strong positive correlation between the magnitude of adenylate cyclase stimulation and the summated electrical response of the olfactory epithelium (electro-olfactogram) evoked by individual odorants. We also show that the adenylate cyclase stimulator forskolin equally attenuates the electro-olfactogram response for all odorants tested. These data provide evidence that the adenylate cyclase mediates transduction for a wide variety of odorants. PMID:2787513

  3. Sac Angiography and Glue Embolization in Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortic Aneurysm

    SciTech Connect

    Koike, Yuya Nishimura, Jun-ichi Hase, Soichiro Yamasaki, Motoshige

    2015-04-15

    PurposeThe purpose of this study was to demonstrate a sac angiography technique and evaluate the feasibility of N-butyl cyanoacrylate (NBCA) embolization of the ruptured abdominal aortic aneurysm (AAA) sac in emergency endovascular aneurysm repair (EVAR) in hemodynamically unstable patients.MethodsA retrospective case series of three patients in whom sac angiography was performed during emergency EVAR for ruptured AAA was reviewed. After stent graft deployment, angiography within the sac of aneurysm (sac angiography) was performed by manually injecting 10 ml of contrast material through a catheter to identify the presence and site of active bleeding. In two patients, sac angiography revealed active extravasation of the contrast material, and NBCA embolization with a coaxial catheter system was performed to achieve prompt sealing.ResultsSac angiography was successful in all three patients. In the two patients who underwent NBCA embolization for aneurysm sac bleeding, follow-up computed tomography (CT) images demonstrated the accumulation of NBCA consistent with the bleeding site in preprocedural CT images.ConclusionsEVAR is associated with a potential risk of ongoing bleeding from type II or IV endoleaks into the disrupted aneurysm sac in patients with severe coagulopathy. Therefore, sac angiography and NBCA embolization during emergency EVAR may represent a possible technical improvement in the treatment of ruptured AAA in hemodynamically unstable patients.

  4. Rhinosporidiosis of lacrimal sac: An interesting case of orbital swelling

    PubMed Central

    Basu, Sandip Kanti; Bain, Jayanta; Maity, Kuntal; Chattopadhyay, Debarati; Baitalik, Debasis; Majumdar, Bijay Kumar; Gupta, Vivek; Kumar, Ashwini; Dalal, Bibhas Saha; Malik, Anu

    2016-01-01

    Rhinosporidiosis is a chronic localized granulomatous disease caused by Rhinosporidium seeberi, an aquatic protistan parasite belonging to a clade, Mesomycetozoea. Infestation of Rhinosporidiosis to the eye and adnexa is termed oculosporidiosis, in such cases, conjunctival mucosa is mostly involved; however in our case, it involved only the lacrimal sac and deeper periorbital tissue and presented as a case of orbital swelling. Surgical excision of the lesion was done, postoperatively dapsone therapy was given for 6 months, and the patient responded very well with no recurrence till date. PMID:27003980

  5. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase

    PubMed Central

    2014-01-01

    Background SacPox, an enzyme from the extremophilic crenarchaeal Sulfolobus acidocaldarius (Sac), was isolated by virtue of its phosphotriesterase (or paraoxonase; Pox) activity, i.e. its ability to hydrolyze the neurotoxic organophosphorus insecticides. Later on, SacPox was shown to belong to the Phosphotriesterase-Like Lactonase family that comprises natural lactonases, possibly involved in quorum sensing, and endowed with promiscuous, phosphotriesterase activity. Results Here, we present a comprehensive and broad enzymatic characterization of the natural lactonase and promiscuous organophosphorus hydrolase activities of SacPox, as well as a structural analysis using a model. Conclusion Kinetic experiments show that SacPox is a proficient lactonase, including at room temperature. Moreover, we discuss the observed differences in substrate specificity between SacPox and its closest homologues SsoPox and SisLac together with the possible structural causes for these observations. PMID:24894602

  6. The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis.

    PubMed

    Cai, Qingqing; Fukushima, Hiroko; Yamamoto, Mai; Ishii, Nami; Sakamoto, Tomoaki; Kurata, Tetsuya; Motose, Hiroyasu; Takahashi, Taku

    2016-08-01

    The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways. PMID:27388339

  7. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  8. Identification of Arabidopsis Cyclase-associated Protein 1 as the First Nucleotide Exchange Factor for Plant Actin

    PubMed Central

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias

    2007-01-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of

  9. Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis.

    PubMed Central

    Amory, A; Kunst, F; Aubert, E; Klier, A; Rapoport, G

    1987-01-01

    The sacQ gene from Bacillus licheniformis was cloned and expressed in Bacillus subtilis. Deletion analysis shows that it encodes a 46-amino-acid polypeptide homologous to the B. subtilis sacQ gene product. The polypeptide, when it is overexpressed, activates the expression of a number of target genes in B. subtilis, all encoding secreted enzymes: alkaline protease, levansucrase, beta-glucanase(s), xylanase, and alpha-amylase. The maximum stimulations measured for alkaline protease and levansucrase were by a factor of 70 and 50, respectively, when the sacQ gene from B. licheniformis was present on a multicopy plasmid in B. subtilis. The sacQ genes from B. subtilis and B. licheniformis, cloned in the same multicopy plasmid, were compared under the same conditions. The sacQ gene from B. licheniformis was more efficient than the sacQ gene from B. subtilis in producing the hypersecretion phenotype. The sacQ structural genes from B. subtilis and B. licheniformis were placed under the control of the same inducible promoter. Hypersecretion was specifically obtained under conditions of full induction of the promoter. The target site of levansucrase regulation by sacQ was identified as a 440-base-pair fragment located in the 5' noncoding region of sacB, suggesting transcriptional control. Images PMID:3098732

  10. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  11. Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling

    PubMed Central

    Hsu, FoSheng; Hu, Fenghua

    2015-01-01

    It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway. PMID:25869669

  12. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    SciTech Connect

    Ikonomov, Ognian C. Filios, Catherine Sbrissa, Diego Chen, Xuequn Shisheva, Assia

    2013-10-18

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or

  13. Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone.

    PubMed

    Chang, Jer-Cherng; Yang, Ruey-Bing; Adams, Michael E; Lu, Kuang-Hui

    2009-08-11

    A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively. PMID:19666575

  14. Adenylate cyclase in Arthrospira platensis responds to light through transcription.

    PubMed

    Kashith, M; Keerthana, B; Sriram, S; Ramamurthy, V

    2016-08-19

    Cyclic 3',5' adenosine monophosphate (cAMP) is a ubiquitous signaling molecule, but its role in higher plants was in doubt due to its very low concentration. In this study we wanted to look at the flux of cAMP in response to light in algae, considered to be the more primitive form of photosynthetic organisms. While it did not fluctuate very much in the tested green algae, in the cyanobacterium Arthrospira platensis its level was closely linked to exposure to light. The expression from cyaC, the major isoform of adenylate cyclase was strongly influenced by exposure of the cells to light. There was about 300 fold enhancement of cyaC transcripts in cells exposed to light compared to the transcripts in cells in the dark. Although post-translational regulation of adenylate cyclase activity has been widely known, our studies suggest that transcriptional control could also be an important aspect of its regulation in A. platensis. PMID:27311855

  15. The Function of Guanylate Cyclase 1 and Guanylate Cyclase 2 in Rod and Cone Photoreceptors*S

    PubMed Central

    Baehr, Wolfgang; Karan, Sukanya; Maeda, Tadao; Luo, Dong-Gen; Li, Sha; Darin Bronson, J.; Watt, Carl B.; Yau, King-Wai; Frederick, Jeanne M.; Palczewski, Krzysztof

    2007-01-01

    Retinal guanylate cyclases 1 and 2 (GC1 and GC2) are responsible for synthesis of cyclic GMP in rods and cones, but their individual contributions to phototransduction are unknown. We report here that the deletion of both GC1 and GC2 rendered rod and cone photoreceptors nonfunctional and unstable. In the rod outer segments of GC double knock-out mice, guanylate cyclase-activating proteins 1 and 2, and cyclic GMP phosphodiesterase were undetectable, although rhodopsin and transducin α-subunit were mostly unaffected. Outer segment membranes of GC1−/− and GC double knock-out cones were destabilized and devoid of cone transducin (α- and γ-subunits), cone phosphodiesterase, and G protein-coupled receptor kinase 1, whereas cone pigments were present at reduced levels. Real time reverse transcription-PCR analyses demonstrated normal RNA transcript levels for the down-regulated proteins, indicating that down-regulation is posttranslational. We interpret these results to demonstrate an intrinsic requirement of GCs for stability and/or transport of a set of membrane-associated phototransduction proteins. PMID:17255100

  16. Vienna SAC-SOS: Analysis of the European VLBI Sessions

    NASA Astrophysics Data System (ADS)

    Ros, C. T.; Pavetich, P.; Nilsson, T.; Böhm, J.; Schuh, H.

    2012-12-01

    The Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology as an IVS Special Analysis Center for Specific Observing Sessions (SAC-SOS) has analyzed the European VLBI sessions using the software VieVS. Between 1990 and 2011, 115 sessions have been carried out. The analyzed baselines have lengths ranging from approximately 445 to 4580 km, and they show good repeatabilities, apart from the ones containing station Simeiz. The station velocities have also been investigated. The stations situated in the stable part of Europe have not shown significant relative movements w.r.t. Wettzell, whereas the stations located in the northern areas have the largest vertical motions as a result of the post glacial isostatic rebound of the zone. The stations placed in Italy, around the Black Sea, in Siberia, and near the Arctic Circle show the largest relative horizontal motions because they belong to different geodynamical units.

  17. Clearance of chlamydial elementary bodies from the conjunctival sac

    SciTech Connect

    Taylor, H.R.; Velez, V.L.

    1987-07-01

    The rate of disappearance of inactivated Chlamydia trachomatis elementary body (EB) preparations from the conjunctival sac was studied in monkeys. Direct fluorescent antibody (DFA) cytology showed that the majority of EB had been cleared from the eye within 24 hr of the inoculation of 1 X 10(6) inactivated EB, although small numbers of EB could be detected for up to 144 hr. The rate of clearance in normal and ocular immune animals did not differ, and formalin-killed and UV-inactivated EBs disappeared at a comparable rate. These studies suggest that chlamydial EB are cleared relatively quickly from the eye and support the notion that EBs detected by DFA cytology indicate the presence of current infection.

  18. The influence of locomotion on air-sac pressures in little penguins.

    PubMed

    Boggs, D F; Baudinette, R V; Frappell, P B; Butler, P J

    2001-10-01

    Air-sac pressures have been reported to oscillate with wing beat in flying magpies and with foot paddling in diving ducks. We sought to determine the impact on air-sac pressure of wing beats during swimming and of the step cycle during walking in little penguins (Eudyptula minor). Fluctuations averaged 0.16+/-0.06 kPa in the interclavicular air sacs, but only 0.06+/-0.04 kPa in the posterior thoracic sac, generating a small differential pressure between sacs of 0.06+/-0.02 kPa (means +/- S.E.M., N=4). These fluctuations occurred at approximately 3 Hz and corresponded to wing beats during swimming, indicated by electromyograms from the pectoralis and supracoracoideus muscles. There was no abdominal muscle activity associated with swimming or exhalation, but the abdominal muscles were active with the step cycle in walking penguins, and oscillations in posterior air-sac pressure (0.08+/-0.038 kPa) occurred with steps. We conclude that high-frequency oscillations in differential air-sac pressure enhance access to and utilization of the O(2) stores in the air sacs during a dive. PMID:11707507

  19. Finite element analysis of stresses developed in the blood sac of a left ventricular assist device.

    PubMed

    Haut Donahue, T L; Dehlin, W; Gillespie, J; Weiss, W J; Rosenberg, G

    2009-05-01

    The goal of this research is to develop a 3D finite element (FE) model of a left ventricular assist device (LVAD) to predict stresses in the blood sac. The hyperelastic stress-strain curves for the segmented poly(ether polyurethane urea) (SPEUU) blood sac were determined in both tension and compression using a servo-hydraulic testing system at various strain rates. Over the range of strain rates studied, the sac was not strain rate sensitive, however the material response was different for tension versus compression. The experimental tension and compression properties were used in a FE model that consisted of the pusher plate, blood sac and pump case. A quasi-static analysis was used to allow for nonlinearities due to contact and material deformation. The 3D FE model showed that blood sac stresses are not adversely affected by the location of the inlet and outlet ports of the device and that over the systolic ejection phase of the simulation the prediction of blood sac stresses from the full 3D model and an axisymmetric model are the same. Minimizing stresses in the blood sac will increase the longevity of the blood sac in vivo. PMID:19131267

  20. IN VITRO/IN VIVO COMPARISON OF YOLK SAC FUNCTION AND EMBRYO DEVELOPMENT

    EPA Science Inventory

    Yolk sac function and development of rat embryos grown in vitro for 24 hrs starting on day 10.5 were compared to those of embryos grown in utero. he embryos grown in vitro had significantly fewer somites, shorter crown-rump length and smaller yolk sac diameter when compared to th...

  1. ZBTB16: a novel sensitive and specific biomarker for yolk sac tumor.

    PubMed

    Xiao, Guang-Qian; Li, Faqian; Unger, Pamela D; Katerji, Hani; Yang, Qi; McMahon, Loralee; Burstein, David E

    2016-06-01

    Although the function of zinc finger and BTB domain containing 16 (ZBTB16) in spermatogenesis is well documented, expression of ZBTB16 in germ cell tumors has not yet been studied. The aim of this study was to investigate the immunohistochemical expression and diagnostic utility of ZBTB16 in germ cell tumors. A total of 67 adult germ cell tumors were studied (62 testicular germ cell tumors, 2 ovarian yolk sac tumors, 1 mediastinal yolk sac tumor, and 2 retroperitoneal metastatic yolk sac tumors). The 62 testicular primary germ cell tumors are as follows: 34 pure germ cell tumors (20 seminomas, 8 embryonal carcinomas, 2 teratomas, 1 choriocarcinoma, 1 carcinoid, and 2 spermatocytic tumors) and 28 mixed germ cell tumors (composed of 13 embryonal carcinomas, 15 yolk sac tumors, 15 teratomas, 7 seminomas, and 3 choriocarcinomas in various combinations). Thirty-five cases contained germ cell neoplasia in situ. Yolk sac tumor was consistently reactive for ZBTB16. Among the 15 testicular yolk sac tumors in mixed germ cell tumors, all displayed moderate to diffuse ZBTB16 staining. ZBTB16 reactivity was present regardless of the histologic patterns of yolk sac tumor and ZBTB16 was able to pick up small foci of yolk sac tumor intermixed/embedded in other germ cell tumor subtype elements. Diffuse ZBTB16 immunoreactivity was also observed in 2/2 metastatic yolk sac tumors, 1/1 mediastinal yolk sac tumor, 2/2 ovarian yolk sac tumors, 2/2 spermatocytic tumors, 1/1 carcinoid, and the spermatogonial cells. All the other non-yolk sac germ cell tumors were nonreactive, including seminoma (n=27), embryonal carcinoma (n=21), teratoma (n=17), choriocarcinoma (n=4), and germ cell neoplasia in situ (n=35). The sensitivity and specificity of ZBTB16 in detecting yolk sac tumor among the germ cell tumors was 100% (20/20) and 96% (66/69), respectively. In conclusion, ZBTB16 is a highly sensitive and specific marker for yolk sac tumor. PMID:26916077

  2. Development of the endolymphatic sac in chick embryos, with reference to the degradation of otoconia

    NASA Technical Reports Server (NTRS)

    Yoshihara, T.; Kaname, H.; Narita, N.; Ishii, T.; Igarashi, M.; Fermin, C. D.

    1992-01-01

    The endolymphatic sac of chick embryos (from embryonic day 7 to 1-day-old chicks) was studied light- and electron-microscopically. At stage 30-31 (embryonic day 7-7.5), the epithelial cells of the endolymphatic sac were cuboidal to columnar in shape. Microvilli were relatively well developed. The intercellular space was wide. In the endolymphatic space of the endolymphatic sac, varying shapes and sizes of otoconia-like bodies were often observed. Intracytoplasmic phagosomes containing these bodies were rarely found. After stage 37 (embryonic day 11), otoconia-like bodies in the endolymphatic sac decreased in number and size. They were almost the same as the otoconia in the macular organs, ultrastructurally. These findings indicate that the endolymphatic sac of the chick embryos may possess the function of otoconial degradation and removal of calcium from otoconia.

  3. Asymmetrically acting lycopene beta-cyclases (CrtLm) from non-photosynthetic bacteria.

    PubMed

    Tao, L; Picataggio, S; Rouvière, P E; Cheng, Q

    2004-03-01

    Carotenoids have important functions in photosynthesis, nutrition, and protection against oxidative damage. Some natural carotenoids are asymmetrical molecules that are difficult to produce chemically. Biological production of carotenoids using specific enzymes is a potential alternative to extraction from natural sources. Here we report the isolation of lycopene beta-cyclases that selectively cyclize only one end of lycopene or neurosporene. The crtLm genes encoding the asymmetrically acting lycopene beta-cyclases were isolated from non-photosynthetic bacteria that produced monocyclic carotenoids. Co-expression of these crtLm genes with the crtEIB genes from Pantoea stewartii (responsible for lycopene synthesis) resulted in the production of monocyclic gamma-carotene in Escherichia coli. The asymmetric cyclization activity of CrtLm could be inhibited by the lycopene beta-cyclase inhibitor 2-(4-chlorophenylthio)-triethylamine (CPTA). Phylogenetic analysis suggested that bacterial CrtL-type lycopene beta-cyclases might represent an evolutionary link between the common bacterial CrtY-type of lycopene beta-cyclases and plant lycopene beta- and epsilon-cyclases. These lycopene beta-cyclases may be used for efficient production of high-value asymmetrically cyclized carotenoids. PMID:14740205

  4. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    SciTech Connect

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-08-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release.

  5. Targeting soluble guanylate cyclase for the treatment of pulmonary hypertension

    PubMed Central

    Lasker, George F; Maley, Jason H; Pankey, Edward A; Kadowitz, Philip J

    2011-01-01

    Pulmonary arterial hypertension is a disease characterized by a sustained increase in pulmonary arterial pressure leading to right heart failure. Current treatments focus on endothelial dysfunction and an aberrant regulatory pathway for vascular tone. Unfortunately, a large proportion of patients are unresponsive to conventional vasodilator therapy. Investigations are ongoing into the effects of experimental therapies targeting the signal transduction pathway that mediates vasodilation. Here, we briefly discuss the pathophysiology of pulmonary hypertension and endothelial dysfunction, along with current treatments. We then present a focused review of recent animal studies and human trials examining the use of activators and stimulators of soluble guanylate cyclase for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. PMID:21510726

  6. Tetrahydrobiopterin protects soluble guanylate cyclase against oxidative inactivation.

    PubMed

    Schmidt, Kurt; Neubauer, Andrea; Kolesnik, Bernd; Stasch, Johannes-Peter; Werner, Ernst R; Gorren, Antonius C F; Mayer, Bernd

    2012-09-01

    Tetrahydrobiopterin (BH4) is a major endogenous vasoprotective agent that improves endothelial function by increasing nitric oxide (NO) synthesis and scavenging of superoxide and peroxynitrite. Therefore, administration of BH4 is considered a promising therapy for cardiovascular diseases associated with endothelial dysfunction and oxidative stress. Here we report on a novel function of BH4 that might contribute to the beneficial vascular effects of the pteridine. Treatment of cultured porcine aortic endothelial cells with nitroglycerin (GTN) or 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) resulted in heme oxidation of soluble guanylate cyclase (sGC), as evident from diminished NO-induced cGMP accumulation that was paralleled by increased cGMP response to a heme- and NO-independent activator of soluble guanylate cyclase [4-([(4-carboxybutyl)[2-(5-fluoro-2-([4'-(trifluoromethyl)biphenyl-4-yl]methoxy)phenyl)ethyl]amino]methyl)benzoic acid (BAY 60-2770)]. Whereas scavenging of superoxide and/or peroxynitrite with superoxide dismutase, tiron, Mn(III)tetrakis(4-benzoic acid)porphyrin, and urate had no protective effects, supplementation of the cells with BH4, either by application of BH4 directly or of its precursors dihydrobiopterin or sepiapterin, completely prevented the inhibition of NO-induced cGMP accumulation by GTN and ODQ. Tetrahydroneopterin had the same effect, and virtually identical results were obtained with RFL-6 fibroblasts, suggesting that our observation reflects a general feature of tetrahydropteridines that is unrelated to NO synthase function and not limited to endothelial cells. Protection of sGC against oxidative inactivation may contribute to the known beneficial effects of BH4 in cardiovascular disorders associated with oxidative stress. PMID:22648973

  7. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    PubMed

    Sun, Y-E; Wang, W-D

    2016-01-01

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration. PMID:27453278

  8. Nordic rattle: the hoarse vocalization and the inflatable laryngeal air sac of reindeer (Rangifer tarandus)

    PubMed Central

    Frey, Roland; Gebler, Alban; Fritsch, Guido; Nygrén, Kaarlo; Weissengruber, Gerald E

    2007-01-01

    Laryngeal air sacs have evolved convergently in diverse mammalian lineages including insectivores, bats, rodents, pinnipeds, ungulates and primates, but their precise function has remained elusive. Among cervids, the vocal tract of reindeer has evolved an unpaired inflatable ventrorostral laryngeal air sac. This air sac is not present at birth but emerges during ontogenetic development. It protrudes from the laryngeal vestibulum via a short duct between the epiglottis and the thyroid cartilage. In the female the growth of the air sac stops at the age of 2–3 years, whereas in males it continues to grow up to the age of about 6 years, leading to a pronounced sexual dimorphism of the air sac. In adult females it is of moderate size (about 100 cm3), whereas in adult males it is large (3000–4000 cm3) and becomes asymmetric extending either to the left or to the right side of the neck. In both adult females and males the ventral air sac walls touch the integument. In the adult male the air sac is laterally covered by the mandibular portion of the sternocephalic muscle and the skin. Both sexes of reindeer have a double stylohyoid muscle and a thyroepiglottic muscle. Possibly these muscles assist in inflation of the air sac. Head-and-neck specimens were subjected to macroscopic anatomical dissection, computer tomographic analysis and skeletonization. In addition, isolated larynges were studied for comparison. Acoustic recordings were made during an autumn round-up of semi-domestic reindeer in Finland and in a small zoo herd. Male reindeer adopt a specific posture when emitting their serial hoarse rutting calls. Head and neck are kept low and the throat region is extended. In the ventral neck region, roughly corresponding to the position of the large air sac, there is a mane of longer hairs. Neck swelling and mane spreading during vocalization may act as an optical signal to other males and females. The air sac, as a side branch of the vocal tract, can be considered as

  9. Conjunctival sac bacterial flora isolated prior to cataract surgery

    PubMed Central

    Suto, Chikako; Morinaga, Masahiro; Yagi, Tomoko; Tsuji, Chieko; Toshida, Hiroshi

    2012-01-01

    Objective To determine the trends of conjunctival sac bacterial flora isolated from patients prior to cataract surgery. Subjects and methods The study comprised 579 patients (579 eyes) who underwent cataract surgery. Specimens were collected by lightly rubbing the inferior palpebral conjunctival sac with a sterile cotton swab 2 weeks before surgery, and then cultured for isolation of bacteria and antimicrobial sensitivity testing. The bacterial isolates and percentage of drug-resistant isolates were compared among age groups and according to whether or not patients had diabetes mellitus, hyperlipidemia, dialysis therapy, oral steroid use, dry eye syndrome, or allergic conjunctivitis. Results The bacterial isolation rate was 39.2%. There were 191 strains of Gram-positive cocci, accounting for the majority of all isolates (67.0%), among which methicillin-sensitive coagulase-negative staphylococci was the most frequent (127 strains, 44.5%), followed by methicillin-resistant coagulase-negative staphylococci (37 strains, 12.7%). All 76 Gram-positive bacillary isolates (26.7%) were from the genus Corynebacterium. Among the 16 Gram-negative bacillary isolates (5.9%), the most frequent was Escherichia coli (1.0%). The bacterial isolation rate was higher in patients >60 years old, and was lower in patients with dry eye syndrome, patients under topical treatment for other ocular disorders, and patients with hyperlipidemia. There was no significant difference in bacterial isolation rate with respect to the presence/absence of diabetes mellitus, steroid therapy, dialysis, or a history of allergic conjunctivitis. Methicillin-resistant coagulase-negative staphylococci showed a significantly higher detection rate in diabetic patients than nondiabetic patients (20.3% versus 7.0%, P < 0.05). The percentage of all isolates resistant to levofloxacin, cefmenoxime, and tobramycin was 14.0%, 15.2%, and 17.9%, respectively, with no significant differences among these drugs. Conclusion

  10. The First Transmembrane Domain of Lipid Phosphatase SAC1 Promotes Golgi Localization

    PubMed Central

    Wang, Jinzhi; Chen, Juxing; Enns, Caroline A.; Mayinger, Peter

    2013-01-01

    The lipid phosphatase Sac1 cycles between endoplasmic reticulum and cisternal Golgi compartments. In proliferating mammalian cells, a canonical dilysine motif at the C-terminus of Sac1 is required for coatomer complex-I (COP-I)-binding and continuous retrieval to the ER. Starvation triggers accumulation of Sac1 at the Golgi. The mechanism responsible for Golgi retention of Sac1 is unknown. Here we show that the first of the two transmembrane regions in human SAC1 (TM1) functions in Golgi localization. A minimal construct containing only TM1 and the adjacent flanking sequences is concentrated at the Golgi. Transplanting TM1 into transferrin receptor 2 (TfR2) induces Golgi accumulation of this normally plasma membrane and endosomal protein, indicating that TM1 is sufficient for Golgi localization. In addition, we determined that the N-terminal cytoplasmic domain of SAC1 also promotes Golgi localization, even when TM1 is mutated or absent. We conclude that the distribution of SAC1 within the Golgi is controlled via both passive membrane thickness-dependent partitioning of TM1 and a retention mechanism that requires the N-terminal cytoplasmic region. PMID:23936490

  11. The effect of pigeon yolk sac fluid on the growth behavior of calcium carbonate crystals.

    PubMed

    Song, Juan; Cheng, Haixia; Shen, Xinyu; Tong, Hua

    2015-03-01

    Previous experiments have proved that thermodynamically unstable calcium carbonate vaterite can exist for long periods in the yolk sac of a pigeon embryo. The aim of this article was to demonstrate the effect of in vitro mineralization of yolk sac fluid on calcium carbonate by direct precipitation. Experiments were conducted using pigeon yolk sac fluid and using lecithin extracted from pigeon yolk sac fluid as a control to investigate the regulating effects of the organic components in the embryo on the formation of the calcium carbonate precipitate. Multiple characterization methods were employed to study the various morphological patterns, sizes, crystal growth, and crystal phase transformations of the calcium carbonate precipitates as regulated by the yolk sac fluid extracted at different stages of incubation. The experimental results demonstrate that as the incubation proceeds towards the later stages, the composition and environmental features of the yolk sac fluid become more favorable for the formation of relatively unstable calcium carbonate phases with high energies of the vaterite state. The experiments conducted with extracted lecithin as the template for crystal growth yielded similar results. A large amount of organic molecules with polar functional groups carried by the yolk sac fluid have strong effects and can both initially induce the crystallization and regulate the aggregation of calcium carbonate. Furthermore, this regulation process is found to be closely related to the lecithin contained in yolk sac fluid. These observations confirm the changes in yolk sac fluid composition during incubation have significant effects on the production of vaterite, which implicates the calcium transport during embryo growth. PMID:25681477

  12. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes.

    PubMed

    Rosenberg, Jonathan; Dickmanns, Achim; Neumann, Piotr; Gunka, Katrin; Arens, Johannes; Kaever, Volkhard; Stülke, Jörg; Ficner, Ralf; Commichau, Fabian M

    2015-03-01

    The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement. PMID:25605729

  13. Structural and Biochemical Analysis of the Essential Diadenylate Cyclase CdaA from Listeria monocytogenes*

    PubMed Central

    Rosenberg, Jonathan; Dickmanns, Achim; Neumann, Piotr; Gunka, Katrin; Arens, Johannes; Kaever, Volkhard; Stülke, Jörg; Ficner, Ralf; Commichau, Fabian M.

    2015-01-01

    The recently identified second messenger cyclic di-AMP (c-di-AMP) is involved in several important cellular processes, such as cell wall metabolism, maintenance of DNA integrity, ion transport, transcription regulation, and allosteric regulation of enzyme function. Interestingly, c-di-AMP is essential for growth of the Gram-positive model bacterium Bacillus subtilis. Although the genome of B. subtilis encodes three c-di-AMP-producing diadenlyate cyclases that can functionally replace each other, the phylogenetically related human pathogens like Listeria monocytogenes and Staphylococcus aureus possess only one enzyme, the diadenlyate cyclase CdaA. Because CdaA is also essential for growth of these bacteria, the enzyme is a promising target for the development of novel antibiotics. Here we present the first crystal structure of the L. monocytogenes CdaA diadenylate cyclase domain that is conserved in many human pathogens. Moreover, biochemical characterization of the cyclase revealed an unusual metal cofactor requirement. PMID:25605729

  14. Primary yolk sac tumor of the gluteus: a case report and literature review.

    PubMed

    Li, Bo; Jiang, Qianqian; Zhang, Shitai; Zhou, Yang; Zhang, Qing-Fu; OuYang, Ling

    2016-01-01

    Yolk sac tumor (YST) is a common malignant primitive germ cell tumor that often exhibits differentiation into endodermal structures. They most commonly occur in childhood and adolescence and are rare after the age of 40 years. Derived from the yolk sac during the embryonic period, YSTs can occur in the gonads and germ cells because the tumor cells migrate from the yolk sac toward the gonads. Here, we present a rare case of primary gluteus YST in a 3-year-old girl. She received BEP chemotherapy (bleomycin + etoposide + cisplatin) after surgical resection. There was no evidence of recurrence 7 months after primary treatment. PMID:27536133

  15. Primary yolk sac tumor of the gluteus: a case report and literature review

    PubMed Central

    Li, Bo; Jiang, Qianqian; Zhang, Shitai; Zhou, Yang; Zhang, Qing-Fu; OuYang, Ling

    2016-01-01

    Yolk sac tumor (YST) is a common malignant primitive germ cell tumor that often exhibits differentiation into endodermal structures. They most commonly occur in childhood and adolescence and are rare after the age of 40 years. Derived from the yolk sac during the embryonic period, YSTs can occur in the gonads and germ cells because the tumor cells migrate from the yolk sac toward the gonads. Here, we present a rare case of primary gluteus YST in a 3-year-old girl. She received BEP chemotherapy (bleomycin + etoposide + cisplatin) after surgical resection. There was no evidence of recurrence 7 months after primary treatment. PMID:27536133

  16. Surveillance Analysis Computer System (SACS): Software requirements specification (SRS). Revision 2

    SciTech Connect

    Glasscock, J.A.

    1995-03-08

    This document is the primary document establishing requirements for the Surveillance Analysis Computer System (SACS) database, an Impact Level 3Q system. SACS stores information on tank temperatures, surface levels, and interstitial liquid levels. This information is retrieved by the customer through a PC-based interface and is then available to a number of other software tools. The software requirements specification (SRS) describes the system requirements for the SACS Project, and follows the Standard Engineering Practices (WHC-CM-6-1), Software Practices (WHC-CM-3-10) and Quality Assurance (WHC-CM-4-2, QR 19.0) policies.

  17. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration.

    PubMed

    Khan, Kainat; Pal, Subhashis; Yadav, Manisha; Maurya, Rakesh; Trivedi, Arun Kumar; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2015-12-01

    Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30. PMID:26345541

  18. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  19. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  20. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    SciTech Connect

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-09-20

    The structure of ent-copalyl diphosphate synthase reveals three {alpha}-helical domains ({alpha}, {beta} and {gamma}), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the {beta}{gamma} domains in ent-copalyl diphosphate synthase but exclusively in the {alpha} domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions.

  1. [Soluble guanylate cyclase in the molecular mechanism underlying the therapeutic action of drugs].

    PubMed

    Piatakova, N V; Severina, I S

    2012-01-01

    The influence of ambroxol--a mucolytic drug--on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 microM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 microM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin--an antimalarial drug--on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 microM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 microM. Artemisinin (10 microM) also inhibited (by 71 +/- 4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 microM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin. PMID:22642150

  2. Observational Opportunities with the CUBIC Experiment on SAC-B

    NASA Astrophysics Data System (ADS)

    Nousek, J. A.; Burrows, D. N.; Moskalenko, E. I.

    1996-12-01

    The CUBIC experiment on the SAC-B satellite is now collecting data on the Diffuse X-Ray Background and bright point sources over an energy range of 0.2 - 10 keV with energy resolution ranging from 40 - 160 eV over this bandpass. CUBIC observations, several of which are discussed in other posters at this session, provide 2 - 4 high quality spectra per week. CUBIC was built as a PI-class instrument, and at present data rights are divided between Penn State (90%) and Leicester University (10%). We present the observing plan for the first six months of CUBIC operations. We are currently collaborating with several astronomers who are not on the CUBIC team but have expressed interest in one or more of these targets. We invite additional collaborations on targets which are not currently assigned to a specific observer. In order to make these data more accessible to the astronomical community, we are proposing to institute a modest Guest Investigator program. If supported by ADP funding, this would permit observing requests from outside astronomers and would place a large fraction of the CUBIC data in a public archive at the HEASARC.

  3. Adenylate cyclase in prothoracic glands during the last larval instar of the silkworm, Bombyx mori.

    PubMed

    Chen, C H; Gu, S H; Chow, Y S

    2001-04-27

    We have previously reported that the absence of prothoracicotropic hormone (PTTH) signal transduction during the early last larval instar of Bombyx mori plays a role in leading to very low ecdysteroid levels in the hemolymph, inactivation of the corpora allata, as well as larval-pupal transformation. In the present study, adenylate cyclase was characterized in crude preparations of prothoracic gland cell membranes in an effort to localize the cause of refractoriness to PTTH. It was found that cyclase activity of the prothoracic glands from the day 6 last instar showed activation responses to fluoride, a guanine nucleotide analogue, as well as calmodulin (CaM) in dose-dependent fashions. The additive effects of day 5 prothoracic gland adenylate cyclase stimulation by fluoride and CaM imply that there may exist Gs protein-dependent and CaM-dependent forms of adenylate cyclase. For day 1 last instar prothoracic glands, which showed no response to stimulation by PTTH in either cAMP generation or ecdysteroidogenesis, adenylate cyclase activity exhibited far less responsiveness to Ca(2+)/CaM than did that from day 5 glands. These findings suggest that day 1 prothoracic glands may possess some lesions in the receptor-Ca(2+) influx-adenylate cyclase signal transduction pathway and these impairments in PTTH signal transduction may be, at least in part, responsible for decreased ecdysteroidogenesis. PMID:11267904

  4. Endolymphatic sac tumor with von Hippel-Lindau disease: report of a case with atypical pathology of endolymphatic sac tumor.

    PubMed

    Yang, Xiang; Liu, Xue-Song; Fang, Yuan; Zhang, Xiu-Hui; Zhang, Yue-Kang

    2014-01-01

    The authors described a case of a patient with co-existing endolymphatic sac tumor (ELST) and hemangioblastoma in the posterior cranial fossa, which belonged to a subtype of Von Hippel-Lindau (VHL) disease confirmed by the test of VHL-gene. The signs in this 42-year-old female included intermittent headache and dizziness. Imaging revealed a giant mass in the right cerebellopontine angle (CPA) region and another lesion in the left cerebellar hemisphere. The results of biopsy after two operations confirmed the diagnosis respectively. Both of the tumors were resected totally. Nevertheless, we had to confess the misdiagnosis as vascular tumor instead of ELST at the initial diagnosis because of the rarity of ELST associated with atypical histological characteristics. The purposes we reported this case were to describe the atypical pathological feature of ELST and the mutation of germline VHL not mentioned in previously literature, furthermore, to foster understanding of ELSTs with the avoidance of the similar misdiagnosis as far as possible in future. PMID:24966975

  5. Histological and histochemical analyses of the cuttlebone sac of the golden cuttlefish Sepia esculenta

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaodong; Xiao, Shu; Wang, Zhaoping; Wang, Rucai

    2007-10-01

    The secretion function of mantle is closely related to shell formation in some bivalves and gastropods. Up to now, few researches have been reported for cuttlebone formation in the class Cephalopoda. In this study, the structure and secretion function of cuttlebone sac of the golden cuttlefish Sepia esculenta was analyzed using the histological and histochemical methods. The results showed that high and columnar cells located in sac epithelium, and flat cells existed near the base membrane. A lot of fibroblasts were found in the lateral mantle collective tissue. Some mucus, mucopolysaccharide and alkaline phosphatase (ALP) were found in the sac. The ultrastructural characteristics of Quasi-connective-tissue-calcium cells (QCTCC) were observed using a transmission electron microscope (TEM). The relationship between cuttlebone sac secretion function and shell formation was discussed.

  6. Extraovarian pelvic yolk sac tumor: case report and review of published work.

    PubMed

    Pasternack, Tanya; Shaco-Levy, Ruthy; Wiznitzer, Arnon; Piura, Benjamin

    2008-08-01

    Extraovarian pelvic yolk sac tumors are rare, with only nine cases documented previously in the published work. We report a case of extraovarian pelvic yolk sac tumor occurring synchronously with breast carcinoma. The patient underwent resection of the pelvic tumor and hepatic implant, omentectomy and breast lumpectomy with sentinel axillary lymph node biopsy. The uterus and bilateral adnexa were preserved. Postoperative adjuvant therapy for the yolk sac tumor included three cycles of the bleomycin, etoposide and cisplatin (BEP) regimen. This was followed by adjuvant chemotherapy and radiotherapy for the breast carcinoma. It is concluded that in women with extraovarian pelvic yolk sac tumor who wish to preserve childbearing capacity, fertility-saving surgery followed by fertility-preserving cisplatin-based chemotherapy is adequate and appropriate treatment. PMID:18840194

  7. Performance Evaluation of Hybrid SCM/SAC-OCDMA Transmissions System using Dynamic Cyclic Shift Code

    NASA Astrophysics Data System (ADS)

    Abd, Thanaa Hussein; Aljunid, S. A.; Fadhil, Hilal Adnan; Radhi, Ibrahim Fadhil; Saad, N. M.

    2012-12-01

    In this paper, the performance of a hybrid scheme of Subcarrier Multiplexing (SCM) technique in a Spectral Amplitude Coding (SAC) Optical Code Division Multiple Access (CDMA) transmissions system is evaluated. The hybrid system is design using new code family; we call it Dynamic Cyclic Shift (DCS) code. The DCS code design for SAC-OCDMA system to reduce the effect of Multi Access Interference due to it property of low cross-correlation (λC ≤ 1) between code words. In contrast, the SCM scheme shows the ability to increase the data rate of SAC-OCDMA system. Consequently, the hybrid SCM/SAC-OCDMA system could be one promising solution to the high-capacity access network with low cost effective, good flexibility and enhanced security, which makes an attractive candidate for next-generation broadband access network.

  8. Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    PubMed Central

    Sereno, Paul C.; Martinez, Ricardo N.; Wilson, Jeffrey A.; Varricchio, David J.; Alcober, Oscar A.; Larsson, Hans C. E.

    2008-01-01

    Background Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (“stomach ribs”), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III—Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV—Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the

  9. Transcriptome analysis of biomineralisation-related genes within the pearl sac: host and donor oyster contribution.

    PubMed

    McGinty, E L; Zenger, K R; Jones, D B; Jerry, D R

    2012-03-01

    Cultured pearl production is a complex biological process involving the implantation of a mantle graft from a donor pearl oyster along with a bead nucleus into the gonad of a second recipient host oyster. Therefore, pearl production potentially involves the genetic co-operation of two oyster genomes. Whilst many genes in the mantle tissue have been identified and linked to shell biomineralisation in pearl oysters, few studies have determined which of these biomineralisation genes are expressed in the pearl sac and potentially linked to pearl biomineralisation processes. It is also uncertain whether the host or donor oyster is primarily responsible for the expression of biomineralisation genes governing pearl formation, with only two shell matrix proteins previously identified as being expressed by the donor oyster in the pearl sac. To further our understanding of pearl formation, the pearl sac transcriptome of Pinctada maxima and Pinctada margaritifera was each sequenced to an equivalent 5× genome coverage with putative molluscan biomineralisation-related genes identified. Furthermore, the host and donor contribution of these expressed genes within the pearl sac were quantified using a novel approach whereby two pearl oyster species harbouring unique genomes, P. maxima or P. margaritifera, were used to produce xenografted pearl sacs. A total of 19 putative mollusc biomineralisation genes were identified and found to be expressed in the pearl sacs of P. maxima and P. margaritifera. From this list of expressed genes, species-diagnostic single nucleotide polymorphisms (SNP) were identified within seven of these genes; Linkine, N66, Perline, N44, MSI60, Calreticulin and PfCHS1. Based on the presence/absence of species diagnostic gene transcripts within xenografted pearl sacs, all seven genes were found to be expressed by the species used as the donor oyster. In one individual we also found that the host was expressing Linkine. These results convincingly show for the

  10. Phosphoregulatory protein 14-3-3 facilitates SAC1 transport from the endoplasmic reticulum

    PubMed Central

    Bajaj Pahuja, Kanika; Wang, Jinzhi; Blagoveshchenskaya, Anastasia; Lim, Lillian; Madhusudhan, M. S.; Mayinger, Peter; Schekman, Randy

    2015-01-01

    Most secretory cargo proteins in eukaryotes are synthesized in the endoplasmic reticulum and actively exported in membrane-bound vesicles that are formed by the cytosolic coat protein complex II (COPII). COPII proteins are assisted by a variety of cargo-specific adaptor proteins required for the concentration and export of secretory proteins from the endoplasmic reticulum (ER). Adaptor proteins are key regulators of cargo export, and defects in their function may result in disease phenotypes in mammals. Here we report the role of 14-3-3 proteins as a cytosolic adaptor in mediating SAC1 transport in COPII-coated vesicles. Sac1 is a phosphatidyl inositol-4 phosphate (PI4P) lipid phosphatase that undergoes serum dependent translocation between the endoplasmic reticulum and Golgi complex and controls cellular PI4P lipid levels. We developed a cell-free COPII vesicle budding reaction to examine SAC1 exit from the ER that requires COPII and at least one additional cytosolic factor, the 14-3-3 protein. Recombinant 14-3-3 protein stimulates the packaging of SAC1 into COPII vesicles and the sorting subunit of COPII, Sec24, interacts with 14-3-3. We identified a minimal sorting motif of SAC1 that is important for 14-3-3 binding and which controls SAC1 export from the ER. This LS motif is part of a 7-aa stretch, RLSNTSP, which is similar to the consensus 14-3-3 binding sequence. Homology models, based on the SAC1 structure from yeast, predict this region to be in the exposed exterior of the protein. Our data suggest a model in which the 14-3-3 protein mediates SAC1 traffic from the ER through direct interaction with a sorting signal and COPII. PMID:26056309

  11. Deposition of anal-sac secretions by captive wolves (Canis lupus)

    USGS Publications Warehouse

    Asa, C.S.; Peterson, E.K.; Seal, U.S.; Mech, L.D.

    1985-01-01

    Deposition of anal-sac secretions by captive wolves was investigated by a labelling technique using protein-bound iodine125 and food dye. Wolves deposited secretions on some but not all scats. Adult males, especially the alpha male, deposited anal-sac secretions more frequently while defecating than did females or juveniles. Secretions sometimes also were deposited independently of defecation, suggesting a dual role in communication by these substances.

  12. Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway

    PubMed Central

    Nakatsu, Fubito; Messa, Mirko; Nández, Ramiro; Czapla, Heather; Zou, Yixiao; Strittmatter, Stephen M.

    2015-01-01

    The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL–Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin. PMID:25869668

  13. Sac1--Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus

    SciTech Connect

    Cai, Yiying; Deng, Yongqiang; Horenkamp, Florian; Reinisch, Karin M.; Burd, Christopher G.

    2014-08-25

    Sac1 is a phosphoinositide phosphatase of the endoplasmic reticulum and Golgi apparatus that controls organelle membrane composition principally via regulation of phosphatidylinositol 4-phosphate signaling. We present a characterization of the structure of the N-terminal portion of yeast Sac1, containing the conserved Sac1 homology domain, in complex with Vps74, a phosphatidylinositol 4-kinase effector and the orthologue of human GOLPH3. The interface involves the N-terminal subdomain of the Sac1 homology domain, within which mutations in the related Sac3/Fig4 phosphatase have been linked to Charcot–Marie–Tooth disorder CMT4J and amyotrophic lateral sclerosis. Disruption of the Sac1–Vps74 interface results in a broader distribution of phosphatidylinositol 4-phosphate within the Golgi apparatus and failure to maintain residence of a medial Golgi mannosyltransferase. The analysis prompts a revision of the membrane-docking mechanism for GOLPH3 family proteins and reveals how an effector of phosphoinositide signaling serves a dual function in signal termination.

  14. Acoustic analysis of primate air sacs and their effect on vocalization.

    PubMed

    de Boer, Bart

    2009-12-01

    This paper presents an analysis of the acoustic impedance of primate air sacs and their interaction with the vocal tract. A lumped element model is derived and it is found that the inertance of the neck and the volume of the air sac are relevant, as well as the mass and stiffness of the walls (depending on the tissue). It is also shown that at low frequencies, radiation from the air sac can be non-negligible, even if the mouth is open. It is furthermore shown that an air sac can add one or two low resonances to the resonances of the oral tract, and that it shifts up the oral tract's resonances below approximately 2000 Hz, and shifts them closer together. The theory was verified by acoustic measurements and applied to the red howler monkey (Alouatta seniculus) and the siamang (Symphalangus syndactylus). The theory describes the physical models and the siamang calls correctly, but appears incomplete for the howler monkey vocalizations. The relation between air sacs and the evolution of speech is discussed briefly, and it is proposed that an air sac would reduce the ability to produce distinctive speech, but would enhance the impression of size of the vocalizer. PMID:20000947

  15. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.

    PubMed

    Gao, Yuansheng

    2016-05-01

    Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated. PMID:26452163

  16. Human recombinant soluble guanylyl cyclase: Expression, purification, and regulation

    PubMed Central

    Lee, Yu-Chen; Martin, Emil; Murad, Ferid

    2000-01-01

    The α1- and β1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5′-hydroxymethyl-2′furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein. PMID:10995472

  17. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    PubMed

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme. PMID:25161314

  18. Bordetella pertussis adenylate cyclase inactivation by the host cell.

    PubMed Central

    Gilboa-Ron, A; Rogel, A; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-dependent adenylate cyclase (AC) which acts as a toxin capable of penetrating eukaryotic cells and generating high levels of intracellular cyclic AMP. Transfer of target cells into B. pertussis AC-free medium leads to a rapid decay in the intracellular AC activity, implying that the invasive enzyme is unstable in the host cytoplasm. We report here that treatment of human lymphocytes with a glycolysis inhibitor and an uncoupler of oxidative phosphorylation completely blocked the intracellular inactivation of B. pertussis AC. Lymphocyte lysates inactivated all forms of B. pertussis AC in the presence of exogenous ATP. This inactivation was associated with degradation of an 125I-labelled 200 kDa form of B. pertussis AC. It appears that ATP is required for the proteolytic pathway, but not as an energy source, since non-hydrolysable ATP analogues supported inactivation and complete degradation of the enzyme. The possibility that binding of ATP to B. pertussis AC renders it susceptible to degradation by the host cell protease is discussed. Images Fig. 2. Fig. 4. PMID:2554887

  19. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation

    NASA Technical Reports Server (NTRS)

    Lee, Y. C.; Martin, E.; Murad, F.

    2000-01-01

    The alpha1- and beta1-subunits of human soluble guanylate cyclase (sGC) were coexpressed in the Sf9 cells/baculovirus system. In addition to the native enzyme, constructs with hexahistidine tag at the amino and carboxyl termini of each subunit were coexpressed. This permitted the rapid and efficient purification of active recombinant enzyme on a nickel-affinity column. The enzyme has one heme per heterodimer and was readily activated with the NO donor sodium nitroprusside or 3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole (YC-1). Sodium nitroprusside and YC-1 treatment potentiated each other in combination and demonstrated a remarkable 2,200-fold stimulation of the human recombinant sGC. The effects were inhibited with 1H-(1,2, 4)oxadiazole(4,3-a)quinoxalin-1one (ODQ). The kinetics of the recombinant enzyme with respect to GTP was examined. The products of the reaction, cGMP and pyrophosphate, inhibited the enzyme. The extent of inhibition by cGMP depended on the activation state of the enzyme, whereas inhibition by pyrophosphate was not affected by the enzyme state. Both reaction products displayed independent binding and cooperativity with respect to enzyme inhibition. The expression of large quantities of active enzyme will facilitate structural characterization of the protein.

  20. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells

    PubMed Central

    Martín, César; Etxaniz, Asier; Uribe, Kepa B.; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M.; Aréchaga, Juan; Ostolaza, Helena

    2015-01-01

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of “toxin-coated bacteria” proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or “free” in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca2+-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system. PMID:26346097

  1. The adenylate cyclase receptor complex and aqueous humor formation.

    PubMed Central

    Caprioli, J.; Sears, M.

    1984-01-01

    The secretory tissue of the eye, the ciliary processes, contains an enzyme receptor complex, composed of membrane proteins, the catalytic moiety of the enzyme adenylate cyclase, a guanyl nucleotide regulatory protein (or N protein), and other features. The enzyme can be activated by well-known neurohumoral or humoral agents, catecholamines, glycoprotein hormones produced by the hypothalamic pituitary axis, and other related compounds, including placental gonadotropin, organic fluorides, and forskolin, a diterpene. These compounds cause the ciliary epithelia to produce cyclic AMP at an accelerated rate. Cyclic AMP, as a second messenger, causes, either directly or indirectly, a decrease in the net rate of aqueous humor inflow that may be modulated by cofactors. Clinical syndromes fit the experimental data so that an integrated explanation can be given for the reduced intraocular pressure witnessed under certain central nervous system and adrenergic influences. The molecular biology of this concept provides important leads for future investigations that bear directly both upon the regulation of intraocular pressure and upon glaucoma. Images FIG. 11 PMID:6093393

  2. Endothelin-1, superoxide and adeninediphosphate ribose cyclase in shark vascular smooth muscle.

    PubMed

    Fellner, Susan K; Parker, Laurel

    2005-03-01

    In vascular smooth muscle (VSM) of Squalus acanthias, endothelin-1 (ET-1) signals via the ET(B) receptor. In both shark and mammalian VSM, ET-1 induces a rise in cytosolic Ca(2+) concentration ([Ca(2+)](i)) via activation of the inositol trisphosphate (IP(3)) receptor (IP(3)R) and subsequent release of Ca(2+) from the sarcoplasmic reticulum (SR). IP(3)R-mediated release of SR Ca(2+) causes calcium-induced calcium release (CICR) via the ryanodine receptor (RyR), which can be sensitized by cyclic adeninediphosphate ribose (cADPR). cADPR is synthesized from NAD(+) by a membrane-bound bifunctional enzyme, ADPR cyclase. We have previously shown that the antagonists of the RyR, Ruthenium Red, high concentrations of ryanodine and 8-Br cADPR, diminish the [Ca(2+)](i) response to ET-1 in shark VSM. To investigate how ET-1 might influence the activity of the ADPR cyclase, we employed inhibitors of the cyclase. To explore the possibility that ET-1-induced production of superoxide (O(2)*-) might activate the cyclase, we used an inhibitor of NAD(P)H oxidase (NOX), DPI and a scavenger of O(2)*-, TEMPOL. Anterior mesenteric artery VSM was loaded with fura-2AM to measure [Ca(2+)](i). In Ca(2+)-free shark Ringers, ET-1 increased [Ca(2+)](i) by 104+/-8 nmol l(-1). The VSM ADPR cyclase inhibitors, nicotinamide and Zn(2+), diminished the response by 62% and 72%, respectively. Both DPI and TEMPOL reduced the response by 63%. The combination of the IP(3)R antagonists, 2-APB or TMB-8, with DPI or TEMPOL further reduced the response by 83%. We show for the first time that in shark VSM, inhibition of the ADPR cyclase reduces the [Ca(2+)](i) response to ET-1 and that superoxide may be involved in the activation of the cyclase. PMID:15767306

  3. Stimulation of hormone-responsive adenylate cyclase activity by a factor present in the cell cytosol.

    PubMed Central

    MacNeil, S; Crawford, A; Amirrasooli, H; Johnson, S; Pollock, A; Ollis, C; Tomlinson, S

    1980-01-01

    1. Homogenates of whole tissues were shown to contain both intracellular and extracellular factors that affected particulate adenylate cyclase activity in vitro. Factors present in the extracellular fluids produced an inhibition of basal, hormone- and fluoride-stimulated enzyme activity but factors present in the cell cytosol increased hormone-stimulated activity with relatively little effect on basal or fluoride-stimulated enzyme activity. 2. The existence of this cytosol factor or factors was investigated using freshly isolated human platelets, freshly isolated rat hepatocytes, and cultured cells derived from rat osteogenic sarcoma, rat calvaria, mouse melanoma, pig aortic endothelium, human articular cartilage chondrocytes and human bronchial carcinoma (BEN) cells. 3. The stimulation of the hormone response by the cytosol factor ranged from 60 to 890% depending on the tissue of origin of the adenylate cyclase. 4. In each case the behaviour of the factor was similar to the action of GTP on that particular adenylate cyclase preparation. 5. No evidence of tissue or species specificity was found, as cytosols stimulated adenylate cyclase from their own and unrelated tissues to the same degree. 6. In the human platelet, the inclusion of the cytosol in the assay of adenylate cyclase increased the rate of enzyme activity in response to stimulation by prostaglandin E1 without affecting the amount of prostaglandin E1 required for half-maximal stimulation or the characteristics of enzyme activation by prostaglandin E. PMID:7396869

  4. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    PubMed

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  5. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides

    PubMed Central

    Gagne, Steve J.; Stout, Jake M.; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M.; Page, Jonathan E.

    2012-01-01

    Δ9-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2–C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity. PMID:22802619

  6. Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer.

    PubMed

    Frickey, Tancred; Kannenberg, Elmar

    2009-05-01

    Functional constraints to modifications in triterpene cyclase amino acid sequences make them good candidates for evolutionary studies on the phylogenetic relatedness of these enzymes in prokaryotes as well as in eukaryotes. In this study, we used a set of identified triterpene cyclases, a group of mainly bacterial squalene cyclases and a group of predominantly eukaryotic oxidosqualene cyclases, as seed sequences to identify 5288 putative triterpene cyclase homologues in publicly available databases. The Cluster Analysis of Sequences software was used to detect groups of sequences with increased pairwise sequence similarity. The sequences fall into two main clusters, a bacterial and a eukaryotic. The conserved, informative regions of a multiple sequence alignment of the family were used to construct a neighbour-joining phylogenetic tree using the AsaturA and maximum likelihood phylogenetic tree using the PhyML software. Both analyses showed that most of the triterpene cyclase sequences were similarly grouped to the accepted taxonomic relationships of the organism the sequences originated from, supporting the idea of vertical transfer of cyclase genes from parent to offspring as the main evolutionary driving force in this protein family. However, a small group of sequences from three bacterial species (Stigmatella, Gemmata and Methylococcus) grouped with an otherwise purely eukaryotic cluster of oxidosqualene cyclases, while a small group of sequences from seven fungal species and a sequence from the fern Adiantum grouped consistently with a cluster of otherwise purely bacterial squalene cyclases. This suggests that lateral gene transfer may have taken place, entailing a transfer of oxidosqualene cyclases from eukaryotes to bacteria and a transfer of squalene cyclase from bacteria to an ancestor of the group of Pezizomycotina fungi. PMID:19207562

  7. Functional role of the Ti plasmid-encoded catabolic mannopine cyclase in mannityl opine catabolism by Agrobacterium spp.

    PubMed Central

    Hong, S B; Farrand, S K

    1994-01-01

    Catabolic mannopine (MOP) cyclase encoded by Ti or Ri plasmids lactonizes MOP to agropine (AGR). The gene of the octopine-type Ti plasmid pTi15955 encoding the catabolic MOP cyclase enzyme previously was localized to a 1.6-kb segment within a cosmid clone, pYDH208. A subclone containing only this region complemented the AGR catabolism-negative phenotype conferred by a derivative of the octopine-type plasmid pTiB6S3 containing a Tn7 insertion in the region encoding the MOP cyclase enzyme. Uptake assays of strains harboring pRiA4 or pArA4a, along with complementation analyses, indicate that MOP cyclase is not sufficient for catabolism of AGR but that the strains must also express an AGR transport system. To determine the requirement for MOP cyclase in opine catabolism unequivocally, a site-specific, nonpolar deletion mutation abolishing only MOP cyclase activity was introduced into pYDH208, a cosmid clone that confers utilization of MOP, AGR, and mannopinic acid (MOA). Strains harboring this MOP cyclase-negative mutant clone, pYDPH208, did not utilize AGR but continued to utilize MOP. Growth on AGR was restored in this strain upon introduction of clones encoding the pTi15955-derived catabolic or anabolic MOP cyclase genes. The induction pattern of MOA catabolism shown by strain NT1 harboring the MOP cyclase-deficient pYDPH208 suggests that AGR is converted into MOP by MOP cyclase and that MOP, but not AGR, induces catabolism of MOA. Genetic and biochemical analyses of MOP and AGR metabolism suggest that only the conversion of AGR to MOP is directly involved in catabolism of AGR, even though the reaction catalyzed by MOP cyclase predominantly lies in the lactonization of MOP to AGR. Images PMID:8206835

  8. Quaternary Structure Controls Ligand Dynamics in Soluble Guanylate Cyclase*

    PubMed Central

    Yoo, Byung-Kuk; Lamarre, Isabelle; Martin, Jean-Louis; Negrerie, Michel

    2012-01-01

    Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β1(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β1(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β1(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates kon = 0.075 ± 0.01 × 106 m−1·s−1 for sGC and 0.83 ± 0.1 × 106 m−1·s−1 for β1(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β1(191–619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe2+-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit. PMID:22223482

  9. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  10. Human soluble guanylate cyclase: functional expression and revised isoenzyme family.

    PubMed Central

    Zabel, U; Weeger, M; La, M; Schmidt, H H

    1998-01-01

    Soluble guanylate cyclase (sGC), a heterodimeric (alpha/beta) haem protein that converts GTP to the second messenger cGMP, functions as the receptor for nitric oxide (NO) and nitrovasodilator drugs. Three distinct cDNA species of each subunit (alpha1-alpha3, beta1-beta3) have been reported from various species. From human sources, none of these have been expressed as functionally active enzyme. Here we describe the expression of human alpha/beta heterodimeric sGC in Sf9 cells yielding active recombinant enzyme that was stimulated by the nitrovasodilator sodium nitroprusside or the NO-independent activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1). At the protein level, both alpha and beta subunits were detected in human tissues, suggesting co-expression also in vivo. Moreover, resequencing of the human cDNA clones [originally termed alpha3 and beta3; Giuili, Scholl, Bulle and Guellaen (1992) FEBS Lett. 304, 83-88] revealed several sequencing errors in human alpha3; correction of these eliminated major regions of divergence from rat and bovine alpha1. As human beta3 also displays more than 98% similarity to rat and bovine beta1 at the amino acid level, alpha3 and beta3 represent the human homologues of rat and bovine alpha1 and beta1, and the isoenzyme family is decreased to two isoforms for each subunit (alpha1, alpha2; beta1, beta2). Having access to the human key enzyme of NO signalling will now permit the study of novel sGC-modulating compounds with therapeutic potential. PMID:9742212

  11. Role of Adenylate Cyclase 1 in Retinofugal Map Development

    PubMed Central

    Dhande, Onkar S.; Bhatt, Shivani; Anishchenko, Anastacia; Elstrott, Justin; Iwasato, Takuji; Swindell, Eric C.; Xu, Hong-Ping; Jamrich, Milan; Itohara, Shigeyoshi; Feller, Marla B.; Crair, Michael C.

    2013-01-01

    The development of topographic maps of the sensory periphery is sensitive to the disruption of adenylate cyclase 1 (AC1) signaling. AC1 catalyzes the production of cAMP in a Ca2+/calmodulin-dependent manner, and AC1 mutant mice (AC1−/−) have disordered visual and somatotopic maps. However, the broad expression of AC1 in the brain and the promiscuous nature of cAMP signaling have frustrated attempts to determine the underlying mechanism of AC1-dependent map development. In the mammalian visual system, the initial coarse targeting of retinal ganglion cell (RGC) projections to the superior colliculus (SC) and lateral geniculate nucleus (LGN) is guided by molecular cues, and the subsequent refinement of these crude projections occurs via an activity-dependent process that depends on spontaneous retinal waves. Here, we show that AC1−/− mice have normal retinal waves but disrupted map refinement. We demonstrate that AC1 is required for the emergence of dense and focused termination zones and elimination of inaccurately targeted collaterals at the level of individual retinofugal arbors. Conditional deletion of AC1 in the retina recapitulates map defects, indicating that the locus of map disruptions in the SC and dorsal LGN of AC1−/− mice is presynaptic. Finally, map defects in mice without AC1 and disrupted retinal waves (AC1−/−;β2−/− double KO mice) are no worse than those in mice lacking only β2−/−, but loss of AC1 occludes map recovery in β2−/− mice during the second postnatal week. These results suggest that AC1 in RGC axons mediates the development of retinotopy and eye-specific segregation in the SC and dorsal LGN. PMID:22102330

  12. Allostery in Recombinant Soluble Guanylyl Cyclase from Manduca sexta*

    PubMed Central

    Hu, Xiaohui; Murata, Lauren B.; Weichsel, Andrzej; Brailey, Jacqueline L.; Roberts, Sue A.; Nighorn, Alan; Montfort, William R.

    2008-01-01

    Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the ∼100-kDa N-terminal heterodimeric fragment and increases the CO affinity by ∼50-fold to 1.7 μm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k6-5 = 12.8 s-1). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to ∼30 μm. NO release is biphasic in the absence of YC-1 (koff1 = 0.10 s-1 and koff2 = 0.0015 s-1); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the α subunit with importance for heme binding. PMID:18515359

  13. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    PubMed Central

    Krumenacker, Joshua S.; Hyder, Salman M.; Murad, Ferid

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17β-estradiol (E2) regulates the α1 and β1 subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC α1 10% and sGC β1 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression. PMID:11209068

  14. Heme deficiency of soluble guanylate cyclase induces gastroparesis

    PubMed Central

    COSYNS, S. M. R.; DHAESE, I.; THOONEN, R.; BUYS, E. S.; VRAL, A.; BROUCKAERT, P.; LEFEBVRE, R. A.

    2016-01-01

    Background Soluble guanylate cyclase (sGC) is the principal target of nitric oxide (NO) to control gastrointestinal motility. The consequence on nitrergic signaling and gut motility of inducing a heme-free status of sGC, as induced by oxidative stress, was investigated. Methods sGCβ1H105F knock-in (apo-sGC) mice, which express heme-free sGC that has basal activity, but cannot be stimulated by NO, were generated. Key Results Diethylenetriamine NONOate did not increase sGC activity in gastrointestinal tissue of apo-sGC mice. Exogenous NO did not induce relaxation in fundic, jejunal and colonic strips, and pyloric rings of apo-sGC mice. The stomach was enlarged in apo-sGC mice with hypertrophy of the muscularis externa of the fundus and pylorus. In addition, gastric emptying and intestinal transit were delayed and whole-gut transit time was increased in the apo-sGC mice, while distal colonic transit time was maintained. The nitrergic relaxant responses to electrical field stimulation at 1–4 Hz were abolished in fundic and jejunal strips from apo-sGC mice, but in pyloric rings and colonic strips, only the response at 1 Hz was abolished, indicating the contribution of other transmitters than NO. Conclusions & Inferences The results indicate that the gastrointestinal consequences of switching from a native sGC to a heme-free sGC, which cannot be stimulated by NO, are most pronounced at the level of the stomach establishing a pivotal role of the activation of sGC by NO in normal gastric functioning. In addition, delayed intestinal transit was observed, indicating that nitrergic activation of sGC also plays a role in the lower gastrointestinal tract. PMID:23551931

  15. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana

    PubMed Central

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores. PMID:20610397

  16. Molecular Characterization of Tick Salivary Gland Glutaminyl Cyclase

    PubMed Central

    Adamson, Steven W.; Browning, Rebecca E.; Chao, Chien-Chung; Bateman, Robert C.; Ching, Wei-Mei; Karim, Shahid

    2013-01-01

    Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood-feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc-binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the blood-meal of adult female ticks prior to fast feeding phases in both I. scapularis and A. maculatum suggesting a functional link with blood meal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC-transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control. PMID:23770496

  17. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins.

    PubMed

    Milde, Markus; Werthmann, Ruth C; von Hayn, Kathrin; Bünemann, Moritz

    2014-04-01

    A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas G(q)-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)-cAMPS (adenosine 3',5'-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via G(i)-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled G(i)-proteins and AC5. FRET between Gα(i1) and AC5 developed at much lower concentration of agonist compared with the overall G(i)-protein activity. We found the dissociation of Gα(i1) subunits and AC5 to occur slower than the G(i)-protein deactivation. This led us to the conclusion that AC5, by binding active Gα(i1), interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation. PMID:24646224

  18. Adenylate cyclase regulates elongation of mammalian primary cilia

    SciTech Connect

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; Hoorn, Frans A. van der

    2009-10-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3{beta} by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1-2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway.

  19. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    NASA Technical Reports Server (NTRS)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  20. ADENYLATE CYCLASE REGULATES ELONGATION OF MAMMALIAN PRIMARY CILIA

    PubMed Central

    Ou, Young; Ruan, Yibing; Cheng, Min; Moser, Joanna J.; Rattner, Jerome B.; van der Hoorn, Frans A.

    2011-01-01

    The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1–2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII-cAMP signaling pathway. PMID:19576885

  1. Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase.

    PubMed Central

    Toscano, W A; Westcott, K R; LaPorte, D C; Storm, D R

    1979-01-01

    An adenylate cyclase [ATP pyrophosphatelyase (cyclizing), EC 4.6.1.1] preparation that is not stimulated by NaF,5'-guanylyl imidodiphosphate, or Ca2+.calmodulin has been isolated from bovine cerebral cortex by Affi-Gel Blue chromatography and calmodulin-Sepharose chromatography. Sensitivity to these effectors was restored by incubation of the adenylate cyclase preparation with detergent-solubilized protein from bovine cerebral cortex. Reconstitution of of Ca2+.calmodulin activation required the presence of 5'-guanylyl imidodiphosphate. The factor required for restoration of Ca2+.calmodulin stimulation was sensitive to heat, trypsin digestion, and N-ethylmaleimide. These observations suggest that this adenylate cyclase activity requires the presence of one or more guanyl nucleotide binding subunits for calmodulin sensitivity. PMID:293663

  2. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods.

    PubMed Central

    Gorczyca, W A; Gray-Keller, M P; Detwiler, P B; Palczewski, K

    1994-01-01

    In retinal rods light triggers a cascade of enzymatic reactions that increases cGMP hydrolysis and generates an electrical signal by causing closure of cGMP-gated ion channels in the photoreceptor outer segment. This leads to a decrease in internal Ca, which activates guanylate cyclase and promotes photoresponse recovery by stimulating the resynthesis of cGMP. We report here that the activation of guanylate cyclase by low Ca is mediated by an approximately 20-kDa protein purified from bovine rod outer segments by using DEAE-Sepharose, hydroxylapatite, and reverse-phase chromatographies. In a reconstituted system, this protein restores the Ca-sensitive regulation of guanylate cyclase and when dialyzed into functionally intact lizard rod outer segment decreases the sensitivity, time to peak, and recovery time of the flash response. Images PMID:7909609

  3. Molecular study of a squalene cyclase homolog gene in Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Pearson, A.; Losick, R.

    2005-12-01

    Polycyclic triterpenoids such as hopanes and steranes are formed by enzymatic cyclization of linear isoprenoid precursors by squalene cyclases and oxidosqualene cyclases. Due to their amazing preservation potential, polycyclic triterpenoids have been used to indicate the source of organic matter in oils and sediments for decades, although many cannot be attributed to known organisms and genes. To bridge the gap between the genomic database and the geochemical record, we are using molecular tools to study the expression, intracellular localization, and products of a squalene cyclase homolog found in Bacillus subtilis, a Gram-positive soil bacterium. We find that the gene is expressed during sporulation and is localized to the spore coat. Our results may help to understand the source of some previously unassigned natural products, and they may also provide clues to the physiological role of triterpenoids in the Bacillales.

  4. A status report on the development of SAC2000: A new seismic analysis code

    SciTech Connect

    Goldstein, P.; Minner, L.

    1995-08-01

    We are developing a new Seismic Analysis Code (SAC2000) that will meet the research needs of the seismic research and treaty monitoring communities. Our first step in this development was to rewrite the original Seismic Analysis Code (SAC) -- a Fortran code that was approximately 140,000 lines long -- in the C programming language. This rewrite has resulted in a much more robust code that is faster, more efficient, and more portable than the original. We have implemented important processing capabilities such as convolution and binary monograms, and we have significantly enhanced several previously existing capabilities. For example, the spectrogram command now produces a correctly registered plot of the input time series and a color image of the output spectrogram. We have also added an image plotting capability with access to 17 predefined color tables or custom color tables. A rewritten version of the readcss command can now be used to access any of the documented css.3.0 database data formats, a capability that is particularly important to the Air Force Technical Applications Center (AFTAC) and the monitoring community. A much less visible, but extremely important contribution is the correction of numerous inconsistencies and errors that have evolved because of piecemeal development and limited maintenance since SAC was first written. We have also incorporated on-line documentation and have made SAC documentation available on the Internet via the world-wide-web at http://www-ep/tvp/sac.html.

  5. In Vivo and Cadaver Studies of the Canalicular/Lacrimal Sac Mucosal Folds

    PubMed Central

    You, Yongsheng; Cao, Jing; Zhang, Xiaogang; Wu, Wencan; Xiao, Tianlin

    2016-01-01

    Purpose. The study aimed to investigate canalicular/lacrimal sac mucosal folds (CLS-MFs) in vivo and in cadavers in order to explore their functional roles in the lacrimal drainage system. Method. The observations of CLS-MFs in vivo were performed on 16 patients with chronic dacryocystitis after undergoing an endonasal endoscopic dacryocystorhinostomy (EE-DCR). The lacrimal sacs and common canaliculi of 19 adult cadavers were dissected. The opening/closing of an orifice and mucosal fold was recorded. All of the specimens were subjected to a histological examination. Results. The upper and lower lacrimal canaliculi in all of the samples united to form a common canaliculus that opened to the lacrimal sac. CLS-MFs were observed in 10 of the 16 patients (62.5%) and 9 of the 19 cadavers (47.4%). The orifices or mucosal folds could be opened or closed when related muscles contracted or relaxed. Histological sections showed a mucosal fold at one side of an orifice. Conclusion. Common canaliculus is the most common type that the canaliculus opens to lacrimal sac. CLS-MFs exist in a certain ratio that can be opened/closed with the movement of the orifices. They may be involved in the drainage of tears or the pathogenesis of acute dacryocystitis or lacrimal sac mucocele. PMID:27242921

  6. Direct Effects of Microalgae and Protists on Herring (Clupea harengus) Yolk Sac Larvae

    PubMed Central

    Illing, Björn; Moyano, Marta; Niemax, Jan; Peck, Myron A.

    2015-01-01

    This study investigated effects of microalgae (Rhodomonas baltica) and heterotrophic protists (Oxyrrhis marina) on the daily growth, activity, condition and feeding success of Atlantic herring (Clupea harengus) larvae from hatch, through the end of the endogenous (yolk sac) period. Yolk sac larvae were reared in the presence and absence of microplankton and, each day, groups of larvae were provided access to copepods. Larvae reared with microalgae and protists exhibited precocious (2 days earlier) and ≥ 60% increased feeding incidence on copepods compared to larvae reared in only seawater (SW). In the absence and presence of microalgae and protists, life span and growth trajectories of yolk sac larvae were similar and digestive enzyme activity (trypsin) and nutritional condition (RNA-DNA ratio) markedly declined in all larvae directly after yolk sac depletion. Thus, microplankton promoted early feeding but was not sufficient to alter life span and growth during the yolk sac phase. Given the importance of early feeding, field programs should place greater emphasis on the protozooplankton-ichthyoplankton link to better understand match-mismatch dynamics and bottom-up drivers of year class success in marine fish. PMID:26035592

  7. Developmental expression of otoconin-22 in the bullfrog endolymphatic sac and inner ear.

    PubMed

    Yaoi, Yuichi; Onda, Tomoaki; Hidaka, Yoshie; Yajima, Shinya; Suzuki, Masakazu; Tanaka, Shigeyasu

    2004-05-01

    In amphibians, calcium carbonate crystals are present in the endolymphatic sac and the inner ear. The formation of these crystals is considered to be facilitated by a protein called otoconin-22. We examined the spatial and temporal expression of otoconin-22 during the development of the bullfrog (Rana catesbeiana) using RT-PCR, in situ hybridization (ISH), and immunofluorescence techniques. By RT-PCR, otoconin-22 mRNA was first detected in embryos at Shumway stage 20, and this expression pattern continues in late stages. The first otoconin-22 mRNA-positive reaction was detected in stage 22 embryos in the placode of the endolymphatic sac. Otoconin-22 protein was observed in the epithelial cells of the endolymphatic sac at stage 24. On the other hand, a whole-mount ISH technique showed the first expression of otoconin-22 mRNA in the inner ear, in addition to the endolymphatic sac, at the mid-phase of Shumway stage 25. We discuss the role of otoconin-22 in the formation of calcium carbonate crystals in the endolymphatic sac and inner ear. PMID:15100243

  8. Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin.

    PubMed

    Bouhss, A; Krin, E; Munier, H; Gilles, A M; Danchin, A; Glaser, P; Bârzu, O

    1993-01-25

    The catalytic domain of Bordetella pertussis adenylate cyclase located within the first 400 amino acids of the protein can be cleaved by trypsin in two subdomains (T25 and T18) corresponding to ATP-(T25) and calmodulin (CaM)-(T18) binding sites. Reassociation of subdomains by CaM is a cooperative process, which is a unique case among CaM-activated enzymes. To understand better the molecular basis of this phenomenon, we used several approaches such as partial deletions of the adenylate cyclase gene, isolation of peptides of various size, and site-directed mutagenesis experiments. We found that a stretch of 72 amino acid residues overlapping the carboxyl terminus of T25 and the amino terminus of T18 accounts for 90% of the binding energy of adenylate cyclase-CaM complex. The hydrophobic "side" of the helical region situated around Trp242 plays a major role in the interaction of adenylate cyclase with CaM, whereas basic residues that alternate with acidic residues in bacterial enzyme play a much less important role. The amino-terminal half of the catalytic domain of adenylate cyclase contributes only 10% to the binding energy of CaM, whereas the last 130 amino acid residues are not at all involved in binding. However, these segments of adenylate cyclase might affect protein/protein interaction and catalysis by propagating conformational changes to the CaM-binding sequence which is located in the middle of the catalytic domain of bacterial enzyme. PMID:8420945

  9. Synechocystis Strain PCC 6803 cya2, a Prokaryotic Gene That Encodes a Guanylyl Cyclase

    PubMed Central

    Ochoa de Alda, Jesús A. G.; Ajlani, Ghada; Houmard, Jean

    2000-01-01

    Synechocystis strain PCC 6803 exhibits similar levels of cyclic AMP (cAMP) and cyclic GMP (cGMP). A thorough analysis of its genome showed that Cya2 (Sll0646) has all the sequence determinants required in terms of activity and purine specificity for being a guanylyl cyclase. Insertional mutagenesis of cya2 caused a marked reduction in cGMP content without altering the cAMP content. Thus, Cya2 represents the first example of a prokaryotic guanylyl cyclase. PMID:10851002

  10. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    PubMed Central

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-01-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system. PMID:27580585

  11. Pollen tubes introduce Raspberry bushy dwarf virus into embryo sacs during fertilization processes.

    PubMed

    Isogai, Masamichi; Yoshida, Tetu; Shimura, Takuya; Yoshikawa, Nobuyuki

    2015-10-01

    We developed a fertilization method in which pollen tubes entered into embryo sacs without any need to contact surrounding female sporophytic cells by using Torenia fournieri (Torenia) plants under the condition of hindering movement of the virus from a stigma, which is the first infection site leading to systemic infection. When RBDV-infected Torenia pollen grains were used for the developed fertilization method, the virus was transmitted to the seeds by pollen tubes germinating from them. On the other hand, no seeds were infected with the virus when Torenia plants were pollinated with healthy Torenia pollen grains in combination with RBDV-infected raspberry pollen grains, which caused the virus infection in the stigma by penetration of their pollen tubes arrested in its style. Our results indicate that vertical transmission of RBDV by pollen occurs in the transport of the virus into embryo sacs by pollen tubes reaching the embryo sacs. PMID:26176979

  12. A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems

    NASA Astrophysics Data System (ADS)

    Abd, Thanaa Hussein; Aljunid, Syed Alwee; Fadhil, Hilal Adnan

    2011-12-01

    A new code for reduction the phase induced intensity noise has been presented. The new code is proposed for Spectral Amplitude-Coding Optical Code Division Multiple Accesses (SAC-OCDMA). This new code family we call it Dynamic Cyclic Shift (DCS) code. The DCS code reduced the effect of Multi Access Interference (MAI) due to it is the property of variable cross correlation. We find that the performance of the DCS code is a batter than other SAC-OCDMA codes such as; Random Diagonal (RD) code, Modified Quadratic Congruence (MQC) code and Modified Frequency Hopping (MFH) code. Through the mathematical calculation and simulation analysis, for the bit-error rate of DCS code is significantly better than other SAC-OCDMA codes, the effect of Phase Induced Intensity Noise is reduced. In addition, proofof-principle simulations of 10 Gb/s for 20 km have been successfully demonstrated and achieved low BER compared to the other codes.

  13. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography.

    PubMed

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-01-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system. PMID:27580585

  14. Multiple lineage specific expansions within the guanylyl cyclase gene family

    PubMed Central

    Fitzpatrick, David A; O'Halloran, Damien M; Burnell, Ann M

    2006-01-01

    Background Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within

  15. Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation.

    PubMed

    Colnaghi, R; Rudnick, P; He, L; Green, A; Yan, D; Larson, E; Kennedy, C

    2001-05-01

    GlnD is a pivotal protein in sensing intracellular levels of fixed nitrogen and has been best studied in enteric bacteria, where it reversibly uridylylates two related proteins, PII and GlnK. The uridylylation state of these proteins determines the activities of glutamine synthetase (GS) and NtrC. Results presented here demonstrate that glnD is an essential gene in Azotobacter vinelandii. Null glnD mutations were introduced into the A. vinelandii genome, but none could be stably maintained unless a second mutation was present that resulted in unregulated activity of GS. One mutation, gln-71, occurred spontaneously to give strain MV71, which failed to uridylylate the GlnK protein. The second, created by design, was glnAY407F (MV75), altering the adenylylation site of GS. The gln-71 mutation is probably located in glnE, encoding adenylyltransferase, because introducing the Escherichia coli glnE gene into MV72, a glnD(+) derivative of MV71, restored the regulation of GS activity. GlnK-UMP is therefore apparently required for GS to be sufficiently deadenylylated in A. vinelandii for growth to occur. The DeltaglnD GS(c) isolates were Nif(-), which could be corrected by introducing a nifL mutation, confirming a role for GlnD in mediating nif gene regulation via some aspect of the NifL/NifA interaction. MV71 was unexpectedly NtrC(+), suggesting that A. vinelandii NtrC activity might be regulated differently than in enteric organisms. PMID:11320130

  16. A Rare Case of Primary Anterior Mediastinal Yolk Sac Tumor in an Elderly Adult Male

    PubMed Central

    Nakhla, Sammy G.; Sundararajan, Srinath

    2016-01-01

    Mediastinal germ cell tumors are extragonadal germ cell tumors (EGGCTs) commonly seen in children and young adults. They are more common in men. Clinically they are classified as teratomas, seminomas, and nonseminomatous germ cell tumors. Primary mediastinal yolk sac neoplasm is an extremely rare tumor. We present here a very rare case of primary yolk sac tumor of the anterior mediastinum in a 73-year-old male. Mediastinal germ cell tumors have a worse prognosis than gonadal germ cell tumors. Chemotherapy followed by adjuvant surgery improves overall response in EGGCTs. However, comorbidities can render treatment with chemotherapy and surgery challenging in elderly patients. PMID:27144043

  17. Experimental demonstration of variable weight SAC-OCDMA system for QoS differentiation

    NASA Astrophysics Data System (ADS)

    Seyedzadeh, Saleh; Mahdiraji, Ghafour Amouzad; Sahbudin, Ratna Kalos Zakiah; Abas, Ahmad Fauzi; Anas, Siti Barirah Ahmad

    2014-10-01

    In this paper the experimental and simulation results of variable-weight spectral amplitude coding optical code division multiple access (VW-SAC-OCDMA) system is demonstrated. In the proposed system, three users with weights of 6, 4 and 2 each operating at data rate of 1.25 Gb/s represent video, data and voice services, respectively. Results show that for back-to-back system minimum average power of -20 dBm per chip is required to maintain the acceptable performance. Transmission up to 60 km of fiber is demonstrated. Using mathematical approximation the capacity of VW-SAC-OCDMA system is demonstrated.

  18. Postcranial skeletal pneumaticity and air-sacs in the earliest pterosaurs

    PubMed Central

    Butler, Richard J.; Barrett, Paul M.; Gower, David J.

    2009-01-01

    Patterns of postcranial skeletal pneumatization (PSP) indicate that pterosaurs possessed components of a bird-like respiratory system, including a series of ventilatory air-sacs. However, the presence of PSP in the oldest known pterosaurs has not been unambiguously demonstrated by previous studies. Here we provide the first unequivocal documentation of PSP in Late Triassic and earliest Jurassic pterosaurs. This demonstrates that PSP and, by inference, air-sacs were probably present in the common ancestor of almost all known pterosaurs, and has broader implications for the evolution of respiratory systems in bird-line archosaurs, including dinosaurs. PMID:19411265

  19. A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases

    PubMed Central

    Kots, Alexander Y.; Martin, Emil; Sharina, Iraida G.

    2014-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules. PMID:19089322

  20. Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR

    PubMed Central

    De, Nabanita; Navarro, Marcos V.A.S.; Raghavan, Rahul V.; Sondermann, Holger

    2009-01-01

    The bacterial second messenger c-di-GMP controls secretion, cell adhesion and motility leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver (REC) and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity. PMID:19695263

  1. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  2. Cytochemical localization of adenylate cyclase in the various tissues of Locusta migratoria (migratorioides R.F.).

    PubMed

    Benedeczky, I; Rózsa, K S

    1981-01-01

    The ultrastructural cytochemical procedure to demonstrate adenyl cyclase in mammalian organs was used in insects. After several modifications, an utilizable method was applied for the detection of the enzyme in the various tissues. Adenylate cyclase which can be stimulated with octopamine was localized on the membrane of the glial cells and the axolemma of certain large axons in the insect brain. Adenylate cyclase which could be activated by NaF and isoproterenol was also demonstrated in the lipid droplets of glial cells of the brain. With the simultaneous application of NaF and isoproterenol, rather strong adenylate cyclase activity could be detected on the surface of the corpora allata cells both in the cells situated on the glandular surface and the central part of the gland. In contrast in the corpus cardiacum enzyme activity was only observable on the basal lamina of the glandular surface. An appreciable amount of reaction product, indicating the presence of the enzyme, could be found on the surface of the lipid droplets in the fat body situated near the glandular tissues. In the heart muscle, reaction product referring to enzyme activation could not be demonstrated with the help of the methods applied. PMID:7216835

  3. Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids.

    PubMed

    Tippelt, A; Jahnke, L; Poralla, K

    1998-03-30

    We report the cloning and characterisation of the Methylococcus capsulatus shc gene, which encodes the squalene-hopene cyclase (SHC). This enzyme catalyses the complex cyclization of squalene to the pentacyclic triterpene skeleton of hopanoids and represents the key reaction in this biosynthesis. Using a combination of PCR amplification and DNA hybridization, two overlapping 2.6 kb PstI and 3.3 kb SalI DNA fragments were cloned bearing a 1962 bp open reading frame encoding a 74 kDa protein with 654 amino acids and a predicted isoelectric point at about pH 6.3. The deduced amino acid sequence of the M. capsulatus shc gene showed significant similarity to known prokaryotic SHCs and to a lesser degree to the related eukaryotic oxidosqualene cyclases (OSCs). Like other triterpene cyclases, the M. capsulatus SHC contains seven so-called QW-motifs as well as an aspartate-rich domain. The recombinant M. capsulatus SHC was expressed in Escherichia coli and in vitro activity of the recombinant cyclase was demonstrated using crude cell-free lysate or solubilized membrane preparation. The cyclization products hop-22-ene and hopan-22-ol (diplopterol) were identified by GC and GC-MS. PMID:9555026

  4. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    SciTech Connect

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E. Univ. of California, Los Angeles )

    1987-12-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the {beta}-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the {beta}-adrenergic pathway, adenylate cyclase activity and {beta}-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. {beta}-Adrenergic receptors were identified in BAT using ({sup 125}I)iodocyanopindolol. Binding sites had the characteristics of mixed {beta}{sub 1}- and {beta}{sub 2}-type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in {beta}-adrenergic receptor density due to a loss of the {beta}{sub 1}-adrenergic subtype. This BAT {beta}-adrenergic receptor downregulation was tissue specific, since myocardial {beta}-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of {beta}-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability.

  5. 48 CFR 301.603-74 - Requirement for retention of FAC-C and HHS SAC certification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of FAC-C and HHS SAC certification. 301.603-74 Section 301.603-74 Federal Acquisition Regulations..., Contracting Authority, and Responsibilities 301.603-74 Requirement for retention of FAC-C and HHS SAC certification. To maintain FAC-C certification, all warranted Contracting Officers, regardless of series,...

  6. 48 CFR 301.603-74 - Requirement for retention of FAC-C and HHS SAC certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of FAC-C and HHS SAC certification. 301.603-74 Section 301.603-74 Federal Acquisition Regulations..., Contracting Authority, and Responsibilities 301.603-74 Requirement for retention of FAC-C and HHS SAC certification. To maintain FAC-C certification, all warranted Contracting Officers, regardless of series,...

  7. NO-Mediated [Ca2+]cyt Increases Depend on ADP-Ribosyl Cyclase Activity in Arabidopsis1[OPEN

    PubMed Central

    Hotta, Carlos T.; Davey, Matthew P.; Dodd, Antony N.

    2016-01-01

    Cyclic ADP ribose (cADPR) is a Ca2+-mobilizing intracellular second messenger synthesized from NAD by ADP-ribosyl cyclases (ADPR cyclases). In animals, cADPR targets the ryanodine receptor present in the sarcoplasmic/endoplasmic reticulum to promote Ca2+ release from intracellular stores to increase the concentration of cytosolic free Ca2+ in Arabidopsis (Arabidopsis thaliana), and cADPR has been proposed to play a central role in signal transduction pathways evoked by the drought and stress hormone, abscisic acid, and the circadian clock. Despite evidence for the action of cADPR in Arabidopsis, no predicted proteins with significant similarity to the known ADPR cyclases have been reported in any plant genome database, suggesting either that there is a unique route for cADPR synthesis or that a homolog of ADPR cyclase with low similarity might exist in plants. We sought to determine whether the low levels of ADPR cyclase activity reported in Arabidopsis are indicative of a bona fide activity that can be associated with the regulation of Ca2+ signaling. We adapted two different fluorescence-based assays to measure ADPR cyclase activity in Arabidopsis and found that this activity has the characteristics of a nucleotide cyclase that is activated by nitric oxide to increase cADPR and mobilize Ca2+. PMID:26932235

  8. Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942.

    PubMed

    Cunningham, F X; Sun, Z; Chamovitz, D; Hirschberg, J; Gantt, E

    1994-08-01

    A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme. PMID:7919981

  9. Mechanisms of nonhormonal activation of adenylate cyclase based on target analysis

    SciTech Connect

    Verkman, A.S.; Ausiello, D.A.; Jung, C.Y.; Skorecki, K.L.

    1986-08-12

    Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn/sup 2 +/), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously (Verkman, A. S., Skorecki, K. L., and Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123) and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.

  10. Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads

    NASA Astrophysics Data System (ADS)

    Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.

    2013-08-01

    Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.

  11. Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs.

    PubMed

    Wang, Xian-You; Wang, Ping; Qi, Yi-Ping; Zhou, Chen-Ping; Yang, Lin-Tong; Liao, Xin-Yan; Wang, Liu-Qing; Zhu, Dong-Huang; Chen, Li-Song

    2014-02-15

    We investigated the effects of granulation on organic acid metabolism and its relation to mineral elements in 'Guanximiyou' pummelo (Citrus grandis) juice sacs. Granulated juice sacs had decreased concentrations of citrate and isocitrate, thus lowering juice sac acidity. By contrast, malate concentration was higher in granulated juice sacs than in normal ones. The reduction in citrate concentration might be caused by increased degradation, as indicated by enhanced aconitase activity, whilst the increase in malate concentration might be caused by increased biosynthesis, as indicated by enhanced phosphoenolpyruvate carboxylase (PEPC). Real time quantitative reverse transcription PCR (qRT-PCR) analysis showed that the activities of most acid-metabolizing enzymes were regulated at the transcriptional level, whilst post-translational modifications might influence the PEPC activity. Granulation led to increased accumulation of mineral elements (especially phosphorus, magnesium, sulphur, zinc and copper) in juice sacs, which might be involved in the incidence of granulation in pummelo fruits. PMID:24128573

  12. 2 CFR Appendix X to Part 200 - Data Collection Form (Form SF-SAC)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Data Collection Form (Form SF-SAC) X Appendix X to Part 200 Grants and Agreements Office of Management and Budget Guidance for Grants and... PRINCIPLES, AND AUDIT REQUIREMENTS FOR FEDERAL AWARDS Pt. 200, App. X Appendix X to Part 200—Data...

  13. Bleomycin-Induced Flagellate Erythema in a Patient Diagnosed with Ovarian Yolk Sac Tumor

    PubMed Central

    Boussios, Stergios; Moschetta, Michele; McLachlan, Jennifer; Banerjee, Susana

    2015-01-01

    Flagellate linear hyperpigmentation can rarely be caused by the chemotherapy agent, bleomycin. Herein, we describe the case of a 20-year-old woman treated with bleomycin for an ovarian yolk sac tumor and review the prominent features of this form of dermatitis. PMID:26798532

  14. Ventilation patterns of the songbird lung/air sac system during different behaviors

    PubMed Central

    Mackelprang, Rebecca; Goller, Franz

    2013-01-01

    SUMMARY Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system. PMID:23788706

  15. Late Sac Behavior after Endovascular Aneurysm Repair for Abdominal Aortic Aneurysm

    PubMed Central

    Okada, Masahiro; Onohara, Toshihiro; Okamoto, Minoru; Yamamoto, Tsuyoshi; Shimoe, Yasushi; Yamashita, Masafumi; Takahashi, Toshiki; Kishimoto, Jyunji; Mizuno, Akihiro; Kei, Junichi; Nakai, Mikizou; Sakaki, Masayuki; Suhara, Hitoshi; Kasashima, Fuminori; Endo, Masamitsu; Nishina, Takeshi; Furuyama, Tadashi; Kawasaki, Masakazu; Iwata, Keiji; Marumoto, Akira; Urata, Yasuhisa; Sato, Katsutoshi; Ryugo, Masahiro

    2016-01-01

    Background: Sac behavior after endovascular aneurysm repair (EVAR) for abdominal aortic aneurysms (AAAs) is considered as a surrogate for the risk of late rupture. The purpose of the study is to assess the sac behavior of AAAs after EVAR. Methods and Results: Late sac enlargement (LSE) (≥5 mm) and late sac shrinkage (LSS) (≥5 mm) were analyzed in 589 consecutive patients who were registered at 14 national centers in Japan. The proportions of patients who had LSE at 1, 3 and 5 years were 2.6% ± 0.7%, 10.0% ± 1.6% and 19.0% ± 2.9%. The proportions of patients who had LSS at 1, 3 and 5 years were 50.1% ± 0.7%, 59.2% ± 2.3% and 61.7% ± 2.7%. Multiple logistic regression analysis identified two variables as a risk factor for LSE; persistent endoleak (Odds ratio 9.56 (4.84–19.49), P <0.001) and low platelet count (Odds ratio 0.92 (0.86–0.99), P = 0.0224). The leading cause of endoleak in patients with LSE was type II. Conclusions: The incidence of LSE is not negligible over 5 year period. Patients with persistent endoleak and/or low platelet count should carefully be observed for LSE. Clinical Trial Registration: UMIN-CTR (UMIN000008345). PMID:27375803

  16. 48 CFR 301.603-72 - FAC-C and HHS SAC certification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false FAC-C and HHS SAC certification requirements. 301.603-72 Section 301.603-72 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career Development, Contracting Authority,...

  17. 48 CFR 301.603-72 - FAC-C and HHS SAC certification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false FAC-C and HHS SAC certification requirements. 301.603-72 Section 301.603-72 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career Development, Contracting Authority, and Responsibilities 301.603-72 FAC-C and HHS...

  18. Bleomycin-Induced Flagellate Erythema in a Patient Diagnosed with Ovarian Yolk Sac Tumor.

    PubMed

    Boussios, Stergios; Moschetta, Michele; McLachlan, Jennifer; Banerjee, Susana

    2015-01-01

    Flagellate linear hyperpigmentation can rarely be caused by the chemotherapy agent, bleomycin. Herein, we describe the case of a 20-year-old woman treated with bleomycin for an ovarian yolk sac tumor and review the prominent features of this form of dermatitis. PMID:26798532

  19. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    PubMed

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor. PMID:23604259

  20. 48 CFR 301.603-72 - FAC-C and HHS SAC certification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to employees for the first time at a department or agency.) (c) The FAC-C certification is based on... Training and Certification Handbook. (d) HHS SAC certification is based on three sets of requirements... the HHS Contracting Workforce Training and Certification Handbook....

  1. 48 CFR 301.603-72 - FAC-C and HHS SAC certification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to employees for the first time at a department or agency.) (c) The FAC-C certification is based on... Training and Certification Handbook. (d) HHS SAC certification is based on three sets of requirements... the HHS Contracting Workforce Training and Certification Handbook....

  2. 48 CFR 301.603-72 - FAC-C and HHS SAC certification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to employees for the first time at a department or agency.) (c) The FAC-C certification is based on... Training and Certification Handbook. (d) HHS SAC certification is based on three sets of requirements... the HHS Contracting Workforce Training and Certification Handbook....

  3. An observing system simulation experiment (OSSE) for the aquarius/SAC-D soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Observing System Simulation Experiment for the Aquarius/SAC-D mission has been developed for assessing the accuracy of soil moisture retrievals from passive L-band remote sensing. The implementation of the OSSE is based on: a 1-km land surface model over the Red-Arkansas River Basin, a forward mi...

  4. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors.

    PubMed

    Gomez Perdiguero, Elisa; Klapproth, Kay; Schulz, Christian; Busch, Katrin; Azzoni, Emanuele; Crozet, Lucile; Garner, Hannah; Trouillet, Celine; de Bruijn, Marella F; Geissmann, Frederic; Rodewald, Hans-Reimer

    2015-02-26

    Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages. PMID:25470051

  5. Regulation of ascorbic acid metabolism by blue LED light irradiation in citrus juice sacs.

    PubMed

    Zhang, Lancui; Ma, Gang; Yamawaki, Kazuki; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Ohta, Satoshi; Kato, Masaya

    2015-04-01

    In the present study, the effects of red and blue LED lights on the accumulation of ascorbic acid (AsA) were investigated in the juice sacs of three citrus varieties, Satsuma mandarin, Valencia orange, and Lisbon lemon. The results showed that the blue LED light treatment effectively increased the AsA content in the juice sacs of the three citrus varieties, whereas the red LED light treatment did not. By increasing the blue LED light intensity, the juice sacs of the three citrus varieties accumulated more AsA. Moreover, continuous irradiation with blue LED light was more effective than pulsed irradiation for increasing the AsA content in the juice sacs of the three citrus varieties. Gene expression results showed that the modulation of AsA accumulation by blue LED light was highly regulated at the transcription level. The up-regulation of AsA biosynthetic genes (CitVTC1, CitVTC2, CitVTC4, and CitGLDH), AsA regeneration genes (CitMDAR1, CitMDAR2, and CitDHAR) and two GSH-producing genes (CitGR and CitchGR) contributed to these increases in the AsA content in the three citrus varieties. PMID:25711821

  6. Cells of the connective tissue differentiate and migrate into pollen sacs

    NASA Astrophysics Data System (ADS)

    Iqbal, M. C. M.; Wijesekara, Kolitha B.

    2002-01-01

    In angiosperms, archesporial cells in the anther primordium undergo meiosis to form haploid pollen, the sole occupants of anther sacs. Anther sacs are held together by a matrix of parenchyma cells, the connective tissue. Cells of the connective tissue are not known to differentiate. We report the differentiation of parenchyma cells in the connective tissue of two Gordonia species into pollen-like structures (described as pseudopollen), which migrate into the anther sacs before dehiscence. Pollen and pseudopollen were distinguishable by morphology and staining. Pollen were tricolpate to spherical while pseudopollen were less rigid and transparent with a ribbed surface. Both types were different in size, shape, staining and surface architecture. The ratio of the number of pseudopollen to pollen was 1:3. During ontogeny in the connective tissue, neither cell division nor tetrad formation was observed and hence pseudopollen were presumed to be diploid. Only normal pollen germinated on a germination medium. Fixed preparations in time seemed to indicate that pseudopollen migrate from the connective tissue into the anther sac.

  7. Entire lacrimal sac within the ethmoid sinus: outcomes of powered endoscopic dacryocystorhinostomy

    PubMed Central

    Ali, Mohammad Javed; Singh, Swati; Naik, Milind N

    2016-01-01

    Background The aim of this study was to report the outcomes of powered endoscopic dacryocystorhinostomy (PEnDCR) in patients with lacrimal sac within the sinus. Materials and methods Retrospective analysis was performed on all patients who underwent PEnDCR and were intraoperatively documented to have complete lacrimal sac in sinus. Data collected included demographics, clinical presentations, associated lacrimal and nasal anomalies, intraoperative findings, intraoperative guidance, complications, postoperative ostium behavior, and anatomical and functional success. A minimum follow-up of 6 months postsurgery was considered for final analysis. Results A total of 17 eyes of 15 patients underwent PEnDCR using standard protocols, but with additional intraoperative guidance where required and careful maneuvering in the ethmoid sinus. The mean age of the patients was 37.2 (range 17–60) years. Of the unilateral cases, 69% (nine of 13) showed left-side predisposition; 80% of patients showed regurgitation on pressure over the lacrimal sac area. Associated lacrimal and nasal anomalies were observed in 13.3% (two of 15) and 40% (six of 15), respectively. At a mean follow-up of 6.6 months, anatomical and functional success were observed in 93.3% (14 of 15). One patient showed failure secondary to cicatricial closure of the ostium. Conclusion An entire sac within an ethmoid sinus poses a surgical challenge. Good sinus-surgery training, thorough knowledge of endoscopic anatomy, careful maneuvering, and use of intraoperative navigation guidance result in good outcomes with PEnDCR. PMID:27462137

  8. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness

    PubMed Central

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid–solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  9. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness.

    PubMed

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  10. Primitive Fitting Based on the Efficient multiBaySAC Algorithm

    PubMed Central

    Kang, Zhizhong; Li, Zhen

    2015-01-01

    Although RANSAC is proven to be robust, the original RANSAC algorithm selects hypothesis sets at random, generating numerous iterations and high computational costs because many hypothesis sets are contaminated with outliers. This paper presents a conditional sampling method, multiBaySAC (Bayes SAmple Consensus), that fuses the BaySAC algorithm with candidate model parameters statistical testing for unorganized 3D point clouds to fit multiple primitives. This paper first presents a statistical testing algorithm for a candidate model parameter histogram to detect potential primitives. As the detected initial primitives were optimized using a parallel strategy rather than a sequential one, every data point in the multiBaySAC algorithm was assigned to multiple prior inlier probabilities for initial multiple primitives. Each prior inlier probability determined the probability that a point belongs to the corresponding primitive. We then implemented in parallel a conditional sampling method: BaySAC. With each iteration of the hypothesis testing process, hypothesis sets with the highest inlier probabilities were selected and verified for the existence of multiple primitives, revealing the fitting for multiple primitives. Moreover, the updated version of the initial probability was implemented based on a memorable form of Bayes’ Theorem, which describes the relationship between prior and posterior probabilities of a data point by determining whether the hypothesis set to which a data point belongs is correct. The proposed approach was tested using real and synthetic point clouds. The results show that the proposed multiBaySAC algorithm can achieve a high computational efficiency (averaging 34% higher than the efficiency of the sequential RANSAC method) and fitting accuracy (exhibiting good performance in the intersection of two primitives), whereas the sequential RANSAC framework clearly suffers from over- and under-segmentation problems. Future work will aim at further

  11. The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase

    PubMed Central

    Bauer, Robert J.; Evans, Thomas C.; Lohman, Gregory J. S.

    2016-01-01

    DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site. PMID:26954034

  12. Gonadoblastoma and hepatoid and endometrioid-like yolk sac tumor: an update.

    PubMed

    Ulbright, Thomas M

    2014-07-01

    Dr Robert E. Scully greatly advanced our understanding of germ cell neoplasia to the extent that it is difficult to narrow the discussion of his contributions to this topic so that it can be covered in a brief article. This article accordingly focuses on some of the recent developments concerning 2 of his major contributions in this area-the gonadoblastoma (GB) and variant morphologies of yolk sac tumor. GB was defined by Dr Scully in 1953 and its features elaborated in detail by him in 1970. This neoplasm occurred in young patients who often displayed phenotypic sex ambiguities and frequently presented with primary amenorrhea. It was bilateral in 40%, and consisted of circumscribed nests of small sex cord cells and germinoma-like cells admixed with round deposits of eosinophilic, hyaline, often calcified material. These nests were set in a spindle cell gonadal stroma with Leydig-like or lutein-like cells. Because of his work we now understand that this precursor to invasive germ cell tumors occurs in patients with a specific form of disorder of sex development, namely gonadal dysgenesis, and only in those who have a particular portion of the Y chromosome, the GB locus/TSPY gene, within the gonadal tissue. An essential element to the development of GB appears to be a defect in the genetic pathway that leads to the development of Sertoli cells. Improperly formed Sertoli cells predispose to "delayed maturation" of the gonocytes of the gonad and predispose them to undergo malignant transformation. "Undifferentiated gonadal tissue" has been proposed as the precursor to the development of GB and consists of an unorganized mixture of apparently non-neoplastic germ cells, germ cells with delayed maturation, and neoplastic germ cells with sex cord cells and gonadal stroma. Two variant morphologies of yolk sac tumor were also recognized by Dr Scully. In the hepatoid variant features similar to hepatocellular carcinoma occurred, although primitive glandular foci and lack of

  13. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs

    PubMed Central

    Tamura, Naohisa; Doolittle, Lynda K.; Hammer, Robert E.; Shelton, John M.; Richardson, James A.; Garbers, David L.

    2004-01-01

    Guanylyl cyclase B is the receptor for a small peptide (C-type natriuretic peptide) produced locally in many different tissues. To unravel the functions of the receptor, we generated mice lacking guanylyl cyclase B through gene targeting. Expression of the receptor mRNA in tissues such as bone and female reproductive organs was evident, and significant phenotypes associated with each of these tissues were apparent in null mice. A dramatic impairment of endochondral ossification and an attenuation of longitudinal vertebra or limb-bone growth were seen in null animals. C-type natriuretic peptide-dependent increases of guanylyl cyclase B activity, but not basal enzyme activity, appeared to be required for the progression of endochondral ossification. Female mice were infertile, but male mice were not. This result was due to the failure of the female reproductive tract to develop. Thus, the guanylyl cyclase B receptor is critical for the development of both bone and female reproductive organs. PMID:15572448

  14. New development of the yolk sac theory in diabetic embryopathy: molecular mechanism and link to structural birth defects.

    PubMed

    Dong, Daoyin; Reece, E Albert; Lin, Xue; Wu, Yanqing; AriasVillela, Natalia; Yang, Peixin

    2016-02-01

    Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies. PMID:26432466

  15. Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells

    PubMed Central

    Sarkar, Shayan; Jain, Sumeet; Rai, Vineeta; Sahoo, Dipak K.; Raha, Sumita; Suklabaidya, Sujit; Senapati, Shantibhusan; Rangnekar, Vivek M.; Maiti, Indu B.; Dey, Nrisingha

    2015-01-01

    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era. PMID:26500666

  16. Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products.

    PubMed

    Reddy, P; Peterkofsky, A; McKenney, K

    1989-12-25

    We describe the construction of a new generation of vectors (pRE) for the hyperexpression of lethal gene products such as adenylate cyclase in Escherichia coli. The pRE vectors are based on the lambda PL promoter and lambda cII ribosome binding site described by Shimatake and Rosenberg (Nature, 292, 128-132, 1981). They have a unique NdeI restriction endonuclease site 3' of the lambda cII ribosome binding site that includes the ATG initiation codon, multilinker cloning sites 3' to the NdeI site, and two lambda transcription terminators 5' and 3' of the lambda PL promoter to eliminate nonspecific transcription and reduce leaky PL transcription, respectively. For hyperexpression of adenylate cyclase, tight control of transcription was necessary since elevation of cAMP levels above the physiological range is lethal to E. coli. Lethality associated with the overproduction of adenylate cyclase was shown to be mediated through the cAMP receptor protein. We used this expression system to overproduce adenylate cyclase 7500 fold, corresponding to 30% of the total cellular protein. Under these conditions the enzyme precipitated with significant loss of activity. Reducing the rate and amount of adenylate cyclase expression to 16% of the total cell protein produced one fourth of the enzyme in a soluble form with high specific activity. The soluble adenylate cyclase was purified to near homogeneity. PMID:2557591

  17. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  18. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans.

    PubMed

    Hallem, Elissa A; Spencer, W Clay; McWhirter, Rebecca D; Zeller, Georg; Henz, Stefan R; Rätsch, Gunnar; Miller, David M; Horvitz, H Robert; Sternberg, Paul W; Ringstad, Niels

    2011-01-01

    CO(2) is both a critical regulator of animal physiology and an important sensory cue for many animals for host detection, food location, and mate finding. The free-living soil nematode Caenorhabditis elegans shows CO(2) avoidance behavior, which requires a pair of ciliated sensory neurons, the BAG neurons. Using in vivo calcium imaging, we show that CO(2) specifically activates the BAG neurons and that the CO(2)-sensing function of BAG neurons requires TAX-2/TAX-4 cyclic nucleotide-gated ion channels and the receptor-type guanylate cyclase GCY-9. Our results delineate a molecular pathway for CO(2) sensing and suggest that activation of a receptor-type guanylate cyclase is an evolutionarily conserved mechanism by which animals detect environmental CO(2). PMID:21173231

  19. Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus Fusarium fujikuroi.

    PubMed

    Burkhardt, Immo; Siemon, Thomas; Henrot, Matthias; Studt, Lena; Rösler, Sarah; Tudzynski, Bettina; Christmann, Mathias; Dickschat, Jeroen S

    2016-07-18

    Two sesquiterpene cyclases from Fusarium fujikuroi were expressed in Escherichia coli and purified. The first enzyme was inactive because of a critical mutation, but activity was restored by sequence correction through site-directed mutagenesis. The mutated enzyme and two naturally functional homologues from other fusaria converted farnesyl diphosphate into guaia-6,10(14)-diene. The second enzyme produced eremophilene. The absolute configuration of guaia-6,10(14)-diene was elucidated by enantioselective synthesis, while that of eremophilene was evident from the sign of its optical rotation and is opposite to that in plants but the same as in Sorangium cellulosum. The mechanisms of both terpene cyclases were studied with various (13) C- and (2) H-labelled FPP isotopomers. PMID:27294564

  20. Bilateral ovarian mixed epithelial adenocarcinoma in a postmenopausal woman with unilateral ovarian yolk sac tumor component.

    PubMed

    Chen, Qin; Chen, Xiaoduan

    2014-01-01

    Ovarian yolk sac tumors (YSTs) usually occur in the young women and have been rarely documented in perimenopausal and postmenopausal women. The different age distribution supposes their complex nomenclature and histogenesis. We report a case of bilateral ovarian epithelial carcinoma with right ovarian YST component in a postmenopausal woman. The patient was treated by surgery and adjuvant combination chemotherapy of taxol and carboplatin for 6 courses and has been clinically free of tumor for 6 months. The correlation between the YST and the epithelial components always confuse us. Ovarian yolk sac tumors are not a discrete entity and represent a multifaceted group of neoplasms. The conjunction of multi antibodies help in differential diagnoses. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed. PMID:25550883

  1. Gallbladder herniation into the lesser sac through the foramen of Winslow: report of a case.

    PubMed

    Numata, Koji; Kunishi, Yosuke; Kurakami, Yuichi; Tsuchida, Kazuhito; Yoshida, Tatsuya; Osaragi, Tomohiko; Yoneyama, Katsuya; Kasahara, Akio; Yamamoto, Yuuji; Yukawa, Norio; Rino, Yasushi; Masuda, Munetaka

    2013-10-01

    We report a case of gallbladder hernia into the lesser sac through the foramen of Winslow. The patient was a 90-year-old woman, admitted to hospital with obstructive jaundice. Computed tomography (CT) showed a left-deviated and remarkably enlarged gallbladder dragging the liver, and a dilated intrahepatic bile duct. The deviated gallbladder was thought to compress the common bile duct, causing the obstruction. Laparoscopic examination revealed gallbladder herniation into the lesser sac without a floating gallbladder; thus, we performed laparoscopic cholecystectomy. Herniation of the gallbladder is the rarest of all internal hernias and most reported cases have involved a floating gallbladder. The case we report here is therefore considered especially unusual. PMID:23338597

  2. Multi-level security for computer networking: SAC digital network approach

    SciTech Connect

    Griess, W.; Poutre, D.L.

    1983-10-01

    For telecommunications systems simultaneously handling data of different security levels, multilevel secure (MLS) operation permits maximum use of resources by automatically providing protection to users with various clearances and needs-to-know. The strategic air command (SAC) is upgrading the primary record data system used to command and control its strategic forces. The upgrade, called the SAC Digital Network (SACDIN), is designed to provide multilevel security to support users and external interfaces, with allowed accesses ranging from unclassified to top secret. SACDIN implements a security kernel based upon the Bell and Lapadula security model. This study presents an overview of the SACDIN security architecture and describes the basic message flow across the MLS network. 7 references.

  3. Development of SAC-OCDMA in FSO with multi-wavelength laser source

    NASA Astrophysics Data System (ADS)

    Moghaddasi, Majid; Mamdoohi, Ghazaleh; Muhammad Noor, Ahmad Shukri; Mahdi, Mohd Adzir; Ahmad Anas, Siti Barirah

    2015-12-01

    We propose and demonstrate a free space optical network, based on spectral amplitude coding optical code division multiple access (SAC-OCDMA) with a multi-wavelength laser source. A detailed theoretical analysis that represents the characteristics of SAC-OCDMA system was developed. In addition to the impact of turbulence, influences of several system noises such as optical beat interference (OBI), relative intensity noise, and receiver noises, have been studied. From the numerical results, it was found that the influence of OBI is more dominant, especially at higher received power. Two different codes, namely, modified quadratic congruence and modified double weight, are then compared with the latter which provides better performance. A transmission distance of 2.6 km with 10 users and an 8 cm aperture diameter is advisable whenever the turbulence is moderate. These results can be improved when a beam divergence smaller than 1 mrad is utilized.

  4. Lacrimal sac compression by an anterior ethmoidal mucocele presenting as a late complication of dacryocystorhinostomy

    PubMed Central

    Olaleye, Oladejo; Salleh, Shizalia; David, Don; Bickerton, Richard

    2013-01-01

    This was an unusual case of lacrimal sac compression by an anterior ethmoidal mucocele presenting as a late complication of a dacryocystorhinostomy (DCR) that was jointly managed by ophthalmic and ENT surgeons via an endoscopic approach. A 22-year-old lady presented with a 12-month history of a painless lump in her left medial canthus area and a 6-month history of left intermittent epiphora. She had a DCR when she was 15 years old with initial symptom control until recent recurrence. There were no nasal or other eye symptoms. The rest of the eye and nasendoscopic examinations were unremarkable. An MRI scan suggested a dacryocystocele; however, a further CT scan revealed a 1.6 cm cystic lesion consistent with an anterior ethmoidal mucocele compressing the lacrimal sac. An endoscopic left anterior ethmoidectomy with marsupialisation of the mucocele was performed in combination with an endoscopic DCR. She made good post-operative recovery. PMID:24964413

  5. A Rare Case of Endolymphatic Sac Tumour: Clinicopathologic Study and Surgical Management

    PubMed Central

    Ferri, Emanuele; Amadori, Maurizio; Armato, Enrico; Pavon, Ida

    2014-01-01

    Objective. Endolymphatic sac tumor (ELST) is a rare neoplasm arising from the intrapetrous portion of the endolymphatic sac, either isolated or in association with the von Hippel-Lindau disease. We report a sporadic case of ELST with an overview of the literature and a discussion of clinic-radiological, histopathologic, and surgical findings. Case Report. A young woman presented with a progressive hearing loss in the left ear. Otoscopy showed a reddish, bleeding hypotympanic mass. CT demonstrated an expansile lytic mastoid lesion extending to the middle ear, with bone erosion. MRI confirmed a lesion of increased signal on T1-weighted sequences. The patient underwent a canal wall-down tympanoplasty with complete removal of the tumor. Histopathology was consistent with a papillary ELST. Immunohistochemistry was positive for cytokeratin and chromogranin A. Conclusion. This paper highlights the rarity of ELST, the need for an accurate neuroradiological and immunohistochemical study at the early stages, and the timeliness of surgical treatment. PMID:24991442

  6. Low-grade adenocarcinoma of endolymphatic sac mimicking jugular paraganglioma at clinical and neuroradiological examination.

    PubMed

    Roncaroli, F; Giangaspero, F; Piana, S; Andreoli, A; Ricci, R

    1997-01-01

    We report a case of low-grade adenocarcinoma of endolymphatic sac origin mimicking jugular paraganglioma at clinical and neuroradiological examination. The lesion occurred in a 72-year-old male who presented with a long-standing history of right-sided hearing loss and a few-week history of progressive facial nerve palsy and right aural pain. At histology, the tumor was composed of pseudoglandular spaces with papillary infoldings. Lumina contained colloid-like material. The lesion was surgically removed with suboccipital approach following endoarterial embolization. This study emphasizes that low-grade adenocarcinomas of endolymphatic sac origin extending to posterior cranial fossa and jugular paraganglioma may be indistinguishable preoperatively at clinical and radiological levels. PMID:9323449

  7. Adenylate cyclase responsiveness to hormones in various portions of the human nephron.

    PubMed Central

    Chabardès, D; Gagnan-Brunette, M; Imbert-Teboul, M; Gontcharevskaia, O; Montégut, M; Clique, A; Morel, F

    1980-01-01

    The action sites for parathyroid hormone (PTH), salmon calcitonin (SCT), and arginine-vasopressin (AVP) were investigated along the human nephron by measuring adenylate cyclase activity, using a single tubule in vitro microassay. Well-localized segments of tubule were isolated by microdissection from five human kidneys unsuitable for transplantation. PTH (10 IU/ml) increased adenylate cyclase activity in the convoluted and the straight proximal tubule, in the medullary and cortical portions of the thick ascending limb, and in the early portion of the distal convoluted tubule (corresponding stimulated:basal activity ratios were 64, 19, 10, 18, and 22, respectively). SCT (10 ng/ml) increased adenylate cyclase activity in the medullary and cortical portions of the thick ascending limb, in the early portion of the distal convoluted tubule, and, to a lesser extent, in the cortical and the medullay collecting tubule (activity ratios were 7, 14, 15, 3, and 3, respectively). AVP (1 microM) stimulated adenylate cyclase activity in the terminal nephron segments only, i.e., the late portion of the distal convoluted tubule, the cortical and medullary portions of the collecting tubule (activity ratios 81, 51, and 97, respectively). As measured in one experiment, nearly one-half maximal responses were obtained with 0.1 IU/ml PTH or 0.3 ng/ml SCT in thick ascending limbs and with 1 nM AVP in collecting tubules, suggesting that enzyme sensitivity to hormones as well preserved under the conditions used in this study. PMID:7356689

  8. Control of the Diadenylate Cyclase CdaS in Bacillus subtilis

    PubMed Central

    Mehne, Felix M. P.; Schröder-Tittmann, Kathrin; Eijlander, Robyn T.; Herzberg, Christina; Hewitt, Lorraine; Kaever, Volkhard; Lewis, Richard J.; Kuipers, Oscar P.; Tittmann, Kai; Stülke, Jörg

    2014-01-01

    The Gram-positive bacterium Bacillus subtilis encodes three diadenylate cyclases that synthesize the essential signaling nucleotide cyclic di-AMP. The activities of the vegetative enzymes DisA and CdaA are controlled by protein-protein interactions with their conserved partner proteins. Here, we have analyzed the regulation of the unique sporulation-specific diadenylate cyclase CdaS. Very low expression of CdaS as the single diadenylate cyclase resulted in the appearance of spontaneous suppressor mutations. Several of these mutations in the cdaS gene affected the N-terminal domain of CdaS. The corresponding CdaS mutant proteins exhibited a significantly increased enzymatic activity. The N-terminal domain of CdaS consists of two α-helices and is attached to the C-terminal catalytically active diadenylate cyclase (DAC) domain. Deletion of the first or both helices resulted also in strongly increased activity indicating that the N-terminal domain serves to limit the enzyme activity of the DAC domain. The structure of YojJ, a protein highly similar to CdaS, indicates that the protein forms hexamers that are incompatible with enzymatic activity of the DAC domains. In contrast, the mutations and the deletions of the N-terminal domain result in conformational changes that lead to highly increased enzymatic activity. Although the full-length CdaS protein was found to form hexamers, a truncated version with a deletion of the first N-terminal helix formed dimers with high enzyme activity. To assess the role of CdaS in sporulation, we assayed the germination of wild type and cdaS mutant spores. The results indicate that cyclic di-AMP formed by CdaS is required for efficient germination. PMID:24939848

  9. An improved technique for the rapid chemical characterisation of bacterial terpene cyclases.

    PubMed

    Dickschat, Jeroen S; Pahirulzaman, Khomaizon A K; Rabe, Patrick; Klapschinski, Tim A

    2014-04-14

    A derivative of the pET28c(+) expression vector was constructed. It contains a yeast replication system (2μ origin of replication) and a yeast selectable marker (URA3), and can be used for gene cloning in yeast by efficient homologous recombination, and for heterologous expression in E. coli. The vector was used for the expression and chemical characterisation of three bacterial terpene cyclases. PMID:24573945

  10. Elevation of lutein content in tomato: a biochemical tug-of-war between lycopene cyclases.

    PubMed

    Giorio, Giovanni; Yildirim, Arzu; Stigliani, Adriana Lucia; D'Ambrosio, Caterina

    2013-11-01

    Lutein is becoming increasingly important in preventive medicine due to its possible role in maintaining good vision and in preventing age-related maculopathy. Average daily lutein intake in developed countries is often below suggested daily consumption levels, and lutein supplementation could be beneficial. Lutein is also valuable in the food and feed industries and is emerging in nutraceutical and pharmaceutical markets. Currently, lutein is obtained at high cost from marigold petals, and synthesis alternatives are thus desirable. Tomato constitutes a promising starting system for production as it naturally accumulates high levels of lycopene. To develop tomato for lutein synthesis, the tomato Red Setter cultivar was transformed with the tomato lycopene ε-cyclase-encoding gene under the control of a constitutive promoter, and the HighDelta (HD) line, characterised by elevated lutein and δ-carotene content in ripe fruits, was selected. HD was crossed to the transgenic HC line and to RS(B) with the aim of converting all residual fruit δ-carotene to lutein. Fruits of both crosses were enriched in lutein and presented unusual carotenoid profiles. The unique genetic background of the crosses used in this study permitted an unprecedented analysis of the role and regulation of the lycopene cyclase enzymes in tomato. A new defined biochemical index, the relative cyclase activity ratio, was used to discern post-transcriptional regulation of cyclases, and will help in the study of carotenoid biosynthesis in photosynthetic plant species and particularly in those, like tomato, that have been domesticated for the production of food, feed or useful by-products. PMID:24141052

  11. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.

    PubMed Central

    Alexander, R W; Galper, J B; Neer, E J; Smith, T W

    1982-01-01

    We have studied the properties of beta-adrenergic receptors and of their interaction with adenylate cyclase in the chick myocardium during embryogenesis. Between 4.5 and 7.5 days in ovo the number of receptors determined by (-)-[3H]dihydroalprenolol ([3H]DHA) binding is constant at approx. 0.36 pmol of receptor/mg of protein. By day 9 the density decreases significantly to 0.22 pmol of receptor/mg of protein. At day 12.5--13.5 the number was 0.14--0.18 pmol of receptor/mg of protein. This number did not change further up to day 16. The same results were obtained with guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) added to the assay mixtures. There was no significant change in receptor affinity for the antagonist [3H]DHA between days 5.5 and 13. Despite the decrease in numbers of beta-adrenergic receptors, there was no change in basal, p[NH]ppG-, isoprenaline- or isoprenaline-plus-p[NH]ppG-stimulated adenylate cyclase activity between days 3 and 12 of development. We conclude that beta-adrenergic receptors and adenylate cyclase are not co-ordinately regulated during early embryonic development of the chick heart. Some of the beta-adrenergic receptors present very early in the ontogeny of cardiac tissue appear not to be coupled to adenylate cyclase since their loss is not reflected in decreased activation of the enzyme. PMID:6289805

  12. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB).

    PubMed

    Méndez-Lorenzo, Luz; Porras-Domínguez, Jaime R; Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  13. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB)

    PubMed Central

    Raga-Carbajal, Enrique; Olvera, Clarita; Rodríguez-Alegría, Maria Elena; Carrillo-Nava, Ernesto; Costas, Miguel; López Munguía, Agustín

    2015-01-01

    Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final

  14. ELECTRON MICROSCOPIC OBSERVATIONS OF THE DEVELOPMENT OF COXIELLA BURNETII IN THE CHICK YOLK SAC1

    PubMed Central

    Anacker, R. L.; Fukushi, K.; Pickens, E. G.; Lackman, D. B.

    1964-01-01

    Anacker, R. L. (Rocky Mountain Laboratory, Hamilton, Mont.), K. Fukushi, E. G. Pickens, and D. B. Lackman. Electron microscopic observations of the development of Coxiella burnetii in the chick yolk sac. J. Bacteriol. 88:1130–1138. 1964.—Yolk sac material, obtained daily over a period of 1 week from embryos inoculated with seed of phase I Coxiella burnetii strain Ohio 314 containing 250 units of penicillin, was examined by electron microscopy and other techniques for the presence of rickettsiae. The concentration of rickettsiae in the yolk sac, as determined by electron microscopy, light microscopy, the complement-fixation test, recovery of organisms, and mouse infectivity, was low for the first 3 days, increased rapidly 3 to 5 days after infection, and then remained relatively constant. Rickettsiae in 3- to 7-day cultures, when observed by electron microscopy, had dense fibrillar centers surrounded by less-dense cytoplasmic material containing granules approximately 15 mμ in diameter. The whole was enclosed by multiple external layers. Many appeared to be in various stages of binary fission, and one form which contained a cross-wall was observed. These forms readily combined with ferritin-labeled specific antibody. In rare instances, several kinds of ”atypical” forms which did not combine with ferritin-labeled antibody were found in the cytoplasm of yolk-sac cells 4 to 5 days after inoculation; it is not certain whether these forms are artifacts or normal stages in the maturation of C. burnetii. These atypical forms were not observed in subsequent experiments in which embryonated eggs were inoculated with doses of penicillin varying from 0 to 4,000 units per egg. Images PMID:14219028

  15. Macrofauna community inside and outside of the Darwin Mounds SAC, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Serpetti, N.; Gontikaki, E.; Narayanaswamy, B. E.; Witte, U.

    2012-11-01

    Over the past two decades, growing concerns have been raised regarding the effects of towed fishing gears, such as trawls and dredges, on deep-sea biodiversity and ecosystem functioning. Trawling disturbs the benthic communities both physically and biologically, and can eliminate the most vulnerable organisms and modify habitat structure; chronically disturbed communities are often dominated by opportunistic species. The European Union is under obligation to designate a network of offshore Special Areas of Conservation (SACs) and Marine Protected Areas (MPAs) by the end of 2012 based on the perceived expectation that these networks will help protect marine biodiversity and that within these areas, faunal abundance and diversity will be higher than the surrounding fished areas. The Darwin Mounds, only discovered in 1998, are located in the Rockall Trough, NE Atlantic at a depth of ~ 1000 m. Deep-water trawling regularly took place in the region of the Darwin Mounds; however in 2004 the mounds were designated as the first offshore SAC in UK and the area is now closed to bottom trawling. As part of the HERMIONE programme the influence of human impact on the Oceans was one of the key themes and in June 2011, an investigation of the macrofaunal community structure at comparable sites both inside and outside of the Darwin Mound SAC was undertaken. Macrofaunal communities were found to differ significantly, with the difference mostly driven by changes in the abundance of polychaetes, crustaceans and nematodes whilst no significant differences were seen for the other phyla. Whereas overall macrofaunal abundance was higher outside the SAC compared to within, this pattern varies considerably between phyla. Diversity indices showed no significant differences between protected and unprotected sites. This could indicate that a few years of preservation are not enough time to determine a recovery by the macrofaunal community of cold-water ecosystems and that a continued

  16. Intestinal handling of bisacodyl and picosulphate by everted sacs of the rat jejunum and stripped colon.

    PubMed

    Hillestad, B; Sund, R B; Buajordet, M

    1982-10-01

    Bisacodyl (BIS) is the acetic acid di-ester of the laxative diphenol 2-(4,4'-dihydroxydiphenyl)methyl-pyridine. A HPLC-method which permits the simultaneous determination of BIS and its monodesacetylated (MONO) as well as totally desacetylated (DES) form, has been used to study the intestinal handling of BIS (20 nmol/ml), when the compound was incubated for 60 min. at the mucosal side of the preparations specified. In the jejunal mucosal fluid, BIS disappeared completely in short time, and there was a nearly equivalent rise in DES. MONO was transitory present. Hydrolysis was also rapid in mucosal fluid which had been in contact with jejunal sacs for 30 sec., but BIS was stable in blank incubations. Hydrolysis of BIS was slower by colonic than by jejunal sacs, and all three molecular forms were present during incubation. It seemed still slower in mucosal fluid which had been in contact with colonic sacs for 5 min. BIS just as DES accumulated in the jejunal and colonic serosal fluid mainly as conjugates (greater than 95%), and DES was in all cases the only unconjugated metabolite present. Drug accumulation in jejunal serosal fluid was the same whether BIS or DES was added. However, more drug seemed to accumulate on the serosal side of colonic sacs when incubated with BIS instead of DES. In similar experiments with picosulphate, which is the sulphuric acid di-ester analogue of BIS, free DES was not detected in the mucosal fluid during incubation. The amounts of laxative accumulating in the serosal fluid were less than 1/10 of those observed with BIS. PMID:7180502

  17. Computed tomographic epidurography: an aid to understanding deformation of the lumbar dural sac by epidural injections.

    PubMed

    Fukushige, T; Kano, T; Sano, T; Irie, M

    1999-09-01

    Local anaesthetics injected into the epidural space may deform the dural sac to a variable degree, thereby contributing to variability in the extent of the block. We investigated deformation of the lumbar dural sac after injection into the lumbar epidural space. The subjects were 26 patients with low-back pain who underwent lumbar epidurography and computed tomographic (CT) epidurography, of whom seven also underwent myelography and computed tomographic myelography. The epidural space was entered via the sacral hiatus in 24 patients and through the L5/S1 interspace in two patients. Ten millilitres of local anaesthetic was then injected into the epidural space followed by 20 mL of contrast medium. Computed tomographic epidurography was undertaken approximately 30-min after the epidural injection at the mid-vertebral and mid-discal levels from the first lumbar through to the first sacral vertebrae. The dural sac usually showed an oval or hexagonal shape on the transverse views at the first and second lumbar vertebral levels, and the shape of an inverted triangle below the level of the third lumbar vertebra. A median line of translucency was also observed on the posteroanterior epidurographic view in 25 of the 26 patients. This line was though to be a manifestation of the dural deformation to the inverted triangle. Dural sac deformation usually shows a specific pattern, although there are individual variations. Dural deformability is an important consideration in any analysis of the spread of epidural block or of the changes of epidural pressure after epidural injection of local anaesthetics. PMID:10549463

  18. The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin

    PubMed Central

    Ravichandran, Akshaya; Gu, Ganyu; Escano, Jerome; Lu, Shi-En; Smith, Leif

    2014-01-01

    Occidiofungin is a cyclic nonribosomally synthesized antifungal peptide with submicromolar activity produced by Gram-negative bacterium Burkholderia contaminans. The biosynthetic gene cluster was confirmed to contain two cyclase thioesterases. NMR analysis revealed that the presence of both thioesterases is used to increase the conformational repertoire of the cyclic peptide. The loss of the OcfN cyclic thioesterase by mutagenesis results in a reduction of conformational variants and an appreciable decrease in bioactivity against Candida species. Presumably, the presence of both asparagine and β-hydroxyasparagine variants coordinate the enzymatic function of both of the cyclase thioesterases. OcfN has presumably evolved to be part of the biosynthetic gene cluster due to its ability to produce structural variants that enhance antifungal activity against some fungi. The enhancement of the antifungal activity from the incorporation of an additional cyclase thioesterase into the biosynthetic gene cluster of occidiofungin supports the need to explore new conformational variants of other therapeutic or potentially therapeutic cyclic peptides. PMID:23394257

  19. Guanylyl cyclase and cGMP-specific phosphodiesterase participate in the acrosome reaction of starfish sperm.

    PubMed

    Kawase, Osamu; Ueno, Seiichi; Minakata, Hiroyuki; Hoshi, Motonori; Matsumoto, Midori

    2004-11-01

    In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, i.e. ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for inducing the acrosome reaction. Experimentally, ARIS and asterosap are sufficient for the induction. However, when sperm are treated only with asterosap, they become unresponsive to the egg jelly to undergo the reaction. In this study, we analysed the mechanism of the acrosome reaction, using sperm inactivation by asterosap as a clue. Asterosap causes a rapid and transient increase in intracellular cGMP through the activation of the asterosap receptor, a guanylyl cyclase, and causes an increase in intracellular Ca(2+). When sperm were pretreated with asterosap, the guanylyl cyclase seemed to be inactivated irreversibly by dephosphorylation. They were still responsive to ARIS but no longer to asterosap. However, in the presence of IBMX or zaprinast, inhibitors against phosphodiesterases (PDEs), they retained their capacity to undergo the acrosome reaction in response to the egg jelly or ARIS alone. IBMX and zaprinast suppressed the intracellular catabolism of cGMP, but not of cAMP. These results suggest that guanylyl cyclase and cGMP-specific, IBMX- and zaprinast-susceptible PDEs are involved in the regulation of the acrosome reaction. PMID:15751545

  20. Sll0254 (CrtLdiox) Is a Bifunctional Lycopene Cyclase/Dioxygenase in Cyanobacteria Producing Myxoxanthophyll

    PubMed Central

    Mohamed, Hatem E.; Vermaas, Wim F. J.

    2006-01-01

    Upon depletion of Sll0254 in Synechocystis sp. strain PCC 6803, cyclized carotenoids were replaced by linear, relatively hydrophilic carotenoids, and the amount of the two photosystems decreased greatly. Full segregants of the sll0254 deletion in Synechocystis were not obtained, implying that this gene is essential for survival, most likely to allow normal cell division. The N-terminal half of Sll0254 has limited similarity to the family of lycopene cyclases, has an additional dehydrogenase motif near the N terminus, and is followed by a Rieske 2Fe-2S center sequence signature. To test whether Sll0254 serves as a lycopene cyclase in Synechocystis, the corresponding gene was expressed in Escherichia coli strains that can produce lycopene or neurosporene. In the presence of Sll0254 these linear carotenoids were converted into cyclized, relatively hydrophilic pigments, with masses consistent with the introduction of two hydroxyl groups and with spectra indicative of only small changes in the number of conjugated double bonds. This suggests that Sll0254 catalyzes formation of oxygenated, cyclized carotenoids. We interpret the appearance of the hydroxyl groups in the carotenoids to be due to dioxygenase activity involving the Rieske 2Fe-2S center and the additional dehydrogenase domain. This dioxygenase activity is required in the myxoxanthophyll biosynthesis pathway, after or concomitant with cyclization on the other end of the molecule. We interpret Sll0254 to be a dual-function enzyme with both lycopene cyclase and dioxygenase activity and have named it CrtLdiox. PMID:16621828

  1. Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases.

    PubMed

    Rajaonarivony, J I; Gershenzon, J; Miyazaki, J; Croteau, R

    1992-11-15

    (4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes. PMID:1444454

  2. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    PubMed Central

    Gillis, John Stuart

    2006-01-01

    Background In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. Methods Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. Results In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. Conclusion Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines. PMID:16820060

  3. Crystallization and preliminary X-ray diffraction studies of the glutaminyl cyclase from Carica papaya latex

    SciTech Connect

    Azarkan, Mohamed; Clantin, Bernard; Bompard, Coralie; Belrhali, Hassan; Baeyens-Volant, Danielle; Looze, Yvan; Wintjens, René

    2005-01-01

    The glutaminyl cyclase isolated from C. papaya latex has been crystallized using the hanging-drop method. Diffraction data have been collected at ESRF beamline BM14 and processed to 1.7 Å resolution. In living systems, the intramolecular cyclization of N-terminal glutamine residues is accomplished by glutaminyl cyclase enzymes (EC 2.3.2.5). While in mammals these enzymes are involved in the synthesis of hormonal and neurotransmitter peptides, the physiological role played by the corresponding plant enzymes still remains to be unravelled. Papaya glutaminyl cyclase (PQC), a 33 kDa enzyme found in the latex of the tropical tree Carica papaya, displays an exceptional resistance to chemical and thermal denaturation as well as to proteolysis. In order to elucidate its enzymatic mechanism and to gain insights into the structural determinants underlying its remarkable stability, PQC was isolated from papaya latex, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.82, b = 81.23, c = 108.17 Å and two molecules per asymmetric unit. Diffraction data have been collected at ESRF beamline BM14 and processed to a resolution of 1.7 Å.

  4. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    SciTech Connect

    Niles, L.P.; Hashemi, F. )

    1990-12-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.

  5. Eubacterial Diterpene Cyclase Genes Essential for Production of the Isoprenoid Antibiotic Terpentecin

    PubMed Central

    Dairi, Tohru; Hamano, Yoshimitsu; Kuzuyama, Tomohisa; Itoh, Nobuya; Furihata, Kazuo; Seto, Haruo

    2001-01-01

    A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627–1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC. PMID:11567009

  6. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation.

    PubMed

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3',5' -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  7. Modulation of ischemic-induced damage to cerebral adenylate cyclase in gerbils by calcium channel blockers.

    PubMed

    Christie-Pope, B C; Palmer, G C

    1986-12-01

    It has been previously established that prolonged bilateral carotid occlusion followed by recirculation produces damage to the synaptic enzyme adenylate cyclase in the frontal cortex of the gerbil. Since calcium entrance into the brain may account in part for the deleterious consequences of stroke, the present study examined whether pretreatment with calcium channel blockers would modify the effects of 60 min of bilateral ischemia plus 40 min of reflow on various parameters of cortical adenylate cyclase activation. In this context activation of cerebral homogenates by norepinephrine with or without 5'-guanylyl imidodiphosphate was preserved by pretreatment of ischemic gerbils with verapamil but worsened by flunarizine. In contrast, in particulate fractions (treated with EGTA to reduce metallic ion levels) the damage to the Mn2+-sensitive catalytic site of adenylate cyclase was prevented only by flunarizine. Pretreatment with the two calcium channel blockers resulted in an elevated basal activity of the enzyme, thereby reducing the response in the homogenate preparation to forskolin. Gerbils pretreated with verapamil tended to have an increased ability for survival resulting from the ischemic episode. Under in vitro conditions the enzyme preparations were not markedly influenced by either drug. PMID:3508245

  8. Evolutionary Divergence of Sedoheptulose 7-phosphate Cyclases Leads to Several Distinct Cyclic Products

    PubMed Central

    Asamizu, Shumpei; Xie, Pengfei; Brumsted, Corey J.; Flatt, Patricia M.; Mahmud, Taifo

    2012-01-01

    Sedoheptulose 7-phosphate cyclases are enzymes that utilize the pentose phosphate pathway intermediate, sedoheptulose 7-phosphate, to generate cyclic precursors of many bioactive natural products, such as the antidiabetic drug acarbose, the crop protectant validamycin, and the natural sunscreens mycosporine-like amino acids. These proteins are phylogenetically related to the dehydroquinate (DHQ) synthases from the shikimate pathway, and are part of the more recently recognized superfamily of sugar phosphate cyclases, which includes DHQ synthases, aminoDHQ synthases and 2-deoxy-scyllo-inosose synthases. Through genome mining and biochemical studies, we identified yet another subset of DHQS-like proteins in the actinomycete Actinosynnema mirum and the myxobacterium Stigmatella aurantiaca DW4/3–1. These enzymes catalyze the conversion of sedoheptulose 7-phosphate to 2-epi-valiolone, which is predicted to be an alternative precursor for aminocyclitol biosynthesis. Comparative bioinformatics and biochemical analyses of these proteins with 2-epi-5-epi-valiolone synthases (EEVS) and desmethyl-4-deoxygadusol synthases (DDGS) provided further insights into their genetic diversity, conserved amino acid sequences, and plausible catalytic mechanisms. The results further highlight the uniquely diverse DHQS-like sugar phosphate cyclases, which may provide new tools for chemoenzymatic, stereospecific synthesis of various cyclic molecules. PMID:22741921

  9. Persistent stimulation of adenylate cyclase and urea transport by an AVP photolabel

    SciTech Connect

    Eggena, P.; Ma, C.L.; Fahrenholz, F.; Schwartz, I.L.

    1985-07-01

    The effects of a photoaffinity label for arginine vasopressin receptors, (Phe2, Phe(p-N3)3)AVP (N3-AVP), on urea permeability and adenylate cyclase activity have been investigated in the toad urinary bladder. This compound, when activated by ultraviolet light, induced a maximal and persistent increase in the urea permeability of the intact bladder and a persistent increase in the adenylate cyclase activity of toad bladder epithelial cell homogenates. Covalent attachment of the analogue to target tissue during photolysis was equivalent at 4 and 20 degrees C. Bladders exposed to N3-AVP in the presence of AVP during photolysis were substantially less permeable to urea than controls that had been exposed to N3-AVP alone. These findings constitute further evidence in support of the previous suggestion that N3-AVP binds covalently to AVP receptors and, in addition, demonstrates that N3-AVP evokes a persistent increase in adenylate cyclase activity which, in turn, triggers a persistent increase in bladder permeability to urea.

  10. Dcsbis (PA2771) from Pseudomonas aeruginosa is a highly active diguanylate cyclase with unique activity regulation

    PubMed Central

    Chen, Ying; Liu, Shiheng; Liu, Cuilan; Huang, Yan; Chi, Kaikai; Su, Tiantian; Zhu, Deyu; Peng, Jin; Xia, Zhijie; He, Jing; Xu, Sujuan; Hu, Wei; Gu, Lichuan

    2016-01-01

    C-di-GMP (3’,5’ -Cyclic diguanylic acid) is an important second messenger in bacteria that influences virulence, motility, biofilm formation, and cell division. The level of c-di-GMP in cells is controlled by diguanyl cyclases (DGCs) and phosphodiesterases (PDEs). Here, we report the biochemical functions and crystal structure of the potential diguanylase Dcsbis (PA2771, a diguanylate cyclase with a self-blocked I-site) from Pseudomonas aeruginosa PAO1. The full-length Dcsbis protein contains an N-terminal GAF domain and a C-terminal GGDEF domain. We showed that Dcsbis tightly coordinates cell motility without markedly affecting biofilm formation and is a diguanylate cyclase with a catalytic activity much higher than those of many other DGCs. Unexpectedly, we found that a peptide loop (protecting loop) extending from the GAF domain occupies the conserved inhibition site, thereby largely relieving the product-inhibition effect. A large hydrophobic pocket was observed in the GAF domain, thus suggesting that an unknown upstream signaling molecule may bind to the GAF domain, moving the protecting loop from the I-site and thereby turning off the enzymatic activity. PMID:27388857

  11. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions

    PubMed Central

    Cynis, Holger; Hoffmann, Torsten; Friedrich, Daniel; Kehlen, Astrid; Gans, Kathrin; Kleinschmidt, Martin; Rahfeld, Jens-Ulrich; Wolf, Raik; Wermann, Michael; Stephan, Anett; Haegele, Monique; Sedlmeier, Reinhard; Graubner, Sigrid; Jagla, Wolfgang; Müller, Anke; Eichentopf, Rico; Heiser, Ulrich; Seifert, Franziska; Quax, Paul H A; de Vries, Margreet R; Hesse, Isabel; Trautwein, Daniela; Wollert, Ulrich; Berg, Sabine; Freyse, Ernst-Joachim; Schilling, Stephan; Demuth, Hans-Ulrich

    2011-01-01

    Acute and chronic inflammatory disorders are characterized by detrimental cytokine and chemokine expression. Frequently, the chemotactic activity of cytokines depends on a modified N-terminus of the polypeptide. Among those, the N-terminus of monocyte chemoattractant protein 1 (CCL2 and MCP-1) is modified to a pyroglutamate (pE-) residue protecting against degradation in vivo. Here, we show that the N-terminal pE-formation depends on glutaminyl cyclase activity. The pE-residue increases stability against N-terminal degradation by aminopeptidases and improves receptor activation and signal transduction in vitro. Genetic ablation of the glutaminyl cyclase iso-enzymes QC (QPCT) or isoQC (QPCTL) revealed a major role of isoQC for pE1-CCL2 formation and monocyte infiltration. Consistently, administration of QC-inhibitors in inflammatory models, such as thioglycollate-induced peritonitis reduced monocyte infiltration. The pharmacologic efficacy of QC/isoQC-inhibition was assessed in accelerated atherosclerosis in ApoE3*Leiden mice, showing attenuated atherosclerotic pathology following chronic oral treatment. Current strategies targeting CCL2 are mainly based on antibodies or spiegelmers. The application of small, orally available inhibitors of glutaminyl cyclases represents an alternative therapeutic strategy to treat CCL2-driven disorders such as atherosclerosis/restenosis and fibrosis. PMID:21774078

  12. Opioid inhibition of adenylate cyclase in the striatum and vas deferens of the rat.

    PubMed Central

    Bhoola, K. D.; Pay, S.

    1986-01-01

    The activity of adenylate cyclase in striatal membrane-enriched fractions (25,000 g) was inhibited by morphine, beta-endorphin, [D-Ala2-D-Leu5] enkephalin (DADLenk), fentanyl and bremazocine. Whereas guanosine triphosphate (GTP) appeared essential for the expression of this effect, sodium chloride seemed to enhance the degree of inhibition. Dopamine stimulation and sodium fluoride activation of the enzyme was also suppressed by morphine, beta-endorphin and DADLenk. beta-Endorphin and DADLenk inhibited adenylate cyclase activity in vasa deferentia membrane-enriched fractions (25,000 g); both opioids required GTP and NaCl and were inhibited by a delta-opioid receptor antagonist and by naloxone. Morphine, bremazocine and tifluadom did not significantly alter the activity of the vas deferens enzyme. Basal cyclic AMP values of striatal slices were not significantly altered by morphine, beta-endorphin or DADLenk. However, dopamine-induced elevation of cyclic AMP was reduced by morphine and this effect of the opiate was suppressed by naloxone. Only beta-endorphin lowered the basal cyclic AMP values in the vas deferens. The physiological relevance of adenylate cyclase coupling to opioid receptor subtypes is considered. PMID:3026542

  13. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity

    PubMed Central

    Israeli, Ma’ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  14. Isolation and characterization of an Escherichia coli mutant affected in the regulation of adenylate cyclase.

    PubMed Central

    Guidi-Rontani, C; Danchin, A; Ullmann, A

    1981-01-01

    A mutant, cyaR1, affecting regulation of adenylate cyclase expression or activity is described. It was obtained as a thermoresistant revertant of a strain harboring a thermosensitive transcription termination factor, rho (rho-15). This mutant failed to synthesize adenosine 3',5'-phosphate and exhibited a carbohydrate-negative phenotype. A secondary mutation at the crp locus (crpC) restored the ability of the mutant to synthesize adenosine 3',5'-phosphate, enabled the expression of catabolite-sensitive operons, and conferred on the strain an extreme sensitivity to catabolite repression. In addition, we showed that the crpC mutation restored the pleiotropic carbohydrate-positive phenotype even in a delta cya background. We interpret this to mean that the adenosine 3',5'-phosphate receptor protein regulates negatively either the activity or synthesis of adenylate cyclase and that the cyaR1 mutation is either in a regulatory protein or a regulatory site of adenylate cyclase. Images PMID:6273380

  15. A Simple Luminescent Adenylate-Cyclase Functional Assay for Evaluation of Bacillus anthracis Edema Factor Activity.

    PubMed

    Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Cohen, Ofer; Chitlaru, Theodor

    2016-01-01

    Edema Factor (EF), the toxic sub-unit of the Bacillus anthracis Edema Toxin (ET) is a calmodulin-dependent adenylate cyclase whose detrimental activity in the infected host results in severe edema. EF is therefore a major virulence factor of B. anthracis. We describe a simple, rapid and reliable functional adenylate-cyclase assay based on inhibition of a luciferase-mediated luminescence reaction. The assay exploits the efficient adenylate cyclase-mediated depletion of adenosine tri-phosphate (ATP), and the strict dependence on ATP of the light-emitting luciferase-catalyzed luciferin-conversion to oxyluciferin, which can be easily visualized. The assay exhibits a robust EF-dose response decrease in luminescence, which may be specifically reverted by anti-EF antibodies. The application of the assay is exemplified in: (a) determining the presence of EF in B. anthracis cultures, or its absence in cultures of EF-defective strains; (b) evaluating the anti-EF humoral response in experimental animals infected/vaccinated with B. anthracis; and (c) rapid discrimination between EF producing and non-producing bacterial colonies. Furthermore, the assay may be amenable with high-throughput screening for EF inhibitory molecules. PMID:27548219

  16. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.

    PubMed

    Ravina, Cristina G; Chang, Chwenn-In; Tsakraklides, George P; McDermott, Jeffery P; Vega, Jose M; Leustek, Thomas; Gotor, Cecilia; Davies, John P

    2002-12-01

    Algae and vascular plants are cysteine (Cys) prototrophs. They are able to import, reduce, and assimilate sulfate into Cys, methionine, and other organic sulfur-containing compounds. Characterization of genes encoding the enzymes required for Cys biosynthesis from the unicellular green alga Chlamydomonas reinhardtii reveals that transcriptional and posttranscriptional mechanisms regulate the pathway. The derived amino acid sequences of the C. reinhardtii genes encoding 5'-adenylylsulfate (APS) reductase and serine (Ser) acetyltransferase are orthologous to sequences from vascular plants. The Cys biosynthetic pathway of C. reinhardtii is regulated by sulfate availability. The steady-state level of transcripts and activity of ATP sulfurylase, APS reductase, Ser acetyltransferase, and O-acetyl-Ser (thiol) lyase increase when cells are deprived of sulfate. The sac1 mutation, which impairs C. reinhardtii ability to acclimate to sulfur-deficient conditions, prevents the increase in accumulation of the transcripts encoding these enzymes and also prevents the increase in activity of all the enzymes except APS reductase. The sac2 mutation, which does not affect accumulation of APS reductase transcripts, blocks the increase in APS reductase activity. These results suggest that APS reductase activity is regulated posttranscriptionally in a SAC2-dependent process. PMID:12481091

  17. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    NASA Technical Reports Server (NTRS)

    Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond

    2002-01-01

    The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.

  18. Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation.

    PubMed Central

    Davies, J P; Yildiz, F H; Grossman, A R

    1999-01-01

    The Sac3 gene product of Chlamydomonas positively and negatively regulates the responses of the cell to sulfur limitation. In wild-type cells, arylsulfatase activity is detected only during sulfur limitation. The sac3 mutant expresses arylsulfatase activity even when grown in nutrient-replete medium, which suggests that the Sac3 protein has a negative effect on the induction of arylsulfatase activity. In contrast to its effect on arylsulfatase activity, Sac3 positively regulates the high-affinity sulfate transport system-the sac3 mutant is unable to fully induce high-affinity sulfate transport during sulfur limitation. We have complemented the sac3 mutant and cloned a cDNA copy of the Sac3 gene. The deduced amino acid sequence of the Sac3 gene product is similar to the catalytic domain of the yeast Snf1 family of serine/threonine kinases and is therefore classified as a Snf1-related kinase (SnRK). Specifically, Sac3 falls within the SnRK2 subfamily of kinases from vascular plants. In addition to the 11 subdomains common to Snf1-like serine/threonine kinases, Sac3 and the plant kinases have two additional subdomains and a highly acidic C-terminal region. The role of Sac3 in the signal transduction system that regulates the responses of Chlamydomonas to sulfur limitation is discussed. PMID:10368187

  19. A novel hemizygous SACS mutation identified by whole exome sequencing and SNP array analysis in a Chinese ARSACS patient.

    PubMed

    Liu, L; Li, X B; Zi, X H; Shen, L; Hu, Zh M; Huang, Sh X; Yu, D L; Li, H B; Xia, K; Tang, B S; Zhang, R X

    2016-03-15

    The array of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) has expanded worldwide after the first description in the Charlevoix-Saguenay region of Québec. Here, we report a Chinese ARSACS patient presenting progressive peripheral neuropathy (CMTNS2=15) with horizontal gaze nystagmus and mild spastic gait. Genetic studies including whole exome sequencing (WES), Sanger sequencing and single nucleotide polymorphism (SNP) array analysis revealed a novel hemizygous nonsense mutation (c.11803C>T, p.Gln3935X) of SACS and a 1.33Mb deletion involved in SACS on chromosome 13q12.12 in the patient. Our findings highlight the necessity of SACS mutation screening in the gene panel of inherited peripheral neuropathies, and stress the need of testing copy number variation (CNV) in SACS mutation screening. PMID:26944128

  20. Ovarian Yolk Sac Tumor With High-Grade Serous Carcinoma in a 62-Year-Old Woman.

    PubMed

    McCarthy, Whitney A; Masand, Ramya P

    2016-06-01

    Ovarian yolk sac tumors are germ cell tumors that usually present in children and young women. Rarely, these tumors can arise in older women, usually in conjunction with surface epithelial tumors, suggesting divergent differentiation from the latter. The combination of mixed ovarian yolk sac tumor and high-grade serous carcinoma is rare, with only one case documented in the literature. We present a case of mixed ovarian yolk sac tumor and high-grade serous carcinoma in a postmenopausal woman, including a brief discussion of the immunohistochemical findings and differential diagnosis. Despite the rarity of mixed ovarian yolk sac tumor and surface epithelial tumors, it is important to recognize the biphasic nature of the tumor, which should prompt a thorough immunohistochemical evaluation. The therapeutic and prognostic implications of proper diagnosis cannot be overemphasized. PMID:26782153

  1. Immunohistochemical expression of SALL4 in hepatocellular carcinoma, a potential pitfall in the differential diagnosis of yolk sac tumors.

    PubMed

    Gonzalez-Roibon, Nilda; Katz, Betina; Chaux, Alcides; Sharma, Rajni; Munari, Enrico; Faraj, Sheila F; Illei, Peter B; Torbenson, Michael; Netto, George J

    2013-07-01

    SALL4 is a transcription factor that serves as a marker of yolk sac tumor. Yolk sac tumor and hepatocellular carcinoma share histologic, serologic, and immunohistochemical features. Previous studies have shown lack of SALL4 expression in hepatocellular carcinoma, suggesting utility in this differential diagnosis. Sixty-nine samples of hepatocellular carcinoma were retrieved from surgical pathology archives and used to construct 9 tissue microarrays. A germ cell tumor tissue microarray containing 10 yolk sac tumors was used for comparison. Extent, intensity, and pattern of nuclear SALL4 expression were assessed in each spot. Mean percentage of expression was calculated for each tumor and used during analysis. Optimal discriminatory extent of expression cutoff was determined by receiver operating characteristic curve analysis. Other potential discriminatory markers including Hep Par1 were also evaluated. Forty-six percent (32/69) of hepatocellular carcinoma and all yolk sac tumors revealed at least focal expression of SALL4. A unique punctuate/clumped pattern of nuclear staining was present in 94% (30/32) of hepatocellular carcinoma, whereas all yolk sac tumors displayed a diffuse finely granular nuclear staining pattern. A 25% extent of SALL4 expression cutoff was found to be optimal for the distinction of yolk sac tumor from hepatocellular carcinoma yielding a sensitivity of 100%, specificity of 92.8%, and a positive predictive value of 66.6% for yolk sac tumor diagnosis. The addition of Hep Par1 increased the specificity (99%) and positive predictive value (90%). This is the first report of SALL4 expression in hepatocellular carcinoma. Our finding should be taken into consideration in the differential diagnosis of hepatocellular carcinoma and yolk sac tumor. The unique punctuate/clumped pattern seen in hepatocellular carcinoma cases could be of further discriminatory value. PMID:23347651

  2. Activation of adenylate cyclase by dopamine, GTP, NaF and forskolin in striatal membranes of neonatal, adult and senescent rats.

    PubMed

    Nomura, Y; Makihata, J; Segawa, T

    1984-11-13

    Dopamine (DA) caused a significant activation of striatal adenylate cyclase in neonatal and adult but not in senescent rats. GTP activated cyclase at the adult stage but not at both neonatal and senescent stages. NaF and forskolin activated cyclase at every stage. The coupling mechanism between DA1 receptors and catalytic units of cyclase seems to become functional at the neonatal stage but GTP recognition and/or binding sites lack in stimulatory GTP binding protein in neonatal and senescent membranes. PMID:6543337

  3. Ultrastructure of the endolymphatic sac in the larva of the japanese red-bellied newt Cynops pyrrhogaster

    NASA Technical Reports Server (NTRS)

    Gao, W.; Wiederhold, M.; Hejl, R.

    1998-01-01

    The ultrastructure of the endolymphatic sac (ES) of the late stage larva of the Japanese red-bellied newt, Cynops pyrrhogaster (stage 57), was examined by light and transmission electron microscopy. The two endolymphatic sacs are located at the dorsal-medial side of the otic vesicle on the dorsal-lateral side of the midbrain in the cranial cavity. The wall of the sac is composed of a layer of cubical epithelial cells with loose, interposed intercellular spaces. The sac contains a large luminal cavity, in which endolymph and numerous otoconia are present. The epithelial cells of different portions of the sac have a similar structure. These cells contain an abundance of cytoplasmic organelles, including ribosomes, Golgi complexes, and numerous vesicles. Two types of vesicles are found in the epithelial cells: the "floccular" vesicle and the "granular" vesicle. The floccular vesicles are located in the supra- and lateral-nuclear cytoplasm and contain floccular material. The granular vesicles have a fine granular substance and are usually situated apposed to the apical cell membrane. The granular vesicles are suggested to be secreted into the lumen, while the floccular vesicles are thought to be absorbed from the lumen and conveyed to the intercellular spaces by the epithelial cells. The apical surfaces of the epithelial cells bear numerous microvilli. Apparently floating cells, which bear long microvilli on the free surfaces, are observed in the lumen of the ES. Based on the fine structure, the function of the endolymphatic sac of the newt Cynops pyrrhogaster is discussed.

  4. Influencing Factors for Abdominal Aortic Aneurysm Sac Shrinkage and Enlargement after EVAR: Clinical Reviews before Introduction of Preoperative Coil Embolization

    PubMed Central

    Hiraoka, Arudo; Totsugawa, Toshinori; Tamura, Kentaro; Ishida, Atsuhisa; Sakaguchi, Taichi; Yoshitaka, Hidenori

    2014-01-01

    Background: We previously reported effectiveness of coil embolization (CE) to aortic branched vessels before endovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) because of significant shrinkage of aneurysmal sac. In this study, we investigated EVAR cases to clarify influential factors of aneurysmal shrinkage and enlargement. Methods: 148 consecutive cases before the introduction of CE were retrospectively reviewed based on the presence of PT2EL (persistent type 2 endoleak) and change in sac diameter after EVAR by multivariate analysis. Results: (A) PT2EL risk factors were patent inferior mesenteric artery (IMA) and thinner mural thrombus inside aneurysmal sac. (B) Sac enlargement risk factors were antiplatelet intake, PT2EL, and female gender. (C) Sac shrinkage predictive factors were the absences of thoracic aortic aneurysm, antiplatelet intake, PT2EL, and coronary artery disease. Conclusion: CE to IMA was considered to be effective because patent IMA and antiplatelet intake were significant risk factors for sac enlargement. So, more meticulous therapeutic strategy, including treatment priority (AAA first or CAD first) and choice of treatment (EVAR vs. AAA) based on anatomical features of AAA was required to improve late outcomes. PMID:25298830

  5. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac–pollen tube interaction

    PubMed Central

    Wang, Shuai Shuai; Wang, Fang; Tan, Su Jian; Wang, Ming Xiu; Sui, Na; Zhang, Xian Sheng

    2014-01-01

    The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14–16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac–pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac–pollen tube interaction in maize. PMID:25566277

  6. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    PubMed

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  7. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  8. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases

    PubMed Central

    Potter, Lincoln R.

    2016-01-01

    Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP. PMID:21185863

  9. Structure of a Sedoheptulose 7-Phosphate Cyclase: ValA from Streptomyces hygroscopicus

    PubMed Central

    2015-01-01

    Sedoheptulose 7-phosphate cyclases (SH7PCs) encompass three enzymes involved in producing the core cyclitol structures of pseudoglycosides and similar bioactive natural products. One such enzyme is ValA from Streptomyces hygroscopicus subsp. jinggangensis 5008, which makes 2-epi-5-epi-valiolone as part of the biosynthesis of the agricultural antifungal agent validamycin A. We present, as the first SH7PC structure, the 2.1 Å resolution crystal structure of ValA in complex with NAD+ and Zn2+ cofactors. ValA has a fold and active site organization resembling those of the sugar phosphate cyclase dehydroquinate synthase (DHQS) and contains two notable, previously unrecognized interactions between NAD+ and Asp side chains conserved in all sugar phosphate cyclases that may influence catalysis. Because the domains of ValA adopt a nearly closed conformation even though no sugar substrate is present, comparisons with a ligand-bound DHQS provide a model for aspects of substrate binding. One striking active site difference is a loop that adopts a distinct conformation as a result of an Asp → Asn change with respect to DHQS and alters the identity and orientation of a key Arg residue. This and other active site differences in ValA are mostly localized to areas where the ValA substrate differs from that of DHQS. Sequence comparisons with a second SH7PC making a product with distinct stereochemistry lead us to postulate that the product stereochemistry of a given SH7PC is not the result of events taking place during catalysis but is accomplished by selective binding of either the α or β pyranose anomer of the substrate. PMID:24832673

  10. Cellular levels of feedback regulator of adenylate cyclase and the effect of epinephrine and insulin.

    PubMed Central

    Ho, R j; Russell, T R; Asakawa, T; Sutherland, E W

    1975-01-01

    We have obtained direct evidence that shows the cellular formation and subsequent release of a potent inhibitor (feedback regulator) of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] by adipocytes, upon stimulation with epinephrine. The appearance of such a feedback regulator in adipocytes preceded its release into the medium. During a 30 min incubation, intracellular regulator levels rose rapidly and reached 39-61 units/g of adipocyte at 10 min. Release of inhibitor into the medium increased slowly and was 11-16 units/g of adipocyte at 10 min. Upon continued incubation, the cells at 30 min contained 30-41 units/g of ingibitor, slightly less than the content at 30 min; meanwhile, the medium content rose more than 3-fold. The inhibitor from both locations appeared to have the same characteristics, judging from the purification procedures and the biological activities on hormone-stimulated adenylate cyclase. Adenylate cyclase was inhibited by the feedback regulator in vitro when either epinephrine, corticotropin (ACTH), or glucagon was used as activator. The site of action of this inhibitor is therefore most likely beyond the specific hormone receptors. A new in vitro action of insulin has been found. Insulin, 50-500 microunits/ml, inhibited the formation and release of this factor from isolated rat or hamster adipocytes by 29-81% after these cells were stimulated by hormones that raise intracellular adenosine 3':5'-cyclic monophosphate. This factor enhaced the effect of insulin in lowering the adenosine 3':5'-cyclic monophosphate levels in fresh rat adipocytes. A reduced formation of such a factor may modify the metabolic events in adipocytes, and some as yet unexplained effects of insulin could therefore be linked to the metabolic effects of this factor. PMID:174073

  11. Reconstitution of beta 1-adrenoceptor-dependent adenylate cyclase from purified components.

    PubMed Central

    Feder, D; Im, M J; Klein, H W; Hekman, M; Holzhöfer, A; Dees, C; Levitzki, A; Helmreich, E J; Pfeuffer, T

    1986-01-01

    In continuation of our efforts to reconstitute from purified components into lipid vesicles the signal transmission chain from beta 1-adrenoceptors to adenylate cyclase, we now report on the total reconstitution of the hormone-dependent adenylate cyclase. In these reconstitution experiments we have employed the purified adenylate cyclase (C) from bovine brain and rabbit heart, the stimulatory GTP-binding protein (GS) purified from turkey erythrocytes and rabbit liver and the beta 1-adrenoceptor (R) from turkey erythrocytes. Several detergents were compared with respect to their suitability to allow reconstitution of subunits into phospholipid vesicles. While octyl-polyoxyethylene (octyl-POE) was almost as potent as lauroyl-sucrose for preparation of vesicles containing GS.C, the latter detergent was clearly superior for vesicles enabling productive R.GS and R.GS.C coupling. The catalytic subunit from either bovine brain or rabbit heart was equally efficient in reconstitution. However, GS from turkey erythrocytes and rabbit liver revealed significant differences in RGS and RGS.C containing vesicles. While isoproterenol-induced activation of GS by GTP gamma S was first order in both instances, kon with turkey GS was 0.12 min-1, whereas kon with rabbit liver GS was 0.6 min-1. Moreover, GTP gamma S activation of erythrocyte GS was significantly more dependent on the presence of hormone than that of liver GS, confirming observations made on the native membrane-bound system. Compared with stimulation by isoproterenol (GTP gamma S) (4-fold), stimulation by isoproterenol/GTP was modest (1.3- to 1.6-fold).(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. PMID:3017696

  12. Insect Stage-Specific Adenylate Cyclases Regulate Social Motility in African Trypanosomes

    PubMed Central

    Lopez, Miguel A.; Saada, Edwin A.

    2014-01-01

    Sophisticated systems for cell-cell communication enable unicellular microbes to act as multicellular entities capable of group-level behaviors that are not evident in individuals. These group behaviors influence microbe physiology, and the underlying signaling pathways are considered potential drug targets in microbial pathogens. Trypanosoma brucei is a protozoan parasite that causes substantial human suffering and economic hardship in some of the most impoverished regions of the world. T. brucei lives on host tissue surfaces during transmission through its tsetse fly vector, and cultivation on surfaces causes the parasites to assemble into multicellular communities in which individual cells coordinate their movements in response to external signals. This behavior is termed “social motility,” based on its similarities with surface-induced social motility in bacteria, and it demonstrates that trypanosomes are capable of group-level behavior. Mechanisms governing T. brucei social motility are unknown. Here we report that a subset of receptor-type adenylate cyclases (ACs) in the trypanosome flagellum regulate social motility. RNA interference-mediated knockdown of adenylate cyclase 6 (AC6), or dual knockdown of AC1 and AC2, causes a hypersocial phenotype but has no discernible effect on individual cells in suspension culture. Mutation of the AC6 catalytic domain phenocopies AC6 knockdown, demonstrating that loss of adenylate cyclase activity is responsible for the phenotype. Notably, knockdown of other ACs did not affect social motility, indicating segregation of AC functions. These studies reveal interesting parallels in systems that control social behavior in trypanosomes and bacteria and provide insight into a feature of parasite biology that may be exploited for novel intervention strategies. PMID:25416239

  13. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. PMID:27214242

  14. Mixed ovarian germ cell tumor composed of immature teratoma, yolk sac tumor and embryonal carcinoma.

    PubMed

    Wang, Ying; Zhou, Feng; Qian, Zhida; Qing, Jiale; Zhao, Mengdam; Huang, Lili

    2014-11-01

    We report the case of a 19-year-old woman experiencing lower abdominal distension and pain. Laboratory tests indicated elevated serum levels of Alpha-Fetoprotein (AFP) and human Chorionic Gonadotropin (hCG). A large mass was detected in the abdomen by physical examination and by transvaginal ultrasonography. Exploratory laparotomy was performed, and a smooth-surfaced, spherical, solid tumor was found on the left ovary, measuring 11.5 x 9.9 x 6.9 cm. Histological evaluation revealed that the tumor consisted of a combination of immature teratoma, Yolk Sac Tumor, and embryonal carcinoma; this is a very rare combination in mixed germ cell tumors. PMID:25518772

  15. [Sigmoidoperianal fistula associated with diverticulitis and Cul de Sac situation--diagnostics and therapy].

    PubMed

    Weyand, G; Rinast, E; Englert, A; Houf, M

    2002-07-01

    We report on the case of a 64-year-old female patient who presented herself in our outpatient clinic because of a perianal fistula with recurrent abscesses. We describe the step diagnostics and the surgical treatment of the causal sigmoido-perianal fistula with diverticulitis and Cul de sac situation. Clinical examination, fistulography, colonoscopy and MRT were part of the precise representation and preparation for the high anterior rectosigmoidal resection with simultaneous rectopexy according to Sudeck which were performed without complications. The sigmoidoperianal fistula must be taken into account as a differential diagnosis of a recalcitrant high perianal fistula. PMID:12122593

  16. Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair

    PubMed Central

    Bastos Gonçalves, F; Baderkhan, H; Verhagen, H J M; Wanhainen, A; Björck, M; Stolker, R J; Hoeks, S E; Mani, K

    2014-01-01

    Background Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6–18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results Some 597 EVARs (71·1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47·6 per cent), moderate shrinkage (5–9 mm) in 142 (23·8 per cent) and major shrinkage (at least 10 mm) in 171 patients (28·6 per cent). Four years after the index imaging, the rate of freedom from complications was 84·3 (95 per cent confidence interval 78·7 to 89·8), 88·1 (80·6 to 95·5) and 94·4 (90·1 to 98·7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3·11; P < 0·001). Moderate compared with major shrinkage (HR 2·10; P = 0·022), early postoperative complications (HR 3·34; P < 0·001) and increasing abdominal aortic aneurysm baseline diameter (HR 1·02; P = 0·001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance. PMID:24752772

  17. Evolution of Newcastle Disease Virus Quasispecies Diversity and Enhanced Virulence after Passage through Chicken Air Sacs

    PubMed Central

    Meng, Chunchun; Qiu, Xusheng; Yu, Shengqing; Li, Chuanfeng; Sun, Yingjie; Chen, Zongyan; Liu, Kaichun; Zhang, Xiangle; Tan, Lei; Song, Cuiping; Liu, Guangqing

    2015-01-01

    ABSTRACT It has been reported that lentogenic Newcastle disease virus (NDV) isolates have the potential to become velogenic after their transmission and circulation in chickens, but the underlying mechanism is unclear. In this study, a highly velogenic NDV variant, JS10-A10, was generated from the duck-origin lentogenic isolate JS10 through 10 consecutive passages in chicken air sacs. The velogenic properties of this selected variant were determined using mean death time (MDT) assays, intracerebral pathogenicity index (ICPI), the intravenous pathogenicity index (IVPI), histopathology, and the analysis of host tissue tropism. In contrast, JS10 remained lentogenic after 20 serial passages in chicken eggs (JS10-E20). The JS10, JS10-A10, and JS10-E20 genomes were sequenced and found to be nearly identical, suggesting that both JS10-A10 and JS10-E20 were directly generated from JS10. To investigate the mechanism for virulence enhancement, the partial genome covering the F0 cleavage site of JS10 and its variants were analyzed using ultradeep pyrosequencing (UDPS) and the proportions of virulence-related genomes in the quasispecies were calculated. Velogenic NDV genomes accumulated as a function of JS10 passaging through chicken air sacs. Our data suggest that lentogenic NDV strains circulating among poultry might be a risk factor to future potential velogenic NDV outbreaks in chickens. IMPORTANCE An avirulent isolate, JS10, was passaged through chicken air sacs and embryos, and the pathogenicity of the variants was assessed. A virulent variant, JS10-A10, was generated from consecutive passage in air sacs. We developed a deep-sequencing approach to detect low-frequency viral variants across the NDV genome. We observed that virulence enhancement of JS10 was due to the selective accumulation of velogenic quasispecies and the concomitant disappearance of lentogenic quasispecies. Our results suggest that because it is difficult to avoid contact between natural waterfowl

  18. Primary orbital yolk sac tumor: report of a case and review of literature.

    PubMed

    Kamal, Saurabh; Kaliki, Swathi; Sreedhar, Ani; Mishra, Dilip K

    2016-06-01

    Germ cell tumor can affect extragonadal sites. Teratoma is a well-recognized extragonadal tumor in the orbit. Primary yolk sac tumor (YST) or endodermal sinus tumor of orbit is rare and only few cases have been reported in the literature. Its clinical presentation may mimic many common pediatric orbital conditions, and delay in diagnosis affects ocular morbidity and mortality. In the past orbital YST has been treated with multimodal therapy including surgery, systemic chemotherapy, and radiotherapy. Herein we describe a case of primary orbital YST and reviewed the literature for similar cases. The review aims to describe the clinical presentation, imaging features, histopathological characteristics, and management of orbital YST. PMID:26481249

  19. Loss of PiT-1 Results in Abnormal Endocytosis in the Yolk Sac Visceral Endoderm

    PubMed Central

    Wallingford, Mary C.; Giachelli, Cecilia M.

    2014-01-01

    PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE. PMID:25138534

  20. Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    PubMed Central

    Sternweis, P C; Gilman, A G

    1982-01-01

    Activation of the purified guanine nucleotide-binding regulatory component (G/F) of adenylate cyclase by F- requires the presence of Mg2+ and another factor. This factor, which contaminates commercial preparations of various nucleotides and disposable glass test tubes, has been identified as Al3+. In the presence of 10 mM Mg2+ and 5 mM F-, AlCl3 causes activation of G/F with an apparent activation constant of approximately 1-5 muM. The requirement for Al3+ is highly specific; of 28 other metals tested, only Be2+ promoted activation of G/F by F-. PMID:6289322

  1. Structural and functional characterization of the rod outer segment membrane guanylate cyclase.

    PubMed Central

    Goraczniak, R M; Duda, T; Sitaramayya, A; Sharma, R K

    1994-01-01

    In the vertebrate photoreceptor cell, rod outer segment (ROS) is the site of visual signal-transduction process, and a pivotal molecule that regulates this process is cyclic GMP. Cyclic GMP controls the cationic conductance into the ROS, and light causes a decrease in the conductance by activating hydrolysis of the cyclic nucleotide. The identity of the granylate cyclase (ROS-GC) that synthesizes this pool of cyclic GMP is unknown. We now report the cloning, expression and functional characterization of a DNA from bovine retina that encodes ROS-GC. Images Figure 2 Figure 5 PMID:7916565

  2. Effect of serum lipoproteins on the adenylate cyclase activity of rat liver plasma membranes.

    PubMed Central

    Ghiselli, G; Sirtori, C R; Nicosia, S

    1981-01-01

    Four rat lipoprotein classes [lymph chylomicrons, VLD (very-low-density), LD (low-density) and HD (high-density) lipoproteins] were tested for their ability to affect basal adenylate cyclase (EC 4.6.1.1) activity of rat liver plasma membranes. All the lipoproteins, with the exception of lymph chylomicrons, effectively increase the enzyme activity. VLD lipoproteins are the most active class (67% maximal increase), followed by HD lipoproteins (33%) and LD lipoproteins (23%). The effect of VLD lipoproteins is additive to that elicited by GTP or GTP plus glucagon (at least within a certain concentration range). VLD lipoproteins affect only the Vmax. of the enzyme, not the Km. PMID:7317023

  3. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    PubMed Central

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  4. Enhancement of Processability and Electrical Resistance by Use of Ag-Based Composite Inks Containing Ultrafine SAC305 Alloy Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shin, Yong Moo; Kim, Hyun-Jin; Jang, Seok Pil; Lee, Jong-Hyun

    2014-09-01

    We propose use of Ag/Sn-3.0 (wt.%) Ag-0.5 Cu (SAC305) composite ink to reduce sintering temperature, sintering time, and material costs. The SAC305 nanoparticle (NP) surfaces were not capped by any stabilizers, which are detrimental to the resistivity of the sintered tracks. Compared with commercial pure Ag ink, use of Ag/3.2 (vol.%) SAC305 composite ink containing ultrafine SAC305 NPs resulted in outstandingly enhanced processability, enabling faster sintering at low temperatures. The average sheet resistance of composite ink samples sintered for 25 min at 170°C was as low as 0.011 Ω/□, comparable with that of a pure Ag sample sintered for over 30 min at 220°C. The morphology and the differential scanning calorimetry curves enabled explanation of the changes in the sintering behavior and sheet resistance. The Ag/SAC305 clusters in the composite ink sintered at 170°C grew, on average, to ~201.1-226.1 nm as a result of faster local liquid-phase sintering, and most of the Ag particles were mutually linked, dramatically changing the microstructure.

  5. The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level.

    PubMed

    Zhang, Bing; Yu, Qilin; Wang, Yuzhou; Xiao, Chenpeng; Li, Jianrong; Huo, Da; Zhang, Dan; Jia, Chang; Li, Mingchun

    2016-09-01

    The actin cytoskeleton coordinates numerous fundamental cellular processes. Fimbrins are a class of evolutionally conserved ABPs that mediate actin bundling and regulate actin dynamics and functions. In this study, we identified the fimbrin Sac6 from the important fungal pathogen, Candida albicans. Interestingly, deletion of SAC6 led to increased tolerance to oxidative stress, while its overexpression caused hyper-susceptibility to this stress. Further investigations revealed that Sac6, by interaction with actin, negatively regulated the cytosol-to-nucleus transport of the key OSR (oxidative stress response) transcription factor Cap1 and consequent expression of OSR genes. Moreover, loss of Sac6 enhanced hyphal maintenance, and its overexpression caused a defect in hyphal development, which was attributed to abnormal expression of morphogenesis-related genes. In addition, Sac6 was involved in regulation of secretion of lytic enzymes and virulence of C. albicans. This study reveals a novel mechanism by which fimbrin transcriptionally regulates OSR and morphogenesis, and sheds a novel light on the functions of actin cytoskeleton. PMID:27275845

  6. Maternal-fetal immunoglobulin transport: Studies on the binding, internalization, and release of IgG by chick yolk sac tissue and cultured cells

    SciTech Connect

    Donaldson, J.G.

    1988-01-01

    Immunoglobulin G (IgG) is transported from the yolk across the endodermal cells of the yolk sac and into the fetal circulation during chick embryonic development, thus providing the chick with passive immunity until it becomes immunocompetent. Saturable, Fc-specific receptors are present on the endodermal cells and are believed to mediate this transfer. In this study, IgG receptors were shown to be present on the yolk sac endodermal cells throughout the 21 days of development, although most of the transport occurs during the last 3 days prior to hatching. Fluorescently conjugated IgG was internalized by a receptor mechanism into small apical vesicles in yolk sac endoderm throughout, but cells from 19 day yolk sacs internalized more conjugate than those from 14 day yolk sacs. This was confirmed and quantitated by assaying the internalization of {sup 125}I-IgG into yolk sac tissue. IgG was internalized by a receptor mediated mechanism, reaching a steady state level after 1 to 2 hours. Although both ages of yolk sac tissue possessed the same number of surface IgG receptors, as measured by equilibrium binding assays at 4{degree}C, 19 day yolk sac had the capacity to internalize six times as much IgG by a receptor mechanism as 14 day yolk sac.

  7. Giant pandas are not an evolutionary cul-de-sac: evidence from multidisciplinary research.

    PubMed

    Wei, Fuwen; Hu, Yibo; Yan, Li; Nie, Yonggang; Wu, Qi; Zhang, Zejun

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world's most endangered mammals and remains threatened by environmental and anthropogenic pressure. It is commonly argued that giant pandas are an evolutionary cul-de-sac because of their specialized bamboo diet, phylogenetic changes in body size, small population, low genetic diversity, and low reproductive rate. This notion is incorrect, arose from a poor understanding or appreciation of giant panda biology, and is in need of correction. In this review, we summarize research across morphology, ecology, and genetics to dispel the idea, once and for all, that giant pandas are evolutionary dead-end. The latest and most advanced research shows that giant pandas are successful animals highly adapted to a specialized bamboo diet via morphological, ecological, and genetic adaptations and coadaptation of gut microbiota. We also debunk misconceptions around population size, population growth rate, and genetic variation. During their evolutionary history spanning 8 My, giant pandas have survived diet specialization, massive bamboo flowering and die off, and rapid climate oscillations. Now, they are suffering from enormous human interference. Fortunately, continued conservation effort is greatly reducing impacts from anthropogenic interference and allowing giant panda populations and habitat to recover. Previous ideas of a giant panda evolutionary cul-de-sac resulted from an unsystematic and unsophisticated understanding of their biology and it is time to shed this baggage and focus on the survival and maintenance of this high-profile species. PMID:25274274

  8. Automatic registration of terrestrial point clouds based on panoramic reflectance images and efficient BaySAC

    NASA Astrophysics Data System (ADS)

    Kang, Zhizhong

    2013-10-01

    This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.

  9. A novel approach for noninvasive drug delivery and sensing through the amniotic sac.

    PubMed

    Azagury, Aharon; Amar-Lewis, Eliz; Mann, Ella; Goldbart, Riki; Traitel, Tamar; Jelinek, Raz; Hallak, Mordechai; Kost, Joseph

    2014-06-10

    Current invasive prenatal tests (amniocentesis and chorionic villus sampling) are known for their risk to the fetus. In the last decade, the use and awareness of these prenatal tests have increased, resulting in growing demand for a safe, non-invasive, and accurate prenatal test. Chemical penetration enhancers (CPEs) have long been used to increase transport phenomena across skin and other membranes (e.g., tympanic membrane). The amniotic sac membrane is called the chorioamnion (CA) membrane and serves as the physical barrier between the fetus and the mother. In this research, the effect of CPEs on human CA mass transport was evaluated both in vitro and ex vivo. The results show that the tested CPEs exhibit an enhancing effect on CA mass transport. Based on the permeability results, two mechanisms of action were suggested: "extractors" and "fluidizers". Fourier transform infrared (FTIR) and rapid colorimetric screening measurements supported the mechanisms, based on which, more potent compounds were designed and tested for their enhancing effect. The enhancing mass transport effect of CPEs on CA membrane may be used both for sampling of cell-free DNA and for noninvasively administering drugs and other biological agents to the amniotic sac. PMID:24685707

  10. Performance Analysis of SAC Optical PPM-CDMA System-Based Interference Rejection Technique

    NASA Astrophysics Data System (ADS)

    Alsowaidi, N.; Eltaif, Tawfig; Mokhtar, M. R.

    2016-03-01

    In this paper, we aim to theoretically analyse optical code division multiple access (OCDMA) system that based on successive interference cancellation (SIC) using pulse position modulation (PPM), considering the interference between the users, imperfection cancellation occurred during the cancellation process and receiver noises. Spectral amplitude coding (SAC) scheme is used to suppress the overlapping between the users and reduce the receiver noises effect. The theoretical analysis of the multiple access interference (MAI)-limited performance of this approach indicates the influence of the size of M-ary PPM on OCDMA system. The OCDMA system performance improves with increasing M-ary PPM. Therefore, it was found that the SIC/SAC-OCDMA system using PPM technique along with modified prime (MPR) codes used as signature sequence code offers significant improvement over the one without cancellation and it can support up to 103 users at the benchmarking value of bit error rate (BER) = 10-9 with prime number p = 11 while the system without cancellation scheme can support only up to 52 users.

  11. Squamous cell carcinoma of the anal sac in a spotted hyena (Crocuta crocuta).

    PubMed

    Goodnight, Andrea L; Traslavina, Ryan P; Emanuelson, Karen; Affolter, Verena K; Gaffney, Patricia M; Vernau, William; Williams, Colette; Wu, Connie I-kuan; Sturges, Beverly K; Lowenstine, Linda J

    2013-12-01

    A 25-yr-old spayed female spotted hyena (Crocuta crocuta) developed intermittent right pelvic limb lameness that persisted following conservative medical therapy. No obvious musculoskeletal lesions were noted on initial physical exam; however, spinal radiography was suspicious for possible intervertebral degenerative joint disease or discospondylitis. Despite prolonged medical therapy, the lameness progressed to minimal weight bearing and marked muscle atrophy of the right pelvic limb. Electromyography showed spontaneous activity in the muscles of right sciatic nerve distribution. Sensory and motor nerve conduction velocities in the right tibial and peroneal nerves were undetectable and markedly reduced, respectively. A magnetic resonance imaging (MRI) scan revealed a large, space-occupying mass on the right side of the sacrum and pelvis. Antemortem fine-needle aspiration of the mass and postmortem histopathology resulted in diagnosis of a high-grade squamous cell carcinoma of the anal sac. Squamous cell carcinoma of the anal sac is very rare in domestic dogs and previously unreported in spotted hyenas. PMID:24450071

  12. Yolk sac tumor of the external auditory canal: a case report and literature review.

    PubMed

    Shi, Huijuan; Tang, Qionglan; Zhen, Tiantian; Li, Hui; Zhang, Fenfen; Han, Anjia

    2015-01-01

    We report one case of yolk sac tumor of the ear and review the literature. The patient was a 9-month boy who scratched his right ear repeatedly one month ago. Computed tomography scan showed an irregular elongated mass image measuring 42×16 mm was found in the right external auditory canal. The tumor was located underneath of the epidermis with ulceration. Mild or moderate atypical round or oval tumor cells were arranged in nest and reticular pattern around vesicular or cystic spaces. Tumor cells had abundant eosinophilic or clear cytoplasm and marked nucleoli. Mitotic figures were about 7/10 HPF. Poorly formed Schiller-Duvall body was occasionally present. The stroma was loose and rich in capillaries. Hyaline globules could be found in the stroma. Immunohistochemistry staining showed that tumor cells were positive for cytokeratin, SALL4, glypican-3, focal positive for EMA, vimentin, CD10, and CD34, but negative for a-fetoprotein, HCG, PLAP. The serum α-fetoprotein was 664.60 ng/mL (normal, ≤ 25 ng/mL). Yolk sac tumor of the ear is extremely rare, especially α-fetoprotein negative expression in our case. The differential diagnosis includes embryonal rhabdomyosarcoma, paraganglioma, myoepithelioma, carcinoma of skin appendages, and metastatic renal cell carcinoma. PMID:26823835

  13. Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor- and pathogen-inducible promoter.

    PubMed Central

    Yin, S; Mei, L; Newman, J; Back, K; Chappell, J

    1997-01-01

    The promoter for a tobacco (Nicotiana tabacum) sesquiterpene cyclase gene, a key regulatory step in sesquiterpene phytoalexin biosynthesis, has been analyzed. The EAS4 promoter was fused to the beta-glucuronidase (GUS) reporter gene, and the temporal and spatial expression patterns of GUS activity were examined in stably transformed plants and in transient expression assays using electroporated protoplasts of tobacco. No GUS activity was observed in any tissues under normal growth conditions. A low level of GUS activity was detected in wounded leaf, root, and stem tissues, whereas a much higher level was observed when these tissues were challenged with elicitors or microbial pathogens. The GUS expression pattern directed by the EAS4 promoter was identical to the induction patterns observed for the endogenous sesquiterpene cyclase genes. Neither exogenous salicylic acid nor methyl jasmonate induced GUS expression; and H2O2 induced GUS expression to only a limited extent. Although the EAS4 promoter contains cis-sequences resembling previously identified transcriptional control motifs, other cis-sequences important for quantitative and qualitative gene expression were identified by deletion and gain-of-function analyses. The EAS4 promoter differs from previously described pathogen-/elicitor-inducible promoters because it only supports inducible gene expression and directs unique spatial expression patterns. PMID:9342864

  14. Purification and Characterization of Allene Oxide Cyclase from Dry Corn Seeds.

    PubMed Central

    Ziegler, J.; Hamberg, M.; Miersch, O.; Parthier, B.

    1997-01-01

    Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo- 10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-l0,15(Z)-phytodienoic acid, or by JA. ([plus or minus])-cis- 12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 [mu]M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11- octadecadienoic acid derived from linoleic acid. PMID:12223729

  15. Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR

    PubMed Central

    De, Nabanita; Pirruccello, Michelle; Krasteva, Petya Violinova; Bae, Narae; Raghavan, Rahul Veera; Sondermann, Holger

    2008-01-01

    Environmental signals that trigger bacterial pathogenesis and biofilm formation are mediated by changes in the level of cyclic dimeric guanosine monophosphate (c-di-GMP), a unique eubacterial second messenger. Tight regulation of cellular c-di-GMP concentration is governed by diguanylate cyclases and phosphodiesterases, which are responsible for its production and degradation, respectively. Here, we present the crystal structure of the diguanylate cyclase WspR, a conserved GGDEF domain-containing response regulator in Gram-negative bacteria, bound to c-di-GMP at an inhibitory site. Biochemical analyses revealed that feedback regulation involves the formation of at least three distinct oligomeric states. By switching from an active to a product-inhibited dimer via a tetrameric assembly, WspR utilizes a novel mechanism for modulation of its activity through oligomerization. Moreover, our data suggest that these enzymes can be activated by phosphodiesterases. Thus, in addition to the canonical pathways via phosphorylation of the regulatory domains, both product and enzyme concentration contribute to the coordination of c-di-GMP signaling. A structural comparison reveals resemblance of the oligomeric states to assemblies of GAF domains, widely used regulatory domains in signaling molecules conserved from archaea to mammals, suggesting a similar mechanism of regulation. PMID:18366254

  16. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    SciTech Connect

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin

  17. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase.

    PubMed

    Guard, Jean; Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J

    2016-07-01

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  18. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade.

    PubMed

    Mohan, Vijee; Pandey, Arun; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the "Beta type" promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening. PMID:27070417

  19. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha.

    PubMed

    Yamamoto, Yusuke; Ohshika, Jun; Takahashi, Tomohiro; Ishizaki, Kimitsune; Kohchi, Takayuki; Matusuura, Hideyuki; Takahashi, Kosaku

    2015-08-01

    12-Oxo-phytodienoic acid (OPDA) is an intermediate in jasmonic acid (JA) biosynthesis. OPDA exerts JA-dependent and JA-independent biological effects; therefore, it is considered a signaling molecule in flowering plants. OPDA is induced by bacterial infection and wounding and inhibits growth in the moss Physcomitrella patens. The functions of OPDA and allene oxide cyclase (AOC) in the liverwort Marchantia polymorpha were explored, which represents the most basal lineage of extant land plants. The analysis of OPDA showed that it is present in M. polymorpha and is increased by wounding. OPDA has been suggested to be involved in the response to environmental stresses. Moreover, OPDA showed growth inhibitory activity in M. polymorpha. Nonetheless JA in M. polymorpha was not found in this study. AOC synthesizes OPDA from an unstable allene oxide. A database search of the M. polymorpha genome identified only a putative gene encoding allene oxide cyclase (MpAOC). Recombinant MpAOC showed AOC activity similar to that in flowering plants. MpAOC was localized to chloroplasts, as in flowering plants. Expression of MpAOC was induced by wounding and OPDA treatment, and positive feedback regulation of OPDA was demonstrated in M. polymorpha. Overexpression of MpAOC increased the endogenous OPDA level and suppressed growth in M. polymorpha. These results indicate the role of OPDA as a signaling molecule regulating growth and the response to wounding in the liverwort M. polymorpha. PMID:25892411

  20. Neofunctionalization of Chromoplast Specific Lycopene Beta Cyclase Gene (CYC-B) in Tomato Clade

    PubMed Central

    Mohan, Vijee; Pandey, Arun; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2016-01-01

    The ancestor of tomato underwent whole genome triplication ca. 71 Myr ago followed by widespread gene loss. However, few of the triplicated genes are retained in modern day tomato including lycopene beta cyclase that mediates conversion of lycopene to β-carotene. The fruit specific β-carotene formation is mediated by a chromoplast-specific paralog of lycopene beta cyclase (CYC-B) gene. Presently limited information is available about how the variations in CYC-B gene contributed to its neofunctionalization. CYC-B gene in tomato clade contained several SNPs and In-Dels in the coding sequence (33 haplotypes) and promoter region (44 haplotypes). The CYC-B gene coding sequence in tomato appeared to undergo purifying selection. The transit peptide sequence of CYC-B protein was predicted to have a stronger plastid targeting signal than its chloroplast specific paralog indicating a possible neofunctionalization. In promoter of two Bog (Beta old gold) mutants, a NUPT (nuclear plastid) DNA fragment of 256 bp, likely derived from a S. chilense accession, was present. In transient expression assay, this promoter was more efficient than the “Beta type” promoter. CARGATCONSENSUS box sequences are required for the binding of the MADS-box regulatory protein RIPENING INHIBITOR (RIN). The loss of CARGATCONSENSUS box sequence from CYC-B promoter in tomato may be related to attenuation of its efficiency to promote higher accumulation of β-carotene than lycopene during fruit ripening. PMID:27070417

  1. Expression, purification and crystallization of a plant polyketide cyclase from Cannabis sativa.

    PubMed

    Yang, Xinmei; Matsui, Takashi; Mori, Takahiro; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki

    2015-12-01

    Plant polyketides are a structurally diverse family of natural products. In the biosynthesis of plant polyketides, the construction of the carbocyclic scaffold is a key step in diversifying the polyketide structure. Olivetolic acid cyclase (OAC) from Cannabis sativa L. is the only known plant polyketide cyclase that catalyzes the C2-C7 intramolecular aldol cyclization of linear pentyl tetra-β-ketide-CoA to generate olivetolic acid in the biosynthesis of cannabinoids. The enzyme is also thought to belong to the dimeric α+β barrel (DABB) protein family. However, because of a lack of functional analysis of other plant DABB proteins and low sequence identity with the functionally distinct bacterial DABB proteins, the catalytic mechanism of OAC has remained unclear. To clarify the intimate catalytic mechanism of OAC, the enzyme was overexpressed in Escherichia coli and crystallized using the vapour-diffusion method. The crystals diffracted X-rays to 1.40 Å resolution and belonged to space group P3121 or P3221, with unit-cell parameters a = b = 47.3, c = 176.0 Å. Further crystallographic analysis will provide valuable insights into the structure-function relationship and catalytic mechanism of OAC. PMID:26625288

  2. Influence of the beta-adrenergic receptor concentration on functional coupling to the adenylate cyclase system.

    PubMed Central

    Severne, Y; Coppens, D; Bottari, S; Riviere, M; Kram, R; Vauquelin, G

    1984-01-01

    Only part of the beta-adrenergic receptors can undergo functional coupling to the adenylate cyclase regulatory unit. This receptor subpopulation shows an increased affinity for agonists in the presence of Mg2+ and undergoes rapid "inactivation" (locking-in of the agonist) by the alkylating reagent N-ethylmaleimide in the presence of agonists. Several experimental conditions, known to modify the total receptor concentration without alteration of the other components of the adenylate cyclase system, do not affect the percentage of receptors that can undergo functional coupling: (i) homologous regulation of beta 1 receptors in rat brain by noradrenaline (through antidepressive drug or reserpine injections); (ii) up- and down-regulation of the beta 2 receptors in Friend erythroleukemia cells by, respectively, sodium butyrate and cinnarizine treatment; and (iii) dithiothreitol-mediated inactivation of receptors in turkey erythrocytes, Friend erythroleukemia cells, and rat brain. Our findings argue against a stoichiometric limitation in the number of regulatory components, genetically different receptor subpopulations, bound guanine nucleotides, or reduced accessibility of part of the receptors to the agonists as the cause for functional receptor heterogeneity. Differences in either the receptor conformation or its membrane microenvironment are more plausible explanations. PMID:6087337

  3. Adenylate cyclase regulation in the spermatogenic cell plasma membrane: Modulating effects of TPA and TCDD

    SciTech Connect

    Beebe, L.E.

    1989-01-01

    This research was designed to compare the effects of TPA, a phorbol ester, and TCDD in a spermatogenic cell population, a target of TCDD toxicity. Membrane-bound adenylate cyclase activity was used an index of membrane function, and was quantified by the amount of {sup 32}P-cAMP formed from {sup 32}P-ATP following chromatographic separation. Exposure to male germ cells in-vitro to TPA and TCDD followed by direct measurement of enzyme activity was used to investigate the potential of each agent to perturb membrane function. TPA and TCDD consistently inhibited adenylate cyclase activity at the levels of G{sub s}-catalytic unit coupling and hormone-receptor activation, as measured by the stimulation of enzyme activity by concomitant addition of forskolin and GTP and FSH and GTP, respectively. The effect on coupling required at least 60 minutes of exposure to TPA or TCDD. Concentration-response curves demonstrated a progressive desensitization with increasing TPA concentration, while TCDD exhibited consistent inhibition over the same concentration range.

  4. Inhibition of monoterpene cyclases by inert analogues of geranyl diphosphate and linalyl diphosphate☆

    PubMed Central

    Karp, Frank; Zhao, Yuxin; Santhamma, Bindu; Assink, Bryce; Coates, Robert M.; Croteau, Rodney B.

    2007-01-01

    The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which then cyclizes to the various monoterpene skeletons. X-ray crystal structures of these enzymes complexed with suitable analogues of the substrate and intermediate could provide a clearer view of this universal, but cryptic, step of monoterpenoid cyclase catalysis. Toward this end, the functionally inert analogues 2-fluorogeranyl diphosphate, (±)-2-fluorolinalyl diphosphate, and (3R)- and (3S)-homolinalyl diphosphates (2,6-dimethyl-2-vinyl-5-heptenyl diphosphates) were prepared, and compared to the previously described substrate analogue 3-azageranyl diphosphate (3-aza-2,3-dihydrogeranyl diphosphate) as inhibitors and potential crystallization aids with two representative monoterpenoid cyclases, (−)-limonene synthase and (+)-bornyl diphosphate synthase. Although these enantioselective synthases readily distinguished between (3R)- and (3S)-homolinalyl diphosphates, both of which were more effective inhibitors than was 3-azageranyl diphosphate, the fluorinated analogues proved to be the most potent competitive inhibitors and have recently yielded informative liganded structures with limonene synthase. PMID:17949678

  5. E. coli heat-stable enterotoxin and guanylyl cyclase C: new functions and unsuspected actions.

    PubMed Central

    Giannella, Ralph A.; Mann, Elizabeth A.

    2003-01-01

    Some E. coli cause diarrhea by elaborating heat-labile and heat-stable (ST) enterotoxins which stimulate intestinal secretion. E. coli ST's are small peptides which bind to intestinal luminal epithelial cell receptors. The ST receptor, one of a family of receptor-cyclases called guanylyl cyclase C (GC-C), is a membrane spanning protein containing an extracellular binding domain and intracellular protein kinase and catalytic domains. The intestine synthesizes and secretes homologous peptides, guanylin and uroguanylin. The kidney also synthesizes uroguanylin. ST, guanylin or uroguanylin binding to GC-C results in increased cGMP, phosphorylation of the CFTR Cl- channel and secretion. Proguanylin and prouroguanylin circulate in blood and bind to receptors in intestine, kidney, liver, brain etc. In the kidney, they stimulate the excretion of Na+ and K+. Study of GC-C "knock-out" mice reveal that GC-C is important to intestinal salt and water secretion, duodenal bicarbonate secretion, recovery from CCl4-induced liver injury, and to intestinal polyp formation in Min mice lacking GC-C. PMID:12813912

  6. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  7. The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies*

    PubMed Central

    Wang, Xianzhe; Maynard, Jennifer A.

    2015-01-01

    The adenylate cyclase toxin (ACT) is a multifunctional virulence factor secreted by Bordetella species. Upon interaction of its C-terminal hemolysin moiety with the cell surface receptor αMβ2 integrin, the N-terminal cyclase domain translocates into the host cell cytosol where it rapidly generates supraphysiological cAMP concentrations, which inhibit host cell anti-bacterial activities. Although ACT has been shown to induce protective immunity in mice, it is not included in any current acellular pertussis vaccines due to protein stability issues and a poor understanding of its role as a protective antigen. Here, we aimed to determine whether any single domain could recapitulate the antibody responses induced by the holo-toxin and to characterize the dominant neutralizing antibody response. We first immunized mice with ACT and screened antibody phage display libraries for binding to purified ACT. The vast majority of unique antibodies identified bound the C-terminal repeat-in-toxin (RTX) domain. Representative antibodies binding two nonoverlapping, neutralizing epitopes in the RTX domain prevented ACT association with J774A.1 macrophages and soluble αMβ2 integrin, suggesting that these antibodies inhibit the ACT-receptor interaction. Sera from mice immunized with the RTX domain showed similar neutralizing activity as ACT-immunized mice, indicating that this domain induced an antibody response similar to that induced by ACT. These data demonstrate that RTX can elicit neutralizing antibodies and suggest it may present an alternative to ACT. PMID:25505186

  8. A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus

    PubMed Central

    Avelar, Gabriela M.; Schumacher, Robert I.; Zaini, Paulo A.; Leonard, Guy; Richards, Thomas A.; Gomes, Suely L.

    2014-01-01

    Summary Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  9. A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.

    PubMed

    Avelar, Gabriela M; Schumacher, Robert I; Zaini, Paulo A; Leonard, Guy; Richards, Thomas A; Gomes, Suely L

    2014-06-01

    Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  10. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue.

    PubMed

    Gray, Jesse M; Karow, David S; Lu, Hang; Chang, Andy J; Chang, Jennifer S; Ellis, Ronald E; Marletta, Michael A; Bargmann, Cornelia I

    2004-07-15

    Specialized oxygen-sensing cells in the nervous system generate rapid behavioural responses to oxygen. We show here that the nematode Caenorhabditis elegans exhibits a strong behavioural preference for 5-12% oxygen, avoiding higher and lower oxygen levels. 3',5'-cyclic guanosine monophosphate (cGMP) is a common second messenger in sensory transduction and is implicated in oxygen sensation. Avoidance of high oxygen levels by C. elegans requires the sensory cGMP-gated channel tax-2/tax-4 and a specific soluble guanylate cyclase homologue, gcy-35. The GCY-35 haem domain binds molecular oxygen, unlike the haem domains of classical nitric-oxide-regulated guanylate cyclases. GCY-35 and TAX-4 mediate oxygen sensation in four sensory neurons that control a naturally polymorphic social feeding behaviour in C. elegans. Social feeding and related behaviours occur only when oxygen exceeds C. elegans' preferred level, and require gcy-35 activity. Our results suggest that GCY-35 is regulated by molecular oxygen, and that social feeding can be a behavioural strategy for responding to hyperoxic environments. PMID:15220933

  11. Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors

    PubMed Central

    Mendez, Ana; Burns, Marie E.; Sokal, Izabela; Dizhoor, Alexander M.; Baehr, Wolfgang; Palczewski, Krzysztof; Baylor, Denis A.; Chen, Jeannie

    2001-01-01

    The retina's photoreceptor cells adjust their sensitivity to allow photons to be transduced over a wide range of light intensities. One mechanism thought to participate in sensitivity adjustments is Ca2+ regulation of guanylate cyclase (GC) by guanylate cyclase-activating proteins (GCAPs). We evaluated the contribution of GCAPs to sensitivity regulation in rods by disrupting their expression in transgenic mice. The GC activity from GCAPs−/− retinas showed no Ca2+ dependence, indicating that Ca2+ regulation of GCs had indeed been abolished. Flash responses from dark-adapted GCAPs−/− rods were larger and slower than responses from wild-type rods. In addition, the incremental flash sensitivity of GCAPs−/− rods failed to be maintained at wild-type levels in bright steady light. GCAP2 expressed in GCAPs−/− rods restored maximal light-induced GC activity but did not restore normal flash response kinetics. We conclude that GCAPs strongly regulate GC activity in mouse rods, decreasing the flash sensitivity in darkness and increasing the incremental flash sensitivity in bright steady light, thereby extending the rod's operating range. PMID:11493703

  12. Les rivières et les sources de la Plaine du Cul-de-Sac: extrait du rapport sur les eaux souterraines de la Plaine du Cul-de-Sac

    USGS Publications Warehouse

    Taylor, George C., Jr.; Lemoine, Rémy C.

    1949-01-01

    Les principales rivières de la Plaine du Cul-de-Sac, la Rivière Grise ou Grande Rivière du Cul-de-Sac et la Rivière Blanche, prennent naissance sur le flanc Nord du Massif de la Selle à des altitudes de 1,300 à 1,800 mètres au dessus du niveau de la mer. Elles coulent à l’amont à travers des gorges profondes et sont éloignées de 9 Kms. dans la partie central de la bordure Sud de la plaine.

  13. SALL4 and SF-1 are sensitive and specific markers for distinguishing granulosa cell tumors from yolk sac tumors.

    PubMed

    Bai, Shuting; Wei, Shi; Ziober, Amy; Yao, Yuan; Bing, Zhanyong

    2013-04-01

    Granulosa cell tumors are classified as juvenile and adult types. They may be misinterpreted as a yolk sac tumor when they exhibit a "reticular" growth pattern and contain prominent mitotic activity. In this study, the authors performed immunohistochemical stains for SALL4 and steroidogenic factor-1 (SF-1) on 27 cases of yolk sac tumors and 24 granulosa cell tumors. Nuclear stains for both antibodies were considered as positive and the intensity of staining was graded as negative, weak, moderate, and strong. All the yolk sac tumors were positive for SALL4 (100%) with moderate to strong grade staining and negative for SF-1 (100%). In contrast, all the granulosa cell tumors were positive for SF-1 (85% moderate to strong grade staining and 15% weak staining) and negative for SALL4 (100%). The difference was significant (P < .01, Student's t test). This result indicates that these 2 markers could be used to distinguish these 2 tumors in a difficult situation. PMID:22832114

  14. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium

    PubMed Central

    Huang, Hai; Kornberg, Thomas B

    2015-01-01

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts. DOI: http://dx.doi.org/10.7554/eLife.06114.001 PMID:25951303

  15. Prevascular femoral hernia and its relation with inferior epigastric vessels: a rare presentation of the femoral hernia sac.

    PubMed

    Boshnaq, Mohamed; Phan, Yih Chyn; Akhtar, Mansoor; Hamade, Ayman

    2016-01-01

    A 61-year-old man presented to the emergency department, with a 2-week history of a painful lump on his right groin. A diagnosis of an irreducible right femoral hernia was made. As such, an urgent operation was carried out on the same day, and the patient was found to have a rare prevascular femoral hernia in which the sac was lying over the femoral vessels and split by the inferior epigastric vessels into 2 components resembling 2 trouser limbs. The hernia sac presented in a different and challenging way that necessitated meticulous dissection and full orientation of the anatomy of the femoral triangle. Complete dissection and control of the inferior epigastric vessels, and complete reduction of the sac followed by repair with a prosthetic mesh plug were performed successfully. The patient was discharged home the next day. PMID:27090547

  16. Giant dacryocystomucopyocele in an adult: a review of lacrimal sac enlargements with clinical and histopathologic differential diagnoses.

    PubMed

    Perry, Lynn J P; Jakobiec, Frederick A; Zakka, Fouad R; Rubin, Peter A D

    2012-09-01

    Dacryocystocele is an umbrella term that refers to any diffuse, centrifugal enlargement of the lacrimal sac that results from combined proximal and distal obstructions in the tear drainage system. In adults, the presence of mucus in the cyst's contents leads to the modified term of dacryocystomucocele. If infection supervenes, which almost always occurs in protracted cases and adds the clinical dimension of a dacryocystitis, then a dacryocystomucopyocele is created. Dacryocystocele and its congeners are much rarer in adults than in children. We describe a 95-year-old woman with an acquired, enormous dacryocystomucopyocele, larger than any previously reported, that developed over 25 years and produced globe displacement with an associated conspicuous enlargement of the nasolacrimal duct. The aspirated sac fluid was mucopurulent and harbored low-virulence bacterial organisms of the Prevotella and Petosteptococcus species. In infants, dacryocystoceles are transitory as the result of spontaneously reversible factors. In adults, secondary proximal irreversible fibrotic strictures or bony changes around the nasolacrimal duct typically arise from chronic inflammation or low grade infection. Other possible causations of duct obstruction, in addition to florid mucosal edema, include encroachment on the duct by enlarged contiguous ethmoid air cells; a sinus mucocele or sinusitis; idiopathic, post-traumatic or dysplastic bony remodeling of the wall of the duct; and a neoplasm-all of which require some form of surgical intervention, typically dacryocystorhinostomy. The differential diagnosis of medial canthal swellings centered on the lacrimal sac spans malformations, diverticula, dermoid/epidermoid cysts, sac inflammations/infections causing swelling without generalized sac enlargement, encephaloceles and primary epithelial tumors, as well as extrinsic tumors impinging on the sac. PMID:22784678

  17. Altered callose deposition during embryo sac formation of multi-pistil mutant (mp1) in Medicago sativa.

    PubMed

    Zhou, H C; Jin, L; Li, J; Wang, X J

    2016-01-01

    Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion. PMID:27323128

  18. Enlarging cells initiating apomixis in Hieracium praealtum transition to an embryo sac program prior to entering mitosis.

    PubMed

    Okada, Takashi; Hu, Yingkao; Tucker, Matthew R; Taylor, Jennifer M; Johnson, Susan D; Spriggs, Andrew; Tsuchiya, Tohru; Oelkers, Karsten; Rodrigues, Julio C M; Koltunow, Anna M G

    2013-09-01

    Hieracium praealtum forms seeds asexually by apomixis. During ovule development, sexual reproduction initiates with megaspore mother cell entry into meiosis and formation of a tetrad of haploid megaspores. The sexual pathway ceases when a diploid aposporous initial (AI) cell differentiates, enlarges, and undergoes mitosis, forming an aposporous embryo sac that displaces sexual structures. Embryo and endosperm development in aposporous embryo sacs is fertilization independent. Transcriptional data relating to apomixis initiation in Hieracium spp. ovules is scarce and the functional identity of the AI cell relative to other ovule cell types is unclear. Enlarging AI cells with undivided nuclei, early aposporous embryo sacs containing two to four nuclei, and random groups of sporophytic ovule cells not undergoing these events were collected by laser capture microdissection. Isolated amplified messenger RNA samples were sequenced using the 454 pyrosequencing platform and comparatively analyzed to establish indicative roles of the captured cell types. Transcriptome and protein motif analyses showed that approximately one-half of the assembled contigs identified homologous sequences in Arabidopsis (Arabidopsis thaliana), of which the vast majority were expressed during early Arabidopsis ovule development. The sporophytic ovule cells were enriched in signaling functions. Gene expression indicative of meiosis was notably absent in enlarging AI cells, consistent with subsequent aposporous embryo sac formation without meiosis. The AI cell transcriptome was most similar to the early aposporous embryo sac transcriptome when comparing known functional annotations and both shared expressed genes involved in gametophyte development, suggesting that the enlarging AI cell is already transitioning to an embryo sac program prior to mitotic division. PMID:23864557

  19. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism.

    PubMed

    Dedic, Emil; Alsarraf, Husam; Welner, Ditte Hededam; Østergaard, Ole; Klychnikov, Oleg I; Hensbergen, Paul J; Corver, Jeroen; van Leeuwen, Hans C; Jørgensen, René

    2016-06-17

    Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix. PMID:27076635

  20. Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1

    PubMed Central

    Berger, Felicitas; Lau, Corinna; Ziegler, Mathias

    2007-01-01

    Nuclear NAD+ metabolism constitutes a major component of signaling pathways. It includes NAD+-dependent protein deacetylation by members of the Sir2 family and protein modification by poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 has emerged as an important mediator of processes involving DNA rearrangements. High-affinity binding to breaks in DNA activates PARP-1, which attaches poly(ADP-ribose) (PAR) to target proteins. NMN adenylyl transferases (NMNATs) catalyze the final step of NAD+ biosynthesis. We report here that the nuclear isoform NMNAT-1 stimulates PARP-1 activity and binds to PAR. Its overexpression in HeLa cells promotes the relocation of apoptosis-inducing factor from the mitochondria to the nucleus, a process known to depend on poly(ADP-ribosyl)ation. Moreover, NMNAT-1 is subject to phosphorylation by protein kinase C, resulting in reduced binding to PAR. Mimicking phosphorylation, substitution of the target serine residue by aspartate precludes PAR binding and stimulation of PARP-1. We conclude that, depending on its state of phosphorylation, NMNAT-1 binds to activated, automodifying PARP-1 and thereby amplifies poly(ADP-ribosyl)ation. PMID:17360427

  1. Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

    SciTech Connect

    Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S.; Rasenick, M.M.

    1983-01-01

    Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.

  2. Multiplex PCR Assay Targeting a Diguanylate Cyclase-Encoding Gene, cgcA, To Differentiate Species within the Genus Cronobacter

    PubMed Central

    Carter, L.; Lindsey, L. A.; Grim, C. J.; Sathyamoorthy, V.; Jarvis, K. G.; Gopinath, G.; Lee, C.; Sadowski, J. A.; Trach, L.; Pava-Ripoll, M.; McCardell, B. A.; Tall, B. D.

    2013-01-01

    In a comparison to the widely used Cronobacter rpoB PCR assay, a highly specific multiplexed PCR assay based on cgcA, a diguanylate cyclase gene, that identified all of the targeted six species among 305 Cronobacter isolates was designed. This assay will be a valuable tool for identifying suspected Cronobacter isolates from food-borne investigations. PMID:23144142

  3. Solutions Network Formulation Report. Reducing Light Pollution in U.S. Coastal Regions Using the High Sensitivity Cameras on the SAC-C and Aquarius/SAC-D Satellites

    NASA Technical Reports Server (NTRS)

    Andrews, Jane C.; Knowlton, Kelly

    2007-01-01

    Light pollution has significant adverse biological effects on humans, animals, and plants and has resulted in the loss of our ability to view the stars and planets of the universe. Over half of the U.S. population resides in coastal regions where it is no longer possible to see the stars and planets in the night sky. Forty percent of the entire U.S. population is never exposed to conditions dark enough for their eyes to convert to night vision capabilities. In coastal regions, urban lights shine far out to sea where they are augmented by the output from fishing boat, cruise ship and oil platform floodlights. The proposed candidate solution suggests using HSCs (high sensitivity cameras) onboard the SAC-C and Aquarius/SAC-D satellites to quantitatively evaluate light pollution at high spatial resolution. New products modeled after pre-existing, radiance-calibrated, global nighttime lights products would be integrated into a modified Garstang model where elevation, mountain screening, Rayleigh scattering, Mie scattering by aerosols, and atmospheric extinction along light paths and curvature of the Earth would be taken into account. Because the spatial resolution of the HSCs on SAC-C and the future Aquarius/SAC-D missions is greater than that provided by the DMSP (Defense Meteorological Satellite Program) OLS (Operational Linescan System) or VIIRS (Visible/Infrared Imager/Radiometer Suite), it may be possible to obtain more precise light intensity data for analytical DSSs and the subsequent reduction in coastal light pollution.

  4. Activity in the Shuttle Action Center (SAC) of the Huntsville Operations Support Center (HOSC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo was taken in the Shuttle Action Center (SAC) of the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC during the mission.

  5. Amniotic Sac Herniation Through a Prior Cornual Scar in The Third Trimester

    PubMed Central

    Saad, Antonio F.; Costantine, Maged M.; Saade, George; Makhlouf, Michel

    2015-01-01

    Introduction Uterine rupture occurs in less than 0.1% of pregnancies. This complication can be detrimental to mother and fetus if not detected and managed in a timely manner. We report an unusual presentation of uterine scar rupture that was diagnosed on ultrasound in a completely stable patient with reassuring fetal status. Case Report A 24-year-old Gravida 5, Para 3 with history of cornual resection for ectopic pregnancy and two previous uterine ruptures presented at 30 weeks' gestation with worsening abdominal pain. Ultrasound identified herniation of the amniotic sac with fetal parts. The patient underwent cesarean delivery and cornual defect repair. Conclusion Close observation and early delivery remain vital to the patient's management. PMID:26495171

  6. Yolk sac tumor in postmenopausal patients: pure or associated with adenocarcinoma, a rare phenomenon.

    PubMed

    Roma, Andres A; Przybycin, Christopher G

    2014-09-01

    Yolk sac tumors (YSTs) of the ovary usually present in young women and have been rarely reported in postmenopausal patients. Most of the cases in young patients are pure or associated with other germ cell components; however, in older patients there is an unusual association with Müllerian epithelial elements, for the most part malignant. We report two cases, both in older patients. One of the YSTs was associated with high-grade serous and endometrioid carcinoma, while the other case showed pure YST. The YST component showed positivity for SALL4, AFP and Glypican-3 and negative staining for PAX8 supporting a germ cell tumor differentiation; SALL4 and PAX8 markers have not been previously analyzed in this setting. Both tumors recurred within 7 months despite systemic chemotherapy. PMID:25083963

  7. Automatic measurement of early gestational sac diameters from one scan session

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Chen, Siping; Li, Shengli; Wang, Tianfu

    2011-03-01

    Gestational sac (GS) diameters are commonly measured by routine ultrasound in early pregnancy. However, manually searching for the standardized plane of GS (SPGS) and measuring the diameters are time-consuming. In this paper, we develop a three-stage automatic solution for this procedure. In order to precisely and efficiently locate the position of GS in each frame, a coarse to fine GS detection scheme based on AdaBoost algorithm is explored. Then, an efficient method based on local context information is introduced to reduce the false positives (FP) generated by the above detection process. Finally, a database (DB) guided spectral segmentation is proposed to separate GS region from the background for further diameters measurement. Experiments carried out on 31 videos show that by using the proposed methods, the number of SPGS searching error is only one, and the average measurement error is 0.059 for the length diameters and 0.083 for the depth diameters.

  8. Hysteroscopic Removal of Cervical Ectopic Pregnancy Following Failed Intramuscular/Intra-Sac Methotrexate: A Case Report

    PubMed Central

    Purisch, Stephanie E.; Brandt, Justin S.; Montes, Melissa

    2012-01-01

    Abstract Background: Cervical pregnancy is a diagnosis associated with significant morbidity, specifically life-threatening hemorrhage that potentially requires hysterectomy to prevent maternal death. Conservative and fertility-sparing management strategies are poorly described in the literature, and there is no clear standard of care. Case: The patient was a 34-year-old gravida 1, para 0 who had conceived spontaneously after laparoscopic treatment of endometriosis, and was found to have cervical pregnancy. She received both intramuscular and intra-sac methotrexate, with no resolution of the ectopic pregnancy. The pregnancy was removed hysteroscopically. Results: Subsequently, the patient was able to achieve a normal clinical pregnancy with ovulation induction/intrauterine insemination. This pregnancy was carried to term. Conclusions: Although cervical pregnancy is particularly hazardous and potentially fatal, conservative/fertility-sparing management of these pregnancies can be successful. (J GYNECOL SURG 28:369) PMID:24761129

  9. Five new species of the Afrotropical dark sac spider genus Messapus Simon, 1898 (Araneae: Corinnidae).

    PubMed

    Haddad, Charles R; Mbo, Zingisile

    2015-01-01

    The Afrotropical dark sac spider genus Messapus Simon, 1898 (Corinnidae: Corinninae) currently only comprises two described species, the type species M. martini Simon, 1898 and M. natalis (Pocock, 1898), which have both recently been redescribed. The leg and setal morphology of Messapus is studied using scanning electron microscopy for the first time, for M. martini and M. tigris sp. n., and additional characters are provided to supplement a recent generic description. Five new species are described in the current paper: M. megae sp. n. (♂ ♀, from Zimbabwe), M. meridionalis sp. n. (♀, from South Africa), M. seiugatus sp. n. (♀, from Guinea), M. tigris sp. n. (♀, from Botswana and Namibia), and M. tropicus sp. n. (♂ ♀, from Democratic Republic of the Congo). All five species are arboreal spiders occurring on bark, lower foliage strata and the canopies of forest and savannah trees. An identification key to the seven species of the genus is provided. PMID:26701488

  10. Mediastinal Yolk Sac Tumor Producing Protein Induced by Vitamin K Absence or Antagonist-II.

    PubMed

    Akutsu, Noriyuki; Adachi, Yasushi; Isosaka, Mai; Mita, Hiroaki; Takagi, Hideyasu; Sasaki, Shigeru; Yamamoto, Hiroyuki; Arimura, Yoshiaki; Ishii, Yoshifumi; Masumori, Naoya; Endo, Takao; Shinomura, Yasuhisa

    2015-01-01

    Extragonadal yolk sac tumors (YSTs) are rare. We herein report the case of a 66-year-old man with mediastinal, lung and liver tumors. The largest mass was located in the liver and contained a high concentration of protein induced by vitamin K absence or antagonist-II (PIVKA-II) and alpha-fetoprotein. Therefore, the lesion was difficult to distinguish from hepatocellular carcinoma. Finally, YST was diagnosed based on the results of a liver biopsy. Although chemotherapy was effective, the patient died of respiratory failure. The autopsy revealed primary mediastinal YST. In the current report, we describe this case of PIVKA-II-producing YST and review previous cases of PIVKA-II-producing tumors other than hepatoma. PMID:26073245

  11. A new approach for selective rat endolymphatic sac epithelium collection to obtain pure specific RNA.

    PubMed

    Akiyama, Kosuke; Miyashita, Takenori; Matsubara, Ai; Mori, Terushige; Inamoto, Ryuhei; Nishiyama, Akira; Mori, Nozomu

    2008-11-21

    The endolymphatic sac (ES) is an organ that is located in the temporal bone. Its anatomical location makes ES tissue collection without any contamination very difficult, and sometimes accurate molecular analyses of the ES are prevented due to this matter. In the present study, a new selective ES epithelial tissue collection method was attempted using laser capture microdissection to obtain pure ES RNA without any contamination. The validity of this method was demonstrated by RT-PCR with three specific primer pairs against osteocalcin, calponin H1, and NKCC2, which are specific proteins in bone, smooth muscle, and kidney/ES cells, respectively. From the RT-PCR results, the high specificity and sufficient sensitivity of the new method was indicated. It is considered that the new method is optimal for ES collection without contamination and it will be able to contribute to future analyses of the ES. PMID:18809376

  12. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides

    PubMed Central

    2012-01-01

    Background Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. Description PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s) and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s) (when applicable), experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI). It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. Conclusion PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available via the web

  13. Isolation and characterization of mesenchymal stem cells from the yolk sacs of bovine embryos.

    PubMed

    Mançanares, C A F; Oliveira, V C; Oliveira, L J; Carvalho, A F; Sampaio, R V; Mançanares, A C F; Souza, A F; Perecin, F; Meirelles, F V; Miglino, M A; Ambrósio, C E

    2015-10-01

    The yolk sac (YS) represents a promising source of stem cells for research because of the hematopoietic and mesenchymal cell niches that are present in this structure during the development of the embryo. In this study, we report on the isolation and characterization of YS tissue and mesenchymal stem cells (MSCs) derived from bovine YSs. Our results show that the YS is macroscopically located in the exocoelomic cavity in the ventral portion of the embryo and consists of a transparent membrane formed by a central sac-like portion and two ventrally elongated projections. Immunohistochemistry analyses were positive for OCT4, CD90, CD105, and CD44 markers in the YS of both gestational age groups. The MSCs of bovine YS were isolated using enzymatic digestion and were grown in vitro for at least 11 passages to verify their capacity to proliferate. These cells were also subjected to immunophenotypic characterization that revealed the presence of CD90, CD105, and CD79 and the absence of CD45, CD44, and CD79, which are positive and negative markers of MSCs, respectively. To prove their multipotency, the cells were induced to differentiate into three cell types, chondrocytes, osteoblasts, and adipocytes, which were stained with tissue-specific dyes (chondrogenic: Alcian Blue, osteogenic: Alizarin Red, and adipogenic: Oil Red O) to confirm differentiation. Gene expression analyses showed no differences in the patterns of gene expression between the groups or passages tested, with the exception of the expression of SOX2, which was slightly different in the G1P3 group compared to the other groups. Our results suggest that YS tissue from bovines can be used as a source of MSCs, which makes YS tissue-derived cells an interesting option for cell therapy and regenerative medicine. PMID:26143361

  14. 48 CFR 301.603-74 - Requirement for retention of FAC-C and HHS SAC certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Requirement for retention of FAC-C and HHS SAC certification. 301.603-74 Section 301.603-74 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career...

  15. 48 CFR 301.603-74 - Requirement for retention of FAC-C and HHS SAC certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Requirement for retention of FAC-C and HHS SAC certification. 301.603-74 Section 301.603-74 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career...

  16. The endolymphatic sac in patients with Ménière's disease: correlation between the MRI and the surgical findings.

    PubMed

    Kobayashi, M; Fukaya, T; Noda, M

    2000-10-01

    The endolymphatic sac (ES) is thought to have close relations to pathogenesis of endolymphatic hydrops. Here is reported a retrospective study of 41 patients (42 ears) with Meniere's disease who underwent MRI prior to endolymphatic sac surgery. Based on proton-density weighted image (PDI) and T2-weighted image (T2), the ES including an endolymphatic duct (ED) were estimated whether it was detectable or not. Fourteen ESs were detected on both images (Group A), 14 ESs were detected only on PDI (Group B), and the remaining 14 ESs were not detected on either image (Group D). The actual shape of the sac, obtained from surgical findings, was classified into three (normoplastic, atrophic, invisible). Seventeen ears showed normoplastic ESs and 14 showed atrophic ESs. ES was not detected in 11 ears during surgery, and these findings were compared with image classification. From the study data, normoplastic ESs tend to be observed on both images whereas atrophic or invisible sacs were hardly observed on T2. This classification of ES on MRI was thought to correlate with surgical findings and this correlation was statistically significant (Spearman's rank correlation coefficient. r(s) = 0.58, p < 0.01). PMID:11200591

  17. Low flow venous malformation lesion presented with medial canthal swelling simulating swelling of the lacrimal sac origin: A case report

    PubMed Central

    ALSwaina, Nayef F.; ALSuhaibani, Adel H.

    2015-01-01

    Low flow venous malformation lesions (e.g. cavernous venous malformations) are commonly seen in the orbit and peri-orbital area. Common conditions may present with unexpected presentation. Here we report a 50 years old male patient with low flow venous malformation lesion presented with medial canthal swelling similar to the swelling typically seen in lacrimal sac related pathologies. PMID:26309438

  18. The effect of the renin—angiotensin system on mucosal water and sodium transfer in everted sacs of rat jejunum

    PubMed Central

    Crocker, Ann D.; Munday, Kenneth A.

    1970-01-01

    1. Mucosal water and sodium transfer were measured in everted sacs of rat jejunum. 2. Rats maintained on a high sodium diet did not show consistently reduced mucosal water transfer and aldosterone also failed to stimulate transfer unless the control untreated values were low. 3. Adrenalectomy produced little reduction in mucosal water transfer and aldosterone was without effect on water transfer in sacs from adrenalectomized rats. 4. Vasopressin had no effect on mucosal transfer. 5. Levels of water transfer were not reduced after hypophysectomy nor did aldosterone injection increase transfer. 6. Mucosal water transfer in sacs from adrenalectomized—nephrectomized rats was low and was significantly increased by aldosterone injection or by injection of crude kidney extract. 7. A significant increased mucosal water and sodium transfer was observed when sacs from adrenalectomized—nephrectomized rats were incubated with angiotensin at a concentration of 10-10g/ml. 8. It is suggested that the renin—angiotensin system may be involved in the maintenance of sodium homoeostasis by a direct action on sodium transporting mechanisms. PMID:4322443

  19. 48 CFR 301.603-74 - Requirement for retention of FAC-C and HHS SAC certification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Requirement for retention of FAC-C and HHS SAC certification. 301.603-74 Section 301.603-74 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL HHS ACQUISITION REGULATION SYSTEM Career...

  20. Combined anti-solvent and cooling method of manufacturing indomethacin-saccharin (IMC-SAC) co-crystal powders

    NASA Astrophysics Data System (ADS)

    Chun, Nan-Hee; Lee, Min-Jeong; Song, Geon-Hyung; Chang, Kwan-Young; Kim, Chang-Sam; Choi, Guang J.

    2014-12-01

    The anti-solvent approach has been demonstrated as one potential industrial method to produce pharmaceutical co-crystal powders with high purity. In this study, we combined the anti-solvent method with cooling to maximize the yield of the solution-based co-crystallization between indomethacin (IMC) and saccharin (SAC). The cooling start time was the key process parameter; other parameters were fixed based on results of preliminary work. Highly pure IMC-SAC co-crystal powders were produced via the combined method, regardless of the cooling start time, and the yield was substantially enhanced. However, some material properties, such as crystallinity and particle size, were affected by the cooling start time; i.e., whether cooling was started before nucleation (pre-nucleation cooling) or after nucleation (post-nucleation cooling). When pre-nucleation cooling was applied, a greater degree of supersaturation led to nucleation of α-IMC and IMC-SAC together. The metastable α-IMC eventually transitioned to stable IMC-SAC co-crystal particles, followed by crystal growth. When post-nucleation cooling was applied, the transient α-IMC was not detected during the entire process.

  1. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis

    PubMed Central

    2014-01-01

    Abstract Tunicates have high capacities for regeneration but the underlying mechanisms and their relationship to life cycle progression are not well understood. Here we investigate the regeneration of distal structures in the ascidian tunicate Ciona intestinalis. Analysis of regenerative potential along the proximal−distal body axis indicated that distal organs, such as the siphons, their pigmented sensory organs, and the neural complex, could only be replaced from body fragments containing the branchial sac. Distal regeneration involves the formation of a blastema composed of cells that undergo cell proliferation prior to differentiation and cells that differentiate without cell proliferation. Both cell types originate in the branchial sac and appear in the blastema at different times after distal injury. Whereas the branchial sac stem cells are present in young animals, they are depleted in old animals that have lost their regeneration capacity. Thus Ciona adults contain a population of age‐related stem cells located in the branchial sac that are a source of precursors for distal body regeneration. PMID:25893097

  2. An Approach to Mimicking the Sesquiterpene Cyclase Phase by Nickel-Promoted Diene/Alkyne Cooligomerization

    PubMed Central

    Holte, Dane; Götz, Daniel C. G.; Baran, Phil S.

    2012-01-01

    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist’s toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature’s approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zero-valent nickel catalysis building off the classic studies by Günther Wilke and coworkers. PMID:22229741

  3. Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences.

    PubMed

    Dobritsa, S V; Potter, D; Gookin, T E; Berry, A M

    2001-06-01

    In Frankia, the microsymbiont in actinorhizal root nodules, nitrogen fixation takes place in specialized structures called vesicles. The lipidic vesicle envelope forms a barrier to oxygen diffusion, an essential part of the nitrogenase oxygen protection system. We have shown previously that the vesicle envelope is composed primarily of two species of hopanoid lipids, sterol-like molecules that are synthesized in a wide range of bacteria, including Frankia, several cyanobacteria, and rhizobia. The levels of hopanoid found in Frankia are among the highest of any organism known to date. Here we report that short (328-bp) DNA sequences from several strains of Frankia spp. have been identified that are homologous to a portion of the coding region of squalene-hopene cyclase (shc) genes. The fragments and corresponding polymerase chain reaction (PCR) primers can be used in phylogenetic comparisons of Frankia, both within Frankiaceae and among bacteria that synthesize hopanoids. PMID:11467729

  4. Pharmacology and clinical potential of guanylyl cyclase C agonists in the treatment of ulcerative colitis

    PubMed Central

    Pitari, Giovanni M

    2013-01-01

    Agonists of the transmembrane intestinal receptor guanylyl cyclase C (GCC) have recently attracted interest as promising human therapeutics. Peptide ligands that can specifically induce GCC signaling in the intestine include endogenous hormones guanylin and uroguanylin, diarrheagenic bacterial enterotoxins (ST), and synthetic drugs linaclotide, plecanatide, and SP-333. These agonists bind to GCC at intestinal epithelial surfaces and activate the receptor’s intracellular catalytic domain, an event initiating discrete biological responses upon conversion of guanosine-5′-triphosphate to cyclic guanosine monophosphate. A principal action of GCC agonists in the colon is the promotion of mucosal homeostasis and its dependent barrier function. Herein, GCC agonists are being developed as new medications to treat inflammatory bowel diseases, pathological conditions characterized by mucosal barrier hyperpermeability, abnormal immune reactions, and chronic local inflammation. This review will present important concepts underlying the pharmacology and therapeutic utility of GCC agonists for patients with ulcerative colitis, one of the most prevalent inflammatory bowel disease disorders. PMID:23637522

  5. Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits.

    PubMed

    Guo, Fei; Zhou, Wenjing; Zhang, Jiancheng; Xu, Qiang; Deng, Xiuxin

    2012-01-01

    Lycopene β-cyclase (LYCB) is the key enzyme for the synthesis of β-carotene, a valuable component of the human diet. In this study, tomato constitutively express Lycb-1 was engineered. The β-carotene level of transformant increased 4.1 fold, and the total carotenoid content increased by 30% in the fruits. In the transgenic line, the downstream α-branch metabolic fluxes were repressed during the three developmental stages while α-carotene content increased in the ripe stage. Microarray analysis in the ripe stage revealed that the constitutive expression of Lycb-1 affected a number of pathways including the synthesis of fatty acids, flavonoids and phenylpropanoids, the degradation of limonene and pinene, starch and sucrose metabolism and photosynthesis. This study provided insight into the regulatory effect of Lycb-1 gene on plant carotenoid metabolism and fruit transcriptome. PMID:22384184

  6. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue.

    PubMed

    Hoffmann, Linda S; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W C; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  7. An approach to mimicking the sesquiterpene cyclase phase by nickel-promoted diene/alkyne cooligomerization.

    PubMed

    Holte, Dane; Götz, Daniel C G; Baran, Phil S

    2012-01-20

    Artificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist's toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes. Starting from isoprene, the goal of this work was to mimic Nature's approach for rapidly building molecular complexity. In principle, the controlled oligomerization of isoprene would drastically simplify the synthesis of terpenes used in the medicine, perfumery, flavor, and materials industries. This article delineates our extensive efforts to cooligomerize isoprene or butadiene with alkynes in a controlled fashion by zerovalent nickel catalysis building off the classic studies by Wilke and co-workers. PMID:22229741

  8. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential

    PubMed Central

    Evgenov, Oleg V.; Pacher, Pál; Schmidt, Peter M.; Haskó, György; Schmidt, Harald H. H. W.; Stasch, Johannes-Peter

    2008-01-01

    Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766). PMID:16955067

  9. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis.

    PubMed

    Hammer, Stephan C; Marjanovic, Antonija; Dominicus, Jörg M; Nestl, Bettina M; Hauer, Bernhard

    2015-02-01

    For many important reactions catalyzed in chemical laboratories, the corresponding enzymes are missing, representing a restriction in biocatalysis. Although nature provides highly developed machineries appropriate to catalyze such reactions, their potential is often ignored. This also applies to Brønsted acid catalysis, a powerful method to promote a myriad of chemical transformations. Here, we report on the unique protonation machinery of a squalene hopene cyclase (SHC). Active site engineering of this highly evolvable enzyme yielded a platform for enzymatic Brønsted acid catalysis in water. This is illustrated by activation of different functional groups (alkenes, epoxides and carbonyls), enabling the highly stereoselective syntheses of various cyclohexanoids while uncoupling SHC from polycyclization chemistry. This work highlights the potential of systematic investigation on nature's catalytic machineries to generate unique catalysts. PMID:25503928

  10. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases.

    PubMed

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities. PMID:20861902

  11. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

    NASA Astrophysics Data System (ADS)

    Itoh, Takayuki; Tokunaga, Kinya; Matsuda, Yudai; Fujii, Isao; Abe, Ikuro; Ebizuka, Yutaka; Kushiro, Tetsuo

    2010-10-01

    Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole-diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

  12. Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis

    PubMed Central

    Vagstad, Anna L; Hill, Eric A; Labonte, Jason W; Townsend, Craig A

    2012-01-01

    Summary Melanins are a broad class of darkly-pigmented macromolecules formed by oxidative polymerization of phenolic monomers. In fungi, melanins are known virulence factors that contribute to pathogenicity. Their biosynthesis generally involves polymerization of 1,8-dihydroxynaphthalene via a 1,3,6,8- tetrahydroxynaphthalene (THN) precursor assembled by multidomain, nonreducing polyketide synthases. Multiple, convergent routes to THN have evolved in fungi. Parallel heptaketide and hexaketide pathways exist that utilize conventional C-terminal thioesterase/Claisen cyclase domains and separate side-chain deacylases. Here, in vitro characterization of Pks1 from Colletotrichum lagenarium establishes a true THN synthase with a bifunctional thioesterase (TE) catalyzing both cyclization and deacetylation of an enzyme-bound hexaketide substrate. Chimeric TE domains were generated by swapping lid regions of active sites between classes of melanin TEs to gain insight into this unprecedented catalysis of carbon–carbon bond making and breaking by an α/β-hydrolase fold enzyme. PMID:23261597

  13. Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin

    PubMed Central

    Wu, Chao; Cheng, Yuan-Yuan; Yin, Hao; Song, Xiang-Ning; Li, Wen-Wei; Zhou, Xian-Xuan; Zhao, Li-Ping; Tian, Li-Jiao; Han, Jun-Cheng; Yu, Han-Qing

    2013-01-01

    Although oxygen has been reported to regulate biofilm formation by several Shewanella species, the exact regulatory mechanism mostly remains unclear. Here, we identify a direct oxygen-sensing diguanylate cyclase (DosD) and reveal its regulatory role in biofilm formation by Shewanella putrefaciens CN32 under aerobic conditions. In vitro and in vivo analyses revealed that the activity of DosD culminates to synthesis of cyclic diguanylate (c-di-GMP) in the presence of oxygen. DosD regulates the transcription of bpfA operon which encodes seven proteins including a large repetitive adhesin BpfA and its cognate type I secretion system (TISS). Regulation of DosD in aerobic biofilms is heavily dependent on an adhesin BpfA and the TISS. This study offers an insight into the molecular mechanism of oxygen-stimulated biofilm formation by S. putrefaciens CN32. PMID:23736081

  14. Fetal nicotine exposure produces postnatal up-regulation of adenylate cyclase activity in peripheral tissues

    SciTech Connect

    Slotkin, T.A.; Navarro, H.A.; McCook, E.C.; Seidler, F.J. )

    1990-01-01

    Gestational exposure to nicotine has been shown to affect development of noradrenergic activity in both the central and peripheral nervous systems. In the current study, pregnant rats received nicotine infusions of 6 mg/kg/day throughout gestation, administered by osmotic minipump implants. After birth, offspring of the nicotine-infused dams exhibited marked increases in basal adenylate cyclase activity in membranes prepared from kidney and heart, as well as supersensitivity to stimulation by either a {beta}-adrenergic agonist, isoproterenol, or by forskolin. The altered responses were not accompanied by up-regulation of {beta}-adrenergic receptors: in fact, ({sup 125}I)pindolol binding was significantly decreased in the nicotine group. These results indicate that fetal nicotine exposure affects enzymes involved in membrane receptor signal transduction, leading to altered responsiveness independently of changes at the receptor level.

  15. Crystal Structure of Human Soluble Adenylate Cyclase Reveals a Distinct, Highly Flexible Allosteric Bicarbonate Binding Pocket

    PubMed Central

    Saalau-Bethell, Susanne M; Berdini, Valerio; Cleasby, Anne; Congreve, Miles; Coyle, Joseph E; Lock, Victoria; Murray, Christopher W; O'Brien, M Alistair; Rich, Sharna J; Sambrook, Tracey; Vinkovic, Mladen; Yon, Jeff R; Jhoti, Harren

    2014-01-01

    Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site and a novel discrete bicarbonate binding pocket. Crystal structures of the apo protein, the protein in complex with α,β-methylene adenosine 5′-triphosphate (AMPCPP) and calcium, with the allosteric activator bicarbonate, and also with a number of inhibitors identified using fragment screening, all show a flexible active site that undergoes significant conformational changes on binding of ligands. The resulting nanomolar-potent inhibitors that were developed bind at both the substrate binding pocket and the allosteric site, and can be used as chemical probes to further elucidate the function of this protein. PMID:24616449

  16. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    SciTech Connect

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a

  17. Structure, signaling mechanism and regulation of natriuretic peptide receptor-guanylate cyclase

    PubMed Central

    Misono, Kunio S.; Philo, John S.; Arakawa, Tsutomu; Ogata, Craig M.; Qiu, Yue; Ogawa, Haruo; Young, Howard S.

    2011-01-01

    Summary Atrial natriuretic peptide (ANP) and homologous B-type natriuretic peptide (BNP) are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and BNP counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by the A-type natriuretic peptide receptor (NPRA), a single transmembrane segment, guanylate cyclase (GC) linked receptor that occurs as a homodimer. Here we present an overview of the structure, possible chloride-mediated regulation, and signaling mechanism of the NPRA and other receptor-GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacter GC Cya2 have been reported. These structures closely resemble that of the adenylate cyclase catalytic domain consisting of C1 and C2 subdomain heterodimer. AC is activated by binding of Gsα to C2 and ensuing 7° rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer into a catalytically active conformation. We speculate that, in the NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity. PMID:21375693

  18. Restoring Soluble Guanylyl Cyclase Expression and Function Blocks the Aggressive Course of GliomaS⃞

    PubMed Central

    Zhu, Haifeng; Li, Jessica Tao; Zheng, Fang; Martin, Emil; Kots, Alexander Y.; Krumenacker, Joshua S.; Choi, Byung-Kwon; McCutcheon, Ian E.; Weisbrodt, Norman; Bögler, Oliver; Murad, Ferid

    2011-01-01

    The NO and cGMP signaling pathways are of broad physiological and pathological significance. We compared the NO/soluble guanylyl cyclase (sGC)/cGMP pathway in human glioma tissues and cell lines with that of healthy control samples and demonstrated that sGC expression is significantly lower in glioma preparations. Our analysis of GEO databases (National Cancer Institute) further revealed a statistically significant reduction of sGC transcript levels in human glioma specimens. On the other hand, the expression levels of particulate (membrane) guanylyl cyclases (pGC) and cGMP-specific phosphodiesterase (PDE) were intact in the glioma cells that we have tested. Pharmacologically manipulating endogenous cGMP generation in glioma cells through either stimulating pGC by ANP/BNP, or blocking PDE by 3-isobutyl-1-methylxanthine/zaprinast caused significant inhibition of proliferation and colony formation of glioma cells. Genetically restoring sGC expression also correlated inversely with glioma cells growth. Orthotopic implantation of glioma cells transfected with an active mutant form of sGC (sGCα1β1Cys105) in athymic mice increased the survival time by 4-fold over the control. Histological analysis of xenografts overexpressing α1β1Cys105 sGC revealed changes in cellular architecture that resemble the morphology of normal cells. In addition, a decrease in angiogenesis contributed to glioma inhibition by sGC/cGMP therapy. Our study proposes the new concept that suppressed expression of sGC, a key enzyme in the NO/cGMP pathway, may be associated with an aggressive course of glioma. The sGC/cGMP signaling-targeted therapy may be a favorable alternative to chemotherapy and radiotherapy for glioma and perhaps other tumors. PMID:21908708

  19. Topological mimicry and epitope duplication in the guanylyl cyclase C receptor.

    PubMed Central

    Nandi, A.; Suguna, K.; Surolia, A.; Visweswariah, S. S.

    1998-01-01

    Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a