Sample records for adequate heat removal

  1. Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak

    NASA Astrophysics Data System (ADS)

    Brown, Michael Lee

    1990-01-01

    Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat

  2. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  3. Heat recirculating cooler for fluid stream pollutant removal

    DOEpatents

    Richards, George A.; Berry, David A.

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  4. Solution of heat removal from nuclear reactors by natural convection

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav

    2014-03-01

    This paper summarizes the basis for the solution of heat removal by natural convection from both conventional nuclear reactors and reactors with fuel flowing coolant (such as reactors with molten fluoride salts MSR).The possibility of intensification of heat removal through gas lift is focused on. It might be used in an MSR (Molten Salt Reactor) for cleaning the salt mixture of degassed fission products and therefore eliminating problems with iodine pitting. Heat removal by natural convection and its intensification increases significantly the safety of nuclear reactors. Simultaneously the heat removal also solves problems with lifetime of pumps in the primary circuit of high-temperature reactors.

  5. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  6. Decay Heat Removal from a GFR Core by Natural Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.

    2004-07-01

    One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less

  7. Emergency heat removal system for a nuclear reactor

    DOEpatents

    Dunckel, Thomas L.

    1976-01-01

    A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.

  8. Heat exchanger with a removable tube section

    DOEpatents

    Wolowodiuk, W.; Anelli, J.

    1975-07-29

    A heat exchanger is described in which the tube sheet is secured against primary liquid pressure, but which allows for easy removal of the tube section. The tube section is supported by a flange which is secured by a number of shear blocks, each of which extends into a slot which is immovable with respect to the outer shell of the heat exchanger. (auth)

  9. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  10. Nuclear reactor with makeup water assist from residual heat removal system

    DOEpatents

    Corletti, M.M.; Schulz, T.L.

    1993-12-07

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  11. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    PubMed

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  12. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  13. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  14. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  15. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford (top), with the Aft Engine shop, along with another worker, removes a heat shield on one of Columbia's engines. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  16. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    PubMed

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  17. Passive shut-down heat removal system

    DOEpatents

    Hundal, Rolv; Sharbaugh, John E.

    1988-01-01

    An improved shut-down heat removal system for a liquid metal nuclear reactor of the type having a vessel for holding hot and cold pools of liquid sodium is disclosed herein. Generally, the improved system comprises a redan or barrier within the reactor vessel which allows an auxiliary heat exchanger to become immersed in liquid sodium from the hot pool whenever the reactor pump fails to generate a metal-circulating pressure differential between the hot and cold pools of sodium. This redan also defines an alternative circulation path between the hot and cold pools of sodium in order to equilibrate the distribution of the decay heat from the reactor core. The invention may take the form of a redan or barrier that circumscribes the inner wall of the reactor vessel, thereby defining an annular space therebetween. In this embodiment, the bottom of the annular space communicates with the cold pool of sodium, and the auxiliary heat exchanger is placed in this annular space just above the drawn-down level that the liquid sodium assumes during normal operating conditions. Alternatively, the redan of the invention may include a pair of vertically oriented, concentrically disposed standpipes having a piston member disposed between them that operates somewhat like a pressure-sensitive valve. In both embodiments, the cessation of the pressure differential that is normally created by the reactor pump causes the auxiliary heat exchanger to be immersed in liquid sodium from the hot pool. Additionally, the redan in both embodiments forms a circulation flow path between the hot and cold pools so that the decay heat from the nuclear core is uniformly distributed within the vessel.

  18. Modes of mantle convection and the removal of heat from the earth's interior

    NASA Technical Reports Server (NTRS)

    Spohn, T.; Schubert, G.

    1982-01-01

    Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.

  19. Resistively-Heated Microlith-based Adsorber for Carbon Dioxide and Trace Contaminant Removal

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Walsh, D.; Perry, J.

    2005-01-01

    An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 7-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed. The technology consisted of a sorption bed with sorbent- coated metal meshes, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI). By contrast the current CO2 removal system on the International Space Station employs pellet beds. Preliminary bench scale performance data (without direct resistive heating) for simultaneous CO2 and trace contaminant removal was reviewed in SAE 2004-01-2442. In the prototype, the meshes were directly electrically heated for rapid response and accurate temperature control. This allowed regeneration via resistive heating with the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. A novel flow arrangement, for removing both CO2 and trace contaminants within the same bed, was demonstrated. Thus, the need for a separate trace contaminant unit was eliminated resulting in an opportunity for significant weight savings. Unlike the current disposable charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration.

  20. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    PubMed

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  1. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less

  2. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  3. Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less

  4. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    NASA Astrophysics Data System (ADS)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  5. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  6. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study.

    PubMed

    Henriksson, Otto; Lundgren, Peter; Kuklane, Kalev; Holmér, Ingvar; Naredi, Peter; Bjornstig, Ulf

    2012-02-01

    In the prehospital care of a cold and wet person, early application of adequate insulation is of utmost importance to reduce cold stress, limit body core cooling, and prevent deterioration of the patient's condition. Most prehospital guidelines on protection against cold recommend the removal of wet clothing prior to insulation, and some also recommend the use of a waterproof vapor barrier to reduce evaporative heat loss. However, there is little scientific evidence of the effectiveness of these measures. Using a thermal manikin with wet clothing, this study was conducted to determine the effect of wet clothing removal or the addition of a vapor barrier on thermal insulation and evaporative heat loss using different amounts of insulation in both warm and cold ambient conditions. A thermal manikin dressed in wet clothing was set up in accordance with the European Standard for assessing requirements of sleeping bags, modified for wet heat loss determination, and the climatic chamber was set to -15 degrees Celsius (°C) for cold conditions and +10°C for warm conditions. Three different insulation ensembles, one, two or seven woollen blankets, were chosen to provide different levels of insulation. Five different test conditions were evaluated for all three levels of insulation ensembles: (1) dry underwear; (2) dry underwear with a vapor barrier; (3) wet underwear; (4) wet underwear with a vapor barrier; and (5) no underwear. Dry and wet heat loss and thermal resistance were determined from continuous monitoring of ambient air temperature, manikin surface temperature, heat flux and evaporative mass loss rate. Independent of insulation thickness or ambient temperature, the removal of wet clothing or the addition of a vapor barrier resulted in a reduction in total heat loss of 19-42%. The absolute heat loss reduction was greater, however, and thus clinically more important in cold environments when little insulation is available. A similar reduction in total heat loss

  7. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  8. Finger heat flux/temperature as an indicator of thermal imbalance with application for extravehicular activity.

    PubMed

    Koscheyev, Victor S; Leon, Gloria R; Coca, Aitor

    2005-11-01

    The designation of a simple, non-invasive, and highly precise method to monitor the thermal status of astronauts is important to enhance safety during extravehicular activities (EVA) and onboard emergencies. Finger temperature (Tfing), finger heat flux, and indices of core temperature (Tc) [rectal (Tre), ear canal (Tec)] were assessed in 3 studies involving different patterns of heat removal/insertion from/to the body by a multi-compartment liquid cooling/warming garment (LCWG). Under both uniform and nonuniform temperature conditions on the body surface, Tfing and finger heat flux were highly correlated with garment heat flux, and also highly correlated with each other. Tc responses did not adequately reflect changes in thermal balance during the ongoing process of heat insertion/removal from the body. Overall, Tfing/finger heat flux adequately reflected the initial destabilization of thermal balance, and therefore appears to have significant potential as a useful index for monitoring and maintaining thermal balance and comfort in extreme conditions in space as well as on Earth. c2005 Elsevier Ltd. All rights reserved.

  9. Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics

    NASA Astrophysics Data System (ADS)

    Zhou, Tianle; Wei, Hao; Tan, Huaping; Wang, Xin; Zeng, Haibo; Liu, Xiaoheng; Nagao, Shijo; Koga, Hirotaka; Nogi, Masaya; Sugahara, Tohru; Suganuma, Katsuaki

    2018-07-01

    Thin-film wearable electronics are required to be directly laminated on to human skin for reliable, sensitive bio-sensing but with minimal irritation to the user after long-time use. Excellent heat management films with strongly anisotropic thermal conductivity (K) and adequate breathability are increasingly desirable for shielding the skin from heating while allowing the skin to breathe properly. Here, interfacial self-assembly of a graphene oxide (GO) film covering an ambient-dried bacterial cellulose aerogel (AD-BCA) film followed by laser reduction was proposed to prepare laser-reduced GO (L-rGO)/AD-BCA bilayered films. The AD-BCA substrate provides low cross-plane K (K ⊥  ≈  0.052 W mK‑1), high breathability, and high compressive and tensile resistance by ‘partially’ inheriting the pore structure from bacterial cellulose (BC) gel. The introduction of an upper L-rGO film, which is only 0.31 wt% content, dramatically increases the in-plane K (K // ) from 0.3 W mK‑1 in AD-BCA to 10.72 W mK‑1 owing to the highly in-plane oriented, continuous, uniform assembling geometry of the GO film; while K ⊥ decreases to a lower value of 0.033 W mK‑1, mainly owing to the air pockets between L-rGO multilayers caused by the laser reduction. The bilayered films achieve a K // /K ⊥ of 325, which is substantially larger even than that of graphite and similar polymer composites. They permit high transmission rates for water vapor (416.78 g/m2/day, >204 g/m2/day of normal skin) and O2 (449.35 cm3/m2/day). The combination of strongly anisotropic thermal conductivity and adequate breathability facilitates applications in heat management in on-skin electronics.

  10. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design

  11. Heat removal from bipolar transistor by loop heat pipe with nickel and copper porous structures.

    PubMed

    Nemec, Patrik; Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made.

  12. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    PubMed Central

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  13. High Heat Flux Surface Coke Deposition and Removal Assessment

    DTIC Science & Technology

    2015-01-01

    Technical Paper 3. DATES COVERED (From - To) January 2015- May 2015 4. TITLE AND SUBTITLE High Heat Flux Surface Coke Deposition and Removal Assessment... coke ) form. Coke has a much lower thermal conductivity than copper - thicknesses of only a few millionths of an inch can cause liner temperatures to...increase to dangerous levels. Moreover, reusing launch vehicles and main engines increases the likelihood that unsafe levels of coke will be

  14. Method and apparatus for removing heat from electronic devices using synthetic jets

    DOEpatents

    Sharma, Rajdeep; Weaver, Jr., Stanton Earl; Seeley, Charles Erklin; Arik, Mehmet; Icoz, Tunc; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas

    2014-04-15

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  15. Method and apparatus for removing heat from electronic devices using synthetic jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rajdeep; Weaver, Stanton Earl; Seeley, Charles Erklin

    An apparatus for removing heat comprises a heat sink having a cavity, and a synthetic jet stack comprising at least one synthetic jet mounted within the cavity. At least one rod and at least one engaging structure to provide a rigid positioning of the at least one synthetic jet with respect to the at least one rod. The synthetic jet comprises at least one orifice through which a fluid is ejected.

  16. Metabolic Heat Regenerated Temperature Swing Adsorption for CO(sub 2) and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bowers, Chad; Straub-Lopez, Katie; Anderson, Grant; MacCallum, Taber; Paul, Heather

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of CO2 in an environment with a ppCO2 of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the vent loop. Once fully loaded, the adsorbent is then warmed externally by the vent loop (approx. 300K), rejecting the captured CO2 to Mars ambient. Two beds are used to effect a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the vent loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available at Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments was conducted which lead to the selection and partial characterization of an appropriate adsorbent. The adsorbent NaX successfully removed CO2 from a simulated vent loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design challenges as listed in the conclusions.

  17. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heatmore » removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)« less

  18. Cyclic process for producing methane from carbon monoxide with heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  19. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    PubMed

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  20. A&M. Radioactive parts security storage area, heat removal storage casks. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Radioactive parts security storage area, heat removal storage casks. Plan, section, and details. Ralph M. Parsons 1480-7 ANP/GE-3-720-S-1. Date: November 1958. Approved by INEEL Classification Office for public release. INEEL index no. 034-0720-60-693-107459 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  2. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft has been removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  3. Heat removal using microclimate foot cooling: a thermal foot manikin study.

    PubMed

    Castellani, John W; Demes, Robert; Endrusick, Thomas L; Cheuvront, Samuel N; Montain, Scott J

    2014-04-01

    It has been proposed that microclimate cooling systems exploit the peripheral extremities because of more efficient heat transfer. The purpose of this study was to quantify, using a patented microclimate cooling technique, the heat transfer from the plantar surface of the foot for comparison to other commonly cooled body regions. A military boot was fitted with an insole embedded with a coiled, 1.27 m length of hollow tubing terminating in inlet and outlet valves. A thermal foot manikin with a surface temperature of 34 degrees C was placed in the boot and the valves were connected to a system that circulated water through the insole at a temperature of 20 degrees C and flow rate of 120 ml x min(-1). The manikin foot served as a constant heat source to determine heat transfer provided by the insole. Testing was done with the foot model dry and sweating at a rate of 500 ml x h(- 1) x m(-2). Climatic chamber conditions were 30 degrees C with 30% RH. Heat loss was approximately 4.1 +/- 0.1 and approximately 7.7 +/- 0.3 W from the dry and sweating foot models, respectively. On a relative scale, the heat loss was 3.0 W and 5.5 W per 1% (unit) body surface area, respectively, for the dry and sweating conditions. The relative heat loss afforded by plantar foot cooling was similar compared to other body regions, but the absolute amount of heat removal is unlikely to make an impact on whole body heat balance.

  4. Cordilleran Longevity, Elevation and Heat Driven by Lithospheric Mantle Removal

    NASA Astrophysics Data System (ADS)

    Mackay-Hill, A.; Currie, C. A.; Audet, P.; Schaeffer, A. J.

    2017-12-01

    Cordilleran evolution is controlled by subduction zone back-arc processes that generate and maintain high topography due to elevated uppermost mantle temperatures. In the northern Canadian Cordillera (NCC), the persisting high mean elevation long after subduction has stopped (>50 Ma) requires a sustained source of heat either from small-scale mantle convection or lithospheric mantle removal; however direct structural constraints of these processes are sparse. We image the crust and uppermost mantle beneath the NCC using scattered teleseismic waves recorded on an array of broadband seismograph stations. We resolve two sharp and flat seismic discontinuities: a downward velocity increase at 35 km that we interpret as the Moho; and a deeper discontinuity with opposite velocity contrast at 50 km depth. Based on petrologic estimates, we interpret the deeper interface as the lithosphere-asthenosphere boundary (LAB), which implies an extremely thin ( 15 km) lithospheric mantle. We calculate the temperature at the Moho and the LAB in the range 800-900C and 1200-1300C, respectively. Below the LAB, we find west-dipping features far below the LAB beneath the eastern NCC that we associate with laminar downwelling of Cordilleran lithosphere. Whether these structures are fossilized or active, they suggest that lithospheric mantle removal near the Cordillera-Craton boundary may have provided the source of heat and elevation and therefore played a role in the longevity and stability of the Cordillera.

  5. An investigation of the heat induced during ultrasonic post removal.

    PubMed

    Ettrich, Christopher A; Labossière, Paul E; Pitts, David L; Johnson, James D

    2007-10-01

    The purpose of this study was to investigate the potential for temperature increase along the external root surface during ultrasonic post removal in a simulated clinical environment. Thirty-seven extracted teeth were decoronated, instrumented, and then obturated with gutta-percha and sealer. Post spaces were prepared, followed by cementation of stainless steel posts. A simulated clinical environment was created by using a polymethylmethacrylate sheet with holes custom fitted for the extracted teeth and then suspended over a heated water bath. Two thermocouples were attached at 6 and 12 mm from the top of the post along the external root surface. Teeth were divided into 3 test groups, no coolant, air-cooled, and water-cooled. Temperature changes were recorded by using a Vishay 5000 Strain Smart system. Results demonstrated that a significant difference existed in the average heat rates between the upper and lower thermocouples for no coolant and water-cooled groups at the medium setting and the air-cooled group at the high setting. The average heat rates were significantly different between the 2 thermocouples for all 3 groups when comparing the 2 ultrasonic power settings. Results indicated that the average heat rate was less for the water-cooled group when using a medium power setting.

  6. Heat removal capability of divertor coaxial tube assembly

    NASA Astrophysics Data System (ADS)

    Shibui, Masanao; Nakahira, Masataka; Tada, Eisuke; Takatsu, Hideyuki

    1994-05-01

    To deal with high power flowing in the divertor region, an advanced divertor concept with gas target has been proposed for use in ITER/EDA. The concept uses a divertor channel to remove the radiated power while allowing neutrals to recirculate. Candidate channel wall designs include a tube array design where many coaxial tubes are arranged in the toroidal direction to make louver. The coaxial tube consists of a Be protection tube encases many supply tubes wound helically around a return tube. V-alloy and hardened Cu-alloy have been proposed for use in the supply and return tubes. Some coolants have also been proposed for the design including pressurized He and liquid metals, because these coolants are consistent with the selection of coolants for the blanket and also meet the requirement of high temperature operation. In the coaxial tube design, the coolant area is restricted and brittle Be material is used under severe thermal cyclings. Thus, to obtain the coaxial tube with sufficient safety margin for the expected fusion power excursion, it is essential to understand its applicability limit. The paper discusses heat removal capability of the coaxial tube and recommends some design modifications.

  7. PANDA asymmetric-configuration passive decay heat removal test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, O.; Dreier, J.; Aubert, C.

    1997-12-01

    PANDA is a large-scale, low-pressure test facility for investigating passive decay heat removal systems for the next generation of LWRs. In the first series of experiments, PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The test objectives include concept demonstration and extension of the database available for qualification of containment codes. Also included is the study of the effects of nonuniform distributions of steam and noncondensable gases in the Dry-well (DW) and in the Suppression Chamber (SC). 3 refs., 9 figs.

  8. Heat release, time required, and cleaning ability of MTwo R and ProTaper universal retreatment systems in the removal of filling material.

    PubMed

    Bramante, Clovis Monteiro; Fidelis, Natasha Siqueira; Assumpção, Tatiana Santos; Bernardineli, Norberti; Garcia, Roberto Brandão; Bramante, Alexandre Silva; de Moraes, Ivaldo Gomes

    2010-11-01

    This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 °C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, α = 0.05). None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Experimental heat and mass transfer of the separated and coupled rotating desiccant wheel and heat wheel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi

    The experimental evaluation of the separated and coupled rotating desiccant wheel and heat wheel is reported. The study aims to investigate the performance of the desiccant wheel and of the heat wheel both when operated separately and jointly. The performance evaluation of the desiccant wheel is based on its moisture removal capacity (MRC), moisture removal regeneration (MRR), and moisture mass balance (MMB). In addition, the study used the total energy balance (TEB), sensible coefficient of performance (COP{sub Sensible}), latent coefficient of performance (COP{sub Latent}) and, total coefficient of performance (COP{sub Total}). The performance of the heat wheel is based onmore » its effectiveness. The COP{sub Sensible}, COP{sub Latent} and, COP{sub Total} are used in the performance evaluation of the coupled desiccant wheel and heat wheel. The general results of the study show that the MRC, MRR and MMB coupled with the TEB, COP{sub Latent}, COP{sub Sensible} and COP{sub Total} predict adequately the performance of the desiccant wheel. In addition, the coupled operation of the desiccant wheel and heat wheel, contributed to the reduction of the external thermal energy requirement for the regeneration of the desiccant wheel. This study can be applied in other researches seeking evaluation of the desiccant wheel, heat wheel, and their combined operation. Moreover, the data presented here are significant for the desiccant wheel benchmarking and for evaluation of the desiccant wheel models. (author)« less

  10. System Study: Residual Heat Removal 1998-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in themore » RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.« less

  11. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOEpatents

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  12. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    PubMed

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  14. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  15. Adenoid removal

    MedlinePlus

    ... away soft tissue is used. Some surgeons use electricity to heat the tissue, remove it, and stop ... adenoid glands Patient Instructions Tonsil and adenoid removal - discharge Tonsil removal - what to ask your doctor Images ...

  16. Removal of sulphur-containing odorants from fuel gases for fuel cell-based combined heat and power applications

    NASA Astrophysics Data System (ADS)

    de Wild, P. J.; Nyqvist, R. G.; de Bruijn, F. A.; Stobbe, E. R.

    Natural gas (NG) and liquefied petroleum gas (LPG) are important potential feedstocks for the production of hydrogen for fuel cell-based (e.g. proton exchange membrane fuel cells (PEMFC) or solid oxide fuel Cells (SOFC) combined heat and power (CHP) applications. To prevent detrimental effects on the (electro)catalysts in fuel cell-based combined heat and power installations (FC-CHP), sulphur removal from the feedstock is mandatory. An experimental bench-marking study of adsorbents has identified several candidates for the removal of sulphur containing odorants at low temperature. Among these adsorbents a new material has been discovered that offers an economically attractive means to remove TetraHydroThiophene (THT), the main European odorant, from natural gas at ambient temperature. The material is environmentally benign, easy to use and possesses good activity (residual sulphur levels below 20 ppbv) and capacity for the common odorant THT in natural gas. When compared to state-of-the-art metal-promoted active carbon the new material has a THT uptake capacity that is up to 10 times larger, depending on temperature and pressure. Promoted versions of the new material have shown potential for the removal of THT at higher temperatures and/or for the removal of other odorants such as mercaptans from natural gas or from LPG.

  17. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  18. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    USDA-ARS?s Scientific Manuscript database

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  19. Heat exchanger device and method for heat removal or transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  20. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  1. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  2. Heat exchanger device and method for heat removal or transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  3. Temporal trends in receipt of adequate lymphadenectomy in bladder cancer 1988 to 2010.

    PubMed

    Cole, Alexander P; Dalela, Deepansh; Hanske, Julian; Mullane, Stephanie A; Choueiri, Toni K; Meyer, Christian P; Nguyen, Paul L; Menon, Mani; Kibel, Adam S; Preston, Mark A; Bellmunt, Joaquim; Trinh, Quoc-Dien

    2015-12-01

    The importance of pelvic lymphadenectomy (LND) for diagnostic and therapeutic purposes at the time of radical cystectomy (RC) for bladder cancer is well documented. Although some debate remains on the optimal number of lymph nodes removed, 10 nodes has been proposed as constituting an adequate LND. We used data from the Surveillance, Epidemiology, and End Results database to examine predictors and temporal trends in the receipt of an adequate LND at the time of RC for bladder cancer. Within the Surveillance, Epidemiology, and End Results database, we extracted data on all patients with nonmetastatic bladder cancer receiving RC in the years 1988 to 2010. First, we assess the proportion of individuals undergoing RC who received an adequate LND (≥10 nodes removed) over time. Second, we calculate odds ratios (ORs) of receiving an adequate LND using logistic regression modeling to compare study periods. Covariates included sex, race, age, region, tumor stage, urban vs. rural location, and insurance status. Among the 5,696 individuals receiving RC during the years 1988 to 2010, 2,576 (45.2%) received an adequate LND. Over the study period, the proportion of individuals receiving an adequate LND increased from 26.4% to 61.3%. The odds of receiving an adequate LND increased over the study period; a patient undergoing RC in 2008 to 2010 was over 4-fold more likely to receive an adequate LND relative to a patient treated in 1988 to 1991 (OR = 4.63, 95% CI: 3.32-6.45). In addition to time of surgery, tumor stage had a positive association with receipt of adequate LND (OR = 1.49 for stage IV [T4 N1 or N0] vs. stage I [T1 or Tis], 95% CI: 1.22-1.82). Age, sex, marital status, and race were not significant predictors of adequate LND. Adequacy of pelvic LND remains an important measure of surgical quality in bladder cancer. Our data show that over the years 1988 to 2010, the likelihood of receiving an adequate LND has increased substantially; however, a substantial minority of

  4. Simultaneous removal of NO and SO2 from flue gas by combined heat and Fe2+ activated aqueous persulfate solutions.

    PubMed

    Adewuyi, Yusuf G; Sakyi, Nana Y; Arif Khan, M

    2018-02-01

    The use of advanced oxidation processes (AOPs) to integrate flue gas treatments for SO 2 , NO x and Hg 0 into a single process unit is rapidly gaining research attention. AOPs are processes that rely on the generation of mainly the hydroxyl radical. This work evaluates the effectiveness of the simultaneous removal of NO and SO 2 from flue gas utilizing AOP induced by the combined heat and Fe 2+ activation of aqueous persulfate, and elucidates the reaction pathways. The results indicated that both SO 2 in the flue gas and Fe 2+ in solution improved NO removal, while the SO 2 is almost completely removed. Increased temperature led to increase in NO removal in the absence and presence of both Fe 2+ and SO 2 , and in the absence of either SO 2 or Fe 2+ , but the enhanced NO removal due to the presence of SO 2 alone dominated at all temperatures. The removal of NO increased from 77.5% at 30 °C to 80.5% and 82.3% at 50 °C and 70 °C in the presence of SO 2 alone, and from 35.3% to 62.7% and 81.2%, respectively, in the presence of Fe 2+ alone. However, in the presence of both SO 2 and Fe 2+ , NO conversion is 46.2% at 30 °C, increased only slightly to 48.2% at 50 °C; but sharply increased to 78.7% at 70 °C compared to 63.9% for persulfate-only activation. Results suggest NO removal in the presence of SO 2 is equally effective by heat-only or heat-Fe 2+ activation as the temperature increases. The results should be useful for future developments of advanced oxidation processes for flue gas treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Demonstration of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Iacomini, Christine; Powers, Aaron; Dunham, Jonah; Straub-Lopez, Katie; Anerson, Grant; MacCallum, Taber

    2007-01-01

    Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is currently being investigated for removal and rejection of CO2 and heat from a Portable Life Support System (PLSS) to a Martian environment. The metabolically-produced CO2 present in the vent loop gas is collected using a CO2 selective adsorbent that has been cooled via a heat exchanger to near CO2 sublimation temperatures (approx.195K) with liquid CO2 obtained from Martian resources. Once the adsorbent is fully loaded, fresh warm, moist vent loop (approx.300K) is used to heat the adsorbent via another heat exchanger. The adsorbent will then reject the collected CO2 to the Martian ambient. Two beds are used to achieve continuous CO2 removal by cycling between the cold and warm conditions for adsorbent loading and regeneration, respectively. Small experiments have already been completed to show that an adsorbent can be cycled between these PLSS operating conditions to provide adequate conditions for CO2 removal from a simulated vent loop. One of the remaining technical challenges is extracting enough heat from the vent loop to warm the adsorbent in an appreciable time frame to meet the required adsorb/desorb cycle. The other key technical aspect of the technology is employing liquid CO2 to achieve the appropriate cooling. A technology demonstrator has been designed, built and tested to investigate the feasibility of 1) warming the adsorbent using the moist vent loop, 2) cooling the adsorbent using liquid CO2, and 3) using these two methods in conjunction to successfully remove CO2 from a vent loop and reject it to Mars ambient. Both analytical and numerical methods were used to perform design calculations and trades. The demonstrator was built and tested. The design analysis and testing results are presented along with recommendations for future development required to increase the maturity of the technology.

  6. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  7. Heat profiles of laser-irradiated nails.

    PubMed

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  8. Thermally-Conductive Metallic Coatings and Applications for Heat Removal on In-Space Cryogenic Vehicles

    NASA Technical Reports Server (NTRS)

    Ameen, Lauren; Hervol, David; Waters, Deborah

    2017-01-01

    For large in-space cryogenic upper stages, substantial axial heat removal from a forward skirt by vapor-based heat interception may not be achieved by simple attachment methods unless sufficient thermal conductance from the skirt to the cooling fluid can be achieved. Preferable methods would allow for the addition of the cooling system to existing structure with minimal impact on the structure. Otherwise, significant modification to the basic structural design andor novel and complex attachment mechanisms with high effective thermal conductance are likely to be required. The approach being pursued by evolvable Cryogenics (eCryo) is to increase the thermal performance of a relatively simple attachment system by applying metallic or other thermally conductive material coatings to the mating surface area of the fluid channel where it is attached the skirt wall. The expectation of candidate materials is that the dramatic increase in conductivity of pure metals at temperatures close to liquid hydrogen vapor temperature will compensate for the reduced actual contact area typical of mechanical joints. Basic contact conductance data at low temperatures for candidate interface materials is required to enable the test approach. A test rig was designed at NASA Glenn Research Center to provide thermal contact resistance testing between small sample coupons coated with conductive material via electron beam evaporation, a low-temperature option that will not affect physical properties of base materials. Average coating thicknesses were 10 k. The test fixture was designed to mount directly to a cryocooler cold head within a vacuum test chamber. The purpose of this test was to determine qualitative contact conductance between various test samples. Results from this effort will be implemented in a sub-scale vapor-based heat interception test, where the applicability for increased heat removal on large structural skirts will be considered.

  9. Cooling system for removing metabolic heat from an hermetically sealed spacesuit

    NASA Technical Reports Server (NTRS)

    Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)

    1978-01-01

    An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.

  10. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Heat Stroke: Role of the Systemic Inflammatory Response

    DTIC Science & Technology

    2010-06-01

    data indicate that current clinical markers of heat stroke recovery may not adequately reflect heat stroke recovery in all cases. Currently heat stroke...cause of mortality, and recent experimental data indicate that current clinical markers of heat stroke recovery may not adequately reflect heat stroke...hyperthermia in patients was regarded as a compensatory peripheral vasoconstriction response to cooling of the skin surface with ice packs, whereas

  12. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  13. Oscillating-Coolant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.

    1992-01-01

    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  14. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  15. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  16. Surfactants for Bubble Removal against Buoyancy

    NASA Astrophysics Data System (ADS)

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications.

  17. Surfactants for Bubble Removal against Buoyancy

    PubMed Central

    Raza, Md. Qaisar; Kumar, Nirbhay; Raj, Rishi

    2016-01-01

    The common phenomenon of buoyancy-induced vapor bubble lift-off from a heated surface is of importance to many areas of science and technology. In the absence of buoyancy in zero gravity of space, non-departing bubbles coalesce to form a big dry patch on the heated surface and heat transfer deteriorates despite the high latent heat of vaporization of water. The situation is worse on an inverted heater in earth gravity where both buoyancy and surface tension act upwards to oppose bubble removal. Here we report a robust passive technique which uses surfactants found in common soaps and detergents to avoid coalescence and remove bubbles downwards, away from an inverted heater. A force balance model is developed to demonstrate that the force of repulsion resulting from the interaction of surfactants adsorbed at the neighboring liquid-vapor interfaces of the thin liquid film contained between bubbles is strong enough to overcome buoyancy and surface tension. Bubble removal frequencies in excess of ten Hz resulted in more than twofold enhancement in heat transfer in comparison to pure water. We believe that this novel bubble removal mechanism opens up opportunities for designing boiling-based systems for space applications. PMID:26743179

  18. Heat-Assisted Machining for Material Removal Improvement

    NASA Astrophysics Data System (ADS)

    Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.

    2015-09-01

    Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.

  19. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  20. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    PubMed

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Maintaining adequate nutrient supply - Principles, decision-support tools, and best management practices [Chapter 6

    Treesearch

    Robert B. Harrison; Douglas A. Maguire; Deborah Page-Dumroese

    2011-01-01

    Maintaining adequate nutrient supply to maintain or enhance tree vigor and forest growth requires conservation of topsoil and soil organic matter. Sometimes nutrient amendments are also required to supplement inherent nutrient-pool limitations or replenish nutrients removed in harvested material. The goal is to maintain the productive potential of the soil and, when...

  2. A cost comparison of five midstory removal methods

    Treesearch

    Brian G. Bailey; Michael R. Saunders; Zachary E. Lowe

    2011-01-01

    Within mature hardwood forests, midstory removal treatments have been shown to provide the adequate light and growing space needed for early establishment of intermediate-shade-tolerant species. As the method gains popularity, it is worthwhile to determine what manner of removal is most cost-efficient. Th is study compared five midstory removal treatments across 10...

  3. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    NASA Astrophysics Data System (ADS)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  4. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  5. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  6. 14 CFR 27.859 - Heating systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...

  7. 14 CFR 27.859 - Heating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...

  8. 14 CFR 27.859 - Heating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...

  9. 14 CFR 27.859 - Heating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Heat exchangers. Each heat exchanger must be— (1) Of suitable materials; (2) Adequately cooled under... following occurs: (i) The heat exchanger temperature exceeds safe limits. (ii) The ventilating air..., the heat output of which is essential for safe operation; and (ii) Keep the heater off until restarted...

  10. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce

    2012-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapid Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, testing planned in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing. 1

  11. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less

  12. Hair removal for Fitzpatrick skin types V and VI using light and heat energy technology.

    PubMed

    Sadick, Neil S; Krespi, Yoseph

    2006-09-01

    To determine the safety and efficacy of a light and heat energy (LHE)-based system (SkinStaion system; Radiancy Inc, Orangeburg, NY, USA) for hair removal in subjects with skin types V and VI. Thirty-one subjects with Fitzpatrick skin types V and VI were consented for treatment with the system. Twenty-six subjects completed the 12-week follow-up. Safety was evaluated at each visit and efficacy was evaluated at both follow-up visits. An average hair clearance of 41.7% from 57 treatment sites was reported at the 6-week follow-up visit and a 35.5% average hair clearance was reported at the 12-week follow-up. Edema was only reported in 2 cases (7.7%) of the study population. Eleven cases of erythema were reported following treatment. Treatment with the modified LHE system was safe and effective for hair removal in patients with skin types V and VI.

  13. Comparisons of RELAP5-3D Analyses to Experimental Data from the Natural Convection Shutdown Heat Removal Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Hu, Rui; Lisowski, Darius

    2016-04-17

    The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at themore » NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.« less

  14. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  15. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Method of making thermally removable polymeric encapsulants

    DOEpatents

    Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.

    2001-01-01

    A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

  17. Use of heat pipes in electronic hardware

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1977-01-01

    A modular, multiple output power converter was developed in order to reduce costs of space hardware in future missions. The converter is of reduced size and weight, and utilizes advanced heat removal techniques, in the form of heat pipes which remove internally generated heat more effectively than conventional methods.

  18. Modeling of a heat sink and high heat flux vapor chamber

    NASA Astrophysics Data System (ADS)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  19. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2011-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.

  20. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  1. Thermophysiological responses induced by a body heat removal system with Peltier devices in a hot environment.

    PubMed

    Suzurikawa, Jun; Fujimoto, Sho; Mikami, Kousei; Jonai, Hiroshi; Inoue, Takenobu

    2013-01-01

    Individuals with spinal cord injuries often experience thermoregulation disorders as well as sensory and motor disabilities. In order to prevent such individuals from becoming hyperthermic, we developed a body heat removal system (BHRS) with thermoelectric devices. Our BHRS comprises four Peltier devices mounted on a wheelchair backrest and continuously transfers body heat through the contacting interface to the external environment. Here, we characterized thermophysiological responses induced by this novel contact-type cooling system. A cooling experiment in a hot environment with five able-bodied subjects demonstrated that sweating and systolic blood pressure in the back-cooling (BC) trial were significantly suppressed compared with those in no-cooling (NC) trial, while no difference was found in oral and skin temperatures. A correlation was observed between chest skin temperature and blood flow in the NC trial; this was not observed in the BC trial. These results suggest that BHRS modulates normal thermoregulatory responses, including sweating and vascular dilation and has the capability to partly replace these functions.

  2. Fission product transport analysis in a loss of decay heat removal accident at Browns Ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.P.; Weber, C.F.; Hodge, S.A.

    1984-01-01

    This paper summarizes an analysis of the movement of noble gases, iodine, and cesium fission products within the Mark-I containment BWR reactor system represented by Browns Ferry Unit 1 during a postulated accident sequence initiated by a loss of decay heat removal (DHR) capability following a scram. The event analysis showed that this accident could be brought under control by various means, but the sequence with no operator action ultimately leads to containment (drywell) failure followed by loss of water from the reactor vessel, core degradation due to overheating, and reactor vessel failure with attendant movement of core debris ontomore » the drywell floor.« less

  3. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    PubMed

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  4. Upstream H/sub 2/S removal from geothermal steam. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The purpose of this project was to evaluate a new heat exchanger process as a method for removing hydrogen sulfide (H/sub 2/S) gas from geothermal steam upstream of a power plant turbine. The process utilizes a heat exchanger to condense geothermal steam so that noncondensable gases (including H/sub 2/S) can be removed in the form of a concentrated vent stream. Ultimate disposal of the removed H/sub 2/S gas may then be accomplished by use of other processes such as the commercially available Stretford process. The clean condensate is reevaporated on the other side of the heat exchanger using the heatmore » removed from the condensing geothermal steam. The necessary heat transfer is induced by maintaining a slight pressure difference, and consequently a slight temperature difference, between the two sides of the heat exchanger. Evaluation of this condensing and reboiling process was performed primarily through the testing of a small-scale 14 m/sup 2/ (150 ft/sup 2/) vertical tube evaporator heat exchanger at The Geysers Power Plant in northern California. The field test results demonstrated H/sub 2/S removal rates consistently better than 90 percent, with an average removal rate of 94 percent. In addition, the removal rate for all noncondensable gases is about 98 percent. Heat transfer rates were high enough to indicate acceptable economics for application of the process on a commercial scale. The report also includes an evaluation of the cost and performance of various configurations of the system, and presents design and cost estimates for a 2.5 MWe and a 55 MWe unit.« less

  5. Phosgene Poisoning Caused by the Use of Chemical Paint Removers Containing Methylene Chloride in Ill-Ventilated Rooms Heated by Kerosene Stoves

    PubMed Central

    Gerritsen, W. B.; Buschmann, C. H.

    1960-01-01

    Two cases resembling poisoning by phosgene following the use of a paint remover containing methylene chloride in ill-ventilated rooms heated by an oil stove are described. Experiments carried out under similar conditions demonstrated the production of phosgene in toxic concentrations. The potential hazards from non-inflammable solvents are discussed. PMID:13827592

  6. 7 CFR 3017.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adequate evidence. 3017.900 Section 3017.900 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  7. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  8. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  9. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  10. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  11. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  12. Football Equipment Removal Improves Chest Compression and Ventilation Efficacy.

    PubMed

    Mihalik, Jason P; Lynall, Robert C; Fraser, Melissa A; Decoster, Laura C; De Maio, Valerie J; Patel, Amar P; Swartz, Erik E

    2016-01-01

    Airway access recommendations in potential catastrophic spine injury scenarios advocate for facemask removal, while keeping the helmet and shoulder pads in place for ensuing emergency transport. The anecdotal evidence to support these recommendations assumes that maintaining the helmet and shoulder pads assists inline cervical stabilization and that facial access guarantees adequate airway access. Our objective was to determine the effect of football equipment interference on performing chest compressions and delivering adequate ventilations on patient simulators. We hypothesized that conditions with more football equipment would decrease chest compression and ventilation efficacy. Thirty-two certified athletic trainers were block randomized to participate in six different compression conditions and six different ventilation conditions using human patient simulators. Data for chest compression (mean compression depth, compression rate, percentage of correctly released compressions, and percentage of adequate compressions) and ventilation (total ventilations, mean ventilation volume, and percentage of ventilations delivering adequate volume) conditions were analyzed across all conditions. The fully equipped athlete resulted in the lowest mean compression depth (F5,154 = 22.82; P < 0.001; Effect Size = 0.98) and delivery of adequate compressions (F5,154 = 15.06; P < 0.001; Effect Size = 1.09) compared to all other conditions. Bag-valve mask conditions resulted in delivery of significantly higher mean ventilation volumes compared to all 1- or 2-person pocketmask conditions (F5,150 = 40.05; P < 0.001; Effect Size = 1.47). Two-responder ventilation scenarios resulted in delivery of a greater number of total ventilations (F5,153 = 3.99; P = 0.002; Effect Size = 0.26) and percentage of adequate ventilations (F5,150 = 5.44; P < 0.001; Effect Size = 0.89) compared to one-responder scenarios. Non-chinstrap conditions permitted greater ventilation volumes (F3,28 = 35.17; P

  13. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  14. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF... Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  15. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  16. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  17. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  18. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Ventilation, air filtration, air heating and... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate ventilation shall be provided. (b) Equipment for adequate control over air pressure, micro-organisms, dust...

  19. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  20. Heat generated by Er:YAG laser in the pulp chamber of teeth submitted to removal of dental tissue and composite resin

    NASA Astrophysics Data System (ADS)

    Zanin, Fatima; Brugnera, Aldo, Jr.; Pecora, Jesus D.; Pinheiro, Antonio; Spano, Julio; Barbin, Eduardo; Marchesan, Melissa A.

    2004-05-01

    The knowledge about and control of thermal energy produced by Er:YAG laser after irradiating hard dental tissues and compound resin is important because the pulp, like all vital biological tissue, has a certain capacity for supporting stimulus. The objective of this study was to analyze the thermal variation generated by Er:YAG laser (λ=2.94μm) during the preparation of a Class I cavity in the dental structure and in the removal of microhybrid Z100 (3M) compound resin. An evaluation was made of 30 maxillary human pre-molar teeth from the bank of the Endodontic Laboratory Center of Ribeirao Preto Dental School, Brasil. The sample was divided into 6 groups of 5 teeth each: Group 1, preparation of Class I cavity with Er:YAG laser (350mJ, 3Hz, 343 impulses, 120J, 113 seconds); Group 2, preparation of Class I cavity with Er:YAG laser (350mJ, 4Hz, 343 impulses, 120J, 81 seconds); Group 3, preparation of Class I cavity with Er:YAG laser (350mJ, 6Hz, 343 impulses, 120J, 58 seconds); Group 4, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 3Hz, 258 impulses, 90J, 85 seconds); Group 5, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 4Hz, 258 impulses, 90J, 67 seconds); Group 6, removal of compound resin from Class I preparation with Er:YAG laser (350mJ, 6Hz, 258 impulses, 42 seconds). The laser used was KaVo Key 2 (Biberach, Germany), λ=2,94μm, P=3 Watts, pulse duration of 250μs, with air-water cooling. The increase in temperature during dental preparation and the removal of the compound resin was evaluated by means of a Tektronix DMM916 Thermocouple (Consitec, Brasil). The results showed that the application of laser for the removal of the hard dental tissues and for the removal of compound resins with the pulse frequencies 3, 4 and 6 Hz did not generate heating greater than 3.1°C and remained within the histopathological limits permitted for pulp tissue (5.5°C) and there was a significant statistical

  1. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu (II) removal from aqueous solution.

    PubMed

    Tan, Wei Shang; Ting, Adeline Su Yien

    2012-11-01

    Cu(II) removal efficacies of alginate-immobilized Trichoderma asperellum using viable and non-viable forms were investigated with respect to time, pH, and initial Cu(II) concentrations. The reusability potential of the biomass was determined based on sorption/desorption tests. Cu(II) biosorption by immobilized heat-inactivated T. asperellum cells was the most efficient, with 134.22mg Cu(II) removed g(-1) adsorbent, compared to immobilized viable cells and plain alginate beads (control) with 105.96 and 94.04mg Cu(II) adsorbed g(-1) adsorbent, respectively. Immobilized non-viable cells achieved equilibrium more rapidly within 4h. For all biosorbents, optimum pH for Cu(II) removal was between pH 4 and 5. Reusability of all biosorbents were similar, with more than 90% Cu(II) desorbed with HCl. These alginate-immobilized cells can be applied to reduce clogging and post-separation process incurred from use of suspended biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Dam removal: Listening in

    NASA Astrophysics Data System (ADS)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  3. Dam removal: Listening in

    USGS Publications Warehouse

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  4. Chemical heat pump and chemical energy storage system

    DOEpatents

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  5. Laser Tattoo Removal: An Update.

    PubMed

    Naga, Lina I; Alster, Tina S

    2017-02-01

    Tattoo art has been around for thousands of years in every culture and is currently flourishing in all age groups, social classes, and occupations. Despite the rising popularity of tattoos, demand for their removal has also increased. While various treatments, including surgical excision, dermabrasion, and chemical destruction have historically been applied, over the past 2 decades, lasers have revolutionized the way tattoos are treated and have become the gold standard of treatment. To achieve optimal cosmetic outcome of treatment, lasers emitting high energies and short pulses are required to adequately destroy tattoo ink. We review the history of laser tattoo removal, outlining the challenges inherent in developing lasers that can most effectively remove tattoo particles while safely protecting skin from unwanted injury.

  6. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  7. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  8. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  9. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.

    PubMed

    Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer

    2016-08-08

    Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy.

  10. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Method of making thermally removable polyurethanes

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou

    2002-01-01

    A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  12. Heat Illness: A Handbook for Medical Officers

    DTIC Science & Technology

    1991-06-03

    Recommendations to planning staffs should eii~piliasve theC irportwnce of adequate sleep and food to reduce the likelihood of heat casuaRtift-ýs...experience much greater heat strain in uniforms, such as the BDO, that restrict heat exchange with the environment. Will the recruits have the...the sklf.- to thermoregulate and increase the risk of heat Illness. Lack of sleep and food will reduce thermoregiilatomy capacity. Medical Plannin-a

  13. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOEpatents

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  14. Transient characteristics of a grooved water heat pipe with variable heat load

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.

  15. Removal of Pb(II) from water by the activated carbon modified by nitric acid under microwave heating.

    PubMed

    Yao, Shuheng; Zhang, Jiajun; Shen, Dekui; Xiao, Rui; Gu, Sai; Zhao, Ming; Liang, Junyu

    2016-02-01

    The rice husk based activated carbon (RH-AC) was treated by nitric acid under microwave heating, in order to improve its capability for the removal of heavy metal ions from water. The optimal conditions for the modification of RH-AC (M-RH-AC) were determined by means of orthogonal array experimental design, giving those as the concentration of nitric acid of 8mol/L, modification time of 15min, modification temperature of 130°C and microwave power of 800W. The characteristics of the M-RH-AC and RH-AC were examined by BET, XRD, Raman spectrum, pH titration, zeta potential, Boehm titration and FTIR analysis. The M-RH-AC has lower pore surface area, smaller crystallite, lower pHIEP and more oxygen-containing functional groups than the RH-AC. Removal capacity of Pb(II) ions by the M-RH-AC and RH-AC from water solution was estimated concerning the influence of contact time, pH value, and initial concentration. The equilibrium time of Pb(II) removal was found to be around 90min after modification process. Two kinetic models are adopted to describe the possible Pb(II) adsorption mechanism, finding that the adsorption rate of Pb(II) ions by the M-RH-AC is larger than that of RH-AC. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  17. The effect of aging on conductive heat exchange in the skin at two environmental temperatures.

    PubMed

    Petrofsky, Jerrold S; Lohman, Everett; Suh, Hye Jin; Garcia, Jason; Anders, Alexa; Sutterfield, Cassandra; Khandge, Chetan

    2006-10-01

    Ageing diminishes the blood flow (BF) response of the skin to autonomic stressors. While the diminished response of skin BF to global heating has been well documented, the effect of this reduction in skin BF on the ability of the skin to dissipate heat has not. When heat is added to the skin by the application of hot packs, if heat is not adequately removed, the skin can become dangerously hot and become damaged. The present investigation examined the heat dissipating properties of the skin in older individuals. This study has importance for the therapeutic application of hot packs which might cause burns easier in older people. In the present investigation, 10 younger and 10 older subjects were examined. The average age of the younger group was 25.9+/-3.4 years and the older group was 60 +/- 5.8 years. Heat was applied through a 49 gram brass probe that was heated to 41 degrees C and by a Peltier junction in a cool and warm environment. Skin required about 20 calories of heat to raise skin temperature 1 degrees C the cool room and double this Figure in the warm room. Ageing reduced the caloric requirement to increase skin temperature under both conditions (p < 0.01). The results of the experiments showed that older individuals had impaired ability of the skin to dissipate heat in both environments. Special precautions should be taken in physical therapy when applying hot packs in older populations.

  18. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    PubMed

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  19. Methods of hydrotreating a liquid stream to remove clogging compounds

    DOEpatents

    Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-22

    A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.

  20. Transient Analysis of a Magnetic Heat Pump

    NASA Technical Reports Server (NTRS)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  1. Method of extracting heat from dry geothermal reservoirs

    DOEpatents

    Potter, R.M.; Robinson, E.S.; Smith, M.C.

    1974-01-22

    Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

  2. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  3. Binding mechanism of patulin to heat-treated yeast cell.

    PubMed

    Guo, C; Yuan, Y; Yue, T; Hatab, S; Wang, Z

    2012-12-01

    This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P < 0·05) the ability of heat-treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation. © 2012 The Society for Applied Microbiology.

  4. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  5. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  6. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  7. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  8. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  9. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.

    PubMed

    Dominic, A; Sarangan, J; Suresh, S; Sai, Monica

    2014-03-01

    The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.

  10. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  11. Enhanced nitrogen removal in trickling filter plants.

    PubMed

    Dai, Y; Constantinou, A; Griffiths, P

    2013-01-01

    The Beaudesert Sewage Treatment Plant (STP), originally built in 1966 and augmented in 1977, is a typical biological trickling filter (TF) STP comprising primary sedimentation tanks (PSTs), TFs and humus tanks. The plant, despite not originally being designed for nitrogen removal, has been consistently achieving over 60% total nitrogen reduction and low effluent ammonium concentration of less than 5 mg NH3-N/L. Through the return of a NO3(-)-rich stream from the humus tanks to the PSTs and maintaining an adequate sludge age within the PSTs, the current plant is achieving a substantial degree of denitrification. Further enhanced denitrification has been achieved by raising the recycle flows and maintaining an adequate solids retention time (SRT) within the PSTs. This paper describes the approach to operating a TF plant to achieve a high degree of nitrification and denitrification. The effectiveness of this approach is demonstrated through the pilot plant trial. The results from the pilot trial demonstrate a significant improvement in nitrogen removal performance whilst maximising the asset life of the existing infrastructure. This shows great potential as a retrofit option for small and rural communities with pre-existing TFs that require improvements in terms of nitrogen removal.

  12. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  13. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF.... Adequate evidence means information sufficient to support the reasonable belief that a particular act or...

  14. Detection, removal and prevention of calculus: Literature Review

    PubMed Central

    Kamath, Deepa G.; Umesh Nayak, Sangeeta

    2013-01-01

    Dental plaque is considered to be a major etiological factor in the development of periodontal disease. Accordingly, the elimination of supra- and sub-gingival plaque and calculus is the cornerstone of periodontal therapy. Dental calculus is mineralized plaque; because it is porous, it can absorb various toxic products that can damage the periodontal tissues. Hence, calculus should be accurately detected and thoroughly removed for adequate periodontal therapy. Many techniques have been used to identify and remove calculus deposits present on the root surface. The purpose of this review was to compile the various methods and their advantages for the detection and removal of calculus. PMID:24526823

  15. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed andmore » new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.« less

  16. Process for removing heavy metal compounds from heavy crude oil

    DOEpatents

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  17. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  18. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  19. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    NASA Astrophysics Data System (ADS)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-01-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire.

  20. Latest innovations for tattoo and permanent makeup removal.

    PubMed

    Mao, Johnny C; DeJoseph, Louis M

    2012-05-01

    The goal of this article is to reveal the latest techniques and advances in laser removal of both amateur and professional tattoos, as well as cosmetic tattoos and permanent makeup. Each pose different challenges to the removing physician, but the goal is always the same: removal without sequelae. The authors' technique is detailed, and discussion of basic principles of light reflection, ink properties, effects of laser energy and heat, and outcomes and complications of tattoo removal are presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Heat reclaiming method and apparatus

    DOEpatents

    Jardine, Douglas M.

    1984-01-01

    Method and apparatus to extract heat by transferring heat from hot compressed refrigerant to a coolant, such as water, without exceeding preselected temperatures in the coolant and avoiding boiling in a water system by removing the coolant from direct or indirect contact with the hot refrigerant.

  2. Microlith Based Sorber for Removal of Environmental Contaminants

    NASA Technical Reports Server (NTRS)

    Roychoudhury, S.; Perry, J.

    2004-01-01

    The development of energy efficient, lightweight sorption systems for removal of environmental contaminants in space flight applications is an area of continuing interest to NASA. The current CO2 removal system on the International Space Station employs two pellet bed canisters of 5A molecular sieve that alternate between regeneration and sorption. A separate disposable charcoal bed removes trace contaminants. An alternative technology has been demonstrated using a sorption bed consisting of metal meshes coated with a sorbent, trademarked and patented as Microlith by Precision Combustion, Inc. (PCI); thesemeshes have the potential for direct electrical heating for this application. This allows the bed to be regenerable via resistive heating and offers the potential for shorter regeneration times, reduced power requirement, and net energy savings vs. conventional systems. The capability of removing both CO2 and trace contaminants within the same bed has also been demonstrated. Thus, the need for a separate trace contaminant unit is eliminated resulting in an opportunity for significant weight savings. Unlike the charcoal bed, zeolites for trace contaminant removal are amenable to periodic regeneration. This paper describes the design and performance of a prototype sorber device for simultaneous CO2 and trace contarninant removal and its attendant weight and energy savings.

  3. Lightweight Long Life Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1976-01-01

    A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.

  4. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    DOEpatents

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  5. Office Removal of a Subglottic Bread Clip

    PubMed Central

    Rosow, David E.; Chen, Si

    2013-01-01

    Objective. The presence of an upper airway foreign body is an emergent, potentially life-threatening situation that requires careful but rapid evaluation and management. Organic or nonorganic material may typically be found in the pyriform sinuses or tongue base or may be aspirated directly into the tracheobronchial tree. We present here an unusual case report of a patient who accidentally ingested a plastic bread clip that was lodged in his subglottis for 15 months and report successful removal in the office under local anesthesia. Methods. Mucosal anesthesia was achieved with inhaled 4% lidocaine spray. Flexible laryngoscopic removal of the foreign body was then successfully accomplished. Results. The patient's symptoms resolved completely following removal, with no sequelae. Conclusions. Office removal of airway foreign bodies is feasible and can be safely done with adequate topical anesthesia, but great caution and emergency planning must be exercised. PMID:24379980

  6. Droplet Evaporator For High-Capacity Heat Transfer

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  7. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  8. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  9. Heat transfer capacity of heat pipes: An application in coalfield wildfire in China

    NASA Astrophysics Data System (ADS)

    Li, Bei; Deng, Jun; Xiao, Yang; Zhai, Xiaowei; Shu, Chi-Min; Gao, Wei

    2018-06-01

    Coalfield wildfires are serious catastrophes associated with mining activities. Generally, the coal wildfire areas have tremendous heat accumulation regions. Eliminating the internal heat is an effective method for coal wildfire control. In this study, high thermal conductivity component of a heat pipe (HP) was used for enhancing the heat dissipation efficiency and impeding heat accumulation. An experimental system was set up to analyze the thermal resistance network of the coal-HP system. A coal-HP heat removal model was also established for studying the heat transfer performance of HP on the coal pile. The HP exhibited outstanding cooling performance in the initial period, resulting in the highest temperature difference between the coal pile and ambient temperature. However, the effect of the HP on the distribution temperature of coal piles decreased with increasing distance. The largest decline in the coal temperature occurred in a 20-mm radius of the HP; the temperature decreased from 84.3 to 50.9 °C, a decline of 39.6%. The amount of energy transfer by the HP after 80 h was 1.0865, 2.1680, and 3.3649 MJ under the initial heat source temperatures of 100, 150, and 200 °C, respectively. The coal was governed below 80 °C with the HP under the experimental conditions. It revealed that the HP had a substantial effect on thermal removal and inhibited spontaneous coal combustion. In addition, this paper puts forward the technological path of HP to control typical coalfield wildfire. [Figure not available: see fulltext.

  10. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  11. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  12. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  13. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  14. 41 CFR 105-68.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Adequate evidence. 105-68.900 Section 105-68.900 Public Contracts and Property Management Federal Property Management... evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  15. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  16. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  17. 20 CFR 722.3 - General criteria; inclusion in and removal from the Secretary's list.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false General criteria; inclusion in and removal... APPROVED STATE LAWS § 722.3 General criteria; inclusion in and removal from the Secretary's list. (a) The... providing adequate coverage for total disability or death due to pneumoconiosis. Each such request shall...

  18. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehud Greenspan

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  19. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  20. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  1. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  2. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  3. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a...

  4. Adequate supervision for children and adolescents.

    PubMed

    Anderst, James; Moffatt, Mary

    2014-11-01

    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. Copyright 2014, SLACK Incorporated.

  5. Structures for handling high heat fluxes

    NASA Astrophysics Data System (ADS)

    Watson, R. D.

    1990-12-01

    The divertor is reconized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes > 5 MW/m 2. High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2. Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components.

  6. Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii

    PubMed Central

    Berger, Leslie Ralph; Berger, Joyce A.

    1986-01-01

    Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant. Images PMID:16347076

  7. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  8. Removable preheater elements improve oxide induction furnace

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1964-01-01

    Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.

  9. Combat Vehicle Cooling/Heating Design Investigation.

    DTIC Science & Technology

    1981-09-01

    pressure side of the condensing heat exchanger to obtain proper water removal and turbine inlet conditions. The primary heat exchanger is used to limit boot ...Detroit, Michigan; May 1955. 8. "Development of a Refrigeration System for Lunar Surface and Spacesuit Applications" Report No. T122-RP-046

  10. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  11. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  12. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  13. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  14. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less

  15. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DOE PAGES

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.; ...

    2016-01-01

    This paper presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters aremore » varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.« less

  16. 40 CFR 156.156 - Residue removal instructions for refillable containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adequate to protect human health and the environment. (2) Subject to meeting the standard in paragraph (b... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.156 Residue removal instructions for refillable containers. The label of each pesticide product packaged in a...

  17. 40 CFR 156.156 - Residue removal instructions for refillable containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adequate to protect human health and the environment. (2) Subject to meeting the standard in paragraph (b... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.156 Residue removal instructions for refillable containers. The label of each pesticide product packaged in a...

  18. 40 CFR 156.156 - Residue removal instructions for refillable containers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adequate to protect human health and the environment. (2) Subject to meeting the standard in paragraph (b... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.156 Residue removal instructions for refillable containers. The label of each pesticide product packaged in a...

  19. 40 CFR 156.156 - Residue removal instructions for refillable containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adequate to protect human health and the environment. (2) Subject to meeting the standard in paragraph (b... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.156 Residue removal instructions for refillable containers. The label of each pesticide product packaged in a...

  20. 40 CFR 156.156 - Residue removal instructions for refillable containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adequate to protect human health and the environment. (2) Subject to meeting the standard in paragraph (b... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Container Labeling § 156.156 Residue removal instructions for refillable containers. The label of each pesticide product packaged in a...

  1. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  2. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, Richard W.; Hoffman, Myron A.

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  3. Heating of cardiovascular stents in intense radiofrequency magnetic fields.

    PubMed

    Foster, K R; Goldberg, R; Bonsignore, C

    1999-01-01

    We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.

  4. Heat stress control in the TMI-2 (Three Mile Island Unit 2) defueling and decontamination activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schork, J.S.; Parfitt, B.A.

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintainmore » the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully.« less

  5. Photoacoustic removal of occlusions from blood vessels

    DOEpatents

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Maitland, IV, Duncan J.; Esch, Victor C.

    2002-01-01

    Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

  6. Heat pipes for use in a magnetic field

    DOEpatents

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  7. Efficient Removal of Retained Intracardiac Air Utilizing Buoyancy.

    PubMed

    Orihashi, Kazumasa

    2016-12-01

    Retained intracardiac air has been an important issue in cardiac surgery. Although echo visualization has allowed detection of air and guided deairing procedures, adequate air removal is not always attained. Actually it has been attempted in each surgeon's manner without solid standard or evidence. Basically buoyancy is responsible for air retention as well as difficult deairing. This paper is aimed to present the author's current measures of deairing, which turn this property of air into efficient removal, as test bed for discussion on this long-standing but pending issue. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  9. Phenomena during thermal removal of binders

    NASA Astrophysics Data System (ADS)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  10. Analysis of a membrane-based condesate recovery heat exchanger (CRX)

    NASA Technical Reports Server (NTRS)

    Newbold, D.D.

    1993-01-01

    The development of a temperature and humidity control system that can remove heat and recover water vapor is key to the development of an Environmental Control and Life Support System (ECLSS). Large quantities of water vapor must be removed from air, and this operation has proven difficult in the absense of gravity. This paper presents the modeling results from a program to develop a novel membrane-based heat exchanger known as the condensate recovery heat exchanger (CRX). This device cools and dehumidifies humid air and simultaneously recovers water-vapor condensate. In this paper, the CRX is described and the results of an analysis of the heat- and mass-transfer characteristics of the device are given.

  11. Cooling/grounding mount for hybrid circuits

    NASA Technical Reports Server (NTRS)

    Bagstad, B.; Estrada, R.; Mandel, H.

    1981-01-01

    Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

  12. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...

  13. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  14. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1992-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators, or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  15. Heat exchanger with oscillating flow

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  16. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOEpatents

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  17. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  18. Removal of sulfur compounds from combustion product exhaust

    DOEpatents

    Cheng, Dah Y.

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  19. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  20. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  1. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  2. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of...

  3. Electronic modules easily separated from heat sink

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.

  4. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  5. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  6. STS-107 Columbia's engine no. 2 removal for inspection

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, Columbia's engine no. 2 is about to be removed. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. The heat shields were removed, and after removing the three main engines, inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  7. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-26

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  8. Orion Heat Shield Testing

    NASA Image and Video Library

    2015-05-28

    THE ORION HEAT SHIELD, WHICH WAS AT NASA’S MARSHALL SPACE FLIGHT CENTER FROM MARCH-MAY 2015 FOR ENGINEERING AND ANALYSIS, IS READIED FOR DEPARTURE AT THE END OF ITS STAY. THE HEAT SHIELD’S ABLATED SURFACE MATERIAL WAS REMOVED AT MARSHALL FOR ANALYSIS, USING THE CENTER’S STATE-OF-THE-ART SEVEN-AXIS MILLING MACHINE. IT NEXT WILL GO TO NASA’S LANGLEY RESEARCH CENTER FOR WATER-IMPACT TESTING. NASA’S JOHNSON SPACE CENTER LEADS THE ORION PROGRAM FOR NASA.

  9. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    NASA Astrophysics Data System (ADS)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  10. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.

    PubMed

    Fujioka, Takahiro; Ishida, Kenneth P; Shintani, Takuji; Kodamatani, Hitoshi

    2017-12-12

    Direct potable reuse is becoming a feasible option to cope with water shortages. It requires more stringent water quality assurance than indirect potable reuse. Thus, the development of a high-rejection reverse osmosis (RO) membrane for the removal of one of the most challenging chemicals in potable reuse - N-nitrosodimethylamine (NDMA) - ensures further system confidence in reclaimed water quality. This study aimed to achieve over 90% removal of NDMA by modifying three commercial and one prototype RO membrane using heat treatment. Application of heat treatment to a prototype membrane resulted in a record high removal of 92% (1.1-log) of NDMA. Heat treatment reduced conductivity rejection and permeability, while secondary amines, selected as N-nitrosamine precursors, were still well rejected (>98%) regardless of RO membrane type. This study also demonstrated the highly stable separation performance of the heat-treated prototype membrane under conditions of varying feed temperature and permeate flux. Fouling propensity of the prototype membrane was lower than a commercial RO membrane. This study identified a need to develop highly selective RO membranes with high permeability to ensure the feasibility of using these membranes at full scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The effect of heat transfer mode on heart rate responses and hysteresis during heating and cooling in the estuarine crocodile Crocodylus porosus.

    PubMed

    Franklin, Craig E; Seebacher, Frank

    2003-04-01

    The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23 degrees C and (3) heated via convective transfer by increasing water temperature from 23 degrees C to 35 degrees C. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23 degrees C. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (<0.5 degrees C) resulted in Q(10) values greater than 4000, calling into question the usefulness of this measure on heart rate during the initial stages of heating and cooling. In the later phases of heating and cooling, heart rate changed with body temperature, with Q(10) values of 2-3. The magnitude of the heart rate response differed between treatments, with radiant heating during submergence eliciting the smallest response. The heart rate of C. porosus outside of the 'rapid response' periods was found to be a function of the heat load experienced at the animal surface, as well as on the mode of heat transfer. Heart rate increased or decreased rapidly when C. porosus experienced large positive (above 25 W) or negative

  12. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  13. Condensing Heat Exchanger Concept Developed for Space Systems

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Nayagam, Vedha

    2005-01-01

    The current system for moisture removal and humidity control for the space shuttles and the International Space Station uses a two-stage process. Water first condenses onto fins and is pulled through "slurper bars." These bars take in a two-phase mixture of air and water that is then separated by the rotary separator. A more efficient design would remove the water directly from the air without the need of an additional water separator downstream. For the Condensing Heat Exchanger for Space Systems (CHESS) project, researchers at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center are designing a condensing heat exchanger that utilizes capillary forces to collect and remove water and that can operate in varying gravitational conditions including microgravity, lunar gravity, and Martian gravity.

  14. Predictors of adequate depression treatment among Medicaid-enrolled adults.

    PubMed

    Teh, Carrie Farmer; Sorbero, Mark J; Mihalyo, Mark J; Kogan, Jane N; Schuster, James; Reynolds, Charles F; Stein, Bradley D

    2010-02-01

    To determine whether Medicaid-enrolled depressed adults receive adequate treatment for depression and to identify the characteristics of those receiving inadequate treatment. Claims data from a Medicaid-enrolled population in a large mid-Atlantic state between July 2006 and January 2008. We examined rates and predictors of minimally adequate psychotherapy and pharmacotherapy among adults with a new depression treatment episode during the study period (N=1,098). Many depressed adults received either minimally adequate psychotherapy or pharmacotherapy. Black individuals and individuals who began their depression treatment episode with an inpatient psychiatric stay for depression were markedly less likely to receive minimally adequate psychotherapy and more likely to receive inadequate treatment. Racial minorities and individuals discharged from inpatient treatment for depression are at risk for receiving inadequate depression treatment.

  15. Thin film heater for removable volatile protecting coatings.

    PubMed

    Karim, Abid

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  16. IITRI RADIO FREQUENCY HEATING TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    IITRI's patented in situ RFH technology enhances the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and potentially higher soil permeability. RFH heats soil us...

  17. Quasiballistic heat removal from small sources studied from first principles

    NASA Astrophysics Data System (ADS)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  18. Removal of glass adhered to sintered ceramics in hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.

  19. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  20. Process for removing carbon from uranium

    DOEpatents

    Powell, George L.; Holcombe, Jr., Cressie E.

    1976-01-01

    Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

  1. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  2. Drying characteristics and quality of rough rice under infrared radiation heating

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) radiation heating could provide high heating rate and rapid moisture removal for rough rice drying. The objective of this research was to investigate the effect of the drying bed thickness on drying characteristics and quality of rough rice subjected to IR heating. Samples of freshly ...

  3. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  4. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOEpatents

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  5. Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Yu, Gang; Winglee, Judith; Wiesner, Mark R.

    2017-04-01

    A simple and convenient method was used to prepare novel granular carbon nanotubes (CNTs) for enhanced adsorption of pharmaceuticals. By heating CNTs powder at 450 degree centigrade in air, followed by filtration, the obtained granular adsorbent exhibited high surface area and pore volume since the heating process produced some oxygen-containing functional groups on CNT surface, making CNTs more dispersible in the formation of granular cake. The porous granular CNTs not only had more available surfaces for adsorption but also were more easily separated from solution than pristine CNTs (p-CNTs) powder. This adsorbent exhibited relatively fast adsorption for carbamazepine (CBZ), tetracycline (TC) and diclofe- nac sodium (DS), and the maximum adsorption capacity on the granular CNTs was 369.5 μmol/g for CBZ, 284.2 μmol/g for TC and 203.1 μmol/g for DS according to the Langmuir fitting, increasing by 42.4%, 37.8% and 38.0% in comparison with the pristine CNTs powder. Moreover, the spent granular CNTs were successfully regenerated at 400 degree centigrade in air without decreasing the adsorption capacity in five regeneration cycles. The adsorbed CBZ and DS were completely degraded, while the adsorbed TC was partially oxidized and the residual was favorable for the subsequent adsorption. This research develops an easy method to prepare and regenerate granular CNT adsorbent for the enhanced removal of organic pollutants from water or wastewater.

  6. Early versus late removal of the laryngeal mask airway (LMA) for general anaesthesia.

    PubMed

    Mathew, Preethy J; Mathew, Joseph L

    2015-08-10

    The laryngeal mask airway (LMA) is a safe and effective modality to maintain the airway for general anaesthesia during surgical procedures. The LMA is removed at the end of surgery and anaesthesia, when the patient maintains an adequate respiratory rate and depth. This removal of the LMA can be done either when the patient is deep under anaesthesia (early removal) or only after the patient has regained consciousness (late removal). It is not clear which of these techniques is superior. The objective of this review was to compare the safety of LMA removal in the deep plane of anaesthesia (early removal) versus removal in the awake state (late removal) for participants undergoing general anaesthesia. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 8); MEDLINE (1966 to August 2014); EMBASE (1980 to August 2014); LILACS (1982 to August 2014); CINAHL (WebSPIRS; 1984 to August 2014); and ISI Web of Science (1984 to August 2014). We searched for ongoing trials through various trial registration websites. In addition, we searched conference proceedings and reference lists of relevant articles. We included randomized controlled trials (RCTs) on adults and children undergoing elective general anaesthesia using the LMA, that compared early removal of the LMA (defined as removal of the LMA in the deep plane of anaesthesia) versus late removal of the LMA (defined as removal of the LMA after the patient is awake). Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We used a random-effects model to generate forest plots from the data. We identified a total of 9188 citations and included 15 RCTs conducted on 2242 participants in this review. All trials used the LMA Classic in American Society of Anesthesiologists (ASA) physical status I or II for patients undergoing elective general anaesthesia. Children were enrolled in 11 trials and adults in five trials. None of the

  7. Overview of waste heat utilization systems

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1984-01-01

    The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.

  8. 22 CFR 1006.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Adequate evidence. 1006.900 Section 1006.900 Foreign Relations INTER-AMERICAN FOUNDATION GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. ...

  9. 22 CFR 1508.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Adequate evidence. 1508.900 Section 1508.900 Foreign Relations AFRICAN DEVELOPMENT FOUNDATION GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. ...

  10. Heat generation during removal of an abutment screw fragment from dental implants.

    PubMed

    Arias, Sergio R; Rueggeberg, Frederick A; Mettenburg, Donald; Sharawy, Mohamed; Looney, Stephen; Elsayed, Ranya; Elsalanty, Mohammed E

    2018-04-01

    Little information is available on the effect of drilling speed on surrounding bone during the removal of an abutment screw fragment. The purpose of this in vitro study was to compare, in vitro, the peak temperature increase during the removal of fractured abutment screws from implants placed in a porcine mandible, using drilling speeds of 600 or 2000 rpm. Twenty 4.3×13-mm dental implants were placed in 10 dissected porcine mandibles: 2 implants per mandible, 1 on each side. Localized defects were created in 20 surface-treated abutment screws, which were then tightened into each implant until a reproducible fracture occurred in each screw. The fractured screws were removed with a handpiece removal kit and irrigated with room-temperature water at either 600 or 2000 rpm. The temperature rise at the implant surface was measured at 3 levels with 3 type-K thermocouples. Repeated measure ANOVA was performed with the Tukey-Kramer post hoc test for mean pair-wise comparisons (α=.05 for all tests). Mean peak temperatures were significantly higher at 2000 rpm than at 600 rpm in the mid-body (P<.001) and crestal (P=.003) regions but not in the apical (P=.225) implant locations. No significant differences in mean peak temperatures were found among the 3 locations using 600 rpm (P=.179). In the 2000-rpm group, mean peak temperature in the mid-body area was consistently higher than that in the apical (P<.001) area, and more instances of temperature rise above 56°C and 60°C were observed. In 1 implant from this group, the estimated peak temperature exceeded the bone damage threshold value (50°C for 30 seconds). A drilling speed of 2000 rpm during the removal of abutment screw fragments caused overheating of the outer surface of the implant which may damage the surrounding bone; a speed of 600 rpm appears to be safe. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Method for producing micro heat panels

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Peterson, George P. (Inventor); Rummler, Donald R. (Inventor)

    1997-01-01

    Flat or curved micro heat pipe panels are fabricated by arranging essentially parallel filaments in the shape of the desired panel. The configuration of the filaments corresponds to the desired configuration of the tubes that will constitute the heat pipes. A thermally conductive material is then deposited on and around the filaments to fill in the desired shape of the panel. The filaments are then removed, leaving tubular passageways of the desired configuration and surface texture in the material. The tubes are then filled with a working fluid and sealed. Composite micro heat pipe laminates are formed by layering individual micro heat pipe panels and bonding them to each other to form a single structure. The layering sequence of the micro heat pipe panels can be tailored to transport heat preferentially in specific directions as desired for a particular application.

  12. 22 CFR 208.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Adequate evidence. 208.900 Section 208.900 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  13. 22 CFR 208.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Adequate evidence. 208.900 Section 208.900 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  14. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  15. Experimental and numerical simulation of passive decay heat removal by sump cooling after cool melt down

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knebel, J.U.; Kuhn, D.; Mueller, U.

    1997-12-01

    This article presents the basic physical phenomena and scaling criteria of passive decay heat removal from a large coolant pool by single-phase and two-phase natural circulation. The physical significance of the dimensionless similarity groups derived is evaluated. The above results are applied to the SUCO program that is performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. The sump cooling concept is based on passive safety features within the containment. The work is supported by the German utilities and themore » Siemens AG. The article gives results of temperature and velocity measurements in the 1:20 linearly scaled SUCOS-2D test facility. The experiments are backed up by numerical calculations using the commercial software package Fluent. Finally, using the similarity analysis from above, the experimental results of the model geometry are scaled-up to the conditions in the prototype, allowing a first statement with regard to the feasibility of the sump cooling concept. 11 refs., 9 figs., 3 tabs.« less

  16. 10 CFR 503.35 - Inability to obtain adequate capital.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... capital investment, through tariffs, without unreasonably adverse economic effect on its service area... 10 Energy 4 2010-01-01 2010-01-01 false Inability to obtain adequate capital. 503.35 Section 503... New Facilities § 503.35 Inability to obtain adequate capital. (a) Eligibility. Section 212(a)(1)(D) of...

  17. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo Ndebele's…

  18. Multi-lead heat sink

    DOEpatents

    Roose, Lars D.

    1984-01-01

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  19. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  20. METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS

    DOEpatents

    Hoffman, J.D.; Ballou, J.K.

    1957-11-19

    A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

  1. 2 CFR 180.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Adequate evidence. 180.900 Section 180.900 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET GOVERNMENTWIDE GUIDANCE FOR GRANTS AND AGREEMENTS... belief that a particular act or omission has occurred. ...

  2. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  3. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  4. Heat treatment of bulk gallium arsenide using a phosphosilicate glass cap

    NASA Technical Reports Server (NTRS)

    Mathur, G.; Wheaton, M. L.; Borrego, J. M.; Ghandhi, S. K.

    1985-01-01

    n-type bulk GaAs crystals, capped with chemically vapor-deposited phosphosilicate glass, were heat treated at temperatures in the range of 600 to 950 C. Measurements on Schottky diodes and solar cells fabricated on the heat-treated material, after removal of a damaged surface layer, show an increase in free-carrier concentration, in minority-carrier-diffusion length, and in solar-cell short-circuit current. The observed changes are attributed to a removal of lifetime-reducing acceptorlike impurities, defects, or their complexes.

  5. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  6. Ablation-cooled material removal with ultrafast bursts of pulses.

    PubMed

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  7. Application of lasers and pulsed power to coating removal

    NASA Astrophysics Data System (ADS)

    Young, Chris M.; Moeny, William M.; Curry, Randy D.; McDonald, Ken; Bosma, John T.

    1995-03-01

    Lasers and other pulsed power systems are uniquely suited for removal of coatings from a wide variety of substrates. Coatings which can be removed by these systems include paint, adhesives, epoxies, dips, rust, scale, and bird droppings. Suitable substrates include wood, metal, cloth, stone, ceramic, plastics, and even skin. These systems have the advantage over chemical stripping or mechanical abrasion in that the substrate is left virtually unharmed and in many cases the residue is reduced to a form that is more easily disposed of without toxic byproducts or expensive refurbishment. Furthermore, laser and other pulsed power based systems can be operated using only local containment without the need for special operator protective gear or complete enclosure of the substrate structure. Additional advantages are gained in these systems because they typically combine multiple removal mechanisms for greater effectiveness. For example, pulsed lasers create rapid heating of the coating. This rapid heating can result in chemical breakdown of the coating, thermomechanical stress induced dislocation, shock wave agitation, and physical ablation. This paper presents some of the latest research findings on coating removal using these systems. A comparative survey of the system technology, effectiveness, cost, and application is presented. Also presented is a survey of the commercial potential for the systems. Systems which are presented include lasers (CW, pulsed, Infrared, UV, etc.), flashlamps, electro-cathodic debonders, electron beams, and glow discharges.

  8. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  9. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  10. Heat exchanger and method of making. [rocket lining

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M. (Inventor)

    1980-01-01

    A heat exchange of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger.

  11. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  12. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  13. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  14. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  15. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  16. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  17. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  18. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  19. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  20. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  1. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION... support the reasonable belief that a particular act or omission has occurred. ...

  2. 29 CFR 1471.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Adequate evidence. 1471.900 Section 1471.900 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE DEBARMENT... information sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  3. A Flight Investigation of Exhaust-heat De-icing

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Rodert, Lewis A

    1940-01-01

    The National Advisory Committee for Aeronautics conducted exhaust-heat de-icing tests in flight to provide data needed in the application of this method. The capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing removed 30 to 35 percent of the heat from exhaust gas entering the wing. Data are given from which the heat required for ice prevention can be calculated. Sample calculations have been made on the basis of existing engine power/wing area ratios to show that sufficient heating can be obtained for ice protection on modern transportation airplanes, provided that uniform distribution of the heat can be secured.

  4. Heat pipes for terrestrial applications in dehumidification systems

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1988-01-01

    A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.

  5. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  6. Method for heating nongaseous carbonaceous material

    DOEpatents

    Lumpkin, Jr., Robert E.

    1978-01-01

    Nongaseous carbonaceous material is heated by a method comprising introducing tangentially a first stream containing a nongaseous carbonaceous material and carbon monoxide into a reaction zone; simultaneously and separately introducing a second stream containing oxygen into the reaction zone such that the oxygen enters the reaction zone away from the wall thereof and reacts with the first stream thereby producing a gaseous product and heating the nongaseous carbonaceous material; forming an outer spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous carbonaceous material; removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous carbonaceous material before a major portion of the gaseous product can react with the nongaseous carbonaceous material; and removing a fourth stream containing the nongaseous carbonaceous material from the reaction zone.

  7. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    NASA Astrophysics Data System (ADS)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  8. Vasculature of the hive: heat dissipation in the honey bee (Apis mellifera) hive.

    PubMed

    Bonoan, Rachael E; Goldman, Rhyan R; Wong, Peter Y; Starks, Philip T

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees (Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  9. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  10. Feed gas contaminant removal in ion transport membrane systems

    DOEpatents

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  11. Machined Titanium Heat-Pipe Wick Structure

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Minnerly, Kenneth G.; Gernert, Nelson J.

    2009-01-01

    Wick structures fabricated by machining of titanium porous material are essential components of lightweight titanium/ water heat pipes of a type now being developed for operation at temperatures up to 530 K in high-radiation environments. In the fabrication of some prior heat pipes, wicks have been made by extruding axial grooves into aluminum unfortunately, titanium cannot be extruded. In the fabrication of some other prior heat pipes, wicks have been made by in-situ sintering of metal powders shaped by the use of forming mandrels that are subsequently removed, but in the specific application that gave rise to the present fabrication method, the required dimensions and shapes of the heat-pipe structures would make it very difficult if not impossible to remove the mandrels due to the length and the small diameter. In the present method, a wick is made from one or more sections that are fabricated separately and assembled outside the tube that constitutes the outer heat pipe wall. The starting wick material is a slab of porous titanium material. This material is machined in its original flat configuration to form axial grooves. In addition, interlocking features are machined at the mating ends of short wick sections that are to be assembled to make a full-length continuous wick structure. Once the sections have been thus assembled, the resulting full-length flat wick structure is rolled into a cylindrical shape and inserted in the heatpipe tube (see figure). This wick-structure fabrication method is not limited to titanium/water heat pipes: It could be extended to other heat pipe materials and working fluids in which the wicks could be made from materials that could be pre-formed into porous slabs.

  12. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  13. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    DTIC Science & Technology

    1999-10-01

    measurement was made a heat and moisture exchanger was added to the experimental group. Three more measurements were recorded at 10, 30 and 60 minutes after...system was insufficient, but the addition of a heat and moisture exchanger provided adequate humidification of the inspired gases. In the experimental ...of these patients had a heat and moisture exchanger incorporated in the ventilator Heat and Moisture Exchangers 16 circuit (the experimental group

  14. Solar Heating Systems: Progress Checks & Tests Manual.

    ERIC Educational Resources Information Center

    Green, Joanne; And Others

    This manual contains Progress Checks and Tests for use in a Solar Heating Systems curriculum (see note). It contains master copies of all Progress Checks and Unit Tests accompanying the curriculum, organized by unit. (The master copies are to be duplicated by each school so that adequate copies are available for student use in a self-paced student…

  15. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1984-07-03

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again. 4 figs.

  16. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  17. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  18. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. (Authority: E.O. 12549 (3 CFR, 1986 Comp...

  19. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  20. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  1. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT... reasonable belief that a particular act or omission has occurred. Authority: E.O. 12549 (3 CFR, 1986 Comp., p...

  2. 31 CFR 19.900 - Adequate evidence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Adequate evidence. 19.900 Section 19.900 Money and Finance: Treasury Office of the Secretary of the Treasury GOVERNMENTWIDE DEBARMENT AND... sufficient to support the reasonable belief that a particular act or omission has occurred. ...

  3. Cardiac response to whole-body heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, M.A.B.; Kenney, R.A.

    1979-04-01

    Systolic time interval analysis was used to assess changes in ventricular function during heat stress. Seven subjects (4 M + 3 F, 22-35 yr) participated in the experiments. The heating procedure was the following: both legs of seated subjects were immersed to the knees in stirred water maintained at 42-45 C. The subjects' upper legs and trunks were enclosed in nonpermeable plastic and covered with a sheet blanket to reduce heat loss. After 30 min of heating, the water and plastic were removed. The parameters measured were HR and R-R interval, LVET, and PEP. Results were compared by t testmore » at the 0.05 significance level. The results pointed to a two-stage cardiac response to heat-vagal withdrawal followed by a strong sympathetic outflow to the heart affecting both inotropic and chronotropic characteristics.« less

  4. Studies on Single-phase and Multi-phase Heat Pipe for LED Panel for Efficient Heat Dissipation

    NASA Astrophysics Data System (ADS)

    Vyshnave, K. C.; Rohit, G.; Maithreya, D. V. N. S.; Rakesh, S. G.

    2017-08-01

    The popularity of LED panel as a source of illumination has soared recently due to its high efficiency. However, the removal of heat that is produced in the chip is still a major challenge in its design since this has an adverse effect on its reliability. If high junction temperature develops, the colour of the emitted light may diminish over prolonged usage or even a colour shift may occur. In this paper, a solution has been developed to address this problem by using a combination of heat pipe and heat fin technology. A single-phase and a two-phase heat pipes have been designed theoretically and computational simulations carried out using ANSYS FLUENT. The results of the theoretical calculations and those obtained from the simulations are found to be in agreement with each other.

  5. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is uncrated inside the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  6. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  7. Tests of a robust eddy correlation system for sensible heat flux

    NASA Astrophysics Data System (ADS)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  8. Do the Threshold Limit Values for Work in Hot Conditions Adequately Protect Workers?

    PubMed

    Meade, Robert D; Poirier, Martin P; Flouris, Andreas D; Hardcastle, Stephen G; Kenny, Glen P

    2016-06-01

    We evaluated core temperature responses and the change in body heat content (ΔHb) during work performed according to the ACGIH threshold limit values (TLV) for heat stress, which are designed to ensure a stable core temperature that does not exceed 38.0°C. Nine young males performed a 120-min work protocol consisting of cycling at a fixed rate of heat production (360 W). On the basis of the TLV, each protocol consisted of a different work-rest (WR) allocation performed in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28.0°C]). The remaining three protocols were intermittent work bouts (15-min duration) performed at various WR and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29.0°C]), (ii) WR of 1:1 at 30.0°C (WR1:1[30.0°C]), and (iii) WR of 1:3 at 31.5°C (WR1:3[31.5°C]) (total exercise time: 90, 60, and 30 min, respectively). The change in rectal (ΔTre) and mean body temperature (ΔTb) was evaluated with thermometry. ΔHb was determined via direct calorimetry and also used to calculate ΔTb. Although average rectal temperature did not exceed 38.0°C, heat balance was not achieved during exercise in any work protocol (i.e., rate of ΔTre > 0°C·min; all P values ≤ 0.02). Consequently, it was projected that if work was extended to 4 h, the distribution of participant core temperatures higher and lower than 38.0°C would be statistically similar (all P values ≥ 0.10). Furthermore, ΔHb was similar between protocols (P = 0.70). However, a greater ΔTb was observed with calorimetry relative to thermometry in WR3:1[29.0°C] (P = 0.03), WR1:1[30.0°C] (P = 0.02), and WR1:3[31.5°C] (P < 0.01) but not CON[28.0°C] (P = 0.32). The current study demonstrated that heat balance was not achieved and ΔTb and ΔHb were inconsistent, suggesting that the TLV may not adequately protect workers during work in hot conditions.

  9. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  10. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  11. Late developments in the field of heat recovery

    NASA Astrophysics Data System (ADS)

    McFarlan, A. I.

    Developments to reduce the first cost and operating expense of large building air conditioning systems, with emphasis on heat transfer are described. The 3 pipe wide range coils dissipate part of the summer cooling load directly to the outside of the building without passing thru the water chillers. Tank circuits to automatically cycle water thru storage tanks can reduce the refrigeration load about 35% during the peak day period. Means to produce above 48.9 C hot water economically for winter heating and summer dissipation of internal heat are described. A heat balance is maintained automatically to remove only the excess winter heat beyond that which can be usefully recycled or stored.

  12. Nonaqueous purification of mixed nitrate heat transfer media

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  13. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    PubMed

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  14. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers inspect the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  15. Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants.

    PubMed

    Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi

    2005-11-01

    By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.

  16. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000

  17. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  18. Numerical simulations of inductive-heated float-zone growth

    NASA Technical Reports Server (NTRS)

    Chan, Y. T.; Choi, S. K.

    1992-01-01

    The present work provides an improved fluid flow and heat-transfer modeling of float-zone growth by introducing a RF heating model so that an ad hoc heating temperature profile is not necessary. Numerical simulations were carried out to study the high-temperature float-zone growth of titanium carbide single crystal. The numerical results showed that the thermocapillary convection occurring inside the molten zone tends to increase the convexity of the melt-crystal interface and decrease the maximum temperature of the molten zone, while the natural convection tends to reduce the stability of the molten zone by increasing its height. It was found that the increase of induced heating due to the increase of applied RF voltage is reduced by the decrease of zone diameter. Surface tension plays an important role in controlling the amount of induced heating. Finally, a comparison of the computed shape of the free surface with a digital image obtained during a growth run showed adequate agreement.

  19. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  20. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    NASA Astrophysics Data System (ADS)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  1. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.

    1976-04-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less

  2. Disabled personnel emergency-heating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dine, N.

    1974-12-16

    This progress report describes a receiving well for the operating fuel supply (two provided) designed within the unit to permit parasitic heat loss from the system to be captured by the fuel supply. The Zero can housing provides adequate volume to accommodate stowage of the fluid-flow umbilicals for connection of the heater system to the tubulated casualty bag liner.

  3. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  4. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  5. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu; Freund, Jonathan B., E-mail: jbfreund@illinois.edu

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can bemore » shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.« less

  6. Heat and moisture exchanger: importance of humidification in anaesthesia and ventilatory breathing system.

    PubMed

    Parmar, Vandana

    2008-08-01

    Adequate humidification is vital to maintain homeostasis of the airway. Heat and moisture exchangers conserve some of the exhaled water, heat and return them to inspired gases. Many heat and moisture exchangers also perfom bacterial/viral filtration and prevent inhalation of small particles. Heat and moisture exchangers are also called condenser humidifier, artificial nose, etc. Most of them are disposable devices with exchanging medium enclosed in a plastic housing. For adult and paediatric age group different dead space types are available. Heat and moisture exchangers are helpful during anaesthesia and ventilatory breathing system. To reduce the damage of the upper respiratory tract through cooling and dehydration inspiratory air can be heated and humidified, thus preventing the serious complications.

  7. Development and testing of aluminum micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  8. Vegetation recovery in slash-pile scars following conifer removal in a grassland-restoration experiment

    Treesearch

    Charles B. Halpern; Joseph A. Antos; Liam M. Beckman

    2014-01-01

    A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded...

  9. 9 CFR 2.33 - Attending veterinarian and adequate veterinary care.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... veterinary care. 2.33 Section 2.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... adequate veterinary care. (a) Each research facility shall have an attending veterinarian who shall provide adequate veterinary care to its animals in compliance with this section: (1) Each research facility shall...

  10. 9 CFR 2.33 - Attending veterinarian and adequate veterinary care.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... veterinary care. 2.33 Section 2.33 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... adequate veterinary care. (a) Each research facility shall have an attending veterinarian who shall provide adequate veterinary care to its animals in compliance with this section: (1) Each research facility shall...

  11. Effect of working fluids on thermal performance of closed loop pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Kolková, Zuzana; Malcho, Milan

    2014-08-01

    Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.

  12. Carbon-Nanotube-Carpet Heat-Transfer Pads

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cruden, Brett A.; Cassel, Alan M.

    2006-01-01

    Microscopic thermal-contact pads that include carpet-like arrays of carbon nanotubes have been invented for dissipating heat generated in integrated circuits and similarly sized single electronic components. The need for these or other innovative thermal-contact pads arises because the requisite high thermal conductances cannot be realized by scaling conventional macroscopic thermal-contact pads down to microscopic sizes. Overcoming limitations of conventional thermal-contact materials and components, the carbon-nanotube thermal-contact pads offer the high thermal conductivities needed to accommodate the high local thermal power densities of modern electronic circuits, without need for large clamping pressures, extreme smoothness of surfaces in contact, or gap-filling materials (e.g., thermally conductive greases) to ensure adequate thermal contact. Moreover, unlike some conventional thermal-contact components, these pads are reusable. The figure depicts a typical pad according to the invention, in contact with a rough surface on an electronic component that is to be cooled. Through reversible bending and buckling of carbon nanotubes at asperities on the rough surface, the pad yields sufficiently, under relatively low contact pressure, that thermal contact is distributed to many locations on the surface to be cooled, including valleys where contact would not ordinarily occur in conventional clamping of rigid surfaces. Hence, the effective thermal-contact area is greater than that achievable through scaling down of a macroscopic thermal-contact pad. The extremely high longitudinal thermal conductivities of the carbon nanotubes are utilized to conduct heat away from potential hot spots on the surface to be cooled. The fibers protrude from a layer of a filler material (Cu, Ag, Au, or metal-particle- filled gels), which provides both mechanical support to maintain the carbon nanotubes in alignment and thermal conductivity to enhance the diffusion of concentrated heat

  13. Thermal treatment of low permeability soils using electrical resistance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies ofmore » electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.« less

  14. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    DTIC Science & Technology

    1999-10-01

    was added to the experimental group. Three more measurements were recorded at 10, 30 and 60 minutes after the insertion of the heat and moisture...heat and moisture exchanger provided adequate humidification of the inspired gases. In the experimental group, there was no difference in...exchanger incorporated in the ventilator Heat and Moisture Exchangers 16 circuit (the experimental group) and 10 did not (the control group

  15. Heat transfer characteristics of an emergent strand

    NASA Technical Reports Server (NTRS)

    Simon, W. E.; Witte, L. C.; Hedgcoxe, P. G.

    1974-01-01

    A mathematical model was developed to describe the heat transfer characteristics of a hot strand emerging into a surrounding coolant. A stable strand of constant efflux velocity is analyzed, with a constant (average) heat transfer coefficient on the sides and leading surface of the strand. After developing a suitable governing equation to provide an adequate description of the physical system, the dimensionless governing equation is solved with Laplace transform methods. The solution yields the temperature within the strand as a function of axial distance and time. Generalized results for a wide range of parameters are presented, and the relationship of the results and experimental observations is discussed.

  16. Theoretical analysis of heat flow in horizontal ribbon growth from a melt. [silicon metal

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1978-01-01

    A theoretical heat flow analysis for horizontalribbon growth is presented. Equations are derived relating pull speed, ribbon thickness, thermal gradient in the melt, and melt temperature for limiting cases of heat removal by radiation only and isothermal heat removal from the solid surface over the melt. Geometrical cross sections of the growth zone are shown to be triangular and nearly parabolic for the two respective cases. Theoretical pull speed for silicon ribbon 0.01 cm thick, where the loss of latent heat of fusion is by radiation to ambient temperature (300 K) only, is shown to be 1 cm/sec for horizontal growth extending 2 cm over the melt and with no heat conduction either to or from the melt. Further enhancement of ribbon growth rate by placing cooling blocks adjacent to the top surface is shown to be theoretically possible.

  17. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers use a crane to move the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for further testing. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  18. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    PubMed Central

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  19. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  20. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    PubMed

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  1. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    PubMed

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture.

  2. The picosecond laser for tattoo removal.

    PubMed

    Hsu, Vincent M; Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Nouri, Keyvan

    2016-11-01

    The prevalence of tattoos continues to grow as modern society's stigma towards this form of body art shifts towards greater acceptance. Approximately one third of Americans aged 18-25 and 40 % of Americans aged 26-40 are tattooed. As tattoos continue to rise in popularity, so has the demand for an effective method of tattoo removal such as lasers. The various colors of tattoo inks render them ideal targets for specific lasers using the principle of selective photothermolysis. Traditional laser modalities employed for tattoo removal operate on pulse durations in the nanosecond domain. However, this pulse duration range is still too long to effectively break ink into small enough particles. Picosecond (10 -12 ) lasers have emerged at the forefront of laser tattoo removal due to their shorter pulse lengths, leading to quicker heating of the target chromophores, and consequently, more effective tattoo clearance. Recent studies have cited more effective treatment outcomes using picosecond lasers. Future comparative studies between picosecond lasers of various settings are necessary to determine optimal laser parameters for tattoo clearance.

  3. Device for removing foreign objects from anatomic organs

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor)

    1992-01-01

    A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.

  4. The iodized salt programme in Bangalore, India provides adequate iodine intakes in pregnant women and more-than-adequate iodine intakes in their children.

    PubMed

    Jaiswal, Nidhi; Melse-Boonstra, Alida; Sharma, Surjeet Kaur; Srinivasan, Krishnamachari; Zimmermann, Michael B

    2015-02-01

    To compare the iodine status of pregnant women and their children who were sharing all meals in Bangalore, India. A cross-sectional study evaluating demographic characteristics, household salt iodine concentration and salt usage patterns, urinary iodine concentrations (UIC) in women and children, and maternal thyroid volume (ultrasound). Antenatal clinic of an urban tertiary-care hospital, which serves a low-income population. Healthy pregnant women in all trimesters, aged 18-35 years, who had healthy children aged 3-15 years. Median (range) iodine concentrations of household powdered and crystal salt were 55·9 (17·2-65·9) ppm and 18·9 (2·2-68·2) ppm, respectively. The contribution of iodine-containing supplements and multi-micronutrient powders to iodine intake in the families was negligible. Adequately iodized salt, together with small amounts of iodine in local foods, were providing adequate iodine during pregnancy: (i) the overall median (range) UIC in women was 172 (5-1024) µg/l; (ii) the median UIC was >150 µg/l in all trimesters; and (iii) thyroid size was not significantly different across trimesters. At the same time, the median (range) UIC in children was 220 (10-782) µg/l, indicating more-than-adequate iodine intake at this age. Median UIC was significantly higher in children than in their mothers (P=0·008). In this selected urban population of southern India, the iodized salt programme provides adequate iodine to women throughout pregnancy, at the expense of higher iodine intake in their children. Thus we suggest that the current cut-off for median UIC in children indicating more-than-adequate intake, recommended by the WHO/UNICEF/International Council for the Control of Iodine Deficiency Disorders may, need to be reconsidered.

  5. Development of remountable joints and heat removable techniques for high-temperature superconducting magnets

    NASA Astrophysics Data System (ADS)

    Hashizume, H.; Ito, S.; Yanagi, N.; Tamura, H.; Sagara, A.

    2018-02-01

    Segment fabrication is now a candidate for the design of superconducting helical magnets in the helical fusion reactor FFHR-d1, which adopts the joint winding of high-temperature superconducting (HTS) helical coils as a primary option and the ‘remountable’ HTS helical coil as an advanced option. This paper reports on recent progress in two key technologies: the mechanical joints (remountable joints) of the HTS conductors and the metal porous media inserted into the cooling channel for segment fabrication. Through our research activities it has been revealed that heat treatment during fabrication of the joint can reduce joint resistance and its dispersion, which can shorten the fabrication process and be applied to bent conductor joints. Also, heat transfer correlations of the cooling channel were established to evaluate heat transfer performance with various cryogenic coolants based on the correlations to analyze the thermal stability of the joint.

  6. A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Pauken, Mike; Birur, Gaj

    2004-01-01

    Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.

  7. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  8. Theoretical models of Kapton heating in solar array geometries

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  9. Short-pulse laser removal of organic coatings

    NASA Astrophysics Data System (ADS)

    Walters, Craig T.

    2000-08-01

    A major problem in the regular maintenance of aerospace systems is the removal of paint and other protective coatings from surfaces without polluting the atmosphere or endangering workers. Recent research has demonstrated that many organic coatings can be removed from surfaces efficiently using short laser pulses without the use of any chemical agents. The lasers employed in this study were repetitively-pulsed neodymium YAG devices operating at 1064 nm (15 - 30 ns, 10 - 20 Hz). The efficiency of removal can be cast in terms of an effective heat of ablation, Q* (kJ of laser energy incident per g of paint removed), although, for short pulses, the mechanism of removal is believed to be dominated more by thermo- mechanical or shock effects than by photo-ablation. Q* data were collected as a function of pulse fluence for several paint types. For many paint types, there was a fairly sharp threshold fluence per pulse near 1 J/cm2, above which Q* values dropped to levels which were a factor of four lower than those observed for long- pulse or continuous laser ablation of paint. In this regime, the coating is removed in fairly large particles or, in the case of one paint, the entire thickness of the coating was removed over the exposed area in one pulse. Hardware for implementing short-pulse laser paint stripping in the field is under development and will be highlighted in the presentation. Practical paint stripping rates achieved using the prototype hardware are presented for several paint types.

  10. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  11. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  12. The Social, Historical, and Institutional Contingencies of Dam Removal

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Sneddon, C. S.; Fox, C. A.

    2017-06-01

    Environmental managers in the United States and elsewhere are increasingly perceiving dam removal as a critical tool for river restoration and enhancing watershed resilience. In New England, over 125 dams have been dismantled for ecological and economic rationales. A surprising number of these removals, including many that are ongoing, have generated heated conflicts between restoration proponents and local communities who value their dammed landscapes. Using a comparative case study approach, we examine the environmental conflict around efforts to remove six dams in New England. Each of these removal efforts followed quite different paths and resultant outcomes: successful removal, stalled removal, and failure despite seemingly favorable institutional conditions. Lengthy conflicts often transpired in instances where removals occurred, but these were successfully arbitrated by paying attention to local historical-geographical conditions conducive to removal and by brokering effective compromises between dam owners and the various local actors and stakeholders involved in the removal process. Yet our results across all cases suggest that these are necessary, but not sufficient conditions for restoration through dam removal since a similar set of conditions typified cases where removals are continuously stalled or completely halted. Scholars examining the intersection between ecological restoration and environmental politics should remain vigilant in seeking patterns and generalities across cases of environmental conflict in order to promote important biophysical goals, but must also remain open to the ways in which those goals are thwarted and shaped by conflicts that are deeply contingent on historical-geographical conditions and broader institutional networks of power and influence.

  13. The Social, Historical, and Institutional Contingencies of Dam Removal.

    PubMed

    Magilligan, F J; Sneddon, C S; Fox, C A

    2017-06-01

    Environmental managers in the United States and elsewhere are increasingly perceiving dam removal as a critical tool for river restoration and enhancing watershed resilience. In New England, over 125 dams have been dismantled for ecological and economic rationales. A surprising number of these removals, including many that are ongoing, have generated heated conflicts between restoration proponents and local communities who value their dammed landscapes. Using a comparative case study approach, we examine the environmental conflict around efforts to remove six dams in New England. Each of these removal efforts followed quite different paths and resultant outcomes: successful removal, stalled removal, and failure despite seemingly favorable institutional conditions. Lengthy conflicts often transpired in instances where removals occurred, but these were successfully arbitrated by paying attention to local historical-geographical conditions conducive to removal and by brokering effective compromises between dam owners and the various local actors and stakeholders involved in the removal process. Yet our results across all cases suggest that these are necessary, but not sufficient conditions for restoration through dam removal since a similar set of conditions typified cases where removals are continuously stalled or completely halted. Scholars examining the intersection between ecological restoration and environmental politics should remain vigilant in seeking patterns and generalities across cases of environmental conflict in order to promote important biophysical goals, but must also remain open to the ways in which those goals are thwarted and shaped by conflicts that are deeply contingent on historical-geographical conditions and broader institutional networks of power and influence.

  14. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  15. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    PubMed

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  16. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes

    PubMed Central

    Alldred, Mary; Baines, Stephen B.; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688

  17. Clinical evaluation of a chemomechanical method for caries removal in children and adolescents.

    PubMed

    Peric, Tamara; Markovic, Dejan; Petrovic, Bojan

    2009-01-01

    The purpose of this study was to make a clinical comparison of the chemomechanical method for caries removal and the conventional rotary instruments technique when used in children and adolescents. The study comprised 120 patients aged 3-17 years randomized into two groups: caries were removed chemomechanically in 60 patients and 60 patients received conventional treatment with rotary instruments. The outcome variables were: clinically complete caries removal, pain during caries removal, need for local anesthesia, treatment time, preferences of patients, and clinical success of the restorations during the 12-month evaluation period. Complete caries removal was achieved in 92% of chemomechanically treated teeth and in all teeth treated with rotary instruments (p>0.05). The chemomechanical method significantly reduced the need for local anesthesia (p<0.001). Eighty-five percent of patients treated with Carisolv and 47% treated with rotary instruments were satisfied with the treatment (p<0.05). The mean time for chemomechanical caries removal was 11.2 ± 3.3 min and 5.2 ± 2.8 min for caries removal with rotary instruments (p<0.001). At the end of the 12-month evaluation period, there was no observed influence of the caries removal method on the survival of the restorations. The chemomechanical caries removal technique is an adequate alternative to the conventional rotary instruments method and is advantageous in pediatric dentistry.

  18. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  19. CO2 heat pumps for commercial building applications with simultaneous heating and cooling demand

    NASA Astrophysics Data System (ADS)

    Dharkar, Supriya

    Many commercial buildings, including data centers, hotels and hospitals, have a simultaneous heating and cooling demand depending on the season, occupation and auxiliary equipment. A data center on the Purdue University, West Lafayette campus is used as a case study. The electrical equipment in data centers produce heat, which must be removed to prevent the equipment temperature from rising to a certain level. With proper integration, this heat has the potential to be used as a cost-effective energy source for heating the building in which the data center resides or the near-by buildings. The proposed heat pump system utilizes carbon dioxide with global warming potential of 1, as the refrigerant. System simulations are carried out to determine the feasibility of the system for a 12-month period. In addition, energy, environmental and economic analyses are carried out to show the benefits of this alternative technology when compared to the conventional system currently installed in the facility. Primary energy savings of ~28% to ~61%, a payback period of 3 to 4.5 years and a decrease in the environmental impact value by ~36% makes this system an attractive option. The results are then extended to other commercial buildings.

  20. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  1. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that willmore » allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.« less

  2. Experimental investigation of heat transport through single synthetic fractures

    NASA Astrophysics Data System (ADS)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Redondo, Jose M.

    2017-04-01

    In fractured geothermal reservoirs, heat transport is highly influenced by the presence of the fractures, so appropriate knowledge of heat behaviour in fractured porous media is essential for accurate prediction of the energy extraction in geothermal reservoirs. The present study focuses on the study of heat transport within single synthetic fractures. In particular manner several tests have been carried out in order to explore the role of fracture roughness, aperture variability and the fracture-matrix ratio on the heat transport dynamics. The Synfrac program together with a 3d printer have been used to build several fracture planes having different geometrical characteristics that have been moulded to generate concrete porous fractured blocks. The tests regard the observation of the thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouples located uniformly on the fractured blocks. The physical model developed permits to reproduce and understand adequately some features of heat transport dynamics in fractured media. The results give emphasis on the errors of the assumptions commonly used in heat transport modelling.

  3. Region 8: Colorado Adequate Letter (10/29/2001)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Denvers' particulate matter (PM10) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  4. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  5. Analysis of temperature rise and the use of coolants in the dissipation of ultrasonic heat buildup during post removal.

    PubMed

    Davis, Stephen; Gluskin, Alan H; Livingood, Philip M; Chambers, David W

    2010-11-01

    This study was designed to calculate probabilities for tissue injury and to measure effectiveness of various coolant strategies in countering heat buildup produced by dry ultrasonic vibration during post removal. A simulated biological model was used to evaluate the cooling efficacy of a common refrigerant spray, water spray, and air spray in the recovery of post temperatures deep within the root canal space. The data set consisted of cervical and apical measures of temperature increase at 1-second intervals from baseline during continuous ultrasonic instrumentation until a 10 °C increase in temperature at the cervical site was registered, wherein instrumentation ceased, and the teeth were allowed to cool under ambient conditions or with the assistance of 4 coolant methods. Data were analyzed with analysis of variance by using the independent variables of time of ultrasonic application (10, 15, 20 seconds) and cooling method. In addition to the customary means, standard deviations, and analysis of variance tests, analyses were conducted to determine probabilities that procedures would reach or exceed the 10 °C threshold. Both instrumentation time and cooling agent effects were significant at P <.0001. Under the conditions of this study, it was shown that injurious heat transfer occurs in less than 1 minute during dry ultrasonic instrumentation of metallic posts. Cycles of short instrumentation times with active coolants were effective in reducing the probability of tissue damage when teeth were instrumented dry. With as little as 20 seconds of continuous dry ultrasonic instrumentation, the consequences of thermal buildup to an individual tooth might contribute to an injurious clinical outcome. Copyright © 2010 American Association of Endodontists. All rights reserved.

  6. Maintaining Adequate Carbon Dioxide Washout for an Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Navarro, Moses; Conger, Bruce; Korona, Adam; McMillin, Summer; Norcross, Jason; Swickrath, Mike

    2013-01-01

    Over the past several years, NASA has realized tremendous progress in technology development that is aimed at the production of an Advanced Extravehicular Mobility Unit (AEMU). Of the many functions provided by the spacesuit and portable life support subsystem within the AEMU, delivering breathing gas to the astronaut along with removing the carbon dioxide (CO2) remains one of the most important environmental functions that the AEMU can control. Carbon dioxide washout is the capability of the ventilation flow in the spacesuit helmet to provide low concentrations of CO2 to the crew member to meet breathing requirements. CO2 washout performance is a critical parameter needed to ensure proper and sufficient designs in a spacesuit and in vehicle applications such as sleep stations and hygiene compartments. Human testing to fully evaluate and validate CO2 washout performance is necessary but also expensive due to the levied safety requirements. Moreover, correlation of math models becomes challenging because of human variability and movement. To supplement human CO2 washout testing, a breathing capability will be integrated into a suited manikin test apparatus to provide a safe, lower cost, stable, easily modeled alternative to human testing. Additionally, this configuration provides NASA Johnson Space Center (JSC) the capability to evaluate CO2 washout under off-nominal conditions that would otherwise be unsafe for human testing or difficult due to fatigue of a test subject. Testing has been under way in-house at JSC and analysis has been initiated to evaluate whether the technology provides sufficient performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an extravehicular activity. This paper will review recent CO2 washout testing and analysis activities, testing planned in-house with a spacesuit simulator, and the associated analytical work

  7. Region 1: Connecticut Adequate Letter (6/14/2017)

    EPA Pesticide Factsheets

    Letter from Office of Ecosystem Protection to Connecticut Department of Energy & Environmental Protection determined submitted 2017 Motor Vehicle Emissions Budgets adequate for transportation conformity purposes, Greater Connecticut area. (March 20, 2017)

  8. Region 8: Utah Adequate Letter (6/10/2005)

    EPA Pesticide Factsheets

    This letter from EPA to Utah Department of Environmental Quality determined Salt Lake Citys' and Ogdens' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  9. Modeling Self-Heating Effects in Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.

    2017-08-01

    Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.

  10. 11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. THE PARTS OR METALS WERE HEATED PRIOR TO BEING PRESSED. THE MANIPULATOR ARM WAS USED TO INSERT AND REMOVE PARTS OR METALS FROM THE FURNACE. (2/9/79) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  11. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  12. The arsenic removal from arsenopyrite in sulfide mineral by physicochemical extraction

    NASA Astrophysics Data System (ADS)

    Jo, Jiyu; Cho, Kanghee; Choi, Nagchoul; Park*, Cheonyoung

    2015-04-01

    The most abundant As ore mineral is arsenopyrite (FeAsS). Arsenopyrite is present in sulfide ores associated with sediment-hosted Au deposits, it tends to be the earliest-formed mineral, derived from hydrothermal solutions and formed at temperatures typically of 100(degree Celsius) or more. The aim of this study was to investigate the mineralogical phase change and arsenic removal from arsenopyrite as a penalty element in sulfide mineral contained Au by physical extraction (high frequency) and chemical leaching (thiocyanate). Arsenic removal experiments for were performed under various conditions of high frequency exposure(1~35 min), thiocyanate concentration (0.1~1.0M), HCl concentration (0.1~2.0M), copper(2) sulfate concentration (0.1~1.0M), temperature (30~60 degree Celsius). Increasing the high frequency exposure produced a positive effect on arsenic removal in arsenopyrite. The highest percentage arsenic removal of 96.67% was obtained under the following conditions by thiocyanate leaching: thiocyanate concentration = 1.0M ; HCl concentration = 2.0M ; copper(2) sulfate concentration = 1.0M ; temperature = 60(degree Celsius) This study demonstrates the adequate performance of physical extraction (high frequency) and chemical leaching (thiocyanate) for the arsenic removal from arsenopyrite as a penalty element.

  13. Differences in response to heat stress due to production level and breed of dairy cows

    NASA Astrophysics Data System (ADS)

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  14. Differences in response to heat stress due to production level and breed of dairy cows.

    PubMed

    Gantner, Vesna; Bobic, Tina; Gantner, Ranko; Gregic, Maja; Kuterovac, Kresimir; Novakovic, Jurica; Potocnik, Klemen

    2017-09-01

    The climatic conditions in Croatia are deteriorating which significantly increases the frequency of heat stress. This creates a need for an adequate dairy farming strategy. The impact of heat stress can be reduced in many ways, but the best long-term solution includes the genetic evaluation and selection for heat stress resistance. In order to create the basis for genetic evaluation, this research determined the variation in daily milk yield (DMY) and somatic cell count (SCC) as well as the differences in resistance to heat stress due to production level (high, low) and breed (Holstein, Simmental) of dairy cattle breed in Croatia. For statistical analysis, 1,070,554 test-day records from 70,135 Holsteins reared on 5679 farms and 1,300,683 test-day records from 86,013 Simmentals reared on 8827 farms in Croatia provided by the Croatian Agricultural Agency were used. The results of this research indicate that the high-producing cows are much more susceptible to heat stress than low-producing especially Holsteins. Also, the results of this research indicate that Simmental breed, in terms of daily milk production and somatic cell count, could be more resistant to heat stress than Holstein. The following research should determine whether Simmentals are genetically more appropriate for the challenges that are in store for the future milk production in this region. Furthermore, could an adequate production level be achieved with Simmentals by maintaining the heat resistance?

  15. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    NASA Astrophysics Data System (ADS)

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  16. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash.

    PubMed

    Li, Yanzhong; Liu, Changjun; Luan, Zhaokun; Peng, Xianjia; Zhu, Chunlei; Chen, Zhaoyang; Zhang, Zhongguo; Fan, Jinghua; Jia, Zhiping

    2006-09-01

    The effect of acidification and heat treatment of raw red mud (RM) and fly ash (FA) on the sorption of phosphate was studied in parallel experiments. The result shows that a higher efficiency of phosphate removal was acquired by the activated samples than by the raw ones. The sample prepared by using the RM stirred with 0.25 M HCl for 2h (RM0.25), as well as another sample prepared by heating the RM at 700 degrees C for 2h (RM700), registered the maximum removal of phosphate (99% removal of phosphate). This occurred when they were used in the phosphate sorption studies conducted at pH 7.0 and 25 degrees C with the initial PO(4)(3-) concentration of 155 mg P/l. The FA samples treated in the same way described above can achieve 7.0 and 8.2 mg P/l phosphate removal for FA0.25 and FA700 respectively, corresponding to 45.2% and 52.9% removal. The activated materials performed higher phosphate removal over broader pH range compared with the raw ones. The influences of various factors, such as initial pH and initial phosphate concentration on the sorption capacity were also studied in batch equilibration technique. Solution pH significantly influenced the sorption. Each sample achieved the maximal removal of phosphate at pH 7.0. The amount of phosphate removal increased with the solute concentration. The Freundlich and Langmuir models were used to simulate the sorption equilibrium. The results indicate that the Langmuir model has a better correlation with the experimental data than the Freundlich model.

  17. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  18. Federal Employees Health Benefits Program: Removal of Eligible and Ineligible Individuals From Existing Enrollments. Final rule.

    PubMed

    2018-01-23

    The United States Office of Personnel Management (OPM) is issuing a final rule amending Federal Employees Health Benefits (FEHB) Program regulations to provide a process for removal of certain identified individuals who are found not to be eligible as family members from FEHB enrollments. This process would apply to individuals for whom there is a failure to provide adequate documentation of eligibility when requested. This action also amends Federal Employees Health Benefits (FEHB) Program regulations to allow certain eligible family members to be removed from existing self and family or self plus one enrollments.

  19. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the

  20. Midstory removal methods tested for timely release of newly established oak seedlings under oak shelterwoods

    Treesearch

    Ronald A. Rathfon

    2011-01-01

    The oak shelterwood method calls for the removal of shade-tolerant, undesirable midstory species to create adequate diffuse light conditions at the forest floor for oak seedling establishment, preferably timed to coincide with a large acorn crop. Injection (INJ) with an herbicide, chainsaw felling and girdling with herbicide application (SAW), and a low-volume basal...

  1. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    PubMed Central

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102

  2. Region 9: Nevada Adequate Letter (3/30/2006)

    EPA Pesticide Factsheets

    This is a letter from Deborah Jordan, Director, to Leo M. Drozdoff regarding Nevada's motor vehicle emissions budgets in the 2005 Truckee Meadows CO Redesignation Request and Maintenance Plan are adequate for transportation conformity decisions.

  3. Region 6: Texas Adequate Letter (4/16/2010)

    EPA Pesticide Factsheets

    This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes

  4. Region 6: Texas Adequate Letter (6/21/17)

    EPA Pesticide Factsheets

    Letter from EPA approves Motor Vehicle Emissions Budgets contained in latest revisions to Houston/Galveston/Brazoria (HGB) 2008 8-hour Ozone State Implementation Plan, adequate for transportation conformity purposes and announced in the Federal Register.

  5. Heat shock-initiated apoptosis is accelerated and removal of damaged cells is delayed in the testis of clusterin/ApoJ knock-out mice.

    PubMed

    Bailey, Robert W; Aronow, Bruce; Harmony, Judith A K; Griswold, Michael D

    2002-04-01

    The secretion and localization of clusterin in the testis has led to the hypothesis that clusterin plays a role in spermatogenesis. Furthermore, the association of clusterin with apoptosis, cellular injury, disease, and regression of nongonadal tissues has led to the hypothesis that clusterin acts to protect cells from apoptosis or may be involved in tissue remodeling. To investigate the role of clusterin in the testis, we analyzed clusterin knock-out (cluKO) mice to determine the impact of the absence of clusterin on spermatogenesis. Furthermore, we investigated the cellular response to injury caused by methoxyacetic acid (MAA) toxicity and mild heat exposure in the cluKO mice to determine the extent to which clusterin protects against apoptosis or participates in tissue remodeling. We found that cluKO mice were fertile and had essentially normal spermatogenesis with the exception of some incomplete spermiation after stage VIII. No differences in testicular morphology or the incidence of apoptosis in the testis were seen between the cluKO and clusterin wild-type (cluWT) mice after MAA treatment. In contrast, apoptosis was delayed in the cluWT mice compared with the cluKO mice after heat exposure, suggesting that clusterin does have a slight protective effect against apoptosis under some conditions. Also, a dramatic loss of germ cells after heat stress occurred earlier in the cluWT testes than in the cluKO testes. Clusterin is clearly acting in a dual role in that cells can be protected from damage and dead cells can be more easily removed after some types of cellular damage but not after others.

  6. A DISCUSSION ON UTILIZATION OF HEAT PIPE AND VAPOUR CHAMBER TECHNOLOGY AS A PRIMARY DEVICE FOR HEAT EXTRACTION FROM PHOTON ABSORBER SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.

    Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less

  7. Region 8: Colorado Adequate Letter (1/20/2004)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Greeleys' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes and will be announced in the FR.

  8. Region 4: Tennessee Adequate Letter (9/30/2010)

    EPA Pesticide Factsheets

    This letter acknowledges that the EPA has reviewed Tennessee's Knoxville Area redesignation request and maintenace plan, as well as the motor vehicle emissions budgets (MVEBs) and have determined that these MVEBs are adequate for transportation conformity

  9. Region 9: California Adequate Letter (7/14/2017)

    EPA Pesticide Factsheets

    EPA approves California Air Resources Board Motor Vehicle Emissions Budgets in San Joaquin Valley Unified Air Pollution Control Districts 2016 Plan for 2008 8-Hour Ozone Standard adequate for transportation conformity purposes announced in Federal Register

  10. Region 9: Arizona Adequate Letter (10/14/2003)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadben,. Director, to Nancy Wrona and Dennis Smith informing them that Maricopa County's motor vehicle emissions budgets in the 2003 MAGCO Maintenance Plan are adequate for transportation conformity purposes.

  11. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  12. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  13. SITE TECHNOLOGY CAPSULE: KAI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    KAI developed a patented, in situ RFH technology to enhance the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and soil permeability that may increase with dry...

  14. Thermal removal of pyrene contamination from soil: basic studies and environmental health implications.

    PubMed Central

    Saito, H H; Bucalá, V; Howard, J B; Peters, W A

    1998-01-01

    Effects of temperature (400-1000 degrees C) and rate of heating to 550 degrees C (100, 1000, 5000 degrees C/sec) on reduction of pyrene contamination in a Superfund-related soil and on yields of volatile products (tars, CO, CO2, methane, acetylene, ethylene) have been measured. Fifty (+/- 3)-milligram thin layers (less than or equal to 150 micron) of 63- to 125-micron soil particles, neat (i.e., without exogenous chemicals), or pretreated with 4.75 wt% of pyrene, were heated for about 1 to 6 sec, under 3 psig (pounds per in.(2) gauge) of helium in a 12-liter sealed chamber. Pyrene removal, defined as the difference in weight loss of neat versus contaminated soil, was virtually immune to heating rate but increased strongly with increasing temperature, approaching 100% at about 530 degrees C. However, for pyrenepolluted soil, excess soil weight loss and modified CO yields were observed above about 500 degrees C for a 1000 degrees C/sec heating rate. These observations suggest that soil chemical reactions with pyrene or pyrene decomposition products augment soil volatilization. Consequently at elevated temperatures, the difference in weight loss protocol may overestimate polycyclic aromatic hydrocarbon (PAH) removal from soil. Increasing heating rate caused yields of CO, CO(2), and acetylene from pyrene-polluted soil to pass through maxima. Heating neat or contaminated soil resulted in at least two gaseous products of particular environmental interest:acetylene, a precursor to PAH in thermal synthesis, and CO, a toxin to human hemoglobin. Images Figure 1 Figure 2 PMID:9703498

  15. Do constructed wetlands remove metals or increase metal bioavailability?

    PubMed

    Xu, Xiaoyu; Mills, Gary L

    2018-07-15

    The H-02 wetland was constructed to treat building process water and storm runoff water from the Tritium Processing Facility on the Department of Energy's Savannah River Site (Aiken, SC). Monthly monitoring of copper (Cu) and zinc (Zn) concentrations and water quality parameters in surface waters continued from 2014 to 2016. Metal speciation was modeled at each sampling occasion. Total Cu and Zn concentrations released to the effluent stream were below the NPDES limit, and the average removal efficiency was 65.9% for Cu and 71.1% for Zn. The metal-removal processes were found out to be seasonally regulated by sulfur cycling indicated by laboratory and model results. High temperature, adequate labile organic matter, and anaerobic conditions during the warm months (February to August) favored sulfate reduction that produced sulfide minerals to significantly remove metals. However, the dominant reaction in sulfur cycling shifted to sulfide oxidation during the cool months (September to next March). High concentrations of metal-organic complexes were observed, especially colloidal complexes of metal and fulvic acid (FA), demonstrating adsorption to organic matter became the primary process for metal removal. Meanwhile, the accumulation of metal-FA complexes in the wetland system will cause negative effects to the surrounding environment as they are biologically reactive, highly bioavailable, and can be easily taken up and transferred to ecosystems by trophic exchange. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  17. A diagnostic for quantifying heat flux from a thermite spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. P. Nixon; M. L. Pantoya; D. J. Prentice

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allowmore » for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.« less

  18. Role and regulation of autophagy in heat stress responses of tomato plants

    PubMed Central

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates. PMID:24817875

  19. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  20. Region 5: Wisconsin Adequate Letter (4/16/2015)

    EPA Pesticide Factsheets

    This March 13, 2015 letter from EPA approves Wisconsins Kenosha and Sheboygan counties Early Progress Plan for year 2015 Motor Vehicle Emissions Budgets (MVEBs) for VOC and NOx finding them adequate for transportation conformity purposes and will be announ

  1. A comparison of temperature profile depending on skin types for laser hair removal therapy.

    PubMed

    Kim, Tae-Hoon; Lee, Gwi-Won; Youn, Jong-In

    2014-11-01

    Although numerous lasers with different wavelengths are available for laser hair removal, their use in individuals with dark-pigmented skin remains a challenge. The present study aims to develop a numerical heat diffusion model considering skin types over various wavelengths. This numerical mode uses Pennes approximation to represent heat from metabolism, blood perfusion and an external heating source. The heat diffusion model is experimentally validated by using agar-based skin tissue phantoms. Diode lasers with four different wavelengths were used with two antithetical skin models. The pulse width and beam spot size were set to 200 ms and 1 cm(2), respectively. Temperature distribution along the hair structure and skin tissue was examined to determine both thermal confinement and heat transfer to the hair follicle. Experimental results are well matched with the numerical results. The results show that for the light skin model, thermal confinement is well achieved over various wavelengths, and treatment efficacy is expected to be better at a shorter wavelength. Otherwise, for the dark skin model, thermal confinement is poorly achieved as the wavelength decreases (<808 nm) and the temperature gap between the hair tip and the hair root is significantly large compared with the light skin model, which may lead to adverse effects. We believe that the developed numerical model will help to establish optimal laser parameters for different individuals during laser hair removal.

  2. Heat exchanger for reactor core and the like

    DOEpatents

    Kaufman, Jay S.; Kissinger, John A.

    1986-01-01

    A compact bayonet tube type heat exchanger which finds particular application as an auxiliary heat exchanger for transfer of heat from a reactor gas coolant to a secondary fluid medium. The heat exchanger is supported within a vertical cavity in a reactor vessel intersected by a reactor coolant passage at its upper end and having a reactor coolant return duct spaced below the inlet passage. The heat exchanger includes a plurality of relatively short length bayonet type heat exchange tube assemblies adapted to pass a secondary fluid medium therethrough and supported by primary and secondary tube sheets which are releasibly supported in a manner to facilitate removal and inspection of the bayonet tube assemblies from an access area below the heat exchanger. Inner and outer shrouds extend circumferentially of the tube assemblies and cause the reactor coolant to flow downwardly internally of the shrouds over the tube bundle and exit through the lower end of the inner shroud for passage to the return duct in the reactor vessel.

  3. Region 8: Colorado Adequate Letter (8/17/2011)

    EPA Pesticide Factsheets

    This March 4, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Greeley, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation conformity

  4. Region 8: Colorado Adequate Letter (6/11/2012)

    EPA Pesticide Factsheets

    This August 9, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Fort Collins, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation

  5. Using Multitheory Model of Health Behavior Change to Predict Adequate Sleep Behavior.

    PubMed

    Knowlden, Adam P; Sharma, Manoj; Nahar, Vinayak K

    The purpose of this article was to use the multitheory model of health behavior change in predicting adequate sleep behavior in college students. A valid and reliable survey was administered in a cross-sectional design (n = 151). For initiation of adequate sleep behavior, the construct of behavioral confidence (P < .001) was found to be significant and accounted for 24.4% of the variance. For sustenance of adequate sleep behavior, changes in social environment (P < .02), emotional transformation (P < .001), and practice for change (P < .001) were significant and accounted for 34.2% of the variance.

  6. Tritium in [15O]water, its identification and removal.

    PubMed

    Sasaki, T; Ishii, S; Tomiyoshi, K; Ido, T; Miyauchi, J; Senda, M

    2000-02-01

    The present investigation was undertaken to identify the long-lived radionuclide and its chemical forms existing in [15O]water which was synthesized from 15O produced by the nuclear reaction 14N(d,n)15O, and to develop a method for its removal to facilitate radioactive waste disposal. The long-lived nuclide was identified as tritium based on a comparison of its physical half-life and the energy spectrum of beta-rays with those of tritium. The major chemical form of tritium in the target gas was estimated to be molecular hydrogen. The tritium radioactivity was completely removed without a serious loss occurring to the yield of [15O]water by passing the irradiated target gas over a heated palladium catalyst followed by a calcium chloride column before the final synthesis of the [15O]water. This provided a practical way of removing tritium from the [15O]water.

  7. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  8. Microbial Removal of Atmospheric Carbon Tetrachloride in Bulk Aerobic Soils▿

    PubMed Central

    Mendoza, Y.; Goodwin, K. D.; Happell, J. D.

    2011-01-01

    Atmospheric concentrations of carbon tetrachloride (CCl4) were removed by bulk aerobic soils from tropical, subtropical, and boreal environments. Removal was observed in all tested soil types, indicating that the process was widespread. The flux measured in field chamber experiments was 0.24 ± 0.10 nmol CCl4 (m2 day)−1 (average ± standard deviation [SD]; n = 282). Removal of CCl4 and removal of methane (CH4) were compared to explore whether the two processes were linked. Removal of both gases was halted in laboratory samples that were autoclaved, dry heated, or incubated in the presence of mercuric chloride (HgCl2). In marl soils, treatment with antibiotics such as tetracycline and streptomycin caused partial inhibition of CCl4 (50%) and CH4 (76%) removal, but removal was not affected in soils treated with nystatin or myxothiazol. These data indicated that bacteria contributed to the soil removal of CCl4 and that microeukaryotes may not have played a significant role. Amendments of methanol, acetate, and succinate to soil samples enhanced CCl4 removal by 59%, 293%, and 72%, respectively. Additions of a variety of inhibitors and substrates indicated that nitrification, methanogenesis, or biological reduction of nitrate, nitrous oxide, or sulfate (e.g., occurring in possible anoxic microzones) did not play a significant role in the removal of CCl4. Methyl fluoride inhibited removal of CH4 but not CCl4, indicating that CH4 and CCl4 removals were not directly linked. Furthermore, CCl4 removal was not affected in soils amended with copper sulfate or methane, supporting the results with MeF and suggesting that the observed CCl4 removal was not significantly mediated by methanotrophs. PMID:21724884

  9. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    PubMed

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  10. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less

  11. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimatemore » sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.« less

  12. [The clinical and microbiological comparison of the use of heated humidifiers and heat and moisture exchanger filters with Booster in mechanically ventilated patients].

    PubMed

    Nadir Oziş, Türkan; Ozcan Kanat, Derya; Oğuzülgen, Ipek Kivilcim; Aydoğdu, Müge; Hizel, Kenan; Gürsel, Gül

    2009-01-01

    Ventilator associated pneumonia (VAP) is the most frequent nosocomial infection in intensive care units that is associated with prolonged mechanical ventilation, hospitalization and increased health-care costs. Various humidifiers can be used for humidification during mechanical ventilation. Many studies were conducted to identify the effects of two different humidifiers, i.e. heated humidifiers and heat and moisture exchanger filters (HME), on VAP development; and HME filters were found to decrease the VAP frequency. In this study we aimed to compare the efficacy and safety of heated humidifiers and HME-Booster. Heated humidifier with conventional microbiologic filter (CMF-HH) or HME-Booster were used in randomization to 41 mechanically ventilated patients of our intensive care unit, and patients were divided into two groups as group 1 receiving CMF-HH (20 patients) and group 2 (21 patients) receiving HME-Booster. Daily secretion scores, endotracheal tube occlusion due to secretions, VAP development rate for the assessment of microbiological safety of humidifiers and differences in PETCO(2) and PaCO(2) values for the assessment of their effect on arterial blood gas were recorded prospectively. The measurement of PETCO(2) and PaCO(2) values were performed with the presence of humidifiers and after removing them in both groups. In both groups with the removal of CMF-HH and HME-Booster, a decrease in PETCO(2) value was identified, but the decrease in group 2 was statistically significant (p= 0.016). The decrease in PaCO(2) after removal of humidifiers was greater in group 2 than in group 1, but the difference was not significant (p> 0.05).The rate of VAP and endotracheal tube occlusion was not significantly different between the groups. The mean secretion score was lower in group 1 (p= 0.041). In conclusion, although both humidifiers have similar microbiological effects, heated humidifiers could be preferred particularly for the patients with an underlying chronic

  13. Policy statement—Climatic heat stress and exercising children and adolescents.

    PubMed

    Bergeron, Michael F; Devore, Cynthia; Rice, Stephen G

    2011-09-01

    Results of new research indicate that, contrary to previous thinking, youth do not have less effective thermoregulatory ability, insufficient cardiovascular capacity, or lower physical exertion tolerance compared with adults during exercise in the heat when adequate hydration is maintained. Accordingly, besides poor hydration status, the primary determinants of reduced performance and exertional heat-illness risk in youth during sports and other physical activities in a hot environment include undue physical exertion, insufficient recovery between repeated exercise bouts or closely scheduled same-day training sessions or rounds of sports competition, and inappropriately wearing clothing, uniforms, and protective equipment that play a role in excessive heat retention. Because these known contributing risk factors are modifiable, exertional heat illness is usually preventable. With appropriate preparation, modifications, and monitoring, most healthy children and adolescents can safely participate in outdoor sports and other physical activities through a wide range of challenging warm to hot climatic conditions.

  14. Evaluating the efficiency of carbon utilisation via bioenergetics between biological aerobic and denitrifying phosphorus removal systems

    PubMed Central

    Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong

    2017-01-01

    There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157

  15. The electrothermal conductance and heat capacity of black phosphorus

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-01

    We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  16. The electrothermal conductance and heat capacity of black phosphorus.

    PubMed

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-14

    We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  17. Region 8: Colorado Adequate Letter (6/11/2012)

    EPA Pesticide Factsheets

    This August 11, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Aspen PM10 maintenance plan and the 2023 motor vehicle emissions budget (MVEB) adequate

  18. Region 9: Arizona Adequate Letter (11/1/2001)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadbent, Director, Air Division to Nancy Wrona and James Bourney informing them of the adequacy of Revised MAG 1999 Serious Area Carbon Monoxide Plan and that the MAG CO Plan is adequate for Maricopa County.

  19. Region 9: California Adequate Letter (1/22/2018)

    EPA Pesticide Factsheets

    This December 19, 2017 letter form EPA, finding adequate certain motor vehicle emissions budgets for the 2006 fine particulate matter (PM2.5) National Ambient Air Quality Standars in the Final 2016 Air Quality Managemnet Plan for the South Coast area (2016

  20. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  1. MODELING OF SO2 REMOVAL IN SPRAY-DRYER FLUE-GAS DESULFURIZATION SYSTEM

    EPA Science Inventory

    The report presents a comprehensive mathematical model of the SO2 removal process in a spray-dryer flue-gas desulfurization system. Simultaneous evaporation of a sorbent droplet and absorption/reaction of SO2 in the droplet are described by the corresponding heat- and mass-transf...

  2. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  3. Long-Term Heating to Improve Receiver Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overallmore » power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less

  4. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  5. Hydration and thermal strain during tennis in the heat.

    PubMed

    Bergeron, Michael F

    2014-04-01

    Competitive tennis in the heat can prompt substantial sweat losses and extensive consequent body water and electrolyte deficits, as well as a level of thermal strain that considerably challenges a player's physiology, perception of effort, and on-court well-being and performance. Adequate hydration and optimal performance can be notably difficult to maintain when multiple same-day matches are played on successive days in hot weather. Despite the recognised effects of the heat, much more research needs to be carried out to better appreciate the broader scope and full extent of the physiological demands and hydration and thermal strain challenges facing junior and adult players in various environments, venues and competition scenarios. However, certain recommendations of best practices should be emphasised to minimise exertional heat illness risk and improve player safety, well-being and on-court performance.

  6. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  7. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  8. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  9. 46 CFR 183.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 183.360 Section 183.360... TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents...

  10. Heat capacity of alkanolamine aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, L.F.; Li, M.H.

    1999-12-01

    Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to representmore » the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.« less

  11. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate actively in accordance with your Articles and within the context of your business plan, as... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS...

  12. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  13. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin

    2016-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  14. Testing of a Helium Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2015-01-01

    Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.

  15. 42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417... health care industry. (b) Provision of data. (1) The HMO or CMP must provide adequate cost and... 42 Public Health 3 2012-10-01 2012-10-01 false Adequate financial records, statistical data, and...

  16. 42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.568 Adequate... definitions and accounting, statistics, and reporting practices that are widely accepted in the health care... 42 Public Health 3 2010-10-01 2010-10-01 false Adequate financial records, statistical data, and...

  17. 42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.568 Adequate... definitions and accounting, statistics, and reporting practices that are widely accepted in the health care... 42 Public Health 3 2011-10-01 2011-10-01 false Adequate financial records, statistical data, and...

  18. Radio frequency heating for in-situ remediation of DNAPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  19. IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING

    EPA Science Inventory

    In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...

  20. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    NASA Astrophysics Data System (ADS)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  1. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  2. Removal of hexavalent chromium by biosorption process in rotating packed bed.

    PubMed

    Panda, M; Bhowal, A; Datta, S

    2011-10-01

    Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.

  3. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  4. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  5. Child malnutrition and mortality among families not utilizing adequately iodized salt in Indonesia.

    PubMed

    Semba, Richard D; de Pee, Saskia; Hess, Sonja Y; Sun, Kai; Sari, Mayang; Bloem, Martin W

    2008-02-01

    Salt iodization is the main strategy for reducing iodine deficiency disorders worldwide. Characteristics of families not using iodized salt need to be known to expand coverage. The objective was to determine whether families who do not use iodized salt have a higher prevalence of child malnutrition and mortality and to identify factors associated with not using iodized salt. Use of adequately iodized salt (>or =30 ppm), measured by rapid test kits, was assessed between January 1999 and September 2003 in 145 522 and 445 546 families in urban slums and rural areas, respectively, in Indonesia. Adequately iodized salt was used by 66.6% and 67.2% of families from urban slums and rural areas, respectively. Among families who used adequately iodized salt, mortality in neonates, infants, and children aged <5 y was 3.3% compared with 4.2%, 5.5% compared with 7.1%, and 6.9% compared with 9.1%, respectively (P < 0.0001 for all), in urban slums; among families who did not use adequately iodized salt, the respective values were 4.2% compared with 6.3%, 7.1% compared with 11.2%, and 8.5% compared with 13.3% (P < 0.0001 for all) in rural areas. Families not using adequately iodized salt were more likely to have children who were stunted, underweight, and wasted. In multivariate analyses that controlled for potential confounders, low maternal education was the strongest factor associated with not using adequately iodized salt. In Indonesia, nonuse of adequately iodized salt is associated with a higher prevalence of child malnutrition and mortality in neonates, infants, and children aged <5 y. Stronger efforts are needed to expand salt iodization in Indonesia.

  6. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, K.; Cousineau, J.; Lustbader, J.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less

  7. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.; Morris, D.G.

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are usedmore » to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.« less

  8. Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides?

    PubMed

    López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A

    2017-01-01

    This work reports results of the application of electrokinetic fence technology in a 32 m 3 -prototype which contains soil polluted with 2,4-D and oxyfluorfen, focusing on the evaluation of the mechanisms that describe the removal of these two herbicides and comparing results to those obtained in smaller plants: a pilot-scale mockup (175 L) and a lab-scale soil column (1 L). Results show that electric heating of soil (coupled with the increase in the volatility) is the key to explain the removal of pollutants in the largest scale facility while electrokinetic transport processes are the primary mechanisms that explain the removal of herbicides in the lab-scale plant. 2-D and 3-D maps of the temperature and pollutant concentrations are used in the discussion of results trying to give light about the mechanisms and about how the size of the setup can lead to different conclusions, despite the same processes are occurring in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Region 6: New Mexico Adequate Letter (8/21/2003)

    EPA Pesticide Factsheets

    This is a letter from Carl Edlund, Director, to Alfredo Santistevan regarding MVEB's contained in the latest revision to the Albuquerque Carbon Monoxide State Implementation Plan (SIP) are adequate for transportation conformity purposes.

  10. Region 10: Oregon Oakridge Adequate Letter (6/21/2017)

    EPA Pesticide Factsheets

    EPA approves motor vehicle emissions budget in the Oakridge-Westfir PM2.5 Attainment State Implementation Plan for the 2006 PM2.5 national ambient air quality standard, adequate for transportation conformity purposes.

  11. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  12. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  13. 46 CFR 129.360 - Semiconductor-rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor-rectifier systems. 129.360 Section 129.360... INSTALLATIONS Power Sources and Distribution Systems § 129.360 Semiconductor-rectifier systems. (a) Each semiconductor-rectifier system must have an adequate heat-removal system to prevent overheating. (b) If a...

  14. 46 CFR 120.360 - Semiconductor rectifier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Semiconductor rectifier systems. 120.360 Section 120.360... INSTALLATION Power Sources and Distribution Systems § 120.360 Semiconductor rectifier systems. (a) Each semiconductor rectifier system must have an adequate heat removal system that prevents overheating. (b) Where a...

  15. Understanding Your Adequate Yearly Progress (AYP), 2011-2012

    ERIC Educational Resources Information Center

    Missouri Department of Elementary and Secondary Education, 2011

    2011-01-01

    The "No Child Left Behind Act (NCLB) of 2001" requires all schools, districts/local education agencies (LEAs) and states to show that students are making Adequate Yearly Progress (AYP). NCLB requires states to establish targets in the following ways: (1) Annual Proficiency Target; (2) Attendance/Graduation Rates; and (3) Participation…

  16. Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.

    2013-10-01

    The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.

  17. Feasibility study of modeling liver thermal damage using minimally invasive optical method adequate for in situ measurement.

    PubMed

    Zhao, Jinzhe; Zhao, Qi; Jiang, Yingxu; Li, Weitao; Yang, Yamin; Qian, Zhiyu; Liu, Jia

    2018-06-01

    Liver thermal ablation techniques have been widely used for the treatment of liver cancer. Kinetic model of damage propagation play an important role for ablation prediction and real-time efficacy assessment. However, practical methods for modeling liver thermal damage are rare. A minimally invasive optical method especially adequate for in situ liver thermal damage modeling is introduced in this paper. Porcine liver tissue was heated by water bath under different temperatures. During thermal treatment, diffuse reflectance spectrum of liver was measured by optical fiber and used to deduce reduced scattering coefficient (μ ' s ). Arrhenius parameters were obtained through non-isothermal heating approach with damage marker of μ ' s . Activation energy (E a ) and frequency factor (A) was deduced from these experiments. A pair of averaged value is 1.200 × 10 5  J mol -1 and 4.016 × 10 17  s -1 . The results were verified for their reasonableness and practicality. Therefore, it is feasible to modeling liver thermal damage based on minimally invasive measurement of optical property and in situ kinetic analysis of damage progress with Arrhenius model. These parameters and this method are beneficial for preoperative planning and real-time efficacy assessment of liver ablation therapy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  19. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  20. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.G.; Wendel, M.W.; Chen, N.C.J.

    A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 hmore » is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.« less

  1. Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, Nick; Kowalczyk, Joseph

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality

  2. Can Aerosol Offset Urban Heat Island Effect?

    NASA Astrophysics Data System (ADS)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  3. Optimized heat exchange in a CO2 de-sublimation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Larry; Terrien, Paul; Tessier, Pascal

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less

  4. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    NASA Astrophysics Data System (ADS)

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  5. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.

    PubMed

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-19

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  6. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    PubMed Central

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  7. Predictors for achieving adequate protein and energy intake in nursing home rehabilitation patients.

    PubMed

    van Zwienen-Pot, J I; Visser, M; Kruizenga, H M

    2018-07-01

    Adequate energy and protein intake could be essential for contributing significantly to the rehabilitations process. Data on the actual nutritional intake of older nursing home rehabilitation patients have not yet been investigated. To investigate the nutritional intake and predictors for achieving protein and energy requirements on the 14th day of admission in nursing home rehabilitation patients. Fifty-nine patients aged 65+ years newly admitted to nursing home rehabilitation wards were included. Data on potential variables were collected on admission. On the fourteenth day nutritional intake was assessed. Intake was considered 'adequate' if patients had achieved ≥ 1.2 g of protein/kg bodyweight and ≥ 85% of their energy needs according to Harris and Benedict + 30%. Multiple logistic regression analyses were performed to select predictors for adequate intake. Protein and energy intake was assessed in 79 patients [67% female, mean age 82 ± (SD) 8 years, BMI 25 ± 6 kg/m 2 ]. Mean energy intake was 1677 kcal (± 433) and mean protein intake was 68 g (± 20). Fourteen patients (18%) achieved an adequate protein and energy intake. Predictors for adequate intake were use of sip/tube feeding (OR = 7.7; 95% CI = 1.35-44.21), BMI (0.68; 0.53-0.87) and nausea (8.59; 1.42-52.01). Only 18% of older nursing home rehabilitation patients had an adequate protein and energy intake at 14 days after admission. Patients with higher BMI were less likely, while those using sip/tube feeding or feeling nauseous were more likely to achieve an adequate protein and energy intake.

  8. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

    1999-05-25

    An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

  9. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, Harley M.; Daily, William D.; Aines, Roger D.; Newmark, Robin L.; Ramirez, Abelardo L.; Siegel, William H.

    1999-01-01

    An electrode well for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichioroethylene (TCE) as it is heated.

  10. Banana peel as an adsorbent for removing atrazine and ametryne from waters.

    PubMed

    Silva, Claudineia R; Gomes, Taciana F; Andrade, Graziela C R M; Monteiro, Sergio H; Dias, Ana C R; Zagatto, Elias A G; Tornisielo, Valdemar L

    2013-03-13

    The feasibility of using banana peel for removal of the pesticides atrazine and ametryne from river and treated waters has been demonstrated, allowing the design of an efficient, fast, and low-cost strategy for remediation of polluted waters. The conditions for removal of these pesticides in a laboratory scale were optimized as sample volume = 50 mL, banana mass = 3.0 g, stirring time = 40 min, and no pH adjustment necessary. KF(sor) values for atrazine and ametryne were evaluated as 35.8 and 54.1 μg g(-1) (μL mL(-1)) by using liquid scintillation spectrometry. Adsorption was also evaluated by LC-ESI-MS/MS. As quantification limits were 0.10 and 0.14 μg L(-1) for both pesticides, sample preconcentration was not needed. Linear analytical curves (up to 10 μg L(-1)), precise results (RSD < 4.5%), good recoveries (82.9-106.6%), and a > 90% removal efficiency were attained for both pesticides. Water samples collected near an intensively cultivated area were adequately remedied.

  11. Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

    NASA Technical Reports Server (NTRS)

    Papale, William; Paul, Heather; Thomas, Gretchen

    2006-01-01

    Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system. Advancements in solid amine technology employed in a pressure swing adsorption system have led to the possibility of combining both the CO2 and humidity control requirements into a single, lightweight device. Because the pressure swing adsorption system is regenerated to space vacuum or by an inert purge stream, the duration of an EVA mission may be extended significantly over currently employed technologies, while markedly reducing the overall subsystem weight compared to the combined weight of the condensing heat exchanger and current regenerative CO2 removal technology. This paper will provide and overview of ongoing development efforts evaluating the subsystem size required to manage anticipated metabolic CO2 and water vapor generation rates in a spacesuit environment.

  12. Removable inner turbine shell with bucket tip clearance control

    DOEpatents

    Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.

    2000-01-01

    A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.

  13. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adequate yearly progress. A school or LEA makes AYP if it complies with paragraph (c) and with either paragraph (a) or (b) of this section separately in reading/language arts and in mathematics. (a)(1) A school... school or LEA, respectively, meets or exceeds the State's other academic indicators under § 200.19. (2...

  14. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adequate yearly progress. A school or LEA makes AYP if it complies with paragraph (c) and with either paragraph (a) or (b) of this section separately in reading/language arts and in mathematics. (a)(1) A school... school or LEA, respectively, meets or exceeds the State's other academic indicators under § 200.19. (2...

  15. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adequate yearly progress. A school or LEA makes AYP if it complies with paragraph (c) and with either paragraph (a) or (b) of this section separately in reading/language arts and in mathematics. (a)(1) A school... school or LEA, respectively, meets or exceeds the State's other academic indicators under § 200.19. (2...

  16. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adequate yearly progress. A school or LEA makes AYP if it complies with paragraph (c) and with either paragraph (a) or (b) of this section separately in reading/language arts and in mathematics. (a)(1) A school... school or LEA, respectively, meets or exceeds the State's other academic indicators under § 200.19. (2...

  17. Comparability and Reliability Considerations of Adequate Yearly Progress

    ERIC Educational Resources Information Center

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  18. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Exemptions for pesticides adequately... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides...

  19. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Exemptions for pesticides adequately... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides...

  20. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Exemptions for pesticides adequately... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides...

  1. A comparative study of removal of fluoride from contaminated water using shale collected from different coal mines in India.

    PubMed

    Biswas, Gargi; Dutta, Manjari; Dutta, Susmita; Adhikari, Kalyan

    2016-05-01

    Low-cost water defluoridation technique is one of the most important issues throughout the world. In the present study, shale, a coal mine waste, is employed as novel and low-cost adsorbent to abate fluoride from simulated solution. Shale samples were collected from Mahabir colliery (MBS) and Sonepur Bazari colliery (SBS) of Raniganj coalfield in West Bengal, India, and used to remove fluoride. To increase the adsorption efficiency, shale samples were heat activated at a higher temperature and samples obtained at 550 °C are denoted as heat-activated Mahabir colliery shale (HAMBS550) and heat-activated Sonepur Bazari colliery shale (HASBS550), respectively. To prove the fluoride adsorption onto different shale samples and ascertain its mechanism, natural shale samples, heat-activated shale samples, and their fluoride-loaded forms were characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction study, and Fourier transform infrared spectroscopy. The effect of different parameters such as pH, adsorbent dose, size of particles, and initial concentration of fluoride was investigated during fluoride removal in a batch contactor. Lower pH shows better adsorption in batch study, but it is acidic in nature and not suitable for direct consumption. However, increase of pH of the solution from 3.2 to 6.8 and 7.2 during fluoride removal process with HAMBS550 and HASBS550, respectively, confirms the applicability of the treated water for domestic purposes. HAMBS550 and HASBS550 show maximum removal of 88.3 and 88.5 %, respectively, at initial fluoride concentration of 10 mg/L, pH 3, and adsorbent dose of 70 g/L.

  2. The challenges of heat sterilization of peritoneal dialysis solutions: is there an alternative?

    PubMed

    Hanrahan, Conor T; Himmele, Rainer; Diaz-Buxo, Jose A

    2012-01-01

    Peritoneal dialysis (PD) solutions are currently sterilized in an autoclave using high-temperature saturated steam. Although thermal methods are an effective means of sterilization, the heating of PD solutions results in the formation of toxic glucose degradation products (GDPs). Here, we review basic concepts in the sterilization of PD solutions and discuss possible alternatives to steam sterilization, including filtration, ohmic heat, ionizing radiation, and pulsed ultraviolet light. Although the latter methods have several advantages, many also have prohibitive limitations or have not been adequately studied for use on PD solutions. Thus, in the absence of suitable alternatives, conventional heat sterilization, in combination with low-GDP manufacturing practices, remains the best option at the present time.

  3. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  4. Region 1: New Hampshire Adequate Letter (8/12/2008)

    EPA Pesticide Factsheets

    This July 9, 2008 letter from EPA to the New Hampshire Department of Environmental Services, determined the 2009 Motor Vehicle Emissions Budgets (MVEBs) are adequate for transportation conformity purposes and will be announced in the Federal Register (FR).

  5. Region 6: Texas Austin Adequate Letter (11/23/2016)

    EPA Pesticide Factsheets

    EPA letter approves the Motor Vehicle Emissions Budgets contained in the latest revision to Dallas/Fort Worth 2008 8-hour Ozone State Implementation Plan, finding them adequate for transportation conformity purposes to be announced in the Federal Register.

  6. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  7. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    NASA Astrophysics Data System (ADS)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  8. Region 1: New Hampshire Adequate Letter (5/29/2012)

    EPA Pesticide Factsheets

    This April 25, 2012 letter from EPA to the New Hampshire Department of Environmental Services, determined the 2008 and 2022 Motor Vehicle Emissions Budgets (MVEBs) are adequate for transportation conformity purposes and will be announced in the Federal Reg

  9. Region 5: Ohio Columbus Adequate Letter (8/23/2016)

    EPA Pesticide Factsheets

    Letter from EPA to State of Ohio determined the 2008 8-hour ozone standard plan for years 2020 and 2030 Motor Vehicle Emissions Budgets for volatile organic compounds and nitrogen oxides for Columbus area adequate for transportation conformity purposes.

  10. Fabrication and testing of microchannel heat exchangers

    NASA Astrophysics Data System (ADS)

    Cuta, Judith M.; Bennett, Wendy D.; McDonald, Carolyn E.; Ravigururajan, T. S.

    1995-09-01

    Micro-channel heat-exchanger test articles were fabricated and performance tested. The heat exchangers are being developed for innovative applications, and have been shown to be capable of handling heat loads of up to 100 W/cm2. The test articles were fabricated to represent two different designs for the micro-channel portion of the heat exchanger. One design consists of 166 micro-channels etched in silicon substrate, and a second design consists of 54 micro-channels machined in copper substrate. The devices were tested in an experimental loop designed for performance testing in single- and two-phase flow with water and R124. Pressure and liquid subcooling can be regulated over the range of interest, and a secondary heat removal loop provides stable loop performance for steady-state tests. The selected operating pressures are approximately 0.344 MPa for distilled water and 0.689 MPa for R124. The temperature ranges are 15.5 to 138 C for distilled water and 15.5 to 46 C for R-124. The mass flow range 7.6 X 10-8 to 7.6 X 10MIN5 kg/min for both distilled water and R124.

  11. Impact of Heat Wave Definitions on the Added Effect of Heat Waves on Cardiovascular Mortality in Beijing, China.

    PubMed

    Dong, Wentan; Zeng, Qiang; Ma, Yue; Li, Guoxing; Pan, Xiaochuan

    2016-09-21

    Heat waves are associated with increased mortality, however, few studies have examined the added effect of heat waves. Moreover, there is limited evidence for the influence of different heat wave definitions (HWs) on cardiovascular mortality in Beijing, the capital of China. The aim of this study was to find the best HW definitions for cardiovascular mortality, and we examined the effect modification by an individual characteristic on cardiovascular mortality in Beijing, a typical northern city in China. We applied a Poisson generalized additive approach to estimate the differences in cardiovascular mortality during heat waves (using 12 HWs) compared with non-heat-wave days in Beijing from 2006 to 2009. We also validated the model fit by checking the residuals to ensure that the autocorrelation was successfully removed. In addition, the effect modifications by individual characteristics were explored in different HWs. Our results showed that the associations between heat waves and cardiovascular mortality differed from different HWs. HWs using the 93th percentile of the daily average temperature (27.7 °C) and a duration ≥5 days had the greatest risk, with an increase of 18% (95% confidence interval (CI): 6%, 31%) in the overall population, 24% (95% CI: 10%, 39%) in an older group (ages ≥65 years), and 22% (95% CI: 3%, 44%) in a female group. The added effect of heat waves was apparent after 5 consecutive heat wave days for the overall population and the older group. Females and the elderly were at higher risk than males and younger subjects (ages <65 years). Our findings suggest that heat wave definitions play a significant role in the relationship between heat wave and cardiovascular mortality. Using a suitable definition may have implications for designing local heat early warning systems and protecting the susceptible populations during heat waves.

  12. Measurement of the Heat Capacity of He-II Under a Heat Current Near the Lambda Transition

    NASA Technical Reports Server (NTRS)

    Harter, Alexa W.; Lee, Richard A. M.; Chui, Talso C. P.; Goodstein, David L.

    2000-01-01

    We present preliminary measurements of the heat capacity of superfluid helium-4 under an applied heat current near the lambda transition. The calorimeter is a standard cylindrical thermal conductivity cell with a 0.6 mm gap between two copper endplates. The sidewall is made of stainless steel. A heat current density in the range of 1 to 4 microW/sq cm is applied through the helium sample while a pulse method is used to measure the heat capacity. Temperature changes are recorded with high-resolution thermometers (HRTs) located on the top and bottom endplates. Corrections are made to the readings of the HRTs to account for the Kapitza boundary resistance and the anomalous Kapitza boundary resistance. After the corrections, both the top and the bottom HRTs. give the same heat capacity values. The heat capacity is found to be much larger than the prediction of recent theories. We also plotted our data on a scaled plot to test the prediction of scaling by the theories. The result and its interpretation will be presented. The cell height was deliberately made to be thin to reduce the effects of gravity. Nonetheless, gravity is expected to have significant effects on the heat capacity data in the temperature range of our measurement. A space experiment would remove this unwanted gravity effect and allow the true physics to be examined. Moreover, in the absence of gravity, a deeper cell can be used allowing HRTs to be mounted on to the sidewall providing direct measurements of the helium temperature, unaffected by the anomalous Kapitza boundary resistance.

  13. Wire-Mesh-Based Sorber for Removing Contaminants from Air

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Roychoudhury, Subir; Walsh, Dennis

    2006-01-01

    A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

  14. Region 8: Colorado Springs Adequate Letter (8/17/2011)

    EPA Pesticide Factsheets

    This March 3, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Colorado Springs, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation

  15. Minimum requirements for adequate nighttime conspicuity of highway signs

    DOT National Transportation Integrated Search

    1988-02-01

    A laboratory and field study were conducted to assess the minimum luminance levels of signs to ensure that they will be detected and identified at adequate distances under nighttime driving conditions. A total of 30 subjects participated in the field...

  16. Inferential Processing among Adequate and Struggling Adolescent Comprehenders and Relations to Reading Comprehension

    PubMed Central

    Barth, Amy E.; Barnes, Marcia; Francis, David J.; Vaughn, Sharon; York, Mary

    2015-01-01

    Separate mixed model analyses of variance (ANOVA) were conducted to examine the effect of textual distance on the accuracy and speed of text consistency judgments among adequate and struggling comprehenders across grades 6–12 (n = 1203). Multiple regressions examined whether accuracy in text consistency judgments uniquely accounted for variance in comprehension. Results suggest that there is considerable growth across the middle and high school years, particularly for adequate comprehenders in those text integration processes that maintain local coherence. Accuracy in text consistency judgments accounted for significant unique variance for passage-level, but not sentence-level comprehension, particularly for adequate comprehenders. PMID:26166946

  17. Isolation, screening and molecular identification of novel bacterial strain removing methylene blue from water solutions

    NASA Astrophysics Data System (ADS)

    Kilany, Mona

    2017-11-01

    The potentially deleterious effects of methylene blue (MB) on human health drove the interest in its removal promptly. Bioremediation is an effective and eco friendly for removing MB. Soil bacteria were isolated and examined for their potential to remove MB. The most potent bacterial candidate was characterized and identified using 16S rRNA sequence technique. The evolutionary history of the isolate was conducted by maximum likelihood method. Some physiochemical parameters were optimized for maximum decolorization. Decolorization mechanism and microbial toxicity study of MB (100 mg/l) and by-products were investigated. Participation of heat killed bacteria in color adsorption have been investigated too. The bacterial isolate was identified as Stenotrophomonas maltophilia strain Kilany_MB 16S ribosomal RNA gene with 99% sequence similarity. The sequence was submitted to NCBI (Accession number = KU533726). Phylogeny depicted the phylogenetic relationships between 16S ribosomal RNA gene, partial sequence (1442 bp), of the isolated strain and other strains related to Stenotrophomonas maltophilia in the GenBank database. The optimal conditions were investigated to be pH 5 at 30 °C, after 24 h using 5 mg/l MB showing optimum decolorization percentage (61.3%). Microbial toxicity study demonstrated relative reduction in the toxicity of MB decolorized products on test bacteria. Mechanism of color removal was proved by both biosorption and biodegradation, where heat-killed and live cells showed 43 and 52% of decolorization, respectively, as a maximum value after 24-h incubation. It was demonstrated that the mechanism of color removal is by adsorption. Therefore, good performance of S maltophilia in MB color removal reinforces the exploitation of these bacteria in environmental clean-up and restoration of the ecosystem.

  18. Heat exchanger and method of making. [bonding rocket chambers with a porous metal matrix

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M. (Inventor)

    1978-01-01

    A heat exchanger of increased effectiveness is disclosed. A porous metal matrix is disposed in a metal chamber or between walls through which a heat-transfer fluid is directed. The porous metal matrix has internal bonds and is bonded to the chamber in order to remove all thermal contact resistance within the composite structure. Utilization of the invention in a rocket chamber is disclosed as a specific use. Also disclosed is a method of constructing the heat exchanger.

  19. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  20. A direct-interface fusible heat sink for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, B. W.

    1990-01-01

    Astronaut cooling during extravehicular activity is a critical design issue in developing a portable life support system that meets the requirements of a space station mission. Some the requirements are that the cooling device can be easily regenerable and nonventing during operation. In response to this, a direct-interface, fusible heat sink prototpye with freezable quick-disconnects was developed. A proof-of-concept prototype was constructed and tested that consists of an elastic container filled with normal tap water and having two quick-disconnects embedded in a wall. These quick-disconnects are designed so that they may be frozen with the ice and yet still be joined to the cooling system, allowing an immediate flow path. The inherent difficulties in a direct-interface heat sink have been overcome, i.e., (1) establishing an initial flow path; (2) avoiding low-flow freeze-up; and (3) achieving adequate heat-transfer rates at the end of the melting process. The requirements, design, fabrication, and testing are discussed.