Science.gov

Sample records for adequate irrigation management

  1. Wireless sensor networks for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  2. Water management practices, irrigated cropland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is practiced on about 17 percent of the world’s arable land and accounts for 33 percent of the world’s food production. U.S. Department of Agriculture conservation programs are commonly used to improve water management on irrigated land and reduce impacts of irrigation on the environment ...

  3. Crop water productivity and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  4. Advances in sprinkler irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  5. TAM 304 wheat – Adapted to the adequate rainfall or high-input irrigation production system in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TAM 304 wheat is a medium-early hard red winter wheat. It is a great dryland or semi-irrigated wheat. TAM 304 performs best under adequate rainfall, limited irrigation, or irrigation, but does not perform as well under extended drought. TAM 304 performs exceptionally well under foliar disease pressu...

  6. Soil-moisture sensors and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  7. New soil water sensors for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  8. Improving access to adequate pain management in Taiwan.

    PubMed

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment.

  9. Improving access to adequate pain management in Taiwan.

    PubMed

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment. PMID:26068436

  10. Wireless sensor networks for canopy temperature sensing and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  11. Influence of local topography on precision irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  12. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  13. Automated irrigation management with soil and canopy sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated irrigation management provides for real time feedback between crop water needs and the delivery of specific amount of irrigation water to specific locations on demand. In addition to the basic components of any irrigation system, e.g. pumps, filters, valves, pipes and tubing, sprinkler he...

  14. Irrigation system management assisted by thermal imagery and spatial statistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...

  15. Achieving adequate BMP`s for stormwater quality management

    SciTech Connect

    Jones-Lee, A.; Lee, G.F.

    1994-12-31

    There is considerable controversy about the technical appropriateness and the cost-effectiveness of requiring cities to control contaminants in urban stormwater discharges to meet state water quality standards equivalent to US EPA numeric chemical water quality criteria. At this time and likely for the next 10 years, urban stormwater discharges will be exempt from regulation to achieve state water quality standards in receiving waters, owing to the high cost to cities of the management of contaminants in the stormwater runoff-discharge so as to prevent exceedances of water quality standards in the receiving waters. Instead of requiring the same degree of contaminant control for stormwater discharges as is required for point-source discharges of municipal and industrial wastewaters, those responsible for urban stormwater discharges will have to implement Best Management Practices (BMP`s) for contaminant control. The recommended approach for implementation of BMP`s involves the use of site-specific evaluations of what, if any, real problems (use impairment) are caused by stormwater-associated contaminants in the waters receiving that stormwater discharge. From this type of information BMP`s can then be developed to control those contaminants in stormwater discharges that are, in fact, impairing the beneficial uses of receiving waters.

  16. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  17. Soil management and conservation: Irrigation: Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  18. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  19. An overview of soil water sensors for salinity & irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  20. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  1. Development of Strategies for Sustainable Irrigation Water Management in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    During 1960 - 1990 years irrigated areas in Russia have increased rapidly, helping to boost agricultural output. Although the impressive achievements of irrigation in this period its large experience indicates problems and failures of irrigation water management. In addition to large water use and low irrigation water efficiency, environmental concerns (excessive water depletion, water quality reduction, water logging, soil degradation) are usually considered like the most significant problem of the irrigation sector. Despite of considerable shrinking of irrigated areas in Russia and decreasing of water withdrawal for irrigation purposes during two last decades a degradation of environment as well as degradation of soil and water resources in irrigated areas was prolonged and will probably continue if current irrigation practices are maintained. Nowadays, in different regions of Russia there are societal demand to restore agricultural irrigation in Russia as answer to challenges from climate pattern changes and degradation of land & water resources. In the respect of these demands there is a need to develop strategies for sustainability of agricultural irrigation in Russia that should be based on three main societal objectives: costeffective use of water in irrigated agriculture at farm level, and satisfactory preserving the natural environment. Therefore sustainable irrigation water management is not only an objective at farm level but also an overall goal at the local and regional as well. A way to achieve sustainability in irrigation water management is to solve the local conflicts arising from the interactions between water use at irrigation areas and surrounding environment. Thus should be based on the development of irrigation framework program including on the irrigation water management issues, policies & decisions making at federal and regional levels should be based on the indicators of environment & irrigation water efficiency monitoring promoting the

  2. Improving irrigation management in L'Horta Nord (Valencia, Spain)

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo

    2014-05-01

    irrigation system with the other studied variables. Greater yields (p≤0.01) were obtained in the first growing season, drip irrigation and maintaining a higher soil moisture level. When considering the irrigation water use efficiency, the irrigation system showed significant differences (p≤0.01) with greater efficiencies for drip irrigation. Considering the homogeneity of the plots in the area and the similarities of the irrigation managements of chufa with the other crops, the results could be extended to most of the plots and crops in the area.

  3. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  4. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  5. Technology transfer: Promoting irrigation progress and best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  6. Integrated irrigation and drainage water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Results from several research projects conducted in the 1990's are summarized in this manuscript. The first projects are irrigation studies that evaluated the impact of pre-plant irrigation water on crop water use and deep percolation losses. The results showed significant losses with pre-plant ir...

  7. 75 FR 5893 - Suspension of Community Eligibility for Failure To Maintain Adequate Floodplain Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... FR 51735. Executive Order 13132, Federalism. This rule involves no policies that have ] federalism....C. 4001 et seq., Reorganization Plan No. 3 of 1978, 3 CFR, 1978 Comp., p. 329; E.O. 12127, 44 FR... To Maintain Adequate Floodplain Management Regulations AGENCY: Federal Emergency Management...

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    ERIC Educational Resources Information Center

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. Drip irrigation management in different chufa planting strategies: yield and irrigation water use efficiency

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2013-04-01

    In a study presented in the EGU assembly 2012, it was analysed how yield and irrigation water use efficiency (IWUE) in chufa (Cyperus esculentus L. var. sativus), crop, were affected by planting strategy (ridges and flat raised beds, with two and three plant rows along them) and irrigation system [furrow (FI) and drip irrigation (DI)]. Each irrigation session started when the Volumetric Soil Water Content (VSWC) in ridges dropped to 80% of field capacity; beds were irrigated simultaneously with ridges and with the same irrigation duration. R produced lower yield than the two types of beds, and yields in DI were higher than those FI. Ridges led to the highest IWUE with DI, and to the lowest with FI. Then, it was decided to analyse, in DI, how yield and IWUE responded to start each irrigation session when the VSWC in the central point of different planting strategies [ridges (R), and flat raised beds with two (b) and three (B) plant rows along them] dropped to 80% of field capacity. In R and b, plants were irrigated by a single dripline per plant row, while in B two irrigation layouts were assayed: a single dripline per plant row (B3) and two driplines per bed (B2), placing each dripline between two planting rows. Irrigation session stop was also automated as a function of the VSWC. Results show that yield was affected (P˜0.01) by planting strategy; the greatest yield was obtained in b (2.4 kgm-2), differing (P˜0.05) from that obtained in R (2.1 kgm-2), with intermediate yields in B2 (2.3 kgm-2) and B3 (2.3 kgm-2). Yield was not affected (P˜0.05) by the utilisation of two or three driplines in B. Considerably less irrigation water was applied (IWA) in R (376 mm) than in B3 (465 mm), B2 (475 mm) and b (502 mm). This automatic irrigation management, as a function of the VSWC in each planting strategy, lead to adjust the IWA to the plant water requirements, which were similar in all three flat raised beds, since they correspond to the same planting density, that was

  10. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  11. Using soil water sensors to improve irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  12. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  13. Irrigation management with remote sensing. [alfalfa plots in new mexico

    NASA Technical Reports Server (NTRS)

    Heilman, J.; Moore, D.; Myers, V.

    1980-01-01

    A ground study conducted utilizing hand held radiometers to collect visible, near infrared and thermal infrared measurements. The data was analyzed and evaluated in terms of the ground measurements, which included percent crop canopy cover. The results used to recommend future action regarding use of satellite data in irrigation management.

  14. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  15. Remote sensing technologies applied to the irrigation water management on a golf course

    NASA Astrophysics Data System (ADS)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  16. Extracorporeal Shockwave Lithotripsy Monotherapy is not Adequate for Management of Staghorn Renal Calculi.

    PubMed

    Koko, Abdelmoniem K; Onuora, Vincent C; Al Turki, Mohammed A; Mesbed, Ahmed H; Al Jawini, Nasser A

    2003-01-01

    Between 1990 and 1999 a total of 186 patients with staghorn renal stones were treated in our unit. Of them, 76 patients were managed by extra-corporeal shockwave lithotripsy (ESWL) alone using a third generation Siemen's Lithostar Plus lithotriptor. Sixty-one of these patients who completed a follow-up of 41 months formed the subjects of this study. ESWL was done after routine stenting of the affected side in all cases except one. The mean number of ESWL sessions was 5.2, delivering an average 15,940 shocks per patient. The average hospital stay was 21.68 days and the duration of the treatment was 1-41 months (mean 6.75 months). Significant complications occurred in 35 patients (57.4%) eight of whom sustained multiple significant complications. A total of 162 auxiliary procedures were used in conjunction with ESWL and in the management of complications. The stone free rate at three months was 18%, but rose by the end of the treatment period (41 months) to 63.9%. Our study indicates that ESWL monotherapy is associated with high morbidity rates, high rates of unplanned invasive procedures as well as prolonged treatment periods and hospitalization. Thus, ESWL monotherapy is not adequate for the management of staghorn calculi.

  17. Irrigation Strategies and Crop Breeding As Complementary Measures for Improved Water Management and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Vico, G.; Manzoni, S.; Weih, M.; Porporato, A. M.

    2014-12-01

    The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. Examples are the shift from scheduled to demand-based irrigation and the use of sophisticated water distribution techniques. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. Enhanced ecosystem services could be obtained shifting from annual to perennial crops, obtained by means of targeted breeding. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion, water and nutrient losses, while enhancing carbon sequestration in the root zone. We explore here the implications for water management at the field- to farm-scale of both improved irrigation methods and targeted breeding. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species (including both selected and wild species) to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. The larger and more developed roots of perennial crops may allow a better exploitation of soil water resources than annual species. At the same time, perennial crops may require adequate water supply for

  18. A study on the role and importance of irrigation management in integrated river basin management.

    PubMed

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice.

  19. Real-time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2014-09-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.

  20. Crop water stress indices correlated with soil water storage: Implications for variable rate irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensing methods are now coming to be used for irrigation scheduling of whole fields. However, newly introduced variable rate irrigation (VRI) systems require information about soil water content in many areas of a field, each called an irrigation management zone. Commonly available soil w...

  1. Managing diminished irrigation capacity with preseason irrigation and plant density for corn production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...

  2. Neurocysticercosis, familial cerebral cavernomas and intracranial calcifications: differential diagnosis for adequate management.

    PubMed

    Gasparetto, Emerson Leandro; Alves-Leon, Soniza; Domingues, Flavio Sampaio; Frossard, João Thiago; Lopes, Selva Paraguassu; Souza, Jorge Marcondes de

    2016-06-01

    Neurocysticercosis (NCC) is an endemic disease and important public health problem in some areas of the World and epilepsy is the most common neurological manifestation. Multiple intracranial lesions, commonly calcified, are seen on cranial computed tomography (CT) in the chronic phase of the disease and considered one of the diagnostic criteria of the diagnosis. Magnetic resonance imaging (MRI) is the test that better depicts the different stages of the intracranial cysts but does not show clearly calcified lesions. Cerebral cavernous malformations (CCM), also known as cerebral cavernomas, are frequent vascular malformations of the brain, better demonstrated by MRI and have also epilepsy as the main form of clinical presentation. When occurring in the familial form, cerebral cavernomas typically present with multiple lesions throughout the brain and, very often, with foci of calcifications in the lesions when submitted to the CT imaging. In the countries, and geographic areas, where NCC is established as an endemic health problem and neuroimaging screening is done by CT scan, it will be important to consider the differential diagnosis between the two diseases due to the differences in adequate management.

  3. Neurocysticercosis, familial cerebral cavernomas and intracranial calcifications: differential diagnosis for adequate management.

    PubMed

    Gasparetto, Emerson Leandro; Alves-Leon, Soniza; Domingues, Flavio Sampaio; Frossard, João Thiago; Lopes, Selva Paraguassu; Souza, Jorge Marcondes de

    2016-06-01

    Neurocysticercosis (NCC) is an endemic disease and important public health problem in some areas of the World and epilepsy is the most common neurological manifestation. Multiple intracranial lesions, commonly calcified, are seen on cranial computed tomography (CT) in the chronic phase of the disease and considered one of the diagnostic criteria of the diagnosis. Magnetic resonance imaging (MRI) is the test that better depicts the different stages of the intracranial cysts but does not show clearly calcified lesions. Cerebral cavernous malformations (CCM), also known as cerebral cavernomas, are frequent vascular malformations of the brain, better demonstrated by MRI and have also epilepsy as the main form of clinical presentation. When occurring in the familial form, cerebral cavernomas typically present with multiple lesions throughout the brain and, very often, with foci of calcifications in the lesions when submitted to the CT imaging. In the countries, and geographic areas, where NCC is established as an endemic health problem and neuroimaging screening is done by CT scan, it will be important to consider the differential diagnosis between the two diseases due to the differences in adequate management. PMID:27332076

  4. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain).

    PubMed

    Carrillo Cobo, M T; Camacho Poyato, E; Montesinos, P; Rodríguez Díaz, J A

    2014-03-01

    Pressurized irrigation networks require large amounts of energy for their operation which are linked to significant greenhouse gas (GHG) emissions. In recent years, several management strategies have been developed to reduce energy consumption in the agricultural sector. One strategy is the reduction of the water supplied for irrigation but implies a reduction in crop yields and farmer's profits. In this work, a new methodology is developed for sustainable management of irrigation networks considering environmental and economic criteria. The multiobjective non-dominated Sorting Genetic Algorithm (NSGA II) has been selected to obtain the optimum irrigation pattern that would reduce GHG emissions and increase profits. This methodology has been applied to Bembézar Margen Derecha (BMD) irrigation district (Spain). Irrigation patterns that reduce GHG emissions or increase actual profits are obtained. The best irritation pattern reduces the current GHG emissions in 8.56% with increases the actual profits in 14.56%. Thus, these results confirm that simultaneous improvements in environmental and economic factors are possible.

  5. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. PMID:24908647

  6. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.

  7. Irrigation Management in the Texas High Plains: Present Status, Challenges, and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.

    2013-12-01

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. Any attempt to improve water use efficiency must be based on reliable estimates of ET for irrigation scheduling purposes. In the Texas High Plains, irrigation scheduling is implemented using lysimeter-based crop coefficients and reference ET data from the Texas High Plains ET Network. This presentation will discuss the current state of irrigation management in the Texas High Plains, knowledge gaps, ongoing developments, and role of remote sensing based regional ET mapping algorithms with respect to irrigated agriculture.

  8. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    NASA Astrophysics Data System (ADS)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  9. Irrigation and Instream Management under Drought Conditions using Probabilistic Constraints

    NASA Astrophysics Data System (ADS)

    Oviedo-Salcedo, D. M.; Cai, X.; Valocchi, A. J.

    2009-12-01

    It is well-known that river-aquifer flux exchange may be an important control on low flow condition in a stream. Moreover, the connections between streams and underlying formations can be spatially variable due to geological heterogeneity and landscape topography. For example, during drought seasons, farming activities may induce critical peak pumping rates to supply irrigation water needs for crops, and this leads to increased concerns about reductions in baseflow and adverse impacts upon riverine ecosystems. Quantitative management of the subsurface water resources is a required key component in this particular human-nature interaction system to evaluate the tradeoffs between irrigation for agriculture and the ecosystems low flow requirements. This work presents an optimization scheme developed upon the systems reliability-based design optimization -SRBDO- analysis, which accounts for prescribed probabilistic constraint evaluation. This approach can provide optimal solutions in the presence of uncertainty with a higher level of confidence. In addition, the proposed methodology quantifies and controls the risk of failure. SRBDO have been developed in the aerospace industry and extensively applied in the field of structural engineering, but has only seen limited application in the field of hydrology. SRBDO uses probability theory to model uncertainty and to determine the probability of failure by solving a mathematical nonlinear programming problem. Furthermore, the reliability-based design optimization provides a complete and detailed insight of the relative importance of each random variable involved in the application, in this case the surface -groundwater coupled system. Importance measures and sensitivity analyses of both, random variables and probability distribution function parameters are integral components of the system reliability analysis. Therefore, with this methodology it is possible to assess the contribution of each uncertain variable on the total

  10. Multiple-use Management of Irrigation Systems: Technical Constraints and Challenges

    NASA Astrophysics Data System (ADS)

    Gowing, J.; Li, Q.; Mayilswami, C.; Gunawardhana, K.

    It is now widely recognised that many irrigation systems, originally planned only for irrigation supply, are de facto multiple-use systems. However, the importance of non- irrigation uses (such as bathing, laundry, livestock watering and fishing), to the liveli- hoods of the rural poor has generally been ignored. This has significant implications for irrigation engineers, water resources managers and other decision-makers. An im- proved understanding of competition and complementarity between these uses and irrigation demands is essential for effective multiple-use management of irrigation systems.This paper presents a study of multiple-use management, where the focus is on integrating aquaculture within irrigation systems with and without secondary storage. The Lower Bhavani scheme in South India and Mahaweli System H in Sri- Lanka were selected as representative smallholder irrigation schemes: - The Lower Bhavani scheme comprises a 200km contour canal serving a command area of 78,500ha. Apart from the main dam, there are no storage structures within the irriga- tion system. - Mahaweli System H comprises a command area of 43,000ha served by three main canals. The feature of particular interest in this scheme is the large number of secondary storage structures (known locally as tanks), which are in- tegrated within the canal network. It is apparent from these two sites and from studies elsewhere that non-irrigation uses are important to the livelihoods of the local peo- ple, but these uses are largely opportunistic. The failure to give explicit recognition to non-irrigation uses has important implications for assessments of economic per- formance and water productivity of irrigation systems. However, any attempt to give proper recognition to these alternative uses also has implication for irrigation project management. This paper describes a detailed study of water management in the two irrigation systems. The method of investigation involves in-depth studies in

  11. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  12. Effects of supplemental irrigation and soil management: effects on potato tuber diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental irrigation and soil management can improve potato growth and tuber yield in deficit rainfall, but may also impact potato tuber diseases. The comparative effects of irrigation, soil amendment and crop rotation on tuber disease incidence were quantified in long-term potato cropping system...

  13. Middle East Regional Irrigation Management Information Systems project-Some science products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  14. Improvement of sustainability of irrigation in olive by the accurate management of regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Memmi, Houssem; Moreno, Marta M.; Gijón, M. Carmen; Pérez-López, David

    2015-04-01

    Regulated Deficit Irrigation (RDI) is a useful tool to balance the improvement of productivity and water saving. This methodology is based in keeping the maximum yield with deficit irrigation. The key consists in setting water deficit during a non-sensitive phenological period. In olive, this phenological period is pit hardening, although, the accurate delimitation of the end of this period is nowadays under researching. Another interesting point in this methodology is how deep can be the water stress during the non-sensitive period. In this assay, three treatments were used in 2012 and 2013. A control treatment (T0), irrigated following FAO methodology, without water stress during the whole season and two RDI treatments in which water stress was avoided only during stage I and III of fruit growth. During stage II, widely considered as pit hardening, irrigation was ceased until trees reach the stated water stress threshold. Water status was monitored by means of stem water potential (ψs) measurements. When ψs value reached -2 MPa in T1 treatment, trees were irrigated but with a low amount of water with the aim of keeping this water status for the whole stage II. The same methodology was used for T2 treatment, but with a threshold of -3 MPa. Water status was also controlled by leaf conductance measurements. Fruit size and yield were determined at the end of each season. The statistically design was a randomized complete blocks with four repetitions. The irrigation amount in T1 and T2 was 50% and 65% less than T0 at the end of the study. There were no significant differences among treatments in terms of yield in 2012 (year off) and 2013 (year on).

  15. Efficient irrigation management with conventional and VRI sprinkler systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...

  16. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  17. Irrigation Management with Remote Sensing Techniques. Crop Water Requirements and Biophysical Indicators

    NASA Astrophysics Data System (ADS)

    Toureiro, Célia; Serralheiro, Ricardo

    2013-04-01

    Saving water in irrigated agriculture is increasingly relevant, as the irrigation sector is in many regions the biggest water consumer, but must be a sustainable activity. Therefore, the need urges for water use control methods and water resources planning. In irrigated agriculture, the right way for saving water is constituted by the increase of efficiency in water management. This work validates procedures and methodologies with remote sensing to determine the water availability in the soil at each moment and therefore the opportunity for the application of the water volume strictly necessary to optimize crop growth (irrigation opportunity and irrigation amount). The analysis applied to the Irrigation District of Divor, Évora, having used 7 experiment plots, which are areas watered by center-pivot systems, cultivated to corn. Data were determined from multispectral and infrared images of the cultivated surface obtained by satellite or by flying unmanned platform and integrated with parameters of the atmosphere and of the crops for calculating biophysical indicators and indices of water stress in the vegetation (NDVI, Kc, Kcb, CWSI). Therefore, evapotranspiration (ETc) was estimated, with which crop water requirement was calculated, with the opportunity and the amount of irrigation water to allocate. As this information is geographic referenced, maps can be prepared with GIS technology, describing water situation and the opportunity for watering crops. If the remote images are available with enough high spatial and temporal resolution, the frequent availability of maps can serve as a basis for a farmers irrigation advice system and for the regional irrigation authority to make decisions on the irrigation management at the regional scale. This can be a significant contribute to an efficient water management technology and a sustainable irrigated agriculture. Key-Words: Remote Sensing, Vegetation Index, Crop Coefficients, Water Balance

  18. An eco-hydrological approach to sustainable irrigation of managed ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Porporato, A.; Vico, G.

    2009-12-01

    Population growth and quest for food security and biofuels are contributing to the increasing global water demand by agriculture, which represents by far the most important freshwater user. Meeting these increasing needs of crops will require optimizing irrigation techniques and schedules to achieve an adequate productivity, while ensuring sufficient water resources for ecosystems. Nevertheless, optimizing irrigation is a highly non-trivial task, given the unpredictability of rainfall and the numerous soil-plant-atmosphere interactions, especially in the face of possible climate change. Here we model, in a common framework, the stochastic soil moisture dynamics for rainfed agriculture, deficit and stress-avoidance irrigation, including both intra- and inter-annual stochastic hydrologic variability. We present the analytical solutions for the steady state soil moisture probability density function with random timing and amount of rainfall, as well as the frequency of irrigation treatments and the required water volumes. These results allow us to explore the whole continuum of possibilities among rainfed agriculture, traditional irrigation and micro-irrigation, and to assess the profitability and feasibility of the irrigation schemes with different plant and soil characteristics. The risks associated to rainfall interannual variability are also evaluated for both profitability and productivity.

  19. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    NASA Astrophysics Data System (ADS)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  20. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  1. Nitrogen and water management on irrigated alluvial soils to protect ground water quality

    SciTech Connect

    Schepers, J.S. ); Watts, D.G.; Spalding, R.F. ); Peterson, T.A.

    1993-03-01

    Ground water in much of the Platte River Valley of Central Nebraska is contaminated by nitrate above the drinking water standards. Research has shown that much of the nitrate in ground water is due to excess N fertilizer and irrigation water applied to continuous corn monocultures. Nebraska's Management Systems Evaluation Area (MSEA) project was established in 1990 as part of the President's Water Quality Initiative to develop and demonstrate how state-of-the-art N and water management practices can improve ground water quality while maintaining crop yields. Shallow ground water used for irrigation contains about 30 mg/L nitrate-N, which can be a valuable source of N for crops. Traditional furrow irrigation practices received two to three times as much irrigation water as either surge-flow furrow techniques or center pivot sprinkler irrigation systems. Water moving through the silt loam soil in the field under conventional furrow irrigation resulted in nitrate-N concentrations leaving the root zone averaging about 90 mg/L for the first two applications of water with a total N loss of about 88 kg/ha. Improved water application methods that distribute water more uniformly than conventional furrow irrigation allow fertilizer applications through the irrigation water (fertigation) to correct a crop N deficiency. Chlorophyll meters were used to monitor crop N status and schedule fertigation as needed. Spoon-feeding the crop resulted in a 50 to 70% savings in fertilizer N application rates compared to conventional methods of corn production.

  2. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  3. Landscape irrigation management for maintaining an aquifer and economic returns.

    PubMed

    Kovacs, Kent Forrest; Mancini, Mattia; West, Grant

    2015-09-01

    Expanding irrigated agriculture and dryer climatic conditions has led to large-scale withdrawals of groundwater and the decline in shallow aquifers. Policy makers must wrestle with the challenge of maintaining economic growth while conserving the groundwater resource. A spatially explicit landscape level model analyzes consequences of optimally chosen crop mix patterns on an aquifer and economic returns. The model of the groundwater use incorporates irrigation needs of the crops grown, initial aquifer thickness, hydro-conductivity of the aquifer, and distance to surrounding grid cells. The economic model incorporates the site specific yield, crop mix, and irrigation practice investments to predict economic returns. A tradeoff occurs between the volume of the aquifer and economic returns due to groundwater withdrawal for irrigation, but the farm's ability to grow profitable lower irrigation crops dampens the intensity of this tradeoff. Allowing for multiple unconventional irrigation practices that are yield increasing and water conserving significantly increases the economic returns of a given crop mix while maintaining the aquifer.

  4. Investigation into rainwater use by cotton under multiple irrigation management conditions in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Lascano, R. J.

    2012-12-01

    Irrigation management practices in the Texas High Plains (THP) might be improved if we could ascertain the proportion of rainfall utilized by the crop in any given rainfall event. For instance, the primary source of irrigation water in the THP is pumped from the Ogallala Aquifer (OA), and can be enriched in 18O compared to rainfall-captured water. Given this expected difference, it should be possible to determine if the crop is utilizing the water from a rainfall event. To this end, cotton was grown using three irrigation management practices: subsurface drip, center pivot, and no irrigation (dry land). The water used for irrigation was pumped from the Ogallala aquifer, and rainfall was gathered in a rain gauge with mineral oil to prevent evaporation. Additionally, plant and soil samples were collected following each precipitation event every two hours and every eight hours respectively. Water was then extracted from the soil and plant samples using cryogenic vacuum distillation, and analyzed for 18O/16O ratios using the DLT-100 Liquid-Water Isotope Analyzer from Los Gatos Research Inc. The difference in isotope concentrations in the extracts from soils was used to determine infiltration depth into the soil profile at each location. The isotopic composition of the plant water was used to determine if the was used to compare rainwater use across the different irrigation management practices. Results might suggest changes to the way in which we apply irrigation water that would improve root growth and distribution to enhance the capture of rainfall.

  5. Simulating evapotranspiration (ET) and corn yield response to irrigation management in the Texas High Plains using DSSAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain corn (Zea mays L) continues to be a major irrigated crop in the northern Texas High Plains. Improvements in irrigation system efficiency, irrigation management, and plant genetics have increased average yields while decreasing seasonal water use in the last 40 years. However, declining water l...

  6. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  7. Prontosan wound irrigation and gel: management of chronic wounds.

    PubMed

    Horrocks, Ann

    Chronic wounds present a challenge that is costly in terms of quality of life to the patient and in financial terms for the NHS. Several factors contribute to the development of a chronic wound, in particular the influence of bacteria as a biofilm within the wound environment. Irrigating a wound with normal saline has long been advocated as the most appropriate method of wound irrigation but biofilms are now known to be resistant to this method of cleansing. A small (10 patient) evaluation of the use of Prontosan in patients whose duration of chronic wounds exceeded 1 year has demonstrated that Prontosan wound irrigation and Prontosan gel are an appropriate alternative for cleaning, moistening and decontaminating encrusted, contaminated and chronic skin wounds, and can have a dramatic influence of the quality of life for such patients. This article discusses the cause of chronicity within a wound and discusses in depth three of the ten patients in the evaluation.

  8. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  9. Decision Support System for an efficient irrigation water management in semi arid environment

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Islam, M.; Hafeez, M. M.; Flugel, W. A.

    2009-12-01

    A significant increase in agricultural productivity over the last few decades has protected the world from episodes of hunger and food shortages. Water management in irrigated agriculture was instrumental in achieving those gains. Water resources are under high pressure due to rapid population growth and increased competition among various sectors. Access to reliable data on water availability, quantity and quality can provide the necessary foundation for sound management of water resources. There are many traditional methods for matching water demand and supply, however imbalances between demand and supply remain inevitable. It is possible to reduce the imbalances considerably through development of appropriate irrigation water management tool that take into account various factors such as soil type, irrigation water supply, and crop water demand. All components of water balance need to be understood and quantified for efficient and sustainable management of water resources. Application of an intelligent Decision Support System (DSS) is becoming significant. A DSS incorporates knowledge and expertise within the decision support framework. It is an integrated set of data, functions, models and other relevant information that efficiently processes input data, simulates models and displays the results in a user friendly format. It helps in decision-making process, to analyse the problem and explore various scenarios to make the most appropriate decision for water management. This paper deals with the Coleambally Irrigation Area (CIA) located in Murrumbidgee catchment, NSW, Australia. An Integrated River Information System called Coleambally IRIS has been developed to improve the irrigation water management ranging from farm to sub-system and system level. It is a web-based information management system with a focus on time series and geospatial hydrological, climatic and remote sensing data including land cover class, surface temperature, soil moisture, Normalized

  10. Evaluation of irrigation management procedures for geothermal effluent

    SciTech Connect

    Brockway, C.E.; Robbins, C.W.; Robison, C.W.; Johnson, G.S.

    1984-06-01

    An investigation was conducted to determine the feasibility of geothermal power plant effluent disposal by surface irrigation and the resulting impact on the shallow aquifer. The study was conducted at the Raft River Experimental Geothermal Power Plant site near Malta, Idaho and at the Snake River Conservation Research Center with soils and effluent obtained from the geothermal power plant site.

  11. Influence of Container Mulches on Irrigation and Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted in 2005 and repeated in 2006 to determine the influence of mulch products and controlled release fertilizer (CRF) placement on irrigation and nutrition requirements of container-grown crops. Hydrangea (Hydrangea macrophylla 'Fasan' and 'Endless Summer') were grown in 2.7...

  12. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    ERIC Educational Resources Information Center

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  13. Integrated water resource management under water supply and irrigation development uncertainty

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, E.; Elshorbagy, A. A.; Nazemi, A.; Wheater, H. S.; Gober, P.

    2014-12-01

    The Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada, supports various water demands including municipal, industrial, irrigated agriculture, hydropower and environmental sectors. Proposals for future development include significantly increased irrigation. However, proposing an appropriate level of irrigation development requires incorporation of water supply uncertainties in the water resources management analysis, including effects of climate variability and change. To evaluate potential climate change effects, a feasible range of shifts in annual volume and peak timing of headwater flows are considered to stochastically generate flows at the Alberta/Saskatchewan border. This envelope of flows, 30,800 realizations, is further combined with various irrigation expansion areas to form various future scenarios. Using an integrated water resources model developed for Saskatchewan, the impact of irrigation development on the system is assessed under the changing water supply conditions. The results of this study show that level of irrigation development as well as variation in volume and peak timing of flows can all contribute to change the water availability, vulnerability and economic productivity of the water resources system in Saskatchewan. In particular, the combined effect of large irrigation expansion, reduction in the volume of flows and earlier timing of the annual peak can exacerbate water resources system vulnerability, produce unstable net revenues, and decrease flood frequency in the Saskatchewan River Delta.

  14. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  15. Precision nitrogen management across site-specific management zones in irrigated maize production systems

    NASA Astrophysics Data System (ADS)

    Inman, Daniel Joseph, II

    In the United States, crop nitrogen-use efficiency (NUE) is very low. Approximately 33% of all N applied towards cereal crop production is captured in the harvested grain. Precision agricultural practices have shown potential for increasing crop NUE. Objectives were: (i) to characterize the within field spatial variability of N uptake across irrigated corn production fields, (ii) to quantify and compare N uptake and grain yield across three site specific management zones (SSMZs), (iii) to compare grain yield response to applied N between management zones, (iv) to examine the relationships between normalized difference vegetation index (NDVI) determined early in the growing season, site-specific management zones, and relative maize yield; (v) to determine if NDVI can be used to estimate relative maize yield; (vi) to determine if site-specific management zones can be used in conjunction with remote sensing to provide yield estimates in irrigated maize, and (vii) to evaluate the effectiveness of using a hand-held active remote sensing instrument to estimate yield potential in irrigated maize. This study was conducted on commercially-operated irrigated production maize fields throughout northeastern Colorado. For objectives i, ii, and iii, fields were classified into high, medium, and low site specific management zones. For objective iv, v, and vi, aerial imagery was acquired at approximately the eight-leaf crop growth stage. Grain was harvested using a commercial-combine outfitted with a yield monitor at the crop's physiological maturity. Objective iv was analyzed using percent areal agreement, kappa statistics, and regression analysis. Objectives v and vi were analyzed using regression analysis with cross-validation and indicator variables. For objective vii, the GreenSeeker(TM) active remote sensing unit was used to measure red and near infrared reflectance of the crop canopy. A response index (RI) was calculated the ratio of the reflectance of an area of interest

  16. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  17. AnnAGNPS model as a potential tool for seeking adequate agriculture land management in Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Chahor, Y.; Giménez, R.; Casalí, J.

    2012-04-01

    runoff was. On the other hand, a significant increment (30%) on annual sediment yield was predicted when rapeseed is the alternative major crop. Besides, a large decrease in annual runoff (up to 41%) and sediment (up to 98%) was predicted as the watershed is gradually occupied by shrubs. Finally, no-tillage appears as an interesting management method for cereals, with an over 90% reduction of in sediment yield -but only 4% in runoff. This is a first approach to evaluate AnnAGNPS as a management tool under local conditions. The above results may be then taking with caution especially in terms of absolute predicted values. However, AnnAGNPS can be considered as a promising tool for assessing the effect of the agricultural activities and implementing adequate land management alternatives in Mediterranean environment.

  18. An optimal management of water for a turf irrigation system in Milan area (Italy)

    NASA Astrophysics Data System (ADS)

    Deangelis, Maria Laura; Mazzoleni, Abramo

    2015-04-01

    The design of an irrigation system is not just "draw", but a complex organization that takes into account of a whole range of information that are inherently contained in the graphic representation of the final plan. The various stages that make up the activity of designing an irrigation system include: general survey of the site to be irrigated, meteorological analysis of the site and the calculation of the water requirement, development of the project with the choice and location of the components. The use of a numerical model based on water balance in a soil-water-atmosphere system allows the evaluation of the optimal water requirement as a function of meteorological characteristics. The water saving is enabled through a smart programming of a modern automation system for irrigation. The meteorological data analysis was conducted choosing from the series of two special years: the year 2002, particularly rainy, and the other in 2007, extraordinarily drought. The determination of the water requirements of turf was conducted on a daily scale. The water consumption was calculated in a classic irrigation system that covers the delivery of 5 mm of water per day, interrupted only by a rain sensor. In the second case water consumption was analysed by managing an irrigation controller based on actual water needs of turf day by day. For the two years in question water savings ranges between 13 and 27%.

  19. IRRIMET: a web 2.0 advisory service for irrigation water management

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  20. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    NASA Astrophysics Data System (ADS)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  1. In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soils.

    PubMed

    Gehl, R J; Schmidt, J P; Stone, L R; Schlegel, A J; Clark, G A

    2005-01-01

    Minimizing the risk of nitrate contamination along the waterways of the U.S. Great Plains is essential to continued irrigated corn production and quality water supplies. The objectives of this study were to quantify nitrate (NO(3)) leaching for irrigated sandy soils (Pratt loamy fine sand [sandy, mixed, mesic Lamellic Haplustalfs]) and to evaluate the effects of N fertilizer and irrigation management strategies on NO(3) leaching in irrigated corn. Two irrigation schedules (1.0x and 1.25x optimum) were combined with six N fertilizer treatments broadcast as NH(4)NO(3) (kg N ha(-1)): 300 and 250 applied pre-plant; 250 applied pre-plant and sidedress; 185 applied pre-plant and sidedress; 125 applied pre-plant and sidedress; and 0. Porous-cup tensiometers and solution samplers were installed in each of the four highest N treatments. Soil solution samples were collected during the 2001 and 2002 growing seasons. Maximum corn grain yield was achieved with 125 or 185 kg N ha(-1), regardless of the irrigation schedule (IS). The 1.25x IS exacerbated the amount of NO(3) leached below the 152-cm depth in the preplant N treatments, with a mean of 146 kg N ha(-1) for the 250 and 300 kg N preplant applications compared with 12 kg N ha(-1) for the same N treatments and 1.0x IS. With 185 kg N ha(-1), the 1.25x IS treatment resulted in 74 kg N ha(-1) leached compared with 10 kg N ha(-1) for the 1.0x IS. Appropriate irrigation scheduling and N fertilizer rates are essential to improving N management practices on these sandy soils.

  2. Effects of irrigation practices on water use in the groundwater management districts within the Kansas high plains, 1991-2003

    USGS Publications Warehouse

    Perry, Charles A.

    2006-01-01

    Data compiled for the High Plains region of Kansas that includes five Groundwater Management Districts (GMDs) were analyzed for trends in irrigation water use, acres irrigated, precipitation, irrigation system types, and irrigated crop types to determine the effects of irrigation practices on water use over time. For the study period 1991 through 2003, precipitation decreased significantly (with 95-percent confidence) in northwestern and west-central Kansas but not in the southwestern and south-central parts of the State. Irrigation water use had no statistically significant trend during this period. There was a good (R= -0.77) relation between average regional precipitation and total GMD irrigation water use. When irrigation water use was adjusted for this relation, there was a positive trend (90-percent confidence level) in the adjusted irrigation water use. Another adjustment to water use was made using the ratio of annual precipitation to 1991-2005 average precipitation, which resulted in a negative trend (95-percent confidence level) in irrigation water use. This demonstrated the contradictory nature of precipitation adjustments to water use, making their utility somewhat suspect. GMD 3 in southwestern Kansas used 63 percent of the total acre-feet of irrigation water within all the GMDs. When all GMDs are considered, the number of irrigated acres for flood and center pivot systems without drop nozzles decreased significantly during the study period. At the same time the number of drop nozzle irrigated acres increased significantly. The number of irrigated acres of water-intensive crops (corn, alfalfa, and soybeans) also increased significantly, whereas the number of less- or non-water-intensive crops (grain sorghum and wheat), and multiple crop type acres decreased. Drop nozzle irrigation systems used approximately 2 percent less water in a year-by-year comparison than center pivot systems and 8 to 11 percent less water than flood irrigation. The best

  3. Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years

    SciTech Connect

    Riah, Susan; Rebel, Karin

    2004-02-27

    To minimize movement of tritium into surface waters at the Mixed Waste Management Facility at the Savannah River Site, tritium contaminated seepage water is being retained in a constructed pond and used to irrigate forest acreage that lies above the pond and over the contaminated groundwater. Twenty five-year potential evapotranspiration and average precipitation are 1443 mm/year and 1127 mm/year, respectively, for the region in which the site is located. Management of the application of tritium contaminated irrigation water needs to be evaluated in the context of the large amount of rainfall relative to evapotranspiration, the strong seasonality in evapotranspiration, and intraannual and inter-annual variability in precipitation. A dynamic simulation model of water and tritium fluxes in the soil-plant-atmosphere continuum was developed to assess the efficiency (tritium transpired/tritium applied) of several irrigation management strategies.

  4. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  5. The use of automated weather stations for irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We discuss an irrigation management information system approach developed by NCARE researchers with the help of USDA-ARS. The system is capable of providing farmers with online crop water requirements based on automated meteorological data published on the internet (www.ncare.gov.jo/imis, and www.m...

  6. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  7. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  8. Manage postharvest deficit irrigation of peach trees using canopy to air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...

  9. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  10. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  11. Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Saseendran, S. A.; Ahuja, L. R.; Nielsen, D. C.; Trout, T. J.; Ma, L.

    2008-07-01

    Increasing competition for land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. It is important to develop location-specific agronomic practices to maximize water use efficiency (WUE). Adequately calibrated and validated agricultural systems models provide a systems approach and a fast alternative method for developing and evaluating agronomic practices that can utilize technological advances in limited irrigation agriculture. The objectives of this study were to (1) calibrate and validate the CERES-maize model under both dryland and irrigated corn (Zea mays L.) production in northeastern Colorado and (2) use the model with a long-term weather record to determine (1) optimum allocation of limited irrigation between vegetative and reproductive growth stages and (2) optimum soil water depletion level for initiating limited irrigation. The soil series was a Rago silt loam, and the initial water content on 1 January of each year was equal to field capacity in the upper 300 mm and half of the field capacity below this depth. Optimum production and WUE with minimum nitrogen (N) losses were found when (1) a water allocation ratio of 40:60 or 50:50 (uniform) between vegetative and reproductive stages for irrigations up to 100 mm, and a ratio of 20:80 for irrigations above 100 mm was used; and (2) irrigation was initiated at 20% plant-available water (PAW) (80% depletion). When available water for irrigation is limited to 100 mm, irrigating 50% of the area with 200 mm of water at 20:80 split irrigations between the vegetative and reproductive stages produced greater yield than irrigating 100% of the area with 100 mm water. Concepts developed in the study can potentially be adapted to other locations, climates, and crops. However, precise site-specific recommendations need to be developed for each soil-climate zone using the validated system model.

  12. Simulating N2O emissions from irrigated cotton wheat rotations in Australia using DAYCENT: Mitigation options by optimized fertilizer and irrigation management

    NASA Astrophysics Data System (ADS)

    Scheer, Clemens; DelGrosso, Stephen; Parton, William; Rowlings, David; Grace, Peter

    2014-05-01

    Irrigation and fertilization do not only stimulate plant growth, but also accelerate microbial C- and N-turnover in the soil and thus can lead to enhanced emissions of nitrous oxide (N2O) from soils. In Australia there are more than 2 million hectares of agricultural land under irrigation and research has now focused on a combination of nitrogen fertilizer and irrigation management to maintain crop yields, maximize nitrogen use efficiency and reduce N2O emissions. Process-based models are now being used to estimate N2O emissions and assess mitigation options of N2O fluxes by improving management at field, regional and national scales. To insure that model predictions are reliable it is important to rigorously test the model so that uncertainty bounds for N2O emissions can be reduced and the impacts of different management practices on emissions can be better quantified. We used high temporal frequency dataset of N2O emissions to validate the performance of the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. Furthermore, we evaluated potential N2O mitigation strategies in irrigated cotton-wheat rotations in Australia by simulating different fertilizer and irrigation management scenarios over a climatically variable 25 year time span. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. The simulations of different fertilization and irrigation practices in cotton-wheat rotations over a 25 year time frame clearly showed that there is scope for reducing N2O emissions by modified fertilizer and irrigation management. For wheat and for cotton the model predicted that a

  13. Informing sustainable irrigation management strategies in response to implementation of Washington State's Yakima Basin Integrated Plan (YBIP)

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Yoder, J.; Brady, M.; Stockle, C. O.

    2014-12-01

    As an important agricultural snowmelt-dominant watershed in the Pacific Northwest region of the United States, the Yakima River basin (YRB) is projected to experience increasing water scarcity problems during the summer irrigation season. The system is already experiencing over-allocation with unmet irrigation entitlements occurring more frequently, resulting in negative consequences to YRB agriculture and therefore the economy of the region. Water storage management is one climate change adaptation strategy particularly applicable to snowmelt-dominant watersheds experiencing a shift of its water availability away from the summer irrigation season. These changes in conjunction with climate change will significantly change the availability of water for agriculture, thus impacting farmers' irrigation decisions. These decisions occur at multiple time scales, including capital investment to change irrigation technology (decadal), to distributing the seasonal allocation of water in a projected drought year (seasonal), to deficit irrigating crops (daily to weekly). The Yakima Basin Integrated Water Resource Management Plan (YBIP) aims to improve the availability of water for agriculture, fish, and communities through a number of projects, including additional or modification of physical infrastructure. Our objective is to reduce the vulnerability of irrigated agriculture in the YRB to climate change through exploring changes in irrigation management strategies in response to implementation of each phase of YBIP. We apply VIC-CropSyst (a newly coupled hydrological/cropping model) and Yakima RiverWare (a water management model) to explore the relationships between climate, hydrology, crop growth and phenology, irrigation management, and YBIP implementation. Results suggest the importance of irrigation management strategies in YRB and indicate that if irrigation strategies are modified in response to changes in physical infrastructure, significant enhancements to instream

  14. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  15. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management

    SciTech Connect

    Zhou Chuanbin; Wang Rusong; Zhang Yishan

    2010-06-15

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD{sub 5} concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36 weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  16. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management.

    PubMed

    Zhou, Chuanbin; Wang, Rusong; Zhang, Yishan

    2010-06-01

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD(5) concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  17. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  18. Yield and Irrigation Water Use Efficiency Response of Chufa (Cyperus esculentus L. var. sativus Boeck.) to Drip Irrigation Management

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2016-04-01

    Chufa, also known as tigernut, is a typical crop in Valencia, Spain, where it is cultivated in ridges with furrow irrigation. Its cultivation uses large amounts of water, in the order of 10,000 m3 ha-1 year-1, so different studies have been undertaken in order to maximize the irrigation water use efficiency (IWUE). One of these studies faced the application of drip irrigation in the chufa cultivation, comparing three different irrigation strategies. These strategies differed on the volumetric soil water content (VSWC) when each irrigation event started. Starting each irrigation when the VSWC dropped to 90% of field capacity (FC) leaded to the highest yield, while the highest IWUE was obtained when irrigation started at 80% FC. It can be stated that starting each irrigation event when the VSWC is between 80 and 90% FC leads to the best results in terms of yield and IWUE. However, these results may still be improved by defining the best strategy in the irrigation stop, which is the aim of the herein presented research. This investigation comprises the productive response of the chufa crop with drip irrigation, determining yield and IWUE. The VSWC was monitored using multi-depth capacitance probes, with sensors at 0.10, 0.20 and 0.30 m below the top of the ridge. Each irrigation event started when the volumetric soil water content at 0.10 m dropped to 85% FC. Three irrigation strategies were considered, T1: each event being stopped when the average of the VSWC values at 0.10, 0.20 and 0.30 m depth reached the corresponding FC value; T2: each event being stopped when the VSWC values at 0.20 m reached the corresponding FC value; T3 each irrigation event lasted 30 min (corresponding to 7.33 mm). The largest yield (P ≤0.05) was obtained in T2 (2.31 kg m-2), with no statistical differences (P ≤0.05) between T1 (1.94 kg m-2) and T3 (1.92 kg m-2). The highest yield in T2 was obtained with the largest volume of irrigation water applied (722 mm), resulting in the lowest (P

  19. An integrated framework of operational ET remote sensing program for irrigation management in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture and management of limited groundwater are critical issues in the Texas High Plains where irrigation accounts for more than 90% of groundwater use. With low recharge rates, groundwater levels in the underlain Ogallala aquifer are declining at unsustainable rates. Daily field-sca...

  20. Modeling the effects of irrigation frequencies, initial water and nitrogen on corn yield responses for best management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Competing demands for fresh water resources necessitate adaptation of limited water irrigations in agriculture. In this context, the Crop Water Production Functions (CWPF) used in limited water irrigation management need to integrate the effects of climate, initial soil water content at planting, an...

  1. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    NASA Astrophysics Data System (ADS)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  2. Earth observation products for operational irrigation management: the PLEIADeS project

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Vuolo, F.; Richter, K.; Calera Belmonte, A.; Osann, M. A.

    2009-09-01

    In the context of a sustainable agriculture, a controlled and efficient irrigation management is required to avoid negative effects of the increasing water scarcity, especially in arid and semi-arid regions. Within this background, the project 'Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural Decision-Support' (PLEIADeS: http://www.pleiades.es) addressed the efficient and sustainable use of water for food production in water-scarce environments. Economical, environmental, technical, social and political dimensions are considered by means of a synergy of leading-edge technologies and participatory approaches. Project partners, represented by a set of nine pilot case studies, include a broad range of conditions characteristic for the European, Southern Mediterranean and American regions. PLEIADeS aimed at improving the performance of irrigation schemes by means of a range of measures, made possible through wide space-time coverage of Earth observation (E.O.) data and interactive networking capabilities of Information and Communication Technologies (ICT). Algorithms for a number of basic products to estimate Irrigation Water Requirements (IWR) in an operational context are defined. In this study, the pilot zone at the Nurra site in Sardinia, Italy, is chosen to test, validate and apply these methodologies.

  3. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  4. LandCaRe-DSS - model based tools for irrigation management under climate change

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen

    2015-04-01

    Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and

  5. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  6. Forest Irrigation of Tritiated Water: A Proven Tritiated Water Management Tool - 13357

    SciTech Connect

    Prater, Phil; Blount, Gerald; Kmetz, Thomas; Vangelas, Karen

    2013-07-01

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  7. Forest Irrigation Of Tritiated Water: A Proven Tritiated Water Management Tool

    SciTech Connect

    Vangelas, Karen; Blount, Gerald; Kmetz, Thomas; Prater, Phil

    2012-11-08

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  8. Irrigator responses to groundwater resource management in northern Victoria, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Gill, Bruce C.; Webb, John; Wilkinson, Roger; Cherry, Don

    2014-10-01

    In northern Victoria, farmers are the biggest users of groundwater and therefore the main stakeholders in plans that seek to sustainably manage the resource. Interviews with 30 irrigation farmers in two study areas, analysed using qualitative social research methods, showed that the overwhelming majority of groundwater users agreed with the need for groundwater management and thought that the current plans had achieved sustainable resource use. The farmers also expressed a strong need for clear technical explanations for management decisions, in particular easily understood water level data. The social licence to implement the management plans arose through effective consultation with the community during plan development. Several additional factors combined to gain acceptance for the plans: good data on groundwater usage and aquifer levels is available; irrigation farmers had been exposed to usage restrictions since the late 1990s; an ‘adaptive’ management approach is in use which allowed refinements to be readily incorporated and fortuitously, plan development coincided with the 1998-2009 drought, when declines in groundwater levels reinforced the usefulness of the plans. The imposition of a nation-wide water use reduction plan in 2012 had relatively little impact in Victoria because of the early implementation of effective groundwater management plans. However, economic difficulties that reduce groundwater users’ capacity to pay groundwater management charges mean that the future of the plans in Victoria is not assured. Nevertheless, the high level of trust that exists between Victorian irrigation farmers and the management agencies suggests that the continued use of a consultative approach will continue to produce workable outcomes. Lessons from the Victorian experience may be difficult to apply in other areas of groundwater use in Australia and overseas, where there may be a quite different history of development and culture of groundwater management.

  9. Results of an irrigated lands assessment for water management in California

    NASA Technical Reports Server (NTRS)

    Bauer, E. H.; Baggett, J. D.; Wall, S. L.; Thomas, R. W.; Brown, C. E.

    1984-01-01

    Periodic assessment of existing and future demands for water within California is one responsibility of the California Department of Water Resources (CDWR). The California Irrigated Lands Assessment for Water Management Project represented a 5-year joint research effort between the NASA and the CDWR with technical support from the University of California (UC) at Berkeley and at Santa Barbara. The objectives were: (1) to develop and demonstrate procedures for providing highly precise, timely, estimates of irrigated area on a statewide basis using Landsat sensor data, and (2) to develop, through research with small demonstration sites, a procedure for the inventory and mapping of crop groups on a regional basis. Both manual and computer-assisted analyses were investigated. This paper highlights the statewide irrigated lands inventory where a procedure for statewide estimation of irrigated land using full frame Landsat MSS imagery and sampled ground data was successfully demonstrated. The statewide estimate of 3 990 112 hectares was within + or - 1.32 percent relative standard error at the 95-percent Confidence Interval, well within the design goal. This procedure represents a new capability for obtaining near-real time data on changes in agricultural water use throughout the state.

  10. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  11. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    The irrigated acreage that was field verified in 2015 for the 13 counties in the Suwannee River Water Management District (113,134 acres) is about 6 percent higher than the estimated acreage published by the U.S. Department of Agriculture (107,217 acres) for 2012; however, this 2012 value represents acreage for the entire portion of all 13 counties, not just the Suwannee River Water Management District portion. Differences between the 2015 field-verified acreage totals and those published by the U.S. Department of Agriculture for 2012 may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 3-year interval due to commodity prices or economic changes, (2) calculated field-verified irrigated acreage may be an overestimate because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the U.S. Department of Agriculture for selected crops may be underestimated in some cases.

  12. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-01-01

    The irrigated acreage that was field verified in 2015 for the 13 counties in the Suwannee River Water Management District (113,134 acres) is about 6 percent higher than the estimated acreage published by the U.S. Department of Agriculture (107,217 acres) for 2012; however, this 2012 value represents acreage for the entire portion of all 13 counties, not just the Suwannee River Water Management District portion. Differences between the 2015 field-verified acreage totals and those published by the U.S. Department of Agriculture for 2012 may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 3-year interval due to commodity prices or economic changes, (2) calculated field-verified irrigated acreage may be an overestimate because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the U.S. Department of Agriculture for selected crops may be underestimated in some cases.

  13. Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000

    USGS Publications Warehouse

    Tadayon, Saeid

    2005-01-01

    Economic development in Arizona is largely influenced by access to adequate water supplies owing to the State's predominantly semiarid to arid climate. Water demand is met by pumping ground water from aquifers or by con-veying surface water through a system of reservoirs and canals. Water-withdrawal data provide important information on how water demand affects the State's water resources. Information on water withdrawals also can help planners and managers assess the effectiveness of water-management policies, regulations, and conservation activities. This report includes water-withdrawal data for irrigation, municipal, mining, thermoelectric-power, and drainage uses for 1991-2000, and describes the methods used to collect, compile, and estimate the data. Data are reported for the Arizona Department of Water Resources ground-water basins outside of Active Management Areas. Because of the climate, ground water and surface water are used to irrigate nearly all agricultural fields in Arizona. Irrigation accounted for the largest use of water in the study area during 1991-2000. The amount of water withdrawn for irrigation varies greatly from year to year for some of the basins, primarily because of differences in the consumptive water requirement for different crops and because of changes in irrigated acreage. The population of Arizona increased about 35 percent from 1991 to 2000-from about 3.79 million in 1991 to about 5.13 million in 2000. Correspondingly, water withdrawal for municipal use increased steadily in most of the basins during 1991-2000. Ground-water withdrawals for mining did not show any consistent trends during 1991-2000. Increases and decreases in withdrawals for mining were most likely due to variations in mineral production. Mineral prices and competition from mining in other States and foreign countries probably result in annual increases or decreases in mineral production in Arizona. Between 1991 and 2000, ground-water withdrawals for

  14. Remote Sensing Applications for Planning Irrigation Management. The Use of SEBAL Methodology for Estimating Crop Evapotranspiration in Cyprus

    NASA Astrophysics Data System (ADS)

    Papadavid, George; Perdikou, Skevi; Hadjimitsis, Michalakis; Hadjimitsis, Diofantos

    2012-09-01

    Water allocation to crops has always been of great importance in the agricultural process. In this context, and under the current conditions, where Cyprus is facing a severe drought the last five years, the purpose of this study is basically to estimate the needed crop water requirements for supporting irrigation management and monitoring irrigation on a systematic basis for Cyprus using remote sensing techniques. The use of satellite images supported by ground measurements has provided quite accurate results. Intended purpose of this paper is to estimate the Evapotranspiration (ET) of specific crops which is the basis for irrigation scheduling and establish a procedure for monitoring and managing irrigation water over Cyprus, using remotely sensed data from Landsat TM/ ETM+ and a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL).

  15. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management. PMID:24343781

  16. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.

  17. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    NASA Astrophysics Data System (ADS)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  18. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    PubMed

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  19. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    PubMed

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1). PMID:20176839

  20. A comparative study of wireless and wired sensors networks for deficit irrigation management

    NASA Astrophysics Data System (ADS)

    Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor

    2016-04-01

    In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental

  1. SY 07-3 WHICH BP LEVELS ARE ADEQUATE TARGETS FOR THE MANAGEMENT OF DIABETIC HYPERTENSIVE PATIENTS IN ASIA?

    PubMed

    Eguchi, Kazuo

    2016-09-01

    In patients with type 2 diabetes, prevention of future cardiovascular disease is an ultimate goal in the management. Coexistence of diabetes and hypertension enhances cardiovascular risk, and antihypertensive therapy has been shown to be very effective method in reducing micro- and macrovascular complications of type 2 diabetes. However, the optimal target BP levels are still under debate. Most of the international guidelines have raised the target clinic BP from 130/80 mmHg to 140/90 mmHg, but the Japanese Society of Hypertension 2014 guideline kept the target BP level as below 130/80 mmHg. However, individualized BP-lowering treatment should be considered in patients with type 2 diabetes: in high-risk individuals such as those with a history of stroke or retinopathy, aggressive antihypertensive therapy targeting below 130 mmHg should be applied even when the initial SBP level is <140 mmHg. Recently, we performed studies concerning the BP target levels of clinic and home BP in patients with type 2 diabetes. In this session, we will show the preliminary results of these target levels and discuss how we should manage hypertension in patients with type 2 diabetes. PMID:27642961

  2. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    PubMed

    Qadir, M; Oster, J D

    2004-05-01

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  3. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    PubMed

    Qadir, M; Oster, J D

    2004-05-01

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  4. Concentration of radiocaesium in rice and irrigation water, and soil management practices in Oguni, Date, Fukushima.

    PubMed

    Tsukada, Hirofumi; Ohse, Kenji

    2016-10-01

    The concentration of radiocaesium ((134) Cs and (137) Cs) in brown rice collected from Oguni, Date, Fukushima in 2011 was over 500 Bq kg(-1) , which was the provisional regulation value in 2011, and rice cultivation was prohibited in 2012. Rice culture was resumed following the application of K fertilizer as a countermeasure in 2013. The concentration of (137) Cs in soils and irrigation water in 2013 was in the range of 1200 to 4000 Bq kg(-1) (n = 31) and 0.078 to 1.1 Bq L(-1) (n = 7), respectively. The concentration of (137) Cs in the dissolved fraction in irrigation water filtered with 0.45 µm pore-size membrane filter was a relatively constant at 0.019 to 0.038 Bq L(-1) (n = 7). The concentration of (137) Cs in brown rice cultivated in the paddy fields after implementing the countermeasure was 1.1 to 24 Bq kg(-1) dry weight (n = 29), which was lower than the Standard Limits (100 Bq kg(-1) ). However, the concentration of Cs in rice cultivated under a similar agricultural management as in 2011 and prior to the Tokyo Electric Power Company Holdings' (TEPCO) Fukushima accident was over the Standard Limits. Integr Environ Assess Manag 2016;12:659-661. © 2016 SETAC. PMID:27640411

  5. [How I treat a diabetes type 2 patient: the DREAM project for better general practitioner-specialist collaboration. Diabetes Reinforcement of Adequate Management].

    PubMed

    Scheen, A J

    1998-02-01

    Type 2 diabetes is an important public health problem because of its high prevalence and morbidity rate which both are associated with a considerable social and human cost. The general practitioner should play a central role in the management of patients with type 2 diabetes and try to meet the therapeutic objectives. Main goals include reinforcement of early diagnosis, by a better screening of individuals at risk for type 2 diabetes, achievement of a good glycaemic control, through an optimized antidiabetic treatment, correction of associated risk factors as well as detection and treatment of disease complications. DREAM ("Diabetes Reinforcement of Adequate Management") is a pilot project which started in Liege area end 1997 for at least 2 years. It aims at improving the management of type 2 diabetic patients through a better free collaboration between general practitioners and diabetologists and the adhesion to an optimized therapeutic strategy. This ambitious project benefits from the valuable support of three pharmaceutical companies.

  6. Irrigation Monitoring Project Results

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Berglund, Judith; Ryan, Robert; Harrington, Gary; Stewart, Randy; Spiering, Bruce

    2003-01-01

    The objective of this project is to investigate remote sensing requirements for irrigation scheduling to define future systems. Temperature-based crop stress indicators have been developed that could be used for irrigation management. This viewgraph presentation describes an experiment to use airborne and satellite thermal imagery to evaulate the water requirements of irrigated crops.

  7. Factors affecting irrigant extrusion during root canal irrigation: a systematic review.

    PubMed

    Boutsioukis, C; Psimma, Z; van der Sluis, L W M

    2013-07-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted in Cochrane Library, LILACS, PubMed, SciELO, Scopus and Web of Knowledge using a combination of the terms 'irrigant', 'rinse', 'extrusion', 'injection', 'complication', 'accident', 'iatrogenic', 'root canal', 'tooth' and 'endodontic'. Additional studies were identified by hand-searching of six endodontic journals and the relevant chapters of four endodontic textbooks, resulting in a total of 460 titles. No language restriction was imposed. After applying screening and strict eligibility criteria by two independent reviewers, 40 case reports and 10 ex vivo studies were included in the review. A lack of clinical studies focusing on irrigant extrusion during root canal irrigation was evident. The reviewed case reports focused mainly on the clinical manifestations and management of the accidents and did not provide adequate details on the possible factors that may influence irrigant extrusion. The data from the included ex vivo studies were inconclusive due to major methodological limitations, such as not simulating the presence of periapical tissues and not assessing the validity of irrigant detection methods. The extensive variability in the protocols employed hindered quantitative synthesis. The choice of factors investigated in ex vivo studies seems not to have been driven by the available clinical evidence. These issues need to be addressed in future studies. PMID:23289914

  8. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Islam, Sirajul; Talukdar, Bipul

    2016-08-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  9. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Islam, Sirajul; Talukdar, Bipul

    2016-09-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  10. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  11. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    PubMed

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site. PMID:25566831

  12. Development of services for irrigation management: the experience with the users

    NASA Astrophysics Data System (ADS)

    Vuolo, Francesco; Neugebauer, Nikolaus; D'Urso, Guido; De Michele, Carlo

    2014-05-01

    Irrigated agriculture is the main user of freshwater resources (30% in Central Europe, 60% in the South). Efficient water management is therefore of essential importance, especially where water scarcity and water quality are becoming severe challenges. To achieve a successful and effective use of resources, farmers and water managers require easy-to-use decision support tools and reliable information. Our approach is based on Earth observation (EO) techniques and decision support tools. Generally, the service concept is based on two main components: i) the processing of time-series of high spatial resolution (10-30-m pixel size) images from satellite, currently available from public and commercial data providers, to timely monitor the crop growth and to estimate the crop water requirements throughout the growing season; ii) the adaptation and integration in local management practices & tools of easy to use geo-spatial technologies to make the information available to users and to support the decision-making process in near-real-time. The participation and feedback we receive from the users is fundamental to develop and provide easy-to-use technologies that can be embedded in standard approaches. In this paper, we briefly describe some examples of pre- and fully operational applications at field and irrigation scheme level and report some success stories of cooperation between decision makers and scientists. The paper includes the outcomes of ongoing activities such as Irrisat (www.irrisat.it), a regional operational service supported by rural development funds in Southern Italy and EO4Water (www.eo4water.com), a case study of knowledge and technology transfer in Eastern Austria funded by the Austrian Space Application Programme. The new capacities we develop to assist farmers in monitoring their crops are a step towards a better integration of tools and production. More technical advice and recommendation regarding sustainable land and resource use could then be

  13. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  14. An efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composites

    NASA Astrophysics Data System (ADS)

    Berber, Mohamed R.; Hafez, Inas H.; Minagawa, Keiji; Tanaka, Masami; Mori, Takeshi

    2012-11-01

    SummaryThe management of irrigation water presents a great challenge for the agriculture field. In view of increasing soil water-holding capacity and increasing water-use efficiency, an efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composite (polyacrylic acid-layered double hydroxide; PAA-LDH) was offered. The PAA-LDH composite was synthesized by an incorporation/in situ polymerization technique. Scanning electron microscopy, X-ray analysis and infrared spectroscopy were used to confirm the composite structure. The thermal gravimetric analysis was applied to investigate the polymer thermal stability after the composite formation. The irrigation experiments were conducted in a wooden soil box with a transparent plexiglas side by using a subsurface drip irrigation system. The X-ray patterns and infrared spectra confirmed the incorporation of acrylic acid monomer (AA) into the gallery of LDH. The SEM images emphasized the composite structure of PAA-LDH and indicated its ability to absorb and keep water. The stability of PAA was promoted against the thermal decomposition after the composite formation. The composite structure of PAA-LDH worked as water barrier and secondary water source during the irrigation process. The soil moisture distribution patterns were enhanced after the application of PAA-LDH composites as a soil conditioner.

  15. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  16. Irrigation Management Transfer and WUAs' dynamics: evidence from the South-Kazakhstan province

    NASA Astrophysics Data System (ADS)

    zinzani, andrea

    2014-05-01

    The importance of water resources management in the arid and semi-arid lands can not be overestimated being related with environmental, economical and socio-political issues. In Central Asia, due to the physical and climatic features, water control and irrigation have always played a strategic role in territorial and societal development. Since the collapse of the Soviet Union in Kazakhstan, as in the other Central Asian republics, significant changes in both the water and agricultural sector have emerged; water management shifted from a purely technical issue to a sociopolitical and economic one leading to several institutional and organizational changes. To address this transitional water management context and the related governance and technical issues, since the 1990s several development organizations and donor agencies (such as the World Bank, United Nations, USAID, and others), according to the international water community, have sought to streamline the Irrigation Management Transfer (IMT) and the establishment of the Water Users Associations (WUAs); this initiatives are sponsored and related to the IWRM framework, the water program globally supported by the Global Water Partnership and widely debated and questioned in the last years. This paper aims to discuss these transitional water management processes focusing on the meso-local level in the Arys valley, administratively included in the South-Kazakhstan province, ten years since the enactment of the law formalizing the WUAs. Three districts (Tyulkibas, Ordabasy and Otrar) were selected to analyse and understand the specific local transitional water institutional/organizational framework and to highlight the differences among them. The fieldwork was conducted in two different phases, April-May and November-December 2012. Within those periods, semi-structured interviews were carried out to the members of the state organizations (river basin agencies and district/province water departments) as well as the

  17. Weed management, training, and irrigation practices for organic production of trailing blackberry: I. Mature plant growth and fruit production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management, training time, and irrigation practices were evaluated from 2013-2014 in a mature field of trailing blackberry (Rubus L. subgenus Rubus Watson) established in western Oregon. The field was planted in 2010 and certified organic in 2012, before the first harvest season. Treatments inc...

  18. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    The irrigated acreage that was field verified in 2015 for the 13 counties in the Suwannee River Water Management District (113,134 acres) is about 6 percent higher than the estimated acreage published by the U.S. Department of Agriculture (107,217 acres)

  19. Science, policy, and management of irrigation-induced selenium contamination in california.

    PubMed

    Kausch, Matteo F; Pallud, Céline E

    2013-11-01

    Selenium was recognized as an important aquatic contaminant following the identification of widespread deformities in waterfowl at the agricultural drainage evaporation ponds of the Kesterson Reservoir (California) in 1983. Since then, California has been the focal point for global research and management of Se contamination. We analyzed the history and current developments in science, policy, and management of irrigation-induced Se contamination in California. In terms of management, we evaluated the effects of improvements in the design of local attenuation methods (drainage reuse and evaporation ponds) in conjunction with the development of programs for Se load reductions at the regional scale (namely the Grassland Bypass Project). In terms of policy, the USEPA is currently working on site-specific water quality criteria for the San Francisco Bay Delta that may be a landmark for future legislation on Se in natural water bodies. We provide a critical analysis of this approach and discuss challenges and opportunities in expanding it to other locations such as the Salton Sea. Management lessons learned in California and the novel policy approach may help prevent future events of Se contamination. PMID:25602401

  20. Effects of Season and Management of Irrigated Cotton Fields on Collembola (Hexapoda) in New South Wales, Australia.

    PubMed

    Lytton-Hitchins, James A; Greenslade, Penelope; Wilson, Lewis J

    2015-06-01

    The effects of production practices on the relative abundance of springtails (Collembola) in irrigated cotton fields of northern New South Wales (NSW) were studied over 2 yr to examine effects of farm management on these decomposer organisms. Pitfall trapping and soil core extraction was undertaken in both pseudoreplicated plots within whole fields on cotton farms and on experimental replicate plots of Envirofeast cotton and Lucerne. The relative abundance of surface-active springtails in cotton rows and densities of soil species from the rhizosphere were calculated. Twenty-three species of Collembola were collected from 5 fields, 19 in pitfall traps, and 11 in soil cores. Five species, Setogaster sp., Proisotoma minuta, Entomobrya unostrigata, Entomobrya multifasciata grp, and Lepidobrya sp. were numerically dominant on the ground at 86-96% of individuals and Mesaphorura sp., Folsomides parvulus, and Hemisotoma thermophila grp dominant in the soil. Native grassland samples contained 15 species of which a probable 10 were native and 8 were not found in cotton. Nineteen species of the 24 species identified from cotton were predominantly fungal feeders. Highest catches of Collembola occurred after flowering and soil Collembola increased with depth and during cotton growth on unsprayed plots but decreased on sprayed plots. Surface soil moistures affected daily catch rates with decomposing residues, crop stage, predator abundance, and season as secondary factors. Insecticide (endosulfan, pyrethroid, carbamate, and organophosphate) and predator effects were either negligible or unclear depending on the factor involved. Springtails appear to be predominately food limited during times of adequate soil moisture in cotton fields. PMID:26313958

  1. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  2. Water reuse for irrigated agriculture in Jordan: challenges of soil sustainability and the role of management strategies.

    PubMed

    Carr, G; Nortcliff, S; Potter, R B

    2010-11-28

    Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers' awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers' management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

  3. A low cost micro-station to monitor soil water potential for irrigation management

    NASA Astrophysics Data System (ADS)

    Vannutelli, Edoardo; Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio; Renga, Filippo

    2014-05-01

    The RISPArMiA project (which stands for "reduction of water wastage through the continuous monitoring of agri-environmental parameters") won in 2013 the contest called "LINFAS - The New Ideas Make Sustainable Agriculture" and sponsored by two Italian Foundations (Fondazione Italiana Accenture and Fondazione Collegio Università Milanesi). The objective of the RISPArMiA project is to improve the irrigation efficiency at the farm scale, by providing the farmer with a valuable decision support system for the management of irrigation through the use of low-cost sensors and technologies that can easily be interfaced with Mobile devices. Through the installation of tensiometric sensors within the cropped field, the soil water potential can be continuously monitored. Using open hardware electronic platforms, a data-logger for storing the measured data will be built. Data will be then processed through a software that will allow the conversion of the monitored information into an irrigation advice. This will be notified to the farmer if the measured soil water potential exceed literature crop-specific tensiometric thresholds. Through an extrapolation conducted on the most recent monitored data, it will be also possible to obtain a simple soil water potential prevision in absence of rain events. All the information will be sent directly to a virtual server and successively on the farmer Mobile devices. Each micro-station is completely autonomous from the energy point of view, since it is powered by batteries recharged by a solar panel. The transmission modulus consists of a GSM apparatus with a SIM card. The use of free platforms (Arduino) and low cost sensors (Watermark 200SS tensiometers and soil thermocouples) will significantly reduce the costs of construction of the micro-station which are expected to be considerably lower than those required for similar instruments on the market today . Six prototype micro-stations are actually under construction. Their field testing

  4. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  5. Transpirative Deficit Index (TDI) for the management of water scarcity in irrigated areas: development and application in northern Italy

    NASA Astrophysics Data System (ADS)

    Borghi, Anna; Facchi, Arianna; Rienzner, Michele; Gandolfi, Claudio

    2016-04-01

    In Europe, the monitoring and assessment of drought is entrusted to the European Drought Observatory (EDO). EDO indicators are calculated considering rainfed agriculture and delivered on a 5 km grid. However, in southern Europe, irrigation may compensate for potentially severe agricultural droughts and specific water scarcity indicators that explicitly consider irrigation are needed. In the Po River Plain, irrigated crops cover more than 70% of the agricultural land, massive amounts of water are diverted from rivers for irrigation, and surface irrigation methods are largely applied. Nowadays, the region is not a water scarce basin, but irrigation water shortages have occurred with increased frequency during the last two decades. Moreover, a recent EU report shows that the Po River Plain is included among areas in Europe that by 2030 shall be affected by water scarcity. In this context, a study was started to select and develop indicators for the management and prevention of Water Scarcity and Drought (WS&D) based on the synergic use of hydrological modelling and Earth Observation data applied at a spatial scale of interest for end-users (250m grid). These indicators shall be better suited for the assessment of WS&D in Italy as well as in other southern European countries. This work presents the development and the application of the TDI (Transpirative Deficit Index) to a study area, within the Po River Plain. TDI is an agricultural drought index based on the transpiration deficit (TDx, calculated as the difference between potential and actual transpiration), computed by the spatially distributed hydrological model IDRAGRA and cumulated over a period of x days. TDx for each day of a specific year is compared to the long-term TDx probability distribution (e.g., over 20-30 years), which is transformed into a standardized normal distribution. The non-exceedance probability of TDx is finally expressed in terms of unit of standard deviation (TDI), following the approach

  6. A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P

    2015-07-01

    The water flow and the mass transport of agrochemicals in the unsaturated and saturated zone were simulated in the extended alluvial basin of Keritis river in Crete, Greece (a predominantly flat and most productive citrus growing area) using the hydrological model MIKE SHE. This model was set up based on information on land use, geology, soil structure, meteorological data, as well as groundwater level data from pumping wells. Additionally, field measurements of the soil moisture at six different locations from three soil depths (0.1, 0.2, and 0.3 m) were used as targets to calibrate and validate the unsaturated flow model while for saturated condition, groundwater level data from three well locations were used. Following the modeling approach, the agrochemical mass transport simulation was performed as well, based on different application doses. After the successful calibration processes, the obtained 1D modeling results of soil moisture-pressure related to soil depth at different locations were used to design a proper and cost-effective irrigation programme (irrigation timing, frequency, application rates, etc.) for citrus orchards. The results of the present simulation showed a very good correlation with the field measurements. Based on these results, a proper irrigation plan can be designed at every site of the model domain reducing the water consumption up to 38% with respect to the common irrigation practices and ensuring the citrus water productivity. In addition, the effect of the proposed irrigation scheduling on citrus yield was investigated. Regarding the agrochemical concentration in the groundwater for all dose cases was below the maximum permissible limit. The only exception was for the highest dose in areas where the water table is high. Thus, this modeling approach could be used as a tool for appropriate water management in an agricultural area estimating at each time and location the availability of soil water, contributing to a cost

  7. Improved Evapotranspiration Simulation In the CERES-Maize Crop Model Under Limited Irrigation Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasingly considered alternative to full irrigation practices is limited irrigation, where the crop is intentionally stressed during specific growth stages in an effort to maximize yield per unit water consumed, or evapotranspiration (ET). Recent studies have shown that CERES-Maize crop model...

  8. Residue management, nitrogen, and carbon amendment effects on corn under full and limited irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn residue is a suitable feedstock for livestock forage and cellulosic ethanol. However, information about the response of the subsequent corn crop to residue removal in irrigated no-till continuous corn rotations is lacking. Subsequently, little is known regarding its response under limited irrig...

  9. Effect of irrigation and fertilizer on ammonia volatilization in managed Pacific Northwest landscapes

    NASA Astrophysics Data System (ADS)

    Horneck, D. A.; Holcomb, J.

    2011-12-01

    Urea is the leading nitrogen (N) fertilizer used in the US. It possesses a high percent of N (46%) and hydrolysis lends it to high N volatilization loss. Incorporation limits volatilization. Mechanical incorporation is not always feasible,incorporation with irrigation water substitutes. Limited field research on irrigation rates needed to limit N volatilization exists. Fertilizer choice also influenced volatilization. Ammonia volatilization for urea was monitored at 6 irrigation rates; 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0 inches. Limited irrigation treatments had Agrotain and NSN. These trials were on a sandy soil in winter wheat following potatoes. The N loss as ammonia 25 days after application was 60.06, 53.91, 38.73, 17.31, 5.55, 2.80 % N applied for the 0.0, 25, 63, 127, 190, and 250 mm of irrigation respectively. Every irrigation rate experienced immediate N loss. Volatilization rates increased through 7 days following application where volatilization rate began to decrease. 9 days after application treatments showed little to no volatilization. Total N volatilization was greatest at the 0.0 and 63 mm irrigation rates and losses were significantly decreased at rates greater than 125 mm irrigation. Fertilizer type also influences volatilization loss with losses from urea and NSN the greatest. Agrotain consistently had the lowest volatilization with ammonium sulfate following.

  10. Delineating site-specific irrigation management units for managing soil salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield varies within fields due to nonuniformity of a number of factors including climate, pests, disease, management, topography, and soil. Conventional farming manages a field uniformly; as a result, conventional farming tends to wastes resources and money, and tends to detrimentally impact t...

  11. Ancestral irrigation method by kanis in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  12. Fair and sustainable irrigation water management in the Babai basin, Nepal.

    PubMed

    Adhikari, B; Verhoeven, R; Troch, P

    2009-01-01

    This paper attempts to find a strategy to provide year-round irrigation for cultivating three crops per year in the southern plains of the country taking a case study of the Babai basin. Despite having enough flows during the summer for growing rice in total 27,000 ha area, the dry season flows of the Babai river can irrigate only 6,300 ha in winter and 4,000 ha in spring limiting the cropping intensity to 138.50%. It is proposed to irrigate the 7,500 ha southern dry area at the right bank bringing water from a large snow-fed river: the Karnali. Water balance study of the three irrigation regions to be irrigated from the Babai source preserving their existing water rights showed that the year-round irrigation at the west with the proposed arrangement will fall short of only 13.9 million m(3) water volume. At the east side, the head reach area and the tail portion will fall short of 19.4 and 66.4 million m(3) of water to insure a cropping intensity of 250%. The deficits can be fulfilled by means of capturing the excess river water of rainy season in local reservoirs and by making conjunctive use of groundwater. The proposed solution is financially, environmentally and socially viable being a cost effective, user friendly and should be the linchpin towards attaining a sustainable year-round irrigation in the region.

  13. Fair and sustainable irrigation water management in the Babai basin, Nepal.

    PubMed

    Adhikari, B; Verhoeven, R; Troch, P

    2009-01-01

    This paper attempts to find a strategy to provide year-round irrigation for cultivating three crops per year in the southern plains of the country taking a case study of the Babai basin. Despite having enough flows during the summer for growing rice in total 27,000 ha area, the dry season flows of the Babai river can irrigate only 6,300 ha in winter and 4,000 ha in spring limiting the cropping intensity to 138.50%. It is proposed to irrigate the 7,500 ha southern dry area at the right bank bringing water from a large snow-fed river: the Karnali. Water balance study of the three irrigation regions to be irrigated from the Babai source preserving their existing water rights showed that the year-round irrigation at the west with the proposed arrangement will fall short of only 13.9 million m(3) water volume. At the east side, the head reach area and the tail portion will fall short of 19.4 and 66.4 million m(3) of water to insure a cropping intensity of 250%. The deficits can be fulfilled by means of capturing the excess river water of rainy season in local reservoirs and by making conjunctive use of groundwater. The proposed solution is financially, environmentally and socially viable being a cost effective, user friendly and should be the linchpin towards attaining a sustainable year-round irrigation in the region. PMID:19403963

  14. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year. PMID:27476071

  15. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    SciTech Connect

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  16. Best Management of Irrigation Fertilization to Sustain Environment and High yield of Maize in the Arid land in Egypt

    NASA Astrophysics Data System (ADS)

    Gameh Ali, M.

    2012-04-01

    Assiut is a county in the middle of Egypt,located 600 km south of the Mediterranean Sea. Water and fertilization management experimental trails were conducted to search for the best water consumption of Maize beside the best rate and type of nitrogen fertilization to reduce nitrate pollution and reduce fertilizer and save energy. Three irrigation regimes ( 25, 50, and 75% of soil moisture depletion of the available water, SMD) were used to irrigate Corn (Maize : Zea mays L. ) variety Tri hybrid cross. Three nitrogen fertilizer sources (Urea 46.5% N; Ammonium nitrate 33.5%N and slow release nitrogen 40%N) were applied at three rates of 90; 120 and 150 kg/ Feddan (4200m2 about one Acre). The results suggested that the best management is to use the slow release fertilizer at rate of 150 kg N/ Feddan (4200m2 ) with 50% SMD the highest Maize yield with good quality and reducing the environmental hazardous. Key words: Slow release fertilizer, Nitrogen leaching; Irrigation management. Environmental protection.

  17. Strategy of Irrigation Branch in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  18. Participatory innovation process for testing new practices for soil fertility management in Chókwè Irrigation Scheme (Mozambique)

    NASA Astrophysics Data System (ADS)

    Sánchez Reparaz, Maite; de Vente, Joris; Famba, Sebastiao; Rougier, Jean-Emmanuel; Ángel Sánchez-Monedero, Miguel; Barberá, Gonzalo G.

    2015-04-01

    Integrated water and nutrient management are key factors to increase productivity and to reduce the yield gap in irrigated systems in Sub-Saharan Africa. These two elements are affected by an ensemble of abiotic, biotic, management and socio-economic factors that need to be taken into account to reduce the yield gap, as well as farmers' perceptions and knowledge. In the framework of the project European Union and African Union cooperative research to increase Food production in irrigated farming systems in Africa (EAU4Food project) we are carrying out a participatory innovation process in Chókwè irrigation scheme (Mozambique) based on stakeholders engagement, to test new practices for soil fertility management that can increase yields reducing costs. Through a method combining interviews with three farmers' associations and other relevant stakeholders and soil sampling from the interviewed farmers' plots with the organization of Communities of Practices, we tried to capture how soil fertility is managed by farmers, the constraints they find as well as their perceptions about soil resources. This information was the basis to design and conduct a participatory innovation process where compost made with rice straw and manure is being tested by a farmers' association. Most important limitations of the method are also evaluated. Our results show that socio-economic characteristics of farmers condition how they manage soil fertility and their perceptions. The difficulties they face to adopt new practices for soil fertility management, mainly related to economic resources limitations, labour availability, knowledge time or farm structure, require a systemic understanding that takes into account abiotic, biotic, management and socio-economic factors and their implication as active stakeholders in all phases of the innovation process.

  19. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study

    PubMed Central

    Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; PK, Ajithkumar; Johny, Thomas; VK, Linith; Samuel, Anju

    2015-01-01

    Introduction Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. Objective To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Materials and Methods Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Result Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Conclusion Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing. PMID:26436042

  20. Irrigation: Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  1. Sensitivity Analysis for Model Simulations of the Effects of Irrigation Water Management on Crop Yields and Groundwater Salt Loading

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Suarez, D. L.; Corwin, D. L.

    2013-12-01

    One strategy for sustaining irrigated agricultural productivity in the face of diminishing water and land availability is to make greater use of marginal quality water for crop production. In implementing such a strategy, a key factor for maintaining productivity will be soil salinity. Irrigation waters, especially recycled or otherwise marginal quality waters, contain salts that can accumulate in soils over time and reduce yields. In arid regions where rainfall is not sufficient to flush the salts from the root zone, it is necessary to apply excess irrigation water to leach the soil. To avoid wasting water, and to lessen impacts on groundwater quality, it is desirable that soil leaching be minimized to the extent possible. Classical guidelines for managing salinity are intended to be general, providing a conservative estimate of the leaching requirement that is appropriate across a range of soils and waters. A consequence of this generality is that in some cases the guidelines recommend more leaching (and hence more salt and nutrient loading to groundwater) than is necessary. A simulation modeling approach offers potential advantages over classical methods for site-specific management, but the technique is considerably more complex, and difficulties exist with respect to developing procedures for routine use. The models typically have a large number of parameters and the simulations can have a high degree of uncertainty. Global sensitivity analyses can reveal which parameter variations or uncertainties have the greatest impact on variations or uncertainties in model predictions. In this work we evaluate UNSATCHEM model parameter sensitivities in simulating a seasonal irrigated cropping scenario. Parameters sensitivities are determined with respect to three performance measures: crop yield, root zone average soil salinity, and salt loading to groundwater.

  2. Assessing best management practices for remediation of selenium loading in groundwater to streams in an irrigated region

    NASA Astrophysics Data System (ADS)

    Bailey, Ryan T.; Romero, Erica C.; Gates, Timothy K.

    2015-02-01

    Selenium (Se) contamination in groundwater and surface water in numerous river basins worldwide has become a critical issue in recent decades. An essential micro-nutrient, Se can prove harmful to fish, water fowl, livestock, and even humans at elevated concentrations. In an overall effort to curb Se contamination in environmental systems, this study aims to identify best-management practices (BMPs) that can assist in remediating Se contamination in irrigated river basins. Using multi-decadal simulations of a calibrated and tested groundwater flow model (MODFLOW-UZF) and Se chemical reactive transport model (UZF-RT3D), the impact of water- and land-management strategies in reducing Se contamination are explored for a 500 km2 study region in the Lower Arkansas River Valley (LARV) in southeastern Colorado. The effectiveness of reduced applied irrigation volumes, sealing of earthen irrigation canals, rotational fallowing of cultivated land, reduced fertilizer loading, and enhanced riparian buffer zones, implemented individually as well as concurrently in various combinations, is explored. Results indicate that significant (>10%) decreases in Se mass loading to the Arkansas River system (main stem and tributaries) can be achieved when individual BMPs are implemented, with land fallowing, reduced irrigation, and enhanced riparian buffer zones providing the best results (13-14% load reduction). Even greater impacts (20-50% Se load reduction) can be achieved with 3 or 4 BMPs implemented concurrently. Results demonstrate that Se remediation can potentially be achieved within the LARV, and also can serve as a guide for other Se-affected river basins within the western United States and throughout the world.

  3. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  4. Management of staghorn stones using a combination of lithotripsy, percutaneous nephrolithotomy and Solution R irrigation.

    PubMed

    Holden, D; Rao, P N

    1991-01-01

    The treatment of staghorn and partial staghorn calculi remains complex despite modern methods of stone removal. We describe the results following treatment of 112 stones. Three methods were used: percutaneous nephrolithotomy, extracorporeal shockwave lithotripsy and Solution R irrigation, either alone or in combination; 57 stones (55.8%) were completely cleared, with Solution R irrigation helping to achieve complete clearance in 6 of these. A further 24 stones were not completely cleared (small asymptomatic fragments less than 3 mm remained). A satisfactory outcome (stone-free or asymptomatic fragments less than 3 mm) was achieved in 81 stones (79%).

  5. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance

    PubMed Central

    Montesano, Francesco F.; Serio, Francesco; Mininni, Carlo; Signore, Angelo; Parente, Angelo; Santamaria, Pietro

    2015-01-01

    Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant–water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, “Kabiria” (cocktail type) and “Diana” (intermediate type), and substrate water potential set-points (−30 and −60 hPa, for “Diana,” and −30, −60, and −90 hPa for “Kabiria”), were compared. Compared with −30 hPa, water stress (corresponding to a −60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At −60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when −30, −60, and −90 hPa irrigation set-points were used in “Kabiria.” Unmarketable yield in “Diana” increased when water stress was imposed (187 vs. 349 g·plant−1, respectively, at −30 and −60 hPa), whereas the opposite effect was observed in “Kabiria,” where marketable yield loss decreased linearly [by 1.05 g·plant−1 per unit of substrate water potential (in the tested range from −30 to −90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in “Diana,” only a

  6. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance.

    PubMed

    Montesano, Francesco F; Serio, Francesco; Mininni, Carlo; Signore, Angelo; Parente, Angelo; Santamaria, Pietro

    2015-01-01

    Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant-water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, "Kabiria" (cocktail type) and "Diana" (intermediate type), and substrate water potential set-points (-30 and -60 hPa, for "Diana," and -30, -60, and -90 hPa for "Kabiria"), were compared. Compared with -30 hPa, water stress (corresponding to a -60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At -60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when -30, -60, and -90 hPa irrigation set-points were used in "Kabiria." Unmarketable yield in "Diana" increased when water stress was imposed (187 vs. 349 g·plant(-1), respectively, at -30 and -60 hPa), whereas the opposite effect was observed in "Kabiria," where marketable yield loss decreased linearly [by 1.05 g·plant(-1) per unit of substrate water potential (in the tested range from -30 to -90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in "Diana," only a slight increase was observed from -30 vs. -60 hPa (3.3 and 1

  7. Management of postharvest deficit irrigation of peach trees using infrared canopy temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely-sensed canopy temperature from infrared thermometer (IRT) sensors has long been shown effective for detecting plant water stress, a vadose zone problem for growing plants. To help alleviate water shortage in the San Joaquin Valley of California, deficit irrigation may be used where the tar...

  8. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    PubMed

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-01

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment.

  9. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  10. Greenhouse gas emissions, irrigation water use, and arsenic concentrations; a common thread in rice water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has historically been grown as a flooded crop in the United States. As competition for water resources has grown, there is interest in reducing water use in rice production so as to maintain a viable and sustainable rice industry into the future. An irrigation study was established in 2011 at ...

  11. Crop rotation and residue management effects on deficit irrigated cotton and corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compared with disk tillage (DT), no-tillage (NT) retains residue and increases precipitation capture, which has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. Our objective was to quantify DT and NT effects on water conservation during fallow and the subsequent y...

  12. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    PubMed

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-01

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment. PMID:26992352

  13. Directed manipulation of crop water status through canopy temperature-based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the relationship between canopy temperature and plant water status is well established, canopy temperature as a means of controlling crop irrigation has been limited in production applications due to the cost and complexity of temperature monitoring. A new low-cost infrared thermometry system...

  14. Irrigation in water restricted regions: Managing water use efficiency with limited available water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Political and social pressures to increase water-use efficiency in agriculture from plant to regional scales are reaching critical levels. A region where these pressures have been extremely acute is most semi-arid parts of Texas where reliable crop production is possible only through irrigation. Re...

  15. Synthetic- and bio-polymer use for runoff water quality management in irrigated agriculture.

    PubMed

    Sojka, R E; Entry, J A; Orts, W J; Morishita, D W; Ross, C W; Horne, D J

    2005-01-01

    Low concentrations of synthetic- or bio-polymers in irrigation water can nearly eliminate sediment, N, ortho- and total-P, DOM, pesticides, micro-organisms, and weed seed from runoff. These environmentally safe polymers are employed in various sensitive uses including food processing, animal feeds, and potable water purification. The most common synthetic polymer is anionic, high purity polyacrylamide (PAM), which typically provides 70-90% contaminant elimination. Excellent results are achieved adding only 10 ppm PAM to irrigation water, applying 1-2 kg ha(-1) per irrigation, costing 4 dollars - 12 dollars kg(-1). Biopolymers are less effective. Using twice or higher concentrations, existing biopolymers are approximately 60% effective as PAM, at 2-3 times the cost. A half million ha of US irrigated land use PAM for erosion control and runoff protection. The practice is spreading rapidly in the US and worldwide. Interest in development of biopolymer surrogates for PAM is high. If the supply of cheap natural gas (raw material for PAM synthesis) diminishes, industries may seek alternative polymers. Also "green" perceptions and preferences favor biopolymers for certain applications. PMID:15850180

  16. Simulations of Limited-Water Irrigation Management Options for Corn in Dryland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diminishing land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. To produce more for every drop of water used in agriculture, it is important to develop location specific alternate agronomic practices vis-à-vis...

  17. A farm pond water irrigation management system in Mid-South United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the mid-southern United States, though most states receive more than 1000 mm of annual precipitation, only 20% irrigation is from surface water in this region. The majority of rainfall occurs in fall, winter and spring, but water deficit still exists during crop critical growing season from May t...

  18. A risk-based framework for water resource management under changing water availability, policy options, and irrigation expansion

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2016-08-01

    Long-term water resource management requires the capacity to evaluate alternative management options in the face of various sources of uncertainty in the future conditions of water resource systems. This study proposes a generic framework for determining the relative change in probabilistic characteristics of system performance as a result of changing water availability, policy options and irrigation expansion. These probabilistic characteristics can be considered to represent the risk of failure in the system performance due to the uncertainty in future conditions. Quantifying the relative change in the performance risk can provide a basis for understanding the effects of multiple changing conditions on the system behavior. This framework was applied to the water resource system of the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. A "bottom-up" flow reconstruction algorithm was used to generate multiple realizations for water availability within a feasible range of change in streamflow characteristics. Consistent with observed data and projected change in streamflow characteristics, the historical streamflow was perturbed to stochastically generate feasible future flow sequences, based on various combinations of changing annual flow volume and timing of the annual peak. In addition, five alternative policy options, with and without potential irrigation expansion, were considered. All configurations of water availability, policy decisions and irrigation expansion options were fed into a hydro-economic water resource system model to obtain empirical probability distributions for system performance - here overall and sectorial net benefits - under the considered changes. Results show that no one specific policy can provide the optimal option for water resource management under all flow conditions. In addition, it was found that the joint impacts of changing water availability, policy, and irrigation expansion on system performance are complex and

  19. Management of Root-knot Nematodes by Phenamiphos Applied through an Irrigation Simulator with Various Amounts of Water.

    PubMed

    Johnson, A W; Young, J R; Wright, W C

    1986-07-01

    Phenamiphos (6.7 kg a.i./ha) was applied via an irrigation simulator to squash at planting (AP) and 2 weeks after planting (PP), and to corn AP and 1 week PP to manage root-knot nematodes (Meloidogyne incognita). The nematicide was applied with 0.25, 0.64, 1.27, and 1.91 cm surface water/ ha to a Lakeland sand in which the soil moisture was at or near field capacity. Based on efficacy and crop response, no additional benefits resulted when phenamiphos was applied in volumes of water greater than 0.25 crn/ha. The cost of applying each 0.25 cm of water over a hectare is approximately $1.08, or a 92% reduction in nematicide application cost over conventional methods ($13.50/ha). Low root-gall indices and high yields from squash and corn indicate more effective nematode management when phenamiphos was applied AP rather than PP. Results from this method of applying phenamiphos suggest that certain nematicides could be used as salvage alternatives when nematodes are detected in crops soon after planting. For multiple-pest management, nematicides, other compatible biocides, and fertilizers could be applied simultaneously with sprinkler irrigation. PMID:19294192

  20. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  1. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  2. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  3. Unintended consequence of managing the coupled humans and water: the irrigation efficiency paradox

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2015-12-01

    Water shortage most severely restricts the socio-economic development of many arid and semi-arid regions in the world, for which water-saving technology is believed to be an effective solution. However, as a realworld case, the total water consumption of Xinjiang Uygur Autonomous Region of China continued to increase as irrigation efficiency dramatically improved through the application of water-saving technology in the study period 1998-2010. This phenomenon, known as the irrigation efficiency paradox or Jevons paradox, is interpreted as an economic rebound effect. In this study, we explore the dynamic feedbacks between humans and water in this paradox through a socio-hydrological perspective. We analyze the co-evolutionary trajectory of coupled human-water dynamics from 1950 to 2010 to provide it a general context. A conceptual socio-hydrological model based on five key elements, namely, irrigation land, water-saving technology, water consumption, societal sensitivity to water scarcity, and the policy mix, is constructed. The policy mix to be adopted is determined by a social decision-making process mainly based on the societal sensitivity, which reflects the societal preference on two sorts of policies: (i) irrigation land control and (ii) water-saving technology promotion. Modeling results verify the hypothesized mechanism by successfully reproducing the observed dynamics including the emergence of the efficiency paradox. Our analysis indicates that the implementation of more adaptive rules may even eliminate the paradox. The effects of different initial policy mixes are also explored, and the results show that land control policies should be given equal priority when dealing with water scarcity. These findings point to a double-helix-type co-evolution of humans and water.

  4. Tillage, cover-crop residue management, and irrigation incorporation impact on fomesafen runoff.

    PubMed

    Potter, Thomas L; Truman, Clint C; Webster, Theodore M; Bosch, David D; Strickland, Timothy C

    2011-07-27

    Intensive glyphosate use has contributed to the evolution and occurrence of glyphosate-resistant weeds that threaten production of many crops. Sustained use of this highly valued herbicide requires rotation and/or substitution of herbicides with different modes of action. Cotton growers have shown considerable interest in the protoporphyrinogen oxidase inhibitor, fomesafen. Following registration for cotton in 2008, use has increased rapidly. Environmental fate data in major use areas are needed to appropriately evaluate risks. Field-based rainfall simulation was used to evaluate fomesafen runoff potential with and without irrigation incorporation in a conventional tillage system (CT) and when conservation tillage (CsT) was practiced with and without cover crop residue rolling. Without irrigation incorporation, relatively high runoff, about 5% of applied, was measured from the CT system, indicating that this compound may present a runoff risk. Runoff was reduced by >50% when the herbicide was irrigation incorporated after application or when used with a CsT system. Data indicate that these practices should be implemented whenever possible to reduce fomesafen runoff risk. Results also raised concerns about leaching and potential groundwater contamination and crop injury due to rapid washoff from cover crop residues in CsT systems. Further work is needed to address these concerns.

  5. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    NASA Astrophysics Data System (ADS)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  6. Salinity on irrigated lands

    SciTech Connect

    Westmore, R.A.; Manbeck, D.M.

    1984-02-01

    The technology for controlling salinity on irrigated lands is relatively simple, involving both minor and major changes in current land-management practices. Minor changes include more frequent irrigation, the use of salt-tolerant crops, preplanning irrigation, and seed placement. The major changes require a shift from gravity to sprinkler or drip systems, increased water supply and quality, soil modification, land grading, and improved drainage. Some of the major changes are difficult, and some impossible, to accomplish. Examples of reclamation include the Mardan Salinity Control and Reclamation Project (SCARP) in Pakistan. 5 references, 2 figures, 2 tables

  7. Carbon Dioxide Emissions as Affected by Alternative Long-Term Irrigation and Tillage Management Practices in the Lower Mississippi River Valley

    PubMed Central

    Smith, S. F.; Brye, K. R.

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha−1) than under dryland management (11.7 Mg CO2 ha−1). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability. PMID:25371912

  8. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    PubMed

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.

  9. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  10. Productivity of irrigation technologies in the White Volta basin

    NASA Astrophysics Data System (ADS)

    Ofosu, E. A.; van der Zaag, P.; van de Giesen, N. C.; Odai, S. N.

    Parts of the White Volta basin in northern Ghana and southern Burkina Faso have witnessed a spectacular rise of irrigated agriculture since about 2000, largely without government support, and seems to have been triggered by a strong and growing demand for vegetables, notably tomatoes in the urban centres of southern Ghana. It is interesting to note the variety of different irrigation technologies that individual and groups of smallholder farmers adopted, adapted and implemented. Some technologies are well-known, such as those associated with conventional sources of water like small and large reservoirs; others have been rarely described in literature, such as temporal shallow wells and alluvial dugouts. This paper describes and characterises these different irrigation technologies and conducts a comparative analysis of their productivities, in terms of crop yield, water use and financial returns. The study was conducted in three neighbouring and transboundary watersheds (Anayari, Atankwidi and Yarigatanga) located in the Upper East Region of Ghana and southern Burkina Faso. For the study, 90 tomato farmers with different irrigation technologies were surveyed during one crop season (2007/2008). The results show that adequate fertilizer application is the major contributor to irrigation productivity. Technologies characterised by relatively small farm sizes are better managed by the surveyed farmers because they are able to provide adequate water and crop nutrients thus resulting in higher productivity, and high profit margins. Apart from technologies that depend on reservoirs, all other technologies surveyed in the paper are farmer driven and required no government support. This ongoing type of endogenous irrigation development provides a strong backing that the way forward in sub-Saharan Africa is for governments to create policies that facilitate poor farmers becoming irrigation entrepreneurs. Such policies should aim to enhance the reliability of markets (both

  11. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  12. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand.

  13. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand. PMID:27239710

  14. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching

    NASA Astrophysics Data System (ADS)

    Phogat, V.; Skewes, M. A.; Cox, J. W.; Sanderson, G.; Alam, J.; Šimůnek, J.

    2014-05-01

    and to reduce their leaching out of the crop root zone. Slightly higher nitrogen uptake (1.73 kg ha-1) was recorded when fertigation was applied second to last hour in an irrigation event, as compared to applying it earlier during an irrigation event. Similarly, a 20% reduction in irrigation and N application produced a pronounced reduction in drainage (28%) and N leaching (46.4%), but it also decreased plant N uptake by 15.8% and water uptake by 4.8%, and increased salinity by 25.8%, as compared to the normal practice. This management would adversely impact the sustainability of this expensive irrigation system. However, reducing only irrigation by 30% during the 2nd half of the crop season (January to August) reduced drainage and N leaching by 37.2% and 50.5%, respectively, and increased N uptake by 6.9%. Such management of irrigation would be quite promising for the sustainability of the entire system. It is concluded that judicious manipulations of irrigation and fertilizer applications can be helpful in designing drip irrigation schedules for perennial horticultural crops to achieve improved efficiency of irrigation and fertigation applications and reduced contamination of receiving water bodies.

  15. Irrigation Management, Evolving Canal Systems and Social Simulation in Hohokam Society, Central Arizona

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Murphy, John; Purdue, Louise

    2015-04-01

    As may societies that rely on irrigation, the Hohokam civilization in South West Arizona faced challenges arising from the variability and unpredictability of water supply and the physics underlying the flow of water through open channels. Such challenges can be overcome through cooperation and other forms of structured social interactions and institutions ranging from simple to complex. These interactions are influenced by and are influenced themselves by environmental conditions, including hydrology, soils and vegetation. At the same time, the environmental record provides clues to these interactions. To better understand these past interactions we combine geoarchaeological studies with flow simulations and Agent Based Modeling. Fieldwork conducted on Hohokam irrigation revealed new details about canal morphology, including shape, size, elevation, slope, and cleaning events. Micromorphological study of the sediments in these structures allow finer resolution in discerning the performance (velocity, discharge, etc.) of the canal channels and their evolution through time. We couple this with basic agent-based modeling to explore how these constraints might have required alternative strategies for cooperation. The combination of both approaches is key to discerning both broad differences between periods and fine variation within major chronological periods. We show that the coupling of social and physical models on very fine time scales can offer insight into the social arrangements and day-to-day life of people in the prehistoric past and inform our understanding of those societies' long-term changes.

  16. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  17. Best Practice Irrigation Management and Extension in Peri-Urban Landscapes--Experiences and Insights from the Hawkesbury-Nepean Catchment, Australia

    ERIC Educational Resources Information Center

    Maheshwari, B. L.; Plunkett, M.

    2015-01-01

    Purpose: The aim of this article to examine key irrigation management issues and their implications for future research and extension developments. Design/Methodology/Approach: Peri-urban landscapes are important as they supply fresh fruit, vegetables, turf, ornamental plants and other farm products to the cities. In this study, the…

  18. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  19. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  20. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    PubMed Central

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles published from 1982 to 2013 and was limited to papers published in English. The searched keywords were “Biofilms AND endodontics”, “Biofilms AND sodium hypochlorite”, "Biofilms AND chlorhexidine", "Biofilms AND MTAD", "Biofilms AND calcium hydroxide", “Biofilms AND ozone”, “Biofilms AND lasers” and "Biofilms AND nanoparticles". The reference list of each article was manually searched to find other suitable sources of information. PMID:24688576

  1. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    NASA Astrophysics Data System (ADS)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple

  2. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management.

    PubMed

    Depardieu, Claire; Prémont, Valérie; Boily, Carole; Caron, Jean

    2016-01-01

    The objective of this work was to optimize a soilless growing system for producing bare-root strawberry transplants in three organic substrates. Three trials were conducted in the Quebec City area to determine the productivity potential of a peat-sawdust mixture (PS25) and an aged bark (AB) material compared to conventional coconut fiber (CF) substrate. A first experiment was carried out to define appropriate irrigation set points for each substrate that allowed optimal plant growth and fruit yields. For all substrates, wetter conditions (irrigation started at -1.0 kPa for CF; -1.5 kPa for AB and PS25, relative to -1.5 kPa for CF; -2.5 kPa for AB and PS25) enhanced plant growth and fruit production. The second trial was carried out to test the productivity potential for commercial production of the three substrates using high-tunnels. After the addition of an initial fertilizer application to PS25, we successfully established bare-root plants that gave similar fruit yields than those in CF and AB. The productivity potential of PS25 and AB were further confirmed during a third trial under greenhouse conditions. The critical factor for plant establishment in PS25 was attributed to consistent N, P and S immobilization by microorganisms, as well as the retention of other elements (Mg2+, K+) in the growth media. Taken together, our results showed that PS25 and AB are promising alternative substrates to coconut coir dust for strawberry cultivation. This paper also provides a useful guide for strawberry cultivation in Quebec, and suggests future research that might be conducted to optimize soilless systems for cold-climate strawberry production in Northern America. PMID:27099949

  3. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management

    PubMed Central

    Depardieu, Claire; Caron, Jean

    2016-01-01

    The objective of this work was to optimize a soilless growing system for producing bare-root strawberry transplants in three organic substrates. Three trials were conducted in the Quebec City area to determine the productivity potential of a peat-sawdust mixture (PS25) and an aged bark (AB) material compared to conventional coconut fiber (CF) substrate. A first experiment was carried out to define appropriate irrigation set points for each substrate that allowed optimal plant growth and fruit yields. For all substrates, wetter conditions (irrigation started at -1.0 kPa for CF; -1.5 kPa for AB and PS25, relative to -1.5 kPa for CF; -2.5 kPa for AB and PS25) enhanced plant growth and fruit production. The second trial was carried out to test the productivity potential for commercial production of the three substrates using high-tunnels. After the addition of an initial fertilizer application to PS25, we successfully established bare-root plants that gave similar fruit yields than those in CF and AB. The productivity potential of PS25 and AB were further confirmed during a third trial under greenhouse conditions. The critical factor for plant establishment in PS25 was attributed to consistent N, P and S immobilization by microorganisms, as well as the retention of other elements (Mg2+, K+) in the growth media. Taken together, our results showed that PS25 and AB are promising alternative substrates to coconut coir dust for strawberry cultivation. This paper also provides a useful guide for strawberry cultivation in Quebec, and suggests future research that might be conducted to optimize soilless systems for cold-climate strawberry production in Northern America. PMID:27099949

  4. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management.

    PubMed

    Depardieu, Claire; Prémont, Valérie; Boily, Carole; Caron, Jean

    2016-01-01

    The objective of this work was to optimize a soilless growing system for producing bare-root strawberry transplants in three organic substrates. Three trials were conducted in the Quebec City area to determine the productivity potential of a peat-sawdust mixture (PS25) and an aged bark (AB) material compared to conventional coconut fiber (CF) substrate. A first experiment was carried out to define appropriate irrigation set points for each substrate that allowed optimal plant growth and fruit yields. For all substrates, wetter conditions (irrigation started at -1.0 kPa for CF; -1.5 kPa for AB and PS25, relative to -1.5 kPa for CF; -2.5 kPa for AB and PS25) enhanced plant growth and fruit production. The second trial was carried out to test the productivity potential for commercial production of the three substrates using high-tunnels. After the addition of an initial fertilizer application to PS25, we successfully established bare-root plants that gave similar fruit yields than those in CF and AB. The productivity potential of PS25 and AB were further confirmed during a third trial under greenhouse conditions. The critical factor for plant establishment in PS25 was attributed to consistent N, P and S immobilization by microorganisms, as well as the retention of other elements (Mg2+, K+) in the growth media. Taken together, our results showed that PS25 and AB are promising alternative substrates to coconut coir dust for strawberry cultivation. This paper also provides a useful guide for strawberry cultivation in Quebec, and suggests future research that might be conducted to optimize soilless systems for cold-climate strawberry production in Northern America.

  5. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  6. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  7. Modelling wet and dry spells for daily rainfall data series: an application to irrigation management in North-West Italy

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Agnese, Carmelo; Baiamonte, Giorgio; Cat Berro, Daniele; Mercalli, Luca

    2016-04-01

    rainfall events for Italian Sub-Alpine and Mediterranean areas". Adv. Sci. Res., 1, 1-7, 2012, doi:10.5194/asr-1-1-2012 Agnese C., Baiamonte G., Cammalleri C. (2014)."Modelling the occurrence of rainy days under a typical Mediterranean climate". Adv. Water Res., 64, 62-76 Canone D., Previati M., Bevilacqua I., Salvai L., Ferraris S. (2015) "Field measurements based model for surface irrigation efficiency assessment". Agric. Water Manag., vol. 156(1) pp. 30-42, doi:10.1016/j.agwat.2015.03.01 Chatfield C., Wet and dry spells. Weather 1966; 21:308-10.

  8. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part C, Summary of irrigation-drainage effects on water quality, bottom sediment, and biota

    USGS Publications Warehouse

    Hoffman, Ray J.

    1993-01-01

    This report presents a summary of the detailed scientific study of Stillwater Wildlife Management Area and other nearby wetlands in west-central Nevada during 1987-90. The work was funded by the National Irrigation Water Quality Program of the U.S. Department of the Interior with the overall objectives of determining (1) the extent, magnitude, and effects of selected water-quality constituents associated with irrigation drainage on fish, wildlife, and human health, and (2) the sources and exposure pathways that cause contamination where adverse effects are documented. Much of the information in this report was summarized from two previously published interpretive reports that were completed to fulfill study objectives. Where applicable, data for the study area from other published sources also were utilized. The results of these studies indicate that the aquatic biota in natural wetlands of the Carson Desert are adversely affected by hydrological and geochemical sources and processes in the Newlands Irrigation Project area. Reactions between water and naturally occurring minerals in the shallow alluvial aquifer increase concentrations of potentially toxic constituents in ground water that eventually enters the wetlands. Once in the wetlands, these constituents are furhter concentrated by evaporation and transpiration. Water from some agricultural drains that enter Stillwater WMA was acutely toxic to aquatic organisms. The drains in the agricultural areas, which eventually discharge to the wetlands, were also implicated as sites of uptake of selenium and mercury by aquatic organisms.

  9. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  10. Effects of 1,3-Dicliloropropene for Meloidogyne incognita Management on Cotton Produced under Furrow Irrigation

    PubMed Central

    Thomas, S. H.; Smith, D. W.

    1993-01-01

    Field trials were conducted during 1990 to evaluate the effects of preplant soil fumigation with 1,3-dichloropropene (1,3-D) on yield and fiber quality of furrow-irrigated cotton cultivars subjected to high population densities of Meloidogyne incognita. We measured the responses of eight upland cotton cultivars with different levels of root-knot nematode resistance and compared the responses of upland and Pima cottons. Reductions in lint weight ranged from 10 to 52% among cultivars grown in soil without 1,3-D fumigation compared with those grown in treated soil. Meloidogyne incognita reduced yields primarily by reducing the number of bolls on each plant, rather than by decreasing boll size. Cotton fiber quality varied among cultivars but was unaffected by M. incognita in either study. Upland cotton cultivar Acala 1517-88 and M-315/240 sustained less than half the yield reductions observed with M. incognita-susceptible cultivars Deltapine 41 and Paymaster 145. Sixty days after cotton emergence, fewer M. incognita second-stage juveniles were recovered from M-315/240 than all other cultivars. PMID:19279835

  11. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  12. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  13. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  14. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  16. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production.

    PubMed

    Venterea, Rodney T; Hyatt, Charles R; Rosen, Carl J

    2011-01-01

    Potato ( L.) is a N-intensive crop, with high potential for nitrate (NO) leaching, which can contribute to both water contamination and indirect nitrous oxide (NO) emissions. Two approaches that have been considered for reducing N losses include conventional split application (CSA) of soluble fertilizers and single application of polymer-coated urea (PCU). The objectives of this study were to: (i) compare NO leaching using CSA and two PCUs (PCU-1 and PCU-2), which differed in their polymer formulations, and (ii) use measured NO leaching rates and published emissions factors to estimate indirect NO emissions. Averaged over three growing seasons (2007-2009), NO leaching rates were not significantly different among the three fertilizer treatments. Using previously reported direct NO emissions data from the same experiment, total direct plus indirect growing season NO emissions with PCU-1 were estimated to be 30 to 40% less than with CSA. However, PCU-1 also resulted in greater residual soil N after harvest in 2007 and greater soil-water NO in the spring following the 2008 growing season. These results provide evidence that single PCU applications for irrigated potato production do not increase growing season NO leaching compared with multiple split applications of soluble fertilizers, but have the potential to increase N losses after the growing season and into the following year. Estimates of indirect NO emissions ranged from 0.8 to 64% of direct emissions, depending on what value was assumed for the emission factor describing off-site conversion of NO to NO. Thus, our results also demonstrate how more robust models are needed to account for off-site conversion of NO to NO, since current emission factor models have an enormous degree of uncertainty. PMID:21712579

  17. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production.

    PubMed

    Venterea, Rodney T; Hyatt, Charles R; Rosen, Carl J

    2011-01-01

    Potato ( L.) is a N-intensive crop, with high potential for nitrate (NO) leaching, which can contribute to both water contamination and indirect nitrous oxide (NO) emissions. Two approaches that have been considered for reducing N losses include conventional split application (CSA) of soluble fertilizers and single application of polymer-coated urea (PCU). The objectives of this study were to: (i) compare NO leaching using CSA and two PCUs (PCU-1 and PCU-2), which differed in their polymer formulations, and (ii) use measured NO leaching rates and published emissions factors to estimate indirect NO emissions. Averaged over three growing seasons (2007-2009), NO leaching rates were not significantly different among the three fertilizer treatments. Using previously reported direct NO emissions data from the same experiment, total direct plus indirect growing season NO emissions with PCU-1 were estimated to be 30 to 40% less than with CSA. However, PCU-1 also resulted in greater residual soil N after harvest in 2007 and greater soil-water NO in the spring following the 2008 growing season. These results provide evidence that single PCU applications for irrigated potato production do not increase growing season NO leaching compared with multiple split applications of soluble fertilizers, but have the potential to increase N losses after the growing season and into the following year. Estimates of indirect NO emissions ranged from 0.8 to 64% of direct emissions, depending on what value was assumed for the emission factor describing off-site conversion of NO to NO. Thus, our results also demonstrate how more robust models are needed to account for off-site conversion of NO to NO, since current emission factor models have an enormous degree of uncertainty.

  18. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    NASA Astrophysics Data System (ADS)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  19. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  20. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate factorial management practices for organic production of highbush blueberry. The practices include: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg/ha N; sawdust mulch, compost topped with sawdust ...

  1. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The factorial experiment included two planting bed treatments (flat and raised beds), source and rate of fertilizer (feather meal and fish emuls...

  2. Organic Highbush Blueberry Production Systems Research – Management of Plant Nutrition, Irrigation Requirements, and Weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 0.4 ha planting of blueberry was established in October 2006 to evaluate the effects of cultivar (Duke and Liberty), bed type (flat versus raised beds), weed management (sawdust mulch and hand-weed control; sawdust+compost mulch with acetic acid, flaming, and hand control used as needed; and weed ...

  3. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  4. Sprinkler irrigation as an energy- and water-saving approach to rice production and management of riceland pests. Technical report

    SciTech Connect

    McCauley, G.N.; Hossner, L.R.; Nesmith, D.M.

    1985-03-01

    Rice is currently produced on about 400,000 acres in the Texas Coastal Prairie and uses 1.8 million acre-feet of water or 13% of Texas renewable water resources. The Texas Coastal Prairie has been experiencing rapid population and industrial growth with increased demands on the area water. Continued rice production will require water-conservation practices. This research evaluated the potential water conservation of sprinkler-irrigated rice production as related to potential production of commercial cultuvars with various moisture stress levels, the sprinkler irrigation adaptability of 10 major soil series, and increased infiltration by adjuvants. Highest yielding cultivars under flood irrigation were also the highest yielding with sprinkler irrigation.

  5. EVALUATION OF BASIN INFLOW CUTOFF CRITERION IN THE IRRIGATION DISTRICTS OF SOUTHWEST ARIZONA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low irrigation efficiencies persist in irrigated areas near Yuma, Arizona due to poorly designed irrigation systems, poor condition of existing systems, inaccurate delivery of flow rates, and inadequate criteria for determining irrigation cutoff. In farms where growers lack adequate control over the...

  6. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management.

    PubMed

    Gómez-Rico, Aurora; Salvador, M Desamparados; La Greca, Marta; Fregapane, Giuseppe

    2006-09-20

    This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard.

  7. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management.

    PubMed

    Gómez-Rico, Aurora; Salvador, M Desamparados; La Greca, Marta; Fregapane, Giuseppe

    2006-09-20

    This study investigated the effect of both the degree of ripening of the olive fruit and irrigation management-rain-fed, two different regulated deficit irrigations (RDI), the method proposed by the Food and Agriculture Organization of the United Nations (known as FAO), and 125 FAO (125% FAO)-on the phenolic and volatile composition of Cornicabra virgin olive oils obtained during two crop seasons. Secoiridoid phenolic derivatives greatly decreased upon increase of both irrigation and ripening, for example, the 3,4-DHPEA-EDA content decreased from 770 to 450 mg/kg through fruit ripening under rain-fed conditions and from 676 to 388 mg/kg from rain-fed conditions to FAO irrigation treatment (at a ripeness index of approximately 4). Moreover, secoiridoid derivatives of hydroxytyrosol decreased more than those of tyrosol. The levels of major volatile components decreased in the course of ripening but were higher in irrigated olive oils: for example, the E-2-hexenal content ranged between 4.2 and 2.6 mg/kg (expressed as 4-methyl-2-pentanol) over fruit maturation under rain-fed conditions and between 8.0 and 3.5 mg/kg under FAO scheduling. It is important to note that where water was applied only from the beginning of August (RDI-2), when oil begins to accumulate in the fruit, the resulting virgin olive oil presented a phenol and volatile profile similar to those of the FAO and 125 FAO methods, but with a considerable reduction in the amount of water supplied to the olive orchard. PMID:16968073

  8. Developing Automatic Controllers for sprinkler irrigation systems

    NASA Astrophysics Data System (ADS)

    Playán, E.; Salvador, R.; Cavero, J.; López, C.; Lecina, S.; Zapata, N.

    2012-04-01

    The application of new technologies to the control and automation of irrigation processes is quickly gaining attention. The automation of irrigation execution (through irrigation controllers) is now widespread. However, the automatic generation and execution of irrigation schedules is receiving growing attention due to the possibilities offered by the telemetry/remote control systems currently being installed in collective pressurized networks. These developments can greatly benefit from the combination of irrigation system and crop models, and from the interaction with agrometeorological databases, hydraulic models of pressurized collective distribution networks, weather forecasts and management databases for water users associations. Prospects for the development of such systems in collective sprinkler irrigation systems are analyzed in this presentation. Additionally, experimental results are presented on the application of these concepts to a hydrant irrigating a solid-set irrigated maize field.

  9. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  10. Concomitant septic arthritis and tophaceous gout of the knee managed with intermittent closed joint irrigation combined with negative pressure therapy: a case study and literature review.

    PubMed

    V N, Panicker; J K, Turner; M J, Chehade

    2014-01-01

    Tophaceous gout complicated by septic arthritis presents a management dilemma which can often require multiple surgical debridements. There is little published in the literature regarding treatment of these concomitant conditions. We postulate that biofilm may play a role increasing the difficulty of sterilising a tophaceous joint. The use of topical negative pressure therapy that targets biofilm has been well established for a range of wounds. A new device that incorporates both intermittent negative pressure therapy and wound irrigation was introduced in 2012. This case report describes the use of this topical negative device with the instillation option in the management of severe septic arthritis with concomitant gout and suggests directions for further research.

  11. Evaluating the relative contribution of methane oxidation to methane emissions from young floodplain soils under Alternative Irrigation Management

    NASA Astrophysics Data System (ADS)

    Pierreux, Sofie; Verhoeven, Elizabeth; Akter, Masuda; Sleutel, Steven; Said-Pullicino, Daniel; Romani, Marco; Boeckx, Pascal

    2016-04-01

    To keep the pace with a yearly growing demand for rice by 1-2%, future rice production must come primarily from high yielding irrigated rice, putting a pressure on fresh water reserves. In this context, water saving Alternative Irrigation Management (AIM) is progressively applied worldwide. By introducing repeated or mid-seasonal drainage, AIM suppresses emission of CH4, otherwise prevalent in continuously flooded rice. However, little is known about the effect of AIM on the balance of CH4 genesis and oxidation in paddy soils. We studied relevant soil parameters and CH4 emissions in continuously flooded (CF) and alternately wetted and dried (AWD) rice paddies. During a field campaign at the Castello d'Agogna experimental station (Pavia, Italy), we measured in situ CH4 oxidation and emission rates using the closed gas chamber technique with or without application of CH2F2 as a selective inhibitor of CH4 oxidation. In addition, we determined potential CH4 oxidation rates using incubated soil slurries originating from the same experimental plots. The dataset was supplemented with depth differentiated monitoring of redox potential, temperature, moisture content and soil solution parameters (DOC, Fe2+, Mn3+, mineral N and dissolved CH4). Peaks in dissolved CH4 manifested at 5 and 12.5cm depth, with much lower and equal levels at 25, 50 and 80cm depth. Also depth distributions of dissolved Fe and Mn followed this pattern, indicating that methanogenic activity was primarily confounded to the topsoil. Seasonal CH4 emissions were about halved by AWD compared to CF management. After a fast decline of in situ oxidation within the AWD treatment at the beginning of the season, CH4 oxidation percentages in CF and AWD increased until the booting stage (67DAS), reaching peak values of 83% and 69% of produced CH4, respectively. CH4 oxidation thereafter gradually declined to nearly 50% in both treatments after the final drainage (103 DAS). Seasonal trends of potential CH4 oxidation

  12. Susceptibility indexing method for irrigation water management planning: applications to K. Menderes river basin, Turkey.

    PubMed

    Pusatli, O Tolga; Camur, M Zeki; Yazicigil, Hasan

    2009-01-01

    A susceptibility indexing method was developed based on vulnerability and quality indices. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability index (VI) and the quality index (QI): SI=VIxQI. This method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping. The DRASTIC index methodology was used for the hydrogeological data evaluations. The quality index calculation procedure based on a water quality classification scheme was introduced to evaluate hydrochemical data. The suggested susceptibility indexing method was applied to the Küçük Menderes river basin located in western Turkey. The susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is located along the river channel between Kiraz and Tire towns, in the Selçuk area and along the Fertek stream channel to the north of Torbali town. The results indicate that the incorporation of both hydrogeological and hydrochemical datasets enables more realistic evaluations than those of an individual dataset to estimate the groundwater contamination susceptibility of an aquifer. The numerical procedure applied could be extended further by including other parameters such as retardation, potential contaminant sources, etc. that affect the water quality in a given basin.

  13. Influence of the vegetation management of the leeves in irrigated rice organic in diversity of Hymenoptera parasitoids.

    PubMed

    Simões-Pires, P R; Jahnke, S M; Redaelli, L R

    2016-04-19

    Among the natural enemies of insect pests in rice fields, parasitoids are especially notable. To better understand the space-time dynamics of these insects, the objectives of this study were to describe and compare groups of parasitoids in organic irrigated rice fields using two management approaches for levee vegetation, and to relate them to the phenological stages of rice cultivation (the seedling, vegetative, and reproductive stages). The samples were taken in a plantation located in Viamão, RS, Brazil. The total area of 18 ha was divided into two parts: a no-cut (NC) subarea in which the wild vegetation of the levees was maintained, and a cut (C) subarea in which the levee vegetation was cut monthly. In each subarea, four Malaise traps considered as pseudo-replicas were installed and remained in the field for 24 hours at each sampling location. Collections occurred twice a month from the beginning of cultivation (October 2012) until harvest (March 2013). A total of 3,184 Hymenoptera parasitoids were collected: 2,038 individuals in the NC subarea and 1,146 in the C subarea. We identified 458 morphospecies distributed in 24 families. Mymaridae was the most abundant and Eulophidae was the richest in both subareas. A total of 198 morphospecies was shared between the subareas, including Platygastridae, Eulophidae, and Mymaridae, which were the families with the highest number of shared species. The richness and abundance of parasitoids varied according to their phenological developmental stages, with peak abundance registering during the vegetative period. The Morisita index identified three groupings, indicating a similarity that was related to the three phases of rice growth and development: seedling, vegetative and post-harvest. PMID:27097090

  14. Irrigation System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  15. Economic management of vertigo/dizziness disease in a county hospital: video-head-impulse test vs. caloric irrigation.

    PubMed

    Rambold, Holger A

    2015-10-01

    The video-head-impulse test (vHIT) is an important test for examining unilateral vestibular hypofunction. Alternatively, one can test for vestibular hypofunction with the caloric irrigation test. Various studies have shown that both tests may not always identify vestibular hypofunction; instead, the results of the tests might be contradictory. This retrospective study reproduces those finding in a much larger group of patients at a county hospital. 1063 patients were examined with the vHIT and bithermal caloric irrigation on the same day and analyzed with respect to side differences. Of those patients 13.3% had pathological vHIT and a caloric irrigation test, 4.6% a pathological vHIT only and 24.1% a pathologic caloric test only. As both tests might be necessary, we calculated the optimal sequence of the two examinations based on savings in time for the different disease groups. Especially in vestibular failure using the vHIT first and only applying the caloric irrigation in case of an unremarkable vHIT saves time and optimizes the diagnostic work up. In contrast, in Menière's disease and vestibular migraine testing caloric irrigation first might be more efficient.

  16. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  17. Evapotranspiration Estimates for Deficit Irrigated Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficits must be imposed on crops during non-critical growth periods to maximize net economic output per unit of water consumed by the plant. The reference ET-crop coefficient procedure widely used for managing fully irrigated crops would be easiest to implement for irrigation management of d...

  18. A web application for cotton irrigation management on the U.S. southern high plains. Part II: Application design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A web-based application to help Southern High Plains cotton producers estimate profitability under center pivot irrigated production is described. The application’s crop modeling and general profit calculation approach are outlined in a preceding companion paper, while additional details of the prof...

  19. Soybean irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is an important crop and a major component of the agricultural economy in the Missouri Bootheel and throughout Missouri. USDA’s National Agricultural Statistics Service (NASS) reported that in 2012, 960 thousand acres of soybeans were harvested in Southeast Missouri (Butler, Cape Girardeau, ...

  20. Environmental factors and management practices controlling oxygen dynamics in agricultural irrigation ponds in a semiarid Mediterranean region: implications for pond agricultural functions.

    PubMed

    Bonachela, Santiago; Acuña, Rodrigo A; Casas, Jesús

    2007-03-01

    A water quality study was carried out on 40 irrigation ponds located within the main greenhouse areas on the Almería coast, placing special emphasis on the factors controlling the oxygen dynamics, a relevant aspect with agricultural and environmental implications. Considering chemical, physical and biological water characteristics, agricultural irrigation ponds were satisfactorily classified by cluster analysis in four groups. These were congruently arranged by principal components analysis along four main environmental gradients: trophic status, photosynthetic activity, water mineralisation and presence of submerged aquatic vegetation (SAV). Dissolved oxygen (DO) values differed highly among and within each of the four pond groups. DO dynamics was mainly depended on photosynthetic activity, and the environmental factors and management practices controlling it: seasonal and daily climatic changes, pond management (open vs. covered ponds and presence/absence of aquatic vegetation) and trophic status. Overall, different diurnal DO patterns were found between open and covered ponds. The former usually presented DO values above saturation and increasingly higher from early morning to mid-afternoon due to the photosynthetic activity of algae and macrophytic vegetation. In contrast, covered ponds showed relatively stable DO values during the diurnal period regardless of climatic conditions, with absolute values around or below saturation level. Globally, our results suggest that open ponds, with macrophytes concentrated in the deeper layer, can be an effective and sustainable management method of water oxygen enrichment.

  1. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  2. Practices in Adequate Structural Design

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  3. Practices in adequate structural design

    NASA Astrophysics Data System (ADS)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  4. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    NASA Astrophysics Data System (ADS)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations

  5. Concomitant Septic Arthritis and Tophaceous Gout of the Knee Managed with Intermittent Closed Joint Irrigation Combined with Negative Pressure Therapy: A Case Study and Literature Review

    PubMed Central

    V.N, Panicker; J.K, Turner; M.J, Chehade

    2014-01-01

    Tophaceous gout complicated by septic arthritis presents a management dilemma which can often require multiple surgical debridements. There is little published in the literature regarding treatment of these concomitant conditions. We postulate that biofilm may play a role increasing the difficulty of sterilising a tophaceous joint. The use of topical negative pressure therapy that targets biofilm has been well established for a range of wounds. A new device that incorporates both intermittent negative pressure therapy and wound irrigation was introduced in 2012. This case report describes the use of this topical negative device with the instillation option in the management of severe septic arthritis with concomitant gout and suggests directions for further research. PMID:25621084

  6. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 85.900 Adequate evidence. Adequate evidence means information sufficient to support...

  7. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  8. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  9. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  10. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  11. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  12. Irrigation scheduling: When, where, and how much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...

  13. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    NASA Astrophysics Data System (ADS)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  14. A parametric study of the value of hydrological information for irrigation and hydropower management of the Feather River

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Sand, F.; Stevenson, P.; Putnam, M.

    1975-01-01

    A case study analysis is presented of the relationships between improvements in the accuracy, frequency, and timeliness of information used in making hydrological forecasts and economic benefits in the areas of hydropower and irrigation. The area chosen for the case study is the Oroville Dam and Reservoir. Emphasis is placed on the use of timely and accurate mapping of the aerial extent of snow in the basin by earth resources survey systems such as LANDSAT. The subject of benefits resulting from improved runoff forecasts is treated in a generalized way without specifying the source of the improvements.

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  16. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  17. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  18. Water Resources Impacts on Tribal Irrigation Projects

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  19. Quality assessment of irrigation water under a combination of rain and irrigation

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, Jose Luis

    2015-04-01

    Complementary irrigation is one of the proposed management practices to increase the area under grain production mainly in the Humid Pampas. The most common source of irrigation water in the Humid Pampas comes from groundwater and is characterized by its high sodium bicarbonate content. However, the effect of the combination of irrigation and rain water on the chemical and physical properties of soils, especially when irrigation water comprises water with sodium bicarbonate, is still not well documented. The objective of the present study is to establish irrigation water suitability criteria under conditions of combined rain and irrigation. The trials were carried out on six irrigated plots and another five plots were chosen for validation purposes. Hydraulic conductivity and bulk density were measured in the field. Soil chemical analysis was performed on undisturbed soil samples. Supplementary irrigation using sodium bicarbonate water raises the soil electrical conductivity, the pH, exchangeable sodium percentage, soil sodium adsorption ratio and cation exchange capacity which produce an increase in bulk density, reducing the overall porosity of the soil. The effect of the soil sodium adsorption ratio on the soil hydraulic conductivity was evident when the soil sodium adsorption ratio levels were greater than 3.5. The dilution factor proposed in this study allows the classification of water for complementary irrigation linked to the management of irrigation.

  20. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  1. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-07-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for fresh water. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET/Y). The management practices are: four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)); four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation); and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments; wet, normal and dry years; three soil types; and three crops. The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is: 8-10 % if we change from the reference to drip or SSD; 13 % when changing to OML; 17-18 % when moving to drip or SSD in combination with OML; and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow is lower.

  2. An object-oriented watershed management tool (QnD-VFS) to engage stakeholders in targeted implementation of filter strips in an arid surface irrigation area

    NASA Astrophysics Data System (ADS)

    Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.

    2012-12-01

    Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels

  3. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  4. Supplement Analysis for the Watershed Management Program EIS - Idaho Model Watershed Habitat Projects - L-9 Irrigation Diversion Modification

    SciTech Connect

    N /A

    2004-08-02

    The Bonneville Power Administration is proposing to fund a fish passage improvement project at the L-9 diversion on the Lemhi River in Lemhi County, Idaho with the Lemhi Soil and Water Conservation District. The project proposes to replace the existing rock push-up irrigation diversion dam with a single rock weir that will incorporate a geotextile membrane to create a permanent diversion. The new weir will be a v-shaped vortex weir with a six-foot wide notch for fish passage. In addition, a ramp flume will be constructed in the diversion canal between the headgate and existing fish screen to provide for water measurement. The new diversion will provide better water delivery/control and improved passage for adult and juvenile resident and anadromous fish.

  5. Successful Management of an Occult Cardiac Tamponade with Prompt Surgical Intervention and a Novel, Defined Pericardial Irrigation Protocol.

    PubMed

    Jahangeer, Saleem; Gardiner, Rebecca Emily; Forde, Patrick; Hinchion, John

    2015-12-01

    Purulent pericarditis is a rare entity in the postantibiotic era. It usually occurs in patients who have underlying chronic and immunosuppressing conditions and its presentation in the healthy adult population is quite rare. Infection of the pericardial space can occur via direct extension from infectious endocarditis, pneumonia, or empyema, or from a more distant source such as meningitis. Purulent pericarditis carries a very high mortality because of delay in the diagnosis and early occurrence of fatal complications. We describe a case of purulent pericarditis with impending cardiac tamponade in a previously healthy 40-year-old female patient, which was successfully treated with a combination of prompt surgical drainage and a novel irrigation protocol. PMID:26693123

  6. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  7. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H., Jr.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  8. Irrigation and groundwater in Pakistan

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  9. Mapping suitability of rice production systems for mitigation: Strategic approach for prioritizing improved irrigation management across scales

    NASA Astrophysics Data System (ADS)

    Wassmann, Reiner; Sander, Bjoern Ole

    2016-04-01

    After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now

  10. Plant, soil and weather based cues for irrigation timing in soybean production 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expanded use of irrigation management tools are needed to improve irrigation and water use efficiency in eastern Arkansas soybean production. In 2014 we initiated an Arkansas Soybean Promotion Board supported project to examine irrigation initiation timing on a sandy loam soil in a furrow-irrigated ...

  11. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  12. Surface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  13. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  14. Using ground based geophysics to evaluate hydrogeologic effects of subsurface drip irrigation systems used to manage produced water in the Powder River Basin, Wyoming

    SciTech Connect

    Sams, J.I.; Lipinski, B.A.; Veloski, G.A.

    2008-04-01

    The U.S Department of Energy’s National Energy Technology Laboratory has been evaluating various geophysical methods for site characterization regarding environmental issues associated with fossil fuels including produced water management. A relatively new method of managing produced water from coal bed natural gas production is through subsurface drip irrigation. This system involves disposing the produced water near the bottom of the root zone in agricultural fields, which would provide a beneficial use of this resource. The focus of this paper is to present results from a pre-injection geophysical survey for site assessment and background data. A pre-construction survey of approximately 1.2 km2 was completed in June 2007 using a Geophex GEM-2 broadband sensor over six fields along the Powder River floodplain. Quality assurance measures included drift checks, duplicate line surveys, and repeat field surveys using the Geometrics OhmMapper instrument. Subsequent surveys will be completed once the system is installed and operational. Geophysical inversion models were completed to provide a detailed cross-section of the subsurface geoelectrical structure along each line. Preliminary interpretations reveal that the subsurface conductivity distribution correlates to geomorphologic features.

  15. Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: an overview.

    PubMed

    Causapé, J; Quílez, D; Aragüés, R

    2006-06-01

    The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)(avg)(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)(avg)(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)(avg)(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3-16 Mg salt/ha x year and 23-195 kg NO)(3) (-)-N/ha x year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE's also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (>or=14 Mg/ha x year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.

  16. Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: an overview.

    PubMed

    Causapé, J; Quílez, D; Aragüés, R

    2006-06-01

    The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)(avg)(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)(avg)(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)(avg)(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3-16 Mg salt/ha x year and 23-195 kg NO)(3) (-)-N/ha x year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE's also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (>or=14 Mg/ha x year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture. PMID:16917723

  17. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods. PMID:26497559

  18. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  19. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  20. Asbestos/NESHAP adequately wet guidance

    SciTech Connect

    Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

    1990-12-01

    The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

  1. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  2. Interdisciplinary Irrigated Precision Farming Research

    SciTech Connect

    Heermann, D F.; Hoeting, Jennifer A.; Thompson, Sandra ); Duke, H R.; Westfall, D G.; Buchleiter, G W.; Westra, P; Peairs, F B.; Fleming, K

    2001-12-01

    The USDA-Agricultural Research Service and Colorado State University are conducting an inter-disciplinary study that focuses on developing a clearer scientific understanding of the causes of yield variability. Two years of data have been collected from two commercial center pivot irrigated fields (72 and 52 ha). Cooperating farmers manage all farming operations for crop production and provide maps of the maise grown on the fields.

  3. Irrigation analysis based on long-term weather data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  4. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  5. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  6. 2008 Mississippi Curriculum Framework: Postsecondary Irrigation Management Technology. (Program CIP:01.0699 - Applied Horticulture/Horticultural Business Services, Other)

    ERIC Educational Resources Information Center

    Oliver, Michael L.

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  7. Organic highbush blueberry production systems research – management of plant nutrition, irrigation requirements, weeds, and economic sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 0.4 ha planting was established in October 2006 to evaluate the effects of cultivar (Duke and Liberty), bed type ("flat ground" and raised beds), weed management [sawdust mulch and hand weed control; compost plus sawdust mulch with acetic acid, flaming, and hand control used as needed; and landsca...

  8. Supervision of Student Teachers: How Adequate?

    ERIC Educational Resources Information Center

    Dean, Ken

    This study attempted to ascertain how adequately student teachers are supervised by college supervisors and supervising teachers. Questions to be answered were as follows: a) How do student teachers rate the adequacy of supervision given them by college supervisors and supervising teachers? and b) Are there significant differences between ratings…

  9. Small Rural Schools CAN Have Adequate Curriculums.

    ERIC Educational Resources Information Center

    Loustaunau, Martha

    The small rural school's foremost and largest problem is providing an adequate curriculum for students in a changing world. Often the small district cannot or is not willing to pay the per-pupil cost of curriculum specialists, specialized courses using expensive equipment no more than one period a day, and remodeled rooms to accommodate new…

  10. Toward More Adequate Quantitative Instructional Research.

    ERIC Educational Resources Information Center

    VanSickle, Ronald L.

    1986-01-01

    Sets an agenda for improving instructional research conducted with classical quantitative experimental or quasi-experimental methodology. Includes guidelines regarding the role of a social perspective, adequate conceptual and operational definition, quality instrumentation, control of threats to internal and external validity, and the use of…

  11. An Adequate Education Defined. Fastback 476.

    ERIC Educational Resources Information Center

    Thomas, M. Donald; Davis, E. E. (Gene)

    Court decisions historically have dealt with educational equity; now they are helping to establish "adequacy" as a standard in education. Legislatures, however, have been slow to enact remedies. One debate over education adequacy, though, is settled: Schools are not financed at an adequate level. This fastback is divided into three sections.…

  12. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  13. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    SciTech Connect

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  14. Incentives and technologies for improving irrigation water use efficiency

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  15. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  16. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  17. Comparative response of varied irrigated maize to organic and inorganic fertilizer application

    NASA Astrophysics Data System (ADS)

    Fandika, I. R.; Kadyampakeni, D.; Bottomani, C.; Kakhiwa, H.

    The response of varied irrigated maize (Zea mays) to organic and inorganic fertilizer N, was evaluated at Kasinthula Agricultural Station (2003-2006), Malawi to determine the optimum nutrient and irrigation frequency combinations for soil-water and nutrient management which will address water stress and low soil fertility problem. Hybrid maize variety (DK 8031) was planted on ridges spaced at 0.75 × 0.25 m in a split-plot design replicated three times, with four irrigation frequencies as main plots and fertilizer sources as subplots. Irrigation frequencies comprised: water balance scheduling at 40% depletion, and irrigating 40 mm every 3-4 days, 7 days and 14 days. The nitrogen sources were compost (C), farmyard manure (FYM), urea (U) and their mixtures [(2U:C); (U:2C); (2U:FYM); and (U:2FYM)]. Organic manure was banded three weeks before planting. Data on grain yield was collected and subjected to ANOVA using the Genstat and LSD 0.05 test separating statistical significant means. There was positive ( P < 0.01) and highly significant interactions between maize grain yield, crop water productivity (CWP) and nitrogen use efficiency (NUE). The water balance scheduling at 40% soil moisture depletion had highest grain yields, CWP and NUE among the four irrigation frequencies that was not significantly different to 40 mm every 3-4 days and every 7 days obtained with nitrogen sourced from sole Urea which were not significantly different to mean grain yields, CWP and NUE from (2U:C) and (2U:FYM). CWP was optimally maximised in sole urea (9.8, 8.8 kg mm -1 ha -1) and mixed treatments of 2U:C (8.2, 7.2 kg mm -1 ha -1) or 2U:FYM (8.2-8.9 kg mm -1 ha -1) for maize irrigated every 7 days and at 40% depletion using soil water balance schedule respectively. The greatest NUE of 53.5 kg kg N -1 under (2U:FYM) treatments was experienced at 40% depletion irrigation schedule and was also not significantly different to sole urea and (2U:FYM) treatments (52.8 and 51.6 kg kg N -1

  18. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  19. The Sustainability of Irrigation Schemes Under Climate Change

    NASA Astrophysics Data System (ADS)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  20. Controlling nitrate leaching in irrigated agriculture.

    PubMed

    Spalding, R F; Watts, D G; Schepers, J S; Burbach, M E; Exner, M E; Poreda, R J; Martin, G E

    2001-01-01

    The impact of improved irrigation and nutrient practices on ground water quality was assessed at the Nebraska Management System Evaluation Area using ground water quality data collected from 16 depths at 31 strategically located multilevel samplers three times annually from 1991 to 1996. The site was sectioned into four 13.4-ha management fields: (i) a conventional furrow-irrigated corn (Zea mays L.) field; (ii) a surge-irrigated corn field, which received 60% less water and 31% less N fertilizer than the conventional field; (iii) a center pivot-irrigated corn field, which received 66% less water and 37% less N fertilizer than the conventional field; and (iv) a center pivot-irrigated alfalfa (Medicago sativa L.) field. Dating (3H/3He) indicated that the uppermost ground water was <1 to 2 yr old and that the aquifer water was stratified with the deepest water approximately 20 yr old. Recharge during the wet growing season in 1993 reduced the average NO3-N concentration in the top 3 m 20 mg L(-1), effectively diluting and replacing the NO3-contaminated water. Nitrate concentrations in the shallow zone of the aquifer increased with depth to water. Beneath the conventional and surge-irrigated fields, shallow ground water concentrations returned to the initial 30 mg NO3-N L(-1) level by fall 1995; however, beneath the center pivot-irrigated corn field, concentrations remained at approximately 13 mg NO3-N L(-1) until fall 1996. A combination of sprinkler irrigation and N fertigation significantly reduced N leaching with only minor reductions (6%) in crop yield. PMID:11476495

  1. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    NASA Astrophysics Data System (ADS)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  2. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].

  3. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated Durum Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen and irrigation management are crucial in the production of high protein irrigated durum wheat (Triticum durum Desf.) in arid regions. However, as the availability of irrigation water decreases and potential costs and regulation of nitrogen (N) increase, there is a need to understand how ir...

  4. Energy savings through improved irrigation practices. Final report

    SciTech Connect

    Gilley, J.R.; Supalla, R.J.

    1981-07-31

    In view of importance of energy to irrigated agriculture, the objectives of this project were: (1) determine the potential energy savings from alternative irrigation management practices; and (2) evaluate the economic benefits which would occur to irrigators from adopting these energy saving practices. These objectives were pursued for a selected array of irrigation situations typical of DOE Region VII. The analysis consists essentially of three parts, including the potential for improved energy efficiency with surface irrigation systems (gated pipe), the potential for enhanced energy efficiency with sprinkler systems, and a comparison of alternative irrigation systems. For gated-pipe surface systems, the energy conservation alternatives considered were: (1) increasing pump performance; (2) improving irrigation efficiency; and (3) water management. The alternatives considered for center-pivot sprinkler systems included conversion to low pressure, as well as pump performance, irrigation efficiency and water management. The analysis of alternative systems involved computing the energy and dollar savings associated with shifting from gated-pipe to one of four types of sprinkler systems: high-pressure center-pivot, low-pressure center-pivot, corner center-pivot, and continuous move lateral. The above alternatives were analyzed for an array of given conditions. These included combinations of three lifts (8, 35 and 75 meters) and two net irrigation requirements (33 to 66 cm for surface system and 25 and 50 cm for sprinkler systems). These conditions encompass nearly the full range of circumstances found in DOE Region VII.

  5. SDI versus MESA Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  6. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  7. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  8. 'Smart' Irrigation Systems

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-08-31

    The article discusses the ASHRAE Standard 189, with mandatory and optional provisions related to water use efficiency, then focuses on the use of water efficient irrigation systems and the use of recycled water such as air conditioner condensate for landscaping irrigation. Benefits of such practices include both water and energy savings.

  9. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  10. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  11. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  12. Climate Change Impacts of Irrigation on the Central High Plains

    NASA Astrophysics Data System (ADS)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  13. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  14. Physical, chemical, and biological data for detailed study of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92, with selected data for 1987-89

    USGS Publications Warehouse

    Lambing, J.H.; Nimick, D.A.; Knapton, J.R.; Palawski, D.U.

    1994-01-01

    Physical chemical, and biological data were collected in the lower Sun River area of west-central Montana during 1990-92 as part of a U.S. Department of the Interior detailed study of the extent, magnitude, sources, and potential biological impacts of contaminants associated with irrigation drainage. Physical and chemical data were collected from areas within and near the Sun River Irrigation Project and from wetland areas receiving irrigation drainage. Biological data were collected from areas in and near Freezout Lake Wildlife Management Area and Benton Lake National Wildlife Refuge. Additional biological data were collected previously during 1987-89 as part of a U.S. Fish and Wildlife Service program. This report presents data for selenium and other potentially toxic constituents in solid-phase, water, and biological media. Data consist of concentrations of major and trace elements in soil and drill cores; concen- trations of major ions, nutrients, and trace elements in ground water and surface water; and trace-element concentrations in bottom sediment and biological tissue. Hydrogeologic data for domestic and test wells and daily streamflow data for selected sites also are included.

  15. Status and migration of irrigation in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  16. Does Deficit Irrigation Give More Crop Per Drop?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DOES DEFICIT IRRIGATION GIVE MORE CROP PER DROP? Deficit irrigation can be an effective way to maximize economic returns when water supply is the limiting resource. The ARS Water Management Research Unit is conducting field studies to determine the water production functions for 4 crops common in ...

  17. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  18. Irrigation timing and volume affects growth of container grown maples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  19. The future of irrigation on the High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  20. Irrigation in endodontics.

    PubMed

    Haapasalo, M; Shen, Y; Wang, Z; Gao, Y

    2014-03-01

    Irrigation is a key part of successful root canal treatment. It has several important functions, which may vary according to the irrigant used: it reduces friction between the instrument and dentine, improves the cutting effectiveness of the files, dissolves tissue, cools the file and tooth, and furthermore, it has a washing effect and an antimicrobial/antibiofilm effect. Irrigation is also the only way to impact those areas of the root canal wall not touched by mechanical instrumentation. Sodium hypochlorite is the main irrigating solution used to dissolve organic matter and kill microbes effectively. High concentration sodium hypochlorite (NaOCl) has a better effect than 1 and 2% solutions. Ethylenediaminetetraacetic acid (EDTA) is needed as a final rinse to remove the smear layer. Sterile water or saline may be used between these two main irrigants, however, they must not be the only solutions used. The apical root canal imposes a special challenge to irrigation as the balance between safety and effectiveness is particularly important in this area. Different means of delivery are used for root canal irrigation, from traditional syringe-needle delivery to various machine-driven systems, including automatic pumps and sonic or ultrasonic energy.

  1. 29 CFR 505.5 - Adequate assurances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amount of a weekly or monthly salary, talent or performance fee, hourly rate or other basis on which... requirements in paragraph (b) were approved by the Office of Management and Budget under control number...

  2. 29 CFR 505.5 - Adequate assurances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amount of a weekly or monthly salary, talent or performance fee, hourly rate or other basis on which... requirements in paragraph (b) were approved by the Office of Management and Budget under control number...

  3. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  4. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  5. Irrigation on Topographic Maps.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1979-01-01

    Describes how study of irrigation practices on topographic maps can help students in introductory high school and college geography courses understand man and land relationships to geography. (Author/DB)

  6. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  7. Is a vegetarian diet adequate for children.

    PubMed

    Hackett, A; Nathan, I; Burgess, L

    1998-01-01

    The number of people who avoid eating meat is growing, especially among young people. Benefits to health from a vegetarian diet have been reported in adults but it is not clear to what extent these benefits are due to diet or to other aspects of lifestyles. In children concern has been expressed concerning the adequacy of vegetarian diets especially with regard to growth. The risks/benefits seem to be related to the degree of restriction of he diet; anaemia is probably both the main and the most serious risk but this also applies to omnivores. Vegan diets are more likely to be associated with malnutrition, especially if the diets are the result of authoritarian dogma. Overall, lacto-ovo-vegetarian children consume diets closer to recommendations than omnivores and their pre-pubertal growth is at least as good. The simplest strategy when becoming vegetarian may involve reliance on vegetarian convenience foods which are not necessarily superior in nutritional composition. The vegetarian sector of the food industry could do more to produce foods closer to recommendations. Vegetarian diets can be, but are not necessarily, adequate for children, providing vigilance is maintained, particularly to ensure variety. Identical comments apply to omnivorous diets. Three threats to the diet of children are too much reliance on convenience foods, lack of variety and lack of exercise.

  8. Limited Irrigation Research Projects in Northern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials using varying levels of limited irrigation in corn and sunflower have been conducted by the USDA-ARS Water Management Research Unit near Greeley, CO since 2008. In the most recent project which started in 2012, each crop has twelve stress treatments with four replicates, and varying le...

  9. Stochastic physical ecohydrologic-based model for estimating irrigation requirement

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Climate uncertainty affects both natural and managed hydrological systems. Therefore, methods which could take this kind of uncertainty into account are of primal importance for management of ecosystems, especially agricultural ecosystems. One of the famous problems in these ecosystems is crop water requirement estimation under climatic uncertainty. Both deterministic physically-based methods and stochastic time series modeling have been utilized in the literature. Like other fields of hydroclimatic sciences, there is a vast area in irrigation process modeling for developing approaches integrating physics of the process and statistics aspects. This study is about deriving closed-form expressions for probability density function (p.d.f.) of irrigation water requirement using a stochastic physically-based model, which considers important aspects of plant, soil, atmosphere and irrigation technique and policy in a coherent framework. An ecohydrologic stochastic model, building upon the stochastic differential equation of soil moisture dynamics at root zone, is employed as a basis for deriving the expressions considering temporal stochasticity of rainfall. Due to distinguished nature of stochastic processes of micro and traditional irrigation applications, two different methodologies have been used. Micro-irrigation application has been modeled through dichotomic process. Chapman-Kolomogrov equation of time integral of the dichotomic process for transient condition has been solved to derive analytical expressions for probability density function of seasonal irrigation requirement. For traditional irrigation, irrigation application during growing season has been modeled using a marked point process. Using the renewal theory, probability mass function of seasonal irrigation requirement, which is a discrete-value quantity, has been analytically derived. The methodology deals with estimation of statistical properties of the total water requirement in a growing season that

  10. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  11. 75 FR 67095 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    .... 11th Avenue, Portland, Oregon 97232-4169, Telephone: (503) 231-6702 Fort Hall Irrigation Project... Manager, 602 6th Avenue North, Wolf Point, MT 59201, Telephones: (406) 768-5312, Superintendent, (406)...

  12. An inventory of California's irrigated land

    NASA Technical Reports Server (NTRS)

    Sawyer, G. B.

    1981-01-01

    Currently in the fourth year of its applications pilot test project to assess irrigated lands for water management, California officials found that the performance goal of plus or minus 5% at the 95% confidence level by each of the state's 10 major hydrologic basins was bettered in all but a few cases using manual analysis techniques for estimation. The process used was photointerpretation of enlarged LANDSAT scenes (1:150,000 scale), adjusting the determined acreage using a regression estimator and ground truth data from 637 sample cells. Sample cells were allocated to areas stratified on the basis of field size and selected crop types. Interpretation of three dates of imagery was required to span the complete time during which irrigated crops are grown in California. The registration of multitemporal data and classification procedures for estimating irrigated land using digital techniques are being studied as part of the second task in the project.

  13. Low energy center pivot sprinkler irrigation system

    SciTech Connect

    Gilley, J.R.

    1981-04-30

    Reducing the pressure of center-pivot irrigation systems can save energy; however, there can be management problems such as increased runoff and soil erosion and nonuniformity of water application. Options available to help overcome some of these problems are system capacity design, speed of rotation, application rate patterns, and modified cultural practices. Constraints on the use of reduced-pressure center-pivots will often be site specific and depend on the soil type, topography, crop, and history of land use. Reductions in irrigation efficiency resulting from reduced pressure must be considered when determining the net energy savings from reduced-pressure systems. Reduction in irrigation efficiency may negate the energy saved by pressure reduction, especially for those systems with larger lifts.

  14. Adequate mathematical modelling of environmental processes

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.

    2012-04-01

    In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same

  15. What will it take to get irrigators to use advisory programs? Lessons learned from the past 10 years and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and Extension personnel have developed irrigation advisory programs for decades. With irrigation sources evermore becoming limited, recent conservation and management strategies among numerous water conscious agencies include the development or redevelopment and strong promotion of irrigati...

  16. Irrigation with desalinated water: A step toward increasing water saving and crop yields

    NASA Astrophysics Data System (ADS)

    Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel

    2015-01-01

    We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water desalination before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and desalinated water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.

  17. Quantitative sustainability and qualitative concerns in an irrigations system using recycled water to supplement limited groundwater supply

    NASA Astrophysics Data System (ADS)

    Gowing, John; Alataway, Abed

    2013-04-01

    Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable

  18. Effects of irrigation on crops and soils with Raft River geothermal water

    SciTech Connect

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  19. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    PubMed

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  20. Irrigation in northeastern Mississippi

    USGS Publications Warehouse

    Lang, J.W.; Boswell, E.H.

    1957-01-01

    The phenomenal increase in the use of water for agriculture, industry, and public water supply in the past few years has been an important factor in bringing about the current accelerated inventory and appraisal of the water resources of Mississippi. As a result of severe droughts during the past several years, and of the favorable results of experiments, the water resources of northeastern Mississippi today are rapidly being developed for irrigation. Records have shown that even during years of normal rainfall the distribution of the rain usually is such that supplementary irrigation can be profitably practiced on almost any crop. Although in northeaster Mississippi the annual precipitation generally is enough to support crops and pasture, short periods of drought are common. Supplemental irrigation protects against the periods of drought during the growing season and increases the yield and quality of crops.

  1. Investigating irrigation scheduling for rice using variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require scheduling, or timely irrigation. A field study conducted at the University of Missouri...

  2. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    NASA Astrophysics Data System (ADS)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  3. A review of groundwater recharge under irrigated agriculture in Australia

    NASA Astrophysics Data System (ADS)

    Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

    2014-05-01

    Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

  4. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  5. Soil chemical changes under irrigated mango production in the Central São Francisco River Valley, Brazil.

    PubMed

    Heck, R J; Tiessen, H; Salcedo, I H; Santos, M C

    2003-01-01

    Irrigated areas in Brazil's Central São Francisco River Valley have experienced declines in productivity, which may be a reflection of changes in soil chemical properties due to management. This study was conducted to compare the chemical composition of soil solutions and cation exchange complexes in a five-year-old grove of irrigated mango (Mangifera indica L. cv. Tommy Atkins) with that of an adjacent clearing in the native caatinga vegetation. A detailed physiographic characterization of the area revealed a subsurface rock layer, which was more undulating than the current land surface, and identified the presence of a very saline and sodic (1045 microS cm(-1), sodium adsorption ratio [SAR] = 5.19) ground water table. While changes in concentrations of Ca, Mg, and K could be attributed to direct management inputs (fertilization and liming with dolomite), increases in Na suggested average annual capillary rise from the ground water table of 28 L m(-2). Accordingly, soil salinity levels appeared to be more dependent on surface elevation than the elevation of the rock layer or sediment thickness. The apparent influence of land surface curvature on water redistribution and the solution chemistry was more pronounced under irrigated mango production. In general, salinity levels had doubled in the mango grove and nearly tripled under the canopies, after only five years of irrigation. Though critical saline or sodic conditions were not encountered, the changes observed indicate a need for more adequate monitoring and management of water and salt inputs despite the excellent water quality of the São Francisco River.

  6. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-110) - Pahsimeroi Holistic Restoration – Gydesen/Hayes Riparian Enhancement and Irrigation Improvement Project

    SciTech Connect

    Stewart, Shannon C.

    2003-07-30

    The Bonneville Power Administration is proposing to fund a riparian enhancement and irrigation improvement project with the Custer Soil and Water Conservation District in Custer County, Idaho. The proposed project is located on private land and will include the installation of approximately 4,300 feet of 18-inch pipe that will replace two open ditches on the property. This project will eliminate about two miles of open ditch and eliminate the associated water conveyance losses in these ditches, which will allow for more water instream in the Pahsimeroi River.

  7. Measurement of irrigated acreage in Western Kansas from LANDSAT images

    USGS Publications Warehouse

    Keene, K.M.; Conley, C.D.

    1980-01-01

    In the past four decades, irrigated acreage in western Kansas has increased rapidly. Optimum utilization of vital groundwater supplies requires implementation of long-term water-management programs. One important variable in such programs is up-to-date information on acreage under irrigation. Conventional ground survey methods of estimating irrigated acreage are too slow to be of maximum use in water-management programs. Visual interpretation of LANDSAT images permits more rapid measurement of irrigated acreage, but procedures are tedious and still relatively slow. For example, using a LANDSAT false-color composite image in areas of western Kansas with few landmarks, it is impossible to keep track of fields by examination under low-power microscope. Irrigated fields are more easily delineated on a photographically enlarged false-color composite and are traced on an overlay for measurement. Interpretation and measurement required 6 weeks for a four-county (3140 mi2, 8133 km2) test area. Video image-analysis equipment permits rapid measurement of irrigated acreage. Spectral response of irrigated summer crops in western Kansas on MSS band 5 (visible red, 0.6-0.7 ??m) images is low in contrast to high response from harvested and fallow fields and from common soil types. Therefore, irrigated acreage in western Kansas can be uniquely discriminated by video image analysis. The area of irrigated crops in a given area of view is measured directly. Sources of error are small in western Kansas. After preliminary preparation of the images, the time required to measure irrigated acreage was 1 h per county (average area, 876 ml2 or 2269 km2). ?? 1980 Springer-Verlag New York Inc.

  8. Effect of Tetracycline Hydrochloride and Spiramycin Sub Gingival Irrigation with Pulsated Jet Irrigator in Chronic Periodontitis Patients: A Clinical Study

    PubMed Central

    Ravishankar, P L; Venugopal, K; Nadkerny, Purnima

    2015-01-01

    Background: The present study is designed to evaluate the clinical effects of pulsated subgingival irrigation with tetracycline and spiramycin. Materials and Methods: Ten patient diagnosed chronic periodontitis were included in the present study. Each patient is assigned to be irrigated with saline (placebo) (Group A), tetracycline HCl at 0.5% concentration (Group B), and 0.5% spiramycin (Group C). Scaling and root planing (SC/RP) was recorded as Group D. Plaque index, gingival index, gingival bleeding index, probing pocket depth were assessed on pre-irrigation (day 0), and at days 7, 14, 21, 28, and 35 day. Results: The results showed that subgingival irrigation with 0.5% tetracycline and spiramycin produced a significant reduction in clinical parameters compared to the control, while SC/RP was showed better improvement. Conclusion: The result of this study suggested that subgingival irrigation of tetracycline and spiramycin play a beneficial role in the management of chronic periodontitis patients. PMID:26229381

  9. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  10. Erosion: Irrigation-induced

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  11. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  12. Soil microbial community composition in a peach orchard under different irrigation methods and postharvest deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley (SJV) is California’s top agricultural region, cultivating more than 250 unique crops and much of the nation’s fruits, vegetable, and nuts. One of the main limiting factors for production in this region is the reduced availability of water. Deficit irrigation is a management p...

  13. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage. PMID:27337888

  14. [Optimal allocation of irrigation water resources based on systematical strategy].

    PubMed

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security. PMID:25985685

  15. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  16. Analysis of the relationship between the volumetric soil moisture content and the NDVI from high resolution multi-spectral images for definition of vineyard management zones to improve irrigation

    NASA Astrophysics Data System (ADS)

    Martínez-Casasnovas, J. A.; Ramos, M. C.

    2009-04-01

    As suggested by previous research in the field of precision viticulture, intra-field yield variability is dependent on the variation of soil properties, and in particular the soil moisture content. Since the mapping in detail of this soil property for precision viticulture applications is highly costly, the objective of the present research is to analyse its relationship with the normalised difference vegetation index from high resolution satellite images to the use it in the definition of vineyard zonal management. The final aim is to improve irrigation in commercial vineyard blocks for better management of inputs and to deliver a more homogeneous fruit to the winery. The study was carried out in a vineyard block located in Raimat (NE Spain, Costers del Segre Designation of Origin). This is a semi-arid area with continental Mediterranean climate and a total annual precipitation between 300-400 mm. The vineyard block (4.5 ha) is planted with Syrah vines in a 3x2 m pattern. The vines are irrigated by means of drips under a partial root drying schedule. Initially, the irrigation sectors had a quadrangular distribution, with a size of about 1 ha each. Yield is highly variable within the block, presenting a coefficient of variation of 24.9%. For the measurement of the soil moisture content a regular sampling grid of 30 x 40 m was defined. This represents a sample density of 8 samples ha-1. At the nodes of the grid, TDR (Time Domain Reflectometer) probe tubes were permanently installed up to the 80 cm or up to reaching a contrasting layer. Multi-temporal measures were taken at different depths (each 20 cm) between November 2006 and December 2007. For each date, a map of the variability of the profile soil moisture content was interpolated by means of geostatistical analysis: from the measured values at the grid points the experimental variograms were computed and modelled and global block kriging (10 m squared blocks) undertaken with a grid spacing of 3 m x 3 m. On the

  17. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  18. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  19. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  20. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  1. Integrated decision support, sensor networks and adaptive control for wireless site-specific sprinkler irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of site-specific sprinkler irrigation water management systems will be a major factor in future efforts to improve the various efficiencies of water-use and to support a sustainable irrigated environment. The challenge is to develop fully integrated management systems with supporting...

  2. Integrated Decision Support, Sensor Networks and Adaptive Control for Wireless Site-specific Sprinkler Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of site-specific sprinkler irrigation water management systems will be a major factor in future efforts to improve the various efficiencies of water-use and to support a sustainable irrigated environment. The challenge is to develop fully integrated management systems with supporting...

  3. Technology stretches irrigation water

    SciTech Connect

    Phene, C.J.

    1985-02-01

    A new solar-powered irrigation system is described which is controlled by computers. Sensors monitor soil moisture and transpiration; an automatic weather station records solar radiation, wind, air temperature and humidity. Infrared thermometers measure and record foliage temperatures. Lasers guide the wheeled towers through the crop rows metering out needed water as determined by the system. Photovoltaic cells provide the power for the towers.

  4. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  5. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    NASA Astrophysics Data System (ADS)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  6. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  7. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  8. Nutrients and nonessential elements in soil after 11 years of wastewater irrigation.

    PubMed

    Pereira, B F Faria; He, Zhenli; Stoffella, Peter J; Montes, Celia R; Melfi, Adolpho J; Baligar, Virupax C

    2012-01-01

    Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (∼53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season. PMID:22565273

  9. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  10. Droughts, Irrigation Development, and Hydropower: Different Development Priorities in Ghana and Burkina Faso and Their Effect on Management of the Volta River, West Africa

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; van Edig, A.

    2001-05-01

    The Volta Basin covers 400,000 km2 of the West-African savanna zone. Ghana lies downstream and contains 42% of the basin. Most of the upstream part of the basin lies in Burkina Faso (43% of total), and the remaining 15% lies in Mali, Côte d'Ivoire, Togo, and Benin. Average rainfall is 1000 mm per year of which around 9% or 36 km3 becomes available as runoff in the Volta River. Small variations in rainfall cause relatively large variations in runoff. The Volta Basin is undergoing rapid changes in land use and water resource development, mainly driven by the high population growth of 3% per year. However, different countries pursue economic development in different ways. At independence in 1957, Ghana's leaders saw industrialization as essential to development and electric power from the Volta Dam as central to that industrialization. In 1964, the Volta Dam was built and Ghana's economic growth in the mining, industrial, and service sectors has depended on the dam's hydropower ever since. In contrast, land-locked Burkina Faso has less industrial potential and seeks to develop through its agriculture, both for subsistence and export crops. Given the extremely unreliable rainfall, irrigation development is seen as the only way to increase agricultural production. In general, irrigation in Burkina Faso takes the form of many small scale, village-based schemes of which the downstream impact is difficult to gauge. A minor drought in 1997 and 1998 caused the level of Lake Volta to drop, resulting in widespread power outages. In the ensuing public discussion, hydraulic development in Burkina Faso was seen as one of the potential causes of the lack of water. No firm data were available to substantiate this claim. In fact, over-withdrawals in previous years combined with climate variability were more likely culprits. A recently initiated multi-disciplinary research project will be presented that seeks to provide a scientific basis on which future discussions between the two

  11. Integrated assessment of the effects of dams on irrigation sustainability in a data scarce watershed

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Masumoto, T.; Kudo, R.

    2014-12-01

    Several development projects are currently under way in developing countries to meet growing demand for water and energy. However, due to the lack of the hydro-meteorological data, some projects were conducted without rigorous check of water balance and the potential changes in the flow regime likely to be induced by reservoirs, and their implications for irrigation projects and ecosystems. To cope with this issues, we carried out analysis by using a hydrological model and quasi-observed rainfall data. A distributed water circulation model was introduced as a tool to implement the analysis. Given daily meteorological data, the model calculates spatial distribution of surface runoff, evapotranspiration, river flow and water demand. In addition, it represents operation of water use facilities, and return flow from irrigated areas. We performed a case study in the Pursat River Basin in Cambodia, where multiple projects are ongoing. We first calculated river discharge with observed rain data and calibrated it. Next, we performed a water balance analysis of the basin using the compiled model with 7 years of rainfall data. Because 20-30 years of data is generally required for water resources planning, we thus prepared 25 years of data by using a climate model with a statistically corrected bias. We determined a reference year for irrigation planning from the long-term data such that annual precipitation of 5-year return period. We selected a scenario for irrigated areas from the Water Balance Study Report (JICA, 2013) to project the future water demand, and checked the water balance under no-dam conditions. The results revealed that water supply was more than adequate to meet water demand in the reference year. We finally incorporated the future dam operations into the calculations and evaluated the impact of the dams on river flows and irrigation projects. Even under the changed flow regimes, the water balance was satisfied in the reference year. However, river flows

  12. ENSURING ADEQUATE SAFETY WHEN USING HYDROGEN AS A FUEL

    SciTech Connect

    Coutts, D

    2007-01-22

    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  13. Quantifying variability within water samples: the need for adequate subsampling.

    PubMed

    Donohue, Ian; Irvine, Kenneth

    2008-01-01

    Accurate and precise determination of the concentration of nutrients and other substances in waterbodies is an essential requirement for supporting effective management and legislation. Owing primarily to logistic and financial constraints, however, national and regional agencies responsible for monitoring surface waters tend to quantify chemical indicators of water quality using a single sample from each waterbody, thus largely ignoring spatial variability. We show here that total sample variability, which comprises both analytical variability and within-sample heterogeneity, of a number of important chemical indicators of water quality (chlorophyll a, total phosphorus, total nitrogen, soluble molybdate-reactive phosphorus and dissolved inorganic nitrogen) varies significantly both over time and among determinands, and can be extremely high. Within-sample heterogeneity, whose mean contribution to total sample variability ranged between 62% and 100%, was significantly higher in samples taken from rivers compared with those from lakes, and was shown to be reduced by filtration. Our results show clearly that neither a single sample, nor even two sub-samples from that sample is adequate for the reliable, and statistically robust, detection of changes in the quality of surface waters. We recommend strongly that, in situations where it is practicable to take only a single sample from a waterbody, a minimum of three sub-samples are analysed from that sample for robust quantification of both the concentrations of determinands and total sample variability. PMID:17706740

  14. Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data

    NASA Astrophysics Data System (ADS)

    El Sharif, H. A.; Wang, J.; Georgakakos, A. P.; Bras, R. L.

    2013-12-01

    Agricultural models, such as Decision Support System for Agrotechnology Transfer - Cropping Systems Model (DSSAT-CSM) (Tsuji, et al., 1994), have been developed to predict the yield of various crops at field and regional scales. The model simulations of crop yields provide essential information for water resources management. One key input of the agricultural models is soil moisture. So far there are no observed soil moisture data covering the entire US with adequate time (daily) and space (1 km or less) resolutions preferred for model simulation of crop yields. Spatially and temporally downscaled data from the upcoming Soil Moisture Active Passive (SMAP) mission can fill this data gap through the generation of fine resolution soil moisture maps that can be incorporated into DSSAT-CSM model. This study will explore the impact downscaled remotely-sensed soil moisture data can have on agricultural model forecasts of agricultural yield and irrigation demand using synthetically generated data sets exhibiting statistical characteristics (uncertainty) similar to the upcoming SMAP products. It is expected that incorporating this data into agricultural model will prove especially useful for cases in which soil water conductivity characteristics and/or precipitation amount at a specific site of interest are not fully known; furthermore, a proposed Bayesian analysis is expected to generate a soil moisture sequence that reduces the uncertainty in modeled yield and irrigation demand compared to using downscaled remotely-sensed soil moisture or precipitation data alone. References Tsuji, G., Uehara, G., and Balas, S. (1994). DSSAT V3, University of Hawaii, Honolulu.

  15. Soil Water Sensing-Focus on Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  16. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    from the ARPA-SIMC web site. Since 2010 forecasts of the crops water irrigation requirements have been computed and compared with the simulated data at the end of the summer with good results. The COLT scheme is able to predict the very large interannual variability of the seasonal crop water needs: in 2010 the summer was rather wet and COLT predicted about 500 Mm3, while in 2011 the median forecast was 850 Mm3, a value considered as normal. The summer of 2012 was exceptionally dry, thus the median COLT forecast was 1077 Mm3, while the value computed with observed summer data reached 1340 Mm3 (+24%). The COLT scheme was also tested in a study area located near Ravenna (570 ha), where actual crop irrigation volumes are measured. The median forecasted irrigation (0.50 Mm3) resulted 14% higher than the observed value for 2011 (0.44 Mm3), mainly due to errors in classification of non irrigated crops as irrigated, and possibly to the water table not being accounted for in the model. COLT looks like a promising approach for assessing, planning and managing water resources in agriculture, and for mitigating the impacts of intense climate anomalies in the agricultural sector.

  17. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  18. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  19. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  20. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  1. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order to... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for...

  2. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  3. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  4. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  5. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  6. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  7. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  8. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  9. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  10. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  11. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  12. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  13. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  14. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  15. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  16. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  17. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  18. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  19. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  20. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Qualifying for an SBIC License Capitalizing An Sbic § 107.200 Adequate capital...

  1. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  2. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  3. 7 CFR 4290.200 - Adequate capital for RBICs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adequate capital for RBICs. 4290.200 Section 4290.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Qualifications for the RBIC Program Capitalizing A Rbic § 4290.200 Adequate capital for RBICs. You must meet...

  4. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo…

  5. [The intraoperative colonic irrigation in emergency surgery].

    PubMed

    Kiss, L

    2001-01-01

    Bowel preparations is frequently impossible in various ante colonic diseases, such as left-sided colonic obstruction. The goal of intraoperative colonic irrigation is to obtain, during surgery, a bowel preparation offering the possibility of primary resection with immediate anastomosis, when preoperative bowel preparation has not been feasible. Technical aspects of intra-operative colonic irrigation are described. Indications for this methods are presented: left-sided obstructing carcinomas, diverticulitis, more rarely inflammatory stenosis or functional obstruction. The surgical management of left colonic emergencies has evolved in the past few decades. Recently, there has been increasing interest in resection with primary anastomosis in selected cases. The post operative mortality rate was 13 per cent. The incidence of clinical anastomotic leakage was 6.65 per cent. PMID:12731192

  6. Irrigation efficiency and production energy efficiency of traditional and modern farms in the Al-Hassa Oasis, Saudi Arabia

    SciTech Connect

    Al-Taher, A.A.

    1987-01-01

    The Al-Hassa Oasis is located in eastern Saudi Arabia. The dry tropical climate requires irrigation throughout the year for agricultural crop production, which currently faces the following problems: declining groundwater tables, scarcity of surface water, high soil salinity in substantial parts of the districts serviced by the irrigation authority, low efficiency of irrigation water use in fields, rising costs for production inputs, and declining crop yields. The objectives of this research are to assess field irrigation efficiency under traditional, intermediate, and modern irrigation methods, to calculate energy efficiency under transitional, intermediate, and modern soil management practices, and to determine the relationship between irrigation efficiency and production energy efficiency within the current agricultural scenario of the Oasis. Analyses regarding the relationship between (1) food energy output and irrigation energy input, non-irrigation energy input and irrigation efficiency, (2) irrigation efficiency and total cultural energy input, (3) irrigation efficiency and irrigation energy input, (4) food energy output and cultural energy input, and (5) production energy efficiency and irrigation efficiency under tomatoes, cucumber, potatoes, other vegetables, alfalfa, wheat, dates, and rice indicate that the effect varies from one crop to another.

  7. Modern Endodontic Principles Part 4: Irrigation.

    PubMed

    Darcey, James; Jawad, Sarra; Taylor, Carly; Roudsari, Reza Vahid; Hunter, Mark

    2016-01-01

    The complex anatomy of the tooth limits the ability to eradicate pathogens by mechanical means alone. Irrigation is the key to solving this problem. This paper highlights the importance of irrigation, the key irrigants available and methods of improving the performance of irrigants within the canal. CPD/CLINICAL RELEVANCE: To provide advice on which irrigants to use, how to use them effectively and safely and what to do if irrigants are extruded beyond the apex. PMID:27024899

  8. The caloric irrigation test.

    PubMed

    Shepard, N T; Jacobson, G P

    2016-01-01

    The test of caloric thermal irrigations is one of the first tests for sensitivity of the peripheral vestibular systems dating to the late 1800s. This chapter reviews the various protocols that have been developed over the years using thermal irrigations to the external auditory canals. The discussion covers the interpretations of the protocols and makes recommendations for those protocols that have the best performance and at the same time are practical to perform. The primary utility of the caloric test has remained the same since its origination - the comparison of the relative sensitivity of the right versus left peripheral vestibular function. This is now known to be applicable to the horizontal canals without any significant influence of the vertical canals. The hypothesized physiology behind the thermal caloric proposed in the early 1900s has now, with the help of experiments in microgravity, been partially verified. Until recently this was the only test that could investigate one peripheral end organ at a time. It is still the one test that emphasizes the low-frequency function of the horizontal canals individually. PMID:27638067

  9. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera of NW Spain

    NASA Astrophysics Data System (ADS)

    Martínez, Emma M.; Trigo-Córdoba, Emiliano; Bouzas-Cid, Yolanda; Fandiño, María; Rey, Benjamín J.; Mirás-Avalos, Jose M.; Cancela, Javier J.

    2014-05-01

    Inter-annual climate variability, in particular the temporal distribution of rainfall is regarded as a critical factor to obtain an optimal irrigation management on crops, being more marked their relevance in Atlantic climates. The presence of precision irrigation systems in Vitis vinifera (L.) has created the need to understand the physiological effects on plant, and vineyard soils, together with production and quality parameters, to achieve and adequate irrigation management. This trial was performed on two relevant white grapevine varieties from Galicia (NW-Spain), cv. `Albariño` (D.O. Rías Baixas and Ribeiro) and cv. `Godello` (D.O. Valdeorras and D.O. Monterrei) during the 2012 and 2013 seasons. Two treatments were established following a completely randomized block design with four replications (7 plants each). The treatments were rainfed (R) and surface drip irrigation (DI), these last one was not applied in DO Monterrei during 2012. Irrigation was initiated when an average value of 400 cumulative degree days was reached, ending 15 days before the harvest. Different bioclimatic indices were calculated to characterize each season and location: Cool night index (CI); Heliothermal index (HI), which corresponds to Huglin's heliothermal index; and Winkler index. To assess the water status of the vines leaf (Ψmid) and stem (Ψstem) water potentials were measured at noon. Finally, production and qualitative data were collected for each treatment. No differences between DOs were observed for 'Godello' cultivar in bioclimatic indices within the Geoviticulture MCC system (Tonietto and Carboneau, 2004), indicating temperate warm-temperate (HI) and very cool nights (CI). For the Winkler index, cv. Godello is within the region I, near the region II in the case of D.O. Valdeorras in both years. In the case of 'Albariño', warmer nights were observed in DO Rías Baixas compared with DO Ribeiro, whereas the opposite was found for the thermal index. Leaf water potential

  10. 42 CFR 438.207 - Assurances of adequate capacity and services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Assurances of adequate capacity and services. 438.207 Section 438.207 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and...

  11. 42 CFR 438.207 - Assurances of adequate capacity and services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Assurances of adequate capacity and services. 438.207 Section 438.207 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and...

  12. 42 CFR 438.207 - Assurances of adequate capacity and services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Assurances of adequate capacity and services. 438.207 Section 438.207 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and...

  13. 42 CFR 438.207 - Assurances of adequate capacity and services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Assurances of adequate capacity and services. 438.207 Section 438.207 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and...

  14. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    PubMed Central

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-01-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779

  15. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows. PMID:12809292

  16. Automatic restart of complex irrigation systems. Final report

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I.

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  17. Urban irrigation effects on WRF-UCM summertime forecast skill over the Los Angeles metropolitan area

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Hogue, T. S.

    2015-10-01

    In the current study, we explicitly address the impacts of urban irrigation on the local hydrological cycle by integrating a previously developed irrigation scheme within the coupled framework of the Weather Research and Forecasting-Urban Canopy Models (WRF-UCM) over the semiarid Los Angeles metropolitan area. We focus on the impacts of irrigation on the urban water cycle and atmospheric feedback. Our results demonstrate a significant sensitivity of WRF-UCM simulated surface turbulent fluxes to the incorporation of urban irrigation. Introducing anthropogenic moisture, vegetated pixels show a shift in the energy partitioning toward elevated latent heat fluxes. The cooling effects of irrigation on daily peak air temperatures are evident over all three urban types, with the largest influence over low-intensity residential areas (average cooling of 1.64°C). The evaluation of model performance via comparison against CIMIS (California Irrigation Management Information System) evapotranspiration (ET) estimates indicates that WRF-UCM, after adding irrigation, performs reasonably during the course of the month of July, tracking day-to-day variability of ET with notable consistency. In the nonirrigated case, CIMIS-based ET fluctuations are significantly underestimated by the model. Our analysis shows the importance of accurate representation of urban irrigation in modeling studies, especially over water-scarce regions such as the Los Angeles metropolitan area. We also illustrate that the impacts of irrigation on simulated energy and water cycles are more critical for longer-term simulations due to the interactions between irrigation and soil moisture fluctuations.

  18. A root zone modelling approach to estimating groundwater recharge from irrigated areas

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Skaggs, T. H.; van Genuchten, M. Th.; Candela, L.

    2009-03-01

    SummaryIn irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in which irrigation, evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were simulated with the HYDRUS-1D software package. The model was calibrated using field data collected in an experimental plot. Good agreement was achieved between the HYDRUS-1D simulations and field measurements made under melon and lettuce crops. The simulations indicated that water use by the crops was below potential levels despite regular irrigation. The fraction of applied water (irrigation plus precipitation) going to recharge ranged from 22% for a summer melon crop to 68% for a fall lettuce crop. In total, we estimate that irrigation of annual fruits and vegetables produces 26 hm 3 y -1 of groundwater recharge to the top unconfined aquifer. This estimate does not include important irrigated perennial crops in the region, such as artichoke and citrus. Overall, the results suggest a greater amount of irrigation return flow in the Campo de Cartagena region than was previously estimated.

  19. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    PubMed

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  20. More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.

    PubMed

    Monaghan, James M; Daccache, Andre; Vickers, Laura H; Hess, Tim M; Weatherhead, E Keith; Grove, Ivan G; Knox, Jerry W

    2013-03-30

    Dwindling water supplies, increasing drought frequency and uncertainties associated with a changing climate mean Europe's irrigated agriculture sector needs to improve water efficiency and produce more 'crop per drop'. This paper summarizes the drivers for change, and the constraints and opportunities for improving agricultural water management through uptake of precision irrigation technologies. A multi-disciplinary and integrated approach involving irrigation engineers, soil scientists, agronomists and plant physiologists will be needed if the potential for precision irrigation within the field crop sector is to be realized.

  1. Effect of irrigation scheduling on energy consumption. Final report

    SciTech Connect

    Not Available

    1981-04-01

    The objective of this study was to determine the potential for a reduction in water use and, therefore, energy use through computerized irrigation scheduling. Water and energy were used interchangeably in this study through the use of energy multipliers, 605 kWh/ac-ft for surface and 857 kWh/ac-ft for sprinkler irrigation systems. These energy figures were used as the energy in the water at the edge of the field where the use of scheduling could have an impact on the quantities used. The study was based on agricultural conditions as they exist in the San Joaquin Valley of California. Study sites were selected in this area for monitoring and analysis. These study sites were monitored for various production factors, gross applied amounts of water and crop yields. These data were collected for the 1978/79 and 1979/80 growing seasons. Scheduled and non-scheduled fields were paired based on factors other than gross applied water and yield. This permitted the identification of the effect of computerized irrigation scheduling on water and energy use. For the energy use analysis in the study an energy per unit yield (EUY) value was developed. Data collected in the course of this study showed a reduction in EUY between scheduled and non-scheduled fields on sprinkler irrigated grain, sprinkler irrigated cotton and furrow irrigated tomatoes of 32%, 7% and 25% respectively, in the study area. Results of the data analysis showed that computerized scheduling affected water and energy use most where irrigation systems with a high degree of water control are used. Percent change in EUY values were used to extrapolate these data to the seventeen (17) major agricultural energy using states. This analysis showed the potential to save, through irrigation scheduling, 0.031 QUAD Btu on systems as they currently exist and are currently managed. 15 figures, 21 tables.

  2. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  3. Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  4. Irrigation scheduling and controlling crop water use efficiency with Infrared Thermometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientific methods for irrigation scheduling include weather, soil and plant-based techniques. Infrared thermometers can be used a non-invasive practice to monitor canopy temperature and better manage irrigation scheduling. This presentation will discuss the theoretical basis for monitoring crop can...

  5. Remote sensing and control of irrigation system using a distributed wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distributed in-field sensor-based irrigation systems offer the potential to support site-specific irrigation management that allows producers to maximize their productivity while saving water. However, the seamless integration of sensor fusion, data interface, software design, and communications for...

  6. Impact of deficit irrigation on tuber yield and quality of potato cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) tuber yield and quality are impacted by irrigation and nitrogen (N) management. This study was conducted in the Pacific Northwest to evaluate effects of deficit irrigation (DI) and rates of pre-plant and in-season N applications on Ranger Russet and Umatilla Russet cult...

  7. Improving estimates of N and P loads in irrigation water from swine manure lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) requires recording N and P loads from land-applied manure, including nutrients applied in irrigation water from manure treatment lagoons. By regulation, lagoon irrigation water nutrient records in ...

  8. Improving N and P estimates for swine manure lagoon irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) require a record of N and P loads from manure land-applications, including irrigation with lagoon water. Mississippi regulations require nutrient records for lagoon irrigation water be based on at least one annual analy...

  9. A ROOT ZONE MODELLING APPROACH TO ESTIMATING GROUNDWATER RECHARGE FROM IRRIGATED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge....

  10. Quantifying the Impacts of Irrigation Technology Adoption on Water Resources in the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Kendall, Anthony; Cotterman, Kayla; Hyndman, David

    2016-04-01

    Producers in key agricultural regions worldwide are contending with increasing demand while simultaneously managing declining water resources. The High Plains Aquifer (HPA) is the largest aquifer system in the United States, and supplied most of the water to irrigate 6 million hectares in 2012. Water levels in the central and southern sections of the aquifer have steadily declined, as groundwater recharge in this semi-arid region is insufficient to meet water demands. Individual irrigators have responded to these declines by moving from less efficient irrigation technologies to those that apply water more precisely. Yet, these newer technologies have also allowed for water to be pumped from lower-yielding wells, thus extending the life of any given well and allowing drawdown to continue. Here we use a dataset of the annual irrigation technology choices from every irrigator in the state of Kansas, located in the Central High Plains. This irrigation data, along with remotely-sensed Leaf Area Index, crop choice, and irrigated area, drives a coupled surface/groundwater simulation created using the Landscape Hydrology Model (LHM) to examine the impacts of changing irrigation technology on the regional water cycle, and water levels in the HPA. The model is applied to simulate cases in which no irrigation technology change had occurred, and complete adoption of newer technologies to better understand impacts of management choices on regional water resources.

  11. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  12. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of

  13. Drip irrigation research update at NPRL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...

  14. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  15. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    PubMed

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture.

  16. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  17. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  18. Irrigation trends in Kansas, 1991-2011

    USGS Publications Warehouse

    Kenny, Joan F.; Juracek, Kyle E.

    2013-01-01

    This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.

  19. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production. The performance of such irrigation systems should be evaluated for proper design, management, operation, and efficient water use. The modeling approach has been used as a commo...

  20. Impacts and Benefits of Polyacrylamide (PAM) on irrigation efficiency, soil conservation, and water quality in mid-south cotton production 2015.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation in the Mid-South has become standard over the last few decades. As a result, Arkansas is one of the leading states in total irrigated cropland. As such, resulting groundwater decline and irrigation-induced soil erosion can have negative impacts leaving room for improved management. Water ...

  1. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  2. New method of postprostatectomy bladder irrigation.

    PubMed

    MacDermott, J P; Ewing, R; Gray, B K

    1989-01-01

    Bacterial filters have been used to sterilise the hospital water supply in order to provide irrigant for postprostatectomy irrigation. This method was compared retrospectively to bladder irrigation derived from a still on the ward. Postoperative bacteriuria was similar in both groups of 75 patients, occurring in 23.7% of patients irrigated from the still and in 20% of patients irrigated via the filters. The bacterial filter proved reliable and as safe as using water from the still. PMID:2714320

  3. Using the soil water balance to analyze the deep percolation losses and the irrigation adequacy of irrigated citrus crops (Haouz plain, Morocco)

    NASA Astrophysics Data System (ADS)

    Nassah, Houda; Fakir, Younes; Er-raki, Salah; Khabba, Said; Merlin, Olivier; Mougenot, Bernard

    2016-04-01

    In the semi-arid Haouz plain, located in central Morocco, agriculture consumes about 85% of the available water resources. Therefore, the management of irrigation water is important to avoid the water loss by soil evaporation and by deep percolation (DP) below the plant root zone. Estimating the irrigation water demand has been investigated by many studies in the Haouz plain, but DP losses beneath the irrigated areas have not been quantified yet. In this context, the objectives of the persent work are threefold :1) to evaluate DP over irrigated citrus orchard under drip and flood irrigation systems using the soil water balance equation; 2) to compare the obtained results to direct measurements of DP by a "flux-meter"; and 3) to optimize the irrigation rates that avoid excessive DP losses and water stress. The results showed that the weekly DP losses vary in average from 15 mm/week to more than 40 mm/week depending to the amount of water supply. The irrigation systems have also an important impact on DP losses evaluated to 38 % in drip irrigation and 12% in flood irrigation. Additionally the density of canopy influences the DP percentage inducing a difference of 10% between the denser citrus site and the sparse one. The comparison of DP losses calculated by soil water balance with those measured by a flux-meter installed beneath the root zone show that the first method gives higher values than the second does. Finally we evaluated the adequacy of the water supply for the crop needs based on two performance indices: depleted fraction (DF) and relative evapotranspiration (RET), showing that the drip irrigation has respond to the culture demands with an excessive quantity of irrigation, unlike to the flood one.

  4. Automated support tool for variable rate irrigation prescriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) enables center pivot management to better meet non-uniform water and fertility needs. This is accomplished through correctly matching system water application with spatial and temporal variability within the field. A computer program was modified to accommodate GIS dat...

  5. Response of Young Apple Trees to Grass and Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground covers and irrigation are important components of orchard floor management systems that affect fruit tree vigor and productivity. Three experiments were conducted in a greenhouse to determine the relative water use of candidate ground covers (roughstalk bluegrass (RB, Poa trivialis), Chewing...

  6. Effect of irrigation system uniformity and method on potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato growth, yield, and quality under improved irrigation methods and water uniformity is important to enhance water management in arid regions. A field experiment was conducted in 2014 spring and fall growing seasons using potato (Solanum tuberosum) grown in northern Egypt at Shibin El Kom, Menof...

  7. Permanent beds vs. conventional tillage in irrigated arid Central Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture (CA) practices, including limited or no tillage and preservation of residues on the soil surface, have had mixed success in irrigated agricultural systems. The effects of tillage and crop residue management on soil properties and crop yields were studied in a two factorial s...

  8. Protecting groundwater quality with high frequency subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  9. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  10. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  11. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    NASA Astrophysics Data System (ADS)

    Exner, Mary E.; Hirsh, Aaron J.; Spalding, Roy F.

    2014-05-01

    A 31 year record of ˜44,000 nitrate analyses in ˜11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ˜20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (˜5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ˜18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone.

  12. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into

  13. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    PubMed

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered <5 m below the surface. Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  14. Irrigation effects in the northern lake states: Wisconsin central sands revisited.

    PubMed

    Kraft, George J; Clancy, Katherine; Mechenich, David J; Haucke, Jessica

    2012-01-01

    Irrigated agriculture has expanded greatly in the water-rich U.S. northern lake states during the past half century. Source water there is usually obtained from glacial aquifers strongly connected to surface waters, so irrigation has a potential to locally decrease base flows in streams and water levels in aquifers, lakes, and wetlands. During the nascent phase of the irrigation expansion, water availability was explored in works of some fame in the Wisconsin central sands by Weeks et al. (1965) on the Little Plover River and Weeks and Stangland (1971) on "headwater area" streams and lakes. Four decades later, and after irrigation has grown to a dominant landscape presence, we revisited irrigation effects on central sands hydrology. Irrigation effects have been substantial, on average decreasing base flows by a third or more in many stream headwaters and diminishing water levels by more than a meter in places. This explains why some surface waters have become flow and stage impaired, sometimes to the point of drying, with attendant losses of aquatic ecosystems. Irrigation exerts its effects by increasing evapotranspiration by an estimated 45 to 142 mm/year compared with pre-irrigated land cover. We conclude that irrigation water availability in the northern lake states and other regions with strong groundwater-surface water connections is tied to concerns for surface water health, requiring a focus on managing the upper few meters of aquifers on which surface waters depend rather than the depletability of an aquifer.

  15. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    PubMed

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered <5 m below the surface. Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event. PMID:27065394

  16. Irrigation effects in the northern lake states: Wisconsin central sands revisited.

    PubMed

    Kraft, George J; Clancy, Katherine; Mechenich, David J; Haucke, Jessica

    2012-01-01

    Irrigated agriculture has expanded greatly in the water-rich U.S. northern lake states during the past half century. Source water there is usually obtained from glacial aquifers strongly connected to surface waters, so irrigation has a potential to locally decrease base flows in streams and water levels in aquifers, lakes, and wetlands. During the nascent phase of the irrigation expansion, water availability was explored in works of some fame in the Wisconsin central sands by Weeks et al. (1965) on the Little Plover River and Weeks and Stangland (1971) on "headwater area" streams and lakes. Four decades later, and after irrigation has grown to a dominant landscape presence, we revisited irrigation effects on central sands hydrology. Irrigation effects have been substantial, on average decreasing base flows by a third or more in many stream headwaters and diminishing water levels by more than a meter in places. This explains why some surface waters have become flow and stage impaired, sometimes to the point of drying, with attendant losses of aquatic ecosystems. Irrigation exerts its effects by increasing evapotranspiration by an estimated 45 to 142 mm/year compared with pre-irrigated land cover. We conclude that irrigation water availability in the northern lake states and other regions with strong groundwater-surface water connections is tied to concerns for surface water health, requiring a focus on managing the upper few meters of aquifers on which surface waters depend rather than the depletability of an aquifer. PMID:21707615

  17. Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.

  18. Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas. PMID:16585619

  19. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation.

    PubMed

    Subbarao, K V; Hubbard, J C; Schulbach, K F

    1997-08-01

    Valley. Subsurface drip irrigation is a viable, long-term strategy for soilborne disease management in lettuce in the Salinas Valley. PMID:18945057

  20. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  1. EXTERNAL EFFECTS OF IRRIGATORS' PUMPING DECISIONS, HIGH PLAINS AQUIFER.

    USGS Publications Warehouse

    Alley, William M.; Schefter, John E.

    1987-01-01

    The High Plains aquifer, which underlies about 174,000 square miles (1 square mile equals 2. 59 km**2) in the Great Plains, is the principal source of water in one of the nation's major agricultural areas. This paper examines relationships between the scale of management areas and physical factors, resulting from the lateral movement of groundwater, that limit the ability of irrigators in the High Plains to reduce their own future pumping lifts. At the scale of individual farms, irrigators have very limited ability to 'bank' water in order to obtain reduced future pumping lifts.

  2. Understanding Your Adequate Yearly Progress (AYP), 2011-2012

    ERIC Educational Resources Information Center

    Missouri Department of Elementary and Secondary Education, 2011

    2011-01-01

    The "No Child Left Behind Act (NCLB) of 2001" requires all schools, districts/local education agencies (LEAs) and states to show that students are making Adequate Yearly Progress (AYP). NCLB requires states to establish targets in the following ways: (1) Annual Proficiency Target; (2) Attendance/Graduation Rates; and (3) Participation Rates.…

  3. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  4. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  5. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  6. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  7. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  8. Adequate Schools and Inadequate Education: An Anthropological Perspective.

    ERIC Educational Resources Information Center

    Wolcott, Harry F.

    To illustrate his claim that schools generally do a remarkably good job of schooling while the society makes inadequate use of other means to educate young people, the author presents a case history of a young American (identified pseudonymously as "Brad") whose schooling was adequate but whose education was not. Brad, jobless and homeless,…

  9. Comparability and Reliability Considerations of Adequate Yearly Progress

    ERIC Educational Resources Information Center

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  10. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS... operate actively in accordance with your Articles and within the context of your business plan,...

  11. Assessing Juvenile Sex Offenders to Determine Adequate Levels of Supervision.

    ERIC Educational Resources Information Center

    Gerdes, Karen E.; And Others

    1995-01-01

    This study analyzed the internal consistency of four inventories used by Utah probation officers to determine adequate and efficacious supervision levels and placement for juvenile sex offenders. Three factors accounted for 41.2 percent of variance (custodian's and juvenile's attitude toward intervention, offense characteristics, and historical…

  12. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... identifiable personal data and automated systems shall be adequately trained in the security and privacy of... records in which identifiable personal data are processed or maintained, including all reports and output... personal records or data; must minimize, to the extent practicable, the risk that skilled technicians...

  13. Do Beginning Teachers Receive Adequate Support from Their Headteachers?

    ERIC Educational Resources Information Center

    Menon, Maria Eliophotou

    2012-01-01

    The article examines the problems faced by beginning teachers in Cyprus and the extent to which headteachers are considered to provide adequate guidance and support to them. Data were collected through interviews with 25 school teachers in Cyprus, who had recently entered teaching (within 1-5 years) in public primary schools. According to the…

  14. Influence of different operating conditions on irrigation uniformity with microperforated tapes

    NASA Astrophysics Data System (ADS)

    Moreno Pizani, María Alejandra; Jesús Farías Ramírez, Asdrúbal

    2013-04-01

    Irrigated agriculture is a safe alternative to meet the growing demand for food. Numerous studies show that proper management of localized irrigation can increase crop yields and reduce soil salinization. Therefore, periodic field systems irrigation assessments are needed in order to optimize the use efficiency of irrigation water, as well as, to increase the agricultural area covered by the same amount of water and to reduce the environmental impact. It was assessed the behavior of micro perforated tapes under different operating conditions, crops and regions of Venezuela. Evaluations were made on irrigated areas using Santeno ® Type I tape with the following crops: Banana (Musa sp), lettuce (Lactuca sativa L.), carrot (Daucus carota L) and forage sugar cane (Saccharum officinarum). In the other hand, Santeno ® Type II tape was used with papaya (Carica papaya L.) and melon (Cucumis melo L.) crops (the last crop using inverted irrigation tape). The procedures used for sampling and determining the uniformity indices of the system were performed using a series of adjustments to the methodology proposed by Keller and Karmeli (1975), Deniculi (1980) and De Santa and De Juan (1993), in order to increase the number of observations as a function of irrigation time. The calculated irrigation uniformity indices were as follow: Distribution Coefficient (UD), Uniformity Coefficient (CUC), Coefficient of Variation of Flows (CV) and Statistical Uniformity Coefficient (Us). The indices characterization was made according to Merrian and Keller (1978); Bralts (1986); Pizarro (1990) y ASAE (1996), respectively. The results showed that the irrigation uniformity for the evaluated systems varied from excellent to unacceptable, mainly due to the lack of maintenance and the absent of manometric connectors. Among the findings, it is possible to highlight the need for technical support to farmers, both in the installation, management and maintenance of irrigation systems. In this sense

  15. Evapotranspiration and irrigation algorithms in hydrologic modeling:Present Status and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are used extensively for predicting water availability and water quality responses to alternative irrigation, tillage, crop, and fertilizer management practices and global climate change. Modeling results have been frequently used by regulatory agencies for developing remedial meas...

  16. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  17. Catchment scale analysis on river-return ratio of irrigation water from densely developed paddy areas

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Masumoto, T.; Horikawa, N.; Kudo, R.; Minakawa, H.; Nawa, N.

    2013-12-01

    Irrigation in Japan is predominantly used for rice cultivation, and it accounts for 70% of total water withdrawal. Water loss, which is attributable to nature of open channel irrigation system and percolation from fields, leads to relatively low irrigation efficiencies compared with ones for upland crops. However, because part of water gradually returns to rivers (river-return flow), it contributes to stable water use in downstream. This study investigated how irrigation water circulates and returns to rivers, and quantified a ratio of river-return flow to irrigation intake for an irrigation area (river-return ratio). One difficulty in river-return flow analysis lies in the fact that two types of flow pathways exist in an irrigation area; natural rivers that drain water from the areas, and channel networks whose directions do not necessarily coincide with river directions. In addition, outflux from irrigation area is consisted of water from different sources, such as water loss during water allocation, rainfall, irrigation, and influx from adjacent upstream areas. To cope with such difficulties, we used a grid-based distributed water circulation model that represents both catchment scale hydrological cycles and water flows related to irrigation channel network. The model calculates water flow for irrigation networks based on a GIS database of water use facilities. The model also incorporates operation rules for facilities and field level water management. Using the modeled river network, we first identify grid-cells where influx and outflux occurs across boundaries of irrigation areas. Then, to eliminate the effect of influx from adjacent upstream areas, we subtract influx from outflux. This makes us to capture outflux that purely originates in rainfall and irrigation within an irrigated area. Next, we separate the amount of outflux that originates in irrigation from the total amount of outflux. As residence time of each flow pathway had not been clarified yet, we

  18. Ophthalmic irrigants: a current review and update.

    PubMed

    McDermott, M L; Edelhauser, H F; Hack, H M; Langston, R H

    1988-10-01

    The search for an ideal intraocular irrigating solution is of paramount importance to te ophthalmic surgeon. An intraocular irrigating solution, as well as surgical technique, can have deleterious effects on ocular tissues. Since an intraocular irrigating solution comes in contact with the cornea, lens, trabecular meshwork, uvea, vitreous, and retina, and ideal irrigant would be ome that ensures biological function for all of these tissues. In a practical sense, the best irrigant is one that causes the least possible damage to the structural integrity and function of the intraocular environment. This paper summarizes the development, uses, and efficacy of intraocular irrigating solutions as currently used during intraocular surgery.

  19. Relation between irrigation engineering and bilharziasis*

    PubMed Central

    Lanoix, Joseph N.

    1958-01-01

    The author discusses the relation between irrigation systems and the transmission of bilharziasis, with special reference to the important part the irrigation engineer can play in checking the spread of the disease. He points out that, in the past, there has been little co-operation between health departments and public works agencies in respect of the setting-up of irrigation systems, and stresses the advantages to be gained from an active collaboration between malacologists, epidemiologists and irrigation engineers at the planning stage of irrigation schemes. The author also puts forward some suggestions for research on irrigation-system design and outlines the role of WHO in bilharziasis control. PMID:13573123

  20. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    PubMed

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  1. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    PubMed

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree. PMID:27498491

  2. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    NASA Astrophysics Data System (ADS)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato

  3. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into

  4. Irrigation pumping using geothermal energy

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 150{sup 0}C (302{sup 0}F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture. Total supply from the Colorado River and water runoff is only 2,600,000 acre-feet per year, resulting in a net potable groundwater depletion of about 4,000,000 acre-feet per year assuming a recharge rate of about 1,000,000 acre-feet per year.

  5. Irrigation pumping using geothermal energy

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 1500 C (3020 F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture.

  6. Characteristics of dissolved carbon change in irrigation water

    NASA Astrophysics Data System (ADS)

    Akaike, Y.; Kunishio, A.; Kawamoto, Y.; Murakami, H.; Iwata, T.

    2012-12-01

    It is necessary to estimate carbon emission from soil for understanding carbon cycle processes in cultivated fields. Since irrigation water is introduced into a typical rice paddy field, one part of emitted carbon content from soil were trapped by water and dissolved in it, and dissolved carbon content outflows from the field at the drainage moment. In this study, we continuously and regularly analyzed dissolved carbon content of irrigation water and investigated seasonal variation of efflux of carbon from a paddy field. Experimental site is located reclaimed land in the southern part of Okayama Prefecture, Japan. And rice cropping cultivation has continued in a similar method every year. Intermittent irrigation water managements, or 3 days flooded and 4 days drained condition, were carried out during almost all the period of rice cultivated term. Irrigation water was sampled every flooding and drainage days. Inorganic carbon (IC) concentration was measured with total carbon (TC) analyzer (TOC-V/CSH, SHIMAZU). Amount of dissolved carbon in irrigation water was calculated from product of the carbon concentration and water levels. The experimental paddy field was divided into two areas, and two bottle of water were sampled from each area. In order to investigate what impact is brought on the annual carbon cycle by the difference of disposal management of residual biomass after the harvest, residual biomass was burned and plowed into soil at the one area on 29th Nov., 2011, and residue was not burned and directly plowed into soil at the other area as usual. IC during cultivated term in 2011 and 2012 in both area gradually increased day by day for every flooded periods. And IC showed distinct diurnal variations with lower value in the daytime than at night, it is because of photosynthetic activities by aquatic algae in the irrigation water.

  7. Ecohydrology of agroecosystems: quantitative approaches towards sustainable irrigation.

    PubMed

    Vico, Giulia; Porporato, Amilcare

    2015-02-01

    Irrigation represents one of the main strategies to enhance and stabilize agricultural productivity, by mitigating the effects of rainfall vagaries. In the face of the projected growth in population and in biofuel demands, as well as shifts in climate and dietary habits, a more sustainable management of water resources in agroecosystems is needed. The field of ecohydrology, traditionally focusing on natural ecosystems, has the potential to offer the necessary quantitative tools to assess and compare agricultural enterprises across climates, soil types, crops, and irrigation strategies, accounting for the unpredictability of the hydro-climatic forcing. Here, agricultural sustainability and productivity are assessed with reference to water productivity (defined as the ratio between yield and total supplied water), yields, water requirements, and their variability-a crucial element for food security and resource allocation planning. These synthetic indicators are quantified by means of a probabilistic description of the soil water balance and crop development. The model results allow the interpretation of patterns of water productivity observed in Zea mays (maize) and Triticum aestivum (wheat), grown under a variety of soils, climates, and irrigation strategies. Employing the same modeling framework, the impact of rainfall pattern and irrigation strategy on yield and water requirements is further explored. The obtained standard deviations of yield and water requirements suggest the existence of a nonlinear tradeoff between yield stabilization and variability of water requirements, which in turn is strongly impacted by irrigation strategy. Moreover, intermediate rainfall amounts are associated to the highest variability in yields and irrigation requirements, although allowing the maximum water productivity. The existence of these tradeoffs between productivity, reliability, and sustainability poses a problem for water management, in particular in mesic climates.

  8. Radiological Evaluation of Penetration of the Irrigant according to Three Endodontic Irrigation Techniques

    PubMed Central

    Benkiran, Imane; El Ouazzani, Amal

    2016-01-01

    Introduction. This experimental study is to compare radiographs based on the penetration depth of the irrigant following three final irrigation techniques. Material and Method. A sample of sixty teeth with single roots were prepared with stainless steel K files followed by mechanized Ni-Ti files iRace® under irrigation with 2.5% sodium hypochlorite. Radiopaque solution was utilized to measure the penetration depth of the irrigant. Three irrigation techniques were performed during this study: (i) passive irrigation, (ii) manually activated irrigation, and (iii) passive irrigation with an endodontic needle CANAL CLEAN®. Radiographs were performed to measure the length of irrigant penetration in each technique. Results. In comparison, passive irrigation with a conventional syringe showed infiltration of the irrigant by an average of 0.682 ± 0.105, whereas the manually activated irrigation technique indicated an average of 0.876 ± 0.066 infiltration. Irrigation with an endodontic syringe showed an average infiltration of 0.910 ± 0.043. The results revealed highly significant difference between the three irrigation techniques (α = 5%). Conclusion. Adding manual activation to the irrigant improved the result by 20%. This study indicates that passive irrigation with an endodontic needle has proved to be the most effective irrigation technique of the canal system. PMID:27433162

  9. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.

  10. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  11. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as ?bootstrap analysis? that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most

  12. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  13. Agricultural irrigated land-use inventory for Osceola County, Florida, October 2013-April 2014

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.

    2014-01-01

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to increase the accuracy of current water-use estimates or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas within Osceola County for the agricultural growing period October 2013–April 2014. The irrigated areas were first delineated using land-use data and satellite imagery and then field verified between February and April 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 27,450 acres were irrigated during the study period. This includes 4,370 acres of vegetables, 10,970 acres of orchard crops, 1,620 acres of field crops, and 10,490 acres of ornamentals and grasses. Specifically, irrigated acreage included citrus (10,860 acres), sod (5,640 acres), pasture (4,580 acres), and potatoes (3,320 acres). Overall, groundwater was used to irrigate 18,350 acres (67 percent of the total acreage), and surface water was used to irrigate the remaining 9,100 acres (33 percent). Microirrigation systems accounted for 45 percent of the total acreage irrigated, flood systems 30 percent, and sprinkler systems the remaining 25 percent. An accurate, detailed, spatially referenced, and field-verified inventory of irrigated crop acreage can be used to assist resource managers making current and future county-level water-use estimates in Osceola County.

  14. Assessing the groundwater recharge under various irrigation schemes in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Lin, Zih-Ciao; Tsai, Cheng-Bin

    2014-05-01

    The flooded paddy fields can be considered as a major source of groundwater recharge in Central Taiwan. The risk of rice production has increased notably due to climate change in this area. To respond to agricultural water shortage caused by climate change without affecting rice yield in the future, the application of water-saving irrigation is the substantial resolution. The System of Rice Intensification (SRI) was developed as a set of insights and practices used in growing irrigated rice. Based on the water-saving irrigation practice of SRI, impacts of the new methodology on the reducing of groundwater recharge were assessed in central Taiwan. The three-dimensional finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge under different irrigation schemes. According to local climatic and environmental characteristics associated with SRI methodology, the change of infiltration rate was evaluated and compared with the traditional irrigation schemes, including continuous irrigation and rotational irrigation scheme. The simulation results showed that the average infiltration rate in the rice growing season decreased when applying the SRI methodology, and the total groundwater recharge amount of SRI with a 5-day irrigation interval reduced 12% and 9% compared with continuous irrigation (6cm constant ponding water depth) and rotational scheme (5-day irrigation interval with 6 cm initial ponding water depth), respectively. The results could be used as basis for planning long-term adaptive water resource management strategies to climate change in Central Taiwan. Keywords: SRI, Irrigation schemes, Groundwater recharge, Infiltration

  15. Identifying the effect of irrigation on evapotranspiration variability over the High Plains

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Cai, X.

    2015-12-01

    Irrigation is widely adopted as a measure to maintain crop yield when precipitation is limited and stabilize crop yield to buffer climatic fluctuation. Irrigation has considerably interfered with hydrological processes in many areas with extensive and intensive irrigation requirement; with the increasing demand for food and weather variability related to climate change, irrigation application is expected to increase, which would aggravate the interferences to hydrologic processes. Current studies focus on the impact of irrigation on the mean value of ET at either local or regional scale, however, how irrigation changes the variability of ET has not been well understood. This study analyzes the impact of extensive irrigation on ET variability in the High Plains. We apply an ET variance decomposition framework (Zeng and Cai 2015) to quantify the effects of both climate and irrigation on ET variance in in the High Plains watersheds. Based on climatic and groundwater storage data, we assess the monthly ET variance and its components for both pre-development (1930s-1960s) and development periods (1970-2010s). It is found that irrigation not only causes the well-known groundwater drawdown and stream depletion problems in the area associated with, but also changes ET variance, which further affects land surface processes. With complementary water supply from irrigation, ET approaches to potential ET, and ET variance is more attributed to climatic variables such as temperature, while causing significant seasonal fluctuations to groundwater storage. For sustainable water resources management in the High Plains, we argue that both the mean value and the variance of ET should be considered together for the regulation of irrigation in this region.

  16. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  17. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of...: May 24, 2010. d. Applicant: Turlock Irrigation District and Modesto Irrigation District. e. Name of.... g. Filed Pursuant to: Federal Power Act, 16 USC 791a-825r. h. Applicant Contact: Turlock...

  18. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  19. Newer Root Canal Irrigants in Horizon: A Review

    PubMed Central

    Jaju, Sushma; Jaju, Prashant P.

    2011-01-01

    Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation. PMID:22190936

  20. Environmental flows for rivers and economic compensation for irrigators.

    PubMed

    Sisto, Nicholas P

    2009-02-01

    Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.