Science.gov

Sample records for adequate irrigation management

  1. Wireless sensor networks for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  2. The experience of irrigation management transfer in two irrigation schemes in Malawi, 1960s 2002

    NASA Astrophysics Data System (ADS)

    Nkhoma, Bryson G.; Mulwafu, Wapulumuka O.

    This study examines the process of irrigation management transfer (IMT) in Malawi using the case studies of Likangala and Domasi irrigation schemes in the lake Chilwa basin. It observes that the concept of irrigation management transfer has been adopted against the background of poor performance of irrigation schemes in Malawi and the desire of the state to conform to global trends and approaches in the management of irrigation schemes. In the context of Malawi, the process of IMT involves rehabilitation of schemes and training of farmers before handing them over. The paper notes that so far the handover process has been fraught with many challenges, not least of which includes lack of adequate funds, delays, lack of public awareness and farmers’ conflicting perceptions on the handover of irrigation schemes. These problems militate against the success of IMT in the Domasi and Likangala irrigation schemes in particular and other schemes in the country as a whole.

  3. Nitrate contamination and its relationship with flood irrigation management

    NASA Astrophysics Data System (ADS)

    García-Garizábal, I.; Causapé, J.; Abrahao, R.

    2012-06-01

    SummaryNitrate contamination is a significant unresolved environmental issue for agriculture in the 21st century, with longstanding challenges in its control and allocation to a specified territory. In order to address these challenges, real-world meticulous irrigation area studies are required. The objective of this investigation is to analyze the evolution of nitrate contamination in relation to agronomic and management changes within a traditionally irrigated land. Specifically, the impact of changes in irrigation allowance assignment, changes in irrigation method from rotation to on-demand flood irrigation, and creation of water consumption accounts were analyzed. To this end, nitrogen monitoring and annual balances were carried out in a small irrigated hydrological basin (95 ha) located in Northeastern Spain throughout the years of 2001 and 2005-2008. The evolution of the nitrate contamination index was also analyzed, which relates the mass of nitrates exported to the fertilization necessities of a specific irrigated area. The results demonstrated that although changes in crop pattern caused a 33% reduction in the nitrogen required through fertilization, the fertilization rates applied are still double the necessities. Changes in irrigation management decreased the mass of nitrates exported by half and the nitrate contamination index by 24%, but the nitrate levels present are still approximately double of those registered in modern irrigation areas. The changes implemented by the Irrigation District in the irrigation management were effective. However, this study confirms that a greater effort is still required to achieve adequate nitrogen fertilization matching the crop necessities.

  4. Crop water productivity and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  5. Advances in sprinkler irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  6. Soil-moisture sensors and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  7. TAM 304 wheat – Adapted to the adequate rainfall or high-input irrigation production system in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TAM 304 wheat is a medium-early hard red winter wheat. It is a great dryland or semi-irrigated wheat. TAM 304 performs best under adequate rainfall, limited irrigation, or irrigation, but does not perform as well under extended drought. TAM 304 performs exceptionally well under foliar disease pressu...

  8. New soil water sensors for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  9. Influence of local topography on precision irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  10. Wireless sensor networks for canopy temperature sensing and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  11. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  12. Managing runoff water quality from recently manured, furrow irrigated fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient losses in furrow irrigation runoff potentially increase when soils are amended with manure. We evaluated the effect of tillage, water soluble polyacrylamide (WSPAM) and irrigation management on runoff water quality during the first furrow irrigation on a calcareous silt loam soil, which had...

  13. Automated irrigation management with soil and canopy sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated irrigation management provides for real time feedback between crop water needs and the delivery of specific amount of irrigation water to specific locations on demand. In addition to the basic components of any irrigation system, e.g. pumps, filters, valves, pipes and tubing, sprinkler he...

  14. Irrigation system management assisted by thermal imagery and spatial statistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal imaging has the potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of therm...

  15. 75 FR 5893 - Suspension of Community Eligibility for Failure To Maintain Adequate Floodplain Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... To Maintain Adequate Floodplain Management Regulations AGENCY: Federal Emergency Management Agency... floodplain management regulations meeting minimum requirements under the National Flood Insurance Program... they have brought their floodplain management regulations into compliance with the NFIP...

  16. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  17. Soil management and conservation: Irrigation: Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  18. Variable-rate irrigation management for peanut using Irrigator Pro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable-rate irrigation has the potential to save water. These savings become more important as urban, industrial, and environmental sectors compete with agriculture for available water. To help save water, methodologies are needed to precision-apply water for maximum agronomic and economic efficac...

  19. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  20. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  1. Root zone sensors for irrigation management in intensive agriculture.

    PubMed

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world's water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower's experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS' (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  2. Improving irrigation management in L'Horta Nord (Valencia, Spain)

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo

    2014-05-01

    irrigation system with the other studied variables. Greater yields (p≤0.01) were obtained in the first growing season, drip irrigation and maintaining a higher soil moisture level. When considering the irrigation water use efficiency, the irrigation system showed significant differences (p≤0.01) with greater efficiencies for drip irrigation. Considering the homogeneity of the plots in the area and the similarities of the irrigation managements of chufa with the other crops, the results could be extended to most of the plots and crops in the area.

  3. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  4. Optimizing Irrigation Management for Humid Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal of optimizing irrigated crop production and protecting soil and water resources in the Mid-South. Our interdisciplinary team investigates ways to improve irrigation scheduling and mechanized-irrigat...

  5. Optimizing Irrigation Management for Humid Climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal of optimizing irrigated crop production and protecting soil and water resources in the Mid-South. Our interdisciplinary team investigates ways to improve irrigation scheduling and mechanized irrigat...

  6. Optimizing irrigation management for humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal of optimizing irrigated crop production and protecting soil and water resources in the Mid-South. Our interdisciplinary team investigates ways to improve irrigation scheduling and mechanized irrigat...

  7. Using Automation to Improve Surface Irrigation Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    ERIC Educational Resources Information Center

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. Knowledge Assessment on Sustainable Water Resources Management for Irrigation - KASWARMI

    NASA Astrophysics Data System (ADS)

    Bardowicks, K.; Billib, M.; Holzapfel, E.; Lorite, I.; Farkas, I.; Fernández Cirelli, A.; Del Callejo, I.; Paz, V.; Montaña, E.; Gheyi, H.

    2009-04-01

    The EU funded KASWARMI project was performed from March 2007 until August 2008 by focusing on society key issues to contribute to a better use and management of the water resources in arid and semi-arid ecosystems. In that way, the project has aimed to deliver fundamentals for future research activities to improve the sustainability of irrigated agriculture in Latin America. The world's food production depends on the availability of water, a precious but limited resource. Irrigated agriculture is responsible for approximately 70 percent of all the freshwater withdrawn in the world and more water will be used for irrigation in the future, as world food production continuously increases in order to meet rising demand. The challenge for irrigated agriculture today is to contribute to the world's food production and improvement of food security through a more efficient, cleaner and integrated use of water (FAO). The main objective of KASWARMI was to build up a comprehensive knowledge base, including the evaluation of current state of the art, assembling international experience in an interdisciplinary scientific network on sustainable water resources management for irrigation. In six selected irrigated areas in Latin America a basic analysis of the major socio-economical, environmental, institutional and agrotechnical aspects was carried out. The approach of KASWARMI was to learn from the past and ongoing research activities to identify gaps and the scope for the collaboration of potential stakeholders (farmers, researchers, other water users, policy makers). The direct communication between the researchers and the stakeholders in the field study areas was used to identify their main needs, finding strategies for future activities to solve open questions of sustainable water resources management for irrigation in Latin America. More information is available at site www.kaswarmi.eu.

  10. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  11. Irrigation management with remote sensing. [alfalfa plots in new mexico

    NASA Technical Reports Server (NTRS)

    Heilman, J.; Moore, D.; Myers, V.

    1980-01-01

    A ground study conducted utilizing hand held radiometers to collect visible, near infrared and thermal infrared measurements. The data was analyzed and evaluated in terms of the ground measurements, which included percent crop canopy cover. The results used to recommend future action regarding use of satellite data in irrigation management.

  12. Improving irrigation management for humid and sub-humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal to develop solutions to broad water management problems with application to humid and sub-humid areas in the USA and the world. Our interdisciplinary team optimizes production systems for irrigated ...

  13. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  14. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  15. Management Strategies for Transition to Sustainable Agricultural Irrigation

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D.; Mulligan, K.; Brown, C. M.; Yang, Y. E.

    2011-12-01

    In many agricultural regions of the world, aquifer overdrafting for agricultural irrigation continues. Management strategies are investigated that transition from this unsustainable use of water to a future, diminished use of irrigation. Complications arising from climate change and volatile energy prices are considered. A command and control strategy is modeled using combined simulation and optimization techniques. This strategy is compared with market based mechanisms such as cap and trade and Pigouvian pricing that are modeled using agent based methods. The formulations are designed to model the effects of different management strategies including those that seek to avoid rapid changes in basin-wide water utilization (considered a surrogate for agricultural production) over this time period. Formulations also include limits on total reduction in aquifer storage and controls on streamflow in the basin. The management formulations used in this study are developed for planning horizons of 50 to 100 years and use the Republican River Basin in the High Plains Aquifer as a case study. Historical and climate-adjusted recharge patterns are considered. Spatial and temporal variation in total irrigated acreage and the aquifer storage change determined by the solutions of the management formulations are analyzed and presented.

  16. Remote sensing technologies applied to the irrigation water management on a golf course

    NASA Astrophysics Data System (ADS)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  17. Water Management For Drip Irrigated Corn In The Arid Southeastern Anatolia Project Area In Turkey

    NASA Astrophysics Data System (ADS)

    Yazar, A.; Gencel, B.

    Microirrigation has the potential to minimize application losses to evaporation, runoff and deep percolation; improve irrigation control with smaller, frequent applications; supply nutrients to the crop as needed; and improve crop yields. The Southeastern Anatolia Project (GAP), when completed, 1.7 million ha of land will be irrigated. Wa- ter supplies are limited, and traditional irrigation practices result in high losses and low irrigation efficiences. This study was conducted to evaluate surface drip irrigation on crop performance. The effect of irrigation frequency and amount on crop yield, yield components, water use, and water use efficiency of corn (Zea mays L., PIO- 3267) were investigated in the Harran Plain in the arid Southeastern Turkey on a clay textured Harran Soil Series. Irrigation frequencies were once in three-day, and once in six-day; irrigation levels varied from full (I-100), medium (I-67; 2/3rd of full), and low (I-33; 1/3rd of full). The full irrigation treatment received 100% of the cumula- tive evaporation within the irrigation interval. Liquid nitrogen was injected into the irrigation water throughout the growing season. Treatments received the same amount of fertilizers. Highest average corn grain yield (11920 kg/ha) was obtained from the full irrigation treatment (I-100) with six-day irrigation interval. Irrigation intervals did not affect corn yields; however, deficit irrigation affected crop yields by reducing seed mass, and the seed number. Maximum water use efficiency (WUE) was found as 2.27 kg/m3 in the I-33 treatment plots with three-day irrigation interval. On the clay soil at Harran, irrigation frequencies are less critical than proper irrigation management for drip irrigation systems to avoid water deficits that have a greater effect on corn yields. The results revealed that about 40% water saving is possible with drip irrigation as compared to traditional surface irrigation methods in the region.

  18. Irrigation Strategies and Crop Breeding As Complementary Measures for Improved Water Management and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Vico, G.; Manzoni, S.; Weih, M.; Porporato, A. M.

    2014-12-01

    The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. Examples are the shift from scheduled to demand-based irrigation and the use of sophisticated water distribution techniques. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. Enhanced ecosystem services could be obtained shifting from annual to perennial crops, obtained by means of targeted breeding. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion, water and nutrient losses, while enhancing carbon sequestration in the root zone. We explore here the implications for water management at the field- to farm-scale of both improved irrigation methods and targeted breeding. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species (including both selected and wild species) to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. The larger and more developed roots of perennial crops may allow a better exploitation of soil water resources than annual species. At the same time, perennial crops may require adequate water supply for

  19. A study on the role and importance of irrigation management in integrated river basin management.

    PubMed

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice.

  20. Real time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2013-12-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas traditionally rich of water such as the Po Valley in northern Italy. In dry periods problems of water shortage can be enhanced by conflictual uses of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective about this issue is increasing due to possible impacts of climate change and global warming scenarios which come out from the fourth IPCC Report. The increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system PRE.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction (20 members) at long-range (30 days) with hydrological simulations of water balance to forecast the soil water content over a maize field. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR probes. Reliability of the forecasting system and its benefits were assessed on the growing season of 2012. Obtained results show how the proposed drought forecasting system is able to have a high reliability of forecast at least for a fortnight as lead time.

  1. Real-time drought forecasting system for irrigation management

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M.

    2014-09-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in European areas which traditionally have an abundant supply of water, such as the Po Valley in northern Italy. In dry periods, water shortage problems can be enhanced by conflicting uses of water, such as irrigation, industry and power production (hydroelectric and thermoelectric). Furthermore, in the last decade the social perspective in relation to this issue has been increasing due to the possible impact of climate change and global warming scenarios which emerge from the IPCC Fifth Assessment Report (IPCC, 2013). Hence, the increased frequency of drought periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the PREGI real-time drought forecasting system; PREGI is an Italian acronym that means "hydro-meteorological forecast for irrigation management". The system, planned as a tool for irrigation optimization, is based on meteorological ensemble forecasts (20 members) at medium range (30 days) coupled with hydrological simulations of water balance to forecast the soil water content on a maize field in the Muzza Bassa Lodigiana (MBL) consortium in northern Italy. The hydrological model was validated against measurements of latent heat flux acquired by an eddy-covariance station, and soil moisture measured by TDR (time domain reflectivity) probes; the reliability of this forecasting system and its benefits were assessed in the 2012 growing season. The results obtained show how the proposed drought forecasting system is able to have a high reliability of forecast at least for 7-10 days ahead of time.

  2. Potential and challenges in use of thermal imaging for humid region irrigation system management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal imaging has shown potential to assist with many aspects of irrigation management including scheduling water application, detecting leaky irrigation canals, and gauging the overall effectiveness of water distribution networks used in furrow irrigation. Many challenges exist for the use of the...

  3. Managing diminished irrigation capacity with preseason irrigation and plant density for corn production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...

  4. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  5. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain).

    PubMed

    Carrillo Cobo, M T; Camacho Poyato, E; Montesinos, P; Rodríguez Díaz, J A

    2014-03-01

    Pressurized irrigation networks require large amounts of energy for their operation which are linked to significant greenhouse gas (GHG) emissions. In recent years, several management strategies have been developed to reduce energy consumption in the agricultural sector. One strategy is the reduction of the water supplied for irrigation but implies a reduction in crop yields and farmer's profits. In this work, a new methodology is developed for sustainable management of irrigation networks considering environmental and economic criteria. The multiobjective non-dominated Sorting Genetic Algorithm (NSGA II) has been selected to obtain the optimum irrigation pattern that would reduce GHG emissions and increase profits. This methodology has been applied to Bembézar Margen Derecha (BMD) irrigation district (Spain). Irrigation patterns that reduce GHG emissions or increase actual profits are obtained. The best irritation pattern reduces the current GHG emissions in 8.56% with increases the actual profits in 14.56%. Thus, these results confirm that simultaneous improvements in environmental and economic factors are possible.

  6. Real-time drought forecasting system for irrigation managment

    NASA Astrophysics Data System (ADS)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  7. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.

  8. Surface irrigation management for guayule rubber production in the US desert southwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production of the desert shrub, guayule (Parthenium argentatum G.), requires judicious management of irrigation water for achieving economic yields and high water productivity. This study expands existing, but limited and dated knowledge on irrigation management of guayule. A 29-month g...

  9. A review of downscaling methods for remote sensing-based irrigation management: Part I

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High resolution daily evapotranspiration (ET) maps would greatly improve irrigation management. Numerous ET mapping algorithms have been developed to make use of thermal remote sensing data acquired by satellite sensors. However, adoption of remote sensing-based ET maps for irrigation management has...

  10. Water reuse for irrigation in Jordan: plant beneficial nutrients, farmers' awareness and management strategies.

    PubMed

    Carr, G; Nortcliff, S; Potter, R B

    2011-01-01

    The reuse of treated wastewater (reclaimed water) is particularly well suited for irrigated agriculture as it often contains significant quantities of plant essential nutrients. This work has shown that reclaimed water in Jordan can have adequate concentrations of potassium, phosphate, sulphate and magnesium to meet all or part of the crop's requirements. To fully benefit from these inputs farmers must have an awareness of the water quality and reduce the application of inorganic fertilisers accordingly. Interviews with farmers have shown that 75 per cent of farmers indirectly using reclaimed water are aware of the nutrients. Farmers' decision making as to the application of inorganic fertilisers appears to be influenced by a range of factors which include the type of crops being cultivated, the provision of training on nutrient management and the availability of information on the nutrient content of the reclaimed water.

  11. Decentralising Zimbabwe’s water management: The case of Guyu-Chelesa irrigation scheme

    NASA Astrophysics Data System (ADS)

    Tambudzai, Rashirayi; Everisto, Mapedza; Gideon, Zhou

    Smallholder irrigation schemes are largely supply driven such that they exclude the beneficiaries on the management decisions and the choice of the irrigation schemes that would best suit their local needs. It is against this background that the decentralisation framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasise the need for a participatory approach to water management. The Zimbabwean government has gone a step further in decentralising the management of irrigation schemes, that is promoting farmer managed irrigation schemes so as to ensure effective management of scarce community based land and water resources. The study set to investigate the way in which the Guyu-Chelesa irrigation scheme is managed with specific emphasis on the role of the Irrigation Management Committee (IMC), the level of accountability and the powers devolved to the IMC. Merrey’s 2008 critique of IWRM also informs this study which views irrigation as going beyond infrastructure by looking at how institutions and decision making processes play out at various levels including at the irrigation scheme level. The study was positioned on the hypothesis that ‘decentralised or autonomous irrigation management enhances the sustainability and effectiveness of irrigation schemes’. To validate or falsify the stated hypothesis, data was gathered using desk research in the form of reviewing articles, documents from within the scheme and field research in the form of questionnaire surveys, key informant interviews and field observation. The Statistical Package for Social Sciences was used to analyse data quantitatively, whilst content analysis was utilised to analyse qualitative data whereby data was analysed thematically. Comparative analysis was carried out as Guyu-Chelesa irrigation scheme was compared with other smallholder irrigation scheme’s experiences within Zimbabwe and the Sub Saharan African region at large. The findings were that whilst the

  12. Irrigation and Instream Management under Drought Conditions using Probabilistic Constraints

    NASA Astrophysics Data System (ADS)

    Oviedo-Salcedo, D. M.; Cai, X.; Valocchi, A. J.

    2009-12-01

    It is well-known that river-aquifer flux exchange may be an important control on low flow condition in a stream. Moreover, the connections between streams and underlying formations can be spatially variable due to geological heterogeneity and landscape topography. For example, during drought seasons, farming activities may induce critical peak pumping rates to supply irrigation water needs for crops, and this leads to increased concerns about reductions in baseflow and adverse impacts upon riverine ecosystems. Quantitative management of the subsurface water resources is a required key component in this particular human-nature interaction system to evaluate the tradeoffs between irrigation for agriculture and the ecosystems low flow requirements. This work presents an optimization scheme developed upon the systems reliability-based design optimization -SRBDO- analysis, which accounts for prescribed probabilistic constraint evaluation. This approach can provide optimal solutions in the presence of uncertainty with a higher level of confidence. In addition, the proposed methodology quantifies and controls the risk of failure. SRBDO have been developed in the aerospace industry and extensively applied in the field of structural engineering, but has only seen limited application in the field of hydrology. SRBDO uses probability theory to model uncertainty and to determine the probability of failure by solving a mathematical nonlinear programming problem. Furthermore, the reliability-based design optimization provides a complete and detailed insight of the relative importance of each random variable involved in the application, in this case the surface -groundwater coupled system. Importance measures and sensitivity analyses of both, random variables and probability distribution function parameters are integral components of the system reliability analysis. Therefore, with this methodology it is possible to assess the contribution of each uncertain variable on the total

  13. Middle East Regional Irrigation Management Information Systems project-Some science products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  14. Adapting irrigation management to water scarcity: constraints of plant growth, hydraulics and carbon assimilation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  15. Automating variable rate irrigation management prescriptions for center pivots from field data maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) enables center pivot systems to match irrigation application to non-uniform field needs. This technology has potential to improve application and water-use efficiency while reducing environmental impacts from excess runoff and poor water quality. Proper management of V...

  16. Improvement of sustainability of irrigation in olive by the accurate management of regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Memmi, Houssem; Moreno, Marta M.; Gijón, M. Carmen; Pérez-López, David

    2015-04-01

    Regulated Deficit Irrigation (RDI) is a useful tool to balance the improvement of productivity and water saving. This methodology is based in keeping the maximum yield with deficit irrigation. The key consists in setting water deficit during a non-sensitive phenological period. In olive, this phenological period is pit hardening, although, the accurate delimitation of the end of this period is nowadays under researching. Another interesting point in this methodology is how deep can be the water stress during the non-sensitive period. In this assay, three treatments were used in 2012 and 2013. A control treatment (T0), irrigated following FAO methodology, without water stress during the whole season and two RDI treatments in which water stress was avoided only during stage I and III of fruit growth. During stage II, widely considered as pit hardening, irrigation was ceased until trees reach the stated water stress threshold. Water status was monitored by means of stem water potential (ψs) measurements. When ψs value reached -2 MPa in T1 treatment, trees were irrigated but with a low amount of water with the aim of keeping this water status for the whole stage II. The same methodology was used for T2 treatment, but with a threshold of -3 MPa. Water status was also controlled by leaf conductance measurements. Fruit size and yield were determined at the end of each season. The statistically design was a randomized complete blocks with four repetitions. The irrigation amount in T1 and T2 was 50% and 65% less than T0 at the end of the study. There were no significant differences among treatments in terms of yield in 2012 (year off) and 2013 (year on).

  17. Integration of satellite-based energy balance with simulation models applied to irrigation management at an irrigation scheme of southern Spain

    NASA Astrophysics Data System (ADS)

    Santos, Cristina; Lorite, Ignacio J.; Tasumi, Masahiro; Allen, Richard G.; Gavilán, Pedro; Fereres, Elías

    2007-10-01

    This paper combines a water balance model with satellite-based remote-sensing estimates of evapotranspiration (ET) to provide accurate irrigation scheduling guidelines for individual fields. The satellite-derived ET was used in the daily soil water balance model to improve accuracy of field-by-field ET demands and subsequent field-scale irrigation schedules. The combination of satellite-based ET with daily soil water balance incorporates the advantages of satellite remote-sensing and daily calculation time steps, namely, high spatial resolution and high temporal resolution. The procedure was applied to Genil - Cabra Irrigation Scheme in Spain, where irrigation water supply is often limited by regional drought. Compared with traditional applications of water balance models (i.e. without the satellite-based ET), the combined procedure provided significant improvements in irrigation schedules for both the average condition and when considering field-to-field variability. A 24% reduction in water use was estimated for cotton if the improved irrigation schedules were followed. Irrigation efficiency calculated using satellite-based ET and actual applied irrigation water helped to identify specific agricultural fields experiencing problems in water management, as well as to estimate general irrigation efficiencies of the scheme by irrigation and crop type. Estimation of field irrigation efficiency ranged from 0.72 for cotton to 0.90 for sugar beet.

  18. Efficient irrigation management with conventional and VRI sprinkler systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Alabama, there is a ploitical push towards irrigated agriculture, as reduction in water resources for agriculture in the West becomes more limited. Some farmers have invested in center pivot systems but have little experience with irrigation scheduling methods. ARS scientists at Bushland have e...

  19. Management of Fresh Wheat Residue for Irrigated Winter Canola Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola is popular with many irrigated growers as it provides excellent disease control benefits for potatoes grown in rotation. There is a belief among irrigated canola growers that fresh wheat residue must be burned and the soil then heavily tilled before winter canola is planted. These grow...

  20. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  1. Satellite Irrigation Monitoring and Management Support in California with the Terrestrial Observation and Prediction System

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Lund, C.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Lee, C.; Rosevelt, C.; Fletcher, N.; Votava, P.; Milesi, C.; Hashimoto, H.; Wang, W.; Sheffner, E. J.; Nemani, R.

    2011-12-01

    Satellite data can be used to map crop evapotranspiration over large areas and make irrigation scheduling more practical, convenient, and accurate, but requires the development of new tools and computing frameworks to support operational use in irrigation scheduling and water management. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support. The system utilizes the NASA Terrestrial Observation and Prediction System (TOPS) to integrate satellite observations and meteorological observations to map basal crop coefficient (Kcb) and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at spatial resolutions that are useful for irrigation management at the field level (30m). Integration of data from the NOAA NWS Forecasted Reference Evapotranspiration (FRET) system also allows forecasting of irrigation demand with lead times of up to one week, supporting both irrigation scheduling and water delivery planning. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system, web services, and hand held devices. We also present comparisons of estimates of ETcb from the prototype system against estimates from other methods, including surface renewal stations, energy balance models, and water balance models driven with data from wireless sensor networks deployed in operational agricultural fields across California.

  2. Local irrigation management institutions mediate changes driven by external policy and market pressures in Nepal and Thailand.

    PubMed

    Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  3. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    NASA Astrophysics Data System (ADS)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  4. Effects of drainage salinity evolution on irrigation management

    NASA Astrophysics Data System (ADS)

    Kan, Iddo

    2003-12-01

    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  5. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  6. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  7. Conservative management of bilateral pneumoparotitis with sialendoscopy and steroid irrigation.

    PubMed

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2014-10-29

    Pneumoparotitis is a rare condition related to retrograde airflow into the ductal system of the gland and secondary infections. Although counselling is enough in the majority of cases, persistent problems require surgery. Sialendoscopy and ductal irrigation with steroids have never been described as a treatment option. We present the case of a 61-year-old man with recurrent bilateral parotid swellings who had three episodes of sialadenitis on the right side within 2 years. Massage of the glands revealed air bubbles coming out from both papillae. A previous CT scan confirmed the presence of air in both parotid glands. The patient underwent sialendoscopy and irrigation of the ductal system with prednisolone. Ductal irrigation with steroids in three additional sessions led to a significant improvement of symptoms 6 months later. Sialendoscopy and irrigation with steroids could be another treatment modality in cases of recurrent pneumoparotitis avoiding major surgery.

  8. Conservative management of bilateral pneumoparotitis with sialendoscopy and steroid irrigation

    PubMed Central

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2014-01-01

    Pneumoparotitis is a rare condition related to retrograde airflow into the ductal system of the gland and secondary infections. Although counselling is enough in the majority of cases, persistent problems require surgery. Sialendoscopy and ductal irrigation with steroids have never been described as a treatment option. We present the case of a 61-year-old man with recurrent bilateral parotid swellings who had three episodes of sialadenitis on the right side within 2 years. Massage of the glands revealed air bubbles coming out from both papillae. A previous CT scan confirmed the presence of air in both parotid glands. The patient underwent sialendoscopy and irrigation of the ductal system with prednisolone. Ductal irrigation with steroids in three additional sessions led to a significant improvement of symptoms 6 months later. Sialendoscopy and irrigation with steroids could be another treatment modality in cases of recurrent pneumoparotitis avoiding major surgery. PMID:25355739

  9. Landscape irrigation management for maintaining an aquifer and economic returns.

    PubMed

    Kovacs, Kent Forrest; Mancini, Mattia; West, Grant

    2015-09-01

    Expanding irrigated agriculture and dryer climatic conditions has led to large-scale withdrawals of groundwater and the decline in shallow aquifers. Policy makers must wrestle with the challenge of maintaining economic growth while conserving the groundwater resource. A spatially explicit landscape level model analyzes consequences of optimally chosen crop mix patterns on an aquifer and economic returns. The model of the groundwater use incorporates irrigation needs of the crops grown, initial aquifer thickness, hydro-conductivity of the aquifer, and distance to surrounding grid cells. The economic model incorporates the site specific yield, crop mix, and irrigation practice investments to predict economic returns. A tradeoff occurs between the volume of the aquifer and economic returns due to groundwater withdrawal for irrigation, but the farm's ability to grow profitable lower irrigation crops dampens the intensity of this tradeoff. Allowing for multiple unconventional irrigation practices that are yield increasing and water conserving significantly increases the economic returns of a given crop mix while maintaining the aquifer.

  10. Investigation into rainwater use by cotton under multiple irrigation management conditions in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Goebel, T.; Lascano, R. J.

    2012-12-01

    Irrigation management practices in the Texas High Plains (THP) might be improved if we could ascertain the proportion of rainfall utilized by the crop in any given rainfall event. For instance, the primary source of irrigation water in the THP is pumped from the Ogallala Aquifer (OA), and can be enriched in 18O compared to rainfall-captured water. Given this expected difference, it should be possible to determine if the crop is utilizing the water from a rainfall event. To this end, cotton was grown using three irrigation management practices: subsurface drip, center pivot, and no irrigation (dry land). The water used for irrigation was pumped from the Ogallala aquifer, and rainfall was gathered in a rain gauge with mineral oil to prevent evaporation. Additionally, plant and soil samples were collected following each precipitation event every two hours and every eight hours respectively. Water was then extracted from the soil and plant samples using cryogenic vacuum distillation, and analyzed for 18O/16O ratios using the DLT-100 Liquid-Water Isotope Analyzer from Los Gatos Research Inc. The difference in isotope concentrations in the extracts from soils was used to determine infiltration depth into the soil profile at each location. The isotopic composition of the plant water was used to determine if the was used to compare rainwater use across the different irrigation management practices. Results might suggest changes to the way in which we apply irrigation water that would improve root growth and distribution to enhance the capture of rainfall.

  11. Simulating evapotranspiration (ET) and corn yield response to irrigation management in the Texas High Plains using DSSAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain corn (Zea mays L) continues to be a major irrigated crop in the northern Texas High Plains. Improvements in irrigation system efficiency, irrigation management, and plant genetics have increased average yields while decreasing seasonal water use in the last 40 years. However, declining water l...

  12. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  13. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  14. Decision Support System for an efficient irrigation water management in semi arid environment

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Islam, M.; Hafeez, M. M.; Flugel, W. A.

    2009-12-01

    A significant increase in agricultural productivity over the last few decades has protected the world from episodes of hunger and food shortages. Water management in irrigated agriculture was instrumental in achieving those gains. Water resources are under high pressure due to rapid population growth and increased competition among various sectors. Access to reliable data on water availability, quantity and quality can provide the necessary foundation for sound management of water resources. There are many traditional methods for matching water demand and supply, however imbalances between demand and supply remain inevitable. It is possible to reduce the imbalances considerably through development of appropriate irrigation water management tool that take into account various factors such as soil type, irrigation water supply, and crop water demand. All components of water balance need to be understood and quantified for efficient and sustainable management of water resources. Application of an intelligent Decision Support System (DSS) is becoming significant. A DSS incorporates knowledge and expertise within the decision support framework. It is an integrated set of data, functions, models and other relevant information that efficiently processes input data, simulates models and displays the results in a user friendly format. It helps in decision-making process, to analyse the problem and explore various scenarios to make the most appropriate decision for water management. This paper deals with the Coleambally Irrigation Area (CIA) located in Murrumbidgee catchment, NSW, Australia. An Integrated River Information System called Coleambally IRIS has been developed to improve the irrigation water management ranging from farm to sub-system and system level. It is a web-based information management system with a focus on time series and geospatial hydrological, climatic and remote sensing data including land cover class, surface temperature, soil moisture, Normalized

  15. Field study of variable rate irrigation management in humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil physical properties in the Mississippi Delta can vary considerably within a single field resulting in differing water storage capabilities, amounts of water available to the crop, and crop yield potential. Variable rate irrigation (VRI) technologies are able to site-specifically apply irrigatio...

  16. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    ERIC Educational Resources Information Center

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  17. Influence of Container Mulches on Irrigation and Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted in 2005 and repeated in 2006 to determine the influence of mulch products and controlled release fertilizer (CRF) placement on irrigation and nutrition requirements of container-grown crops. Hydrangea (Hydrangea macrophylla 'Fasan' and 'Endless Summer') were grown in 2.7...

  18. Integrated water resource management under water supply and irrigation development uncertainty

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, E.; Elshorbagy, A. A.; Nazemi, A.; Wheater, H. S.; Gober, P.

    2014-12-01

    The Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada, supports various water demands including municipal, industrial, irrigated agriculture, hydropower and environmental sectors. Proposals for future development include significantly increased irrigation. However, proposing an appropriate level of irrigation development requires incorporation of water supply uncertainties in the water resources management analysis, including effects of climate variability and change. To evaluate potential climate change effects, a feasible range of shifts in annual volume and peak timing of headwater flows are considered to stochastically generate flows at the Alberta/Saskatchewan border. This envelope of flows, 30,800 realizations, is further combined with various irrigation expansion areas to form various future scenarios. Using an integrated water resources model developed for Saskatchewan, the impact of irrigation development on the system is assessed under the changing water supply conditions. The results of this study show that level of irrigation development as well as variation in volume and peak timing of flows can all contribute to change the water availability, vulnerability and economic productivity of the water resources system in Saskatchewan. In particular, the combined effect of large irrigation expansion, reduction in the volume of flows and earlier timing of the annual peak can exacerbate water resources system vulnerability, produce unstable net revenues, and decrease flood frequency in the Saskatchewan River Delta.

  19. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  20. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya.

    PubMed

    Mutero, C M; Blank, H; Konradsen, F; van der Hoek, W

    2000-10-02

    An experiment to assess the impact of intermittent irrigation on Anopheles larval populations, rice yields and water use was conducted in the Mwea rice irrigation scheme in Kenya. Four water regimes including intermittent irrigation were tested in a complete randomized block experimental design. Intermittent irrigation was carried out on a weekly schedule, with flooded conditions from Saturday through Tuesday morning. Larval sampling at each plot was conducted every Monday and prior to draining of intermittently irrigated subplots on Tuesday. All the adult anopheline mosquitoes emerging from larvae collected in the experimental plots were identified as being An. arabiensis. By far the highest numbers of An. arabiensis 1st instar larvae were found in the intermittently irrigated subplots, indicating that the water regime provided the most attractive environment for egg laying. However, the ratio between the 4th and 1st instar larvae in the subplots was only 0.08, indicating very low survival rates. In contrast, the 4th/1st instar ratio for subplots with other water management regimes ranged between 0.27 and 0.68, suggesting a correspondingly higher survival than observed with intermittent irrigation. The total number of 4th instars was almost the same in the intermittently irrigated subplots and the irrigation system normally practised by the farmers. The failure to eliminate larval development up to the 4th instar in the former method was attributed to residual pools of water. Larval abundance fluctuated throughout the 12-week sampling period. The highest larval densities were recorded in the 3 weeks after transplanting the rice seedlings. Afterwards, larval numbers dropped dramatically as the height of rice plants increased. Rice yields at harvest did not show statistically significant differences among subplots with different water regimes. The average yield per hectare ranged from 4.8-5.3 metric tonnes. The average daily water percolation/seepage rate was 3.6 mm

  1. Real-Life GOLD 2011 Implementation: The Management of COPD Lacks Correct Classification and Adequate Treatment

    PubMed Central

    Koblizek, Vladimir; Pecen, Ladislav; Zatloukal, Jaromir; Kocianova, Jana; Plutinsky, Marek; Kolek, Vitezslav; Novotna, Barbora; Kocova, Eva; Pracharova, Sarka; Tichopad, Ales

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a serious, yet preventable and treatable, disease. The success of its treatment relies largely on the proper implementation of recommendations, such as the recently released Global Strategy for Diagnosis, Management, and Prevention of COPD (GOLD 2011, of late December 2011). The primary objective of this study was to examine the extent to which GOLD 2011 is being used correctly among Czech respiratory specialists, in particular with regard to the correct classification of patients. The secondary objective was to explore what effect an erroneous classification has on inadequate use of inhaled corticosteroids (ICS). In order to achieve these goals, a multi-center, cross-sectional study was conducted, consisting of a general questionnaire and patient-specific forms. A subjective classification into the GOLD 2011 categories was examined, and then compared with the objectively computed one. Based on 1,355 patient forms, a discrepancy between the subjective and objective classifications was found in 32.8% of cases. The most common reason for incorrect classification was an error in the assessment of symptoms, which resulted in underestimation in 23.9% of cases, and overestimation in 8.9% of the patients' records examined. The specialists seeing more than 120 patients per month were most likely to misclassify their condition, and were found to have done so in 36.7% of all patients seen. While examining the subjectively driven ICS prescription, it was found that 19.5% of patients received ICS not according to guideline recommendations, while in 12.2% of cases the ICS were omitted, contrary to guideline recommendations. Furthermore, with consideration to the objectively-computed classification, it was discovered that 15.4% of patients received ICS unnecessarily, whereas in 15.8% of cases, ICS were erroneously omitted. It was therefore concluded that Czech specialists tend either to under-prescribe or overuse inhaled

  2. The Utility of Discriminant Analysis for Predicting Farmers' Intentions to Participate in Farmer-Managed Irrigation Systems in Iran

    NASA Astrophysics Data System (ADS)

    Zarafshani, Kiumars; Hossien Alibaygi, Amir; Afshar, Nasrin

    Participatory irrigation management has been problematic in most parts of the world and Iran has been no exception. The purpose of this study was to assess farmers' intentions to participate in irrigation management based on selected variables using discriminant analysis. A survey questionnaire was used to collect information from a sample of Water Cooperatives in Javanrood Townships using stratified random sampling (n = 106). Results indicated that age, educational level, attitude towards PIM, irrigation performance, landholding size, agricultural and non-agricultural income affected farmers' intentions to participate in irrigation management.

  3. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  4. IRRIMET: a web 2.0 advisory service for irrigation water management

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  5. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    NASA Astrophysics Data System (ADS)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  6. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  7. Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years

    SciTech Connect

    Riah, Susan; Rebel, Karin

    2004-02-27

    To minimize movement of tritium into surface waters at the Mixed Waste Management Facility at the Savannah River Site, tritium contaminated seepage water is being retained in a constructed pond and used to irrigate forest acreage that lies above the pond and over the contaminated groundwater. Twenty five-year potential evapotranspiration and average precipitation are 1443 mm/year and 1127 mm/year, respectively, for the region in which the site is located. Management of the application of tritium contaminated irrigation water needs to be evaluated in the context of the large amount of rainfall relative to evapotranspiration, the strong seasonality in evapotranspiration, and intraannual and inter-annual variability in precipitation. A dynamic simulation model of water and tritium fluxes in the soil-plant-atmosphere continuum was developed to assess the efficiency (tritium transpired/tritium applied) of several irrigation management strategies.

  8. Effects of irrigation practices on water use in the groundwater management districts within the Kansas high plains, 1991-2003

    USGS Publications Warehouse

    Perry, Charles A.

    2006-01-01

    Data compiled for the High Plains region of Kansas that includes five Groundwater Management Districts (GMDs) were analyzed for trends in irrigation water use, acres irrigated, precipitation, irrigation system types, and irrigated crop types to determine the effects of irrigation practices on water use over time. For the study period 1991 through 2003, precipitation decreased significantly (with 95-percent confidence) in northwestern and west-central Kansas but not in the southwestern and south-central parts of the State. Irrigation water use had no statistically significant trend during this period. There was a good (R= -0.77) relation between average regional precipitation and total GMD irrigation water use. When irrigation water use was adjusted for this relation, there was a positive trend (90-percent confidence level) in the adjusted irrigation water use. Another adjustment to water use was made using the ratio of annual precipitation to 1991-2005 average precipitation, which resulted in a negative trend (95-percent confidence level) in irrigation water use. This demonstrated the contradictory nature of precipitation adjustments to water use, making their utility somewhat suspect. GMD 3 in southwestern Kansas used 63 percent of the total acre-feet of irrigation water within all the GMDs. When all GMDs are considered, the number of irrigated acres for flood and center pivot systems without drop nozzles decreased significantly during the study period. At the same time the number of drop nozzle irrigated acres increased significantly. The number of irrigated acres of water-intensive crops (corn, alfalfa, and soybeans) also increased significantly, whereas the number of less- or non-water-intensive crops (grain sorghum and wheat), and multiple crop type acres decreased. Drop nozzle irrigation systems used approximately 2 percent less water in a year-by-year comparison than center pivot systems and 8 to 11 percent less water than flood irrigation. The best

  9. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  10. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  11. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  12. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  13. The use of automated weather stations for irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We discuss an irrigation management information system approach developed by NCARE researchers with the help of USDA-ARS. The system is capable of providing farmers with online crop water requirements based on automated meteorological data published on the internet (www.ncare.gov.jo/imis, and www.m...

  14. Variable Rate Irrigation Management for Humid Climates Using a Conventional Center Pivot System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigates suitability of a standard commercial center pivot system for variable-rate water application under Mid-South conditions. The objective was to determine if field variability data can be applied to conventional moving sprinkler systems to optimize irrigation management on non-u...

  15. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  16. Simulating N2O emissions from irrigated cotton wheat rotations in Australia using DAYCENT: Mitigation options by optimized fertilizer and irrigation management

    NASA Astrophysics Data System (ADS)

    Scheer, Clemens; DelGrosso, Stephen; Parton, William; Rowlings, David; Grace, Peter

    2014-05-01

    Irrigation and fertilization do not only stimulate plant growth, but also accelerate microbial C- and N-turnover in the soil and thus can lead to enhanced emissions of nitrous oxide (N2O) from soils. In Australia there are more than 2 million hectares of agricultural land under irrigation and research has now focused on a combination of nitrogen fertilizer and irrigation management to maintain crop yields, maximize nitrogen use efficiency and reduce N2O emissions. Process-based models are now being used to estimate N2O emissions and assess mitigation options of N2O fluxes by improving management at field, regional and national scales. To insure that model predictions are reliable it is important to rigorously test the model so that uncertainty bounds for N2O emissions can be reduced and the impacts of different management practices on emissions can be better quantified. We used high temporal frequency dataset of N2O emissions to validate the performance of the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. Furthermore, we evaluated potential N2O mitigation strategies in irrigated cotton-wheat rotations in Australia by simulating different fertilizer and irrigation management scenarios over a climatically variable 25 year time span. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. The simulations of different fertilization and irrigation practices in cotton-wheat rotations over a 25 year time frame clearly showed that there is scope for reducing N2O emissions by modified fertilizer and irrigation management. For wheat and for cotton the model predicted that a

  17. Informing sustainable irrigation management strategies in response to implementation of Washington State's Yakima Basin Integrated Plan (YBIP)

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Yoder, J.; Brady, M.; Stockle, C. O.

    2014-12-01

    As an important agricultural snowmelt-dominant watershed in the Pacific Northwest region of the United States, the Yakima River basin (YRB) is projected to experience increasing water scarcity problems during the summer irrigation season. The system is already experiencing over-allocation with unmet irrigation entitlements occurring more frequently, resulting in negative consequences to YRB agriculture and therefore the economy of the region. Water storage management is one climate change adaptation strategy particularly applicable to snowmelt-dominant watersheds experiencing a shift of its water availability away from the summer irrigation season. These changes in conjunction with climate change will significantly change the availability of water for agriculture, thus impacting farmers' irrigation decisions. These decisions occur at multiple time scales, including capital investment to change irrigation technology (decadal), to distributing the seasonal allocation of water in a projected drought year (seasonal), to deficit irrigating crops (daily to weekly). The Yakima Basin Integrated Water Resource Management Plan (YBIP) aims to improve the availability of water for agriculture, fish, and communities through a number of projects, including additional or modification of physical infrastructure. Our objective is to reduce the vulnerability of irrigated agriculture in the YRB to climate change through exploring changes in irrigation management strategies in response to implementation of each phase of YBIP. We apply VIC-CropSyst (a newly coupled hydrological/cropping model) and Yakima RiverWare (a water management model) to explore the relationships between climate, hydrology, crop growth and phenology, irrigation management, and YBIP implementation. Results suggest the importance of irrigation management strategies in YRB and indicate that if irrigation strategies are modified in response to changes in physical infrastructure, significant enhancements to instream

  18. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  19. AnnAGNPS model as a potential tool for seeking adequate agriculture land management in Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Chahor, Y.; Giménez, R.; Casalí, J.

    2012-04-01

    runoff was. On the other hand, a significant increment (30%) on annual sediment yield was predicted when rapeseed is the alternative major crop. Besides, a large decrease in annual runoff (up to 41%) and sediment (up to 98%) was predicted as the watershed is gradually occupied by shrubs. Finally, no-tillage appears as an interesting management method for cereals, with an over 90% reduction of in sediment yield -but only 4% in runoff. This is a first approach to evaluate AnnAGNPS as a management tool under local conditions. The above results may be then taking with caution especially in terms of absolute predicted values. However, AnnAGNPS can be considered as a promising tool for assessing the effect of the agricultural activities and implementing adequate land management alternatives in Mediterranean environment.

  20. Fertilizer efficiency and environmental risk of irrigating Impatiens with composting leachate in decentralized solid waste management

    SciTech Connect

    Zhou Chuanbin; Wang Rusong; Zhang Yishan

    2010-06-15

    The reduction and reuse of composting leachate is an issue of importance in the field of decentralized solid waste management. In this study, composting leachate from source-separated food waste was treated and subsequently used as liquid fertilizer to irrigate Impatiens (Impatiens balsamina). The leachate was altered by adjusting storage time and dilution, and through addition of microbial inocula. For each test case, the effects of irrigation were monitored by analyzing the Impatiens extension degree, numbers of leaves and flowers, dry weight, and photosynthetic pigment content to assess fertilizer efficiency. The main results obtained revealed that the addition of microbial inocula and lengthening of storage times may lower COD concentrations, adjust pH value and maintain a comparatively high level of nutrient contents. By adding microbial inocula, a COD concentration of 9.6% and BOD{sub 5} concentration of 6.7% were obtained for non-treated leachate with the same storage time. COD concentrations in leachate decreased to 69.4% after 36 weeks storage. Moreover, composting leachate promoted growth of Impatiens. The dry weight biomass of Impatiens irrigated using treated diluted leachate was 1.15-2.94 times that obtained for Impatiens irrigated using tap water. Lastly, following the irrigation of Impatiens over a short period, soil did not accumulate VOCs and heavy metals to levels exceeding relative standards. Further research on heavy metal and salinity accumulation in plants should be undertaken to meet the needs of large-scale applications.

  1. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  2. Canopy Reflectance-Based Nitrogen Management Strategies for Subsurface Drip Irrigated Cotton in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer management in subsurface drip irrigation (SDI) systems for cotton (Gossypium hirsutum L.) can be very efficient when N is injected with the irrigation water (fertigated) on a daily basis. However, the daily rates and total amounts of N fertigation are uncertain. Normalized diffe...

  3. Modeling the effects of irrigation frequencies, initial water and nitrogen on corn yield responses for best management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Competing demands for fresh water resources necessitate adaptation of limited water irrigations in agriculture. In this context, the Crop Water Production Functions (CWPF) used in limited water irrigation management need to integrate the effects of climate, initial soil water content at planting, an...

  4. Yield and Irrigation Water Use Efficiency Response of Chufa (Cyperus esculentus L. var. sativus Boeck.) to Drip Irrigation Management

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2016-04-01

    Chufa, also known as tigernut, is a typical crop in Valencia, Spain, where it is cultivated in ridges with furrow irrigation. Its cultivation uses large amounts of water, in the order of 10,000 m3 ha-1 year-1, so different studies have been undertaken in order to maximize the irrigation water use efficiency (IWUE). One of these studies faced the application of drip irrigation in the chufa cultivation, comparing three different irrigation strategies. These strategies differed on the volumetric soil water content (VSWC) when each irrigation event started. Starting each irrigation when the VSWC dropped to 90% of field capacity (FC) leaded to the highest yield, while the highest IWUE was obtained when irrigation started at 80% FC. It can be stated that starting each irrigation event when the VSWC is between 80 and 90% FC leads to the best results in terms of yield and IWUE. However, these results may still be improved by defining the best strategy in the irrigation stop, which is the aim of the herein presented research. This investigation comprises the productive response of the chufa crop with drip irrigation, determining yield and IWUE. The VSWC was monitored using multi-depth capacitance probes, with sensors at 0.10, 0.20 and 0.30 m below the top of the ridge. Each irrigation event started when the volumetric soil water content at 0.10 m dropped to 85% FC. Three irrigation strategies were considered, T1: each event being stopped when the average of the VSWC values at 0.10, 0.20 and 0.30 m depth reached the corresponding FC value; T2: each event being stopped when the VSWC values at 0.20 m reached the corresponding FC value; T3 each irrigation event lasted 30 min (corresponding to 7.33 mm). The largest yield (P ≤0.05) was obtained in T2 (2.31 kg m-2), with no statistical differences (P ≤0.05) between T1 (1.94 kg m-2) and T3 (1.92 kg m-2). The highest yield in T2 was obtained with the largest volume of irrigation water applied (722 mm), resulting in the lowest (P

  5. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  6. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  7. Cotton 2K-Management tools for irrigated cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of simulation models to manage crops was a concept introduced in the 1980’s. For example, the cotton simulation model known as GOSSYM was made available in 1989 and was used by both producers and consultants to manage cotton in real time. More recently, Dr. Avi Marani, Professor Emeritus, Sc...

  8. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  9. Forest Irrigation of Tritiated Water: A Proven Tritiated Water Management Tool - 13357

    SciTech Connect

    Prater, Phil; Blount, Gerald; Kmetz, Thomas; Vangelas, Karen

    2013-07-01

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  10. Forest Irrigation Of Tritiated Water: A Proven Tritiated Water Management Tool

    SciTech Connect

    Vangelas, Karen; Blount, Gerald; Kmetz, Thomas; Prater, Phil

    2012-11-08

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via

  11. Irrigator responses to groundwater resource management in northern Victoria, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Gill, Bruce C.; Webb, John; Wilkinson, Roger; Cherry, Don

    2014-10-01

    In northern Victoria, farmers are the biggest users of groundwater and therefore the main stakeholders in plans that seek to sustainably manage the resource. Interviews with 30 irrigation farmers in two study areas, analysed using qualitative social research methods, showed that the overwhelming majority of groundwater users agreed with the need for groundwater management and thought that the current plans had achieved sustainable resource use. The farmers also expressed a strong need for clear technical explanations for management decisions, in particular easily understood water level data. The social licence to implement the management plans arose through effective consultation with the community during plan development. Several additional factors combined to gain acceptance for the plans: good data on groundwater usage and aquifer levels is available; irrigation farmers had been exposed to usage restrictions since the late 1990s; an ‘adaptive’ management approach is in use which allowed refinements to be readily incorporated and fortuitously, plan development coincided with the 1998-2009 drought, when declines in groundwater levels reinforced the usefulness of the plans. The imposition of a nation-wide water use reduction plan in 2012 had relatively little impact in Victoria because of the early implementation of effective groundwater management plans. However, economic difficulties that reduce groundwater users’ capacity to pay groundwater management charges mean that the future of the plans in Victoria is not assured. Nevertheless, the high level of trust that exists between Victorian irrigation farmers and the management agencies suggests that the continued use of a consultative approach will continue to produce workable outcomes. Lessons from the Victorian experience may be difficult to apply in other areas of groundwater use in Australia and overseas, where there may be a quite different history of development and culture of groundwater management.

  12. Results of an irrigated lands assessment for water management in California

    NASA Technical Reports Server (NTRS)

    Bauer, E. H.; Baggett, J. D.; Wall, S. L.; Thomas, R. W.; Brown, C. E.

    1984-01-01

    Periodic assessment of existing and future demands for water within California is one responsibility of the California Department of Water Resources (CDWR). The California Irrigated Lands Assessment for Water Management Project represented a 5-year joint research effort between the NASA and the CDWR with technical support from the University of California (UC) at Berkeley and at Santa Barbara. The objectives were: (1) to develop and demonstrate procedures for providing highly precise, timely, estimates of irrigated area on a statewide basis using Landsat sensor data, and (2) to develop, through research with small demonstration sites, a procedure for the inventory and mapping of crop groups on a regional basis. Both manual and computer-assisted analyses were investigated. This paper highlights the statewide irrigated lands inventory where a procedure for statewide estimation of irrigated land using full frame Landsat MSS imagery and sampled ground data was successfully demonstrated. The statewide estimate of 3 990 112 hectares was within + or - 1.32 percent relative standard error at the 95-percent Confidence Interval, well within the design goal. This procedure represents a new capability for obtaining near-real time data on changes in agricultural water use throughout the state.

  13. Improving irrigation management for humid and sub-humid climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project includes studies led by both USDA-ARS and University of Missouri scientists, with a goal to develop solutions to broad water management problems with application to humid and sub-humid areas in the USA and the world. Our interdisciplinary team evaluates and optimizes production systems ...

  14. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    The irrigated acreage that was field verified in 2015 for the 13 counties in the Suwannee River Water Management District (113,134 acres) is about 6 percent higher than the estimated acreage published by the U.S. Department of Agriculture (107,217 acres) for 2012; however, this 2012 value represents acreage for the entire portion of all 13 counties, not just the Suwannee River Water Management District portion. Differences between the 2015 field-verified acreage totals and those published by the U.S. Department of Agriculture for 2012 may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 3-year interval due to commodity prices or economic changes, (2) calculated field-verified irrigated acreage may be an overestimate because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the U.S. Department of Agriculture for selected crops may be underestimated in some cases.

  15. Management of recurrent intra corneal epithelial cyst with ethanol irrigation and vacuum-assisted cyst wall excision.

    PubMed

    Gokhale, Nikhil S

    2013-08-01

    The clinical and pathological features and management of a patient with recurrent intracorneal epithelial cyst are reported. A child presented with a large intracorneal cyst and underwent drainage with 96 % ethanol irrigation. Histopathology confirmed the epithelial nature of the cyst. The cyst recurred, however, and subsequently a repeat ethanol irrigation with removal of the cyst wall was done. The cyst wall was vacuumed to ensure complete removal of epithelial cells. There was no recurrence, with good visual and cosmetic recovery. Intracorneal epithelial cysts can be successfully managed with drainage, 96 % ethanol irrigation, and vacuum-assisted cyst wall excision.

  16. Improving irrigation efficiency : the need for a relevant sequence of the management tools

    NASA Astrophysics Data System (ADS)

    Fayolle, Y.

    2009-04-01

    With 70 % of worldwide withdrawals, irrigation efficiency is a key issue in the overall problem of water resources. Management of water dedicated to agriculture should be improved to secure food production and save water to deal with increasing domestic and industrial demands. This paper is based on the results of a collaborative research project conducted in India with a local NGO (the Aga Khan Rural Support Programme, AKRSP(I)) during which GIS were tested. It is aimed at analyzing the efficiency of water usage in a water development programme conducted by the partner NGO in the semi-arid margins of Gujarat state. The analysis raises the question of the articulation of legal, institutional, economical, and technical tools to improve water efficiency. The NGO supervises the construction of surface water harvesting structures for irrigation purposes. Following a participatory approach, it creates and trains user groups to which the management of dams would then be devolved. User group membership depends on financial contribution to the building costs. A legal vacuum regarding surface water management combined with unequal investment capacities favor the concentration of water resources in the hands of a limited number of farmers. This causes low water use efficiency, irrigation choices being mostly oriented to high water consumptive crops and recipient farmers showing no interest in investing in water saving techniques. Our observations favor equality of access and paying more attention to the sequence in which management tools are articulated. On a national scale, as a prerequisite, water user rights as well as NGO's intervention legal framework should be clarified. On a project scale, before construction, information systems could help to identify all potential beneficiaries and optimize equality of access. It aims at reducing the volume of water per farmer to encourage them to irrigate low water consumptive crops and invest in water saving techniques. Depending

  17. Do incentives still matter for the reform of irrigation management in the Yellow River Basin in China?

    NASA Astrophysics Data System (ADS)

    Wang, Jinxia; Huang, Jikun; Zhang, Lijuan; Huang, Qiuqiong

    2014-09-01

    Under the pressure of increasing water shortages and the need to sustain the development of irrigated agriculture, since the middle of the 1990s, officials in the YRB have begun to push for the institutional reform of irrigation management. Based on a panel data set collected in 2001 and 2005 in the Yellow River Basin, the overall goal of this paper is to examine how the irrigation management reform has proceeded since the early 2000s and what the impacts are of the incentive mechanisms on water use and crop yields. The results show that after the early 2000s, irrigation management reform has accelerated. Different from contracting management, more Water User Associations (WUAs) chose not to establish incentive mechanisms. The econometric model results indicate that using incentive mechanisms to promote water savings is effective under the arrangement of contracting management and not effective under WUAs. However, if incentives are provided to the contracting managers, the wheat yield declines significantly. Our results imply that at the later stage of the reform, the cost of reducing water use by providing incentives to managers includes negative impacts on some crop yields. Therefore, how to design win-win supporting policies to ensure the healthy development of the irrigation management reform should be highly addressed by policy makers.

  18. Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000

    USGS Publications Warehouse

    Tadayon, Saeid

    2005-01-01

    Economic development in Arizona is largely influenced by access to adequate water supplies owing to the State's predominantly semiarid to arid climate. Water demand is met by pumping ground water from aquifers or by con-veying surface water through a system of reservoirs and canals. Water-withdrawal data provide important information on how water demand affects the State's water resources. Information on water withdrawals also can help planners and managers assess the effectiveness of water-management policies, regulations, and conservation activities. This report includes water-withdrawal data for irrigation, municipal, mining, thermoelectric-power, and drainage uses for 1991-2000, and describes the methods used to collect, compile, and estimate the data. Data are reported for the Arizona Department of Water Resources ground-water basins outside of Active Management Areas. Because of the climate, ground water and surface water are used to irrigate nearly all agricultural fields in Arizona. Irrigation accounted for the largest use of water in the study area during 1991-2000. The amount of water withdrawn for irrigation varies greatly from year to year for some of the basins, primarily because of differences in the consumptive water requirement for different crops and because of changes in irrigated acreage. The population of Arizona increased about 35 percent from 1991 to 2000-from about 3.79 million in 1991 to about 5.13 million in 2000. Correspondingly, water withdrawal for municipal use increased steadily in most of the basins during 1991-2000. Ground-water withdrawals for mining did not show any consistent trends during 1991-2000. Increases and decreases in withdrawals for mining were most likely due to variations in mineral production. Mineral prices and competition from mining in other States and foreign countries probably result in annual increases or decreases in mineral production in Arizona. Between 1991 and 2000, ground-water withdrawals for

  19. Heat treatment induced bacterial changes in irrigation water and their implications for plant disease management.

    PubMed

    Hao, W; Hong, C X

    2014-05-01

    A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.

  20. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    NASA Astrophysics Data System (ADS)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  1. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    PubMed

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  2. A comparative study of wireless and wired sensors networks for deficit irrigation management

    NASA Astrophysics Data System (ADS)

    Torres Sánchez, Roque; Domingo Miguel, Rafael; Valles, Fulgencio Soto; Perez-Pastor, Alejandro; Lopez Riquelme, Juan Antonio; Blanco Montoya, Victor

    2016-04-01

    In recent years, the including of sensors in the context of agricultural water management, has received an increasing interest for the establishment of irrigation strategies, such as regulated deficit irrigation (RDI). These strategies allow a significant improvement of crop water productivity (marketable yield / water applied), especially in woody orchards. The application of these deficit irrigation strategies, requires the monitoring of variables related to the orchard, with the purpose of achieving an efficiently irrigation management, since it is necessary to know the soil and plant water status to achieve the level of water deficit desired in each phenological stage. These parameters involve the measurements of soil and plant parameters, by using appropriate instrumentation devices. Traditional centralized instrumentation systems include soil matric potential, water content and LVDT sensors which information is stored by dataloggers with a wired connection to the sensors. Nowadays, these wired systems are being replaced by wireless ones due, mainly, to cost savings in wiring and labor. These technologies (WSNs) allow monitoring a wide variety of parameters in orchards with high density of sensors using discrete and autonomous nodes in the trees or soil places where it is necessary, without using wires. In this paper we present a trial in a cherry crop orchard, with different irrigation strategies where both a wireless and a wired system have been deployed with the aim of obtaining the best criteria on how to select the most suitable technology in future agronomic monitoring systems. The first stage of this study includes the deploying of nodes, wires, dataloggers and the installation of the sensors (same for both, wired and wireless systems). This stage was done during the first 15 weeks of the trial. Specifically, 40 MPS6 soil matric potential, 20 Enviroscan water content and 40 (LVDT and band) dendometers were installed in order to cover the experimental

  3. Real time soil moisture forecasts for irrigation management: the Pre.G.I. project

    NASA Astrophysics Data System (ADS)

    Ceppi, A.; Ravazzani, G.; Mancini, M.; Salerno, R.

    2012-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully. Future climate change scenarios, combined with limited water resources require better irrigation management and planning for farmers' water cooperatives. This has occurred also in areas traditionally rich of water as Lombardy Region, in the North of Italy. In this study we show the development and implementation of a real-time drought forecasting system with a soil moisture hydrological alert, in particular we describe preliminary results of the Pre.G.I. Project, an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management", funded by Lombardy Region. The project develops a support decision system based on an ensemble weather prediction in the medium-long range (up to 30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin, in order to use the irrigation water in a wiser and thriftier way. The studied area covers 74,000 ha in the middle of the Po Valley, near Lodi city. The hydrological ensemble forecasts are based on 20 meteorological members of a modified version of the non-hydrostatic WRF model, with multiple nesting to scale to the region of interest. Different physical schemes are also used to take into account a larger variability; these data are provided by Epson Meteo Centre. The hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The analysis shows the system reliability based on most significant case-studies occurred in the recent years.

  4. Planning for deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  5. A case study of field-scale maize irrigation patterns in western Nebraska: implications for water managers and recommendations for hyper-resolution land surface modeling

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.; Wang, Tiejun; Gates, John; Grassini, Patricio; Yang, Haishun; Eisenhauer, Dean

    2017-02-01

    In many agricultural regions, the human use of water for irrigation is often ignored or poorly represented in land surface models (LSMs) and operational forecasts. Because irrigation increases soil moisture, feedback on the surface energy balance, rainfall recycling, and atmospheric dynamics is not represented and may lead to reduced model skill. In this work, we describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of hyper-resolution LSMs operating at scales of 1 km or less. The irrigation output from the four routines (crop model, precipitation delayed, evapotranspiration replacement, and vadose zone model) is compared against a historical field-scale irrigation database (2008-2014) from a 35 km2 study area under maize production and center pivot irrigation in western Nebraska (USA). We find that the most yield-conservative irrigation routine (crop model) produces seasonal totals of irrigation that compare well against the observed irrigation amounts across a range of wet and dry years but with a low bias of 80 mm yr-1. The most aggressive irrigation saving routine (vadose zone model) indicates a potential irrigation savings of 120 mm yr-1 and yield losses of less than 3 % against the crop model benchmark and historical averages. The results of the various irrigation routines and associated yield penalties will be valuable for future consideration by local water managers to be informed about the potential value of irrigation saving technologies and irrigation practices. Moreover, the routines offer the hyper-resolution LSM community a range of irrigation routines to better constrain irrigation decision-making at critical temporal (daily) and spatial scales (< 1 km).

  6. A Linked Simulation-Optimization (LSO) Model for Conjunctive Irrigation Management using Clonal Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Islam, Sirajul; Talukdar, Bipul

    2016-09-01

    A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.

  7. Current management of the hemophilic child: a demanding interlocutor. Quality of life and adequate cost-efficacy analysis.

    PubMed

    Giordano, Paola; Lassandro, Giuseppe; Valente, Michele; Molinari, Angelo Claudio; Ieranò, Paola; Coppola, Antonio

    2014-11-01

    Hemophilias are the most known inherited bleeding disorders. The challenges in the management of hemophilic children are different from those in adults: prophylaxis regimen removed the hallmark of crippling disease with lifelong disabilities; individualized regimens are being implemented in order to overcome venous access problems. Presently, at least in high-income countries, advances in treatment of hemophilia resulted in continuous improvement of the patients' quality of life and life expectancy. Inhibitors remain the most severe complication of hemophilia therapy. The treatment' compliance is the key to achieve a successful management. The patient, his family, the medical and psychological team are the players of a comprehensive care system. The current management of hemophilic children is the example of huge resource investments enabling long-term benefits in particular quality of life as a primary objective of the healthcare process.

  8. The impact of agricultural management on selected soil properties in citrus orchards in Eastern Spain: A comparison between conventional and organic citrus orchards with drip and flood irrigation.

    PubMed

    Hondebrink, M A; Cammeraat, L H; Cerdà, A

    2017-03-01

    The agricultural management of citrus orchards is changing from flood irrigated managed orchards to drip irrigated organic managed orchards. Eastern Spain is the oldest and largest European producer of citrus, and is representative of the environmental changes triggered by innovations in orchard management. In order to determine the impact of land management on different soil quality parameters, twelve citrus orchards sites were selected with different land and irrigation management techniques. Soil samples were taken at two depths, 0-2cm and 5-10cm for studying soil quality parameters under the different treatments. Half of the studied orchards were organically managed and the other six were conventionally managed, and for each of these six study sites three fields were flood irrigated plots and the other three drip irrigated systems. The outcome of the studied parameters was that soil organic matter (SOM) and aggregate stability were higher for organic farms. Bulk density and pH were only significantly different for organic farms when drip irrigation was applied in comparison with flooded plots. C/N ratio did not vary significantly for the four treatments. Although there are some points of discussion, this research shows that a combination of different management decisions leads to improvement of a couple of soil quality parameters. Organic management practices were found to be beneficial for soil quality, compared to conventional management for soils with comparable textures and applied irrigation water.

  9. Identification and Prioritization of Management Practices to Reduce Methylmercury Exports from Wetlands and Irrigated Agricultural Lands

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Heim, Wesley A.

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  10. Identification and prioritization of management practices to reduce methylmercury exports from wetlands and irrigated agricultural lands.

    PubMed

    McCord, Stephen A; Heim, Wesley A

    2015-03-01

    The Sacramento-San Joaquin Delta's (Delta) beneficial uses for humans and wildlife are impaired by elevated methylmercury (MeHg) concentrations in fish. MeHg is a neurotoxin that bioaccumulates in aquatic food webs. The total maximum daily load (TMDL) implementation plan aimed at reducing MeHg in Delta fish obligates dischargers to conduct MeHg control studies. Over 150 stakeholders collaborated to identify 24 management practices (MPs) addressing MeHg nonpoint sources (NPS) in three categories: biogeochemistry (6), hydrology (14), and soil/vegetation (4). Land uses were divided into six categories: permanently and seasonally flooded wetlands, flooded and irrigated agricultural lands, floodplains, and brackish-fresh tidal marshes. Stakeholders scored MPs based on seven criteria: scientific certainty, costs, MeHg reduction potential, spatial applicability, technical capacity to implement, negative impacts to beneficial uses, and conflicting requirements. Semi-quantitative scoring for MPs applicable to each land use (totaling >400 individual scores) led to consensus-based prioritization. This process relied on practical experience from diverse and accomplished NPS stakeholders and synthesis of 17 previous studies. Results provide a comprehensive, stakeholder-driven prioritization of MPs for wetland and irrigated agricultural land managers. Final prioritization highlights the most promising MPs for practical application and control study, and a secondary set of MPs warranting further evaluation. MPs that address hydrology and soil/vegetation were prioritized because experiences were positive and implementation appeared more feasible. MeHg control studies will need to address the TMDL conundrum that MPs effective at reducing MeHg exports could both exacerbate MeHg exposure and contend with other management objectives on site.

  11. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  12. Development of services for irrigation management: the experience with the users

    NASA Astrophysics Data System (ADS)

    Vuolo, Francesco; Neugebauer, Nikolaus; D'Urso, Guido; De Michele, Carlo

    2014-05-01

    Irrigated agriculture is the main user of freshwater resources (30% in Central Europe, 60% in the South). Efficient water management is therefore of essential importance, especially where water scarcity and water quality are becoming severe challenges. To achieve a successful and effective use of resources, farmers and water managers require easy-to-use decision support tools and reliable information. Our approach is based on Earth observation (EO) techniques and decision support tools. Generally, the service concept is based on two main components: i) the processing of time-series of high spatial resolution (10-30-m pixel size) images from satellite, currently available from public and commercial data providers, to timely monitor the crop growth and to estimate the crop water requirements throughout the growing season; ii) the adaptation and integration in local management practices & tools of easy to use geo-spatial technologies to make the information available to users and to support the decision-making process in near-real-time. The participation and feedback we receive from the users is fundamental to develop and provide easy-to-use technologies that can be embedded in standard approaches. In this paper, we briefly describe some examples of pre- and fully operational applications at field and irrigation scheme level and report some success stories of cooperation between decision makers and scientists. The paper includes the outcomes of ongoing activities such as Irrisat (www.irrisat.it), a regional operational service supported by rural development funds in Southern Italy and EO4Water (www.eo4water.com), a case study of knowledge and technology transfer in Eastern Austria funded by the Austrian Space Application Programme. The new capacities we develop to assist farmers in monitoring their crops are a step towards a better integration of tools and production. More technical advice and recommendation regarding sustainable land and resource use could then be

  13. An efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composites

    NASA Astrophysics Data System (ADS)

    Berber, Mohamed R.; Hafez, Inas H.; Minagawa, Keiji; Tanaka, Masami; Mori, Takeshi

    2012-11-01

    SummaryThe management of irrigation water presents a great challenge for the agriculture field. In view of increasing soil water-holding capacity and increasing water-use efficiency, an efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composite (polyacrylic acid-layered double hydroxide; PAA-LDH) was offered. The PAA-LDH composite was synthesized by an incorporation/in situ polymerization technique. Scanning electron microscopy, X-ray analysis and infrared spectroscopy were used to confirm the composite structure. The thermal gravimetric analysis was applied to investigate the polymer thermal stability after the composite formation. The irrigation experiments were conducted in a wooden soil box with a transparent plexiglas side by using a subsurface drip irrigation system. The X-ray patterns and infrared spectra confirmed the incorporation of acrylic acid monomer (AA) into the gallery of LDH. The SEM images emphasized the composite structure of PAA-LDH and indicated its ability to absorb and keep water. The stability of PAA was promoted against the thermal decomposition after the composite formation. The composite structure of PAA-LDH worked as water barrier and secondary water source during the irrigation process. The soil moisture distribution patterns were enhanced after the application of PAA-LDH composites as a soil conditioner.

  14. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  15. Irrigation Management Transfer and WUAs' dynamics: evidence from the South-Kazakhstan province

    NASA Astrophysics Data System (ADS)

    zinzani, andrea

    2014-05-01

    The importance of water resources management in the arid and semi-arid lands can not be overestimated being related with environmental, economical and socio-political issues. In Central Asia, due to the physical and climatic features, water control and irrigation have always played a strategic role in territorial and societal development. Since the collapse of the Soviet Union in Kazakhstan, as in the other Central Asian republics, significant changes in both the water and agricultural sector have emerged; water management shifted from a purely technical issue to a sociopolitical and economic one leading to several institutional and organizational changes. To address this transitional water management context and the related governance and technical issues, since the 1990s several development organizations and donor agencies (such as the World Bank, United Nations, USAID, and others), according to the international water community, have sought to streamline the Irrigation Management Transfer (IMT) and the establishment of the Water Users Associations (WUAs); this initiatives are sponsored and related to the IWRM framework, the water program globally supported by the Global Water Partnership and widely debated and questioned in the last years. This paper aims to discuss these transitional water management processes focusing on the meso-local level in the Arys valley, administratively included in the South-Kazakhstan province, ten years since the enactment of the law formalizing the WUAs. Three districts (Tyulkibas, Ordabasy and Otrar) were selected to analyse and understand the specific local transitional water institutional/organizational framework and to highlight the differences among them. The fieldwork was conducted in two different phases, April-May and November-December 2012. Within those periods, semi-structured interviews were carried out to the members of the state organizations (river basin agencies and district/province water departments) as well as the

  16. Weed management, training, and irrigation practices for organic production of trailing blackberry: I. Mature plant growth and fruit production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management, training time, and irrigation practices were evaluated from 2013-2014 in a mature field of trailing blackberry (Rubus L. subgenus Rubus Watson) established in western Oregon. The field was planted in 2010 and certified organic in 2012, before the first harvest season. Treatments inc...

  17. Annual Report 2007 Multi-state research project on "Irrigation Management for Humid and Sub-Humid Areas" S1018.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report summarizes the annual results from scientists at the Application and Production Technology Research Unit in Stoneville, as members of the multi-state research project on irrigation and water management S1018. The multi-state research project has four key objectives, three of which the St...

  18. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  19. Effects of Season and Management of Irrigated Cotton Fields on Collembola (Hexapoda) in New South Wales, Australia.

    PubMed

    Lytton-Hitchins, James A; Greenslade, Penelope; Wilson, Lewis J

    2015-06-01

    The effects of production practices on the relative abundance of springtails (Collembola) in irrigated cotton fields of northern New South Wales (NSW) were studied over 2 yr to examine effects of farm management on these decomposer organisms. Pitfall trapping and soil core extraction was undertaken in both pseudoreplicated plots within whole fields on cotton farms and on experimental replicate plots of Envirofeast cotton and Lucerne. The relative abundance of surface-active springtails in cotton rows and densities of soil species from the rhizosphere were calculated. Twenty-three species of Collembola were collected from 5 fields, 19 in pitfall traps, and 11 in soil cores. Five species, Setogaster sp., Proisotoma minuta, Entomobrya unostrigata, Entomobrya multifasciata grp, and Lepidobrya sp. were numerically dominant on the ground at 86-96% of individuals and Mesaphorura sp., Folsomides parvulus, and Hemisotoma thermophila grp dominant in the soil. Native grassland samples contained 15 species of which a probable 10 were native and 8 were not found in cotton. Nineteen species of the 24 species identified from cotton were predominantly fungal feeders. Highest catches of Collembola occurred after flowering and soil Collembola increased with depth and during cotton growth on unsprayed plots but decreased on sprayed plots. Surface soil moistures affected daily catch rates with decomposing residues, crop stage, predator abundance, and season as secondary factors. Insecticide (endosulfan, pyrethroid, carbamate, and organophosphate) and predator effects were either negligible or unclear depending on the factor involved. Springtails appear to be predominately food limited during times of adequate soil moisture in cotton fields.

  20. SY 07-3 WHICH BP LEVELS ARE ADEQUATE TARGETS FOR THE MANAGEMENT OF DIABETIC HYPERTENSIVE PATIENTS IN ASIA?

    PubMed

    Eguchi, Kazuo

    2016-09-01

    In patients with type 2 diabetes, prevention of future cardiovascular disease is an ultimate goal in the management. Coexistence of diabetes and hypertension enhances cardiovascular risk, and antihypertensive therapy has been shown to be very effective method in reducing micro- and macrovascular complications of type 2 diabetes. However, the optimal target BP levels are still under debate. Most of the international guidelines have raised the target clinic BP from 130/80 mmHg to 140/90 mmHg, but the Japanese Society of Hypertension 2014 guideline kept the target BP level as below 130/80 mmHg. However, individualized BP-lowering treatment should be considered in patients with type 2 diabetes: in high-risk individuals such as those with a history of stroke or retinopathy, aggressive antihypertensive therapy targeting below 130 mmHg should be applied even when the initial SBP level is <140 mmHg. Recently, we performed studies concerning the BP target levels of clinic and home BP in patients with type 2 diabetes. In this session, we will show the preliminary results of these target levels and discuss how we should manage hypertension in patients with type 2 diabetes.

  1. Water reuse for irrigated agriculture in Jordan: challenges of soil sustainability and the role of management strategies.

    PubMed

    Carr, G; Nortcliff, S; Potter, R B

    2010-11-28

    Reclaimed water provides an important contribution to the water balance in water-scarce Jordan, but the quality of this water presents both benefits and challenges. Careful management of reclaimed water is required to maximize the nutrient benefits while minimizing the salinity risks. This work uses a multi-disciplinary research approach to show that soil response to irrigation with reclaimed water is a function of the management strategies adopted on the farm by the water user. The adoption of management methods to maintain soil productivity can be seen to be a result of farmers' awareness to potentially plant-toxic ions in the irrigation water (70% of Jordan Valley farmers identified salinization as a hazard from irrigation with reclaimed water). However, the work also suggests that farmers' management capacity is affected by the institutional management of water. About a third (35%) of farmers in the Jordan Valley claimed that their ability to manage salinization was limited by water shortages. Organizational interviews revealed that institutional awareness of soil management challenges was quite high (34% of interviewees described salinization as a risk from water reuse), but strategies to address this challenge at the institutional level require greater development.

  2. A low cost micro-station to monitor soil water potential for irrigation management

    NASA Astrophysics Data System (ADS)

    Vannutelli, Edoardo; Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio; Renga, Filippo

    2014-05-01

    The RISPArMiA project (which stands for "reduction of water wastage through the continuous monitoring of agri-environmental parameters") won in 2013 the contest called "LINFAS - The New Ideas Make Sustainable Agriculture" and sponsored by two Italian Foundations (Fondazione Italiana Accenture and Fondazione Collegio Università Milanesi). The objective of the RISPArMiA project is to improve the irrigation efficiency at the farm scale, by providing the farmer with a valuable decision support system for the management of irrigation through the use of low-cost sensors and technologies that can easily be interfaced with Mobile devices. Through the installation of tensiometric sensors within the cropped field, the soil water potential can be continuously monitored. Using open hardware electronic platforms, a data-logger for storing the measured data will be built. Data will be then processed through a software that will allow the conversion of the monitored information into an irrigation advice. This will be notified to the farmer if the measured soil water potential exceed literature crop-specific tensiometric thresholds. Through an extrapolation conducted on the most recent monitored data, it will be also possible to obtain a simple soil water potential prevision in absence of rain events. All the information will be sent directly to a virtual server and successively on the farmer Mobile devices. Each micro-station is completely autonomous from the energy point of view, since it is powered by batteries recharged by a solar panel. The transmission modulus consists of a GSM apparatus with a SIM card. The use of free platforms (Arduino) and low cost sensors (Watermark 200SS tensiometers and soil thermocouples) will significantly reduce the costs of construction of the micro-station which are expected to be considerably lower than those required for similar instruments on the market today . Six prototype micro-stations are actually under construction. Their field testing

  3. Nitrate leaching, water-use efficiency and yield of corn with different irrigation and nitrogen management systems in coastal plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation management for corn (Zea mays L.) production on the typical low water holding capacity soil of the southeastern USA needs to be improved to increase irrigation efficiency and reduce losses of nitrate from fields. A three-year (2012-2014) field study was conducted to compare the effects of...

  4. Transpirative Deficit Index (TDI) for the management of water scarcity in irrigated areas: development and application in northern Italy

    NASA Astrophysics Data System (ADS)

    Borghi, Anna; Facchi, Arianna; Rienzner, Michele; Gandolfi, Claudio

    2016-04-01

    In Europe, the monitoring and assessment of drought is entrusted to the European Drought Observatory (EDO). EDO indicators are calculated considering rainfed agriculture and delivered on a 5 km grid. However, in southern Europe, irrigation may compensate for potentially severe agricultural droughts and specific water scarcity indicators that explicitly consider irrigation are needed. In the Po River Plain, irrigated crops cover more than 70% of the agricultural land, massive amounts of water are diverted from rivers for irrigation, and surface irrigation methods are largely applied. Nowadays, the region is not a water scarce basin, but irrigation water shortages have occurred with increased frequency during the last two decades. Moreover, a recent EU report shows that the Po River Plain is included among areas in Europe that by 2030 shall be affected by water scarcity. In this context, a study was started to select and develop indicators for the management and prevention of Water Scarcity and Drought (WS&D) based on the synergic use of hydrological modelling and Earth Observation data applied at a spatial scale of interest for end-users (250m grid). These indicators shall be better suited for the assessment of WS&D in Italy as well as in other southern European countries. This work presents the development and the application of the TDI (Transpirative Deficit Index) to a study area, within the Po River Plain. TDI is an agricultural drought index based on the transpiration deficit (TDx, calculated as the difference between potential and actual transpiration), computed by the spatially distributed hydrological model IDRAGRA and cumulated over a period of x days. TDx for each day of a specific year is compared to the long-term TDx probability distribution (e.g., over 20-30 years), which is transformed into a standardized normal distribution. The non-exceedance probability of TDx is finally expressed in terms of unit of standard deviation (TDI), following the approach

  5. [Effects of water and nitrogen management modes on the leaf photosynthetic characters and yield formation of cotton with under-mulch drip irrigation].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Tao, Xian-Ping; Zhang, Ya-Li; Zhang, Wang-feng

    2013-02-01

    Taking different genotype cotton varieties as test materials, a soil column culture experiment was conducted to study the effects of water and nitrogen management modes on the photosynthetic characters and yield formation of cotton with under-mulch drip irrigation in Xinjiang, Northwest China. Under the management mode W4N2, i.e., pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering in combining with basal 20% N + topdressing 80% N, the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (gs) , actual photochemical efficiency of photosystem II (Psi PSII), and photochemical quenching coefficient (qp) at full-flowering stage all decreased significantly, the non-photochemical quenching (NPQ) increased, and the aboveground dry matter accumulation was inhibited, as compared with those under common drip irrigation. From full-flowering stage to boll-opening stage, the chlorophyll content, gs, Pn, Psi PSII, and qp increased with increasing water and nitrogen supply, and the aboveground dry matter accumulation was enhanced by compensation, which benefited the translocation and distribution of photosynthates to seed cotton. Under the fertilization mode of basal 20% N + topdressing 80% N, the seed cotton yield of Xinluzaol3 was the highest in treatment pre-sowing irrigation + common drip irrigation (W3), but that of Xinluzao43 was the highest in treatment pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering (W4). It was concluded that under the condition of pre-sowing irrigation, to appropriately decrease the water and nitrogen supply before full-flowering stage and increase the water and nitrogen supply at middle and late growth stages could extend the active photosynthesis duration and promote the photosynthates allocation to reproductive organ, which would fully exploit the yield-increasing potential of cotton with under

  6. A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P

    2015-07-01

    The water flow and the mass transport of agrochemicals in the unsaturated and saturated zone were simulated in the extended alluvial basin of Keritis river in Crete, Greece (a predominantly flat and most productive citrus growing area) using the hydrological model MIKE SHE. This model was set up based on information on land use, geology, soil structure, meteorological data, as well as groundwater level data from pumping wells. Additionally, field measurements of the soil moisture at six different locations from three soil depths (0.1, 0.2, and 0.3 m) were used as targets to calibrate and validate the unsaturated flow model while for saturated condition, groundwater level data from three well locations were used. Following the modeling approach, the agrochemical mass transport simulation was performed as well, based on different application doses. After the successful calibration processes, the obtained 1D modeling results of soil moisture-pressure related to soil depth at different locations were used to design a proper and cost-effective irrigation programme (irrigation timing, frequency, application rates, etc.) for citrus orchards. The results of the present simulation showed a very good correlation with the field measurements. Based on these results, a proper irrigation plan can be designed at every site of the model domain reducing the water consumption up to 38% with respect to the common irrigation practices and ensuring the citrus water productivity. In addition, the effect of the proposed irrigation scheduling on citrus yield was investigated. Regarding the agrochemical concentration in the groundwater for all dose cases was below the maximum permissible limit. The only exception was for the highest dose in areas where the water table is high. Thus, this modeling approach could be used as a tool for appropriate water management in an agricultural area estimating at each time and location the availability of soil water, contributing to a cost

  7. Soil water sensors for irrigation management-What works, what doesn't, and why

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  8. Residue management, nitrogen, and carbon amendment effects on corn under full and limited irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn residue is a suitable feedstock for livestock forage and cellulosic ethanol. However, information about the response of the subsequent corn crop to residue removal in irrigated no-till continuous corn rotations is lacking. Subsequently, little is known regarding its response under limited irrig...

  9. Sunflower response to irrigation from limited water supplies with no-till management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited irrigation necessitates maximizing economic returns by rotating crops, so we conducted a field study during 2005-2009 in southwest Kansas to determine the yield response of sunflower to irrigation and evapotranspiration (ETc) and to measure plant growth parameters and soil water use. Sunflow...

  10. Soil water sensors for irrigation scheduling:Can they deliver a management allowed depletion?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water sensors are widely marketed in the farming sector as aids for irrigation scheduling. Sensors report either volumetric water content (theta-v, m**3 m**-3) or soil water potential, with theta-v sensors being by far the most common. To obtain yield and quality goals, irrigations are schedule...

  11. Delineating site-specific irrigation management units for managing soil salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield varies within fields due to nonuniformity of a number of factors including climate, pests, disease, management, topography, and soil. Conventional farming manages a field uniformly; as a result, conventional farming tends to wastes resources and money, and tends to detrimentally impact t...

  12. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    PubMed

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WPI) and evapotranspiration (WPET). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WPI and WPET. On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha(-1). The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha(-1) as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay loam

  13. Ancestral irrigation method by kanis in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  14. Fair and sustainable irrigation water management in the Babai basin, Nepal.

    PubMed

    Adhikari, B; Verhoeven, R; Troch, P

    2009-01-01

    This paper attempts to find a strategy to provide year-round irrigation for cultivating three crops per year in the southern plains of the country taking a case study of the Babai basin. Despite having enough flows during the summer for growing rice in total 27,000 ha area, the dry season flows of the Babai river can irrigate only 6,300 ha in winter and 4,000 ha in spring limiting the cropping intensity to 138.50%. It is proposed to irrigate the 7,500 ha southern dry area at the right bank bringing water from a large snow-fed river: the Karnali. Water balance study of the three irrigation regions to be irrigated from the Babai source preserving their existing water rights showed that the year-round irrigation at the west with the proposed arrangement will fall short of only 13.9 million m(3) water volume. At the east side, the head reach area and the tail portion will fall short of 19.4 and 66.4 million m(3) of water to insure a cropping intensity of 250%. The deficits can be fulfilled by means of capturing the excess river water of rainy season in local reservoirs and by making conjunctive use of groundwater. The proposed solution is financially, environmentally and socially viable being a cost effective, user friendly and should be the linchpin towards attaining a sustainable year-round irrigation in the region.

  15. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  16. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    SciTech Connect

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  17. Best Management of Irrigation Fertilization to Sustain Environment and High yield of Maize in the Arid land in Egypt

    NASA Astrophysics Data System (ADS)

    Gameh Ali, M.

    2012-04-01

    Assiut is a county in the middle of Egypt,located 600 km south of the Mediterranean Sea. Water and fertilization management experimental trails were conducted to search for the best water consumption of Maize beside the best rate and type of nitrogen fertilization to reduce nitrate pollution and reduce fertilizer and save energy. Three irrigation regimes ( 25, 50, and 75% of soil moisture depletion of the available water, SMD) were used to irrigate Corn (Maize : Zea mays L. ) variety Tri hybrid cross. Three nitrogen fertilizer sources (Urea 46.5% N; Ammonium nitrate 33.5%N and slow release nitrogen 40%N) were applied at three rates of 90; 120 and 150 kg/ Feddan (4200m2 about one Acre). The results suggested that the best management is to use the slow release fertilizer at rate of 150 kg N/ Feddan (4200m2 ) with 50% SMD the highest Maize yield with good quality and reducing the environmental hazardous. Key words: Slow release fertilizer, Nitrogen leaching; Irrigation management. Environmental protection.

  18. Strategy of Irrigation Branch in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  19. Participatory innovation process for testing new practices for soil fertility management in Chókwè Irrigation Scheme (Mozambique)

    NASA Astrophysics Data System (ADS)

    Sánchez Reparaz, Maite; de Vente, Joris; Famba, Sebastiao; Rougier, Jean-Emmanuel; Ángel Sánchez-Monedero, Miguel; Barberá, Gonzalo G.

    2015-04-01

    Integrated water and nutrient management are key factors to increase productivity and to reduce the yield gap in irrigated systems in Sub-Saharan Africa. These two elements are affected by an ensemble of abiotic, biotic, management and socio-economic factors that need to be taken into account to reduce the yield gap, as well as farmers' perceptions and knowledge. In the framework of the project European Union and African Union cooperative research to increase Food production in irrigated farming systems in Africa (EAU4Food project) we are carrying out a participatory innovation process in Chókwè irrigation scheme (Mozambique) based on stakeholders engagement, to test new practices for soil fertility management that can increase yields reducing costs. Through a method combining interviews with three farmers' associations and other relevant stakeholders and soil sampling from the interviewed farmers' plots with the organization of Communities of Practices, we tried to capture how soil fertility is managed by farmers, the constraints they find as well as their perceptions about soil resources. This information was the basis to design and conduct a participatory innovation process where compost made with rice straw and manure is being tested by a farmers' association. Most important limitations of the method are also evaluated. Our results show that socio-economic characteristics of farmers condition how they manage soil fertility and their perceptions. The difficulties they face to adopt new practices for soil fertility management, mainly related to economic resources limitations, labour availability, knowledge time or farm structure, require a systemic understanding that takes into account abiotic, biotic, management and socio-economic factors and their implication as active stakeholders in all phases of the innovation process.

  20. Water Conservation Methods for U.S. Army Installations. Volume II. Irrigation Management.

    DTIC Science & Technology

    1983-04-01

    Iconstruction nt a"Am en inerngCorp. of Eginer Technical ReportN14 reseratrch Water Conservation and Reuse Guidelines t .. WAXER CONSERVATION METHODS FOR U.S...should be selected when natural landscaping is not applicable. ’-- 5. Innovative irrigation methods such as drip irrigation, wastewater reuse , and...Conservation and Reuse Guidelines." The applicable QCR is 6.27.20A. The OCE Technical Monitor was Walter Medding, DAEN-ECE-D. Dr. R. K. Jain is Chief

  1. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    NASA Astrophysics Data System (ADS)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  2. Web based irrigation scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing use of water in the Mid-South has led to depletion of water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Wise water management requires knowledge of how much water the...

  3. Management of Chronic Periodontitis Using Subgingival Irrigation of Ozonized Water: A Clinical and Microbiological Study

    PubMed Central

    Mathew, Jayan Jacob; Ambooken, Majo; Kachappilly, Arun Jose; PK, Ajithkumar; Johny, Thomas; VK, Linith; Samuel, Anju

    2015-01-01

    Introduction Adjunctive use of professional subgingival irrigation with scaling and root planing (SRP) has been found to be beneficial in eradicating the residual microorganisms in the pocket. Objective To evaluate the effect of ozonized water subgingival irrigation on microbiologic parameters and clinical parameters namely Gingival index, probing pocket depth, and clinical attachment level. Materials and Methods Thirty chronic periodontitis patients with probing pocket depth ≥6mm on at least one tooth on contra lateral sides of opposite arches were included in the study. The test sites were subjected to ozonized water subgingival irrigation with subgingival irrigation device fitted with a modified subgingival tip. Control sites were subjected to scaling and root planing only. The following clinical parameters were recorded initially and after 4 weeks at the test sites and control sites. Plaque Index, Gingival Index, probing pocket depth, clinical attachment level. Microbiologic sampling was done for the test at the baseline, after scaling, immediately after ozonized water subgingival irrigation and after 4 weeks. In control sites microbiologic sampling was done at the baseline, after scaling and after 4 weeks. The following observations were made after 4 weeks. The results were statistically analysed using independent t-test and paired t-test. Result Test sites showed a greater reduction in pocket depth and gain in clinical attachment compared to control sites. The total anaerobic counts were significantly reduced by ozonized water subgingival irrigation along with SRP compared to SRP alone. Conclusion Ozonized water subgingival irrigation can improve the clinical and microbiological parameters in patients with chronic periodontitis when used as an adjunct to scaling and root planing. PMID:26436042

  4. Irrigation: Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  5. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  6. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance

    PubMed Central

    Montesano, Francesco F.; Serio, Francesco; Mininni, Carlo; Signore, Angelo; Parente, Angelo; Santamaria, Pietro

    2015-01-01

    Automatic irrigation scheduling based on real-time measurement of soilless substrate water status has been recognized as a promising approach for efficient greenhouse irrigation management. Identification of proper irrigation set points is crucial for optimal crop performance, both in terms of yield and quality, and optimal use of water resources. The objective of the present study was to determine the effects of irrigation management based on matric potential control on growth, plant–water relations, yield, fruit quality traits, and water-use efficiency of subirrigated (through bench system) soilless tomato. Tensiometers were used for automatic irrigation control. Two cultivars, “Kabiria” (cocktail type) and “Diana” (intermediate type), and substrate water potential set-points (−30 and −60 hPa, for “Diana,” and −30, −60, and −90 hPa for “Kabiria”), were compared. Compared with −30 hPa, water stress (corresponding to a −60 hPa irrigation set-point) reduced water consumption (14%), leaf area (18%), specific leaf area (19%), total yield (10%), and mean fruit weight (13%), irrespective of the cultivars. At −60 hPa, leaf-water status of plants, irrespective of the cultivars, showed an osmotic adjustment corresponding to a 9% average osmotic potential decrease. Total yield, mean fruit weight, plant water, and osmotic potential decreased linearly when −30, −60, and −90 hPa irrigation set-points were used in “Kabiria.” Unmarketable yield in “Diana” increased when water stress was imposed (187 vs. 349 g·plant−1, respectively, at −30 and −60 hPa), whereas the opposite effect was observed in “Kabiria,” where marketable yield loss decreased linearly [by 1.05 g·plant−1 per unit of substrate water potential (in the tested range from −30 to −90 hPa)]. In the second cluster, total soluble solids of the fruit and dry matter increased irrespective of the cultivars. In the seventh cluster, in “Diana,” only a

  7. Synthetic- and bio-polymer use for runoff water quality management in irrigated agriculture.

    PubMed

    Sojka, R E; Entry, J A; Orts, W J; Morishita, D W; Ross, C W; Horne, D J

    2005-01-01

    Low concentrations of synthetic- or bio-polymers in irrigation water can nearly eliminate sediment, N, ortho- and total-P, DOM, pesticides, micro-organisms, and weed seed from runoff. These environmentally safe polymers are employed in various sensitive uses including food processing, animal feeds, and potable water purification. The most common synthetic polymer is anionic, high purity polyacrylamide (PAM), which typically provides 70-90% contaminant elimination. Excellent results are achieved adding only 10 ppm PAM to irrigation water, applying 1-2 kg ha(-1) per irrigation, costing 4 dollars - 12 dollars kg(-1). Biopolymers are less effective. Using twice or higher concentrations, existing biopolymers are approximately 60% effective as PAM, at 2-3 times the cost. A half million ha of US irrigated land use PAM for erosion control and runoff protection. The practice is spreading rapidly in the US and worldwide. Interest in development of biopolymer surrogates for PAM is high. If the supply of cheap natural gas (raw material for PAM synthesis) diminishes, industries may seek alternative polymers. Also "green" perceptions and preferences favor biopolymers for certain applications.

  8. Crop rotation and residue management effects on deficit irrigated cotton and corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compared with disk tillage (DT), no-tillage (NT) retains residue and increases precipitation capture, which has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. Our objective was to quantify DT and NT effects on water conservation during fallow and the subsequent y...

  9. Irrigation in water restricted regions: Managing water use efficiency with limited available water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Political and social pressures to increase water-use efficiency in agriculture from plant to regional scales are reaching critical levels. A region where these pressures have been extremely acute is most semi-arid parts of Texas where reliable crop production is possible only through irrigation. Re...

  10. Residue management effects on water use and yield of deficit irrigated corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storing precipitation as soil water during crop-rotation fallow periods may offset decreasing irrigation well capacity that is caused by the declining accessible groundwater of the Ogallala Aquifer in the Southern High Plains. A three year dryland rotation that produces crops of wheat (Triticum aest...

  11. Greenhouse gas emissions, irrigation water use, and arsenic concentrations; a common thread in rice water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has historically been grown as a flooded crop in the United States. As competition for water resources has grown, there is interest in reducing water use in rice production so as to maintain a viable and sustainable rice industry into the future. An irrigation study was established in 2011 at ...

  12. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    PubMed

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-05

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment.

  13. Nitrogen placement, row spacing, and water management for furrow-irrigated field corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banding and sidedressing N fertilizer on a never-irrigated side of a row of corn (Zea mays L.) were hypothesized to maintain yield and decrease nitrate leaching. In a two-year field study on Portneuf silt loam (Durinodic Xeric Haplocalcid) in southern Idaho, we evaluated effects on yield and N upta...

  14. Management of postharvest deficit irrigation of peach trees using infrared canopy temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely-sensed canopy temperature from infrared thermometer (IRT) sensors has long been shown effective for detecting plant water stress, a vadose zone problem for growing plants. To help alleviate water shortage in the San Joaquin Valley of California, deficit irrigation may be used where the tar...

  15. Information Technology Supports Integration of Satellite Imagery with Irrigation Management in California's Central Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed data can potentially be used to develop crop coefficient estimates over large areas and make irrigation scheduling more practical, convenient, and accurate. A demonstration system is being developed under NASA's Terrestrial Observation and Prediction System (TOPS) to automatically r...

  16. A risk-based framework for water resource management under changing water availability, policy options, and irrigation expansion

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2016-08-01

    Long-term water resource management requires the capacity to evaluate alternative management options in the face of various sources of uncertainty in the future conditions of water resource systems. This study proposes a generic framework for determining the relative change in probabilistic characteristics of system performance as a result of changing water availability, policy options and irrigation expansion. These probabilistic characteristics can be considered to represent the risk of failure in the system performance due to the uncertainty in future conditions. Quantifying the relative change in the performance risk can provide a basis for understanding the effects of multiple changing conditions on the system behavior. This framework was applied to the water resource system of the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. A "bottom-up" flow reconstruction algorithm was used to generate multiple realizations for water availability within a feasible range of change in streamflow characteristics. Consistent with observed data and projected change in streamflow characteristics, the historical streamflow was perturbed to stochastically generate feasible future flow sequences, based on various combinations of changing annual flow volume and timing of the annual peak. In addition, five alternative policy options, with and without potential irrigation expansion, were considered. All configurations of water availability, policy decisions and irrigation expansion options were fed into a hydro-economic water resource system model to obtain empirical probability distributions for system performance - here overall and sectorial net benefits - under the considered changes. Results show that no one specific policy can provide the optimal option for water resource management under all flow conditions. In addition, it was found that the joint impacts of changing water availability, policy, and irrigation expansion on system performance are complex and

  17. Managing land application of coal seam water: A field study of land amendment irrigation using saline-sodic and alkaline water on a Red Vertisol.

    PubMed

    Bennett, J McL; Marchuk, A; Raine, S R; Dalzell, S A; Macfarlane, D C

    2016-12-15

    Coal seam (CS) gas operations coproduce water with gas from confined CS aquifers. This CS water represents a potential agricultural resource if the water is able to be chemically amended to comply with management guidelines. Stoichiometric quantities of sulphur and gypsum amendments can be used to neutralise the alkalinity and reduce the sodicity of CS water respectively. These amendments can either be mixed in-line at a water treatment plant or applied directly to land prior to the application of CS water (a practice termed land amendment irrigation - LAI). This study compared the efficacy of LAI with in-line chemical amendment of CS water and irrigation with non-saline, non-sodic and non-alkaline (good quality) water under field conditions in southern Queensland. Soil chemical properties, soluble Ca, Mg, K, Na, electrical conductivity (EC), pH, chloride and alkalinity, as well as saturated hydraulic conductivity were measured to determine the impact of the irrigation treatments on soil chemical and physical conditions. Irrigation of lucerne pasture using solid-set sprinklers applied a total of 6.7 ML/ha of each treatment irrigation water to the experimental plots over a 10-month period. Alkalinity was neutralised using LAI, with no increase in soil alkalinity observed. Soil sodicity did not exceed threshold electrolyte concentration values under either CS water irrigation treatment. Soil chemical and physical properties were comparable for both LAI and in-line chemical amendment of CS water. Soil saturated hydraulic conductivity was maintained under all irrigation treatments. Results showed that the constrained capacity of the irrigation system was unable to meet crop evapotranspiration demand. This resulted in accumulation of salt within the root-zone under the CS water treatments compared to the good quality water treatment. LAI successfully chemically amended Bowen Basin CS water facilitating its beneficial use for agricultural irrigation.

  18. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  19. Novel application of vacuum sealing drainage with continuous irrigation of potassium permanganate for managing infective wounds of gas gangrene.

    PubMed

    Hu, Ning; Wu, Xing-Huo; Liu, Rong; Yang, Shu-Hua; Huang, Wei; Jiang, Dian-Ming; Wu, Qiang; Xia, Tian; Shao, Zeng-Wu; Ye, Zhe-Wei

    2015-08-01

    Traumatic gas gangrene is a fatal infection mainly caused by Clostridium perfringens. It is a challenge to manage gas gangrene in open wounds and control infection after debridement or amputation. The aim of the present study was to use vacuum sealing drainage (VSD) with continuous irrigation of potassium permanganate to manage infective wounds of gas gangrene and observe its clinical efficacy. A total of 48 patients with open traumatic gas gangrene infection were included in this study. Amputations were done for 27 patients, and limb salvage procedures were performed for the others. After amputation or aggressive debridement, the VSD system, including polyvinyl alcohol (PVA) foam dressing and polyurethane (PU) film, with continuous irrigation of 1:5000 potassium permanganate solutions, was applied to the wounds. During the follow-up, all the patients healed without recurrence within 8-18 months. There were four complications. Cardiac arrest during amputation surgery occurred in one patient who suffered from severe septic shock. Emergent resuscitation was performed and the patient returned to stable condition. One patient suffered from mixed infection of Staphylococcal aureus, and a second-stage debridement was performed. One patient suffered from severe pain of the limb after the debridement. Exploratory operation was done and the possible reason was trauma of a local peripheral nerve. Three cases of crush syndrome had dialysis treatment for concomitant renal failure. In conclusion, VSD can convert open wound to closed wound, and evacuate necrotic tissues. Furthermore, potassium permanganate solutions help eliminate anaerobic microenvironment and achieve good therapeutic effect on gas gangrene and mixed infection. VSD with continuous irrigation of potassium permanganate is a novel, simple and feasible alternative for severe traumatic open wounds with gas gangrene infection.

  20. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  1. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 919.900 Adequate...

  2. Unintended consequence of managing the coupled humans and water: the irrigation efficiency paradox

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2015-12-01

    Water shortage most severely restricts the socio-economic development of many arid and semi-arid regions in the world, for which water-saving technology is believed to be an effective solution. However, as a realworld case, the total water consumption of Xinjiang Uygur Autonomous Region of China continued to increase as irrigation efficiency dramatically improved through the application of water-saving technology in the study period 1998-2010. This phenomenon, known as the irrigation efficiency paradox or Jevons paradox, is interpreted as an economic rebound effect. In this study, we explore the dynamic feedbacks between humans and water in this paradox through a socio-hydrological perspective. We analyze the co-evolutionary trajectory of coupled human-water dynamics from 1950 to 2010 to provide it a general context. A conceptual socio-hydrological model based on five key elements, namely, irrigation land, water-saving technology, water consumption, societal sensitivity to water scarcity, and the policy mix, is constructed. The policy mix to be adopted is determined by a social decision-making process mainly based on the societal sensitivity, which reflects the societal preference on two sorts of policies: (i) irrigation land control and (ii) water-saving technology promotion. Modeling results verify the hypothesized mechanism by successfully reproducing the observed dynamics including the emergence of the efficiency paradox. Our analysis indicates that the implementation of more adaptive rules may even eliminate the paradox. The effects of different initial policy mixes are also explored, and the results show that land control policies should be given equal priority when dealing with water scarcity. These findings point to a double-helix-type co-evolution of humans and water.

  3. Rainfall Variability, Adaptation through Irrigation, and Sustainable Management of Water Resources in India

    NASA Astrophysics Data System (ADS)

    Fishman, R.

    2013-12-01

    Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.

  4. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    . Irrigation and crop patterns are set as agricultural conditions in each mesh, and then irrigation water and actual evapotranspiration can be estimated according to crop stage and soil moisture. We also modeled water management of 160 reservoirs (10 large reservoirs and 150 medium reservoirs) and water allocation process of 10 large irrigated areas in the basin. The results obtained in this study are as follows: 1) The reservoir operation model reproduced water management such as impoundment of flood discharge during rainy seasons and release of irrigation water controlled by water requirement in downstream irrigation area during dry seasons. 2) The paddy water use and the water allocation models estimated water withdrawals at diversion weirs and water supply in paddy fields depending on water demands in large irrigation areas. 3) Based on the difference in water use patterns between rainy and dry seasons, the cropping model represented the actual conditions of rice planting pattern in both seasons. These results show that the interaction among the sub-models (reservoir operation, paddy water use, water allocation and so on) enables this hydrological model to represent the detailed processes of paddy water use and to evaluate the interaction between hydrological cycle and agricultural activities through anthropogenic water management for paddy irrigation.

  5. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    PubMed

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  6. Salinity on irrigated lands

    SciTech Connect

    Westmore, R.A.; Manbeck, D.M.

    1984-02-01

    The technology for controlling salinity on irrigated lands is relatively simple, involving both minor and major changes in current land-management practices. Minor changes include more frequent irrigation, the use of salt-tolerant crops, preplanning irrigation, and seed placement. The major changes require a shift from gravity to sprinkler or drip systems, increased water supply and quality, soil modification, land grading, and improved drainage. Some of the major changes are difficult, and some impossible, to accomplish. Examples of reclamation include the Mardan Salinity Control and Reclamation Project (SCARP) in Pakistan. 5 references, 2 figures, 2 tables

  7. Carbon dioxide emissions as affected by alternative long-term irrigation and tillage management practices in the lower Mississippi River Valley.

    PubMed

    Smith, S F; Brye, K R

    2014-01-01

    Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV). As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years) effects of irrigation (i.e., irrigated and dryland production) and tillage (conventional and no-tillage) on estimated carbon dioxide (CO2) emissions from soil respiration during two soybean (Glycine max L.) growing seasons from a wheat- (Triticum aestivum L.-) soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P > 0.05); however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P = 0.044) under irrigated (21.9 Mg CO2 ha(-1)) than under dryland management (11.7 Mg CO2 ha(-1)). Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.

  8. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  9. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  10. Productivity of irrigation technologies in the White Volta basin

    NASA Astrophysics Data System (ADS)

    Ofosu, E. A.; van der Zaag, P.; van de Giesen, N. C.; Odai, S. N.

    Parts of the White Volta basin in northern Ghana and southern Burkina Faso have witnessed a spectacular rise of irrigated agriculture since about 2000, largely without government support, and seems to have been triggered by a strong and growing demand for vegetables, notably tomatoes in the urban centres of southern Ghana. It is interesting to note the variety of different irrigation technologies that individual and groups of smallholder farmers adopted, adapted and implemented. Some technologies are well-known, such as those associated with conventional sources of water like small and large reservoirs; others have been rarely described in literature, such as temporal shallow wells and alluvial dugouts. This paper describes and characterises these different irrigation technologies and conducts a comparative analysis of their productivities, in terms of crop yield, water use and financial returns. The study was conducted in three neighbouring and transboundary watersheds (Anayari, Atankwidi and Yarigatanga) located in the Upper East Region of Ghana and southern Burkina Faso. For the study, 90 tomato farmers with different irrigation technologies were surveyed during one crop season (2007/2008). The results show that adequate fertilizer application is the major contributor to irrigation productivity. Technologies characterised by relatively small farm sizes are better managed by the surveyed farmers because they are able to provide adequate water and crop nutrients thus resulting in higher productivity, and high profit margins. Apart from technologies that depend on reservoirs, all other technologies surveyed in the paper are farmer driven and required no government support. This ongoing type of endogenous irrigation development provides a strong backing that the way forward in sub-Saharan Africa is for governments to create policies that facilitate poor farmers becoming irrigation entrepreneurs. Such policies should aim to enhance the reliability of markets (both

  11. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching

    NASA Astrophysics Data System (ADS)

    Phogat, V.; Skewes, M. A.; Cox, J. W.; Sanderson, G.; Alam, J.; Šimůnek, J.

    2014-05-01

    and to reduce their leaching out of the crop root zone. Slightly higher nitrogen uptake (1.73 kg ha-1) was recorded when fertigation was applied second to last hour in an irrigation event, as compared to applying it earlier during an irrigation event. Similarly, a 20% reduction in irrigation and N application produced a pronounced reduction in drainage (28%) and N leaching (46.4%), but it also decreased plant N uptake by 15.8% and water uptake by 4.8%, and increased salinity by 25.8%, as compared to the normal practice. This management would adversely impact the sustainability of this expensive irrigation system. However, reducing only irrigation by 30% during the 2nd half of the crop season (January to August) reduced drainage and N leaching by 37.2% and 50.5%, respectively, and increased N uptake by 6.9%. Such management of irrigation would be quite promising for the sustainability of the entire system. It is concluded that judicious manipulations of irrigation and fertilizer applications can be helpful in designing drip irrigation schedules for perennial horticultural crops to achieve improved efficiency of irrigation and fertigation applications and reduced contamination of receiving water bodies.

  12. Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements

    PubMed Central

    Yang, Shihong; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha−1, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants. PMID:23935423

  13. Irrigation Management, Evolving Canal Systems and Social Simulation in Hohokam Society, Central Arizona

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Murphy, John; Purdue, Louise

    2015-04-01

    As may societies that rely on irrigation, the Hohokam civilization in South West Arizona faced challenges arising from the variability and unpredictability of water supply and the physics underlying the flow of water through open channels. Such challenges can be overcome through cooperation and other forms of structured social interactions and institutions ranging from simple to complex. These interactions are influenced by and are influenced themselves by environmental conditions, including hydrology, soils and vegetation. At the same time, the environmental record provides clues to these interactions. To better understand these past interactions we combine geoarchaeological studies with flow simulations and Agent Based Modeling. Fieldwork conducted on Hohokam irrigation revealed new details about canal morphology, including shape, size, elevation, slope, and cleaning events. Micromorphological study of the sediments in these structures allow finer resolution in discerning the performance (velocity, discharge, etc.) of the canal channels and their evolution through time. We couple this with basic agent-based modeling to explore how these constraints might have required alternative strategies for cooperation. The combination of both approaches is key to discerning both broad differences between periods and fine variation within major chronological periods. We show that the coupling of social and physical models on very fine time scales can offer insight into the social arrangements and day-to-day life of people in the prehistoric past and inform our understanding of those societies' long-term changes.

  14. Solubility and leaching risks of organic carbon in paddy soils as affected by irrigation managements.

    PubMed

    Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.

  15. Best Practice Irrigation Management and Extension in Peri-Urban Landscapes--Experiences and Insights from the Hawkesbury-Nepean Catchment, Australia

    ERIC Educational Resources Information Center

    Maheshwari, B. L.; Plunkett, M.

    2015-01-01

    Purpose: The aim of this article to examine key irrigation management issues and their implications for future research and extension developments. Design/Methodology/Approach: Peri-urban landscapes are important as they supply fresh fruit, vegetables, turf, ornamental plants and other farm products to the cities. In this study, the…

  16. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  17. Water requirements and management of maize under drip and sprinkler irrigation. 1999 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second year of this project, research continued at Ismailia, Egypt on irrigation management of maize, fava bean, wheat, and alfalfa. Research at Bushland, Texas, continued on alfalfa and grass reference evapotranspiration (ET), means of estimating those values from Bowen ratio meterological m...

  18. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  19. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  20. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    NASA Astrophysics Data System (ADS)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple

  1. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    PubMed Central

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles published from 1982 to 2013 and was limited to papers published in English. The searched keywords were “Biofilms AND endodontics”, “Biofilms AND sodium hypochlorite”, "Biofilms AND chlorhexidine", "Biofilms AND MTAD", "Biofilms AND calcium hydroxide", “Biofilms AND ozone”, “Biofilms AND lasers” and "Biofilms AND nanoparticles". The reference list of each article was manually searched to find other suitable sources of information. PMID:24688576

  2. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management

    PubMed Central

    Depardieu, Claire; Caron, Jean

    2016-01-01

    The objective of this work was to optimize a soilless growing system for producing bare-root strawberry transplants in three organic substrates. Three trials were conducted in the Quebec City area to determine the productivity potential of a peat-sawdust mixture (PS25) and an aged bark (AB) material compared to conventional coconut fiber (CF) substrate. A first experiment was carried out to define appropriate irrigation set points for each substrate that allowed optimal plant growth and fruit yields. For all substrates, wetter conditions (irrigation started at -1.0 kPa for CF; -1.5 kPa for AB and PS25, relative to -1.5 kPa for CF; -2.5 kPa for AB and PS25) enhanced plant growth and fruit production. The second trial was carried out to test the productivity potential for commercial production of the three substrates using high-tunnels. After the addition of an initial fertilizer application to PS25, we successfully established bare-root plants that gave similar fruit yields than those in CF and AB. The productivity potential of PS25 and AB were further confirmed during a third trial under greenhouse conditions. The critical factor for plant establishment in PS25 was attributed to consistent N, P and S immobilization by microorganisms, as well as the retention of other elements (Mg2+, K+) in the growth media. Taken together, our results showed that PS25 and AB are promising alternative substrates to coconut coir dust for strawberry cultivation. This paper also provides a useful guide for strawberry cultivation in Quebec, and suggests future research that might be conducted to optimize soilless systems for cold-climate strawberry production in Northern America. PMID:27099949

  3. The enigma of candiduria: evolution of bladder irrigation with amphotericin B for management--from Anecdote to Dogma and a lesson from Machiavelli.

    PubMed

    Sanford, J P

    1993-01-01

    Candiduria has emerged as a common, vexing diagnostic and therapeutic problem over the past 40 years. Treatment by means of bladder irrigation with a solution of amphotericin B has become widely used in clinical practice. However, the specifics of the procedure--concentration of amphotericin B, use of continuous washing vs. instillation with cross-clamping to allow "dwell-times," and duration of treatment--are based entirely on anecdotal experiences. The published reports and evolution of recommendations are reviewed. A prospective randomized double-blind study is needed to provide answers. In the meantime, administration of 200-300 mL of amphotericin B solution by triple-lumen urethral catheter with cross-clamping for 60-90 minutes seems most appropriate. Irrigation for no longer than 2 days should suffice if the procedure is to be effective. The optimal concentration of amphotericin B has not been defined; however, 5-10 mg/L appears adequate.

  4. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  5. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  6. Modelling wet and dry spells for daily rainfall data series: an application to irrigation management in North-West Italy

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Agnese, Carmelo; Baiamonte, Giorgio; Cat Berro, Daniele; Mercalli, Luca

    2016-04-01

    rainfall events for Italian Sub-Alpine and Mediterranean areas". Adv. Sci. Res., 1, 1-7, 2012, doi:10.5194/asr-1-1-2012 Agnese C., Baiamonte G., Cammalleri C. (2014)."Modelling the occurrence of rainy days under a typical Mediterranean climate". Adv. Water Res., 64, 62-76 Canone D., Previati M., Bevilacqua I., Salvai L., Ferraris S. (2015) "Field measurements based model for surface irrigation efficiency assessment". Agric. Water Manag., vol. 156(1) pp. 30-42, doi:10.1016/j.agwat.2015.03.01 Chatfield C., Wet and dry spells. Weather 1966; 21:308-10.

  7. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  8. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  9. Effects of 1,3-Dicliloropropene for Meloidogyne incognita Management on Cotton Produced under Furrow Irrigation

    PubMed Central

    Thomas, S. H.; Smith, D. W.

    1993-01-01

    Field trials were conducted during 1990 to evaluate the effects of preplant soil fumigation with 1,3-dichloropropene (1,3-D) on yield and fiber quality of furrow-irrigated cotton cultivars subjected to high population densities of Meloidogyne incognita. We measured the responses of eight upland cotton cultivars with different levels of root-knot nematode resistance and compared the responses of upland and Pima cottons. Reductions in lint weight ranged from 10 to 52% among cultivars grown in soil without 1,3-D fumigation compared with those grown in treated soil. Meloidogyne incognita reduced yields primarily by reducing the number of bolls on each plant, rather than by decreasing boll size. Cotton fiber quality varied among cultivars but was unaffected by M. incognita in either study. Upland cotton cultivar Acala 1517-88 and M-315/240 sustained less than half the yield reductions observed with M. incognita-susceptible cultivars Deltapine 41 and Paymaster 145. Sixty days after cotton emergence, fewer M. incognita second-stage juveniles were recovered from M-315/240 than all other cultivars. PMID:19279835

  10. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  11. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  12. Towards Quality Assurance and an Adequate Risk Management in Geotechnical Engineering - Application of Eurocode 7 and DIN 4020 in Engineering Geology

    NASA Astrophysics Data System (ADS)

    Schetelig, Kurt; Heitfeld, Michael; von Soos, Paul; Stocker, Manfred; Mainz, Mark

    A key issue of engineering geology is the extreme variety of soil and rock, their heterogeneity and at places anisotropy, the fabric of rockmasses, the influence of water, the primary stresses and their change into a secondary stress field by loading or unloading. Changeable properties of some kinds of soil and rock, the effect of different scales of laboratory tests, field tests and the size of the structure create further questions. Considering the difficulties of investigation of the underground, size and complexity of the structure and its construction procedure Eurocode 7 and DIN 4020 have introduced geotechnical categories. The design concept in geotechnical category 3 is mostly combined with the observational method. This requires the establishment of an adequate monitoring system and a permanent comparison of the design assumptions (pre-calculated displacements or stresses) with the recorded values. The goals and handling of Eurocode 7 and DIN 4020 are demonstrated by means of site examples.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    USGS Publications Warehouse

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  14. Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    PubMed Central

    Ayello, Elizabeth A.; Woo, Kevin; Nitzki-George, Diane; Sibbald, R. Gary

    2010-01-01

    Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐based approach and consider each wound individually in order to create the optimal conditions for wound healing. Aims A comprehensive evidence‐based approach to acute wound management is an essential skill set for any emergency physician or acute care practitioner. This review provides an overview of current evidence and addresses frequent pitfalls. Methods A systematic review of the literature for acute wound management was performed. Results A structured MEDLINE search was performed regarding acute wound management including established wound care guidelines. The data obtained provided the framework for evidence‐based recommendations and current best practices for wound care. Conclusion Acute wound management varies based on the wound location and characteristics. No single approach can be applied to all wounds; however, a systematic approach to acute wound care integrated with current best practices provides the framework for exceptional wound management. PMID:21373312

  15. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  16. Fertilizer management effects on nitrate leaching and indirect nitrous oxide emissions in irrigated potato production.

    PubMed

    Venterea, Rodney T; Hyatt, Charles R; Rosen, Carl J

    2011-01-01

    Potato ( L.) is a N-intensive crop, with high potential for nitrate (NO) leaching, which can contribute to both water contamination and indirect nitrous oxide (NO) emissions. Two approaches that have been considered for reducing N losses include conventional split application (CSA) of soluble fertilizers and single application of polymer-coated urea (PCU). The objectives of this study were to: (i) compare NO leaching using CSA and two PCUs (PCU-1 and PCU-2), which differed in their polymer formulations, and (ii) use measured NO leaching rates and published emissions factors to estimate indirect NO emissions. Averaged over three growing seasons (2007-2009), NO leaching rates were not significantly different among the three fertilizer treatments. Using previously reported direct NO emissions data from the same experiment, total direct plus indirect growing season NO emissions with PCU-1 were estimated to be 30 to 40% less than with CSA. However, PCU-1 also resulted in greater residual soil N after harvest in 2007 and greater soil-water NO in the spring following the 2008 growing season. These results provide evidence that single PCU applications for irrigated potato production do not increase growing season NO leaching compared with multiple split applications of soluble fertilizers, but have the potential to increase N losses after the growing season and into the following year. Estimates of indirect NO emissions ranged from 0.8 to 64% of direct emissions, depending on what value was assumed for the emission factor describing off-site conversion of NO to NO. Thus, our results also demonstrate how more robust models are needed to account for off-site conversion of NO to NO, since current emission factor models have an enormous degree of uncertainty.

  17. Mississippi web-based irrigation scheduling tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing use of water in the Mid-South has begun to deplete water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Irrigation scheduling is a method of managing water to better mat...

  18. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    NASA Astrophysics Data System (ADS)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  19. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  20. Insect pest densities across site-specific management zones of irrigated corn in northeastern Colorado.

    PubMed

    Davidson, Silas A; Peairs, Frank B; Khosla, Rajiv

    2007-06-01

    The ability to manage insect pests in a site-specific manner is hindered by the costs and time required to describe pest densities and distributions. The purpose of this study was to determine whether insect pest distributions are related to site-specific management zones (SSMZs). Site-specific management zones, as described in this study, delineate fields into three zones of similar yield potential: high, medium, and low productivity. If insect densities vary across SSMZs, it is possible that management decisions could be made at the SSMZ level instead of treating the whole field. This research was conducted during summers 2001 and 2002 on cooperators' farms in northeastern Colorado. Surveys were conducted within corn, Zea mays L., fields, so that densities of three common insect pests of Colorado corn could be compared across SSMZ. The three insect pests were western corn rootworm, Diabrotica virgifera virgifera LeConte; European corn borer, Ostrinia nubilalis (HiAbner); and western bean cutworm, Richia albicosta (Smith). D. v. virgifera larvae and adults were most common in the high-productivity SSMZ. O. nubilalis larval abundance was similar at three fields, whereas in a fourth field the larvae were most common in the high-productivity SSMZ. In one field that contained substantial numbers of R. albicosta, egg abundance was similar across SSMZs, whereas larvae were most common in the high-productivity SSMZ. Site-specific management zones seemed to correlate well with the abundance of some insect pests and might prove useful for managing insects in a site-specific manner.

  1. S1018 Regional Committee on Irrigation Management for Humid and Sub-humid Regions Annual Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall goal of our research is the development of economically viable, environmentally sound production systems for the Mid-South. Because of the growing importance of water management to crop production in the Lower Mississippi Alluvial Flood Plain, particular emphasis is placed on addressing ...

  2. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The factorial experiment included two planting bed treatments (flat and raised beds), source and rate of fertilizer (feather meal and fish emuls...

  3. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term systems trial was established to evaluate factorial management practices for organic production of highbush blueberry. The practices include: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg/ha N; sawdust mulch, compost topped with sawdust ...

  4. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  5. Developing Automatic Controllers for sprinkler irrigation systems

    NASA Astrophysics Data System (ADS)

    Playán, E.; Salvador, R.; Cavero, J.; López, C.; Lecina, S.; Zapata, N.

    2012-04-01

    The application of new technologies to the control and automation of irrigation processes is quickly gaining attention. The automation of irrigation execution (through irrigation controllers) is now widespread. However, the automatic generation and execution of irrigation schedules is receiving growing attention due to the possibilities offered by the telemetry/remote control systems currently being installed in collective pressurized networks. These developments can greatly benefit from the combination of irrigation system and crop models, and from the interaction with agrometeorological databases, hydraulic models of pressurized collective distribution networks, weather forecasts and management databases for water users associations. Prospects for the development of such systems in collective sprinkler irrigation systems are analyzed in this presentation. Additionally, experimental results are presented on the application of these concepts to a hydrant irrigating a solid-set irrigated maize field.

  6. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    PubMed

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code.

  7. Evaluation of polyacrylamide on irrigation efficiency, soil conservation, and water quality in furrow irrigated Mid-South cotton production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas is a leading state in irrigated acres in the United States. As such, resulting groundwater decline and irrigation-induced soil erosion can have negative impacts. This establishes a need for irrigation management practices to improve irrigation efficiency as well as reduce soil erosion and i...

  8. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  9. Evaluation of potential water conservation using site-specific irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  10. Evaluating the relative contribution of methane oxidation to methane emissions from young floodplain soils under Alternative Irrigation Management

    NASA Astrophysics Data System (ADS)

    Pierreux, Sofie; Verhoeven, Elizabeth; Akter, Masuda; Sleutel, Steven; Said-Pullicino, Daniel; Romani, Marco; Boeckx, Pascal

    2016-04-01

    To keep the pace with a yearly growing demand for rice by 1-2%, future rice production must come primarily from high yielding irrigated rice, putting a pressure on fresh water reserves. In this context, water saving Alternative Irrigation Management (AIM) is progressively applied worldwide. By introducing repeated or mid-seasonal drainage, AIM suppresses emission of CH4, otherwise prevalent in continuously flooded rice. However, little is known about the effect of AIM on the balance of CH4 genesis and oxidation in paddy soils. We studied relevant soil parameters and CH4 emissions in continuously flooded (CF) and alternately wetted and dried (AWD) rice paddies. During a field campaign at the Castello d'Agogna experimental station (Pavia, Italy), we measured in situ CH4 oxidation and emission rates using the closed gas chamber technique with or without application of CH2F2 as a selective inhibitor of CH4 oxidation. In addition, we determined potential CH4 oxidation rates using incubated soil slurries originating from the same experimental plots. The dataset was supplemented with depth differentiated monitoring of redox potential, temperature, moisture content and soil solution parameters (DOC, Fe2+, Mn3+, mineral N and dissolved CH4). Peaks in dissolved CH4 manifested at 5 and 12.5cm depth, with much lower and equal levels at 25, 50 and 80cm depth. Also depth distributions of dissolved Fe and Mn followed this pattern, indicating that methanogenic activity was primarily confounded to the topsoil. Seasonal CH4 emissions were about halved by AWD compared to CF management. After a fast decline of in situ oxidation within the AWD treatment at the beginning of the season, CH4 oxidation percentages in CF and AWD increased until the booting stage (67DAS), reaching peak values of 83% and 69% of produced CH4, respectively. CH4 oxidation thereafter gradually declined to nearly 50% in both treatments after the final drainage (103 DAS). Seasonal trends of potential CH4 oxidation

  11. Economic management of vertigo/dizziness disease in a county hospital: video-head-impulse test vs. caloric irrigation.

    PubMed

    Rambold, Holger A

    2015-10-01

    The video-head-impulse test (vHIT) is an important test for examining unilateral vestibular hypofunction. Alternatively, one can test for vestibular hypofunction with the caloric irrigation test. Various studies have shown that both tests may not always identify vestibular hypofunction; instead, the results of the tests might be contradictory. This retrospective study reproduces those finding in a much larger group of patients at a county hospital. 1063 patients were examined with the vHIT and bithermal caloric irrigation on the same day and analyzed with respect to side differences. Of those patients 13.3% had pathological vHIT and a caloric irrigation test, 4.6% a pathological vHIT only and 24.1% a pathologic caloric test only. As both tests might be necessary, we calculated the optimal sequence of the two examinations based on savings in time for the different disease groups. Especially in vestibular failure using the vHIT first and only applying the caloric irrigation in case of an unremarkable vHIT saves time and optimizes the diagnostic work up. In contrast, in Menière's disease and vestibular migraine testing caloric irrigation first might be more efficient.

  12. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  13. Irrigation Water Supply and Management in the Central High Plains: Can Agriculture Compete for a Limited Resource?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The era of expanding irrigated agriculture in the central high plains has come to an end, and we are likely entering a period of contraction. Contraction has begun in Colorado where the state estimates that current consumptive use exceeds sustainable supplies by about 10%. Groundwater pumping has ...

  14. A web application for cotton irrigation management on the U.S. southern high plains. Part II: Application design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A web-based application to help Southern High Plains cotton producers estimate profitability under center pivot irrigated production is described. The application’s crop modeling and general profit calculation approach are outlined in a preceding companion paper, while additional details of the prof...

  15. A Web Application for Cotton Irrigation Management on The US Southern High Plains. Part II: Application Design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A web-based application intended to help Southern High Plains cotton producers estimate profitability under center pivot irrigated production is described. The application’s crop modeling and general profit calculation approach are outlined in a preceding companion paper, while additional details of...

  16. Soybean irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is an important crop and a major component of the agricultural economy in the Missouri Bootheel and throughout Missouri. USDA’s National Agricultural Statistics Service (NASS) reported that in 2012, 960 thousand acres of soybeans were harvested in Southeast Missouri (Butler, Cape Girardeau, ...

  17. Variable rate irrigation (VRI)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  18. Modeling irrigation behavior in groundwater systems

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  19. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ..., Telephone: (503) 231-6702 Fort Hall Irrigation Project Dean Fox, Superintendent, Fort Hall Agency, P.O. Box... 59255, Huber Wright, Acting Irrigation Project Manager, 602 6th Avenue North, Wolf Point, MT...

  20. 77 FR 63850 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ..., Telephone: (503) 231-6702. Project Name Project/Agency Contacts Fort Hall Irrigation Project. Dean Fox... Irrigation Project Manager, 602 6th Avenue North, Wolf Point, MT 59201, Telephones: (406)...

  1. Present-day irrigation mitigates heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  2. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  3. Irrigation scheduling: When, where, and how much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...

  4. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    NASA Astrophysics Data System (ADS)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount

  5. A parametric study of the value of hydrological information for irrigation and hydropower management of the Feather River

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Sand, F.; Stevenson, P.; Putnam, M.

    1975-01-01

    A case study analysis is presented of the relationships between improvements in the accuracy, frequency, and timeliness of information used in making hydrological forecasts and economic benefits in the areas of hydropower and irrigation. The area chosen for the case study is the Oroville Dam and Reservoir. Emphasis is placed on the use of timely and accurate mapping of the aerial extent of snow in the basin by earth resources survey systems such as LANDSAT. The subject of benefits resulting from improved runoff forecasts is treated in a generalized way without specifying the source of the improvements.

  6. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    USGS Publications Warehouse

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  7. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    NASA Astrophysics Data System (ADS)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  8. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  9. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  10. Limited irrigation research and infrared thermometry for detecting water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  11. Water Resources Impacts on Tribal Irrigation Projects

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  12. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-07-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for fresh water. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET/Y). The management practices are: four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)); four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation); and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments; wet, normal and dry years; three soil types; and three crops. The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is: 8-10 % if we change from the reference to drip or SSD; 13 % when changing to OML; 17-18 % when moving to drip or SSD in combination with OML; and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow is lower.

  13. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  14. Quality assessment of irrigation water under a combination of rain and irrigation

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, Jose Luis

    2015-04-01

    Complementary irrigation is one of the proposed management practices to increase the area under grain production mainly in the Humid Pampas. The most common source of irrigation water in the Humid Pampas comes from groundwater and is characterized by its high sodium bicarbonate content. However, the effect of the combination of irrigation and rain water on the chemical and physical properties of soils, especially when irrigation water comprises water with sodium bicarbonate, is still not well documented. The objective of the present study is to establish irrigation water suitability criteria under conditions of combined rain and irrigation. The trials were carried out on six irrigated plots and another five plots were chosen for validation purposes. Hydraulic conductivity and bulk density were measured in the field. Soil chemical analysis was performed on undisturbed soil samples. Supplementary irrigation using sodium bicarbonate water raises the soil electrical conductivity, the pH, exchangeable sodium percentage, soil sodium adsorption ratio and cation exchange capacity which produce an increase in bulk density, reducing the overall porosity of the soil. The effect of the soil sodium adsorption ratio on the soil hydraulic conductivity was evident when the soil sodium adsorption ratio levels were greater than 3.5. The dilution factor proposed in this study allows the classification of water for complementary irrigation linked to the management of irrigation.

  15. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  16. An object-oriented watershed management tool (QnD-VFS) to engage stakeholders in targeted implementation of filter strips in an arid surface irrigation area

    NASA Astrophysics Data System (ADS)

    Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.

    2012-12-01

    Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels

  17. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices.

    PubMed

    Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P

    2013-10-01

    Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.

  18. Supplement Analysis for the Watershed Management Program EIS - Idaho Model Watershed Habitat Projects - L-9 Irrigation Diversion Modification

    SciTech Connect

    N /A

    2004-08-02

    The Bonneville Power Administration is proposing to fund a fish passage improvement project at the L-9 diversion on the Lemhi River in Lemhi County, Idaho with the Lemhi Soil and Water Conservation District. The project proposes to replace the existing rock push-up irrigation diversion dam with a single rock weir that will incorporate a geotextile membrane to create a permanent diversion. The new weir will be a v-shaped vortex weir with a six-foot wide notch for fish passage. In addition, a ramp flume will be constructed in the diversion canal between the headgate and existing fish screen to provide for water measurement. The new diversion will provide better water delivery/control and improved passage for adult and juvenile resident and anadromous fish.

  19. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-83) - Bear Creek Irrigation Siphon Project

    SciTech Connect

    Stewart, Shannon C.

    2002-06-19

    BPA proposes to fund the construction of a fish passage improvement project on Bear Creek in Grant County, Oregon with the Oregon Department of Fish and Wildlife. Bear Creek enters the mainstem John Day River at river mile 258.5. At stream mile 0.3 Bear Creek crosses an irrigation diversion, entering Hall Ditch. At times Bear Creek is completely diverted into Hall Ditch. A second diversion from Bear Creek is located 200 feet below the area where Hall Ditch and Bear Creek intercept. As a result of these two diversions, in late summer Bear Creek is essentially dry at the project site. In addition, the diversions are fish barriers at low flow. The objectives for the proposed project include the following: prevent flow from Bear Creek (a Clean Water Act Section 303(d) listed stream for temperature) from mixing with Hall Ditch water; prevent fish from leaving Bear Creek and entering Hall Ditch; ensure fish passage at the project site; and upgrade an existing fish screen to National Marine Fisheries Service’s (NMFS) fish screen standards. A number of measures will be implemented to meet these project objectives. The proposed action would prevent mixing of Bear Creek and Hall Ditch waters, and prevent fish from entering Hall Ditch by siphoning (siphon bypass) Hall Ditch under Bear Creek. The proposed project will remove existing, older diversions and plug up the screened irrigation canal currently used by the landowner. The existing diversion structures will be replaced with a fish-friendly diversion. In addition, a NMFS-approved fish screen and a water meter will be installed in the abandoned canal to allow fish passage and monitor water withdrawal by the landowner.

  20. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  1. Practices in Adequate Structural Design

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  2. Protocol for an investigator-blinded, randomised, 3-month, parallel-group study to compare the efficacy of intraoperative tendon sheath irrigation only with both intraoperative and postoperative irrigation in the treatment of purulent flexor tenosynovitis

    PubMed Central

    Jokihaara, Jarkko; Kaivorinne, Antti; Havulinna, Jouni; Göransson, Harry

    2015-01-01

    Introduction The management of purulent flexor tenosynovitis of the hand consists of surgical debridement followed by antibiotic treatment. Usually, the debridement is carried out by irrigating the tendon sheath in a proximal to distal direction facilitated by two small incisions. It is unclear whether intraoperative irrigation by itself is adequate for healing or if it should be combined with postoperative irrigation in the ward. The hypothesis of this prospective randomised trial is that intraoperative catheter irrigation alone is as effective as a combination of intraoperative and postoperative intermittent catheter irrigation in the treatment of purulent flexor tenosynovitis. Methods and analysis In this investigator-blinded, prospective randomised trial, 48 patients suffering from purulent flexor tenosynovitis are randomised in two groups. Intraoperative catheter irrigation of the flexor tendon sheath and antibiotic treatment is identical in both groups, whereas only the patients in one group are subjected to intermittent postoperative catheter irrigation three times a day for 3 days. The primary outcome measure is total active range of movement of the affected finger after 3 months of surgery. The secondary outcome is the need for reoperation. Ethics and dissemination The research ethics committee of Pirkanmaa Hospital District has approved the study protocol. The protocol has been registered with ClinicalTrials.gov registry (#NCT02320929). All participants will give written informed consent. The study results will elucidate the role of postoperative irrigation, which can be criticised as being labour consuming and unpleasant to the patient. The results of the study will be disseminated as a published article in a peer-reviewed journal. Trial registration number: NCT02320929; pre-results. PMID:26671952

  3. Mobile proximal soil sensing for crop productivity assessment and water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil sensing shows promise for efficient crop water management. Most soil sensors used in irrigation management are in-situ devices that provide temporally dense data. However, they are generally deployed at only a few locations and therefore do not adequately characterize spatial variability in soi...

  4. Plant, soil and weather based cues for irrigation timing in soybean production 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expanded use of irrigation management tools are needed to improve irrigation and water use efficiency in eastern Arkansas soybean production. In 2014 we initiated an Arkansas Soybean Promotion Board supported project to examine irrigation initiation timing on a sandy loam soil in a furrow-irrigated ...

  5. Mapping suitability of rice production systems for mitigation: Strategic approach for prioritizing improved irrigation management across scales

    NASA Astrophysics Data System (ADS)

    Wassmann, Reiner; Sander, Bjoern Ole

    2016-04-01

    After the successful conclusion of the COP21 in Paris, many developing countries are now embracing the task of reducing emissions with much vigor than previously. In many countries of South and South-East Asia, the agriculture sector constitutes a vast share of the national GHG budget which can mainly be attributed to methane emissions from flooded rice production. Thus, rice growing countries are now looking for tangible and easily accessible information as to how to reduce emissions from rice production in an efficient manner. Given present and future food demand, mitigation options will have to comply with aim of increasing productivity. At the same time, limited financial resources demand for strategic planning of potential mitigation projects based on cost-benefit ratios. At this point, the most promising approach for mitigating methane emissions from rice is an irrigation technique called Alternate Wetting and Drying (AWD). AWD was initially developed for saving water and subsequently, represents an adaptation strategy in its own right by coping with less rainfall. Moreover, AWD also reduces methane emissions in a range from 30-70%. However, AWD is not universally suitable. It is attractive to farmers who have to pump water and may save fuel under AWD, but renders limited incentives in situations where there is no real pressing water scarcity. Thus, planning for AWD adoption at larger scale, e.g. for country-wide programs, should be based on a systematic prioritization of target environments. This presentation encompasses a new methodology for mapping suitability of water-saving in rice production - as a means for planning adaptation and mitigation programs - alongside with preliminary results. The latter comprises three new GIS maps on climate-driven suitability of AWD in major rice growing countries (Philippines, Vietnam, Bangladesh). These maps have been derived from high-resolution data of the areal and temporal extent of rice production that are now

  6. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  7. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  8. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  9. WATER REQUIREMENT OF IRRIGATED GARLIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  10. Water Requirements Of Irrigated Garlic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  11. Using ground based geophysics to evaluate hydrogeologic effects of subsurface drip irrigation systems used to manage produced water in the Powder River Basin, Wyoming

    SciTech Connect

    Sams, J.I.; Lipinski, B.A.; Veloski, G.A.

    2008-04-01

    The U.S Department of Energy’s National Energy Technology Laboratory has been evaluating various geophysical methods for site characterization regarding environmental issues associated with fossil fuels including produced water management. A relatively new method of managing produced water from coal bed natural gas production is through subsurface drip irrigation. This system involves disposing the produced water near the bottom of the root zone in agricultural fields, which would provide a beneficial use of this resource. The focus of this paper is to present results from a pre-injection geophysical survey for site assessment and background data. A pre-construction survey of approximately 1.2 km2 was completed in June 2007 using a Geophex GEM-2 broadband sensor over six fields along the Powder River floodplain. Quality assurance measures included drift checks, duplicate line surveys, and repeat field surveys using the Geometrics OhmMapper instrument. Subsequent surveys will be completed once the system is installed and operational. Geophysical inversion models were completed to provide a detailed cross-section of the subsurface geoelectrical structure along each line. Preliminary interpretations reveal that the subsurface conductivity distribution correlates to geomorphologic features.

  12. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  13. Surface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  14. Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: an overview.

    PubMed

    Causapé, J; Quílez, D; Aragüés, R

    2006-06-01

    The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)(avg)(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)(avg)(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)(avg)(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3-16 Mg salt/ha x year and 23-195 kg NO)(3) (-)-N/ha x year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE's also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (>or=14 Mg/ha x year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.

  15. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  16. Weed management, training, and irrigation practices for organic production of trailing blackberry: III. Accumulation and removal of aboveground biomass, carbon, and nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of various production practices on biomass, C, and nutrient content, accumulation, and loss were assessed over 2 years in a mature organic trailing blackberry (Rubus L. subgenus Rubus, Watson) production system. Treatments included two irrigation options (no irrigation after harvest and ...

  17. A Web Application for Cotton Irrigation Management on The US Southern High Plains. Part I: Crop Yield Modeling and Profit Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  18. A web application for cotton irrigation management on the U.S. southern high plains. Part I: Crop yield modeling and profit analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated cotton (Gossypium Hirsutum L.) production is a central part of west Texas agriculture that depends on the essentially non-renewable water resource of the Ogallala aquifer. Web-based decision support tools that estimate the profit effects of irrigation for cotton under varying lint price, p...

  19. Irrigation analysis based on long-term weather data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation-management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994 an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. ...

  20. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  1. Interdisciplinary Irrigated Precision Farming Research

    SciTech Connect

    Heermann, D F.; Hoeting, Jennifer A.; Thompson, Sandra ); Duke, H R.; Westfall, D G.; Buchleiter, G W.; Westra, P; Peairs, F B.; Fleming, K

    2001-12-01

    The USDA-Agricultural Research Service and Colorado State University are conducting an inter-disciplinary study that focuses on developing a clearer scientific understanding of the causes of yield variability. Two years of data have been collected from two commercial center pivot irrigated fields (72 and 52 ha). Cooperating farmers manage all farming operations for crop production and provide maps of the maise grown on the fields.

  2. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  3. Weed management, training, and irrigation practices for organic production of trailing blackberry: II. Soil and plant nutrient concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic production of blackberries is increasing, but there is relatively little known about how production practices affect plant and soil nutrient status. The impact of cultivar (‘Black Diamond’ and ‘Marion’), weed management (weed mat, hand weeding, and no weeding), primocane training time (Augus...

  4. 2008 Mississippi Curriculum Framework: Postsecondary Irrigation Management Technology. (Program CIP:01.0699 - Applied Horticulture/Horticultural Business Services, Other)

    ERIC Educational Resources Information Center

    Oliver, Michael L.

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  5. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  6. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    SciTech Connect

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  7. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  8. Incentives and technologies for improving irrigation water use efficiency

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Djuma, Hakan; Giannakis, Elias; Eliades, Marinos

    2014-05-01

    The European Water Framework Directive requires Member States to set water prices that provide adequate incentives for users to use water resources efficiently. These new water pricing policies need to consider cost recovery of water services, including financial, environmental and resource cost. Prices were supposed to have been set by 2010. So far the record has been mixed. The European Commission has sent reasoned opinions to a number of countries (Austria, Belgium, Denmark, Estonia, Finland, Germany, Hungary, Netherlands, Sweden) requesting them to adjust their national legislation to include all water services. Unbalanced water pricing may negatively affect the agricultural sector, especially in the southern EU countries, which are more dependent on irrigation water for production. The European Commission is funding several projects that aim to reduce the burden of increasing water prices on farmers by developing innovative technologies and decision support systems that will save water and increase productivity. The FP7 ENORASIS project (grant 282949) has developed a new integrated irrigation management decision support platform, which include high-resolution, ensemble weather forecasting, a GIS widget for the location of fields and sensors and a comprehensive decision support and database management software package to optimize irrigation water management. The field component includes wireless, solar-powered soil moisture sensors, small weather stations, and remotely controlled irrigation valves. A mobile App and a web-package are providing user-friendly interfaces for farmers, water companies and environmental consultants. In Cyprus, agricultural water prices have been set to achieve a cost recovery rate of 54% (2010). The pricing policy takes in consideration the social importance and financial viability of the agricultural sector, an important flexibility provided by the Water Framework Directive. The new price was set at 0.24 euro per m3 for water supply

  9. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  10. Comparative response of varied irrigated maize to organic and inorganic fertilizer application

    NASA Astrophysics Data System (ADS)

    Fandika, I. R.; Kadyampakeni, D.; Bottomani, C.; Kakhiwa, H.

    The response of varied irrigated maize (Zea mays) to organic and inorganic fertilizer N, was evaluated at Kasinthula Agricultural Station (2003-2006), Malawi to determine the optimum nutrient and irrigation frequency combinations for soil-water and nutrient management which will address water stress and low soil fertility problem. Hybrid maize variety (DK 8031) was planted on ridges spaced at 0.75 × 0.25 m in a split-plot design replicated three times, with four irrigation frequencies as main plots and fertilizer sources as subplots. Irrigation frequencies comprised: water balance scheduling at 40% depletion, and irrigating 40 mm every 3-4 days, 7 days and 14 days. The nitrogen sources were compost (C), farmyard manure (FYM), urea (U) and their mixtures [(2U:C); (U:2C); (2U:FYM); and (U:2FYM)]. Organic manure was banded three weeks before planting. Data on grain yield was collected and subjected to ANOVA using the Genstat and LSD 0.05 test separating statistical significant means. There was positive ( P < 0.01) and highly significant interactions between maize grain yield, crop water productivity (CWP) and nitrogen use efficiency (NUE). The water balance scheduling at 40% soil moisture depletion had highest grain yields, CWP and NUE among the four irrigation frequencies that was not significantly different to 40 mm every 3-4 days and every 7 days obtained with nitrogen sourced from sole Urea which were not significantly different to mean grain yields, CWP and NUE from (2U:C) and (2U:FYM). CWP was optimally maximised in sole urea (9.8, 8.8 kg mm -1 ha -1) and mixed treatments of 2U:C (8.2, 7.2 kg mm -1 ha -1) or 2U:FYM (8.2-8.9 kg mm -1 ha -1) for maize irrigated every 7 days and at 40% depletion using soil water balance schedule respectively. The greatest NUE of 53.5 kg kg N -1 under (2U:FYM) treatments was experienced at 40% depletion irrigation schedule and was also not significantly different to sole urea and (2U:FYM) treatments (52.8 and 51.6 kg kg N -1

  11. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  12. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].

  13. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    NASA Astrophysics Data System (ADS)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  14. The Sustainability of Irrigation Schemes Under Climate Change

    NASA Astrophysics Data System (ADS)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  15. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated Durum Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen and irrigation management are crucial in the production of high protein irrigated durum wheat (Triticum durum Desf.) in arid regions. However, as the availability of irrigation water decreases and potential costs and regulation of nitrogen (N) increase, there is a need to understand how ir...

  16. Improving Surface Irrigation Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...

  17. SDI versus MESA Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  18. 'Smart' Irrigation Systems

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-08-31

    The article discusses the ASHRAE Standard 189, with mandatory and optional provisions related to water use efficiency, then focuses on the use of water efficient irrigation systems and the use of recycled water such as air conditioner condensate for landscaping irrigation. Benefits of such practices include both water and energy savings.

  19. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  20. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  1. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  2. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  3. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  4. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  5. Effects of drip irrigation under plastic film with saline water on cotton growth and yields

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jin, M.; He, Y.; Zhou, J.; Brusseau, M. L.

    2012-12-01

    To study the influence of different irrigation system for drip irrigation under plastic film with saline water on cotton growth and yields, field experiments at key irrigation experiment station of water resources management division in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China were set up consist of different irrigation ratio (5250, 4500, 3750, 3000m3/hm2), different irrigation times (24, 12 and 8 times) and different rotation irrigation modes. The results show that: with the larger irrigation ratio, the cotton growth and yields was also better, and the significant influence on cotton growth and yields for irrigation ratio is between 3750-4500 m3/hm2. When the irrigation ratio is smaller (3000m3/hm2), cotton growth and yields for irrigation times of 8 times are higher, When the irrigation ratio is bigger (4500m3/hm2), cotton growth for irrigation times of 12 times are better and its cotton yields are higher correspondingly. According to the growth of cotton, yields and water productivity, the suitable irrigation system of cotton is the irrigation ratio of 4500-3750 m3/ hm2 and the irrigation times of 18 times for drip irrigation under plastic film with saline water. For different rotation drip irrigation experiments with saline water and fresh water, the cotton yields and irrigation water productivity is higher under the disposal of SF (rotation irrigation in first 6 times with saline water irrigation and then 6 times with fresh water irrigation) compared to FS (rotation irrigation in first 6 times with fresh water and then 6 times with saline water) and SSFA (rotation irrigation with twice saline water and once fresh water) compared to SFA (alternative irrigation with saline water and fresh water). Compared to the different alternate irrigation experiments, the cotton yields and water productivity for pure saline water irrigation is higher. In addition, the trend is the larger the irrigation ratio and the higher the yields. It maybe dues to the low

  6. Climate Change Impacts of Irrigation on the Central High Plains

    NASA Astrophysics Data System (ADS)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  7. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  8. Infrared thermometry for deficit irrigation of peach trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water shortage has been a major concern for crop production in the western states of the USA and other arid regions in the world. Deficit irrigation can be used in some cropping systems as a potential water saving strategy to alleviate water shortage, however, the margin of error in irrigation manag...

  9. Cotton physiological parameters affected by episodic irrigation interruption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving cotton irrigation management practices in West Texas is important for increasing farmers’ profits and for sustainability of the Ogallala aquifer. The objective of this work was to evaluate the effects in field controlled episodic drought conditions on cotton gas exchange. Irrigated cotton ...

  10. Irrigation timing and volume affects growth of container grown maples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  11. Thermal infrared sensors for postharvest deficit irrigation of peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  12. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  13. The future of irrigation on the High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  14. Status and migration of irrigation in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  15. Physical, chemical, and biological data for detailed study of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92, with selected data for 1987-89

    USGS Publications Warehouse

    Lambing, J.H.; Nimick, D.A.; Knapton, J.R.; Palawski, D.U.

    1994-01-01

    Physical chemical, and biological data were collected in the lower Sun River area of west-central Montana during 1990-92 as part of a U.S. Department of the Interior detailed study of the extent, magnitude, sources, and potential biological impacts of contaminants associated with irrigation drainage. Physical and chemical data were collected from areas within and near the Sun River Irrigation Project and from wetland areas receiving irrigation drainage. Biological data were collected from areas in and near Freezout Lake Wildlife Management Area and Benton Lake National Wildlife Refuge. Additional biological data were collected previously during 1987-89 as part of a U.S. Fish and Wildlife Service program. This report presents data for selenium and other potentially toxic constituents in solid-phase, water, and biological media. Data consist of concentrations of major and trace elements in soil and drill cores; concen- trations of major ions, nutrients, and trace elements in ground water and surface water; and trace-element concentrations in bottom sediment and biological tissue. Hydrogeologic data for domestic and test wells and daily streamflow data for selected sites also are included.

  16. Optimization of unconfined shallow aquifer water storage for irrigation

    SciTech Connect

    Roy, K.C.

    1989-01-01

    A physically based simulation model was developed to optimize pumping from shallow unconfined aquifers for irrigation. The model uses evapotranspiration, rainfall, crop, soil, and aquifer properties to calculate runoff, recharge, rejected recharge, and water table depth. The model predicted water table elevations over the five-year period with reasonable accuracy using the data from a small watershed in northwest Bangladesh. Four optimized pumping regimes were developed for shallow deep tubewell irrigation of rice and wheat grown in the Rabi (dry) sea-Bon. The improved irrigation system management increased groundwater recharge, thereby decreasing rejected recharge. Under improved management, pumping of groundwater was distributed over three crop: growing seasons, increasing total crop production as the cropping intensity increased. The net benefits for crop production from the improved management with the rice-based cropping pattern were 15 percent and 27 percent more with shallow and deep tubewells, respectively, than with the existing irrigation management. The average yearly rejection of rainfall recharge decreased from 590 mm under rain fed cropping to 440 mm for the existing irrigation management when irrigation was applied only in the Rabi season. When irrigation was applied in all three crop seasons under an improved irrigation management system, the rejection of recharge was only 160 mm. Thus it was possible to minimize the rejection of recharge by optimizing pumping and thereby to significantly increase the available irrigation water supply. Minimizing the rejected recharge reduced the surface runoff that contributes to the flooding that occurs most years in Bangladesh. By irrigating less than 100 percent of the area with tubewells, it was possible to avoid the overdraft of groundwater. The model can be used for other areas where soil, aquifer, crop, and weather data are available.

  17. Asbestos/NESHAP adequately wet guidance

    SciTech Connect

    Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

    1990-12-01

    The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

  18. Army General Fund Adjustments Not Adequately Documented or Supported

    DTIC Science & Technology

    2016-07-26

    statements were unreliable and lacked an adequate audit trail. Furthermore, DoD and Army managers could not rely on the data in their accounting...risk that AGF financial statements will be materially misstated and the Army will not achieve audit readiness by the congressionally mandated...and $6.5 trillion in yearend adjustments made to Army General Fund data during FY 2015 financial statement compilation. We conducted this audit in

  19. Rapid selection of a representative monitoring location of soil water content for irrigation scheduling using surface moisture-density gauge

    NASA Astrophysics Data System (ADS)

    Mubarak, Ibrahim; Janat, Mussadak; Makhlouf, Mohsen; Hamdan, Altayeb

    2016-10-01

    Establishing a representative monitoring location of soil water content is important for agricultural water management. One of the challenges is to develop a field protocol for determining such a location with minimum costs. In this paper, we use the concept of time stability in soil water content to examine whether using a short term monitoring period is sufficient to identify a representative site of soil water content and, therefore, irrigation scheduling. Surface moisture-density gauge was used as a means for measuring soil water content. Variations of soil water content in space and time were studied using geostatistical tools. Measuring soil water content was made at 30 locations as nodes of a 6×8 m grid, six times during the growing season. A representative location for average soil water content estimation was allocated at the beginning of a season, and thereafter it was validated. Results indicated that the spatial pattern of soil water content was strongly temporally stable, explained by the relationship between soil water content and fine soil texture. Two field surveys of soil water content, conducted before and after the 1st irrigation, could be sufficient to allocate a representative location of soil water content, and for adequate irrigation scheduling of the whole field. Surface moisture-density gauge was found to be efficient for characterising time stability of soil water content under irrigated field conditions.

  20. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  1. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  2. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  3. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  4. Geothermal irrigation pump

    SciTech Connect

    Matthews, H.B.

    1982-04-20

    A deep well pumping apparatus utilizing a geothermal source of energy is disposed within or above a stratum having a cool irrigating fluid, and an associated heat exchange unit is disposed within a stratum having the geothermal source. An organic working fluid is conveyed under pressure through the heat exchange unit and applied as a gas to a turbine assembly operatively coupled to the pump. The spent working fluid and cool irrigation fluid are then conveyed to the surface.

  5. Limited Irrigation Research Projects in Northern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field trials using varying levels of limited irrigation in corn and sunflower have been conducted by the USDA-ARS Water Management Research Unit near Greeley, CO since 2008. In the most recent project which started in 2012, each crop has twelve stress treatments with four replicates, and varying le...

  6. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  7. Stochastic physical ecohydrologic-based model for estimating irrigation requirement

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Climate uncertainty affects both natural and managed hydrological systems. Therefore, methods which could take this kind of uncertainty into account are of primal importance for management of ecosystems, especially agricultural ecosystems. One of the famous problems in these ecosystems is crop water requirement estimation under climatic uncertainty. Both deterministic physically-based methods and stochastic time series modeling have been utilized in the literature. Like other fields of hydroclimatic sciences, there is a vast area in irrigation process modeling for developing approaches integrating physics of the process and statistics aspects. This study is about deriving closed-form expressions for probability density function (p.d.f.) of irrigation water requirement using a stochastic physically-based model, which considers important aspects of plant, soil, atmosphere and irrigation technique and policy in a coherent framework. An ecohydrologic stochastic model, building upon the stochastic differential equation of soil moisture dynamics at root zone, is employed as a basis for deriving the expressions considering temporal stochasticity of rainfall. Due to distinguished nature of stochastic processes of micro and traditional irrigation applications, two different methodologies have been used. Micro-irrigation application has been modeled through dichotomic process. Chapman-Kolomogrov equation of time integral of the dichotomic process for transient condition has been solved to derive analytical expressions for probability density function of seasonal irrigation requirement. For traditional irrigation, irrigation application during growing season has been modeled using a marked point process. Using the renewal theory, probability mass function of seasonal irrigation requirement, which is a discrete-value quantity, has been analytically derived. The methodology deals with estimation of statistical properties of the total water requirement in a growing season that

  8. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  9. 75 FR 29577 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Irrigation Project...... Eric J. LaPointe, Superintendent, Dean Fox, Deputy Superintendent, Daniel Harelson... Manager, 602 6th Avenue North, Wolf Point, MT 59201, Telephones: (406) 768-5312, Superintendent, (406)...

  10. An inventory of California's irrigated land

    NASA Technical Reports Server (NTRS)

    Sawyer, G. B.

    1981-01-01

    Currently in the fourth year of its applications pilot test project to assess irrigated lands for water management, California officials found that the performance goal of plus or minus 5% at the 95% confidence level by each of the state's 10 major hydrologic basins was bettered in all but a few cases using manual analysis techniques for estimation. The process used was photointerpretation of enlarged LANDSAT scenes (1:150,000 scale), adjusting the determined acreage using a regression estimator and ground truth data from 637 sample cells. Sample cells were allocated to areas stratified on the basis of field size and selected crop types. Interpretation of three dates of imagery was required to span the complete time during which irrigated crops are grown in California. The registration of multitemporal data and classification procedures for estimating irrigated land using digital techniques are being studied as part of the second task in the project.

  11. What will it take to get irrigators to use advisory programs? Lessons learned from the past 10 years and beyond

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and Extension personnel have developed irrigation advisory programs for decades. With irrigation sources evermore becoming limited, recent conservation and management strategies among numerous water conscious agencies include the development or redevelopment and strong promotion of irrigati...

  12. Irrigation with desalinated water: A step toward increasing water saving and crop yields

    NASA Astrophysics Data System (ADS)

    Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel

    2015-01-01

    We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water desalination before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and desalinated water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.

  13. Quantitative sustainability and qualitative concerns in an irrigations system using recycled water to supplement limited groundwater supply

    NASA Astrophysics Data System (ADS)

    Gowing, John; Alataway, Abed

    2013-04-01

    Sustainability of irrigation in a country facing water scarcity depends upon adoption of best management practices to deliver 'more crop per drop' together with use of recycled waste-water from urban sewage systems. Saudi Arabia is a country facing extreme water scarcity and in this paper we report on research conducted at an extensive irrigation system where a concerted effort over several years has been devoted to achieving a high level of water productivity. Al-Ahsa oasis is located about 60 km inland from the Persian Gulf and has been inhabited since prehistoric times, due to the abundance of water in an otherwise arid region. It is one of the largest oases in the world with 12,000 hectares of irrigated land and more than 2 million palm trees. Historically the oasis was watered by over 60 artesian springs, but water is now pumped from the aquifer. To supplement this groundwater source, treated waste-water reuse has been practiced since 1992 and now comprises 30% of total supply. In addition, a comparable amount of agricultural drainage water is collected and recycled, so that the 'first-use' water represents only 40% of total irrigation supply. While this re-use system permits sustained irrigation with greatly reduced groundwater abstraction, there is a potential down-side in that fertilizers and contaminants applied with irrigation water move through the soil and return to the irrigation supply enhancing the risk for human and animal health. We investigated this problem using E coli and helminth eggs as indicators of human health risk. We sampled each of the three sources which are delivered separately to the head of the main irrigation canal where they are blended. The groundwater was free from E coli and helminths and the treated wastewater source was generally within designated quality standards. The recycled drainage water was delivered untreated into the canal system and was found to be contaminated with both E coli and helminths above acceptable

  14. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    PubMed

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  15. Effects of irrigation on crops and soils with Raft River geothermal water

    SciTech Connect

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  16. Irrigating drip by drip

    SciTech Connect

    Woods, M.

    1991-03-01

    This article describes the use of subterranean drip systems for the irrigation of crops in the San Joaquin Valley of California. This area is in its fourth year of drought. In the past, underground drains carried excess irrigation water away from plant roots to avoid drowning them in selenium, boron, nitrate fertilizer and other pollutants. Later these ponds where outflow emerged accumulated high levels of selenium which led to deaths and deformities of waterfowl. Subsurface drip irrigation is said to reduce overirrigation and thus prevents pollution of the underground water supply; it conserves water by reducing the amount of water lost by evaporation; and it reduces the incidence of mold damage to crops that are bothered by soggy soils.

  17. Investigating irrigation scheduling for rice using variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production without a continuous flood will require timely irrigation. A field study conducted at the University of Missouri Fisher Delta Research ...

  18. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  19. Irrigation as an Adaptation Strategy to Climate Change: The Relative Influence of Groundwater and Canal Irrigation on Winter Crop Production and its Sensitivity to Weather Variability in India

    NASA Astrophysics Data System (ADS)

    Jain, M.; Fishman, R.; Mondal, P.; Galford, G. L.; Naeem, S.; Modi, V.; DeFries, R. S.

    2014-12-01

    India is a hotspot for food security issues over the upcoming decades, due to increasing population pressures, groundwater depletion, and climate change. Investing in additional irrigation infrastructure may bolster food security, however, the relative influence of different types of irrigation (e.g. groundwater versus canal) on agricultural production remains unclear. One reason that the relative impact of different irrigation strategies on agricultural production has not been analyzed across India is because national-scale data on crop production and the types of irrigation technologies used are typically available at too coarse of spatial and temporal resolutions to answer this question adequately. Thus, we develop a novel algorithm to map cropped area across India at a 1 x 1 km scale using MODIS satellite data, and link these high-resolution cropped area maps with village-level data (n = 600,000) on irrigation. This allowed us to assess the relative impact of groundwater (i.e. dug, shallow, and deep wells) and canal irrigation (i.e. surface lift and flow canals) on winter cropped area and its sensitivity to rainfall across India at the village-scale from 2000 to 2006. We find that deep well irrigation is both associated with the greatest amount of winter cropped area, and is also the least sensitive to monsoon and winter rainfall variability. However, the effectiveness of deep well irrigation varies across India, with the greatest benefits seen in the regions that are most at risk for losing groundwater as a possible source of irrigation over the upcoming decades (e.g. Northwest India). This work highlights the need to develop ways to use remaining groundwater more efficiently (e.g. drip irrigation, less water-intensive crops) given that canal irrigation is not an adequate substitute, particularly in the regions that are facing the greatest levels of groundwater depletion.

  20. Measurement of irrigated acreage in Western Kansas from LANDSAT images

    USGS Publications Warehouse

    Keene, K.M.; Conley, C.D.

    1980-01-01

    In the past four decades, irrigated acreage in western Kansas has increased rapidly. Optimum utilization of vital groundwater supplies requires implementation of long-term water-management programs. One important variable in such programs is up-to-date information on acreage under irrigation. Conventional ground survey methods of estimating irrigated acreage are too slow to be of maximum use in water-management programs. Visual interpretation of LANDSAT images permits more rapid measurement of irrigated acreage, but procedures are tedious and still relatively slow. For example, using a LANDSAT false-color composite image in areas of western Kansas with few landmarks, it is impossible to keep track of fields by examination under low-power microscope. Irrigated fields are more easily delineated on a photographically enlarged false-color composite and are traced on an overlay for measurement. Interpretation and measurement required 6 weeks for a four-county (3140 mi2, 8133 km2) test area. Video image-analysis equipment permits rapid measurement of irrigated acreage. Spectral response of irrigated summer crops in western Kansas on MSS band 5 (visible red, 0.6-0.7 ??m) images is low in contrast to high response from harvested and fallow fields and from common soil types. Therefore, irrigated acreage in western Kansas can be uniquely discriminated by video image analysis. The area of irrigated crops in a given area of view is measured directly. Sources of error are small in western Kansas. After preliminary preparation of the images, the time required to measure irrigated acreage was 1 h per county (average area, 876 ml2 or 2269 km2). ?? 1980 Springer-Verlag New York Inc.

  1. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-110) - Pahsimeroi Holistic Restoration – Gydesen/Hayes Riparian Enhancement and Irrigation Improvement Project

    SciTech Connect

    Stewart, Shannon C.

    2003-07-30

    The Bonneville Power Administration is proposing to fund a riparian enhancement and irrigation improvement project with the Custer Soil and Water Conservation District in Custer County, Idaho. The proposed project is located on private land and will include the installation of approximately 4,300 feet of 18-inch pipe that will replace two open ditches on the property. This project will eliminate about two miles of open ditch and eliminate the associated water conveyance losses in these ditches, which will allow for more water instream in the Pahsimeroi River.

  2. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  3. Size and stochasticity in irrigated social-ecological systems

    PubMed Central

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  4. Size and stochasticity in irrigated social-ecological systems

    NASA Astrophysics Data System (ADS)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  5. Size and stochasticity in irrigated social-ecological systems.

    PubMed

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L

    2017-03-07

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub 'collapse trap'. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  6. Influence of irrigation on land hydrological processes over California

    NASA Astrophysics Data System (ADS)

    Sorooshian, Soroosh; AghaKouchak, Amir; Li, Jialun

    2014-12-01

    In this study, a regional climate model (RCM) is employed to investigate the effect of irrigation on hydrology over California through implementing a "realistic irrigation" scheme. Our results indicate that the RCM with a realistic irrigation scheme commonly practiced in California can capture the soil moisture and evapotranspiration (ET) variation very well in comparison with the available in situ and remote sensing data. The RCM results show significant improvement in comparison with those outputs from the default run and the commonly used runs with fixed soil moisture at field capacity. Furthermore, the model reproduces the observed decreasing trends of the reference ET (i.e., ET0) from the California Irrigation Management Information System (CIMIS). The observed decreasing trend is most likely due to the decreasing trend of downward solar radiation shown by models and CIMIS observations. This issue is fundamental in projecting future irrigation water demand. The deep soil percolation rate changes depending on the irrigation method and irrigation duration. Finally, the model results show that precipitation change due to irrigation in California is relatively small in amount and mainly occurs along the midlatitudes in the western United States.

  7. 29 CFR 505.5 - Adequate assurances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amount of a weekly or monthly salary, talent or performance fee, hourly rate or other basis on which... requirements in paragraph (b) were approved by the Office of Management and Budget under control number...

  8. 29 CFR 505.5 - Adequate assurances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amount of a weekly or monthly salary, talent or performance fee, hourly rate or other basis on which... requirements in paragraph (b) were approved by the Office of Management and Budget under control number...

  9. The Arkansas Irrigation Scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Mid-South, annual rainfall is generally sufficient for limited crop production, but periods of drought during the growing season make irrigation essential for optimum yields. However, factors such as cloudy weather, rainfall, and temperature swings caused by the movement of weather front...

  10. Erosion: Irrigation-induced

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  11. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  12. Soil microbial community composition in a peach orchard under different irrigation methods and postharvest deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley (SJV) is California’s top agricultural region, cultivating more than 250 unique crops and much of the nation’s fruits, vegetable, and nuts. One of the main limiting factors for production in this region is the reduced availability of water. Deficit irrigation is a management p...

  13. Nutritive Valve of Herbage of Five Semi-Irrigated Pasture Species Across an Irrigation Gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As water resources become limiting, the need to produce stable amounts of highly nutritional forage increases. An understanding of how levels of irrigation affect crude protein (CP), in vitro true digestibility (IVTD), and neutral detergent fiber (NDF) is critical in pasture forage management. Smo...

  14. Serum thyroglobulin reference intervals in regions with adequate and more than adequate iodine intake.

    PubMed

    Wang, Zhaojun; Zhang, Hanyi; Zhang, Xiaowen; Sun, Jie; Han, Cheng; Li, Chenyan; Li, Yongze; Teng, Xiaochun; Fan, Chenling; Liu, Aihua; Shan, Zhongyan; Liu, Chao; Weng, Jianping; Teng, Weiping

    2016-11-01

    The purpose of this study was to establish normal thyroglobulin (Tg) reference intervals (RIs) in regions with adequate and more than adequate iodine intake according to the National Academy of Clinical Biochemistry (NACB) guidelines and to investigate the relationships between Tg and other factors.A total of 1317 thyroid disease-free adult subjects (578 men, 739 nonpregnant women) from 2 cities (Guangzhou and Nanjing) were enrolled in this retrospective, observational study. Each subject completed a questionnaire and underwent physical and ultrasonic examination. Serum Tg, thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), Tg antibody (TgAb), and urinary iodine concentration (UIC) were measured. Reference groups were established on the basis of TSH levels: 0.5 to 2.0 and 0.27 to 4.2 mIU/L.The Tg RIs for Guangzhou and Nanjing were 1.6 to 30.0 and 1.9 to 25.8 ng/mL, respectively. No significant differences in Tg were found between genders or among different reference groups. Stepwise linear regression analyses showed that TgAb, thyroid volume, goiter, gender, age, and TSH levels were correlated with Tg.In adults from regions with adequate and more than adequate iodine intake, we found that Tg may be a suitable marker of iodine status; gender-specific Tg RI was unnecessary; there was no difference between Tg RIs in regions with adequate and more than adequate iodine intake; and the TSH criterion for selecting the Tg reference population could follow the local TSH reference rather than 0.5 to 2.0 mIU/L.

  15. Serum thyroglobulin reference intervals in regions with adequate and more than adequate iodine intake

    PubMed Central

    Wang, Zhaojun; Zhang, Hanyi; Zhang, Xiaowen; Sun, Jie; Han, Cheng; Li, Chenyan; Li, Yongze; Teng, Xiaochun; Fan, Chenling; Liu, Aihua; Shan, Zhongyan; Liu, Chao; Weng, Jianping; Teng, Weiping

    2016-01-01

    Abstract The purpose of this study was to establish normal thyroglobulin (Tg) reference intervals (RIs) in regions with adequate and more than adequate iodine intake according to the National Academy of Clinical Biochemistry (NACB) guidelines and to investigate the relationships between Tg and other factors. A total of 1317 thyroid disease-free adult subjects (578 men, 739 nonpregnant women) from 2 cities (Guangzhou and Nanjing) were enrolled in this retrospective, observational study. Each subject completed a questionnaire and underwent physical and ultrasonic examination. Serum Tg, thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), Tg antibody (TgAb), and urinary iodine concentration (UIC) were measured. Reference groups were established on the basis of TSH levels: 0.5 to 2.0 and 0.27 to 4.2 mIU/L. The Tg RIs for Guangzhou and Nanjing were 1.6 to 30.0 and 1.9 to 25.8 ng/mL, respectively. No significant differences in Tg were found between genders or among different reference groups. Stepwise linear regression analyses showed that TgAb, thyroid volume, goiter, gender, age, and TSH levels were correlated with Tg. In adults from regions with adequate and more than adequate iodine intake, we found that Tg may be a suitable marker of iodine status; gender-specific Tg RI was unnecessary; there was no difference between Tg RIs in regions with adequate and more than adequate iodine intake; and the TSH criterion for selecting the Tg reference population could follow the local TSH reference rather than 0.5 to 2.0 mIU/L. PMID:27902589

  16. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  17. [Optimal allocation of irrigation water resources based on systematical strategy].

    PubMed

    Cheng, Shuai; Zhang, Shu-qing

    2015-01-01

    With the development of the society and economy, as well as the rapid increase of population, more and more water is needed by human, which intensified the shortage of water resources. The scarcity of water resources and growing competition of water in different water use sectors reduce water availability for irrigation, so it is significant to plan and manage irrigation water resources scientifically and reasonably for improving water use efficiency (WUE) and ensuring food security. Many investigations indicate that WUE can be increased by optimization of water use. However, present studies focused primarily on a particular aspect or scale, which lack systematic analysis on the problem of irrigation water allocation. By summarizing previous related studies, especially those based on intelligent algorithms, this article proposed a multi-level, multi-scale framework for allocating irrigation water, and illustrated the basic theory of each component of the framework. Systematical strategy of optimal irrigation water allocation can not only control the total volume of irrigation water on the time scale, but also reduce water loss on the spatial scale. It could provide scientific basis and technical support for improving the irrigation water management level and ensuring the food security.

  18. Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation.

    PubMed

    Choi, C; Song, I; Stine, S; Pimentel, J; Gerba, C

    2004-01-01

    Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.

  19. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  20. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  1. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    NASA Astrophysics Data System (ADS)

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-12-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000-2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales.

  2. Irrigation water policy analysis using a business simulation game

    NASA Astrophysics Data System (ADS)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  3. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  4. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  5. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  6. Software Design for Wireless Sensor-based Site-specific Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-field sensor-based site-specific irrigation management is of benefit to producers for efficient water management. Integration of the decision making process with the controls is a viable option for determining when and where to irrigate, and how much water to apply. This research presents the des...

  7. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  8. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  9. Microbiological quality of reclaimed water used for golf courses' irrigation.

    PubMed

    Alonso, M C; Dionisio, L P C; Bosch, A; de Moura, B S Pereira; Garcia-Rosado, E; Borrego, J J

    2006-01-01

    Microbial quality of reclaimed water used for irrigation in two golf courses located in the southern Iberian Peninsula (Spain and Portugal) was evaluated. Bacterial indicators for faecal pollution (total and faecal coliforms, Escherichia coli and enterococci) were tested by membrane filtration using appropriate selective media. In addition, somatic E. coli bacteriophages, enteric viruses (entero-, hepatitis A and rota-) and Legionella pneumophila were also analysed. The results obtained showed that all wastewater treatment processes reduced adequately the number of indicator microorganisms although a significant correlation between pathogenic and indicator microorganisms tested was not found. L. pneumophila was detected by PCR but not confirmed by culture. Survival experiments of pathogenic microorganisms in aerosols and irrigated turf are conducted to determine the health hazards for the golf practice and to propose a microbial standard for wastewater used for irrigation of golf courses.

  10. Adequate mathematical modelling of environmental processes

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.

    2012-04-01

    In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same

  11. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    NASA Astrophysics Data System (ADS)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  12. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  13. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  14. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  15. Droughts, Irrigation Development, and Hydropower: Different Development Priorities in Ghana and Burkina Faso and Their Effect on Management of the Volta River, West Africa

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; van Edig, A.

    2001-05-01

    The Volta Basin covers 400,000 km2 of the West-African savanna zone. Ghana lies downstream and contains 42% of the basin. Most of the upstream part of the basin lies in Burkina Faso (43% of total), and the remaining 15% lies in Mali, Côte d'Ivoire, Togo, and Benin. Average rainfall is 1000 mm per year of which around 9% or 36 km3 becomes available as runoff in the Volta River. Small variations in rainfall cause relatively large variations in runoff. The Volta Basin is undergoing rapid changes in land use and water resource development, mainly driven by the high population growth of 3% per year. However, different countries pursue economic development in different ways. At independence in 1957, Ghana's leaders saw industrialization as essential to development and electric power from the Volta Dam as central to that industrialization. In 1964, the Volta Dam was built and Ghana's economic growth in the mining, industrial, and service sectors has depended on the dam's hydropower ever since. In contrast, land-locked Burkina Faso has less industrial potential and seeks to develop through its agriculture, both for subsistence and export crops. Given the extremely unreliable rainfall, irrigation development is seen as the only way to increase agricultural production. In general, irrigation in Burkina Faso takes the form of many small scale, village-based schemes of which the downstream impact is difficult to gauge. A minor drought in 1997 and 1998 caused the level of Lake Volta to drop, resulting in widespread power outages. In the ensuing public discussion, hydraulic development in Burkina Faso was seen as one of the potential causes of the lack of water. No firm data were available to substantiate this claim. In fact, over-withdrawals in previous years combined with climate variability were more likely culprits. A recently initiated multi-disciplinary research project will be presented that seeks to provide a scientific basis on which future discussions between the two

  16. A global dataset of the extent of irrigated land from 1900 to 2005

    NASA Astrophysics Data System (ADS)

    Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B. R.

    2014-12-01

    Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global Historical Irrigation Dataset (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arc-minute resolution. We collected subnational irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 112 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining subnational irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to subnational irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land in the western United States as shown on historical maps. Mean aridity on irrigated land increased and river discharge decreased from 1900-1950 whereas aridity decreased from 1950-2005. The dataset and its documentation are made available in an open data repository at https://mygeohub.org/publications/8 (doi:10.13019/M2MW2G).

  17. Integrated assessment of the effects of dams on irrigation sustainability in a data scarce watershed

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Masumoto, T.; Kudo, R.

    2014-12-01

    Several development projects are currently under way in developing countries to meet growing demand for water and energy. However, due to the lack of the hydro-meteorological data, some projects were conducted without rigorous check of water balance and the potential changes in the flow regime likely to be induced by reservoirs, and their implications for irrigation projects and ecosystems. To cope with this issues, we carried out analysis by using a hydrological model and quasi-observed rainfall data. A distributed water circulation model was introduced as a tool to implement the analysis. Given daily meteorological data, the model calculates spatial distribution of surface runoff, evapotranspiration, river flow and water demand. In addition, it represents operation of water use facilities, and return flow from irrigated areas. We performed a case study in the Pursat River Basin in Cambodia, where multiple projects are ongoing. We first calculated river discharge with observed rain data and calibrated it. Next, we performed a water balance analysis of the basin using the compiled model with 7 years of rainfall data. Because 20-30 years of data is generally required for water resources planning, we thus prepared 25 years of data by using a climate model with a statistically corrected bias. We determined a reference year for irrigation planning from the long-term data such that annual precipitation of 5-year return period. We selected a scenario for irrigated areas from the Water Balance Study Report (JICA, 2013) to project the future water demand, and checked the water balance under no-dam conditions. The results revealed that water supply was more than adequate to meet water demand in the reference year. We finally incorporated the future dam operations into the calculations and evaluated the impact of the dams on river flows and irrigation projects. Even under the changed flow regimes, the water balance was satisfied in the reference year. However, river flows

  18. Soil Water Sensing-Focus on Variable Rate Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  19. Irrigating grazed pasture decreases soil carbon and nitrogen stocks.

    PubMed

    Mudge, Paul L; Kelliher, Francis M; Knight, Trevor L; O'Connell, Denis; Fraser, Scott; Schipper, Louis A

    2017-02-01

    The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's 'response' to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (P < 0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha(-1) and 0.58 t N ha(-1) in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable).

  20. Decision support system for economic value of irrigation water

    NASA Astrophysics Data System (ADS)

    El-Gafy, Inas; El-Ganzori, Akram

    2012-06-01

    The mismatch between the supply and demand, inequitable distribution and the over irrigation of water consuming crops are the main constraints that are faced in the implementation of the integrated water resources management in Egypt. With water scarcity, the problem under consideration is that the current cropping pattern is not economically efficient in the utilization of the available water resource. Moreover, in consequence of the importance of the agricultural sector to the national economies, it is necessary to be aware of the economic performance of water use in the crops production. The scope of this study is to develop economic value of irrigation water maps of Egypt. The objective of the study is carried out by acquiring a Decision Support System for economic value of irrigation water of Egypt. This Decision Support System is applied for developing economic value maps for the irrigation water that is used for cultivating 45 crops under cereal, fiber, legumes, and vegetables, herbalist, and forages categories at each governorate of Egypt in year 2008 and 2009. The crops that achieve the highest and lowest economic value of irrigation water at each governorate of Egypt were identified. The reasons of the variations in the economic value of irrigation water at the governorates of Egypt were determined. The developed Decision Support System could be used yearly as a tool for demonstrating a picture about the economic value of irrigation water for the decision makers in the areas of water resources and agriculture. The developed economic value of irrigation water maps can be used in proposing a cropping pattern that maximizes the economic value of irrigation water in each governorate of Egypt.

  1. 42 CFR 413.24 - Adequate cost data and cost finding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Adequate data capable of being audited is consistent with good business concepts and effective and efficient management of any organization, whether it is operated for profit or on a nonprofit basis. It is a... contract for services (for example, a management contract), directly assigning the costs to the...

  2. 30 CFR 227.801 - What if a State does not adequately perform a delegated function?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... delegated function? 227.801 Section 227.801 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT DELEGATION TO STATES Performance Review § 227.801 What if a State does not adequately perform a delegated function? If your performance of the delegated function does...

  3. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    from the ARPA-SIMC web site. Since 2010 forecasts of the crops water irrigation requirements have been computed and compared with the simulated data at the end of the summer with good results. The COLT scheme is able to predict the very large interannual variability of the seasonal crop water needs: in 2010 the summer was rather wet and COLT predicted about 500 Mm3, while in 2011 the median forecast was 850 Mm3, a value considered as normal. The summer of 2012 was exceptionally dry, thus the median COLT forecast was 1077 Mm3, while the value computed with observed summer data reached 1340 Mm3 (+24%). The COLT scheme was also tested in a study area located near Ravenna (570 ha), where actual crop irrigation volumes are measured. The median forecasted irrigation (0.50 Mm3) resulted 14% higher than the observed value for 2011 (0.44 Mm3), mainly due to errors in classification of non irrigated crops as irrigated, and possibly to the water table not being accounted for in the model. COLT looks like a promising approach for assessing, planning and managing water resources in agriculture, and for mitigating the impacts of intense climate anomalies in the agricultural sector.

  4. Effects of climate and irrigation changes on the water balance of a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    von Gunten, Diane; Wöhling, Thomas; Haslauer, Claus; Cirpka, Olaf

    2015-04-01

    Climate change will strongly impact the water cycle of Mediterranean catchments as a result of the changes in precipitation patterns and increased temperature. However, effects of climate change are difficult to predict with precision and are often influenced by land-use or water management choices. In agricultural catchments, irrigation is of particular interest because of its importance for cultivation in semi-arid climate and because of its strong impacts on hydrological processes. Interactions between irrigation and climate change impacts are likely to be important and should be considered when studying the future of a catchment. However, they are still difficult to quantify. A better understanding of the differences in climate-change sensitivity between irrigated and non-irrigated catchments would allow a finer description of local climate change effects. In this study, we compared the impacts of climate change in various irrigation scenarios, including a scenario without irrigation. Our case study was a relatively small catchment (about 7.5km2) in north-east Spain, called the Lerma catchment. This catchment was not irrigated prior to 2006, but 54% of its surface is now used for irrigated agriculture. This transition to irrigated agriculture was closely monitored and data on hydraulic heads, discharge and daily irrigation volume are available. Based on these measurements, a coupled surface-subsurface model of the catchment was developed using the pde-based model HydroGeoSphere. The model performs well for both irrigated and non-irrigated periods. Future climate was predicted using four regional climate models from the ENSEMBLE project (P.van der Linden and J.Mitchell, ENSEMBLES: Climate Change and its Impacts [...], Met Office Hadley Center, 2009) and two downscaling methods, including one based on a weather generator. Four irrigation scenarios, based on projected potential evapotranspiration changes, were compared. Our results show a shift in the climate

  5. Advances in Irrigation: Select Works from 2010 Decennial Irrigation Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is an introduction to the Advances in Irrigation Special Collection in this issue of Transactions ASABE and the next issue of Applied Engineering in Agriculture of 14 papers selected from 88 papers and presentations at the ASABE 5th Decennial National Irrigation Symposium, December 2010, ...

  6. Modern Endodontic Principles Part 4: Irrigation.

    PubMed

    Darcey, James; Jawad, Sarra; Taylor, Carly; Roudsari, Reza Vahid; Hunter, Mark

    2016-01-01

    The complex anatomy of the tooth limits the ability to eradicate pathogens by mechanical means alone. Irrigation is the key to solving this problem. This paper highlights the importance of irrigation, the key irrigants available and methods of improving the performance of irrigants within the canal. CPD/CLINICAL RELEVANCE: To provide advice on which irrigants to use, how to use them effectively and safely and what to do if irrigants are extruded beyond the apex.

  7. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera of NW Spain

    NASA Astrophysics Data System (ADS)

    Martínez, Emma M.; Trigo-Córdoba, Emiliano; Bouzas-Cid, Yolanda; Fandiño, María; Rey, Benjamín J.; Mirás-Avalos, Jose M.; Cancela, Javier J.

    2014-05-01

    Inter-annual climate variability, in particular the temporal distribution of rainfall is regarded as a critical factor to obtain an optimal irrigation management on crops, being more marked their relevance in Atlantic climates. The presence of precision irrigation systems in Vitis vinifera (L.) has created the need to understand the physiological effects on plant, and vineyard soils, together with production and quality parameters, to achieve and adequate irrigation management. This trial was performed on two relevant white grapevine varieties from Galicia (NW-Spain), cv. `Albariño` (D.O. Rías Baixas and Ribeiro) and cv. `Godello` (D.O. Valdeorras and D.O. Monterrei) during the 2012 and 2013 seasons. Two treatments were established following a completely randomized block design with four replications (7 plants each). The treatments were rainfed (R) and surface drip irrigation (DI), these last one was not applied in DO Monterrei during 2012. Irrigation was initiated when an average value of 400 cumulative degree days was reached, ending 15 days before the harvest. Different bioclimatic indices were calculated to characterize each season and location: Cool night index (CI); Heliothermal index (HI), which corresponds to Huglin's heliothermal index; and Winkler index. To assess the water status of the vines leaf (Ψmid) and stem (Ψstem) water potentials were measured at noon. Finally, production and qualitative data were collected for each treatment. No differences between DOs were observed for 'Godello' cultivar in bioclimatic indices within the Geoviticulture MCC system (Tonietto and Carboneau, 2004), indicating temperate warm-temperate (HI) and very cool nights (CI). For the Winkler index, cv. Godello is within the region I, near the region II in the case of D.O. Valdeorras in both years. In the case of 'Albariño', warmer nights were observed in DO Rías Baixas compared with DO Ribeiro, whereas the opposite was found for the thermal index. Leaf water potential

  8. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.

  9. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    NASA Astrophysics Data System (ADS)

    Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  10. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    PubMed Central

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-01-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779

  11. Automatic restart of complex irrigation systems. Final report

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I.

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  12. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    SciTech Connect

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  13. Urban irrigation effects on WRF-UCM summertime forecast skill over the Los Angeles metropolitan area

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Hogue, T. S.

    2015-10-01

    In the current study, we explicitly address the impacts of urban irrigation on the local hydrological cycle by integrating a previously developed irrigation scheme within the coupled framework of the Weather Research and Forecasting-Urban Canopy Models (WRF-UCM) over the semiarid Los Angeles metropolitan area. We focus on the impacts of irrigation on the urban water cycle and atmospheric feedback. Our results demonstrate a significant sensitivity of WRF-UCM simulated surface turbulent fluxes to the incorporation of urban irrigation. Introducing anthropogenic moisture, vegetated pixels show a shift in the energy partitioning toward elevated latent heat fluxes. The cooling effects of irrigation on daily peak air temperatures are evident over all three urban types, with the largest influence over low-intensity residential areas (average cooling of 1.64°C). The evaluation of model performance via comparison against CIMIS (California Irrigation Management Information System) evapotranspiration (ET) estimates indicates that WRF-UCM, after adding irrigation, performs reasonably during the course of the month of July, tracking day-to-day variability of ET with notable consistency. In the nonirrigated case, CIMIS-based ET fluctuations are significantly underestimated by the model. Our analysis shows the importance of accurate representation of urban irrigation in modeling studies, especially over water-scarce regions such as the Los Angeles metropolitan area. We also illustrate that the impacts of irrigation on simulated energy and water cycles are more critical for longer-term simulations due to the interactions between irrigation and soil moisture fluctuations.

  14. More 'crop per drop': constraints and opportunities for precision irrigation in European agriculture.

    PubMed

    Monaghan, James M; Daccache, Andre; Vickers, Laura H; Hess, Tim M; Weatherhead, E Keith; Grove, Ivan G; Knox, Jerry W

    2013-03-30

    Dwindling water supplies, increasing drought frequency and uncertainties associated with a changing climate mean Europe's irrigated agriculture sector needs to improve water efficiency and produce more 'crop per drop'. This paper summarizes the drivers for change, and the constraints and opportunities for improving agricultural water management through uptake of precision irrigation technologies. A multi-disciplinary and integrated approach involving irrigation engineers, soil scientists, agronomists and plant physiologists will be needed if the potential for precision irrigation within the field crop sector is to be realized.

  15. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    PubMed

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  16. Impacts of deficit irrigation and altered rooting patterns on soil structure and associated soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of belowground systems and overall management impacts on soil health is needed to improve crop production and long-term sustainability under deficit irrigation. This study investigates effects of deficit irrigation on rooting patterns in maize and subsequent impacts on soil pr...

  17. Improving estimates of N and P loads in irrigation water from swine manure lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) requires recording N and P loads from land-applied manure, including nutrients applied in irrigation water from manure treatment lagoons. By regulation, lagoon irrigation water nutrient records in ...

  18. Irrigation scheduling and controlling crop water use efficiency with Infrared Thermometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientific methods for irrigation scheduling include weather, soil and plant-based techniques. Infrared thermometers can be used a non-invasive practice to monitor canopy temperature and better manage irrigation scheduling. This presentation will discuss the theoretical basis for monitoring crop can...

  19. A ROOT ZONE MODELLING APPROACH TO ESTIMATING GROUNDWATER RECHARGE FROM IRRIGATED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge....

  20. Improving N and P estimates for swine manure lagoon irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) require a record of N and P loads from manure land-applications, including irrigation with lagoon water. Mississippi regulations require nutrient records for lagoon irrigation water be based on at least one annual analy...

  1. Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  2. Unexpected Increases in Fecundity of Ceriodaphnia dubia Exposed to Reused Rice Irrigation Water.

    PubMed

    Grippo, Richard S; McNeely, Van M; Farris, Jerry L

    2016-06-01

    Steady increases in agricultural irrigation raise concerns about environmental impacts. Rice producing regions face declining irrigation groundwater and have started reusing irrigation water as a substitute. The goal of this project was to determine if reused irrigation water is potentially toxic compared to conventional well irrigation water. Reused and well water samples, collected from three Arkansas rice farms at field inlets and outlets on three dates corresponding to fertilizer/chemical applications or crop management, were used in acute 48-h (Pimephales promelas) and chronic (Ceriodaphnia dubia) toxicity evaluations. Acute toxicity tests indicated no effects on P. promelas. Fecundity of C. dubia was significantly increased in the reused water inlet and in both the reused and well water rice field outlets compared to well water inlets and laboratory reference water. This study suggests that, compared to well water, reused rice irrigation water has reduced potential for significant negative environmental impact on biota in receiving waters.

  3. Quantifying the Impacts of Irrigation Technology Adoption on Water Resources in the High Plains Aquifer, USA

    NASA Astrophysics Data System (ADS)

    Kendall, Anthony; Cotterman, Kayla; Hyndman, David

    2016-04-01

    Producers in key agricultural regions worldwide are contending with increasing demand while simultaneously managing declining water resources. The High Plains Aquifer (HPA) is the largest aquifer system in the United States, and supplied most of the water to irrigate 6 million hectares in 2012. Water levels in the central and southern sections of the aquifer have steadily declined, as groundwater recharge in this semi-arid region is insufficient to meet water demands. Individual irrigators have responded to these declines by moving from less efficient irrigation technologies to those that apply water more precisely. Yet, these newer technologies have also allowed for water to be pumped from lower-yielding wells, thus extending the life of any given well and allowing drawdown to continue. Here we use a dataset of the annual irrigation technology choices from every irrigator in the state of Kansas, located in the Central High Plains. This irrigation data, along with remotely-sensed Leaf Area Index, crop choice, and irrigated area, drives a coupled surface/groundwater simulation created using the Landscape Hydrology Model (LHM) to examine the impacts of changing irrigation technology on the regional water cycle, and water levels in the HPA. The model is applied to simulate cases in which no irrigation technology change had occurred, and complete adoption of newer technologies to better understand impacts of management choices on regional water resources.

  4. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  5. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  6. Drip irrigation research update at NPRL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...

  7. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  8. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  9. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    PubMed

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture.

  10. Managing our water resources

    SciTech Connect

    Not Available

    1982-05-01

    Water is a plentiful, renewable resource if it is properly managed. The US allocates 82% of its water to agriculture, 10% to industries and utilities. American farmers are beginning to adopt water-conserving techniques long used in the world's arid regions because past profligate use and recent droughts lowered both water tables and farm productivity. Runoff and pollution are responsible for much of the waste of usable water. Because of local water shortages, there is interest in drip irrigation, setting aside more land for reservoirs, and other conservation techniques to ensure adequate supplies for industrial development and economic growth. American faith in technology has led to schemes for desalination, cloud seeding, iceberg towing, and aquifer recharging, as well as the existing system of dams. Proper management of river basins is an important step in the process. 1 figure. (DCK)

  11. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  12. Irrigation trends in Kansas, 1991-2011

    USGS Publications Warehouse

    Kenny, Joan F.; Juracek, Kyle E.

    2013-01-01

    This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.

  13. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation under mulch is a major water-saving irrigation method that has been widely practiced for cotton production. The performance of such irrigation systems should be evaluated for proper design, management, operation, and efficient water use. The modeling approach has been used as a commo...

  14. Impacts and Benefits of Polyacrylamide (PAM) on irrigation efficiency, soil conservation, and water quality in mid-south cotton production 2015.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation in the Mid-South has become standard over the last few decades. As a result, Arkansas is one of the leading states in total irrigated cropland. As such, resulting groundwater decline and irrigation-induced soil erosion can have negative impacts leaving room for improved management. Water ...

  15. ENSURING ADEQUATE SAFETY WHEN USING HYDROGEN AS A FUEL

    SciTech Connect

    Coutts, D

    2007-01-22

    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  16. Probabilistic description of crop development and irrigation water requirements with stochastic rainfall

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2013-03-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems, stabilizing yields and profits. Because of the significant investments and water requirements associated with irrigation, strategic choices are needed to preserve productivity and profitability while ensuring a sustainable water management, a nontrivial task given rainfall unpredictability. Decision-making under uncertainty requires the knowledge of the probability density function (pdf) of the outcome variable (yield and economic return) for the different management alternatives to be considered (here, irrigation strategies). A stochastic framework is proposed, linking probabilistically the occurrence of rainfall events and irrigation applications to crop development during the growing season. Based on these linkages, the pdf of yields and the corresponding irrigation requirements are obtained analytically as a function of climate, soil, and crop parameters, for different irrigation strategies and both unlimited and limited water availability. Approximate expressions are also presented to facilitate their application. Our results employ relatively few parameters and are thus broadly applicable to different crops and sites, under current- and future-climate scenarios, offering a quantitative tool to quantify the impact of irrigation strategies and water allocation on yields. As a tool for decision-making under uncertainty (e.g., via expected utility theory), our framework will be useful for the assessment of the feasibility of different irrigation strategies and water allocations, toward a sustainable management of water resources for human and environmental needs.

  17. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  18. Using the soil water balance to analyze the deep percolation losses and the irrigation adequacy of irrigated citrus crops (Haouz plain, Morocco)

    NASA Astrophysics Data System (ADS)

    Nassah, Houda; Fakir, Younes; Er-raki, Salah; Khabba, Said; Merlin, Olivier; Mougenot, Bernard

    2016-04-01

    In the semi-arid Haouz plain, located in central Morocco, agriculture consumes about 85% of the available water resources. Therefore, the management of irrigation water is important to avoid the water loss by soil evaporation and by deep percolation (DP) below the plant root zone. Estimating the irrigation water demand has been investigated by many studies in the Haouz plain, but DP losses beneath the irrigated areas have not been quantified yet. In this context, the objectives of the persent work are threefold :1) to evaluate DP over irrigated citrus orchard under drip and flood irrigation systems using the soil water balance equation; 2) to compare the obtained results to direct measurements of DP by a "flux-meter"; and 3) to optimize the irrigation rates that avoid excessive DP losses and water stress. The results showed that the weekly DP losses vary in average from 15 mm/week to more than 40 mm/week depending to the amount of water supply. The irrigation systems have also an important impact on DP losses evaluated to 38 % in drip irrigation and 12% in flood irrigation. Additionally the density of canopy influences the DP percentage inducing a difference of 10% between the denser citrus site and the sparse one. The comparison of DP losses calculated by soil water balance with those measured by a flux-meter installed beneath the root zone show that the first method gives higher values than the second does. Finally we evaluated the adequacy of the water supply for the crop needs based on two performance indices: depleted fraction (DF) and relative evapotranspiration (RET), showing that the drip irrigation has respond to the culture demands with an excessive quantity of irrigation, unlike to the flood one.

  19. Effect of irrigation system uniformity and method on potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato growth, yield, and quality under improved irrigation methods and water uniformity is important to enhance water management in arid regions. A field experiment was conducted in 2014 spring and fall growing seasons using potato (Solanum tuberosum) grown in northern Egypt at Shibin El Kom, Menof...

  20. Protecting groundwater quality with high frequency subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  1. Effect of dripline flushing on subsurface drip irrigation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The velocity of dripline flushing in subsurface drip irrigation (SDI) systems affects system design, cost, management, performance, and longevity. A 30-day field study was conducted at Kansas State University to analyze the effect of four targeted flushing velocities (0.23, 0.30, 0.46, and 0.61 m/s)...

  2. Effects of dripline flushing on subsurface drip irrigation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The velocity of dripline flushing in subsurface drip irrigation (SDI) systems affects system design, cost, management, performance, and longevity. A 30-day field study was conducted at Kansas State University to analyze the effect of four targeted flushing velocities (0.23, 0.30, 0.46, and 0.61 m/s)...

  3. Automated support tool for variable rate irrigation prescriptions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) enables center pivot management to better meet non-uniform water and fertility needs. This is accomplished through correctly matching system water application with spatial and temporal variability within the field. A computer program was modified to accommodate GIS dat...

  4. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of...

  5. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of...

  6. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo Ndebele's…

  7. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  8. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  9. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  10. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  11. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  12. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  13. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  14. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  15. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  16. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  17. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  18. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  19. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  20. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  1. 42 CFR 438.207 - Assurances of adequate capacity and services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Assurances of adequate capacity and services. 438.207 Section 438.207 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS MANAGED CARE Quality Assessment and...

  2. Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms.

    PubMed

    Mañas, Pilar; Castro, Elena; de Las Heras, Jorge

    2009-10-01

    The aim of this study was to evaluate the applicability of treated wastewater for horticultural crops, assess the effects of continuous use of treated water on soil and crops, and analyse the physical, chemical and biological effects of irrigation with recycled water. Two lettuce plots watered with drinking water and treated wastewater were monitored over a three year period. Nutrients, heavy metal and the dynamics of pathogen and indicator microorganism content in soil and foliar tissues were analysed. Wastewater irrigation had a high influence on soil parameters: organic matter, N, P, Ca, Al, Fe, Pb and Zn. Indicator and pathogenic microorganisms were detected in soil and plants grown in the wastewater-irrigated plot, and persisted in the soil for 27 days during the study under humid conditions. N, P, Pb and Al content were significantly higher in plant tissues of wastewater-irrigated plots than in the control after 3 years of irrigation. Harvest was significantly higher in the wastewater-irrigated plot. Wastewater can be a resource for agricultural irrigation. In any case, the possible heavy metal accumulation in soils and presence of pathogenic organisms require careful management of this alternative resource: use of a drip irrigation system, previous wastewater disinfection and a limited irrigation period are recommended.

  3. Evaluation of Monensin Transport to Shallow Groundwater after Irrigation with Dairy Lagoon Water.

    PubMed

    Hafner, Sarah C; Harter, Thomas; Parikh, Sanjai J

    2016-03-01

    Animal waste products from concentrated animal feeding operations are a significant source of antibiotics to the environment. Monensin, an ionophore antibiotic commonly used to increase feed efficiency in livestock, is known to have varied toxicological effects on nontarget species. The current study builds on prior studies evaluating the impact of dairy management on groundwater quality by examining the transport of monensin in an agricultural field with coarse-textured soils during irrigation with lagoon wastewater. The dairy is located in California's San Joaquin Valley, where groundwater can be encountered <5 m below the surface. Groundwater samples were collected from a network of monitoring wells installed throughout the dairy and adjacent to irrigated fields before and after an irrigation event, which allowed for measurement of monensin potentially reaching the shallow groundwater as a direct result of irrigation with lagoon water. Monensin was extracted from water samples via hydrophilic-lipophilic balance solid-phase extraction and quantified with liquid chromatography-mass spectrometry. Irrigation water was found to contain up to 1.6 μg L monensin, but monensin was only detected in monitoring wells surrounding the waste storage lagoon. Water chemistry changes in the wells bordering the irrigated field suggest that up to 7% of irrigation water reached groundwater within days of irrigation. The study suggests that contamination of groundwater with monensin can occur primarily by compromised waste storage systems and that rapid transport of monensin to groundwater is not likely to occur from a single irrigation event.

  4. [Effects of different drip irrigation modes on root distribution of wine grape 'Cabernet Sauvignon' in desert area of Northwest China].

    PubMed

    Mao, Juan; Chen, Bai-Hong; Cao, Jian-Dong; Wang, Li-Jun; Wang, Hai; Wang, Yan-Xiu

    2013-11-01

    To study the effects of different drip irrigation modes on the wine grape root distribution is the basis of formulating fertilization, irrigation, and over-wintering management practices for wine grape. Taking the wine grape "Cabernet Sauvignon" as test material, this paper studied the effects of different water-saving irrigation modes (drip irrigation under straw mulching, drip irrigation under plastic mulching, double-tube drip irrigation, and single-tube drip irrigation) on the root distribution of wine grape in the desert area of Northwest China, with the conventional furrow irrigation as the control. The root system of the "Cabernet Sauvignon" was distributed from 0 to 70 cm vertically, and from 0 to 120 cm horizontally. With double-tube drip irrigation, the root amount was the largest (138.3 roots per unit profile), but the root vertical distribution scope was narrowed by 20 cm, as compared to the control. Drip irrigation with straw mulching increased the root amount significantly, and increased the root horizontal distribution scope by 9.1%, as compared to the control. No significant difference was observed in the root number and root horizontal distribution scope between the drip irrigation under plastic mulching and the control, but the root vertical distribution scope with the drip irrigation under plastic mulching decreased by 20 cm. Single-tube drip irrigation increased the root number significantly, but had lesser effects on the root vertical or horizontal distribution, as compared to the conventional irrigation. It was suggested that the drip irrigation under straw mulching could be the best water-saving practice for the wine grape "Cabernet Sauvignon" in the study area.

  5. Environmental impact of irrigation in la violada district (Spain): I. Salt export patterns.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Salt loading in irrigation return flows contributes to the salinization of the receiving water bodies, particularly when originated in salt-affected areas as frequently found in the middle Ebro River basin (Spain). We determined the salt loading in La Violada Gully from the total dissolved solids (TDS) and flows (Q) during the 1995 to 1998 hydrological years. Since this gully collects flows from various sources, an end-member mixing analysis (EMMA) was performed to quantify the drainage flow from La Violada Irrigation District (VID). Three flow components were identified in La Violada Gully: drainage waters from VID (Qd); tail-waters from irrigation ditches, spill-over, and seepage from the Monegros Canal (Qo); and ground water inflows (Qg) originating in the dryland watershed. Gypsum in the soils of VID was the main source for salts in La Violada Gully (flow-weighted mean TDS=1720 mg L-1, dominated by sulfate and calcium). The contribution of Qg to the total gully flow during the 1996 irrigation season was low (6.5% of the total flow). The 1995 to 1998 annual salt load average in La Violada Gully was 78 628 Mg, 71% of which was exported during the irrigation season. The 1995 to 1998 irrigation season salt load average in Qd was 43 015 Mg (77% of the total load). Thus, irrigated agriculture in VID was the main source of salt loading in this gully, with a yield of 11.1 Mg of salts per hectare of irrigated land for the irrigation season. Efficient irrigation systems and irrigation management practices that reduce Qd are key factors for controlling off-site salt pollution of these gypsum-rich irrigated areas.

  6. Comparison of lettuce diseases and yield under subsurface drip and furrow irrigation.

    PubMed

    Subbarao, K V; Hubbard, J C; Schulbach, K F

    1997-08-01

    Valley. Subsurface drip irrigation is a viable, long-term strategy for soilborne disease management in lettuce in the Salinas Valley.

  7. A global data set of the extent of irrigated land from 1900 to 2005

    NASA Astrophysics Data System (ADS)

    Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B. R.

    2015-03-01

    Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global historical irrigation data set (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arcmin resolution. We collected sub-national irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining sub-national irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to sub-national irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land as shown on historical maps for the western United States (around year 1900) and on a global map (around year 1960). Mean aridity on irrigated land increased and mean natural river discharge on irrigated land decreased from 1900 to 1950 whereas aridity decreased and river discharge remained approximately constant from 1950 to 2005. The data set and its documentation are made available in an open-data repository at https://mygeohub.org/publications/8 (doi:10.13019/M20599).

  8. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into

  9. Evapotranspiration and irrigation algorithms in hydrologic modeling:Present Status and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic models are used extensively for predicting water availability and water quality responses to alternative irrigation, tillage, crop, and fertilizer management practices and global climate change. Modeling results have been frequently used by regulatory agencies for developing remedial meas...

  10. MRI can determine the adequate area for debridement in the case of Fournier's gangrene.

    PubMed

    Yoneda, Akira; Fujita, Fumihiko; Tokai, Hirotaka; Ito, Yuichiro; Haraguchi, Masashi; Tajima, Yoshitsugu; Kanematsu, Takashi

    2010-01-01

    A 57-year-old man was transferred to our hospital because of gluteal pain. His right buttock had flare and swelling. Complete blood count showed leukocytosis, and renal failure was evident. Pelvic computed tomography (CT) revealed that the abscess, including gas, was widespread into the hypodermal tissue of the right buttock. Fournier's gangrene had been suspected, and immediate drainage was performed on the right buttock. The symptom and the condition improved rapidly, but on the day after the operation, the patient became drowsy and fell into endotoxic shock. Magnetic resonance imaging (MRI) revealed strong inflammation along the entire fascia of the right femur and necrotizing fasciitis. MRI was very useful for identification of the necrotic range. Immediately, an emergency operation was performed; 3 wide incisions were made on the right thigh and crus for drainage. The patient was cared for intensively under a sedated condition, and irrigation and debridement were repeated every day. Culture of the pus revealed mixed infection of Escherichia coli and anaerobic bacteria, and a large quantity of antimicrobial drug was used. The inflammatory reaction decreased, and the patient's general condition tentatively improved. With Fournier's gangrene, initiating adequate surgical and medical treatment is essential. Therefore, MRI should be used in the early exact diagnosis of this disease to obtain knowledge of the extent of necrosis and to determine the adequate area for debridement.

  11. Influence of different operating conditions on irrigation uniformity with microperforated tapes

    NASA Astrophysics Data System (ADS)

    Moreno Pizani, María Alejandra; Jesús Farías Ramírez, Asdrúbal

    2013-04-01

    Irrigated agriculture is a safe alternative to meet the growing demand for food. Numerous studies show that proper management of localized irrigation can increase crop yields and reduce soil salinization. Therefore, periodic field systems irrigation assessments are needed in order to optimize the use efficiency of irrigation water, as well as, to increase the agricultural area covered by the same amount of water and to reduce the environmental impact. It was assessed the behavior of micro perforated tapes under different operating conditions, crops and regions of Venezuela. Evaluations were made on irrigated areas using Santeno ® Type I tape with the following crops: Banana (Musa sp), lettuce (Lactuca sativa L.), carrot (Daucus carota L) and forage sugar cane (Saccharum officinarum). In the other hand, Santeno ® Type II tape was used with papaya (Carica papaya L.) and melon (Cucumis melo L.) crops (the last crop using inverted irrigation tape). The procedures used for sampling and determining the uniformity indices of the system were performed using a series of adjustments to the methodology proposed by Keller and Karmeli (1975), Deniculi (1980) and De Santa and De Juan (1993), in order to increase the number of observations as a function of irrigation time. The calculated irrigation uniformity indices were as follow: Distribution Coefficient (UD), Uniformity Coefficient (CUC), Coefficient of Variation of Flows (CV) and Statistical Uniformity Coefficient (Us). The indices characterization was made according to Merrian and Keller (1978); Bralts (1986); Pizarro (1990) y ASAE (1996), respectively. The results showed that the irrigation uniformity for the evaluated systems varied from excellent to unacceptable, mainly due to the lack of maintenance and the absent of manometric connectors. Among the findings, it is possible to highlight the need for technical support to farmers, both in the installation, management and maintenance of irrigation systems. In this sense

  12. Are Vancomycin Trough Concentrations Adequate for Optimal Dosing?

    PubMed Central

    Youn, Gilmer; Jones, Brenda; Jelliffe, Roger W.; Drusano, George L.; Rodvold, Keith A.; Lodise, Thomas P.

    2014-01-01

    The current vancomycin therapeutic guidelines recommend the use of only trough concentrations to manage the dosing of adults with Staphylococcus aureus infections. Both vancomycin efficacy and toxicity are likely to be related to the area under the plasma concentration-time curve (AUC). We assembled richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with various levels of renal function. With Pmetrics, the nonparametric population modeling package for R, we compared AUCs estimated from models derived from trough-only and peak-trough depleted versions of the full data set and characterized the relationship between the vancomycin trough concentration and AUC. The trough-only and peak-trough depleted data sets underestimated the true AUCs compared to the full model by a mean (95% confidence interval) of 23% (11 to 33%; P = 0.0001) and 14% (7 to 19%; P < 0.0001), respectively. In contrast, using the full model as a Bayesian prior with trough-only data allowed 97% (93 to 102%; P = 0.23) accurate AUC estimation. On the basis of 5,000 profiles simulated from the full model, among adults with normal renal function and a therapeutic AUC of ≥400 mg · h/liter for an organism for which the vancomycin MIC is 1 mg/liter, approximately 60% are expected to have a trough concentration below the suggested minimum target of 15 mg/liter for serious infections, which could result in needlessly increased doses and a risk of toxicity. Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter. PMID:24165176

  13. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  14. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    PubMed

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  15. Relation between irrigation engineering and bilharziasis*

    PubMed Central

    Lanoix, Joseph N.

    1958-01-01

    The author discusses the relation between irrigation systems and the transmission of bilharziasis, with special reference to the important part the irrigation engineer can play in checking the spread of the disease. He points out that, in the past, there has been little co-operation between health departments and public works agencies in respect of the setting-up of irrigation systems, and stresses the advantages to be gained from an active collaboration between malacologists, epidemiologists and irrigation engineers at the planning stage of irrigation schemes. The author also puts forward some suggestions for research on irrigation-system design and outlines the role of WHO in bilharziasis control. PMID:13573123

  16. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    NASA Astrophysics Data System (ADS)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato

  17. Characteristics of dissolved carbon change in irrigation water

    NASA Astrophysics Data System (ADS)

    Akaike, Y.; Kunishio, A.; Kawamoto, Y.; Murakami, H.; Iwata, T.

    2012-12-01

    It is necessary to estimate carbon emission from soil for understanding carbon cycle processes in cultivated fields. Since irrigation water is introduced into a typical rice paddy field, one part of emitted carbon content from soil were trapped by water and dissolved in it, and dissolved carbon content outflows from the field at the drainage moment. In this study, we continuously and regularly analyzed dissolved carbon content of irrigation water and investigated seasonal variation of efflux of carbon from a paddy field. Experimental site is located reclaimed land in the southern part of Okayama Prefecture, Japan. And rice cropping cultivation has continued in a similar method every year. Intermittent irrigation water managements, or 3 days flooded and 4 days drained condition, were carried out during almost all the period of rice cultivated term. Irrigation water was sampled every flooding and drainage days. Inorganic carbon (IC) concentration was measured with total carbon (TC) analyzer (TOC-V/CSH, SHIMAZU). Amount of dissolved carbon in irrigation water was calculated from product of the carbon concentration and water levels. The experimental paddy field was divided into two areas, and two bottle of water were sampled from each area. In order to investigate what impact is brought on the annual carbon cycle by the difference of disposal management of residual biomass after the harvest, residual biomass was burned and plowed into soil at the one area on 29th Nov., 2011, and residue was not burned and directly plowed into soil at the other area as usual. IC during cultivated term in 2011 and 2012 in both area gradually increased day by day for every flooded periods. And IC showed distinct diurnal variations with lower value in the daytime than at night, it is because of photosynthetic activities by aquatic algae in the irrigation water.

  18. Region 9: Arizona Adequate Letter (10/14/2003)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadben,. Director, to Nancy Wrona and Dennis Smith informing them that Maricopa County's motor vehicle emissions budgets in the 2003 MAGCO Maintenance Plan are adequate for transportation conformity purposes.

  19. Region 6: Texas Adequate Letter (4/16/2010)

    EPA Pesticide Factsheets

    This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes

  20. Region 2: New Jersey Adequate Letter (5/23/2002)

    EPA Pesticide Factsheets

    This April 22, 2002 letter from EPA to the New Jersey Department of Environmental Protection determined 2007 and 2014 Carbon Monoxide (CO) Mobile Source Emissions Budgets adequate for transportation conformity purposes and will be announced in the Federal

  1. Region 8: Colorado Adequate Letter (10/29/2001)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Denvers' particulate matter (PM10) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  2. Region 1: New Hampshire Adequate Letter (8/12/2008)

    EPA Pesticide Factsheets

    This July 9, 2008 letter from EPA to the New Hampshire Department of Environmental Services, determined the 2009 Motor Vehicle Emissions Budgets (MVEBs) are adequate for transportation conformity purposes and will be announced in the Federal Register (FR).

  3. Region 8: Colorado Adequate Letter (1/20/2004)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Greeleys' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes and will be announced in the FR.

  4. Region 8: Utah Adequate Letter (6/10/2005)

    EPA Pesticide Factsheets

    This letter from EPA to Utah Department of Environmental Quality determined Salt Lake Citys' and Ogdens' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  5. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  6. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  7. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  8. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  9. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  10. Region 6: New Mexico Adequate Letter (8/21/2003)

    EPA Pesticide Factsheets

    This is a letter from Carl Edlund, Director, to Alfredo Santistevan regarding MVEB's contained in the latest revision to the Albuquerque Carbon Monoxide State Implementation Plan (SIP) are adequate for transportation conformity purposes.

  11. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  12. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  13. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  14. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  15. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  16. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  17. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  18. Region 9: Nevada Adequate Letter (3/30/2006)

    EPA Pesticide Factsheets

    This is a letter from Deborah Jordan, Director, to Leo M. Drozdoff regarding Nevada's motor vehicle emissions budgets in the 2005 Truckee Meadows CO Redesignation Request and Maintenance Plan are adequate for transportation conformity decisions.

  19. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.

  20. Radiological Evaluation of Penetration of the Irrigant according to Three Endodontic Irrigation Techniques

    PubMed Central

    Benkiran, Imane; El Ouazzani, Amal

    2016-01-01

    Introduction. This experimental study is to compare radiographs based on the penetration depth of the irrigant following three final irrigation techniques. Material and Method. A sample of sixty teeth with single roots were prepared with stainless steel K files followed by mechanized Ni-Ti files iRace® under irrigation with 2.5% sodium hypochlorite. Radiopaque solution was utilized to measure the penetration depth of the irrigant. Three irrigation techniques were performed during this study: (i) passive irrigation, (ii) manually activated irrigation, and (iii) passive irrigation with an endodontic needle CANAL CLEAN®. Radiographs were performed to measure the length of irrigant penetration in each technique. Results. In comparison, passive irrigation with a conventional syringe showed infiltration of the irrigant by an average of 0.682 ± 0.105, whereas the manually activated irrigation technique indicated an average of 0.876 ± 0.066 infiltration. Irrigation with an endodontic syringe showed an average infiltration of 0.910 ± 0.043. The results revealed highly significant difference between the three irrigation techniques (α = 5%). Conclusion. Adding manual activation to the irrigant improved the result by 20%. This study indicates that passive irrigation with an endodontic needle has proved to be the most effective irrigation technique of the canal system. PMID:27433162

  1. Survey of nitrogen use pattern in rice in the irrigated rice-wheat cropping system of Haryana, India.

    PubMed

    Singh, Sher; Malik, R K; Dhankar, J S; Garg, Rajbir; Sheoran, Parvender; Yadav, Ashok; Kamboj, B R

    2011-01-01

    Seeing the sustainability of rice-wheat cropping system (RWCS) of the Indo-Gangetic Plain, adequate crop nutrition in general and nitrogen (N) in particular holds the key to sound crop management. The excessive application or insufficient management of N means an economic loss to the farmer and may lead to yield penalties and environmental problems. Improving N management in consonance with other nutrients is much important to break yield plateaus as breeding for high yielding is not happening in recent years. Findings from farm survey are used to evaluate the on-farm N management practices in rice crop of the study area. The crop management practices (especially time of sowing/transplanting and irrigation requirement) and resource base of the farmers decided the N use pattern of the farmers. The N(Physical optimum) and N(economic optimum) exceeding the recommended levels revealed the apparent need for the revalidation of the existing recommendations. Paddy yield increased significantly within different rice types. This study generated comprehensive data on N use pattern in rice in the study area.

  2. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  3. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as "bootstrap analysis" that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most

  4. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  5. Sinus irrigations before and after surgery – visualization through computational fluid dynamics simulations

    PubMed Central

    Zhao, Kai; Craig, John R.; Cohen, Noam A.; Adappa, Nithin D.; Khalili, Sammy; Palmer, James N.

    2016-01-01

    Objective Topical sinus irrigations play a critical role in the management of sinonasal disease, and the improvement in irrigant penetration into the sinuses postoperatively greatly contributes to the success of the endoscopic sinus surgery. Prior investigations on postoperative sinus irrigations have been mostly limited to cadaver studies, which are labor intensive, and do not capture the full dynamics of the flows. A pilot study was conducted to investigate the impact of surgery on sinus irrigation through Computational Fluid Dynamics (CFD) simulations. Study Design Retrospective computational study Methods Pre- and postoperative CT scans were obtained on a patient who underwent standard Endoscopic surgeries for all sinuses, including a Draf III frontal sinusotomy. CT based pre- and postoperative CFD models then simulated irrigations of 120 mL saline per nostril at 12mL/s (typical of Sinugator®) and 60mL/s (SinusRinse Bottle®), in two head positions: face parallel and at 45° angle to the ground. Results Overall, surgery most significantly improved frontal sinus irrigation, but surprisingly resulted in less maxillary and ethmoid sinuses penetration. This may due to the partial removal of septum during the Draf III, causing most fluid to exit pre-maturely across the resected septum. Higher flow rate slightly improved ethmoid sinus irrigation, but resulted in less contralateral maxillary sinus penetration. Conclusions CFD modeling of sinonasal irrigations is a novel technique for evaluating irrigant penetration of individual sinus cavities. It may prove useful in determining the optimal degree of surgery or the ideal irrigation strategy to allow for maximal and targeted sinus irrigant penetration. PMID:26467934

  6. Identifying the effect of irrigation on evapotranspiration variability over the High Plains

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Cai, X.

    2015-12-01

    Irrigation is widely adopted as a measure to maintain crop yield when precipitation is limited and stabilize crop yield to buffer climatic fluctuation. Irrigation has considerably interfered with hydrological processes in many areas with extensive and intensive irrigation requirement; with the increasing demand for food and weather variability related to climate change, irrigation application is expected to increase, which would aggravate the interferences to hydrologic processes. Current studies focus on the impact of irrigation on the mean value of ET at either local or regional scale, however, how irrigation changes the variability of ET has not been well understood. This study analyzes the impact of extensive irrigation on ET variability in the High Plains. We apply an ET variance decomposition framework (Zeng and Cai 2015) to quantify the effects of both climate and irrigation on ET variance in in the High Plains watersheds. Based on climatic and groundwater storage data, we assess the monthly ET variance and its components for both pre-development (1930s-1960s) and development periods (1970-2010s). It is found that irrigation not only causes the well-known groundwater drawdown and stream depletion problems in the area associated with, but also changes ET variance, which further affects land surface processes. With complementary water supply from irrigation, ET approaches to potential ET, and ET variance is more attributed to climatic variables such as temperature, while causing significant seasonal fluctuations to groundwater storage. For sustainable water resources management in the High Plains, we argue that both the mean value and the variance of ET should be considered together for the regulation of irrigation in this region.

  7. Agricultural irrigated land-use inventory for Osceola County, Florida, October 2013-April 2014

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.

    2014-01-01

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to increase the accuracy of current water-use estimates or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas within Osceola County for the agricultural growing period October 2013–April 2014. The irrigated areas were first delineated using land-use data and satellite imagery and then field verified between February and April 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 27,450 acres were irrigated during the study period. This includes 4,370 acres of vegetables, 10,970 acres of orchard crops, 1,620 acres of field crops, and 10,490 acres of ornamentals and grasses. Specifically, irrigated acreage included citrus (10,860 acres), sod (5,640 acres), pasture (4,580 acres), and potatoes (3,320 acres). Overall, groundwater was used to irrigate 18,350 acres (67 percent of the total acreage), and surface water was used to irrigate the remaining 9,100 acres (33 percent). Microirrigation systems accounted for 45 percent of the total acreage irrigated, flood systems 30 percent, and sprinkler systems the remaining 25 percent. An accurate, detailed, spatially referenced, and field-verified inventory of irrigated crop acreage can be used to assist resource managers making current and future county-level water-use estimates in Osceola County.

  8. The Effectiveness of Budesonide Nasal Irrigation After Endoscopic Sinus Surgery in Chronic Rhinosinusitis With Asthma

    PubMed Central

    Kang, Tae Wook; Chung, Jae Ho; Cho, Seok Hyun; Lee, Seung Hwan; Kim, Kyung Rae; Jeong, Jin Hyeok

    2017-01-01

    Objectives Budesonide nasal irrigation was introduced recently for postoperative management of patients with chronic rhinosinusitis. The safety and therapeutic effectiveness of this procedure is becoming accepted by many physicians. The objective of this study was to evaluate the efficacy of postoperative steroid irrigation in patients with chronic rhinosinusitis and asthma. Methods This prospective study involved 12 chronic rhinosinusitis patients with nasal polyps and asthma who received oral steroid treatment for recurring or worsening disease. The 22-item Sinonasal Outcomes Test (SNOT-22) and Lund-Kennedy endoscopy scores were checked before nasal budesonide irrigation, and 1, 2, 4, and 6 months after irrigation. We also calculated the total amount of oral steroids and inhaled steroids in the 6 months before irrigation and the 6 months after it. Results The mean SNOT-22 score improved from 30.8±14.4 before irrigation to 14.2±8.7 after 6 months of irrigation (P=0.030). The endoscopy score also improved from 7.4±4.7 before irrigation to 2.2±2.7 after 6 months (P<0.001). The total amount of oral steroid was decreased from 397.8±97.6 mg over the 6 months before irrigation to 72.7±99.7 mg over the 6 months after irrigation (P<0.001). Conclusion Nasal irrigation with budesonide is an effective postoperative treatment for chronic rhinosinusitis with asthma, which recurs frequently, reducing the oral steroid intake. PMID:27440128

  9. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  10. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  11. Irrigation effects on soil attributes and grapevine performance in a 'Godello' vineyard of NW Spain

    NASA Astrophysics Data System (ADS)

    Fandiño, María; Trigo-Córdoba, Emiliano; Martínez, Emma M.; Bouzas-Cid, Yolanda; Rey, Benjamín J.; Cancela, Javier J.; Mirás-Avalos, Jose M.

    2014-05-01

    Irrigation systems are increasingly being used in Galician vineyards. However, a lack of information about irrigation management can cause a bad use of these systems and, consequently, reductions in berry quality and loss of water resources. In this context, experiences with Galician cultivars may provide useful information. A field experiment was carried out over two seasons (2012-2013) on Vitis vinifera (L.) cv. 'Godello' in order to assess the effects of irrigation on soil attributes, grapevine performance and berry composition. The field site was a commercial vineyard located in A Rúa (Ourense-NW Spain). Rain-fed vines (R) were compared with two irrigation systems: surface drip irrigation (DI) and subsurface drip irrigation (SDI). Physical and chemical characteristics of soil were analyzed after installing irrigation systems at the beginning of each season, in order to assess the effects that irrigation might have on soil attributes. Soil water content, leaf and stem water potentials and stomatal conductance were periodically measured over the two seasons. Yield components including number of clusters, yield per plant and cluster average weight were taken. Soluble solids, pH, total acidity and amino acids contents were measured on the grapes at harvest. Pruning weight was also recorded. Soil attributes did not significantly vary due to the irrigation treatments. Stem water potentials were significantly lower for R plants on certain dates through the season, whereas stomatal conductance was similar for the three treatments in 2013, while in 2012 SDI plants showed greater stomatal conductance values. SDI plants yielded more than those R due to both a greater number of clusters per plant and to heavier clusters. Pruning weight was significantly higher in SI plants. Berry composition was similar for the three treatments except for the amino acids content, which was higher under SDI conditions. These results may be helpful for a sustainable management of irrigation

  12. Environmental flows for rivers and economic compensation for irrigators.

    PubMed

    Sisto, Nicholas P

    2009-02-01

    Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.

  13. Newer Root Canal Irrigants in Horizon: A Review

    PubMed Central

    Jaju, Sushma; Jaju, Prashant P.

    2011-01-01

    Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation. PMID:22190936

  14. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.

    PubMed

    Mosier, Arvin R; Halvorson, Ardell D; Reule, Curtis A; Liu, Xuejun J

    2006-01-01

    The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha(-1). Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.

  15. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems.

    PubMed

    Arroita, Maite; Causapé, Jesús; Comín, Francisco A; Díez, Joserra; Jimenez, Juan José; Lacarta, Juan; Lorente, Carmen; Merchán, Daniel; Muñiz, Selene; Navarro, Enrique; Val, Jonatan; Elosegi, Arturo

    2013-12-15

    Many dryland areas are being converted into intensively managed irrigation crops, what can disrupt the hydrological regime, degrade soil and water quality, enhance siltation, erosion and bank instability, and affect biological communities. Still, the impacts of irrigation schemes on the functioning of terrestrial and aquatic ecosystems are poorly understood. Here we assess the effects of irrigation agriculture on breakdown of coarse organic matter in soil and water. We measured breakdown rates of alder and holm oak leaves, and of poplar sticks in terrestrial and aquatic sites following a gradient of increasing irrigation agriculture in a semi-arid Mediterranean basin transformed into irrigation agriculture in 50% of its surface. Spatial patterns of stick breakdown paralleled those of leaf breakdown. In soil, stick breakdown rates were extremely low in non-irrigated sites (0.0001-0.0003 day(-1)), and increased with the intensity of agriculture (0.0018-0.0044 day(-1)). In water, stick breakdown rates ranged from 0.0005 to 0.001 day(-1), and increased with the area of the basin subject to irrigation agriculture. Results showed that irrigation agriculture affects functioning of both terrestrial and aquatic ecosystems, accelerating decomposition of organic matter, especially in soil. These changes can have important consequences for global carbon budgets.

  16. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  17. Secondary desertification due to salinization of intensively irrigated lands: The Israeli experience.

    PubMed

    Banin, A; Fish, A

    1995-01-01

    -maintained drainage system that drains tail-water and salinized shallow-aquifer water, and devoting a significant portion of water for regional leaching. The sustained long-term productivity of irrigated lands in arid zones crucially depends on correctly managing water and soil resources. Regional management of irrigated lands to prevent secondary desertification will be aimed at carefully balancing the undisputed benefits of irrigation with the long-term (on time scales of 10 to 100 years) detrimental processes set in motion when irrigation is introduced to arid and semiarid zone soils.

  18. Surgical management of bacterial meningitis.

    PubMed Central

    Humphreys, R. P.

    1975-01-01

    A variety of associated lesions may require the neurosurgeon's assistance in the management of bacterial meningitis. As treatment of this infection of the central nervous system proceeds, the surgeon will have to decide about the concurrent or subsequent operative treatment of congenital dysraphic states, paraneural infections, compound fractures or penetrating wounds of thecranium or spine, or infected bypass shunts for cerebrospinal fluid (CSF). In patients with intractable meningitic infections the surgeon may have to insert a ventricular drainage-irrigation system to permit adequate perfusion of the CSF pathways with antibiotic. Hydrocephalus or subdural effusions complicating meningitis may bring the patient to the surgeon long after the infection has been cured. This paper examines these problems and outlines the current principles of management. Images FIG. 1 FIG. 2 PMID:1098760

  19. Regulatory requirements for providing adequate veterinary care to research animals.

    PubMed

    Pinson, David M

    2013-09-01

    Provision of adequate veterinary care is a required component of animal care and use programs in the United States. Program participants other than veterinarians, including non-medically trained research personnel and technicians, also provide veterinary care to animals, and administrators are responsible for assuring compliance with federal mandates regarding adequate veterinary care. All program participants therefore should understand the regulatory requirements for providing such care. The author provides a training primer on the US regulatory requirements for the provision of veterinary care to research animals. Understanding the legal basis and conditions of a program of veterinary care will help program participants to meet the requirements advanced in the laws and policies.

  20. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.