Science.gov

Sample records for adequate structural integrity

  1. Practices in adequate structural design

    NASA Astrophysics Data System (ADS)

    Ryan, Robert S.

    An account is given of the guidelines for safe and reliable space vehicle design, especially in the structural engineering area, which have been formulated by NASA in the aftermath of the Space Shuttle Challenger accident in 1986. Illustrative examples are presented from state-of-the-art, performance-driven hardware whose design ineluctably gives rise to a high sensitivity to small variations and uncertainties. It is recommended that such hardware be designed with a view to easy inspectability and manufacturability, with emphasis on the role played in system structures by fracture mechanics. Static and dynamic coupling effects must be precluded wherever possible.

  2. Practices in Adequate Structural Design

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  3. Practices in adequate structural design

    NASA Astrophysics Data System (ADS)

    Ryan, Robert S.

    1989-01-01

    Structural design and verification of space vehicles and space systems is a very tricky and awe inspiring business, particularly for manned missions. Failures in the missions with loss of life is devastating personally and nationally. The scope of the problem is driven by high performance requirements which push state-of-the-art technologies, creating high sensitivites to small variations and uncertainties. Insurance of safe, reliable flight dictates the use of sound principles, procedures, analysis, and testing. Many of those principles which were refocused by the Space Shuttle Challenger (51-L) accident on January 26, 1986, and the activities conducted to insure safe shuttle reflights are discussed. The emphasis will be focused on engineering, while recognizing that project and project management are also key to success.

  4. Adequate drainage system design for heap leaching structures.

    PubMed

    Majdi, Abbas; Amini, Mehdi; Nasab, Saeed Karimi

    2007-08-17

    The paper describes an optimum design of a drainage system for a heap leaching structure which has positive impacts on both mine environment and mine economics. In order to properly design a drainage system the causes of an increase in the acid level of the heap which in turn produces severe problems in the hydrometallurgy processes must be evaluated. One of the most significant negative impacts induced by an increase in the acid level within a heap structure is the increase of pore acid pressure which in turn increases the potential of a heap-slide that may endanger the mine environment. In this paper, initially the thickness of gravelly drainage layer is determined via existing empirical equations. Then by assuming that the calculated thickness is constant throughout the heap structure, an approach has been proposed to calculate the required internal diameter of the slotted polyethylene pipes which are used for auxiliary drainage purposes. In order to adequately design this diameter, the pipe's cross-sectional deformation due to stepped heap structure overburden pressure is taken into account. Finally, a design of an adequate drainage system for the heap structure 2 at Sarcheshmeh copper mine is presented and the results are compared with those calculated by exiting equations. PMID:17321044

  5. Adequate bases of phase space master integrals for gg → h at NNLO and beyond

    NASA Astrophysics Data System (ADS)

    Höschele, Maik; Hoff, Jens; Ueda, Takahiro

    2014-09-01

    We study master integrals needed to compute the Higgs boson production cross section via gluon fusion in the infinite top quark mass limit, using a canonical form of differential equations for master integrals, recently identified by Henn, which makes their solution possible in a straightforward algebraic way. We apply the known criteria to derive such a suitable basis for all the phase space master integrals in afore mentioned process at next-to-next-to-leading order in QCD and demonstrate that the method is applicable to next-to-next-to-next-to-leading order as well by solving a non-planar topology. Furthermore, we discuss in great detail how to find an adequate basis using practical examples. Special emphasis is devoted to master integrals which are coupled by their differential equations.

  6. Family Structure Types and Adequate Utilization of Antenatal Care in Kenya.

    PubMed

    Owili, Patrick Opiyo; Muga, Miriam Adoyo; Chou, Yiing-Jenq; Hsu, Yi-Hsin Elsa; Huang, Nicole; Chien, Li-Yin

    2016-01-01

    Features of the health care delivery system may not be the only expounding factors of adequate utilization of antenatal care among women. Other social factors such as the family structure and its environment contribute toward pregnant women's utilization of antenatal care. An understanding of how women in different family structure types and social groups use basic maternal health services is important toward developing and implementing maternal health care policy in the post-Millennium Development Goal era, especially in the sub-Saharan Africa where maternal mortality still remains high. PMID:27214674

  7. Practices in adequate structural design. [of space vehicles and space systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1989-01-01

    An account is given of the guidelines for safe and reliable space vehicle design, especially in the structural engineering area, which have been formulated by NASA in the aftermath of the Space Shuttle Challenger accident in 1986. Illustrative examples are presented from state-of-the-art, performance-driven hardware whose design ineluctably gives rise to a high sensitivity to small variations and uncertainties. It is recommended that such hardware be designed with a view to easy inspectability and manufacturability, with emphasis on the role played in system structures by fracture mechanics. Static and dynamic coupling effects must be precluded wherever possible.

  8. Do Clinical Clerks Provide Candidates with Adequate Formative Assessment during Objective Structured Clinical Examinations?

    ERIC Educational Resources Information Center

    Reiter, Harold I.; Rosenfeld, Jack; Nandagopal, Kiruthiga; Eva, Kevin W.

    2004-01-01

    Context: Various research studies have examined the question of whether expert or non-expert raters, faculty or students, evaluators or standardized patients, give more reliable and valid summative assessments of performance on Objective Structured Clinical Examinations (OSCEs). Less studied has been the question of whether or not non-faculty…

  9. Integrated support structure

    NASA Technical Reports Server (NTRS)

    Bruneau, Stephen D.; Campbell, John T.; Struven, Christopher A.

    1990-01-01

    This Major Qualifying Project is part of the Advanced Space Design Program at WPI. The goal is to design a support structure for a NASA GetAway Special experimental canister. The payload integration, weight, volume, and structural integrity of the canister as specified by NASA guidelines were studied. The end result is a complete set of design drawings with interface drawings and data to specify the design and leave a base on which the next group can concentrate.

  10. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  11. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  12. The two-layer geochemical structure of modern biogeochemical provinces and its significance for spatially adequate ecological evaluations and decisions

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2014-05-01

    Contamination of the environment has reached such a scale that ecogeochemical situation in any area can be interpreted now as a result of the combined effect of natural and anthropogenic factors. The areas that appear uncomfortable for a long stay can have natural and anthropogenic genesis, but the spatial structure of such biogeochemical provinces is in any case formed of a combination of natural and technogenic fields of chemical elements. Features of structural organization and the difference in factors and specific time of their formation allow their separation on one hand and help in identification of areas with different ecological risks due to overlay of the two structures on the other. Geochemistry of soil cover reflects the long-term result of the naturally balanced biogeochemical cycles, therefore the soil geochemical maps of the undisturbed areas may serve the basis for evaluation of the natural geochemical background with due regard to the main factors of geochemical differentiation in biosphere. Purposeful and incidental technogenic concentrations and dispersions of chemical elements of specific (mainly mono- or polycentric) structure are also fixed in soils that serve as secondary sources of contamination of the vegetation cover and local food chains. Overlay of the two structures forms specific heterogeneity of modern biogeochemical provinces with different risk for particular groups of people, animals and plants adapted to specific natural geochemical background within particular concentration interval. The developed approach is believed to be helpful for biogeochemical regionalizing of modern biosphere (noosphere) and for spatially adequate ecogeochemical evaluation of the environment and landuse decisions. It allows production of a set of applied geochemical maps such as: 1) health risk due to chemical elements deficiency and technogenic contamination accounting of possible additive effects; 2) adequate soil fertilization and melioration with due

  13. Integral Textile Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  14. Integrated control-structure design

    NASA Technical Reports Server (NTRS)

    Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.

    1991-01-01

    A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

  15. SRS Tank Structural Integrity Program

    SciTech Connect

    Maryak, Matthew

    2010-11-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  16. Structural integrity in aircraft.

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1973-01-01

    The paper reviews briefly the current design philosophies for achieving long, efficient, and reliable service in aircraft structures. The strengths and weaknesses of these design philosophies and their demonstrated records of success are discussed. The state of the art has not been developed to the point where designing can be done without major test inspection and maintenance programs. A broad program of research is proposed through which a viable computerized design scheme will be provided during the next decade. The program will organize and correlate existing knowledge on fatigue and fracture behavior, identify gaps in this knowledge, and guide specific research to upgrade design capabilities.

  17. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  18. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  19. Assuring structural integrity in Army systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The object of this study was to recommend possible improvements in the manner in which structural integrity of Army systems is assured. The elements of a structural integrity program are described, and relevant practices used in various industries and government organizations are reviewed. Some case histories of Army weapon systems are examined. The mandatory imposition of a structural integrity program patterned after the Air Force Aircraft Structural Integrity Program is recommended and the benefits of such an action are identified.

  20. Aiming towards improved flood forecasting: Identification of an adequate model structure for a semi-arid and data-scarce region

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2015-04-01

    A lot of effort has already been put into the development of forecasting systems to warn people of approaching flood events. Such systems, however, are influenced by various sources of uncertainty which constrain the skill of forecasts. The main goal of this study is the identification, quantification and reduction of uncertainties to provide improved early warnings with adequate lead times in a data-scarce region with strong seasonality of the hydrological regime. This includes the setup of hydrological models and post-processing of simulation results by mathematical means such as data assimilation. The focus area is the Jaguaribe watershed in northeastern Brazil. The region is characterized by a seasonal climate with strong inter-annual variation and recurrent droughts. To ensure a secure water supply also during the dry season several thousand small and some large reservoirs have been constructed. On the other hand, floods caused by heavy rain events are an issue as well. This topic, however, so far has hardly been considered by the scientific community and until today no flood forecasting system exists for that region. To identify the most appropriate model structure for the catchment the process-based hydrological model for semi-arid environments WASA was implemented into the eco-hydrological simulation environment ECHSE. The environment consists of a generic part providing data types and simulation methods, and a problem-specific part where the user can implement different model formulations. This provides the possibility to test various process realisations under consistent input and output data structures. The most appropriate model structure can then be determined by statistical means such as Bayesian model averaging. Subsequently, forecast results may be updated by post-processing and/or data assimilation. Furthermore, methods of data fusion can be used to combine measurements of different quality and resolution, such as in-situ and remotely sensed data

  1. Damage Tolerance of Integral Structure in Rotorcraft

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Urban, Michael R.

    2003-01-01

    The rotorcraft industry has rapidly implemented integral structures into aircraft to benefit from the weight and cost advantages over traditionally riveted structure. The cost to manufacture an integral structure, where the entire component is machined from a single plate of material, is about one-fifth that of a riveted structure. Furthermore, the integral structure can weigh only one-half that of a riveted structure through optimal design of stiffening structure and part reduction. Finally, inspection and repair of damage in the field can be less costly than riveted structure. There are no rivet heads to inspect under, reducing inspection time, and damage can be removed or patched readily without altering the primary structure, reducing replacement or repair costs. In this paper, the authors will investigate the damage tolerance implications of fielding an integral structure manufactured from thick plate aluminum.

  2. Structural integrity and potential failure modes of hanford high-level waste tanks

    SciTech Connect

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  3. Structural integrity test and assessment.

    NASA Technical Reports Server (NTRS)

    Suggs, F.; Poe, R.; Sannicandro, R.

    1972-01-01

    The feasibility of using an ultrasonic system on board the Space Shuttle Orbiter to facilitate structural evaluation and assessment was studied. Two factors are considered that could limit the capability of an ultrasonic system: (1) the effect of structure configuration and (2) the noise generated during vehicle launch. Results of the study indicate that although the structural configuration has direct bearing on sound propagation, strategic location of transducers will still permit flaw detection. The ultrasonic response data show that a severe acoustic environment does not interfere significantly with either propagation and reflection of surface waves or detection of crack-like flaws in the structure.

  4. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  5. Structure Learning in Bayesian Sensorimotor Integration

    PubMed Central

    Genewein, Tim; Hez, Eduard; Razzaghpanah, Zeynab; Braun, Daniel A.

    2015-01-01

    Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration. PMID:26305797

  6. Test Structures For Bumpy Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  7. Multicomponent glass fiber optic integrated structures

    NASA Astrophysics Data System (ADS)

    Pysz, Dariusz; Kujawa, Ireneusz; Szarniak, Przemyslaw; Franczyk, Marcin; Stepien, Ryszard; Buczynski, Ryszard

    2005-09-01

    A range of integrated fiber optic structures - lightguides, image guides, multicapillary arrays, microstructured (photonic) fibers - manufactured in the Institute of Electronic Materials Technology (ITME) is described. All these structures are made of multicomponent glasses (a part of them melted in ITME). They can be manufactured in similar multistep process that involves drawing glass or lightguide rods and tubes preparing glass performs, stacking a bundle with rods and (or) tubes, drawing multifiber or multicapillary performs. Structure formation, technological process, characterization and applications of different integrated structures are presented.

  8. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  9. Fracture Testing of Integral Stiffened Structure

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.

    2008-01-01

    Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.

  10. Integrable structures in quantum field theory

    NASA Astrophysics Data System (ADS)

    Negro, Stefano

    2016-08-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.

  11. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  12. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  13. Evaluation of structural integrity using integrated testing and analysis

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.

    1988-01-01

    An integrated approach to dynamic testing and mathematical model analysis is described. The overall approach addresses four key tasks, namely, pretest planning and analysis, test data acquisition, data reduction and analysis, and test/analysis correlation and mathematical model updates. Several key software programs are employed to accomplish this task. They are a leading finite element code, a sophisticated data analysis processor and a graphical pre- and post-processor along with an advanced interface utility. Several practical structures are used to illustrate tools and concepts employed in the integrated test analysis process.

  14. Machined Structural Panels With Integral End Fittings

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Rogers, Patrick R.

    1993-01-01

    Flat, cylindrical, or otherwise-shaped unitary machined corrugated metal panels used as structural skins, according to proposal. Machined plates offer advantages over such conventional lightweight structural components as formed corrugated sheets, composite panels, and honeycomb panels. Include integrally machined end fittings and are lighter, less prone to failure, easier to design and analyze, and offer greater stiffness. No additional stringers or frames needed for reinforcement.

  15. Integrated Management of Structural Pests in Schools.

    ERIC Educational Resources Information Center

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  16. Tunable resonant structures for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna Nina

    Photonics is an evolving field allowing for optical devices to be made cost effectively using standard semiconductor fabrication techniques, which in turn enables integration with microelectronic chips. Chip scale photonics will play an increasing role in the future of communications as the demand for bandwidth and reduced power consumption per bit continues to grow. Tunable optical circuit components are one of the essential technologies in the development of photonic analogues for classical electronic devices, where tunable photonic resonant structures allow for altering of their electromagnetic spectrum and find applications in optical switching, filtering, buffering, lasers and biosensors. The scope of this work is focused on tunable resonant structures for photonic integrated circuits. Specifically, this work demonstrates active tuning of silicon photonic resonant structures using the properties of dye doped nematic liquid crystals, temperature stabilization of silicon photonics using the passive properties of liquid crystals, and the effects of low density plasma enhanced chemical vapor deposition (PECVD) claddings on ring resonator device performance.

  17. Structural composites with integrated electromagnetic functionality

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Syrus C.; Amirkhizi, Alireza V.; Plaisted, Thomas; Isaacs, Jon; Nemat-Nasser, Siavouche

    2002-07-01

    We are studying the incorporation of electromagnetic effective media in the form of arrays of metal scattering elements, such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties, these electromagnetic effective media can provide controlled response to electromagnetic radiation such as RF communication signals, radar, and/or infrared radiation. With the addition of dynamic components, these materials may be leveraged for active tasks such as filtering. The advantages of such hybrid composites include simplicity and weight savings by the combination of electromagnetic functionality with necessary structural functionality. This integration of both electromagnetic and structural functionality throughout the volume of the composite is the distinguishing feature of our approach. As an example, we present a class of composites based on the integration of artificial plasmon media into polymer matrixes. Such composites can exhibit a broadband index of refraction substantially equal to unity at microwave frequencies and below.

  18. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  19. Integrated structural-aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  20. Integrated support structure for GASCAN 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program was the preliminary design of the Integrated Support Structure for GASCAN II, a Get Away Special canister donated by the MITRE Corporation. Two teams of three students each worked on the support structure. There was a structural design team and a thermal design team. The structure will carry three experiments also undergoing preliminary design this year, the mu-gravity Ignition Experiment, the Rotational Flow in Low Gravity Experiment, and the Ionospheric Properties and Propagation Experiment. The structural design team was responsible for the layout of the GASCAN and the preliminary design of the structure itself. They produced the physical interface specifications defining the baseline weights and volumes for the equipment and produced layout drawings of the system. The team produced static and modal finite element analysis of the structure using ANSYS. The thermal design team was responsible for the power and timing requirements of the payload and for the identification and preliminary analysis of potential thermal problems. The team produced the power, timing, and energy interface specifications and assisted in the development of the specification of the battery pack. The thermal parameters of each experiment were cataloged and the experiments were subjected to worst case heat transfer scenarios.

  1. Integrating macroecological metrics and community taxonomic structure.

    PubMed

    Harte, John; Rominger, Andrew; Zhang, Wenyu

    2015-10-01

    We extend macroecological theory based on the maximum entropy principle from species level to higher taxonomic categories, thereby predicting distributions of species richness across genera or families and the dependence of abundance and metabolic rate distributions on taxonomic tree structure. Predictions agree with qualitative trends reported in studies on hyper-dominance in tropical tree species, mammalian body size distributions and patterns of rarity in worldwide plant communities. Predicted distributions of species richness over genera or families for birds, arthropods, plants and microorganisms are in excellent agreement with data. Data from an intertidal invertebrate community, but not from a dispersal-limited forest, are in excellent agreement with a predicted new relationship between body size and abundance. Successful predictions of the original species level theory are unmodified in the extended theory. By integrating macroecology and taxonomic tree structure, maximum entropy may point the way towards a unified framework for understanding phylogenetic community structure. PMID:26248954

  2. Structural integrity of future aging airplanes

    NASA Technical Reports Server (NTRS)

    Mcguire, Jack F.; Goranson, Ulf G.

    1992-01-01

    A multitude of design considerations is involved in ensuring the structural integrity of Boeing jet transports that have common design concepts validated by extensive analyses, tests, and three decades of service. As airplanes approach their design service objectives, the incidences of fatigue and corrosion may become widespread. Continuing airworthiness of the aging jet fleet requires diligent performance from the manufacturer, the airlines, and airworthiness authorities. Aging fleet support includes timely development of supplemental structural inspection documents applicable to selected older airplanes, teardown inspections of high-time airframes retired from service, fatigue testing of older airframes, and structural surveys of more than 130 airplanes operated throughout the world. Lessons learned from these activities are incorporated in service bulletin recommendations, production line modifications, and design manual updates. An overview of traditional Boeing fleet support activities and the anticipated benefits for future generations of commercial airplanes based on the continuous design improvement process are presented.

  3. Structural integrity of future aging airplanes

    NASA Astrophysics Data System (ADS)

    McGuire, Jack F.; Goranson, Ulf G.

    1992-07-01

    A multitude of design considerations is involved in ensuring the structural integrity of Boeing jet transports that have common design concepts validated by extensive analyses, tests, and three decades of service. As airplanes approach their design service objectives, the incidences of fatigue and corrosion may become widespread. Continuing airworthiness of the aging jet fleet requires diligent performance from the manufacturer, the airlines, and airworthiness authorities. Aging fleet support includes timely development of supplemental structural inspection documents applicable to selected older airplanes, teardown inspections of high-time airframes retired from service, fatigue testing of older airframes, and structural surveys of more than 130 airplanes operated throughout the world. Lessons learned from these activities are incorporated in service bulletin recommendations, production line modifications, and design manual updates. An overview of traditional Boeing fleet support activities and the anticipated benefits for future generations of commercial airplanes based on the continuous design improvement process are presented.

  4. Integrated cortical structural marker for Alzheimer's disease.

    PubMed

    Ming, Jing; Harms, Michael P; Morris, John C; Beg, M Faisal; Wang, Lei

    2015-01-01

    In this article, we propose an approach to integrate cortical morphology measures for improving the discrimination of individuals with and without very mild Alzheimer's disease (AD). FreeSurfer was applied to scans collected from 83 participants with very mild AD and 124 cognitively normal individuals. We generated cortex thickness, white matter convexity (aka "sulcal depth"), and white matter surface metric distortion measures on a normalized surface atlas in this first study to integrate high resolution gray matter thickness and white matter surface geometric measures in identifying very mild AD. Principal component analysis was applied to each individual structural measure to generate eigenvectors. Discrimination power based on individual and combined measures are compared, based on stepwise logistic regression and 10-fold cross-validation. Global AD likelihood index and surface-based likelihood maps were also generated. Our results show complementary patterns on the cortical surface between thickness, which reflects gray matter atrophy, convexity, which reflects white matter sulcal depth changes and metric distortion, which reflects white matter surface area changes. The classifier integrating all 3 types of surface measures significantly improved classification performance compared with classification based on single measures. The principal component analysis-based approach provides a framework for achieving high discrimination power by integrating high-dimensional data, and this method could be very powerful in future studies for early diagnosis of diseases that are known to be associated with abnormal gyral and sulcal patterns. PMID:25444604

  5. Mass Spec Studio for Integrative Structural Biology

    PubMed Central

    Rey, Martial; Sarpe, Vladimir; Burns, Kyle; Buse, Joshua; Baker, Charles A.H.; van Dijk, Marc; Wordeman, Linda; Bonvin, Alexandre M.J.J.; Schriemer, David C.

    2015-01-01

    SUMMARY The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/ deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-tandem MS (MS2) and data-independent HX-MS2. The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions. PMID:25242457

  6. Atomic vapor spectroscopy in integrated photonic structures

    NASA Astrophysics Data System (ADS)

    Ritter, Ralf; Gruhler, Nico; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-07-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  7. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  8. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  9. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  10. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  11. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  12. Integrated Structural Analysis and Test Program

    NASA Technical Reports Server (NTRS)

    Kaufman, Daniel

    2005-01-01

    An integrated structural-analysis and structure-testing computer program is being developed in order to: Automate repetitive processes in testing and analysis; Accelerate pre-test analysis; Accelerate reporting of tests; Facilitate planning of tests; Improve execution of tests; Create a vibration, acoustics, and shock test database; and Integrate analysis and test data. The software package includes modules pertaining to sinusoidal and random vibration, shock and time replication, acoustics, base-driven modal survey, and mass properties and static/dynamic balance. The program is commanded by use of ActiveX controls. There is minimal need to generate command lines. Analysis or test files are selected by opening a Windows Explorer display. After selecting the desired input file, the program goes to a so-called analysis data process or test data process, depending on the type of input data. The status of the process is given by a Windows status bar, and when processing is complete, the data are reported in graphical, tubular, and matrix form.

  13. Interrater reliability and discriminative validity of the structural elements of the Ayres Sensory Integration Fidelity Measure.

    PubMed

    May-Benson, Teresa A; Roley, Susanne Smith; Mailloux, Zoe; Parham, L Diane; Koomar, Jane; Schaaf, Roseann C; Jaarsveld, Annamarie Van; Cohn, Ellen

    2014-01-01

    This study examined the reliability and validity of the structural section of the Ayres Sensory Integration® Fidelity Measure© (ASIFM), which provides a method for monitoring the extent to which an intervention was implemented as conceptualized in studies of occupational therapy using sensory integration intervention methods (OT-SI). We examined the structural elements of the measure, including content of assessment reports, availability of specific equipment and adequate space, safety monitoring, and integration of communication with parents and other team members, such as collaborative goal setting with parents or family and teacher education, into the intervention program. Analysis of self-report ratings by 259 occupational therapists from 185 different facilities indicated that the structural section of the ASIFM has acceptable interrater reliability (r ≥ .82) and significantly differentiates between settings in which therapists reportedly do and do not practice OT-SI (p < .001). PMID:25184462

  14. Integrated Force Method for Indeterminate Structures

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.

    2008-01-01

    Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.

  15. Enhanced Composites Integrity Through Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Soutis, Constantinos

    2012-10-01

    This paper discusses the topic of how the integrity of safety-critical structural composites can be enhanced by the use of structural health monitoring (SHM) techniques. The paper starts with a presentation of how the certification of flight-critical composite structures can be achieved within the framework of civil aviation safety authority requirements. Typical composites damage mechanisms, which make this process substantially different from that for metallic materials are discussed. The opportunities presented by the use of SHM techniques in future civil aircraft developments are explained. The paper then focuses on active SHM with piezoelectric wafer active sensors (PWAS). After reviewing the PWAS-based SHM options, the paper follows with a discussion of the specifics of guided wave propagation in composites and PWAS-tuning effects. The paper presents a number of experimental results for damage detection in simple flat unidirectional and quasi-isotropic composite specimens. Calibrated through holes of increasing diameter and impact damage of various energies and velocities are considered. The paper ends with conclusions and suggestions for further work.

  16. Integrated Thermal Structures and Materials Overview

    NASA Technical Reports Server (NTRS)

    Jensen, Brian

    2000-01-01

    The accomplishments of the project this viewgraph presentation summarizes (integrated thermal structures and materials) include the following: (1) Langley Research Center prepared five resins with Tgs as high as 625 F, less than 1% volatiles, moderate toughness, and low melt viscosity and sent to Boeing or Lockheed Martin; (2) Glenn Research Center prepared four resins with Tgs as high as 700 F, less than 10% volatiles, and low melt viscosity and sent to Boeing; (3) Boeing successfully fabricated 2'x2'x36 ply composites by resin infusion of stitched preforms from all NASA supplied resins; and (4) Lockheed Martin successfully fabricated 13"x14"x16 ply composites by resin transfer molding from all NASA supplied resins.

  17. Structural integrity of nuclear reactor pressure vessels

    NASA Astrophysics Data System (ADS)

    Knott, John F.

    2013-09-01

    The paper starts from concerns expressed by Sir Alan Cottrell, in the early 1970s, related to the safety of the pressurized water reactor (PWR) proposed at that time for the next phase of electrical power generation. It proceeds to describe the design and operation of nuclear generation plant and gives details of the manufacture of PWR reactor pressure vessels (RPVs). Attention is paid to stress-relief cracking and under-clad cracking, experienced with early RPVs, explaining the mechanisms for these forms of cracking and the means taken to avoid them. Particular note is made of the contribution of non-destructive inspection to structural integrity. Factors affecting brittle fracture in RPV steels are described: in particular, effects of neutron irradiation. The use of fracture mechanics to assess defect tolerance is explained, together with the failure assessment diagram embodied in the R6 procedure. There is discussion of the Master Curve and how it incorporates effects of irradiation on fracture toughness. Dangers associated with extrapolation of data to low probabilities are illustrated. The treatment of fatigue-crack growth is described, in the context of transients that may be experienced in the operation of PWR plant. Detailed attention is paid to the thermal shock associated with a large loss-of-coolant accident. The final section reviews the arguments advanced to justify 'Incredibility of Failure' and how these are incorporated in assessments of the integrity of existing plant and proposed 'new build' PWR pressure vessels.

  18. Basic structures of integrated photonic circuits for smart biosensor applications

    NASA Astrophysics Data System (ADS)

    Germer, S.; Cherkouk, C.; Rebohle, L.; Helm, M.; Skorupa, W.

    2013-05-01

    The breadth of opportunities for applied technologies for optical sensors ranges from environmental and biochemical control, medical diagnostics to process regulation. Thus the specified usage of the optical sensor system requires a particular design and functionalization. Especially biochemical sensors incorporate electronic and photonic devices for the detection of harmful substances e.g. in drinking water. Here we present recent developments in the integration of a Si-based light emitting device (LED) [1-3, 8] into a photonic circuit for an optical waveguide-based biodetection system. This concept includes the design, fabrication and characterization of the dielectric high contrast waveguide as an important component, beside the LED, in the photonic system circuit. First approaches involve simulations of Si3N4/SiO2-waveguides with the finite element method (FEM) and their fabrication by plasma enhanced chemical vapour deposition (PECVD), optical lithography and reactive ion etching (RIE). In addition, we characterized the deposited layers via ellipsometry and the etched structures by scanning electron microscopy (SEM). The obtained results establish a basis for optimized Si-based LED waveguide butt-coupling with adequate coupling efficiency, low attenuation loss and a high optical power throughput.

  19. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular...

  20. 29 CFR 98.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Adequate evidence. 98.900 Section 98.900 Labor Office of the Secretary of Labor GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 98.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a...

  1. Experimental Validation of an Integrated Controls-Structures Design Methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.

    1996-01-01

    The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.

  2. Comorbidity Structure of Psychological Disorders in the Online e-PASS Data as Predictors of Psychosocial Adjustment Measures: Psychological Distress, Adequate Social Support, Self-Confidence, Quality of Life, and Suicidal Ideation

    PubMed Central

    Klein, Britt; Meyer, Denny

    2014-01-01

    Background A relative newcomer to the field of psychology, e-mental health has been gaining momentum and has been given considerable research attention. Although several aspects of e-mental health have been studied, 1 aspect has yet to receive attention: the structure of comorbidity of psychological disorders and their relationships with measures of psychosocial adjustment including suicidal ideation in online samples. Objective This exploratory study attempted to identify the structure of comorbidity of 21 psychological disorders assessed by an automated online electronic psychological assessment screening system (e-PASS). The resulting comorbidity factor scores were then used to assess the association between comorbidity factor scores and measures of psychosocial adjustments (ie, psychological distress, suicidal ideation, adequate social support, self-confidence in dealing with mental health issues, and quality of life). Methods A total of 13,414 participants were assessed using a complex online algorithm that resulted in primary and secondary Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) diagnoses for 21 psychological disorders on dimensional severity scales. The scores on these severity scales were used in a principal component analysis (PCA) and the resulting comorbidity factor scores were related to 4 measures of psychosocial adjustments. Results A PCA based on 17 of the 21 psychological disorders resulted in a 4-factor model of comorbidity: anxiety-depression consisting of all anxiety disorders, major depressive episode (MDE), and insomnia; substance abuse consisting of alcohol and drug abuse and dependency; body image–eating consisting of eating disorders, body dysmorphic disorder, and obsessive-compulsive disorders; depression–sleep problems consisting of MDE, insomnia, and hypersomnia. All comorbidity factor scores were significantly associated with psychosocial measures of adjustment (P<.001). They were

  3. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  4. Assessment of structural integrity of wooden poles

    NASA Astrophysics Data System (ADS)

    Craighead, Ian A.; Thackery, Steve; Redstall, Martin; Thomas, Matthew R.

    2000-05-01

    Despite recent advances in the development of new materials, wood continues to be used globally for the support of overhead cable networks used by telecommunications and electrical utility companies. As a natural material, wood is subject to decay and will eventually fail, causing disruption to services and danger to public and company personnel. Internal decay, due to basidomycetes fungi or attack by termites, can progress rapidly and is often difficult to detect by casual inspection. The traditional method of testing poles for decay involves hitting them with a hammer and listening to the sound that results. However, evidence suggests that a large number of poles are replaced unnecessarily and a significant number of poles continue to fail unexpectedly in service. Therefore, a more accurate method of assessing the structural integrity of wooden poles is required. Over the last 25 years there have been a number of attempts at improving decay detection. Techniques such as ultrasound, drilling X rays etc. have been developed but have generally failed to improve upon the practicality and accuracy of the traditional testing method. The paper describes the use of signal processing techniques to analyze the acoustic response of the pole and thereby determine the presence of decay. Development of a prototype meter is described and the results of initial tests on several hundred poles are presented.

  5. Structural integration in hypoxia-inducible factors

    SciTech Connect

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  6. Investigation of threaded fastener structural integrity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Technical nondestructive evaluation approaches to the determination of fastener integrity were assessed. Existing instruments and methods used to measure stress or strain were examined, with particular interest in fastener shank stress. Industry procedures being followed were evaluated to establish fastener integrity criteria.

  7. A manufacturer's approach to ensure long term structural integrity

    NASA Technical Reports Server (NTRS)

    Ansell, Hans; Fredriksson, Billy; Holm, Ingvar

    1992-01-01

    The main features of the design concepts for the Saab 340 and Saab 2000 aircraft are described with respect to structural integrity and high reliability. Also described is the approach taken at Saab Aircraft to ensure structural integrity and high reliability. The concepts of global and local loads and sequences, and the fatigue and damage tolerance sizing and their verification are discussed. Also described is quality assurance in the production and structural maintenance program. Structural repair and feedback from operators are also covered.

  8. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS § 1511.5 Structural integrity tests. (a) Nipple. Hold the pacifier...

  9. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Definitions § 85.900 Adequate evidence. Adequate evidence means information sufficient to support the reasonable belief that a particular act or omission has occurred. Authority: E.O. 12549 (3 CFR, 1986 Comp., p. 189); E.O 12689 (3 CFR, 1989 Comp., p. 235); 20 U.S.C. 1082, 1094, 1221e-3 and 3474; and Sec....

  10. 29 CFR 452.110 - Adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Adequate safeguards. 452.110 Section 452.110 Labor... DISCLOSURE ACT OF 1959 Election Procedures; Rights of Members § 452.110 Adequate safeguards. (a) In addition to the election safeguards discussed in this part, the Act contains a general mandate in section...

  11. 29 CFR 452.110 - Adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 2 2011-07-01 2011-07-01 false Adequate safeguards. 452.110 Section 452.110 Labor... DISCLOSURE ACT OF 1959 Election Procedures; Rights of Members § 452.110 Adequate safeguards. (a) In addition to the election safeguards discussed in this part, the Act contains a general mandate in section...

  12. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  13. Structural basis for retroviral integration into nucleosomes

    PubMed Central

    Maskell, Daniel P.; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N.; Costa, Alessandro; Cherepanov, Peter

    2015-01-01

    Retroviral integration is catalyzed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome1,2. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy (EM) reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location (SHL) ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration. PMID:26061770

  14. Atomic vapor spectroscopy in integrated photonic structures

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman; Löw, Robert; Ritter, Ralf; Kübler, Harald; Gruhler, Nico; Pernice, Wolfram

    2016-05-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. This includes integrated ring resonators, Mach Zehnder interferometers, slot waveguides and counterpropagating coupling schemes. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of strong atom light coupling. Cooperativities on the order of 1 are within reach.

  15. Integrated aerodynamic/structural design of a sailplane wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Gurdal, Z.; Haftka, R. T.; Strauch, G. J.; Eppard, W. M.

    1986-01-01

    Using lifting-line theory and beam analysis, the geometry (planiform and twist) and composite material structural sizes (skin thickness, spar cap, and web thickness) were designed for a sailplane wing, subject to both structural and aerodynamic constraints. For all elements, the integrated design (simultaneously designing the aerodynamics and the structure) was superior in terms of performance and weight to the sequential design (where the aerodynamic geometry is designed to maximize the performance, following which a structural/aeroelastic design minimizes the weight). Integrated designs produced less rigid, higher aspect ratio wings with favorable aerodynamic/structural interactions.

  16. Americans Getting Adequate Water Daily, CDC Finds

    MedlinePlus

    ... medlineplus/news/fullstory_158510.html Americans Getting Adequate Water Daily, CDC Finds Men take in an average ... new government report finds most are getting enough water each day. The data, from the U.S. National ...

  17. Americans Getting Adequate Water Daily, CDC Finds

    MedlinePlus

    ... gov/news/fullstory_158510.html Americans Getting Adequate Water Daily, CDC Finds Men take in an average ... new government report finds most are getting enough water each day. The data, from the U.S. National ...

  18. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  19. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Microfabricated structures for integrated DNA analysis.

    PubMed Central

    Burns, M A; Mastrangelo, C H; Sammarco, T S; Man, F P; Webster, J R; Johnsons, B N; Foerster, B; Jones, D; Fields, Y; Kaiser, A R; Burke, D T

    1996-01-01

    Photolithographic micromachining of silicon is a candidate technology for the construction of high-throughput DNA analysis devices. However, the development of complex silicon microfabricated systems has been hindered in part by the lack of a simple, versatile pumping method for integrating individual components. Here we describe a surface-tension-based pump able to move discrete nanoliter drops through enclosed channels using only local heating. This thermocapillary pump can accurately mix, measure, and divide drops by simple electronic control. In addition, we have constructed thermal-cycling chambers, gel electrophoresis channels, and radiolabeled DNA detectors that are compatible with the fabrication of thermocapillary pump channels. Since all of the components are made by conventional photolithographic techniques, they can be assembled into more complex integrated systems. The combination of pump and components into self-contained miniaturized devices may provide significant improvements in DNA analysis speed, portability, and cost. The potential of microfabricated systems lies in the low unit cost of silicon-based construction and in the efficient sample handling afforded by component integration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8643614

  1. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  2. Integrated structure vacuum tube: A Concept

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J.

    1974-01-01

    Cathode emission is made to occur by heating entire structure to 600 C, and positive potential is applied to anode with negative potential on grids. Electron flow takes place from ring to circular anode through electric field produced by grids.

  3. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  4. Integrated structure/control law design by multilevel optimization

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.; Schmidt, David K.

    1989-01-01

    A new approach to integrated structure/control law design based on multilevel optimization is presented. This new approach is applicable to aircraft and spacecraft and allows for the independent design of the structure and control law. Integration of the designs is achieved through use of an upper level coordination problem formulation within the multilevel optimization framework. The method requires the use of structure and control law design sensitivity information. A general multilevel structure/control law design problem formulation is given, and the use of Linear Quadratic Gaussian (LQG) control law design and design sensitivity methods within the formulation is illustrated. Results of three simple integrated structure/control law design examples are presented. These results show the capability of structure and control law design tradeoffs to improve controlled system performance within the multilevel approach.

  5. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  6. Embedded Sensor Array Development for Composite Structure Integrity Monitoring

    SciTech Connect

    Kumar, A.; Bryan, W. L.; Clonts, L. G.; Franks, S.

    2007-06-26

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Accellent Technologies, Inc. (the "Participant") was for the development of an embedded ultrasonic sensor system for composite structure integrity monitoring.

  7. Building integrated ontological knowledge structures with efficient approximation algorithms.

    PubMed

    Xiang, Yang; Janga, Sarath Chandra

    2015-01-01

    The integration of ontologies builds knowledge structures which brings new understanding on existing terminologies and their associations. With the steady increase in the number of ontologies, automatic integration of ontologies is preferable over manual solutions in many applications. However, available works on ontology integration are largely heuristic without guarantees on the quality of the integration results. In this work, we focus on the integration of ontologies with hierarchical structures. We identified optimal structures in this problem and proposed optimal and efficient approximation algorithms for integrating a pair of ontologies. Furthermore, we extend the basic problem to address the integration of a large number of ontologies, and correspondingly we proposed an efficient approximation algorithm for integrating multiple ontologies. The empirical study on both real ontologies and synthetic data demonstrates the effectiveness of our proposed approaches. In addition, the results of integration between gene ontology and National Drug File Reference Terminology suggest that our method provides a novel way to perform association studies between biomedical terms. PMID:26550571

  8. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  9. Integrated aerodynamic-structural-control wing design

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.

    1992-01-01

    The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.

  10. Integrating food web diversity, structure and stability.

    PubMed

    Rooney, Neil; McCann, Kevin S

    2012-01-01

    Given the unprecedented rate of species extinctions facing the planet, understanding the causes and consequences of species diversity in ecosystems is of paramount importance. Ecologists have investigated both the influence of environmental variables on species diversity and the influence of species diversity on ecosystem function and stability. These investigations have largely been carried out without taking into account the overarching stabilizing structures of food webs that arise from evolutionary and successional processes and that are maintained through species interactions. Here, we argue that the same large-scale structures that have been purported to convey stability to food webs can also help to understand both the distribution of species diversity in nature and the relationship between species diversity and food web stability. Specifically, the allocation of species diversity to slow energy channels within food webs results in the skewed distribution of interactions strengths that has been shown to confer stability to complex food webs. We end by discussing the processes that might generate and maintain the structured, stable and diverse food webs observed in nature. PMID:21944861

  11. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology

    NASA Astrophysics Data System (ADS)

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-06-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states.

  13. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology

    NASA Astrophysics Data System (ADS)

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-04-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states.

  14. The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology.

    PubMed

    Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-06-01

    Protein complexes are key catalysts and regulators for the majority of cellular processes. Unveiling their assembly and structure is essential to understanding their function and mechanism of action. Although conventional structural techniques such as X-ray crystallography and NMR have solved the structure of important protein complexes, they cannot consistently deal with dynamic and heterogeneous assemblies, limiting their applications to small scale experiments. A novel methodological paradigm, integrative structural biology, aims at overcoming such limitations by combining complementary data sources into a comprehensive structural model. Recent applications have shown that a range of mass spectrometry (MS) techniques are able to generate interaction and spatial restraints (cross-linking MS) information on native complexes or to study the stoichiometry and connectivity of entire assemblies (native MS) rapidly, reliably, and from small amounts of substrate. Although these techniques by themselves do not solve structures, they do provide invaluable structural information and are thus ideally suited to contribute to integrative modeling efforts. The group of Brian Chait has made seminal contributions in the use of mass spectrometric techniques to study protein complexes. In this perspective, we honor the contributions of the Chait group and discuss concepts and milestones of integrative structural biology. We also review recent examples of integration of structural MS techniques with an emphasis on cross-linking MS. We then speculate on future MS applications that would unravel the dynamic nature of protein complexes upon diverse cellular states. Graphical Abstract ᅟ. PMID:27056566

  15. Asbestos/NESHAP adequately wet guidance

    SciTech Connect

    Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

    1990-12-01

    The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

  16. Interrater Reliability and Discriminative Validity of the Structural Elements of the Ayres Sensory Integration® Fidelity Measure©

    PubMed Central

    Roley, Susanne Smith; Mailloux, Zoe; Parham, L. Diane; Koomar, Jane; Schaaf, Roseann C.; Van Jaarsveld, Annamarie; Cohn, Ellen

    2014-01-01

    This study examined the reliability and validity of the structural section of the Ayres Sensory Integration® Fidelity Measure© (ASIFM), which provides a method for monitoring the extent to which an intervention was implemented as conceptualized in studies of occupational therapy using sensory integration intervention methods (OT–SI). We examined the structural elements of the measure, including content of assessment reports, availability of specific equipment and adequate space, safety monitoring, and integration of communication with parents and other team members, such as collaborative goal setting with parents or family and teacher education, into the intervention program. Analysis of self-report ratings by 259 occupational therapists from 185 different facilities indicated that the structural section of the ASIFM has acceptable interrater reliability (r ≥ .82) and significantly differentiates between settings in which therapists reportedly do and do not practice OT–SI (p < .001). PMID:25184462

  17. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.

  18. Adequate supervision for children and adolescents.

    PubMed

    Anderst, James; Moffatt, Mary

    2014-11-01

    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. PMID:25369578

  19. Small Rural Schools CAN Have Adequate Curriculums.

    ERIC Educational Resources Information Center

    Loustaunau, Martha

    The small rural school's foremost and largest problem is providing an adequate curriculum for students in a changing world. Often the small district cannot or is not willing to pay the per-pupil cost of curriculum specialists, specialized courses using expensive equipment no more than one period a day, and remodeled rooms to accommodate new…

  20. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  1. Application of integrated fluid-thermal-structural analysis methods

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken

    1988-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.

  2. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  3. Integrated structural control design of large space structures

    SciTech Connect

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust control methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.

  4. An integrated computer procedure for sizing composite airframe structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1979-01-01

    A computerized algorithm to generate cross-sectional dimensions and fiber orientations for composite airframe structures is described, and its application in a wing structural synthesis is established. The algorithm unifies computations of aeroelastic loads, stresses, and deflections, as well as optimal structural sizing and fiber orientations in an open-ended system of integrated computer programs. A finite-element analysis and a mathematical-optimization technique are discussed.

  5. Tensile-integrity structural concepts for the lunar surface

    NASA Astrophysics Data System (ADS)

    Benaroya, H.; Ettouney, M.

    This paper suggests the use of tension cable structures of a particular type, Tensegrity structures, for a lunar base. Tensegric shells can be a system of bars and cable net. The shell attains its topology and stiffness when the bars are prestressed against the cable net. In its final configuration, no bar is in contact with another. Tensegric shells and other configurations are self sustaining. Unlike inflatable structures, they do not depend on internal pressurization for their integrity.

  6. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  7. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    SciTech Connect

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  8. Structurally Integrated Coatings for Wear and Corrosion

    SciTech Connect

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  9. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  10. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  11. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  12. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  13. Structure and fabrication details of an integrated modularized microfluidic system.

    PubMed

    Tian, Qingchang; Mu, Ying; Xu, Yanan; Song, Qi; Yu, Bingwen; Ma, Congcong; Jin, Wei; Jin, Qinhan

    2015-12-01

    This article contains schemes, original experimental data and figures for an integrated modularized microfluidic system described in "An integrated microfluidic system for bovine DNA purification and digital PCR detection [1]". In this data article, we described the structure and fabrication of the integrated modularized microfluidic system. This microfluidic system was applied to isolate DNA from ovine tissue lysate and detect the bovine DNA with digital PCR (dPCR). The DNA extraction efficiency of the microdevice was compared with the efficiency of benchtop protocol. PMID:26594657

  14. Smart patch integration development of compression connector structural health monitoring in overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An J.; Ren, Fei; Chan, John

    2016-04-01

    Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125°C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina-based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.

  15. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  16. Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics

    PubMed Central

    Hyung, Suk-Joon; Ruotolo, Brandon T.

    2013-01-01

    Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037

  17. Modeling the Dependency Structure of Integrated Intensity Processes.

    PubMed

    Ma, Yong-Ki

    2015-01-01

    This paper studies an important issue of dependence structure. To model this structure, the intensities within the Cox processes are driven by dependent shot noise processes, where jumps occur simultaneously and their sizes are correlated. The joint survival probability of the integrated intensities is explicitly obtained from the copula with exponential marginal distributions. Subsequently, this result can provide a very useful guide for credit risk management. PMID:26270638

  18. Modeling the Dependency Structure of Integrated Intensity Processes

    PubMed Central

    Ma, Yong-Ki

    2015-01-01

    This paper studies an important issue of dependence structure. To model this structure, the intensities within the Cox processes are driven by dependent shot noise processes, where jumps occur simultaneously and their sizes are correlated. The joint survival probability of the integrated intensities is explicitly obtained from the copula with exponential marginal distributions. Subsequently, this result can provide a very useful guide for credit risk management. PMID:26270638

  19. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  20. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  1. Structural Integrity Program for INTEC Calcined Solids Storage Facilities

    SciTech Connect

    Jeffrey Bryant

    2008-08-30

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

  2. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  3. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  4. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... room temperature air, 60° to 80 °F. (16° to 27 °C). After the cooling period, resubmerge the pacifier... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES...

  5. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... room temperature air, 60° to 80 °F. (16° to 27 °C). After the cooling period, resubmerge the pacifier... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES...

  6. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... room temperature air, 60° to 80 °F. (16° to 27 °C). After the cooling period, resubmerge the pacifier... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES...

  7. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... room temperature air, 60° to 80 °F. (16° to 27 °C). After the cooling period, resubmerge the pacifier... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES...

  8. 49 CFR 178.345-3 - Structural integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Structural integrity. 178.345-3 Section 178.345-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor...

  9. 49 CFR 178.337-3 - Structural integrity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Structural integrity. 178.337-3 Section 178.337-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor...

  10. STRUCTURAL INTEGRITY MONITORING FOR IMPROVED DRINKING WATER INFRASTRUCTURE SUSTAINABILITY

    EPA Science Inventory

    Structural integrity monitoring (SIM) is the systematic detection, location, and quantification of pipe wall damage or associated indicators. Each of the adverse situations below has the potential to be reduced by more effective and economical SIM of water mains:
    1) the dr...

  11. Integration of fluidic jet actuators in composite structures

    NASA Astrophysics Data System (ADS)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  12. Integration of encapsulated piezoelectric actuators in highly loaded CFRP structures

    NASA Astrophysics Data System (ADS)

    Bachmann, Florian; Ermanni, Paolo

    2010-04-01

    The present work has been initiated in the frame of the European research project DREAM. Within this highly interdisciplinary project we are focusing on the development and application of vibration damping solutions based on piezoelectric shunt circuits for future aeroelastic applications. The scientific community has put significant effort into the investigation of piezoelectric shunt damping in conjuction with typical engineering test structures such as beams and plates. However, investigations are mainly restricted to surface bonded piezoelectric elements. Commercially available actuators and sensors can be easily bonded to structures using standard epoxy resins. Yet, the structural integration into composite laminates is cumbersome, due to the implications in terms of overall structural integrity and functionality, and due to the problems in achieving a good electrical conductivity, intimate contact betwen electrode and piezoceramic material as well as a perfect isolation from the surrounding host structure. This contribution is concerned with technological aspects related to the integration of piezoceramic actuators into highly loaded CFRP structures. In particular, we present results of a comparative study aiming at the characterization of less invasive electrodes to establish electrical contact between the piezoceramic material and possible shunt circuits. Another drawback of commercial actuators are their limited strain allowables ranging from 0.1% to 0.3% which is not sufficient for high performance lighweight structures. The second part of this contribution is therefore dedicated to the description of a novel prestressing procedure which is used to fabricate actuators that command 170% higher strain allowables than non-prestressed actuators. Mechanical testing of these prestressed actuators are very encouraging, showing high strain allowables, perfect electrical isolation from the host structure, excellent electric contacting of the piezoelectric material

  13. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  14. Structural Integrity Assessment Using Process Compensated Resonant Testing (pcrt)

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Jauriqui, Leanne; Biedermann, Eric; Yen, Eric; Cabrera, Daniel; Whalen, Larry; Piotrowski, David; Heck, David

    2011-06-01

    Honeywell, in collaboration with Vibrant, Delta TechOps, and Boeing, has used Process Compensated Resonant Testing (PCRT) for studying structural integrity and functional performance in various components in Auxiliary Power Units (APUs), Propulsion Engines, Defense and Space applications, and Maintenance Repair & Overhaul (MR&O). The motivation behind this work has been the desire to use PCRT for studying Manufacturing Process Control (MPC) and Structural Sustainability Evaluation (SSE), in addition to traditional quality inspection. In this paper, we will report some of these findings and discuss long term PCRT applications, such as structural sustainability evaluation, damage evolution assessment, and life prediction strategy in parts.

  15. An optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Armstrong, Ernest S.

    1993-01-01

    An approach for an optimization-based integrated controls-structures design is presented for a class of flexible spacecraft that require fine attitude pointing and vibration suppression. The integrated design problem is posed in the form of simultaneous optimization of both structural and control design variables. The approach is demonstrated by application to the integrated design of a generic space platform and to a model of a ground-based flexible structure. The numerical results obtained indicate that the integrated design approach can yield spacecraft designs that have substantially superior performance over a conventional design wherein the structural and control designs are performed sequentially. For example, a 40-percent reduction in the pointing error is observed along with a slight reduction in mass, or an almost twofold increase in the controlled performance is indicated with more than a 5-percent reduction in the overall mass of the spacecraft (a reduction of hundreds of kilograms).

  16. Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2014-01-01

    A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.

  17. Children's intellectual ability is associated with structural network integrity.

    PubMed

    Kim, Dae-Jin; Davis, Elysia Poggi; Sandman, Curt A; Sporns, Olaf; O'Donnell, Brian F; Buss, Claudia; Hetrick, William P

    2016-01-01

    Recent structural and functional neuroimaging studies of adults suggest that efficient patterns of brain connectivity are fundamental to human intelligence. Specifically, whole brain networks with an efficient small-world organization, along with specific brain regions (i.e., Parieto-Frontal Integration Theory, P-FIT) appear related to intellectual ability. However, these relationships have not been studied in children using structural network measures. This cross-sectional study examined the relation between non-verbal intellectual ability and structural network organization in 99 typically developing healthy preadolescent children. We showed a strong positive association between the network's global efficiency and intelligence, in which a subtest for visuo-spatial motor processing (Block Design, BD) was prominent in both global brain structure and local regions included within P-FIT as well as temporal regions involved with pattern and form processing. BD was also associated with rich club organization, which encompassed frontal, occipital, temporal, hippocampal, and neostriatal regions. This suggests that children's visual construction ability is significantly related to how efficiently children's brains are globally and locally integrated. Our findings indicate that visual construction and reasoning may make general demands on globally integrated processing by the brain. PMID:26385010

  18. Selecting Optimum Eukaryotic Integral Membrane Proteins for Structure Determination by Rapid Expression and Solubilization Screening

    PubMed Central

    Li, Min; Hays, Franklin A.; Roe-Zurz, Zygy; Vuong, Linda; Kelly, Libusha; Ho, Chi-Min; Robbins, Renée M.; Pieper, Ursula; O’Connell, Joseph D.; Miercke, Larry J. W.; Giacomini, Kathleen M.; Sali, Andrej; Stroud, Robert M.

    2009-01-01

    A medium throughput approach is used to rapidly identify membrane proteins from a eukaryotic organism that are most amenable to expression in amounts and quality adequate to support structure determination. The goal was to expand knowledge of new membrane protein structures based on proteome-wide coverage. In the first phase membrane proteins from the budding yeast Saccharomyces cerevisiae were selected for homologous expression in S. cerevisiae, a system that can be adapted to expression of membrane proteins from other eukaryotes. We performed medium-scale expression and solubilization tests on 351 rationally selected membrane proteins from the budding yeast Saccharomyces cerevisiae. These targets are inclusive of all annotated and unannotated membrane protein families within the organism’s membrane proteome. 272 targets were expressed and of these 234 solubilized in the detergent n-dodecyl-β-D-maltopyranoside. Furthermore, we report the identity of a subset of targets that were purified to homogeneity to facilitate structure determinations. The extensibility of this approach is demonstrated with the expression of ten human integral membrane proteins from the solute carrier superfamily (SLC). This discovery-oriented pipeline provides an efficient way to select proteins from particular membrane protein classes, families, or organisms that may be more suited to structure analysis than others. PMID:19061901

  19. Approximation method to compute domain related integrals in structural studies

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2015-11-01

    Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the

  20. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    PubMed Central

    Hartmann, Anja; Schreiber, Falk

    2015-01-01

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM2 – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato. PMID:25674560

  1. Conformational States of Macromolecular Assemblies Explored by Integrative Structure Calculation

    PubMed Central

    Thalassinos, Konstantinos; Pandurangan, Arun Prasad; Xu, Min; Alber, Frank; Topf, Maya

    2013-01-01

    Summary A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment. PMID:24010709

  2. Bionic intraocular lens with variable focus and integrated structure

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei; Xiang, Ke

    2015-10-01

    This paper proposes a bionic accommodating intraocular lens (IOL) for ophthalmic surgery. The designed lens has a solid-liquid mixed integrated structure, which mainly consists of a support ring, elastic membrane, rigid lens, and optical liquid. The lens focus can be adjusted through the deformation of the lens front surface when compressed. The integrated structure of the IOL is presented, as well as a detailed description of the lens materials and fabrication process. Images under different radial pressures are captured, and the lens deformation process, accommodating range, density, and optical property are analyzed. The designed lens achieves a 14.6 D accommodating range under a radial pressure of 51.4 mN and a 0.24 mm alteration of the lens outer radius. The deformation property of the lens matches well with the characteristic of the eye and shows the potential to help patients fully recover their vision accommodation ability after the cataract surgery.

  3. Structural Integrity Program for INTEC Calcined Solids Storage Facilities

    SciTech Connect

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-05-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, “Radioactive Waste Management Manual.” Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

  4. Efficient optimization of integrated aerodynamic-structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.

  5. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.

  6. Synthesis of aircraft structures using integrated design and analysis methods

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Goetz, R. C.

    1978-01-01

    A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.

  7. Status of research aimed at predicting structural integrity

    SciTech Connect

    Reuter, W.G.

    1997-12-31

    Considerable research has been performed throughout the world on measuring the fracture toughness of metals. The existing capability fills the need encountered when selecting materials, thermal-mechanical treatments, welding procedures, etc., but cannot predict the fracture process of structural components containing cracks. The Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology have been collaborating for a number of years on developing capabilities for using fracture toughness results to predict structural integrity. Because of the high cost of fabricating and testing structural components, these studies have been limited to predicting the fracture process in specimens containing surface cracks. This paper summarizes the present status of the experimental studies of using fracture toughness data to predict crack growth initiation in specimens (structural components) containing surface cracks. These results are limited to homogeneous base materials.

  8. Structural integrity of engineering composite materials: a cracking good yarn

    PubMed Central

    Beaumont, Peter W. R.

    2016-01-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a ‘fracture safe design’ is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242293

  9. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  10. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242293

  11. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  12. Is a vegetarian diet adequate for children.

    PubMed

    Hackett, A; Nathan, I; Burgess, L

    1998-01-01

    The number of people who avoid eating meat is growing, especially among young people. Benefits to health from a vegetarian diet have been reported in adults but it is not clear to what extent these benefits are due to diet or to other aspects of lifestyles. In children concern has been expressed concerning the adequacy of vegetarian diets especially with regard to growth. The risks/benefits seem to be related to the degree of restriction of he diet; anaemia is probably both the main and the most serious risk but this also applies to omnivores. Vegan diets are more likely to be associated with malnutrition, especially if the diets are the result of authoritarian dogma. Overall, lacto-ovo-vegetarian children consume diets closer to recommendations than omnivores and their pre-pubertal growth is at least as good. The simplest strategy when becoming vegetarian may involve reliance on vegetarian convenience foods which are not necessarily superior in nutritional composition. The vegetarian sector of the food industry could do more to produce foods closer to recommendations. Vegetarian diets can be, but are not necessarily, adequate for children, providing vigilance is maintained, particularly to ensure variety. Identical comments apply to omnivorous diets. Three threats to the diet of children are too much reliance on convenience foods, lack of variety and lack of exercise. PMID:9670174

  13. A structural and genotypic scaffold underlying temporal integration.

    PubMed

    Lee, Melanie M; Arrenberg, Aristides B; Aksay, Emre R F

    2015-05-20

    The accumulation and storage of information over time, temporal integration, is key to numerous behaviors. Many oculomotor tasks depend on integration of eye-velocity signals to eye-position commands, a transformation achieved by a hindbrain cell group termed the velocity-to-position neural integrator (VPNI). Although the VPNI's coding properties have been well characterized, its mechanism of function remains poorly understood because few links exist between neuronal activity, structure, and genotypic identity. To fill this gap, we used calcium imaging and single-cell electroporation during oculomotor behaviors to map VPNI neural activity in zebrafish onto a hindbrain scaffold consisting of alternating excitatory and inhibitory parasagittal stripes. Three distinct classes of VPNI cells were identified. One glutamatergic class was medially located along a stripe associated with the alx transcription factor; these cells had ipsilateral projections terminating near abducens motoneurons and collateralized extensively within the ipsilateral VPNI in a manner consistent with integration through recurrent excitation. A second glutamatergic class was more laterally located along a stripe associated with transcription factor dbx1b; these glutamatergic cells had contralateral projections collateralizing near abducens motoneurons, consistent with a role in disconjugate eye movements. A third class, immunohistochemically suggested to be GABAergic, was located primarily in the dbx1b stripe and also had contralateral projections terminating near abducens motoneurons; these cells collateralized extensively in the dendritic field of contralateral VPNI neurons, consistent with a role in coordinating activity between functionally opposing populations. This mapping between VPNI activity, structure, and genotype may provide a blueprint for understanding the mechanisms governing temporal integration. PMID:25995475

  14. Materials, Structures and Manufacturing: An Integrated Approach to Develop Expandable Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Zander, Martin E.; Sleight, Daid W.; Connell, John; Holloway, Nancy; Palmieri, Frank

    2012-01-01

    Membrane dominated space structures are lightweight and package efficiently for launch; however, they must be expanded (deployed) in-orbit to achieve the desired geometry. These expandable structural systems include solar sails, solar power arrays, antennas, and numerous other large aperture devices that are used to collect, reflect and/or transmit electromagnetic radiation. In this work, an integrated approach to development of thin-film damage tolerant membranes is explored using advanced manufacturing. Bio-inspired hierarchical structures were printed on films using additive manufacturing to achieve improved tear resistance and to facilitate membrane deployment. High precision, robust expandable structures can be realized using materials that are both space durable and processable using additive manufacturing. Test results show this initial work produced higher tear resistance than neat film of equivalent mass. Future research and development opportunities for expandable structural systems designed using an integrated approach to structural design, manufacturing, and materials selection are discussed.

  15. Experimental validation of optimization-based integrated controls-structures design methodology for flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Joshi, Suresh M.; Walz, Joseph E.

    1993-01-01

    An optimization-based integrated design approach for flexible space structures is experimentally validated using three types of dissipative controllers, including static, dynamic, and LQG dissipative controllers. The nominal phase-0 of the controls structure interaction evolutional model (CEM) structure is redesigned to minimize the average control power required to maintain specified root-mean-square line-of-sight pointing error under persistent disturbances. The redesign structure, phase-1 CEM, was assembled and tested against phase-0 CEM. It is analytically and experimentally demonstrated that integrated controls-structures design is substantially superior to that obtained through the traditional sequential approach. The capability of a software design tool based on an automated design procedure in a unified environment for structural and control designs is demonstrated.

  16. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  17. Music and language perception: expectations, structural integration, and cognitive sequencing.

    PubMed

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. PMID:22760955

  18. Experiences with integral microelectronics on smart structures for space

    NASA Astrophysics Data System (ADS)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  19. Integrated Cortical Structural Marker for Alzheimer’s Disease

    PubMed Central

    Ming, Jing; Harms, Michael P.; Morris, John C.; Beg, Mirza Faisal; Wang, Lei

    2014-01-01

    In this paper we propose an approach to integrate cortical morphology measures for improving the discrimination of individuals with and without very mild AD. FreeSurfer was applied to scans collected from 83 participants with very mild AD and 124 cognitively normal individuals. We generated cortex thickness, white matter convexity (aka “sulcal depth”) and white matter surface metric distortion measures on a normalized surface atlas in this first study to integrate high resolution gray matter thickness and white matter surface geometric measures in identifying very mild AD. Principal component analysis (PCA) was applied to each individual structural measure to generate eigenvectors. Discrimination power based on individual and combined measures are compared, based on stepwise logistic regression and 10-fold cross-validation. Global AD likelihood index and surface-based likelihood maps were also generated. Our results show complementary patterns on the cortical surface between thickness, which reflects gray matter atrophy, convexity, which reflects white matter sulcal depth changes; and metric distortion, which reflects white matter surface area changes. The classifier integrating all three types of surface measures significantly improved classification performance compared to classification based on single measures. The PCA-based approach provides a framework for achieving high discrimination power by integrating high-dimensional data, and this method could be very powerful in future studies for early diagnosis of diseases that are known to be associated with abnormal gyral and sulcal patterns. PMID:25444604

  20. Structural integrated sensor and actuator systems for active flow control

    NASA Astrophysics Data System (ADS)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  1. Structural and functional imaging of engineered tissue development using an integrated OCT and multiphoton microscope

    NASA Astrophysics Data System (ADS)

    Fahrner, Lester J., IV; Tan, Wei; Vinegoni, Claudio; Eurell, Thomas E.; Boppart, Stephen A.

    2004-07-01

    Recent advances in the field of tissue engineering have led to the development of complex three-dimensional tissue constructs. It has become clear, however, that the traditional tools used for studying standard cell cultures are not always adequate for diagnostically studying thick, highly-scattering cultured tissues. Furthermore, many techniques used for studying three-dimensional constructs are invasive or require exogenous fluorophores, which damage the tissue and prevent time-course studies of tissue development. An integrated optical coherence tomography (OCT) and multi-photon microscope (MPM) has been constructed for visualizing 3-D engineered tissues. OCT was used for imaging structure and cell organization, while MPM was used for assessing functional properties of cells. We demonstrate technical developments involved in the construction of this instrument and its use in the non-destructive investigation of cell movement and tissue organization in engineered tissues. Cells labeled with GFP and exogenous fluorescent probes have also been imaged with OCT and confocal microscopy. Studies indicate that an integrated microscope has the potential to be an enabling diagnostic tool for future studies in the growth and organization of engineering tissues and in cell-cell and cell-matrix interactions.

  2. The effect of age on the structural integrity of HEPA filters

    SciTech Connect

    Johnson, J.S.; Beason, D.G.; Smith, P.R.; Gregory, W.S.

    1988-08-17

    All of the controls on high-efficiency particulate air (HEPA) filters are based on rigid manufacturing standards with regard to filtration efficiency, temperature performance, pressure integrity, and strength. Third-party inspection and testing by the US Department of Energy increases the reliability of new HEPA filters, but only routine in-place testing is used to assure that an aging filter performs adequately. In 1980 the Lawrence Livermore National Laboratory initiated a small evaluation to determine if age has a significant effect on the structural integrity of HEPA filters. A series of used uncontaminated filters dating back to 1965 was obtained for these tests. Tensile strength tests on the old media indicated a decrease in strength. To provide additional measurement of the filters' overall strength, several of these aged filters were subjected to pressure pulses equivalent to the NRC Region I tornado pulses and shock wave overpressures. Data from these tests indicate a decrease in breaking pressure of from 25/endash/50%. A large increase in complete filter pack blow-out during the simulated NRC Region I tornado tests was also observed. The preliminary results indicate the need for an administrative lifetime for HEPA filters used in critical nuclear facilities. Due to the unique conditions in each facility, different administrative lifetimes may be necessary.

  3. Integrated structure investigation in complex networks by label propagation

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Guo, Yuxiao; Chen, Leiting; Liu, Yanbing

    2016-04-01

    The investigation of network structure has important significance to understand the functions of various complex networks. The communities with hierarchical and overlapping structures and the special nodes like hubs and outliers are all common structure features to the networks. Network structure investigation has attracted considerable research effort recently. However, existing studies have only partially explored the structure features. In this paper, a label propagation based integrated network structure investigation algorithm (LINSIA) is proposed. The main novelty here is that LINSIA can uncover hierarchical and overlapping communities, as well as hubs and outliers. Moreover, LINSIA can provide insight into the label propagation mechanism and propose a parameter-free solution that requires no prior knowledge. In addition, LINSIA can give out a soft-partitioning result and depict the degree of overlapping nodes belonging to each relevant community. The proposed algorithm is validated on various synthetic and real-world networks. Experimental results demonstrate that the algorithm outperforms several state-of-the-art methods.

  4. Review of current status of smart structures and integrated systems

    NASA Astrophysics Data System (ADS)

    Chopra, Inderjit

    1996-05-01

    A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are

  5. Controls-structures integrated design optimization with shape variations

    NASA Technical Reports Server (NTRS)

    Koganti, Gopichand; Hou, Gene

    1993-01-01

    The shape design variables have been introduced into the set of design variables of the Controls-Structure Integrated (CSI) Design of space-structures. The importance of the shape variations in improving the design (obtained with only control and sizing variables) has been aptly illustrated. Two different types of design variables that describe the shape variations of the structure have been introduced. In the first case, the nodal coordinates have been considered as design variables. This has the inherent difficulty of having too many design variables. This not only is time consuming but also memory intensive and may not yield a manufacturable shape to the structure. The second approach has been introduced to overcome this difficulty. The structure is allowed to vary in a particular pre defined pattern. The coefficients of these patterns are considered as the shape design variables. The eigenvalue and eigenvector sensitivity equations with respect to these coefficient design variables have been developed and are used to approximate the eigenvalues and eigenvectors in a perturbed design.

  6. Poisson structures for lifts and periodic reductions of integrable lattice equations

    NASA Astrophysics Data System (ADS)

    Kouloukas, Theodoros E.; Tran, Dinh T.

    2015-02-01

    We introduce and study suitable Poisson structures for four-dimensional maps derived as lifts and specific periodic reductions of integrable lattice equations. These maps are Poisson with respect to these structures and the corresponding integrals are in involution.

  7. Structural polarization conversion in integrated optical vertically stacked ring resonators

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Edoardo Campanella, Carlo; Nicola Armenise, Mario

    2013-06-01

    In this paper we report the structural polarization conversion effect occurring in an integrated optics device formed by two vertically stacked ring resonators excited through an underlying bus waveguide. We demonstrate that the vertical propagation of light, due to evanescent coupling, is enhanced by the resonant behavior of the device and the polarization state of a horizontally polarized input wave tends to be rotated within the device. In particular, a gradual polarization rotation can be observed when passing from one propagation plane to another, due to the geometry of the structure. This effect has been explained by taking into account all the physical mechanisms, which contribute to the polarization conversion. Although numerical results of general validity have been obtained, we also considered, as an example, silicon nitride technology due to its intrinsic features related to low cost and reduced technological problems.

  8. The ATLAS integrated structural analysis and design software system

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L.; Giles, G. L.

    1978-01-01

    The ATLAS system provides an extensive set of integrated technical computer-program modules for the analysis and design of general structural configurations, as well as capabilities that are particularly suited for the aeroelastic design of flight vehicles. The system is based on the stiffness formulation of the finite element structural analysis method and can be executed in batch and interactive computing environments on CDC 6600/CYBER computers. Problem-definition input data are written in an engineering-oriented language using a free field format. Input-data default values, generation options, and data quality checks provided by the preprocessors minimize the amount of data and flowtime for problem definition/verfication. Postprocessors allow selected input and calculated data to be extracted, manipulated, and displayed via on-line and off-line prints or plots for monitoring and verifying problem solutions. The sequence and mode of execution of selected program modules are controlled by a common user-oriented language.

  9. Integrated aerodynamic-structural design of a transport wing

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Haftka, R. T.; Kao, P.-J.; Polen, D. M.; Rais-Rohani, M.; Sobieszczanski-Sobieski, J.

    1989-01-01

    The integrated aerodynamic-structural design of a subsonic transport wing for minimum weight subject to required range is formulated and solved. The problem requires large computational resources, and two methods are used to alleviate the computational burden. First, a modular sensitivity method that permits the usage of black-box disciplinary software packages, is used to reduce the cost of sensitivity derivatives. In particular, it is shown that derivatives of the aeroelastic response and divergence speed can be calculated without the costly computation of derivatives of aerodynamic influence coefficient and structural stiffness matrices. A sequential approximate optimization is used to further reduce computational cost. The optimization procedure is shown to require a relatively small number of analysis and sensitivity calculations.

  10. Interfacing modules for integrating discipline specific structural mechanics codes

    NASA Technical Reports Server (NTRS)

    Endres, Ned M.

    1989-01-01

    An outline of the organization and capabilities of the Engine Structures Computational Simulator (Simulator) at NASA Lewis Research Center is given. One of the goals of the research at Lewis is to integrate various discipline specific structural mechanics codes into a software system which can be brought to bear effectively on a wide range of engineering problems. This system must possess the qualities of being effective and efficient while still remaining user friendly. The simulator was initially designed for the finite element simulation of gas jet engine components. Currently, the simulator has been restricted to only the analysis of high pressure turbine blades and the accompanying rotor assembly, although the current installation can be expanded for other applications. The simulator presently assists the user throughout its procedures by performing information management tasks, executing external support tasks, organizing analysis modules and executing these modules in the user defined order while maintaining processing continuity.

  11. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  12. Integrated force method - Compatibility conditions of structural mechanics for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1991-01-01

    The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's, (2) the cluster or field CC's, and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown. The utilization of CC's has resulted in the novel integrated force method (IFM). The solution that is obtained by the IFM converges with a significantly fewer number of elements, compared to the stiffness and the hybrid methods.

  13. Calculation of exchange integrals and electronic structure for manganese ferrite

    NASA Astrophysics Data System (ADS)

    Zuo, Xu; Vittoria, Carmine

    2002-11-01

    The electrical and magnetic properties of manganese ferrite (MnFe2O4) are calculated with the density-functional theory (DFT) method for both normal and inverse spinel structures. The exchange functional is chosen to be a mixture of Becke exchange and Fock exchange with variable weight (w). The exchange integrals JAB (the exchange integral between the nearest-neighbor A and B sites) and JBB (the exchange integral between nearest-neighbor B sites) are calculated by substituting the total energies of different magnetic ground states into the Heisenberg model. The calculated value of JAB is in agreement with the experimental values measured by neutron diffraction and NMR. Also, the parameters U (Coulomb repulsion energy), Δ (charge-transfer energy), and EG (band gap) are extracted from the density of states (DOS) and plotted versus w. Our calculated band gap shows that MnFe2O4 is a complex insulator, in contrast to previous local spin-density approximation and generalized gradient approximation calculations, which showed it to be half metallic.

  14. FKBP5 Genotype and Structural Integrity of the Posterior Cingulum

    PubMed Central

    Fani, Negar; King, Tricia Z; Reiser, Emily; Binder, Elisabeth B; Jovanovic, Tanja; Bradley, Bekh; Ressler, Kerry J

    2014-01-01

    Alterations in the microarchitecture of the posterior cingulum (PC), a white matter tract proximal to the hippocampus that facilitates communication between the entorhinal and cingulate cortices, have been observed in individuals with psychiatric disorders, such as depression and post-traumatic stress disorder (PTSD). PC decrements may be a heritable source of vulnerability for the development of affective disorders; however, genetic substrates for these white matter abnormalities have not been identified. The FKBP5 gene product modulates glucocorticoid receptor function and has been previously associated with differential hippocampal structure, function, and affect disorder risk. Thus, FKBP5 is an attractive genetic target for investigations of PC integrity. We examined associations between PC integrity, measured through diffusion tensor imaging (DTI) and fractional anisotropy (FA; an index of white matter integrity), and polymorphisms in the FKBP5 SNP rs1360780 in a sample of 82 traumatized female civilians. Findings indicated that, compared with individuals without this allele, individuals who carried two ‘risk' alleles for this FKBP5 SNP (T allele; previously associated with mood and anxiety disorder risk) demonstrated significantly lower FA in the left PC, even after statistically controlling for variance associated with age, trauma exposure, and PTSD symptoms. These data suggest that specific allelic variants for an FKBP5 polymorphism are associated with decrements in the left PC microarchitecture. These white matter abnormalities may be a heritable biological marker that indicates increased vulnerability for the development of psychiatric disorders, such as PTSD. PMID:24253961

  15. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  16. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  17. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  18. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  19. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  20. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  1. An expert system for integrated structural analysis and design optimization for aerospace structures

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  2. Structural integrity tests on cement fiberglass/asbestos panels

    SciTech Connect

    Khosla, R.

    1993-08-01

    During the seismic upgrade walkdowns of some of the Savannah River Site (SRS) facilities, a number of partition walls were encountered. These walls are constructed from 1/4 inch cement fiberglass or cement asbestos wallboard panels. Some of the partition walls are located in close proximity to safety related equipment like relay cabinets containing essential relays. Lightweight safety related equipment like electric conduits and panels are commonly attached to these walls. Occasionally, heavier equipment such as a transformer may also be found. To maintain functionality of the safety related equipment during a seismic event, structural integrity of the walls is required. Additionally, any structural failure of the walls could pose an interaction hazard to adjacently located relay cabinets result in spurious actuation of essential relays. In the absence of published structural capacities specific to SRS construction characteristics, a series of tests were performed to assess the capacity of various wall features. This paper discusses the different types of tests performed to measure the structural capacity of various wall features. Results are presented.

  3. Structural integrity versus radiographic progression in rheumatoid arthritis

    PubMed Central

    Favalli, Ennio Giulio; Becciolini, Andrea; Biggioggero, Martina

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic, progressive and inflammatory disease often leading to irreversible destruction of articular structures and consequent disability. The key steps of RA pathogenetic mechanisms are the break of immune tolerance and the production of autoantibodies, followed by systemic and local inflammation resulting in damage of both subchondral bone (erosion) and cartilage (joint space narrowing (JSN)). Evidences from clinical trials suggest that erosions and JSN are the result of inter-related but partly independent pathogenetic pathways, in both cases mediated by pro-inflammatory cytokines, even if a direct effect of cyclic citrullinated peptides (anticitrullinated protein antibodies, ACPAs) on bone damage had been postulated. As a consequence, the suppression of inflammation provided by synthetic and biological disease-modifying antirheumatic drugs results in a decreased progression of bone and cartilage damage, supporting the effectiveness of the treat-to-target strategy. Nevertheless, radiographic progression may also be detected in patients achieving a sustained clinical remission. Two main reasons for this apparent uncoupling between clinical synovitis and damage progression should be considered. First, in some cases, the use of composite indices to define remission may not be completely adequate to identify residual disease activity, requiring the concomitant introduction of more sensible tools such as imaging. Second, the direct effect of biological drugs on bone destruction inducers, such as pro-inflammatory cytokines, may explain the suppression of radiographic progression despite the persistence of clinical synovitis. In this review, we discuss the link between autoimmunity, inflammation, joint damage and disability, focusing on how radiographic progression may predict functional disability. PMID:26557381

  4. Structural health management technologies for inflatable/deployable structures: Integrating sensing and self-healing

    NASA Astrophysics Data System (ADS)

    Brandon, Erik J.; Vozoff, Max; Kolawa, Elizabeth A.; Studor, George F.; Lyons, Frankel; Keller, Michael W.; Beiermann, Brett; White, Scott R.; Sottos, Nancy R.; Curry, Mark A.; Banks, David L.; Brocato, Robert; Zhou, Lisong; Jung, Soyoun; Jackson, Thomas N.; Champaigne, Kevin

    2011-04-01

    Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.

  5. Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)

    2009-01-01

    For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.

  6. NURBS-Based Geometry for Integrated Structural Analysis

    NASA Technical Reports Server (NTRS)

    Oliver, James H.

    1997-01-01

    This grant was initiated in April 1993 and completed in September 1996. The primary goal of the project was to exploit the emerging defacto CAD standard of Non- Uniform Rational B-spline (NURBS) based curve and surface geometry to integrate and streamline the process of turbomachinery structural analysis. We focused our efforts on critical geometric modeling challenges typically posed by the requirements of structural analysts. We developed a suite of software tools that facilitate pre- and post-processing of NURBS-based turbomachinery blade models for finite element structural analyses. We also developed tools to facilitate the modeling of blades in their manufactured (or cold) state based on nominal operating shape and conditions. All of the software developed in the course of this research is written in the C++ language using the Iris Inventor 3D graphical interface tool-kit from Silicon Graphics. In addition to enhanced modularity, improved maintainability, and efficient prototype development, this design facilitates the re-use of code developed for other NASA projects and provides a uniform and professional 'look and feel' for all applications developed by the Iowa State Team.

  7. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure.

    PubMed

    Hickman, Alison Burgess; Chandler, Michael; Dyda, Fred

    2010-02-01

    DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications. PMID:20067338

  8. Applications of Substrate Integrated Waveguide (SIW) Structure in Microwave Engineering

    NASA Astrophysics Data System (ADS)

    Shen, Zhi

    This thesis is focused on some applications of the Substrate Integrated Waveguide (SIW) structure in microwave engineering. It is mainly divided into two parts, covering a dual-band high Q filter and a broadband high gain ring slot antenna, both of which are based on SIW resonators. This work indicates strong potential of SIW structure in communication system and discusses its unique advantages in detail. In the first part of the thesis, a dual-band high Q second order filter is designed to work at around 10 GHz and 14 GHz. SIW cavities are chosen in order to fulfill the low loss requirements. Two kinds of perturbation theories are applied in this structure to make two second order pass bands. Transmission lines of proper length are designed to connect the cavities together and make them work efficiently. In the second part of the thesis, a broadband high gain SIW ring slot antenna working at around 18 GHz is discussed. The bandwidth of the antenna is approximately 12.7% and the gain is around 7 dB. The cavity mode is properly chosen to reach the high antenna gain requirement. The working mechanism of its broadband property is discussed in detail to reach a reasonable argument.

  9. Integrating stochasticity and network structure into an epidemic model

    PubMed Central

    Dangerfield, C. E.; Ross, J. V.; Keeling, M. J.

    2009-01-01

    While the foundations of modern epidemiology are based upon deterministic models with homogeneous mixing, it is being increasingly realized that both spatial structure and stochasticity play major roles in shaping epidemic dynamics. The integration of these two confounding elements is generally ascertained through numerical simulation. Here, for the first time, we develop a more rigorous analytical understanding based on pairwise approximations to incorporate localized spatial structure and diffusion approximations to capture the impact of stochasticity. Our results allow us to quantify, analytically, the impact of network structure on the variability of an epidemic. Using the susceptible–infectious–susceptible framework for the infection dynamics, the pairwise stochastic model is compared with the stochastic homogeneous-mixing (mean-field) model—although to enable a fair comparison the homogeneous-mixing parameters are scaled to give agreement with the pairwise dynamics. At equilibrium, we show that the pairwise model always displays greater variation about the mean, although the differences are generally small unless the prevalence of infection is low. By contrast, during the early epidemic growth phase when the level of infection is increasing exponentially, the pairwise model generally shows less variation. PMID:18974032

  10. Inferential Processing among Adequate and Struggling Adolescent Comprehenders and Relations to Reading Comprehension

    PubMed Central

    Barth, Amy E.; Barnes, Marcia; Francis, David J.; Vaughn, Sharon; York, Mary

    2015-01-01

    Separate mixed model analyses of variance (ANOVA) were conducted to examine the effect of textual distance on the accuracy and speed of text consistency judgments among adequate and struggling comprehenders across grades 6–12 (n = 1203). Multiple regressions examined whether accuracy in text consistency judgments uniquely accounted for variance in comprehension. Results suggest that there is considerable growth across the middle and high school years, particularly for adequate comprehenders in those text integration processes that maintain local coherence. Accuracy in text consistency judgments accounted for significant unique variance for passage-level, but not sentence-level comprehension, particularly for adequate comprehenders. PMID:26166946

  11. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs; adequate directions for use. 201.5 Section...) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use. Adequate directions for use means directions under which the layman can use a drug safely and for the purposes...

  12. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs; adequate directions for use. 201.5 Section...) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use. Adequate directions for use means directions under which the layman can use a drug safely and for the purposes...

  13. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Responsibility for maintaining adequate safeguards. 200.14 Section 200.14 Accounts RECOVERY ACCOUNTABILITY AND TRANSPARENCY BOARD PRIVACY ACT OF 1974 § 200.14 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate technical, physical, and...

  14. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate technical, physical, and security...

  15. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate technical, physical, and security...

  16. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4 Accounts 1 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 200....14 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate technical, physical, and security safeguards to prevent unauthorized disclosure...

  17. A structured overview of simultaneous component based data integration

    PubMed Central

    Van Deun, Katrijn; Smilde, Age K; van der Werf, Mariët J; Kiers, Henk AL; Van Mechelen, Iven

    2009-01-01

    Background Data integration is currently one of the main challenges in the biomedical sciences. Often different pieces of information are gathered on the same set of entities (e.g., tissues, culture samples, biomolecules) with the different pieces stemming, for example, from different measurement techniques. This implies that more and more data appear that consist of two or more data arrays that have a shared mode. An integrative analysis of such coupled data should be based on a simultaneous analysis of all data arrays. In this respect, the family of simultaneous component methods (e.g., SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-P) is a natural choice. Yet, different simultaneous component methods may lead to quite different results. Results We offer a structured overview of simultaneous component methods that frames them in a principal components setting such that both the common core of the methods and the specific elements with regard to which they differ are highlighted. An overview of principles is given that may guide the data analyst in choosing an appropriate simultaneous component method. Several theoretical and practical issues are illustrated with an empirical example on metabolomics data for Escherichia coli as obtained with different analytical chemical measurement methods. Conclusion Of the aspects in which the simultaneous component methods differ, pre-processing and weighting are consequential. Especially, the type of weighting of the different matrices is essential for simultaneous component analysis. These types are shown to be linked to different specifications of the idea of a fair integration of the different coupled arrays. PMID:19671149

  18. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  19. Integration of interdigital transducers, MEMS, and antennas for smart structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.; Bao, Xiao-Qi

    1996-05-01

    In this paper, the integration of interdigital transducers, MEMS and smart electronics is presented with examples including systems for (1) noise suppression in buildings, aircraft cabin, etc. using `smart wall paper', (2) drag sensing and reduction in aircraft, (3) early warning from collapsing bridges, overhead highways, etc., due to earthquakes, flooding, etc., to the approaching vehicles and automatically stopping the vehicles before the damage location, (4) automatic impedance matching for cellular phone communication thus avoiding any interference from other unwanted signals, magnetic fields from the power lines, etc., (5) diesel fuel pollution sensing and control, (6) drip irrigation and (7) deflection and strain measurement of flex beam structure in helicopters. A theoretical analysis and an experiment relating to the later is presented in detail.

  20. Integrated structure electromagnetic optimization of large space antenna reflectors

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, M. C.

    1987-01-01

    The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors.

  1. Monte Carlo Integration Using Spatial Structure of Markov Random Field

    NASA Astrophysics Data System (ADS)

    Yasuda, Muneki

    2015-03-01

    Monte Carlo integration (MCI) techniques are important in various fields. In this study, a new MCI technique for Markov random fields (MRFs) is proposed. MCI consists of two successive parts: the first involves sampling using a technique such as the Markov chain Monte Carlo method, and the second involves an averaging operation using the obtained sample points. In the averaging operation, a simple sample averaging technique is often employed. The method proposed in this paper improves the averaging operation by addressing the spatial structure of the MRF and is mathematically guaranteed to statistically outperform standard MCI using the simple sample averaging operation. Moreover, the proposed method can be improved in a systematic manner and is numerically verified by numerical simulations using planar Ising models. In the latter part of this paper, the proposed method is applied to the inverse Ising problem and we observe that it outperforms the maximum pseudo-likelihood estimation.

  2. Solution NMR Structure of Membrane-Integral Diacylglycerol Kinase

    PubMed Central

    Van Horn, Wade D.; Kim, Hak-Jun; Ellis, Charles D.; Hadziselimovic, Arina; Sulistijo, Endah S.; Karra, Murthy D.; Tian, Changlin; Sönnichsen, Frank D.; Sanders, Charles R.

    2009-01-01

    Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer using solution NMR. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK’s three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK’s lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis. PMID:19556511

  3. Structural integrity analysis of the 224U elevator mothballing

    SciTech Connect

    Boehnke, W.M.

    1994-11-18

    As part of the preparation of Building 224U for turnover to Decontamination and Decommissioning, it is necessary to place the elevator in a mothballed condition so that it can be reactivated for use after 10 to 25 years. This mothballing is going to be accomplished by landing the counterweight on wooden timbers and suspending the elevator cab with wire rope or chain slings. This will take the load off the cables and make it relatively easy to reactive. The objective of this Supporting Document is to verify the structural integrity of all of the load bearing components involved in mothballing the 224U Building elevator. Building 224U is part of the UO{sub 3} Plant where uranyl nitrates from the PUREX Plant was converted to UO{sub 3} powder.

  4. Integral structural-functional method for characterizing microbial populations

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.

    2015-04-01

    An original integral structural-functional method has been proposed for characterizing microbial communities. The novelty of the approach is the in situ study of microorganisms based on the growth kinetics of microbial associations in liquid nutrient broth media under selective conditions rather than on the level of taxa or large functional groups. The method involves the analysis of the integral growth model of a periodic culture. The kinetic parameters of such associations reflect their capacity of growing on different media, i.e., their physiological diversity, and the metabolic capacity of the microorganisms for growth on a nutrient medium. Therefore, the obtained parameters are determined by the features of the microbial ecological strategies. The inoculation of a dense medium from the original inoculate allows characterizing the taxonomic composition of the dominants in the soil community. The inoculation from the associations developed on selective media characterizes the composition of syntrophic groups, which fulfill a specific function in nature. This method is of greater information value than the classical methods of inoculation on selective media.

  5. Multifunctional composites and structures with integrated mechanical and electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Amirkhizi, Alireza Vakil

    Composite materials are used for their excellent structural performance. Load-bearing properties are traditionally the only aspects for which a composite structure is designed. Recent technological advances have made it possible to reach beyond this limited view. Inspired by biological systems, we seek to develop engineering materials that exhibit multiple functionalities in addition to providing structural integrity. Composites are a natural host for embedding elements that can enhance their nonstructural response. The present work is focused on embedding periodic arrays of scattering elements within composites to modify and tune their overall electromagnetic properties. A number of techniques for numerical and analytical modeling of the periodic media are discussed. Based on these methods we have designed and fabricated composites with tuned electromagnetic properties. Examples include fiber-reinforced polymer composites with embedded arrays of straight wires or coils. In both cases, the overall dielectric constant of the medium is reduced and can even be rendered negative within microwave frequencies. The coil medium can exhibit chiral response. Solutions for eliminating this behavior as well as a method for calculation of the bianisotropic material parameters are presented. One can achieve similar response at higher frequencies by reducing the length scale. For example, we show that a polymer film with embedded nano-strips of gold can demonstrate negative dielectric constant in infrared regime. An example of a structural composite is presented for which the magnetic permeability is altered and is turned negative within a microwave band. Finally, a general method for homogenization of the electromagnetic properties of periodic media based on the microstructure is developed. Two independent chapters complete this dissertation. In Chapter 8 the response of a soft hypo-elastic material in a pressure---shear experiment is studied. A nonlinear pressure- and

  6. Monolithical integration of polymer-based microfluidic structures on application-specific integrated circuits

    NASA Astrophysics Data System (ADS)

    Chemnitz, Steffen; Schafer, Heiko; Schumacher, Stephanie; Koziy, Volodymyr; Fischer, Alexander; Meixner, Alfred J.; Ehrhardt, Dietmar; Bohm, Markus

    2003-04-01

    In this paper, a concept for a monolithically integrated chemical lab on microchip is presented. It contains an ASIC (Application Specific Integrated Circuit), an interface to the polymer based microfluidic layer and a Pyrex glass cap. The top metal layer of the ASIC is etched off and replaced by a double layer metallization, more suitable to microfluidic and electrophoresis systems. The metallization consists of an approximately 50 nm gold layer and a 10 nm chromium layer, acting as adhesion promoter. A necessary prerequisite is a planarized ASIC topography. SU-8 is used to serve as microfluidic structure because of its excellent aspect ratio. This polymer layer contains reservoirs, channels, mixers and electrokinetic micro pumps. The typical channel cross section is 10μm"10μm. First experimental results on a microfluidic pump, consisting of pairs of interdigitated electrodes on the bottom of the channel and without any moving parts show a flow of up to 50μm per second for low AC-voltages in the range of 5 V for aqueous fluids. The microfluidic system is irreversibly sealed with a 150μm thick Pyrex glass plate bonded to the SU-8-layer, supported by oxygen plasma. Due to capillary forces and surfaces properties of the walls the system is self-priming. The technologies for the fabrication of the microfluidic system and the preparation of the interface between the lab layer and the ASIC are presented.

  7. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  8. A novel predictor for protein structural class based on integrated information of the secondary structure sequence.

    PubMed

    Zhang, Lichao; Zhao, Xiqiang; Kong, Liang; Liu, Shuxia

    2014-08-01

    The structural class has become one of the most important features for characterizing the overall folding type of a protein and played important roles in many aspects of protein research. At present, it is still a challenging problem to accurately predict protein structural class for low-similarity sequences. In this study, an 18-dimensional integrated feature vector is proposed by fusing the information about content and position of the predicted secondary structure elements. The consistently high accuracies of jackknife and 10-fold cross-validation tests on different low-similarity benchmark datasets show that the proposed method is reliable and stable. Comparison of our results with other methods demonstrates that our method is an effective computational tool for protein structural class prediction, especially for low-similarity sequences. PMID:24859536

  9. Monitoring of Structural Integrity of Composite Structures by Embedded Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2002-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Maintenance yearly costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). Researchers at NASA MSFC are currently developing techniques for using FBGs for monitoring the integrity of

  10. Structural Integration, an Alternative Method of Manual Therapy and Sensorimotor Education

    PubMed Central

    2011-01-01

    Abstract Objectives The objectives of this report are to review the clinical practice of Structural Integration (SI), an alternative method of soft-tissue manipulation and sensorimotor education, and to summarize the evidence to date for mechanism and clinical efficacy. Methods The author's personal knowledge of SI literature, theory, and practice was supplemented by a database search, consultation with other senior SI practitioners, and examination of published bibliographies and websites that archive SI literature. Results SI purports to improve biomechanical functioning as a whole by progressively approximating specific ideals of posture and movement, rather than to treat particular symptoms. Hypothesized mechanisms at the level of local tissue change include increases in soft-tissue pliability, release of adhesions between adjacent soft-tissue structures, and increased interstitial fluid flow with consequently improved clearance of nociceptive potentiators. Hypothesized mechanisms for more global changes include improved biomechanical organization leading to reductions in mechanical stress and nociceptive irritation, a perception of improved biomechanical efficiency and coordination that generalizes to the self, and improvements in sensory processing and vagal tone. Emotional catharsis is also thought to contribute to psychologic changes. Limited preliminary evidence exists for improvements in neuromotor coordination, sensory processing, self-concept and vagal tone, and for reductions in state anxiety. Preliminary, small sample clinical studies with cerebral palsy, chronic musculoskeletal pain, impaired balance, and chronic fatigue syndrome have reported improvements in gait, pain and range-of-motion, impaired balance, functional status, and well-being. Adverse events are thought to be mild and transient, although survey data are not available. Contraindications are thought to be the same as for massage. Conclusions Evidence for clinical effectiveness and

  11. Application of supersonic particle deposition to enhance the structural integrity of aircraft structures

    NASA Astrophysics Data System (ADS)

    Matthews, N.; Jones, R.; Sih, G. C.

    2014-01-01

    Aircraft metal components and structures are susceptible to environmental degradation throughout their original design life and in many cases their extended lives. This paper summarizes the results of an experimental program to evaluate the ability of Supersonic Particle Deposition (SPD), also known as cold spray, to extend the limit of validity (LOV) of aircraft structural components and to restore the structural integrity of corroded panels. In this study [LU1]the potential for the SPD to seal the mechanically fastened joints and for this seal to remain intact even in the presence of multi-site damage (MSD) has been evaluated. By sealing the joint the onset of corrosion damage in the joint can be significantly retarded, possibly even eliminated, thereby dramatically extending the LOV of mechanically fastened joints. The study also shows that SPD can dramatically increase the damage tolerance of badly corroded wing skins.

  12. A Wireless Sensor Network of Permanently Installed Structural Integrity Monitors

    NASA Astrophysics Data System (ADS)

    Benny, Graham; Steel, Kenneth; McNab, Alistair; Hayward, Gordon

    2005-04-01

    Structural integrity monitoring (SIM) involving a large numbers of distributed sensors is of increasing importance to a wide range of industries. Compact sensor packages combining ultrasonic transducers with local sensor and communications control functions and signal processing have been designed using modern miniaturization techniques. Autonomous wireless devices powered by on-board batteries can extract top-up energy derived from the sensor environment. Applications to date include erosion or corrosion monitors via ultrasonic thickness measurement devices, area mapping array sensors and time-of-flight diffraction (TOFD) technique transducers for defect monitoring. Formation or propagation of defects can also be monitored with passive acoustic emission (AE) sensors. The project concepts and early prototyping were presented at QNDE 2003. This paper highlights further progress towards a distributed wireless ultrasonic sensor network and presents results of TOFD and thickness measurement tests. Signal processing techniques including averaging, finite impulse response (FIR) filtering and pulse compression have been employed to improve signal-to-noise ratio (SNR), to extend battery power and to address time resolution issues. Field trials in a hostile industrial environment with metallic obstructions in the form of pipe-work, ducting, stairs, beams and floors have been performed and methods of extracting environmental energy have been tested.

  13. Dynamic properties of high structural integrity auxetic open cell foam

    NASA Astrophysics Data System (ADS)

    Scarpa, F.; Ciffo, L. G.; Yates, J. R.

    2004-02-01

    This paper illustrates various dynamic characteristics of open cell compliant polyurethane foam with auxetic (negative Poisson's ratio) behaviour. The foam is obtained from off-the-shelf open cell polyurethane grey foam with a manufacturing process based on mechanical deformation on a mould in a temperature-controlled oven. The Poisson's ratio is measured with an image processing technique based on edge detection with wavelet methods. Foam samples have been tested in a viscoelastic analyser tensile test machine to determine the Young's modulus and loss factor for small dynamic strains. The same samples have also been tested in an acoustic impedance tube to measure acoustic absorption and specific acoustic resistance and reactance with a transmissibility technique. Another set of tests has been set up on a cam plastometer machine for constant strain rate dynamic crushing analysis. All the tests have been carried out on auxetic and normal foam samples to provide a comparison between the two types of cellular solids. The results from the experimental tests are discussed and interpreted using microstructure models for cellular materials existing in the literature. The negative Poisson's ratio foam presented in this paper shows an overall superiority regarding damping and acoustic properties compared to the original conventional foam. Its dynamic crushing performance is also significantly superior to the normal foam, suggesting a possible use in structural integrity compliant elements.

  14. Towards the integration of social dominance and spatial structure.

    PubMed

    Hemelrijk

    2000-05-01

    My aim was to show how individual-oriented (or artificial life) models may provide an integrative background for the development of theories about dominance by including effects of spatial structure. Dominance interactions are thought to serve two different, contrasting functions: acquisition of high rank and reduction of aggression. The model I present consists of a homogeneous virtual world inhabited by artificial agents whose actions are restricted to grouping and dominance interactions in which the effects of winning and losing are self-reinforcing. The two functions are implemented as strategies to initiate dominance interactions and the intensity of aggression and dominance perception (direct or memory based) are varied experimentally. Behaviour is studied by recording the same behavioural units as in real animals. Ranks appear to differentiate more clearly at high than at low intensity of aggression and also more in the case of direct than of memory-based rank perception. Strong differentiation of rank produces a cascade of unexpected effects that differ depending on which function is implemented: for instance, a decline in aggression, spatial centrality of dominants and a correlation between rank and aggression. Insight into the origination of these self-organized patterns leads to new hypotheses for the study of the social behaviour of real animals. Copyright 2000 The Association for the Study of Animal Behaviour. PMID:10860531

  15. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  16. 7 CFR 4290.200 - Adequate capital for RBICs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Adequate capital for RBICs. 4290.200 Section 4290.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Qualifications for the RBIC Program Capitalizing A Rbic § 4290.200 Adequate capital for RBICs. You must meet...

  17. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Adequate capital for Licensees... INVESTMENT COMPANIES Qualifying for an SBIC License Capitalizing An Sbic § 107.200 Adequate capital for... Licensee, and to receive Leverage. (a) You must have enough Regulatory Capital to provide...

  18. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for Licensees... INVESTMENT COMPANIES Qualifying for an SBIC License Capitalizing An Sbic § 107.200 Adequate capital for... Licensee, and to receive Leverage. (a) You must have enough Regulatory Capital to provide...

  19. 7 CFR 4290.200 - Adequate capital for RBICs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adequate capital for RBICs. 4290.200 Section 4290.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Qualifications for the RBIC Program Capitalizing A Rbic § 4290.200 Adequate capital for RBICs. You must meet...

  20. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  1. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of...

  2. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  3. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  4. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  5. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  6. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  7. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  8. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  9. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  10. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  11. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  12. 10 CFR 503.35 - Inability to obtain adequate capital.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Inability to obtain adequate capital. 503.35 Section 503.35 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Permanent Exemptions for New Facilities § 503.35 Inability to obtain adequate capital. (a) Eligibility. Section 212(a)(1)(D)...

  13. 10 CFR 503.35 - Inability to obtain adequate capital.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Inability to obtain adequate capital. 503.35 Section 503.35 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Permanent Exemptions for New Facilities § 503.35 Inability to obtain adequate capital. (a) Eligibility. Section 212(a)(1)(D)...

  14. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must find... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Adequate exploration plan....

  15. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must find... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Adequate exploration plan....

  16. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo…

  17. Development of cyber-based autonomous structural integrity assessment system for building structures

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Fujita, K.; Li, X.; Yamazaki, T.; Yamaguchi, M.

    2013-04-01

    For the application of structural health monitoring (SHM) system to the post-earthquake damage screening of building structures, an immediate evaluation of the degree of damage in primary structural components is a challenging task. To increase the resolution in damage detection above a certain level to detect damage in individual components, a SHM requires the use of a dense array of sensors deployed to building structures. In order to deal with a large amount of data acquired by the sensing network and to distribute quick safety alerts on the condition of earthquake-affected buildings, a SHM system that is connected with a cyberinfrastructure specifically designed for the autonomous structural integrity assessment of buildings is developed. In the system, big data transferred from a dense sensing network is automatically stored and processed to extract damage features using a PostgresSQL relational database and embedded local damage detection algorithms. In a benchmark study, the schema of the SHM system is specifically designed to function with a built-in local damage detection algorithm that needs a comparative study of current dataset with past reference dataset. To visualize the results of the damage detection analysis, a PHP-based web-viewer is also designed for the SHM system. Finally, the performance of the developed cyber-based SHM system is evaluated through a series of the damage detection tests on a 5-story steel testbed frame that can replicate damage in beams and columns.

  18. The Structure of Integral Dimensions: Contrasting Topological and Cartesian Representations

    ERIC Educational Resources Information Center

    Jones, Matt; Goldstone, Robert L.

    2013-01-01

    Diverse evidence shows that perceptually integral dimensions, such as those composing color, are represented holistically. However, the nature of these holistic representations is poorly understood. Extant theories, such as those founded on multidimensional scaling or general recognition theory, model integral stimulus spaces using a Cartesian…

  19. Recent advances and progress towards an integrated interdisciplinary thermal-structural finite element technology

    NASA Technical Reports Server (NTRS)

    Namburu, Raju R.; Tamma, Kumar K.

    1993-01-01

    An integrated finite element approach is presented for interdisciplinary thermal-structural problems. Of the various numerical approaches, finite element methods with direct time integration procedures are most widely used for these nonlinear problems. Traditionally, combined thermal-structural analysis is performed sequentially by transferring data between thermal and structural analysis. This approach is generally effective and routinely used. However, to solve the combined thermal-structural problems, this approach results in cumbersome data transfer, incompatible algorithmic representations, and different discretized element formulations. The integrated approach discussed in this paper effectively combines thermal and structural fields, thus overcoming the above major shortcomings. The approach follows Lax-Wendroff type finite element formulations with flux and stress based representations. As a consequence, this integrated approach uses common algorithmic representations and element formulations. Illustrative test examples show that the approach is effective for integrated thermal-structural problems.

  20. Experimental validation of an integrated controls-structures design methodology for a class of flexible space structures

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.

    1994-01-01

    This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.

  1. Inspect, Detect, Correct: Structural Integrated Pest Management Strategies at School.

    ERIC Educational Resources Information Center

    Jochim, Jerry

    2003-01-01

    Describes a model integrated pest management (IPM) program for schools used in Monroe County, Indiana. Addresses how to implement an IPM program, specific school problem areas, specific pest problems and solutions, and common questions. (EV)

  2. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate

  3. Variable Structure PID Control to Prevent Integrator Windup

    NASA Technical Reports Server (NTRS)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  4. Computational architecture for integrated controls and structures design

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Park, K. C.

    1989-01-01

    To facilitate the development of control structure interaction (CSI) design methodology, a computational architecture for interdisciplinary design of active structures is presented. The emphasis of the computational procedure is to exploit existing sparse matrix structural analysis techniques, in-core data transfer with control synthesis programs, and versatility in the optimization methodology to avoid unnecessary structural or control calculations. The architecture is designed such that all required structure, control and optimization analyses are performed within one program. Hence, the optimization strategy is not unduly constrained by cold starts of existing structural analysis and control synthesis packages.

  5. An integrated runtime and compile-time approach for parallelizing structured and block structured applications

    NASA Technical Reports Server (NTRS)

    Agrawal, Gagan; Sussman, Alan; Saltz, Joel

    1993-01-01

    Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.

  6. Hybrid integration of carbon nanotubes into silicon slot photonic structures

    NASA Astrophysics Data System (ADS)

    Durán Valdeiglesias, E.; Zhang, W.; Hoang, H. C.; Alonso-Ramos, C.; Noury, A.; Serna, S.; Le Roux, X.; Cassan, E.; Izard, N.; Sarti, F.; Torrini, U.; Balestrieri, M.; Keita, A.-S.; Yang, H.; Bezugly, V.; Vinattieri, A.; Cuniberti, G.; Filoramo, A.; Gurioli, M.; Vivien, L.

    2016-03-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects. However, current Si photonics require on-chip integration of several materials, including III-V for lasing, doped silicon for modulation and Ge for detection. The very different requirements of these materials result in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. We are developing an alternative route towards the integration of optoelectronic devices in Si photonic, relying on the use of single wall carbon nanotubes (SWNTs). SWNTs can be considered as a Si compatible material able to emit, modulate and detect near-infrared light. Hence, they hold a unique potential to implement all active devices in the Si photonics platform. In addition, solution processed SWNTs can be integrated on Si using spin-coating techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform.

  7. The challenging scales of the bird: Shuttle tile structural integrity

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Miller, G. J.

    1985-01-01

    The principal design issues, tests, and analyses required to solve the tile integrity problem on the space shuttle orbiters are addressed. Proof testing of installed tiles is discussed along with an airflow test of special tiles. Orbiter windshield tiles are considered in terms of changes necessary to ensure acceptable margins of safety for flight.

  8. Integrated controls/structures study of advanced space systems

    NASA Technical Reports Server (NTRS)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  9. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations were made by industry, university, and government researchers organized into four sessions: aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics.

  10. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  11. Do integrated care structures foster processes of integration? A quasi-experimental study in frail elderly care from the professional perspective

    PubMed Central

    Janse, Benjamin; Huijsman, Robbert; de Kuyper, Ruben Dennis Maurice; Fabbricotti, Isabelle Natalina

    2016-01-01

    Objective This study explores the processes of integration that are assumed to underlie integrated care delivery. Design A quasi-experimental design with a control group was used; a new instrument was developed to measure integration from the professional perspective. Setting and participants Professionals from primary care practices and home-care organizations delivering care to the frail elderly in the Walcheren region of the Netherlands. Intervention An integrated care intervention specifically targeting frail elderly patients was implemented. Main Outcome Measures Structural, cultural, social and strategic integration and satisfaction with integration. Results The intervention significantly improved structural, cultural and social integration, agreement on goals, interests, power and resources and satisfaction with integration. Conclusions This study confirms that integrated care structures foster processes of integration among professionals. Trial registration Current Controlled Trials ISRCTN05748494. PMID:27174858

  12. An integrated methodology for optimizing structural composite damping

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    A method is presented for tailoring plate and shell composite structures for optimal forced damped dynamic response. The damping of specific vibration modes is optimized with respect to dynamic performance criteria including placement of natural frequencies and minimization of resonance amplitudes. The structural composite damping is synthesized from the properties of the constituent materials, laminate parameters, and structural geometry based on a specialty finite element. Application studies include the optimization of laminated composite beams and composite shells with fiber volume ratios and ply angles as design variables. The results illustrate the significance of damping tailoring to the dynamic performance of composite structures, and the effectiveness of the method in optimizing the structural dynamic response.

  13. Developing a demand model integrating end uses of water (DMEUW): structure and process of integration.

    PubMed

    Sarker, R C; Gato-Trinidad, S

    2015-01-01

    The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption. PMID:25746644

  14. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  15. Integrated identification and robust control tuning for large space structures

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Scheid, R. E.

    1990-01-01

    System identification is studied for the explicit purpose of supporting modern H-infinity robust control design objectives. In the analysis, the true plant is not assumed to be in the identification model set. An integrated identification/robust control problem is posed in which the optimal solution guarantees the best robust performance relative to the system information contained in a given experimental data set. A numerical example demonstrating an approximate solution to the problem indicates the usefulness of the approach.

  16. Integrated topology and shape optimization in structural design

    NASA Technical Reports Server (NTRS)

    Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.

    1990-01-01

    Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.

  17. Integrated design of the CSI evolutionary structure: A verification of the design methodology

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.

    1993-01-01

    One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.

  18. Providing structural modules with self-integrity monitoring

    NASA Technical Reports Server (NTRS)

    Walton, W. B.; Ibanez, P.; Yessaie, G.

    1988-01-01

    With the advent of complex space structures (i.e., U.S. Space Station), the need for methods for remotely detecting structural damage will become greater. Some of these structures will have hundreds of individual structural elements (i.e., strut members). Should some of them become damaged, it could be virtually impossible to detect it using visual or similar inspection techniques. The damage of only a few individual members may or may not be a serious problem. However, should a significant number of the members be damaged, a significant problem could be created. The implementation of an appropriate remote damage detection scheme would greatly reduce the likelihood of a serious problem related to structural damage ever occurring. This report presents the results of the research conducted on remote structural damage detection approaches and the related mathematical algorithms. The research was conducted for the Small Business Innovation and Research (SBIR) Phase 2 National Aeronautics and Space Administration (NASA) Contract NAS7-961.

  19. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  20. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  1. Design structure for in-system redundant array repair in integrated circuits

    SciTech Connect

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  2. Arabidopsis: An Adequate Model for Dicot Root Systems?

    PubMed

    Zobel, Richard W

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for dicot plant root systems. PMID:26904040

  3. Integrated visual analysis of protein structures, sequences, and feature data

    PubMed Central

    2015-01-01

    Background To understand the molecular mechanisms that give rise to a protein's function, biologists often need to (i) find and access all related atomic-resolution 3D structures, and (ii) map sequence-based features (e.g., domains, single-nucleotide polymorphisms, post-translational modifications) onto these structures. Results To streamline these processes we recently developed Aquaria, a resource offering unprecedented access to protein structure information based on an all-against-all comparison of SwissProt and PDB sequences. In this work, we provide a requirements analysis for several frequently occuring tasks in molecular biology and describe how design choices in Aquaria meet these requirements. Finally, we show how the interface can be used to explore features of a protein and gain biologically meaningful insights in two case studies conducted by domain experts. Conclusions The user interface design of Aquaria enables biologists to gain unprecedented access to molecular structures and simplifies the generation of insight. The tasks involved in mapping sequence features onto structures can be conducted easier and faster using Aquaria. PMID:26329268

  4. Structural response measurements to insure penetrator data integrity

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; James, G.H. III

    1993-09-01

    Measurements made by a penetrator structure penetration of some medium may not measure the penetration environment directly. In general, the measurements quantify the penetrator`s structural response to the penetrator force environment. This paper reports laboratory testing and analysis techniques that have been used to identify and/or remove highly nonlinear responses which can mask the penetration environments one desires to measure. Results for two penetrator structures are presented. For the first penetrator, shock testing was conducted to determine the cause of accelerometer failure during field tests. For a second penetrator, shock testing was conducted to assist with the interpretation of accelerometer measurements made during field tests for which the penetrator was instrumented with one axial accelerometer. Very high acceleration levels for a data bandwidth of DC to 70 kHz were recorded in these field tests. The laboratory test results for these two penetrators are presented and discussed.

  5. Structure Leads To Function: An Integrated Biophysical Approach To Teaching a Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    And Others; deLannoy, Peter

    1996-01-01

    Describes an integrated approach to teaching a biochemistry laboratory focusing on the relationship between the three-dimensional structure of a macromolecule and its function. RNA is chosen as the model system. Discusses curriculum and student assessment. (AIM)

  6. Curriculum Integration in Context: An Exploration of How Structures and Circumstances Affect Design and Implementation.

    ERIC Educational Resources Information Center

    Johnson, Amy Bell; Charner, Ivan; White, Robin

    In order to obtain firsthand information about different approaches and strategies for curriculum integration, case studies of curriculum integration models were conducted in seven sites across the United States. It was concluded that the presence or lack of certain contextual factors related to structure and operations had implications for the…

  7. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  8. Neural networks for structural design - An integrated system implementation

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hafez, Wassim; Pao, Yoh-Han

    1992-01-01

    The development of powerful automated procedures to aid the creative designer is becoming increasingly critical for complex design tasks. In the work described here Artificial Neural Nets are applied to acquire structural analysis and optimization domain expertise. Based on initial instructions from the user an automated procedure generates random instances of structural analysis and/or optimization 'experiences' that cover a desired domain. It extracts training patterns from the created instances, constructs and trains an appropriate network architecture and checks the accuracy of net predictions. The final product is a trained neural net that can estimate analysis and/or optimization results instantaneously.

  9. Challenges and standards in integrating surveys of structural variation

    PubMed Central

    Scherer, Stephen W; Lee, Charles; Birney, Ewan; Altshuler, David M; Eichler, Evan E; Carter, Nigel P; Hurles, Matthew E; Feuk, Lars

    2009-01-01

    There has been an explosion of data describing newly recognized structural variants in the human genome. In the flurry of reporting, there has been no standard approach to collecting the data, assessing its quality or describing identified features. This risks becoming a rampant problem, in particular with respect to surveys of copy number variation and their application to disease studies. Here, we consider the challenges in characterizing and documenting genomic structural variants. From this, we derive recommendations for standards to be adopted, with the aim of ensuring the accurate presentation of this form of genetic variation to facilitate ongoing research. PMID:17597783

  10. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  11. Is the Marketing Concept Adequate for Continuing Education?

    ERIC Educational Resources Information Center

    Rittenburg, Terri L.

    1984-01-01

    Because educators have a social responsibility to those they teach, the marketing concept may not be adequate as a philosophy for continuing education. In attempting to broaden the audience for continuing education, educators should consider a societal marketing concept to meet the needs of the educationally disadvantaged. (SK)

  12. Comparability and Reliability Considerations of Adequate Yearly Progress

    ERIC Educational Resources Information Center

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  13. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  14. Understanding Your Adequate Yearly Progress (AYP), 2011-2012

    ERIC Educational Resources Information Center

    Missouri Department of Elementary and Secondary Education, 2011

    2011-01-01

    The "No Child Left Behind Act (NCLB) of 2001" requires all schools, districts/local education agencies (LEAs) and states to show that students are making Adequate Yearly Progress (AYP). NCLB requires states to establish targets in the following ways: (1) Annual Proficiency Target; (2) Attendance/Graduation Rates; and (3) Participation Rates.…

  15. Assessing Juvenile Sex Offenders to Determine Adequate Levels of Supervision.

    ERIC Educational Resources Information Center

    Gerdes, Karen E.; And Others

    1995-01-01

    This study analyzed the internal consistency of four inventories used by Utah probation officers to determine adequate and efficacious supervision levels and placement for juvenile sex offenders. Three factors accounted for 41.2 percent of variance (custodian's and juvenile's attitude toward intervention, offense characteristics, and historical…

  16. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Adequate yearly progress in general. 200.13 Section 200.13 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE...

  17. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Making adequate yearly progress. 200.20 Section 200.20 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED...

  18. Do Beginning Teachers Receive Adequate Support from Their Headteachers?

    ERIC Educational Resources Information Center

    Menon, Maria Eliophotou

    2012-01-01

    The article examines the problems faced by beginning teachers in Cyprus and the extent to which headteachers are considered to provide adequate guidance and support to them. Data were collected through interviews with 25 school teachers in Cyprus, who had recently entered teaching (within 1-5 years) in public primary schools. According to the…

  19. Structural integrity inspection and monitoring by magneto-optic sensors

    NASA Astrophysics Data System (ADS)

    Dudziak, Martin J.

    1999-01-01

    Non-destructive testing for cracks, fissures, fatigue stress, and corrosion has been demonstrated using eddy- current induced magnetic fields measurable by sensors with Faraday magneto-optic properties. A novel class of such sensors has been developed, the MODE sensor, using Fe-Ga thin-films of the general form (R, Bi)3 (M, Fe)5-12 with R equals (Y, Lu, Tm, or other rare earth ions) and M equals Ga or Al. These films are characterized by very high uniaxial anisotropic field, Faraday rotation, absorption coefficient, and MO figure of merit, significantly improving sensitivity over previous thin film compositions. These properties enable their use in highly compact portable or remotely operated devices and requiring either no eddy current or else brief microbursts of electric current rather than lengthy application of steady current in order to induce magnetic fields within observed structures. A portable system for the testing of bridge structural components, fuel tanks, gas cylinders, and other metallic structures has been designed. This apparatus makes use of a compact portable computer into which video output from the MODE sensor unit received. Using a conventional software interface the operator is able to view the same structure in real time and to apply an array of image processing refinement techniques for improving the resolution of the image. Images may be stored as a constant video stream or as a set of individual snapshots. Additional features that enhance the utility of the system for mobile inspection tasks are discussed. These include the incorporation of a pattern recognition training algorithm and library for operator-enhanced identification of structural defects and condition assessments, as well as the broadcast of image and location data via wireless link to a central server for distribution to consulting engineers and for access of Microstation-type CAD files via a web browser interface.

  20. Structural testing of the technology integration box beam

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  1. Structural testing of the technology integration box beam

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1992-01-01

    A full scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite-epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 pct. of design limit load during the combined unbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  2. Structural testing of the technology integration box beam

    NASA Astrophysics Data System (ADS)

    Griffin, C. F.

    1992-09-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  3. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  4. The structural integrity of affordable thick-section fiber composites

    SciTech Connect

    DeTeresa, S

    1999-06-01

    The Long-Term Research Objectives are to advance the understanding of the mechanics of polymers and polymer composites; develop predictive capabilities as well as experimental characterization and validation tools for the mechanical behavior of these materials; and further develop our knowledge of structure-mechanical property relationships for this class of materials. The approach used was to develop novel experimental tools and use them to characterize the multiaxial failure and fatigue behavior of materials for thick-section fiber composite structures. These tools include capabilities for applying well-defined biaxial and triaxial stress states. These experiments are carefully chosen to provide results that can be used for discriminating evaluation of predictive failure models.

  5. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  6. Integrating optical glucose sensing into a planar waveguide sensor structure

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  7. CONSERTING: integrating copy number analysis with structural variation detection

    PubMed Central

    Chen, Xiang; Gupta, Pankaj; Wang, Jianmin; Nakitandwe, Joy; Roberts, Kathryn; Dalton, James D.; Parker, Matthew; Patel, Samir; Holmfeldt, Linda; Payne, Debbie; Easton, John; Ma, Jing; Rusch, Michael; Wu, Gang; Patel, Aman; J. Baker, Suzanne; Dyer, Michael A.; Shurtleff, Sheila; Espy, Stephen; Pounds, Stanley; Downing, James R.; Ellison, David W.; Mullighan, Charles G.; Zhang, Jinghui

    2015-01-01

    We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), a novel algorithm for detecting somatic copy number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation by read depth change and localized structural variation detection, achieving high accuracy and sensitivity. Analysis of 43 pediatric and adult cancer genomes revealed novel oncogenic CNAs, complex re-arrangements and subclonal CNAs missed by alternative approaches. PMID:25938371

  8. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    PubMed

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  9. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    PubMed Central

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  10. An integrated control/structure design method using multi-objective optimization

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1991-01-01

    The benefits are demonstrated of a multiobjective optimization based control structure integrated design methodology. An application of the proposed CSI methodology to the integrated design of the Spacecraft COntrol Lab Experiment (SCOLE) configuration is presented. Integrated design resulted in reducing both the control performance measure and the mass. Thus, better overall performance is achieved through integrated design optimization. The mutliobjective optimization approach used provides Pareto optimal solutions by unconstrained minimization of a differentiable KS function. Furthermore, adjusting the parameters gives insight into the trade-offs involved between different objectives.

  11. Early T cell activation: integrating biochemical, structural, and biophysical cues.

    PubMed

    Malissen, Bernard; Bongrand, Pierre

    2015-01-01

    T cells carry out the formidable task of identifying small numbers of foreign antigenic peptides rapidly and specifically against a very noisy environmental background of endogenous self-peptides. Early steps in T cell activation have thus fascinated biologists and are among the best-studied models of cell stimulation. This remarkable process, critical in adaptive immune responses, approaches and even seems to exceed the limitations set by the physical laws ruling molecular behavior. Despite the enormous amount of information concerning the nature of molecules involved in the T cell antigen receptor (TCR) signal transduction network, and the description of the nanoscale organization and real-time analysis of T cell responses, the general principles of information gathering and processing remain incompletely understood. Here we review currently accepted key data on TCR function, discuss the limitations of current research strategies, and suggest a novel model of TCR triggering and a few promising ways of going further into the integration of available data. PMID:25861978

  12. Sensors integrating optical and micromachined structures on silicon

    NASA Astrophysics Data System (ADS)

    de Brabander, G. N.; Burcham, K. E.; Boyd, J. T.

    Design-related considerations are presented for an optical-waveguide ring resonator which has been formed on a micromachined diaphragm to form a pressure sensor. A description is given of an experimental implementation of a cantilever beam sensor using an optical waveguide structure to measure beam deflection; and the prospective advantages of such optical sensors for rocket and turbine engine performance parameter monitoring are discussed. Attention is given to the effects of pressure on light propagation and the effects of optical waveguide bending loss on channel size.

  13. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  14. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  15. Maintaining adequate hydration and nutrition in adult enteral tube feeding.

    PubMed

    Dunn, Sasha

    2015-01-01

    Predicting the nutritional and fluid requirements of enterally-fed patients can be challenging and the practicalities of ensuring adequate delivery must be taken into consideration. Patients who are enterally fed can be more reliant on clinicians, family members and carers to meet their nutrition and hydration needs and identify any deficiencies, excesses or problems with delivery. Estimating a patient's requirements can be challenging due to the limitations of using predictive equations in the clinical setting. Close monitoring by all those involved in the patient's care, as well as regular review by a dietitian, is therefore required to balance the delivery of adequate feed and fluids to meet each patient's individual needs and prevent the complications of malnutrition and dehydration. Increasing the awareness of the signs of malnutrition and dehydration in patients receiving enteral tube feeding among those involved in a patient's care will help any deficiencies to be detected early on and rectified before complications occur. PMID:26087203

  16. Assessing juvenile sex offenders to determine adequate levels of supervision.

    PubMed

    Gerdes, K E; Gourley, M M; Cash, M C

    1995-08-01

    The present study analyzed the internal consistency of four inventories currently being used by probation officers in the state of Utah to determine adequate and efficacious supervision levels and placement for juvenile sex offenders. The internal consistency or reliability of the inventories ranged from moderate to good. Factor analysis was utilized to significantly increase the reliability of the four inventories by collapsing them into the following three factors: (a) Custodian's and Juvenile's Attitude Toward Intervention; (b) Offense Characteristics; and (c) Historical Risk Factors. These three inventories/factors explained 41.2% of the variance in the combined inventories' scores. Suggestions are made regarding the creation of an additional inventory. "Characteristics of the Victim" to account for more of the variance. In addition, suggestions as to how these inventories can be used by probation officers to make objective and consistent decisions about adequate supervision levels and placement for juvenile sex offenders are discussed. PMID:7583754

  17. Integrative energy-systems design: System structure from thermodynamic optimization

    NASA Astrophysics Data System (ADS)

    Ordonez, Juan Carlos

    This thesis deals with the application of thermodynamic optimization to find optimal structure and operation conditions of energy systems. Chapter 1 outlines the thermodynamic optimization of a combined power and refrigeration system subject to constraints. It is shown that the thermodynamic optimum is reached by distributing optimally the heat exchanger inventory. Chapter 2 considers the maximization of power extraction from a hot stream in the presence of phase change. It shows that when the receiving (cold) stream boils in a counterflow heat exchanger, the thermodynamic optimization consists of locating the optimal capacity rate of the cold stream. Chapter 3 shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. Chapter 4 addresses two basic issues in the thermodynamic optimization of environmental control systems (ECS) for aircraft: realistic limits for the minimal power requirement, and design features that facilitate operation at minimal power consumption. Several models of the ECS-Cabin interaction are considered and it is shown that in all the models the temperature of the air stream that the ECS delivers to the cabin can be optimized for operation at minimal power. In chapter 5 it is shown that the sizes (weights) of heat and fluid flow systems that function on board vehicles such as aircraft can be derived from the maximization of overall (system level) performance. Chapter 6 develops analytically the optimal sizes (hydraulic diameters) of parallel channels that penetrate and cool a volume with uniformly distributed internal heat generation and Chapter 7 shows analytically and numerically how an originally uniform flow structure transforms itself into a nonuniform one when the objective is to minimize global flow losses. It is shown that flow maldistribution and the abandonment of symmetry are necessary for the development of flow structures with

  18. Structure of the Lithosphere in Central Europe: Integrated Density Modelling

    NASA Astrophysics Data System (ADS)

    Bielik, M.; Grinč, M.; Zeyen, H. J.; Plašienka, D.; Pasteka, R.; Krajňák, M.; Bošanský, M.; Mikuška, J.

    2014-12-01

    Firstly, we present new results related to the lithospheric structure and tectonics of the Central Europe and the Western Carpathians. For geophysical study of the lithosphere in Central Europe we calculated four original 2D lithosphere-scales transects crossing this area from the West European Platform in the North to the Aegean Sea in the South and from the Adriatic Sea in the West to the East European Platform in the East. Modelling is based on the joint interpretation of gravity, geoid, topography and surface heat flow data with temperature-dependent density. Wherever possible, crustal structure is constrained by seismic data. The thickness of the lithosphere decreases from the older and colder platforms to the younger and hotter Pannonian Basin with a maximum thickness under the Eastern and Southern Carpathians. The thickness of the Carpathian arc lithosphere varies between 150 km in the North (the Western Carpathians) and about 300 km in the Vrancea zone (the Eastern and Southern Carpathian junction). In the Platform areas it is between 120 and 150 km and in the Pannonian Basin it is about 70 km. The models show that the Moesian Platform is overthrust from the North by the Southern Carpathians and from the South by the Balkanides and characterized by bending of this platform. In all transects, the thickest crust is found underneath the Carpathian Mountains or, as in the case of the Vrancea area, under their immediate foreland. The thickest crust outside the orogens is modelled for the Moesian Platform with Moho depths of up to 45 km. The thinnest crust is located under the Pannonian Basin with about 26-27 km. Secondly, our presentation deals with construction of the stripped gravity map in the Turiec Basin, which represents typical intramontane Neogene depression of the Western Carpathians. Based on this new and original gravity map corrected by regional gravity effect we were able to interpret the geological structure and tectonics of this sedimentary basin

  19. Integrating the Digital Literacies into an After-School Program: A Structural Analysis of Teachers' Lessons

    ERIC Educational Resources Information Center

    Gormley, Kathleen; McDermott, Peter

    2013-01-01

    The structure of lessons where teachers integrated the digital literacies is examined here. Twelve graduate teachers participating in an after-school practica were observed over a six-week period. This manuscript identifies the structure of their lessons and describes the kinds of digital literacies children learned when completing them. Teachers…

  20. RNACluster: An integrated tool for RNA secondary structure comparison and clustering.

    PubMed

    Liu, Qi; Olman, V; Liu, Huiqing; Ye, Xiuzi; Qiu, Shilun; Xu, Ying

    2008-07-15

    RNA structure comparison is a fundamental problem in structural biology, structural chemistry, and bioinformatics. It can be used for analysis of RNA energy landscapes, conformational switches, and facilitating RNA structure prediction. The purpose of our integrated tool RNACluster is twofold: to provide a platform for computing and comparison of different distances between RNA secondary structures, and to perform cluster identification to derive useful information of RNA structure ensembles, using a minimum spanning tree (MST) based clustering algorithm. RNACluster employs a cluster identification approach based on a MST representation of the RNA ensemble data and currently supports six distance measures between RNA secondary structures. RNACluster provides a user-friendly graphical interface to allow a user to compare different structural distances, analyze the structure ensembles, and visualize predicted structural clusters. PMID:18271070

  1. Design integration of favorable geometry, structural support and containment

    SciTech Connect

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment.

  2. Nondestructive methods of integrating energy harvesting systems with structures

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  3. Integrated Structural/Acoustic Modeling of Heterogeneous Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett, A.; Aboudi, Jacob; Arnold, Steven, M.; Pennline, James, A.

    2012-01-01

    A model for the dynamic response of heterogeneous media is presented. A given medium is discretized into a number of subvolumes, each of which may contain an elastic anisotropic material, void, or fluid, and time-dependent boundary conditions are applied to simulate impact or incident pressure waves. The full time-dependent displacement and stress response throughout the medium is then determined via an explicit solution procedure. The model is applied to simulate the coupled structural/acoustic response of foam core sandwich panels as well as aluminum panels with foam inserts. Emphasis is placed on the acoustic absorption performance of the panels versus weight and the effects of the arrangement of the materials and incident wave frequency.

  4. An Integrated Geophysical study of the Lithospheric Structure Beneath Libya

    NASA Astrophysics Data System (ADS)

    Brown, W. A.; Doser, D. I.; Keller, R. G.

    2003-12-01

    The tectonic evolution of Libya has yielded a complex crustal structure, which is composed of a series of basins and uplifts. A considerable amount of oil exploration has been undertaken in the area and numerous studies have been published on the shallow (<10km depth) geology and geophysics of the region. In addition, over 6000 gravity measurements are available for the northern Libya region. We are using these data in conjunction with other geologic and geophysical control to construct a 3-D model of density/geology for northern Libya and surrounding regions. Knowing the surface geology and having a digital elevation model and observed gravity value at specified stations, we first calculate the gravity contribution for polygonal areas assuming infinite depth. We then calculate the gravitational contribution for the same polygonal area using the Paleozoic surface as the elevation, assuming uniform density for the volume of rocks below the Paleozoic surface. Subtracting the value calculated at the Paleozoic layer from the gravitational value at the surface yields a gravitational value matching that of the layer between the surface and the top of the Paleozoic layer. The same procedure is then repeated for the top of the Precambrian, the Moho, etc. The 3-D model will then be used to develop a regional velocity model that can be verified/modified by analysis of regional seismic waveform data we are collecting from earthquakes occurring within northern Libya. Northern Libya is the most seismologically active and highly faulted portion of the country. For this reason we have collected thirteen Landsat 5 satellite images covering the most seismically active and structurally significant regions of northeast and northwest Libya. The satellite images have been mosaicked using a seamless mosaicking technology based on ENVI's cutline feathering approached. The resulting mosaicked figures were then overlain with the previously mapped faults analyzed to identify the more recent

  5. Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

    PubMed Central

    Heine, Josephine; Pache, Florence; Lacheta, Anna; Borisow, Nadja; Kuchling, Joseph; Bellmann-Strobl, Judith; Ruprecht, Klemens; Brandt, Alexander U.; Paul, Friedemann

    2016-01-01

    Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients. PMID:27144219

  6. Perspectives of solution NMR spectroscopy for structural and functional studies of integral membrane proteins

    NASA Astrophysics Data System (ADS)

    Reckel, Sina; Hiller, Sebastian

    2013-04-01

    This article discusses future perspectives of solution NMR spectroscopy to study structures and functions of integral membrane proteins at atomic resolution, based on a review of recent progress in this area. Several selected examples of structure determinations, as well as functional studies of integral membrane proteins are highlighted. We expect NMR spectroscopy to make future key scientific contributions to understanding membrane protein function, in particular for large membrane protein systems with known three-dimensional structure. Such situations can benefit from the fact that functional NMR studies have substantially less limitations by molecular size than a full de novo structure determination. Therefore, the general potential for NMR spectroscopy to solve biologic key questions associated with integral membrane proteins is very promising.

  7. An integrated controls-structures design methodology for a flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Joshi, Suresh M.; Price, Douglas B.

    1992-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior compared to the conventional approach, wherein the structural design and control design are performed sequentially.

  8. Integrated quality assurance for assembly and testing of complex structures

    NASA Astrophysics Data System (ADS)

    von Kopylow, Christoph; Bothe, Thorsten; Elandaloussi, Frank; Kalms, Michael; Jüptner, Werner

    2005-11-01

    Modern production processes are directed by properties of the components to be manufactured. These components have different sizes, functionalities, high assembly complexity and high security requirements. The increasing requirements during the manufacturing of complex products like cars and aircrafts demand new solutions for the quality assurance - especially for the production at different places. The main focus is to find a measurement strategy that is cost effective, flexible and adaptive. That means a clear definition of the measurement problem, the measurement with adapted resolution, the data preparation and evaluation and support during measurement and utilisation of the results directly in the production. In this paper we describe flexible measurement devices on example of three different techniques: fringe projection, fringe reflection and shearography. These techniques allow the detection of surface and subsurface defects like bumps, dents and delaminations with high resolution. The defects can be optically mapped onto the object's surface. Results are demonstrated with big components taken from automotive and aircraft production. We will point out the most important adaptations of the systems to realize miniaturized, robust and mobile devices for the quality assurance in an industrial environment. Additionally the implementation into a Mobile Maintenance and Control structure is demonstrated.

  9. Novel integrated CMOS pixel structures for vertex detectors

    SciTech Connect

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  10. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  11. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1994-02-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  12. Integrated aerodynamic-structural design of a forward-swept transport wing

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  13. A Spatially-Registered, Massively Parallelised Data Structure for Interacting with Large, Integrated Geodatasets

    NASA Astrophysics Data System (ADS)

    Irving, D. H.; Rasheed, M.; O'Doherty, N.

    2010-12-01

    The efficient storage, retrieval and interactive use of subsurface data present great challenges in geodata management. Data volumes are typically massive, complex and poorly indexed with inadequate metadata. Derived geomodels and interpretations are often tightly bound in application-centric and proprietary formats; open standards for long-term stewardship are poorly developed. Consequently current data storage is a combination of: complex Logical Data Models (LDMs) based on file storage formats; 2D GIS tree-based indexing of spatial data; and translations of serialised memory-based storage techniques into disk-based storage. Whilst adequate for working at the mesoscale over a short timeframes, these approaches all possess technical and operational shortcomings: data model complexity; anisotropy of access; scalability to large and complex datasets; and weak implementation and integration of metadata. High performance hardware such as parallelised storage and Relational Database Management System (RDBMS) have long been exploited in many solutions but the underlying data structure must provide commensurate efficiencies to allow multi-user, multi-application and near-realtime data interaction. We present an open Spatially-Registered Data Structure (SRDS) built on Massively Parallel Processing (MPP) database architecture implemented by a ANSI SQL 2008 compliant RDBMS. We propose a LDM comprising a 3D Earth model that is decomposed such that each increasing Level of Detail (LoD) is achieved by recursively halving the bin size until it is less than the error in each spatial dimension for that data point. The value of an attribute at that point is stored as a property of that point and at that LoD. It is key to the numerical efficiency of the SRDS that it is under-pinned by a power-of-two relationship thus precluding the need for computationally intensive floating point arithmetic. Our approach employed a tightly clustered MPP array with small clusters of storage

  14. Monolithic integration of waveguide structures with surface-micromachined polysilicon actuators

    SciTech Connect

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.

    1996-03-01

    The integration of optical components with polysilicon surface micromechanical actuation mechanisms show significant promise for signal switching, fiber alignment, and optical sensing applications. Monolithically integrating the manufacturing process for waveguide structures with the processing of polysilicon actuators allows actuated waveguides to take advantage of the economy of silicon manufacturing. The optical and stress properties of the oxides and nitrides considered for the waveguide design along with design, fabrication, and testing details for the polysilicon actuators are presented.

  15. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Pfiffner, Susan M.

    2005-08-11

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), Florida State University (FSU), and the University of Tennessee. ORNL will serve as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project was initiated in November, 2004, in the Integrative Studies Element of the NABIR program. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates.

  16. Thermal-structural Design Study of an Airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1979-01-01

    Design concepts for the cooled structures assembly for the Langley Scramjet engine, for engine subsystems, and for the aircraft/engine interface were developed and evaluated. Results show that the objectives for the Scramjet engine can be met. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles, which is the specified goal. With stoichiometric combustion, the fuel provides an adequate heat sink for cooling the engine at Mach numbers up to 9 at the minimum fuel flow condition. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 1328 kg/sq m (259 lb/sq ft). The total mass of a six-module engine assembly including the fuel system is 1577 kg (3477 lb).

  17. Adequation of mini satellites to oceanic altimetry missions

    NASA Astrophysics Data System (ADS)

    Bellaieche, G.; Aguttes, J. P.

    1993-01-01

    Association of the mini satellite concept and oceanic altimetry missions is discussed. Mission definition and most constraining requirements (mesoscale for example) demonstrate mini satellites to be quite adequate for such missions. Progress in altimeter characteristics, orbit determination, and position reporting allow consideration of oceanic altimetry missions using low Earth orbit satellites. Satellite constellation, trace keeping and orbital period, and required payload characteristics are exposed. The mission requirements covering Sun synchronous orbit, service area, ground system, and launcher characteristics as well as constellation maintenance strategy are specified. Two options for the satellite, orbital mechanics, propulsion, onboard power and stabilizing subsystems, onboard management, satellite ground linkings, mechanical and thermal subsystems, budgets, and planning are discussed.

  18. An integrated approach to the synthesis of geometrically non-linear structures

    NASA Technical Reports Server (NTRS)

    Smaoui, H.; Schmit, L. A.

    1988-01-01

    An integrated approach to the minimum weight design of geometrically nonlinear three-dimensional truss structures with geometric imperfections, subject to inequality constraints on static displacements, stresses, local buckling and cross sectional areas, is investigated. The integrated structural synthesis problem involves design and response quantities as independent variables and equilibrium equations, describing the finite element model, as equality constraints. The nonlinear structural analysis and the optimization are thus merged together into a single process. A computer program developed to compute the constraint values and analytical gradients is coupled with a generalized reduced gradient algorithm to solve the integrated problem. Numerical results for a geometrically nonlinear shallow dome example problem are presented for various types of imperfections. Furthermore, it is found that the algorithm is capable of detecting and guarding against system as well as element elastic instability using equilibrium information only, that is, without imposing system and local buckling inequality constraints.

  19. Lewis Structures Technology, 1988. Volume 3: Structural Integrity Fatigue and Fracture Wind Turbines HOST

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.

  20. Evaluating distributed fibre optic sensors integrated into thermoplastic composites for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Schukar, Marcus; Steffen, Milan; Krebber, Katerina

    2014-05-01

    Strain sensors used for structural health monitoring (SHM) must provide reliable measurement data during their entire service lifetime. To achieve this for fibre optic sensors integrated into composites, the integration of the sensor has to be adapted according to the process conditions. This paper describes the fabrication of thermoplastic composite samples with integrated distributed fibre optic sensors (DFOS) based on copper-nickel and polyimide coated silica optical fibres. The performance of these DFOS as SHM sensors is evaluated in terms of reliability by measurements derived from comparative measurements with resistance strain gauges and from fatigue tests with 10 million load cycles.

  1. Monitoring the integrity of filament-wound structures using built-in sensor networks

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Kumar, Amrita; Qing, Xinlin; Beard, Shawn J.; Russell, Samuel S.; Walker, James L.; Delay, Thomas K.

    2003-08-01

    Monitoring the integrity of filament wound composite structures such as solid rocket motors and liquid fuel bottles is important in order to prevent catastrophic failures and to prolong the service life of these structures. To ensure the safety and reliability of rocket components, they require frequent inspection for structural damages that might have occurred during manufacturing, transportation, and storage. The timely and accurate detection, characterization and monitoring of structural cracking, delamination, debonding and other types of damage is a major concern in the operational environment. Utilization of a sensor network system integrated with the structure itself can greatly reduce this inspection burden through fast in-situ data collection and processing. Acellent Technologies, Inc. is currently developing integrated structural monitoring tools for continuous monitoring of composite and metal structures on aircraft and spacecraft. Acellent's integrated structural monitoring system consists of a flexible sensor/actuator network layer called the SMART Layer, supporting diagnostic hardware, and data processing/analysis software. Recently, Acellent has been working with NASA Marshall Space Flight Center to develop ways of embedding the SMART Layer inside filament wound composite bottles. SMART Layers were designed and manufactured for the filament wound bottles and embedded in them during the filament winding process. Acellent has been working on developing a complete structural health monitoring system for the filament wound bottles including data processing tools to interpret the changes in sensor signal caused by changes in the structural condition or material property. A prototype of a filament wound composite bottle with an embedded sensor network has been fabricated and preliminary data analysis tools have been developed.

  2. Quantifying dose to the reconstructed breast: Can we adequately treat?

    SciTech Connect

    Chung, Eugene; Marsh, Robin B.; Griffith, Kent A.; Moran, Jean M.; Pierce, Lori J.

    2013-04-01

    To evaluate how immediate reconstruction (IR) impacts postmastectomy radiotherapy (PMRT) dose distributions to the reconstructed breast (RB), internal mammary nodes (IMN), heart, and lungs using quantifiable dosimetric end points. 3D conformal plans were developed for 20 IR patients, 10 autologous reconstruction (AR), and 10 expander-implant (EI) reconstruction. For each reconstruction type, 5 right- and 5 left-sided reconstructions were selected. Two plans were created for each patient, 1 with RB coverage alone and 1 with RB + IMN coverage. Left-sided EI plans without IMN coverage had higher heart Dmean than left-sided AR plans (2.97 and 0.84 Gy, p = 0.03). Otherwise, results did not vary by reconstruction type and all remaining metrics were evaluated using a combined AR and EI dataset. RB coverage was adequate regardless of laterality or IMN coverage (Dmean 50.61 Gy, D95 45.76 Gy). When included, IMN Dmean and D95 were 49.57 and 40.96 Gy, respectively. Mean heart doses increased with left-sided treatment plans and IMN inclusion. Right-sided treatment plans and IMN inclusion increased mean lung V{sub 20}. Using standard field arrangements and 3D planning, we observed excellent coverage of the RB and IMN, regardless of laterality or reconstruction type. Our results demonstrate that adequate doses can be delivered to the RB with or without IMN coverage.

  3. Purchasing a cycle helmet: are retailers providing adequate advice?

    PubMed Central

    Plumridge, E.; McCool, J.; Chetwynd, J.; Langley, J. D.

    1996-01-01

    OBJECTIVES: The aim of this study was to examine the selling of cycle helmets in retail stores with particular reference to the adequacy of advice offered about the fit and securing of helmets. METHODS: All 55 retail outlets selling cycle helmets in Christchurch, New Zealand were studied by participant observation. A research entered each store as a prospective customer and requested assistance to purchase a helmet. She took detailed field notes of the ensuing encounter and these were subsequently transcribed, coded, and analysed. RESULTS: Adequate advice for helmet purchase was given in less than half of the stores. In general the sales assistants in specialist cycle shops were better informed and gave more adequate advice than those in department stores. Those who have good advice also tended to be more good advice also tended to be more active in helping with fitting the helmet. Knowledge about safety standards was apparent in one third of sales assistants. Few stores displayed information for customers about the correct fit of cycle helmets. CONCLUSIONS: These findings suggest that the advice and assistance being given to ensure that cycle helmets fit properly is often inadequate and thus the helmets may fail to fulfil their purpose in preventing injury. Consultation between retailers and policy makers is a necessary first step to improving this situation. PMID:9346053

  4. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  5. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.

  6. An Integrated Control and Minimum Mass Structural Optimization Algorithm for Large Space Structures

    NASA Technical Reports Server (NTRS)

    Messac, A.; Turner, J.; Soosaar, K.

    1985-01-01

    A new approach is discussed for solving dual structural control optimization problems for high-order flexible space structures, where reduced-order structural models are employed and minimum mass designs are sought. For a given initial structural design, a quadratic control cost is minimized subject to a constant-mass constraint. The sensitivity of the optimal control cost with respect to the structural design variables is then determined and used to obtain successive structural redesigns, using a constrained gradient optimization algorithm. This process is repeated until the constrained control cost sensitivity becomes negligible. The minimum mass design is obtained by solving a sequence of neighboring optimal constant mass designs, where the sequence of optimal performance indices has a minimum at the optimal minimum mass design. A numerical example is presented which demonstrates that this new approach effectively addresses the problem of dual optimization for potentially very high-order structures.

  7. Fully integrated patterned carbon nanotube strain sensors on flexible sensing skin substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Kurata, Masahiro; Nishino, Hiromichi; Lynch, Jerome P.

    2016-04-01

    New advances in nanotechnology and material processing is creating opportunities for the design and fabrication of a new generation of thin film sensors that can used to assess structural health. In particular, thin film sensors attached to large areas of the structure surface has the potential to provide spatially rich data on the performance and health of a structure. This study focuses on the development of a fully integrated strain sensor that is fabricated on a flexible substrate for potentially use in sensing skins. This is completed using a carbon nanotube-polymer composite material that is patterned on a flexible polyimide substrate using optical lithography. The piezoresistive carbon nanotube elements are integrated into a complete sensing system by patterning copper electrodes and integrating off-the-shelf electrical components on the flexible film for expanded functionality. This diverse material utilization is realized in a versatile process flow to illustrate a powerful toolbox for sensing severity, location, and failure mode of damage on structural components. The fully integrated patterned carbon nanotube strain sensor is tested on a quarter-scale, composite beam column connection. The results and implications for future structural damage detection are discussed.

  8. An integrated map of structural variation in 2,504 human genomes.

    PubMed

    Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Hsi-Yang Fritz, Markus; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Paolo Casale, Francesco; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Jasmine Mu, Xinmeng; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O

    2015-10-01

    Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association. PMID:26432246

  9. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  10. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  11. Organic thin films. Rational synthesis of organic thin films with exceptional long-range structural integrity.

    PubMed

    Seiki, Noriya; Shoji, Yoshiaki; Kajitani, Takashi; Ishiwari, Fumitaka; Kosaka, Atsuko; Hikima, Takaaki; Takata, Masaki; Someya, Takao; Fukushima, Takanori

    2015-06-01

    Highly oriented, domain-boundary-free organic thin films could find use in various high-performance organic materials and devices. However, even with state-of-the-art supramolecular chemistry, it is difficult to construct organic thin films with structural integrity in a size regime beyond the micrometer length scale. We show that a space-filling design, relying on the two-dimensional (2D) nested hexagonal packing of a particular type of triptycene, enables the formation of large-area molecular films with long-range 2D structural integrity up to the centimeter length scale by vacuum evaporation, spin-coating, and cooling from the isotropic liquid of the triptycene. X-ray diffraction analysis and microscopic observations reveal that triptycene molecules form a completely oriented 2D (hexagonal triptycene array) + 1D (layer stacking) structure, which is key for the long-range propagation of structural order. PMID:26045433

  12. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure

    NASA Technical Reports Server (NTRS)

    Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.

    2010-01-01

    A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.

  13. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    SciTech Connect

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  14. Determining Adequate Margins in Head and Neck Cancers: Practice and Continued Challenges.

    PubMed

    Williams, Michelle D

    2016-09-01

    Margin assessment remains a critical component of oncologic care for head and neck cancer patients. As an integrated team, both surgeons and pathologists work together to assess margins in these complex patients. Differences in method of margin sampling can impact obtainable information and effect outcomes. Additionally, what distance is an "adequate or clear" margin for patient care continues to be debated. Ultimately, future studies and potentially secondary modalities to augment pathologic assessment of margin assessment (i.e., in situ imaging or molecular assessment) may enhance local control in head and neck cancer patients. PMID:27469263

  15. A study of space shuttle structural integrity test and assessment. Part 1

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Poe, R. G.

    1972-01-01

    The ultrasonics technique for assessing the structural integrity of the primary surface of the space shuttle vehicles is discussed and evaluated. Analysis was made of transducers, transducer coupling test structure fabrication, flaws, and ultrasonic testing. Graphs of microphone response curves from the initial noise tests, accelerometer response curves from the final noise tests, and microphone curves from the final noise tests are included along with a glossary, bibliography, and results.

  16. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  17. Integrated Composite Stiffener Structure (ICoSS) Concept for Planetary Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris

    2016-01-01

    Results from the design, manufacturing, and testing of a lightweight Integrated Composite Stiffened Structure (ICoSS) concept, intended for multi-mission planetary entry vehicles are presented. Tests from both component and full-scale tests for a typical Earth Entry Vehicle forward shell manufactured using the ICoSS concept are presented and advantages of the concept for the particular application of passive Earth Entry Vehicles over other structural concepts are discussed.

  18. Are PPS payments adequate? Issues for updating and assessing rates

    PubMed Central

    Sheingold, Steven H.; Richter, Elizabeth

    1992-01-01

    Declining operating margins under Medicare's prospective payment system (PPS) have focused attention on the adequacy of payment rates. The question of whether annual updates to the rates have been too low or cost increases too high has become important. In this article we discuss issues relevant to updating PPS rates and judging their adequacy. We describe a modification to the current framework for recommending annual update factors. This framework is then used to retrospectively assess PPS payment and cost growth since 1985. The preliminary results suggest that current rates are more than adequate to support the cost of efficient care. Also discussed are why using financial margins to evaluate rates is problematic and alternative methods that might be employed. PMID:10127450

  19. Integration of design, structural, thermal and optical analysis: And user's guide for structural-to-optical translator (PATCOD)

    NASA Astrophysics Data System (ADS)

    Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.

    1995-03-01

    Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.

  20. WHITE PAPER ON IMPROVEMENT OF STRUCTURAL INTEGRITY MONITORING FOR DRINKING WATER MAINS

    EPA Science Inventory

    This white paper explores the improvement of water main structural integrity monitoring (SIM) capability as an approach for reducing (1) high risk drinking water main breaks and (2) inefficient maintenance scheduling. Inadequate SIM capability for water mains can cause repair, r...

  1. A Structural Model Proposal for Turkish Faculties of Education Regarding ICT Integration Indicators

    ERIC Educational Resources Information Center

    Akbulut, Yavuz

    2010-01-01

    A recent survey study with 2515 pre-service teachers suggested an underlying structure to shelter ICT integration indicators. Eleven indicators were extracted, which were Teaching-Learning Methods, E-learning, E-interaction, Learning Communities, Infrastructure, Access, Ease of Use, Technical Assistance, Policy, Special Education and Health. In…

  2. Beyond Rigid Body: Integrated Structural Control of Extremely Lightweight Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2013-01-01

    Integrated structural control of extremely lightweight vehicles will open a new paradigm and allow for performance increases. The X-56A Multi-Utility Technology Testbed (MUTT) vehicle will be used to evaluate and advance the state-of-the-art in modeling and control of this new class of aerospace vehicle.

  3. Integrated Communications and Work Efficiency: Impacts on Organizational Structure and Power.

    ERIC Educational Resources Information Center

    Wigand, Rolf T.

    This paper reviews the work environment surrounding integrated office systems, synthesizes the known effects of automated office technologies, and discusses their impact on work efficiency in office environments. Particular attention is given to the effect of automated technologies on networks, workflow/processes, and organizational structure and…

  4. Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students' Evaluations of University Teaching

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Muthen, Bengt; Asparouhov, Tihomir; Ludtke, Oliver; Robitzsch, Alexander; Morin, Alexandre J. S.; Trautwein, Ulrich

    2009-01-01

    This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching…

  5. Effects of high hydrostatis pressure on Eimeria Acervulina pathogenicity, immunogenicity and structural integrity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eimeria acervulina is a protozoan parasite that can cause intestinal lesions and reduced weight gain in chickens. E. acervulina oocysts were treated by high hydrostatic pressure and evaluated for pathogenicity, immunogenicity, and structural integrity. Pressure treatment of E. acervulina oocysts a...

  6. IMPROVING STRUCTURAL INTEGRITY MONITORING CAPABILITY FOR WATER MAINS: COLLABORATION EFFORTS AND OPPORTUNITIES

    EPA Science Inventory

    The structural integrity of the approximately 1,000,000 miles of U.S. water mains is important to both immediate and long-term drinking water quality and availability. As pipes wear out, leaks and main breaks increase, as well as the associated occurrences of water loss and low-...

  7. Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course

    ERIC Educational Resources Information Center

    Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio

    2012-01-01

    In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…

  8. Taxometric and Factor Analytic Models of Anxiety Sensitivity: Integrating Approaches to Latent Structural Research

    ERIC Educational Resources Information Center

    Bernstein, Amit; Zvolensky, Michael J.; Norton, Peter J.; Schmidt, Norman B.; Taylor, Steven; Forsyth, John P.; Lewis, Sarah F.; Feldner, Matthew T.; Leen-Feldner, Ellen W.; Stewart, Sherry H.; Cox, Brian

    2007-01-01

    This study represents an effort to better understand the latent structure of anxiety sensitivity (AS), as indexed by the 16-item Anxiety Sensitivity Index (ASI; S. Reiss, R. A. Peterson, M. Gursky, & R. J. McNally, 1986), by using taxometric and factor-analytic approaches in an integrative manner. Taxometric analyses indicated that AS has a…

  9. Super Integrable Hierarchy and Super Hamiltonian Structures Associated with Guo Hierarchy

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Dong, Huanhe

    A Lie superalgebra is constructed from which establishes an isospectral problems. By solving the zero curvature equation, a resulting super hierarchies of the Guo hierarchy are obtained. By making use of the super identity, the Hamiltonian structures of the above super integrable hierarchies are generated, this method can be used to other superhierarchy.

  10. ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog

    NASA Technical Reports Server (NTRS)

    Gray, F. P., Jr. (Editor)

    1979-01-01

    A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.

  11. Labeling the Structural Integrity of Nanoparticles for Advanced In Situ Tracking in Bionanotechnology.

    PubMed

    Meder, Fabian; Thomas, Steffi S; Fitzpatrick, Laurence W; Alahmari, Amirah; Wang, Suxiao; Beirne, Jason G; Vaz, Gizela; Redmond, Gareth; Dawson, Kenneth A

    2016-04-26

    Observing structural integrity of nanoparticles is essential in bionanotechnology but not always straightforward to measure in situ and in real-time. Fluorescent labels used for tracking intrinsically nonfluorescent nanomaterials generally do not allow simultaneous observation of integrity. Consequently, structural changes like degradation and disassembly cannot easily be followed in situ using fluorescence signals. We show that thioflavin T (ThT), a fluorophore and molecular rotor known to tag specific fibril structures in amyloids, can "label" the structural integrity of widely used and intrinsically nonfluorescent, silica nanoparticles (SiNPs). Entrapment of ThT in SiNPs controls the fluorohphore's relaxation pathway and leads to a red-shifted fluorescence spectrum providing real time information on SiNP integrity. The dynamic change of ThT fluorescence during degradation of doped SiNPs is found much higher than that of common labels fluorescein and rhodamine. Degradation kinetics of core-shell structures recorded by ThT fluorescence and light scattering prove the capability to clearly distinguish structural features during SiNPs degradation and allow obtaining degradation kinetics in vitro, in biological media, in serum, and in cells. The effect is transferable to different types of materials, here shown for ThT incorporated SiNPs with tightly tailorable sizes (9-100 nm), poly(lactic-co-glycolic acid) (PLGA) nanoparticles, poly(9-vinylcarbazole) (PVK) nanoparticles, and iron-doped-SiNPs (FeSiNPs). We thus suggest molecular rotors such as ThT as additional labels to effectively and easily sense nanoparticle structural status in situ and to enhance understanding and development of programmed nanoparticle disassembly in bionanotechnology. PMID:26959685

  12. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  13. IPACS (Integrated Probabilistic Assessment of Composite Structures): Code development and applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Shiao, Michael C.

    1993-01-01

    A methodology and attendant computer code have been developed and are described to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, stress concentration factors, displacements, stress/strain etc., which are the consequences of the inherent uncertainties (scatter) in the primitive (independent random) variables (constituent, ply, laminate and structural) that describe the composite structures. The computer code, IPACS (Integrated Probabilistic Assessment of Composite Structures), can handle both composite mechanics and composite structures. Application to probabilistic composite mechanics is illustrated by its uses to evaluate the uncertainties in the major Poisson's ratio and in laminate stiffness and strength. IPACS application to probabilistic structural analysis is illustrated by its use to evaluate the uncertainties in the buckling of a composite plate, in the stress concentration factor in a composite panel and in the vertical displacement and ply stress in a composite aircraft wing segment.

  14. On the Sensitivity of Piezoceramics and Piezopolymers in Structural Integrity Monitoring of Large Trusses

    NASA Technical Reports Server (NTRS)

    Abatan, A. O.; Lin, M. W.; Mintz, E.

    1996-01-01

    An analytical assessment has been made of the reliability of using integrated microactuators and sensors in the form of piezoceramics and piezopolymers as joint integrity monitors in trussed systems. The concept is first implemented for a simple structure which consists of two truss members with a 45 deg lift angle joined at the apex. A piezoceramic patch (or piezopolymer film) bonded on the surface of one of the members at a location near the joint is used as a collocated actuator/sensor. The overall structural dynamic response under an excitation was modeled by finite element method. Different degrees of nodal constraints at the joints representing various degrees of joint integrity are employed. The resulting dynamic response showed distinct responses for varying joint stiffnesses. Parallel experimental work on a truss model using a multichannel data acquisition system and a digital signal analyzer confirms the results from analysis. We further studied the sensitivity of the micro-sensors to the behavior of joints of large arch truss structure. Results obtained for large trusses with many degrees of freedom indicate optimum locations of sensors for which the dynamic response signatures are distinct and distinguishable for relatively small changes in joint integrity and/or structural geometry. Computations based on finite element modeling show that locating the single actuator/sensor at the joint corresponding to the first loss of static stability appear optimal. Hence, static stability analysis of complex trusses can give us a good indication of the optimum placement of sensors for maximum response. This observation is important if few distributed sensors and actuators are available for placement in constructed facilities made from large trusses with many degrees of freedom. As an extension of this work a dynamic response signature identification technique to monitor in-service degradation of joints is under development for application to the monitoring of the

  15. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  16. Detailed requirements document for the integrated structural analysis system, phase B

    NASA Technical Reports Server (NTRS)

    Rainey, J. A.

    1976-01-01

    The requirements are defined for a software system entitled integrated Structural Analysis System (ISAS) Phase B which is being developed to provide the user with a tool by which a complete and detailed analysis of a complex structural system can be performed. This software system will allow for automated interface with numerous structural analysis batch programs and for user interaction in the creation, selection, and validation of data. This system will include modifications to the 4 functions developed for ISAS, and the development of 25 new functions. The new functions are described.

  17. Insights into the structure and function of membrane-integrated processive glycosyltransferases

    PubMed Central

    Bi, Yunchen; Hubbard, Caitlin; Purushotham, Pallinti; Zimmer, Jochen

    2015-01-01

    Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. Here, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin, alginate, hyaluronan and poly-N-acetylglucosamine (PNAG). PMID:26342143

  18. An optimization-based approach for integrated controls-structures design of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Armstrong, E. S.

    1994-01-01

    The control of flexible spacecraft is a difficult problem because of large number of elastic modes; low value, closely-spaced frequencies; very small damping; and uncertainties in math models. The traditional design approach is to design the structure first and then to design the control system. This view-graph presentation develops a methodology for spacecraft design which addresses control/structure interaction issues, produces technology for simultaneous control/structure design, and translates into algorithms and computational tools for practical integrated computer-aided design.

  19. Applications of integrated design/analysis systems in aerospace structural design

    NASA Technical Reports Server (NTRS)

    Mason, Philip; Lerner, Edwin; Sobel, Lawrence

    1989-01-01

    Integrated structural analysis and design systems and structural optimization procedures are being used in a production environment. Successful use of these systems requires experienced personnel. Interactive computer graphics can and will play a significant role in the analysis, optimization, design and manufacturing areas. Practical structural optimization procedures are tools that must be made available to the team. Much work still needs to be done to tie finite-element modeling to actual design details which are being tracked on systems such as CADAM or CATIA. More work needs to be done to automate the detailed design and analysis process. More emphasis should be placed on the real design problems.

  20. Vibration suppression of distributed parameter flexible structures by Integral Consensus Control

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Mahmoodi, S. Nima

    2016-03-01

    Integral Consensus Control (ICC) is proposed and implemented in this paper for the first time, as a novel approach for vibration control in distributed parameter flexible structures. The ICC consists of multiple parallel first-order lossy integrators, with the goal of targeting all major participating resonant modes in the oscillation of the structure. The vibration control design is taken to a different level, by integrating the concept of consensus control design into the new dynamics. Each control patch on the flexible structure is considered as a node of a network, and a communication topology with consensus control terms are augmented in the controller design dynamics. The result is an effective vibration controller, which is also robust to failures and inconsistencies in the control system. A cantilever is used as a sample flexible structure to investigate the control method. Multi-agent representation of the system, state estimator dynamics and the ICC model are designed for the structure. Extensive numerical simulations have been conducted to show the suppression performance of the ICC under different input disturbances. A comparative study is presented to show the advantage of the decentralized design over the conventional centralized approach. The new consensus control design provides new possibilities to vibration control problems, where an effective, robust and synchronized suppression is needed.

  1. Test of Integrated Professional Skills: Objective Structured Clinical Examination/Simulation Hybrid Assessment of Obstetrics-Gynecology Residents' Skill Integration

    PubMed Central

    Winkel, Abigail Ford; Gillespie, Colleen; Hiruma, Marissa T.; Goepfert, Alice R.; Zabar, Sondra; Szyld, Demian

    2014-01-01

    Background Assessment of obstetrics-gynecology residents' ability to integrate clinical judgment, interpersonal skills, and technical ability in a uniform fashion is required to document achievement of benchmarks of competency. An observed structured clinical examination that incorporates simulation and bench models uses direct observation of performance to generate formative feedback and standardized evaluation. Methods The Test of Integrated Professional Skills (TIPS) is a 5-station performance-based assessment that uses standardized patients and complex scenarios involving ultrasonography, procedural skills, and evidence-based medicine. Standardized patients and faculty rated residents by using behaviorally anchored checklists. Mean scores reflecting performance in TIPS were compared across competency domains and by developmental level (using analysis of variance) and then compared to standard faculty clinical evaluations (using Spearman ρ). Participating faculty and residents were also asked to evaluate the usefulness of the TIPS. Results Twenty-four residents participated in the TIPS. Checklist items used to assess competency were sufficiently reliable, with Cronbach α estimates from 0.69 to 0.82. Performance improved with level of training, with wide variation in performance. Standard faculty evaluations did not correlate with TIPS performance. Several residents who were rated as average or above average by faculty performed poorly on the TIPS (> 1 SD below the mean). Both faculty and residents found the TIPS format useful, providing meaningful evaluation and opportunity for feedback. Conclusions A simulation-based observed structured clinical examination facilitates observation of a range of skills, including competencies that are difficult to observe and measure in a standardized way. Debriefing with faculty provides an important interface for identification of performance gaps and individualization of learning plans. PMID:24701321

  2. Integrating remote sensing and magnetic data for structural geology investigation in pegmatite areas in eastern Afghanistan

    NASA Astrophysics Data System (ADS)

    Salehi, Ratib; Saadi, Nureddin M.; Khalil, Ahmed; Watanabe, Koichiro

    2015-01-01

    This study used an integrated approach to investigate pegmatite areas in eastern Afghanistan. The analysis of surface data, including a digital elevation model (DEM), and Landsat Enhanced Thematic Mapper Plus (ETM+) images, was combined with airborne magnetic data to better understand three-dimensional geology in the area. The ETM+ and DEM data were used to map geological structures at the surface, which indicate that the area consists of two main fault systems that trend NNE and E-W. The two trends represent the remnants of reactivated structures that formed under the stress regimes generated during the tectonic evolution of eastern Afghanistan. Magnetic data indicate an NE-SW trending basin. A two-dimensional schematic model shows that the basin gradually deepens toward the SW with depths to the magnetic basement ranging between 2 and 11.5 km. The integration of the results gave new insight into the tectonic evolution and structure patterns near the pegmatites area.

  3. Integrative, Dynamic Structural Biology at Atomic Resolution—It’s About Time

    PubMed Central

    van den Bedem, Henry; Fraser, James S.

    2015-01-01

    Biomolecules adopt a dynamic ensemble of conformations, each with the potential to interact with binding partners or perform the chemical reactions required for a multitude of cellular functions. Recent advances in X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and other techniques are helping us realize the dream of seeing—in atomic detail—how different parts of biomolecules exchange between functional sub-states using concerted motions. Integrative structural biology has advanced our understanding of the formation of large macromolecular complexes and how their components interact in assemblies by leveraging data from many low-resolution methods. Here, we review the growing opportunities for integrative, dynamic structural biology at the atomic scale, contending there is increasing synergistic potential between X-ray crystallography, NMR, and computer simulations to reveal a structural basis for protein conformational dynamics at high resolution. PMID:25825836

  4. Appurtenance Influence on Type III Hanford Single-Shell Tank Structural Integrity

    SciTech Connect

    Sanborn, Scott E.; Larsen, Brian M.; Julyk, Larry J.; Johnson, Kenneth I.

    2012-02-26

    The interim stabilized Hanford Single Shell Tanks (SSTs) are currently undergoing a state of the art analysis to assess the structural integrity of the waste storage tanks, for cleanup and closure operations, considering their adverse thermal histories and an updated seismic hazard for the Hanford Site near Richland, Washington. The SSTs contain a variety of ancillary pits, piping, piping supports, risers, equipment, and penetrations known as appurtenances. These appurtenances may alter the structural response and ultimately could affect the structural integrity of the SSTs. An important challenge to the structural analysis of the SSTs is determining the impact of these appurtenances on structural integrity. To achieve this, the various appurtenances were reviewed and bounding appurtenance configurations for SST Types II and III tank designs were analyzed using finite element software. The bounding configurations for the Type II tanks considered four heavy offset pits with a central pit with and without a 36-inch diameter central post-construction penetration and four 42-inch diameter offset penetrations. The bounding configuration for the Type III tanks is a tank with two heavy offset pits and one heavy central pit. For each bounding configuration two finite element models are developed: a seismic analysis model and a thermal and operating loads analysis (TOLA) model. The TOLA models include a Type II or III thermal history, concrete cracking and thermal degradation, reinforcement yielding, and soil plasticity. Additionally, operating loads such as internal waste pressure and concentrated and distributed soil surface loads are applied to the TOLA model. The seismic model treats the tank concrete as linear elastic based on the present day degraded concrete properties. Also, in the seismic model the soil is treated as linear elastic while special techniques are used in the soil above the tank dome and along the tank wall to avoid soil arching and achieve the proper

  5. Optimal Methods of RTK-GPS/Accelerometer Integration to Monitor the Displacement of Structures

    PubMed Central

    Hwang, Jinsang; Yun, Hongsik; Park, Sun-Kyu; Lee, Dongha; Hong, Sungnam

    2012-01-01

    The accurate measurement of diverse displacements of structures is an important index for the evaluation of a structure’s safety. In this study, a comparative analysis was conducted to determine the integrated RTK-GPS/accelerometer method that can provide the most precise structure displacement measurements. For this purpose, three methods of calculating the dynamic displacements from the acceleration data were comparatively analyzed. In addition, two methods of determining dynamic, static, and quasi-static displacements by integrating the displacements measured from the RTK-GPS system and the accelerometer were also comparatively analyzed. To ensure precise comparison results, a cantilever beam was manufactured onto which diverse types of displacements were generated to evaluate the measurement accuracy by method. Linear variable differential transformer (LVDT) measurements were used as references for the evaluation to ensure accuracy. The study results showed that the most suitable method of measuring the dynamic displacement with the accelerometer was to calculate the displacement by filtering and double-integrating the acceleration data using the FIR band-pass filter. The integration method that uses frequency-based displacement extraction was most appropriate for the integrated RTK-GPS/accelerometer method of comprehensively measuring the dynamic, static, and quasi-static displacements. PMID:22368508

  6. Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity

    PubMed Central

    Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio

    2014-01-01

    Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484

  7. Efficient electronic integrals and their generalized derivatives for object oriented implementations of electronic structure calculations.

    PubMed

    Flocke, N; Lotrich, V

    2008-12-01

    For the new parallel implementation of electronic structure methods in ACES III (Lotrich et al., in preparation) the present state-of-the-art algorithms for the evaluation of electronic integrals and their generalized derivatives were implemented in new object oriented codes with attention paid to efficient execution on modern processors with a deep hierarchy of data storage including multiple caches and memory banks. Particular attention has been paid to define proper integral blocks as basic building objects. These objects are stand-alone units and are no longer tied to any specific software. They can hence be used by any quantum chemistry code without modification. The integral blocks can be called at any time and in any sequence during the execution of an electronic structure program. Evaluation efficiency of these integral objects has been carefully tested and it compares well with other fast integral programs in the community. Correctness of the objects has been demonstrated by several application runs on real systems using the ACES III program. PMID:18496792

  8. Lagrangian and Hamiltonian structures in an integrable hierarchy and space-time duality

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Caudrelier, Vincent; Doikou, Anastasia; Kundu, Anjan

    2016-01-01

    We define and illustrate the novel notion of dual integrable hierarchies, on the example of the nonlinear Schrödinger (NLS) hierarchy. For each integrable nonlinear evolution equation (NLEE) in the hierarchy, dual integrable structures are characterized by the fact that the zero-curvature representation of the NLEE can be realized by two Hamiltonian formulations stemming from two distinct choices of the configuration space, yielding two inequivalent Poisson structures on the corresponding phase space and two distinct Hamiltonians. This is fundamentally different from the standard bi-Hamiltonian or generally multitime structure. The first formulation chooses purely space-dependent fields as configuration space; it yields the standard Poisson structure for NLS. The other one is new: it chooses purely time-dependent fields as configuration space and yields a different Poisson structure at each level of the hierarchy. The corresponding NLEE becomes a space evolution equation. We emphasize the role of the Lagrangian formulation as a unifying framework for deriving both Poisson structures, using ideas from covariant field theory. One of our main results is to show that the two matrices of the Lax pair satisfy the same form of ultralocal Poisson algebra (up to a sign) characterized by an r-matrix structure, whereas traditionally only one of them is involved in the classical r-matrix method. We construct explicit dual hierarchies of Hamiltonians, and Lax representations of the triggered dynamics, from the monodromy matrices of either Lax matrix. An appealing procedure to build a multi-dimensional lattice of Lax pair, through successive uses of the dual Poisson structures, is briefly introduced.

  9. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. PMID:27612711

  10. Dose Limits for Man do not Adequately Protect the Ecosystem

    SciTech Connect

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words, if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.

  11. ENSURING ADEQUATE SAFETY WHEN USING HYDROGEN AS A FUEL

    SciTech Connect

    Coutts, D

    2007-01-22

    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  12. Adequate peritoneal dialysis: theoretical model and patient treatment.

    PubMed

    Tast, C

    1998-01-01

    The objective of this study was to evaluate the relationship between adequate PD with sufficient weekly Kt/V (2.0) and Creatinine clearance (CCR) (60l) and necessary daily dialysate volume. This recommended parameter was the result of a recent multi-centre study (CANUSA). For this there were 40 patients in our hospital examined and compared in 1996, who carried out PD for at least 8 weeks and up to 6 years. These goals (CANUSA) are easily attainable in the early treatment of many individuals with a low body surface area (BSA). With higher BSA or missing RRF (Residual Renal Function) the daily dose of dialysis must be adjusted. We found it difficult to obtain the recommended parameters and tried to find a solution to this problem. The simplest method is to increase the volume or exchange rate. The most expensive method is to change from CAPD to APD with the possibility of higher volume or exchange rates. Selection of therapy must take into consideration: 1. patient preference, 2. body mass, 3. peritoneal transport rates, 4. ability to perform therapy, 5. cost of therapy and 6. risk of peritonitis. With this information in mind, an individual prescription can be formulated and matched to the appropriate modality of PD. PMID:10392062

  13. DARHT - an `adequate` EIS: A NEPA case study

    SciTech Connect

    Webb, M.D.

    1997-08-01

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility Environmental Impact Statement (EIS) provides a case study that is interesting for many reasons. The EIS was prepared quickly, in the face of a lawsuit, for a project with unforeseen environmental impacts, for a facility that was deemed urgently essential to national security. Following judicial review the EIS was deemed to be {open_quotes}adequate.{close_quotes} DARHT is a facility now being built at Los Alamos National Laboratory (LANL) as part of the Department of Energy (DOE) nuclear weapons stockpile stewardship program. DARHT will be used to evaluate the safety and reliability of nuclear weapons, evaluate conventional munitions and study high-velocity impact phenomena. DARHT will be equipped with two accelerator-driven, high-intensity X-ray machines to record images of materials driven by high explosives. DARHT will be used for a variety of hydrodynamic tests, and DOE plans to conduct some dynamic experiments using plutonium at DARHT as well.

  14. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    SciTech Connect

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  15. Structurally Integrated Photoluminescent Chemical and Biological Sensors: An Organic Light-Emitting Diode-Based Platform

    NASA Astrophysics Data System (ADS)

    Shinar, J.; Shinar, R.

    The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.

  16. Photodiodes integration on a suspended ridge structure VOA using 2-step flip-chip bonding method

    NASA Astrophysics Data System (ADS)

    Kim, Seon Hoon; Kim, Tae Un; Ki, Hyun Chul; Kim, Doo Gun; Kim, Hwe Jong; Lim, Jung Woon; Lee, Dong Yeol; Park, Chul Hee

    2015-01-01

    In this works, we have demonstrated a VOA integrated with mPDs, based on silica-on-silicon PLC and flip-chip bonding technologies. The suspended ridge structure was applied to reduce the power consumption. It achieves the attenuation of 30dB in open loop operation with the power consumption of below 30W. We have applied two-step flipchip bonding method using passive alignment to perform high density multi-chip integration on a VOA with eutectic AuSn solder bumps. The average bonding strength of the two-step flip-chip bonding method was about 90gf.

  17. An integrated structural strength analysis method for Spar type floating wind turbine

    NASA Astrophysics Data System (ADS)

    Hu, Zhi-qiang; Liu, Yi; Wang, Jin

    2016-04-01

    An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.

  18. STARS: An integrated general-purpose finite element structural, aeroelastic, and aeroservoelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Gupta, Kajal K.

    1991-01-01

    The details of an integrated general-purpose finite element structural analysis computer program which is also capable of solving complex multidisciplinary problems is presented. Thus, the SOLIDS module of the program possesses an extensive finite element library suitable for modeling most practical problems and is capable of solving statics, vibration, buckling, and dynamic response problems of complex structures, including spinning ones. The aerodynamic module, AERO, enables computation of unsteady aerodynamic forces for both subsonic and supersonic flow for subsequent flutter and divergence analysis of the structure. The associated aeroservoelastic analysis module, ASE, effects aero-structural-control stability analysis yielding frequency responses as well as damping characteristics of the structure. The program is written in standard FORTRAN to run on a wide variety of computers. Extensive graphics, preprocessing, and postprocessing routines are also available pertaining to a number of terminals.

  19. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  20. Stress Engineering of Multi-pass Welds of Structural Steel to Enhance Structural Integrity

    NASA Astrophysics Data System (ADS)

    Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.

    2016-05-01

    In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.

  1. Relationship Between Orthographic-Motor Integration And Computer Use For The Production Of Creative And Well-Structured Written Text

    ERIC Educational Resources Information Center

    Christensen, Carol A.

    2004-01-01

    Background: Orthographic-motor integration refers to the way in which orthographic knowledge is integrated with fine-motor demands of handwriting. A strong relationship has shown to exist between orthographic-motor integration and students' ability to produce creative and well-structured written text (De La Paz & Graham, 1995). This relationship…

  2. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    van de Wiel, H. J.; Galagan, Y.; van Lammeren, T. J.; de Riet, J. F. J.; Gilot, J.; Nagelkerke, M. G. M.; Lelieveld, R. H. C. A. T.; Shanmugam, S.; Pagudala, A.; Hui, D.; Groen, W. A.

    2013-12-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

  3. Structural Integrity Of Low-Velocity Impacted C/SIC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knoche, R.; Drose, A.

    2012-07-01

    Carbon fibre reinforced silicon carbide (C/SiC) ceramic matrix composites (CMC) are most favourable for thermal protection systems & hot structures in re-entry vehicles since they offer superior heat resistance, high specific strength as well as a low coefficient of temperature expansion (CTE). To ensure the structural integrity of these C/SiC structures and thus mission safety all potential degradation effects during manufacturing and lifetime have to be considered. One of the most probable defects which may harm the structural integrity significantly can be caused by low-velocity impacts (LVI) which may occur during transportation and integration by e.g. dropping of tools. Thus the present study focuses on the residual mechanical and thermo-mechanical performance of C/SiC composites after being exposed to a low-velocity impact in terms of initial and residual mechanical performance, changes in microstructure, as well as thermo-mechanical performance through exposing specimens to multiple experimentally simulated re-entries. The results reveal the impact characteristics and damage mechanisms of C/SiC CMC exposed to a low-velocity impact and evidence the functional reliability as well as the damage tolerance of the C/SiC material investigated.

  4. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.

    PubMed

    Sun, Shao-Long; Wen, Jia-Long; Ma, Ming-Guo; Sun, Run-Cang

    2014-08-13

    An integrated process based on hydrothermal pretreatment (HTP) (i.e., 110-230 °C, 0.5-2.0 h) and alkaline post-treatment (2% NaOH at 90 °C for 2.0 h) has been performed for the production of xylooligosaccharide, lignin, and digestible substrate from sweet sorghum stems. The yield, purity, dissociation mechanisms, structural features, and structural transformations of alkali lignins obtained from the integrated process were investigated. It was found that the HTP process facilitated the subsequent alkaline delignification, releasing lignin with the highest yield (79.3%) and purity from the HTP residue obtained at 190 °C for 0.5 h. All of the results indicated that the cleavage of the β-O-4 linkages and degradation of β-β and β-5 linkages occurred under the harsh HTP conditions. Depolymerization and condensation reactions simultaneously occurred at higher temperatures (≥ 170 °C). Moreover, the thermostability of lignin was positively related to its molecular weight, but was also affected by the inherent structures, such as β-O-4 linkages and condensed units. These findings will enhance the understanding of structural transformations of the lignins during the integrated process and maximize the potential utilizations of the lignins in a current biorefinery process. PMID:25090032

  5. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate

    NASA Astrophysics Data System (ADS)

    Aridogan, U.; Basdogan, I.; Erturk, A.

    2014-04-01

    Vibration-based energy harvesting using piezoelectric cantilevers has been extensively studied over the past decade. As an alternative to cantilevered harvesters, piezoelectric patch harvesters integrated to thin plates can be more convenient for use in marine, aerospace and automotive applications since these systems are often composed of thin plate-like structures with various boundary conditions. In this paper, we present analytical electroelastic modeling of a piezoelectric energy harvester structurally integrated to a thin plate along with experimental validations. The distributed-parameter electroelastic model of the thin plate with the piezoceramic patch harvester is developed based on Kirchhoff’s plate theory for all-four-edges clamped (CCCC) boundary conditions. Closed-form steady-state response expressions for coupled electrical output and structural vibration are obtained under transverse point force excitation. Analytical electroelastic frequency response functions (FRFs) relating the voltage output and vibration response to force input are derived and generalized for different boundary conditions. Experimental validation and extensive theoretical analysis efforts are then presented with a case study employing a thin PZT-5A piezoceramic patch attached on the surface of a rectangular aluminum CCCC plate. The importance of positioning of the piezoceramic patch harvester is discussed through an analysis of dynamic strain distribution on the overall plate surface. The electroelastic model is validated by a comparison of analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. Finally, power generation performance of the structurally integrated piezoceramic patch harvester from multiple vibration modes is investigated analytically and experimentally.

  6. Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs

    NASA Astrophysics Data System (ADS)

    Aitharaju, Venkat; Liu, Malcolm; Dong, Jennifer; Zhang, Jimmy; Wang, Chuan-tao

    2005-08-01

    After gaining a huge success in applying stamping simulations and formability analysis to validate die face developments, GM moves forward to winning total manufacturability in stamping process. Of which, ensuring die structure integrity and minimizing weight is one of the important initiatives. Stamping die design (or solid modeling of stamping dies) was traditionally conducted by following the die design manuals and standards. For any design changes beyond the standards, however, there are no math-based tools available to die designers to verify the outcome of the changes. Die structural analysis (DSA) provides a math-tool to validate the design changes and quantify the safety factors. Several years ago, GM Manufacturing Engineering — Die Center started die structural analysis to meet the increasing demands of customer needs in various areas: (1) to validate design changes; (2) to identify root cause of die breakage during the tryout and stamping operations and propose repair schemes; (3) to optimize the die design for weight reduction; (4) to improve press throughput via optimizing the scrap chute openings, and (5) to provide a math-based tool to validate revisions to the current die design standards. In the integrated forming and die structural analysis, after successful line die surface developments, the forming loads (binder force, pad force, and forming tonnages) are extracted from forming simulations and applied to solid die members for structural analyses of stress, strains, and deflections. In the past few years, Die Center conducted static, dynamic and fatigue analysis for many dies that covers the die design changes requested by die design, die construction and stamping plants. This paper presents some fundamentals and issues of integrated forming and die structural analysis and illustrates the significant impact of die structural analysis on die design, die construction and production stamping.

  7. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  8. On Adequate Comparisons of Antenna Phase Center Variations

    NASA Astrophysics Data System (ADS)

    Schoen, S.; Kersten, T.

    2013-12-01

    One important part for ensuring the high quality of the International GNSS Service's (IGS) products is the collection and publication of receiver - and satellite antenna phase center variations (PCV). The PCV are crucial for global and regional networks, since they introduce a global scale factor of up to 16ppb or changes in the height component with an amount of up to 10cm, respectively. Furthermore, antenna phase center variations are also important for precise orbit determination, navigation and positioning of mobile platforms, like e.g. the GOCE and GRACE gravity missions, or for the accurate Precise Point Positioning (PPP) processing. Using the EUREF Permanent Network (EPN), Baire et al. (2012) showed that individual PCV values have a significant impact on the geodetic positioning. The statements are further supported by studies of Steigenberger et al. (2013) where the impact of PCV for local-ties are analysed. Currently, there are five calibration institutions including the Institut für Erdmessung (IfE) contributing to the IGS PCV file. Different approaches like field calibrations and anechoic chamber measurements are in use. Additionally, the computation and parameterization of the PCV are completely different within the methods. Therefore, every new approach has to pass a benchmark test in order to ensure that variations of PCV values of an identical antenna obtained from different methods are as consistent as possible. Since the number of approaches to obtain these PCV values rises with the number of calibration institutions, there is the necessity for an adequate comparison concept, taking into account not only the numerical values but also stochastic information and computational issues of the determined PCVs. This is of special importance, since the majority of calibrated receiver antennas published by the IGS origin from absolute field calibrations based on the Hannover Concept, Wübbena et al. (2000). In this contribution, a concept for the adequate

  9. Improving access to adequate pain management in Taiwan.

    PubMed

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment. PMID:26068436

  10. Thermodynamics and structure of a two-dimensional electrolyte by integral equation theory.

    PubMed

    Aupic, Jana; Urbic, Tomaz

    2014-05-14

    Monte Carlo simulations and integral equation theory were used to predict the thermodynamics and structure of a two-dimensional Coulomb fluid. We checked the possibility that integral equations reproduce Kosterlitz-Thouless and vapor-liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared to Monte Carlo data and the correctness of selected closure relations was assessed. Among selected closures hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz-Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected. PMID:24832290

  11. Thermodynamics and structure of a two-dimensional electrolyte by integral equation theory

    SciTech Connect

    Aupic, Jana; Urbic, Tomaz

    2014-05-14

    Monte Carlo simulations and integral equation theory were used to predict the thermodynamics and structure of a two-dimensional Coulomb fluid. We checked the possibility that integral equations reproduce Kosterlitz-Thouless and vapor-liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared to Monte Carlo data and the correctness of selected closure relations was assessed. Among selected closures hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz-Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected.

  12. Elliptical vortex solutions, integrable Ermakov structure, and Lax pair formulation of the compressible Euler equations.

    PubMed

    An, Hongli; Fan, Engui; Zhu, Haixing

    2015-01-01

    The 2+1-dimensional compressible Euler equations are investigated here. A power-type elliptic vortex ansatz is introduced and thereby reduction obtains to an eight-dimensional nonlinear dynamical system. The latter is shown to have an underlying integral Ermakov-Ray-Reid structure of Hamiltonian type. It is of interest to notice that such an integrable Ermakov structure exists not only in the density representations but also in the velocity components. A class of typical elliptical vortex solutions termed pulsrodons corresponding to warm-core eddy theory is isolated and its behavior is simulated. In addition, a Lax pair formulation is constructed and the connection with stationary nonlinear cubic Schrödinger equations is established. PMID:25679730

  13. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  14. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line.

    PubMed

    Sesé, Luis M

    2016-03-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing. PMID:26957169

  15. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    NASA Astrophysics Data System (ADS)

    Sesé, Luis M.

    2016-03-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  16. Structural Integrity of Gas-Filled Composite Overwrapped Pressure Vessels Subjected to Orbital Debris Impact

    NASA Astrophysics Data System (ADS)

    Telichev, Igor; Cherniaev, Aleksandr

    Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.

  17. A proposed standard for evaluating structural integrity of reinforced concrete beams by acoustic emission

    SciTech Connect

    Yuyama, Shigenori; Okamoto, Takahisa; Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Kishi, Teruo

    1999-07-01

    A series of studies has been performed to evaluate the structural integrity of reinforced concrete (RC) beams by acoustic emission (AE). Cyclic loadings were applied to RC beams with a single reinforcing bar, large repaired beams, beams deteriorated due to corrosion of reinforcement, and two beams with different damage levels in an aging dock. The test results demonstrated that the Kaiser effect starts to break down when shear cracking starts to play a primary role. It has been also shown that high AE activity is observed during unloadings after serious damage (slips between the concrete and the reinforcement or those between the original concrete and the repaired part) has occurred. A standard for evaluating structural integrity of RC beams by AE is proposed, based on these results.

  18. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    PubMed Central

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  19. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  20. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Palumbo, Anthony V.

    2006-06-01

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL serves as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project is in its second year. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates.

  1. Integration of thin films with fiber micro-structures for sensing applications

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Wang, Min; Zhang, Guilin

    2013-06-01

    The combination of fiber optics with micro-structure technologies and sensitive thin films offers great potential for the realization of novel sensor concepts. Minitured optical fiber sensors with thin films as sensitive elements could open new fields for optical fiber sensor applications. Thin films work as sensitive elements and transducer to get response and feedback from environments, optical fiber here are employed to signal carrier. This paper reviews some works on the integration of thin films with fiber micro-structures for sensing application, which are currently conducted at the National Engineering Laboratory for Fiber Optic Sensing Technologies, Wuhan University of Technology.

  2. A comparison of structure-preserving integrators for discrete thermoelastic systems

    NASA Astrophysics Data System (ADS)

    Krüger, M.; Groß, M.; Betsch, P.

    2011-06-01

    This paper contains a comparison of three recently proposed structure-preserving time-stepping schemes for nonlinear thermomechanical systems. These schemes can be considered as extension to coupled thermoelastic problems of well-established energy-momentum schemes for nonlinear elastodynamics. The present comparison is performed in the context of a finite-dimensional model problem for coupled thermomechanical systems: the thermoelastic double pendulum. It is shown that, similar to their purely mechanical ancestors, structure-preserving integrators for coupled thermoelasticity in general exhibit superior numerical stability and robustness properties.

  3. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    SciTech Connect

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  4. Structural integrity and durability for Space Shuttle main engine and future reusable space propulsion systems

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Gawrylowicz, H. T.

    1986-01-01

    NASA is conducting a program which will establish a technology base for the orderly evolution of reusable space propulsion systems. As part of that program, NASA initiated a Structural Integrity and Durability effort for advanced high-pressure oxygen-hydrogen rocket engine technology. That effort focuses on the development of: (1) accurate analytical models to describe flow fields; aerothermodynamic loads; structural responses; and fatigue/fracture, from which life prediction codes can be evolved; and (2) advanced instrumentation with capabilities to verify the codes in an SSME-like environment as well as the potential for future use as diagnostic sensors for real-time condition monitoring of critical engine components.

  5. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  6. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Clayton, Stanley R. (Inventor); Barfknecht, Andrew T. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  7. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  8. Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel

    2006-01-01

    The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.

  9. Improved accuracy for finite element structural analysis via a new integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Aiello, Robert A.; Berke, Laszlo

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  10. Improved accuracy for finite element structural analysis via an integrated force method

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Aiello, R. A.; Berke, L.

    1992-01-01

    A comparative study was carried out to determine the accuracy of finite element analyses based on the stiffness method, a mixed method, and the new integrated force and dual integrated force methods. The numerical results were obtained with the following software: MSC/NASTRAN and ASKA for the stiffness method; an MHOST implementation method for the mixed method; and GIFT for the integrated force methods. The results indicate that on an overall basis, the stiffness and mixed methods present some limitations. The stiffness method generally requires a large number of elements in the model to achieve acceptable accuracy. The MHOST method tends to achieve a higher degree of accuracy for course models than does the stiffness method implemented by MSC/NASTRAN and ASKA. The two integrated force methods, which bestow simultaneous emphasis on stress equilibrium and strain compatibility, yield accurate solutions with fewer elements in a model. The full potential of these new integrated force methods remains largely unexploited, and they hold the promise of spawning new finite element structural analysis tools.

  11. Evolutionary modularity and morphological integration in the haptoral anchor structures of Ligophorus spp. (Monogenea: Dactylogyridae).

    PubMed

    Rodríguez-González, A; Míguez-Lozano, R; Sarabeev, V; Balbuena, J A

    2016-09-01

    An important question in the study of phenotypic evolution is whether characters are independent of each other or behave and evolve as integrated modules. Morphological integration and modularity provide a powerful framework for the analysis of the evolution of morphological traits. We used geometric morphometrics and phylogenetically independent contrasts (PIC) to test four different modularity hypotheses in the haptoral anchors of 14 monogenean species of Ligophorus. Integration between the modular units identified was further evaluated with two-block partial least squares analysis. Roots and points represented two modules in the dorsal and ventral anchors, but modularity was not statistically supported when parasite phylogeny was accounted for, which may indicate convergent evolution related to host characteristics and gill morphology. In contrast, PIC revealed medial and lateral modules in ventral anchors only. Moreover, we found evidence for ventral and dorsal anchor pairs forming two modules, supporting the notion that they play different functional roles. Integration between all identified modules was strong. We conclude that there is modular structure in the anchors of Ligophorus spp., accounted by adaptive and phylogenetic factors acting at different levels, and ventral and dorsal anchors evolve as integrated modules with specific roles in attachment. PMID:27177719

  12. An integrated GPS-accelerometer data processing technique for structural deformation monitoring

    NASA Astrophysics Data System (ADS)

    Chan, W. S.; Xu, Y. L.; Ding, X. L.; Dai, W. J.

    2006-12-01

    Global Positioning System (GPS) is being actively applied to measure static and dynamic displacement responses of large civil engineering structures under winds. However, multipath effects and low sampling frequencies affect the accuracy of GPS for displacement measurement. On the other hand, accelerometers cannot reliably measure static and low-frequency structural responses, but can accurately measure high-frequency structural responses. Therefore, this paper explores the possibility of integrating GPS-measured signals with accelerometer-measured signals to enhance the measurement accuracy of total (static plus dynamic) displacement response of a structure. Integrated data processing techniques using both empirical mode decomposition (EMD) and an adaptive filter are presented. A series of motion simulation table tests are then performed at a site using three GPS receivers, one accelerometer, and one motion simulation table that can simulate various types of motion defined by input wave time histories around a pre-defined static position. The proposed data processing techniques are applied to the recorded GPS and accelerometer data to find both static and dynamic displacements. These results are compared with the actual displacement motions generated by the motion simulation table. The comparative results demonstrate that the proposed technique can significantly enhance the measurement accuracy of the total displacement of a structure.

  13. Integrating automated structured analysis and design with Ada programming support environments

    NASA Technical Reports Server (NTRS)

    Hecht, Alan; Simmons, Andy

    1986-01-01

    Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.

  14. Structure determination of an integral membrane protein at room temperature from crystals in situ

    SciTech Connect

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  15. Connecting the dots: how local structure affects global integration in infants

    PubMed Central

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2009-01-01

    Glass patterns are moirés created from a sparse random dot field paired with its spatially-shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4–5.5 month old infants are sensitive to the global structure of Glass patterns by measuring Visual Evoked Potentials (VEPs). Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image. PMID:19642888

  16. Development of Fast Reactor Structural Integrity Monitoring Technology Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Matsuba, Ken-Ichi; Ito, Chikara; Kawahara, Hirotaka; Aoyama, Takafumi

    Significant thermal stresses are loaded onto the structures of sodium-cooled fast reactor (SFR) due to high temperature and large temperature gradients associated with employing sodium coolant with its high thermal conductivity and low heat capacity. Therefore, it is important to monitor the temperature variation, related stress and displacement, and vibration in the cooling system piping and components in order to assure structural integrity while the reactor plant is in-service. SFR structural integrity monitoring can be enhanced by an optical fiber sensor, which is capable of continuous or dispersed distribution measurements of various properties such as radiation dose, temperature, strain, displacement and acceleration. In the experimental fast reactor Joyo, displacement and vibration measurements of the primary cooling system have been carried out using Fiber Bragg Grating (FBG) sensors to evaluate the durability and measurement accuracy of FBG sensors in a high gamma-ray environment. The data were successfully obtained with no significant signal loss up to an accumulated gamma-ray dose of approximately 4×104 Gy corresponding to 120 EFPDs (effective full power days) operation. Measured displacement of the piping support was nearly equal to the calculated thermal displacement. Measured vibration power spectra of the piping support were similar to those measured with a reference acceleration sensor. The measured results indicate that the FBG sensor is suitable for monitoring the displacement and vibration aspects of fast reactor cooling system integrity in a high gamma-ray environment.

  17. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules. PMID:23011346

  18. The brain structural hub of interhemispheric information integration for visual motion perception.

    PubMed

    Shimono, Masanori; Mano, Hiroaki; Niki, Kazuhisa

    2012-02-01

    We investigated the key anatomical structures mediating interhemispheric integration during the perception of apparent motion across the retinal midline. Previous studies of commissurotomized patients suggest that subcortical structures mediate interhemispheric transmission but the specific regions involved remain unclear. Here, we exploit interindividual variations in the propensity of normal subjects to perceive horizontal motion, in relation to vertical motion. We characterize these differences psychophysically using a Dynamic Dot Quartet (an ambiguous stimulus that induces illusory motion). We then tested for correlations between a tendency to perceive horizontal motion and fractional anisotropy (FA) (from structural diffusion tensor imaging), over subjects. FA is an indirect measure of the orientation and integrity of white matter tracts. Subjects who found it easy to perceive horizontal motion showed significantly higher FA values in the pulvinar. Furthermore, fiber tracking from an independently identified (subject-specific) visual motion area converged on the pulvinar nucleus. These results suggest that the pulvinar is an anatomical hub and may play a central role in interhemispheric integration. PMID:21670099

  19. A Versatile Simple Capture Assay for Assessing the Structural Integrity of MHC Multimer Reagents

    PubMed Central

    Malo, Courtney S.; Renner, Danielle N.; Van Keulen, Virginia S.; Girtman, Megan A.; Nevala, Wendy N.; Pavelko, Kevin D.; Gil, Diana; Schrum, Adam G.; Johnson, Aaron J.; Pease, Larry R.

    2015-01-01

    Antigen-specific T cell responses can be visualized using MHC:peptide multimers. In cases where robust T cell controls are not readily available to assess the integrity of multimer reagents prior to analyzing limited sample, the ability to assess the structural integrity of MHC multimers before their use in critical experiments would be useful. We present a method to probe the structural integrity of MHC multimers using antibodies specific for conformational determinants. Beads coated with anti-mouse Ig are incubated with conformation-specific mouse monoclonal antibody and then with fluorescently tagged MHC multimer. The ability of the bead to capture the labeled multimer can be measured semi-quantitatively by flow cytometry. In this manner, the correct folding of MHC multimers can be visualized and batches of multimer can be compared for quality control. Because there are multiple conformational epitopes formed by various molecular interactions among heavy chain, peptide, and β2M, this capture assay can assess the fidelity of each aspect of multimer structure, depending on the availability of antibodies. The described approach could be particularly useful for studies using irreplaceable samples, including patient samples collected in clinical trials. PMID:26389800

  20. Structural damage evolution assessment using the regularised time step integration method

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Peng; Maung, Than Soe

    2014-09-01

    This paper presents an approach to identify both the location and severity evolution of damage in engineering structures directly from measured dynamic response data. A relationship between the change in structural parameters such as stiffness caused by structural damage development and the measured dynamic response data such as accelerations is proposed, on the basis of the governing equations of motion for the original and damaged structural systems. Structural damage parameters associated with time are properly chosen to reflect both the location and severity development over time of damage in a structure. Basic equations are provided to solve the chosen time-dependent damage parameters, which are constructed by using the Newmark time step integration method without requiring a modal analysis procedure. The Tikhonov regularisation method incorporating the L-curve criterion for determining the regularisation parameter is then employed to reduce the influence of measurement errors in dynamic response data and then to produce stable solutions for structural damage parameters. Results for two numerical examples with various simulated damage scenarios show that the proposed method can accurately identify the locations of structural damage and correctly assess the evolution of damage severity from information on vibration measurements with uncertainties.

  1. Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

    SciTech Connect

    Peng, Jamy C.

    2007-05-05

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  2. Systematic Concerns Relating to the Adequacy of Existing Elementary/Secondary Organizational Structures to Adequately Provide Educational Excellence. A Symposium. Sponsored by the International Society for Educational Planning and the Mid-South Educational Research Association (New Orleans, Louisiana, November 16, 1984).

    ERIC Educational Resources Information Center

    Beach, Robert H.; And Others

    Educational quality and the organizational structure of the nation's educational system are examined in relation to the call for reform in American public education in this symposium paper. In "Introduction and Problem Statement," Robert H. Beach states that problems in American education stem from a structurally dysfunctional system, are not…

  3. The cumulative effect of genetic polymorphisms on depression and brain structural integrity.

    PubMed

    Kostic, Milutin; Canu, Elisa; Agosta, Federica; Munjiza, Ana; Novakovic, Ivana; Dobricic, Valerija; Maria Ferraro, Pilar; Miler Jerkovic, Vera; Pekmezovic, Tatjana; Lecic Tosevski, Dusica; Filippi, Massimo

    2016-06-01

    In major depressive disorder (MDD), the need to study multiple-gene effect on brain structure is emerging. Our aim was to assess the effect of accumulation of specific SERT, BDNF and COMT gene functional polymorphisms on brain structure in MDD patients. Seventy-seven MDD patients and 66 controls underwent a clinical assessment, genetic testing and MRI scan. Compared with controls, patients were more BDNF-Val homozygotes, COMT-Met carriers and SERT-L' carriers. Thus, subjects were split into three groups: 1. High-frequency susceptibility polymorphism group (hfSP, subjects with all three SPs); 2. Intermediate-frequency SP group (ifSP, two SPs); and 3. Low-frequency SP group (lfSP, one/none SP). Cortical thickness, volumetry of hippocampus, amygdala and subcortical structures, and white matter (WM) tract integrity were assessed. Compared to controls, hfSP patients showed thinning of the middle frontal cortex bilaterally, left frontal pole, and right lateral occipital cortex, and smaller hippocampal volume bilaterally; and both hfSP and lfSP patient groups showed thinning of the left inferior parietal cortex and reduced WM integrity of the corpus callosum. Compared to patients, hfSP controls showed greater integrity of the fronto-occipital cortices and corpus callosum. We showed that cortical prefrontal and occipital damage of MDD patients is modulated by the SP accumulation, while damage to the parietal cortex and corpus callosum seem to be independent of genetic accumulation. HfSP controls may experience protective mechanisms leading to a preserved integrity of critical cortical and WM regions. Investigating the effect of multiple genes is promising to understand the pathological mechanisms underlying MDD. Hum Brain Mapp 37:2173-2184, 2016. © 2016 Wiley Periodicals, Inc. PMID:26956059

  4. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    PubMed

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342

  5. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    PubMed Central

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system. PMID:25140342

  6. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.

    1989-01-01

    The progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The convective viscous integral formulation was derived and implemented in the general purpose computer program GP-BEST. The new convective kernel functions, in turn, necessitated the development of refined integration techniques. As a result, however, since the physics of the problem is embedded in these kernels, boundary element solutions can now be obtained at very high Reynolds number. Flow around obstacles can be solved approximately with an efficient linearized boundary-only analysis or, more exactly, by including all of the nonlinearities present in the neighborhood of the obstacle. The other major accomplishment was the development of a comprehensive fluid-structure interaction capability within GP-BEST. This new facility is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code (GP-BEST) can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach.

  7. Integration of computer imaging and sensor data for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Zaurin, R.; Catbas, F. N.

    2010-01-01

    The condition of civil infrastructure systems (CIS) changes over their life cycle for different reasons such as damage, overloading, severe environmental inputs, and ageing due normal continued use. The structural performance often decreases as a result of the change in condition. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, integrated use of video images and sensor data in the context of structural health monitoring is demonstrated as promising technologies for the safety of civil structures in general and bridges in particular. First, the challenges and possible solutions to using video images and computer vision techniques for structural health monitoring are presented. Then, the synchronized image and sensing data are analyzed to obtain unit influence line (UIL) as an index for monitoring bridge behavior under identified loading conditions. Subsequently, the UCF 4-span bridge model is used to demonstrate the integration and implementation of imaging devices and traditional sensing technology with UIL for evaluating and tracking the bridge behavior. It is shown that video images and computer vision techniques can be used to detect, classify and track different vehicles with synchronized sensor measurements to establish an input-output relationship to determine the normalized response of the bridge.

  8. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  9. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  10. Influence of time lag and noncolocation on integrated structural/control system designs

    NASA Technical Reports Server (NTRS)

    Manning, R. A.; Schmit, L. A.

    1989-01-01

    Recent research efforts have led to the development of simultaneous structural/control system design procedures. Absent in any of the work is the time delay present in the control system sensors and actuators and the computational time delay for synthesizing actuator commands from sensor measurements. Madden has shown that the time delay present in the control system can have profound effects on the resulting system performance and stability regardless of its source. In addition, many of the simultaneous structural/control system design procedures have used colocated sensors and actuators for implementation of the control system. In actual practice, colocation in not always possible. The issue of stability degradation when using noncolocated sensor and actuators was raised. The integrated structural/control system design procedure is extended to include the effects of time lag and noncolocation of sensors and actuators on the resulting optimum designs.

  11. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines.

    PubMed

    Leitner, Alexander; Faini, Marco; Stengel, Florian; Aebersold, Ruedi

    2016-01-01

    In recent years, chemical crosslinking of protein complexes and the identification of crosslinked residues by mass spectrometry (XL-MS; sometimes abbreviated as CX-MS) has become an important technique bridging mass spectrometry (MS) and structural biology. By now, XL-MS is well established and supported by publicly available resources as a convenient and versatile part of the structural biologist's toolbox. The combination of XL-MS with cryo-electron microscopy (cryo-EM) and/or integrative modeling is particularly promising to study the topology and structure of large protein assemblies. Among the targets studied so far are proteasomes, ribosomes, polymerases, chromatin remodelers, and photosystem complexes. Here we provide an overview of recent advances in XL-MS, the current state of the field, and a cursory outlook on future challenges. PMID:26654279

  12. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  13. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes

    USGS Publications Warehouse

    Bedrosian, P.A.

    2007-01-01

    As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.

  14. Survivability of integrated PVDF film sensors to accelerated ageing conditions in aeronautical/aerospace structures

    NASA Astrophysics Data System (ADS)

    Guzman, E.; Cugnoni, J.; Gmür, T.; Bonhôte, P.; Schorderet, A.

    2013-06-01

    This work validates the use of integrated polyvinylidene fluoride (PVDF) film sensors for dynamic testing, even after being subjected to UV-thermo-hygro-mechanical accelerated ageing conditions. The verification of PVDF sensors’ survivability in these environmental conditions, typically confronted by civil and military aircraft, is the main concern of the study. The evaluation of survivability is made by a comparison of dynamic testing results provided by the PVDF patch sensors subjected to an accelerated ageing protocol, and those provided by neutral non-aged sensors (accelerometers). The available measurements are the time-domain response signals issued from a modal analysis procedure, and the corresponding frequency response functions (FRF). These are in turn used to identify the constitutive properties of the samples by extraction of the modal parameters, in particular the natural frequencies. The composite specimens in this study undergo different accelerated ageing processes. After several weeks of experimentation, the samples exhibit a loss of stiffness, represented by a decrease in the elastic moduli down to 10%. Despite the ageing, the integrated PVDF sensors, subjected to the same ageing conditions, are still capable of providing reliable data to carry out a close followup of these changes. This survivability is a determinant asset in order to use integrated PVDF sensors to perform structural health monitoring (SHM) in the future of full-scale composite aeronautical structures.

  15. SHELXT – Integrated space-group and crystal-structure determination

    SciTech Connect

    Sheldrick, George M.

    2015-01-01

    SHELXT automates routine small-molecule structure determination starting from single-crystal reflection data, the Laue group and a reasonable guess as to which elements might be present. The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.

  16. Development and Integration of Hardware and Software for Active-Sensors in Structural Monitoring

    SciTech Connect

    Timothy G.S. Overly

    2007-10-15

    Structural Health Monitoring (SHM) promises to deliver great benefits to many industries. Primarily among them is a potential for large cost savings in maintenance of complex structures such as aircraft and civil infrastructure. However, several large obstacles remain before widespread use on structures can be accomplished. The development of three components would address many of these obstacles: a robust sensor validation procedure, a low-cost active-sensing hardware and an integrated software package for transition to field deployment. The research performed in this thesis directly addresses these three needs and facilitates the adoption of SHM on a larger scale, particularly in the realm of SHM based on piezoelectric (PZT) materials. The first obstacle addressed in this thesis is the validation of the SHM sensor network. PZT materials are used for sensor/actuators because of their unique properties, but their functionality also needs to be validated for meaningful measurements to be recorded. To allow for a robust sensor validation algorithm, the effect of temperature change on sensor diagnostics and the effect of sensor failure on SHM measurements were classified. This classification allowed for the development of a sensor diagnostic algorithm that is temperature invariant and can indicate the amount and type of sensor failure. Secondly, the absence of a suitable commercially-available active-sensing measurement node is addressed in this thesis. A node is a small compact measurement device used in a complete system. Many measurement nodes exist for conventional passive sensing, which does not actively excite the structure, but there are no measurement nodes available that both meet the active-sensing requirements and are useable outside the laboratory. This thesis develops hardware that is low-power, active-sensing and field-deployable. This node uses the impedance method for SHM measurements, and can run the sensor diagnostic algorithm also developed here

  17. Integrated controls-structures design methodology development for a class of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.

    1990-01-01

    individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.

  18. Exact Integration Of Uniaxial Elasto-Plastic Laws For Nonlinear Structural Analysis

    SciTech Connect

    Marmo, Francesco; Rosati, Luciano; Sessa, Salvatore

    2008-07-08

    The recently formulated fiber-free approach [1,2] is used for the analytical integration of non-linear elastic and elasto-plastic normal stresses acting on beam cross sections. It is based on the subdivision of the section in suitable subdomains, which are updated during the analysis of the structural model, and the use of analytical formulas which require the constitutive law to be integrated four times as a maximum. In particular we illustrate the application of the fiber-free approach to the well known concrete model by Mander et al. [3] since its expression belongs to the set of countinous functions which do not admit a primitive. Some representative numerical tests highlight the correctness and the computational efficiency of the fiber-free approach with repsect to the traditional fiber approach, to date the only existing method to perform a non-linear sectional analysis.

  19. Integration of a UV curable polymer lens and MUMPs structures on a SOI optical bench

    NASA Astrophysics Data System (ADS)

    Hsieh, Jerwei; Hsiao, Sheng-Yi; Lai, Chun-Feng; Fang, Weileun

    2007-08-01

    This work presents the design concept of integrating a polymer lens, poly-Si MUMPs and single-crystal-silicon HARM structures on a SOI wafer to form a silicon optical bench. This approach enables the monolithic integration of various optical components on the wafer so as to improve the design flexibility of the silicon optical bench. Fabrication processes, including surface and bulk micromachining on the SOI wafer, have been established to realize bi-convex spherical polymer lenses with in-plane as well as out-of-plane optical axes. In addition, a micro device consisting of an in-plane polymer lens, a thick fiber holder and a mechanical shutter driven by an electrothermal actuator is also demonstrated using the present approach. In summary, this study significantly improves the design flexibility as well as the functions of SiOBs.

  20. New classes of integrals inherent in the mathematical structure of extended equations describing superconducting systems

    NASA Astrophysics Data System (ADS)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2015-06-01

    In this paper, we discuss the mathematical structure of the s-wave superconducting gap and other quantitative characteristics of superconducting systems. In particular, we evaluate and discuss integrals inherent in fundamental equations describing superconducting systems. The results presented here extend the approach formulated by Abrikosov and Maki, which was restricted to the first-order expansion. A few infinite families of integrals are derived and allow us to express the fundamental equations by means of analytic formulas. They can be then exploited in order to find some quantitative characteristics of superconducting systems by the method of successive approximations. We show that the results can be applied to some modern formalisms in order to study high-Tc superconductors and other superconducting materials of the new generation.

  1. Multi-scale analysis of Proterozoic shear zones: An integrated structural and geophysical study

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Betts, Peter G.; Collins, Alan S.; Schaefer, Bruce F.

    2009-11-01

    Structural mapping of poorly exposed shear zone outcrops is integrated with the analysis of aeromagnetic and Bouguer gravity data to develop a multi-scale kinematic and relative overprinting chronology for the Palaeoproterozoic Tallacootra Shear Zone, Australia. D 2 mylonitic fabrics at outcrop record Kimban-aged (ca. 1730-1690 Ma) N-S shortening and correlate with SZ 1 movements. Overprinting D 3 sinistral shear zones record the partitioning of near-ideal simple shear and initiated Riedel to regional-scale SZ 2 strike-slip on the Tallacootra Shear Zone (SZ 2). Previously undocumented NE-SW extension led to the emplacement of aplite dykes into the shear zone and can be correlated to the (ca. 1595-1575 Ma) Hiltaba magmatic event. D 4 dextral transpression during the (ca. 1470-1450 Ma) Coorabie Orogeny reactivated the Tallacootra Shear Zone (SZ 2-R4) exhuming lower crust of the northwestern Fowler Domain within a positive flower structure. This latest shear zone movement is related to a system of west-dipping shear zones that penetrate the crust and sole into a lithospheric detachment indicating wholesale crustal shortening. These methods demonstrate the value of integrating multi-scale structural analyses for the study of shear zones with limited exposure.

  2. Type IV Pilus Proteins Form an Integrated Structure Extending from the Cytoplasm to the Outer Membrane

    PubMed Central

    Li, Chengyun; Wallace, Regina A.; Black, Wesley P.; Li, Yue-zhong; Yang, Zhaomin

    2013-01-01

    The bacterial type IV pilus (T4P) is the strongest biological motor known to date as its retraction can generate forces well over 100 pN. Myxococcus xanthus, a δ-proteobacterium, provides a good model for T4P investigations because its social (S) gliding motility is powered by T4P. In this study, the interactions among M. xanthus T4P proteins were investigated using genetics and the yeast two-hybrid (Y2H) system. Our genetic analysis suggests that there is an integrated T4P structure that crosses the inner membrane (IM), periplasm and the outer membrane (OM). Moreover, this structure exists in the absence of the pilus filament. A systematic Y2H survey provided evidence for direct interactions among IM and OM proteins exposed to the periplasm. For example, the IM lipoprotein PilP interacted with its cognate OM protein PilQ. In addition, interactions among T4P proteins from the thermophile Thermus thermophilus were investigated by Y2H. The results indicated similar protein-protein interactions in the T4P system of this non-proteobacterium despite significant sequence divergence between T4P proteins in T. thermophilus and M. xanthus. The observations here support the model of an integrated T4P structure in the absence of a pilus in diverse bacterial species. PMID:23922942

  3. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

    SciTech Connect

    Petti, Jason P.

    2007-01-01

    This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

  4. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge

  5. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    NASA Astrophysics Data System (ADS)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier

  6. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  7. Integrated Analysis Capability pilot computer program. [large space structures and data management

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1981-01-01

    An integrated analysis capability (IAC) computer software package was developed for the design analysis and performance evaluation of large space systems. The IAC aids the user in coupling the required technical disciplines (initially structures, thermal and controls), providing analysis solution paths which reveal critical interactive effects in order to study loads, stability and mission performance. Existing technical software modules, having a wide existing user community, are combined with the interface software to bridge between the different technologies and mathematical modeling techniques. The package is supported by executive, data management and interactive graphics software, with primary development within the superminicomputer environment.

  8. ATLAS, an integrated structural analysis and design system. Volume 3: User's manual, input and execution data

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L. (Editor)

    1979-01-01

    The input data and execution control statements for the ATLAS integrated structural analysis and design system are described. It is operational on the Control Data Corporation (CDC) 6600/CYBER computers in a batch mode or in a time-shared mode via interactive graphic or text terminals. ATLAS is a modular system of computer codes with common executive and data base management components. The system provides an extensive set of general-purpose technical programs with analytical capabilities including stiffness, stress, loads, mass, substructuring, strength design, unsteady aerodynamics, vibration, and flutter analyses. The sequence and mode of execution of selected program modules are controlled via a common user-oriented language.

  9. The effect of thermal stresses on the integrity of three built-up aircraft structures

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1980-01-01

    A Mach 6 flight was simulated in order to examine heating effects on three frame/skin specimens. The specimens included: a titanium truss frame with a lockalloy skin; a stainless steel z-frame with a lockalloy skin; and a titanium z-frame with a lockalloy skin. Thermal stresses and temperature were measured on these specimens for the purpose of examining their efficiency, performance, and integrity. Measured thermal stresses were examined with respect to material yield strengths, buckling criteria, structural weight, and geometric locations. Principal thermal stresses were studied from the standpoint of uniaxial stress assumptions. Measured thermal stresses were compared to predicted values.

  10. Surfaces specified by integrable systems of partial differential equations determined by structure equations and Lax pair

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    2010-04-01

    A system of evolution equations can be developed from the structure equations for a submanifold embedded in a three-dimensional space. It is seen how these same equations can be obtained from a generalized matrix Lax pair provided a single constraint equation is imposed. This can be done in Euclidean space as well as in Minkowski space. The integrable systems which result from this process can be thought of as generalizing the SO(3) and SO(2,1) Lax pairs which have been studied previously.

  11. Structural Integrity of Proteins under Applied Bias during Solid-State Nanopore Translocation

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad R.; Khanzada, Raja Raheel; Mahmood, Mohammed A. I.; Ashfaq, Adnan; Iqbal, Samir M.

    2015-03-01

    The translocation behavior of proteins through solid-state nanopores can be used as a new way to detect and identify proteins. The ionic current through a nanopore that flows under applied bias gets perturbed when a biomolecule traverses the Nanopore. It is important for a protein detection scheme to know of any changes in the three-dimensional structure of the molecule during the process. Here we report the data on structural integrity of protein during translocation through nanopore under different applied biases. Nanoscale Molecular Dynamic was used to establish a framework to study the changes in protein structures as these travelled across the nanopore. The analysis revealed the contributions of structural changes of protein to its ionic current signature. As a model, thrombin protein crystalline structure was imported and positioned inside a 6 nm diameter pore in a 6 nm thick silicon nitride membrane. The protein was solvated in 1 M KCl at 295 K and the system was equilibrated for 20 ns to attain its minimum energy state. The simulation was performed at different electric fields from 0 to 1 kCal/(mol.Å.e). RMSD, radial distribution function, movement of the center of mass and velocity of the protein were calculated. The results showed linear increments in the velocity and perturbations in ionic current profile with increasing electric potential. Support Acknowledged from NSF through ECCS-1201878.

  12. Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy.

    PubMed

    Ramachandran, Srinivasan; Arce, Fernando Teran; Patel, Nirav R; Quist, Arjan P; Cohen, Daniel A; Lal, Ratnesh

    2014-01-01

    Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. PMID:24651823

  13. Evaluation of an adaptive unstructured remeshing technique for integrated fluid-thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1990-01-01

    An adaptive unstructured remeshing technique is evaluated for integrated fluid-thermal-structural analysis. The technique is combined with the finite element method to solve: (1) the Navier-Stokes equations for high-speed compressible flow, (2) the energy equation for the structural-thermal response, and (3) the quasi-static equilibrium equations for the structural response. The remeshing technique and the analysis solution procedure are described. The effectiveness of the approach is evaluated with two applications studies. The flow analysis of Mach 8 shock-shock interference on a three-inch-diameter cylinder is used as the first application study to demonstrate the capability of the remeshing technique and to examine proper remeshing indicators for the inviscid and boundary layer regions. The applicability of the approach for the thermal and structural analyses of the structure is evaluated in the second application study of a 0.25-inch-diameter convectively cooled leading edge subjected to intense aerodynamic heating. Issues associated with remeshing indicators for thermal stress problems are identified.

  14. Robust classification of protein variation using structural modelling and large-scale data integration

    PubMed Central

    Baugh, Evan H.; Simmons-Edler, Riley; Müller, Christian L.; Alford, Rebecca F.; Volfovsky, Natalia; Lash, Alex E.; Bonneau, Richard

    2016-01-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR to de novo variants associated with autism spectrum disorders. PMID:26926108

  15. Robust classification of protein variation using structural modelling and large-scale data integration.

    PubMed

    Baugh, Evan H; Simmons-Edler, Riley; Müller, Christian L; Alford, Rebecca F; Volfovsky, Natalia; Lash, Alex E; Bonneau, Richard

    2016-04-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR tode novovariants associated with autism spectrum disorders. PMID:26926108

  16. Limit Load and Buckling Analysis for Assessing Hanford Single-Shell Tank Dome Structural Integrity

    SciTech Connect

    Johnson, Kenneth I.; Deibler, John E.; Julyk, Larry J.; Karri, Naveen K.; Pilli, Siva Prasad

    2012-12-07

    The U.S. Department of Energy, Office of River Protection has commissioned a structural analysis of record (AOR) for the Hanford single shell tanks (SSTs) to assess their structural integrity. The analysis used finite element techniques to predict the tank response to the historical thermal and operating loads. The analysis also addressed the potential tank response to a postulated design basis earthquake. The combined response to static and seismic loads was then evaluated against the design requirements of American Concrete Institute (ACI) standard, ACI-349-06, for nuclear safety-related concrete structures. Further analysis was conducted to estimate the plastic limit load and the elastic-plastic buckling capacity of the tanks. The limit load and buckling analyses estimate the margin between the applied loads and the limiting load capacities of the tank structure. The potential for additional dome loads from waste retrieval equipment and the addition of large dome penetrations to accommodate retrieval equipment has generated additional interest in the limit load and buckling analyses. This paper summarizes the structural analysis methods that were used to evaluate the limit load and buckling of the single shell tanks.

  17. Cell-free Expression and In Meso Crystallisation of an Integral Membrane Kinase for Structure Determination

    PubMed Central

    Shah, Syed Tasadaque Ali; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank; Caffrey, Martin

    2014-01-01

    Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a 3-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipidic mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28 Å resolution. The quality of cellular and cell-free expressed kinase samples have been evaluated systematically by comparing i) spectroscopic properties, ii) purity and oligomer formation, iii) lipid content and iv) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved. PMID:25012698

  18. Evaluation of an adaptive unstructured remeshing technique for integrated fluid-thermal-structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1990-01-01

    An adaptive unstructured remeshing technique is evaluated for integrated fluid-thermal-structural analysis. The technique is combined with the finite element method to solve: (1) the Navier-Stokes equations for high-speed compressible flow; (2) the energy equation for the structural-thermal response; and (3) the quasi-static equilibrium equations for the structural response. The remeshing technique and the analysis solution procedure are described. The effectiveness of the approach is evaluated with two application studies. The flow analysis of Mach 8 shock-shock interference on a three-inch-diameter cylinder is used as the first application study to demonstrate the capability of the remeshing technique and to examine proper remeshing indicators for the inviscid and boundary layer regions. The applicability of the approach for the thermal and structural analyses of the structure is evaluated in the second application study of a 0.25-inch-diameter convectively cooled leading edge subjected to intense aerodynamic heating. Issues associated with remeshing indicators for thermal stress problems are identified.

  19. Authentication, integrity, and confidentiality in DICOM-structured reporting: concept and implementation

    NASA Astrophysics Data System (ADS)

    Riesmeier, Joerg; Eichelberg, Marco; Kleber, Klaus; Groenemeyer, Dietrich H.; Oosterwijk, Herman J.; Jensch, Peter F.

    2002-05-01

    With the release of 'DICOM Structured Reporting' (SR) as an official extension of the standard about two years ago, DICOM has entered a new domain that is only indirectly related to medical imaging. Basically, DICOM SR is a general model allowing to encode medical reports in a structured manner in DICOM's tag-based format. Therefore, the existing DICOM infrastructure can be used to archive and communicate structured reports, with only relatively small changes to existing systems. As a consequence of the introduction of medical reports in a digital form, the relevance of security measures increases significantly. We have developed a prototype implementation of DICOM structured reporting together with the new security extensions for secure transport connections and digital signatures. The application allows to create, read and modify any SR document, to digitally sign an SR document in whole or part and to transmit such documents over a network. While the secure transport connection protects data from modifications or unauthorized access only during transmission, digital signatures provide a lifetime integrity check and, therefore, maintain the legal document status of structured reports. The application has been successfully demonstrated at RSNA 2000 and ECR 2001, and is freely available on the Internet.

  20. Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination.

    PubMed

    Boland, Coilín; Li, Dianfan; Shah, Syed Tasadaque Ali; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank; Caffrey, Martin

    2014-12-01

    Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a three-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high-quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipid mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28-Å resolution. The quality of cellular and cell-free-expressed kinase samples has been evaluated systematically by comparing (1) spectroscopic properties, (2) purity and oligomer formation, (3) lipid content and (4) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free-expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved. PMID:25012698

  1. Looking for an adequate quality criterion for depth coding

    NASA Astrophysics Data System (ADS)

    Kerbiriou, Paul; Boisson, Guillaume

    2010-02-01

    This paper deals with 3DTV, more especially with 3D content transmission using disparity-based format. In 3DTV, the problem of measuring the stereoscopic quality of a 3D content remains open. Depth signal degradations due to 3DTV transmission will induce new types of artifacts in the final rendered views. Whereas we have some experience regarding the issue of texture coding, the issue of depth coding consequences is rather unknown. In this paper we focus on that particular issue. For that purpose we considered LDV contents (Layered Depth Video) and performed various encoding of their depth information - i.e. depth maps plus depth occlusions layers - using MPEG-4 Part 10 AVC/H.264 MVC. We investigate the impact of depth coding artifacts on the quality of the final views. To this end, we compute the correlation between depth coding errors with the quality of the synthesized views. The criteria used for synthesized views include MSE and structural criteria such as SSIM. The criteria used for depth maps include also a topological measure in the 3D space (the Hausdorff distance). Correlations between the two criteria sets are presented. Trends in function of quantization are also discussed.

  2. Percentage of Adults with High Blood Pressure Whose Hypertension Is Adequately Controlled

    MedlinePlus

    ... is Adequately Controlled Percentage of Adults with High Blood Pressure Whose Hypertension is Adequately Controlled Heart disease ... Survey. Age Group Percentage of People with High Blood Pressure that is Controlled by Age Group f94q- ...

  3. An Empirical Test of Tinto's Integration Framework for Community Colleges Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Santos-George, Arlene A.

    2012-01-01

    This dissertation empirically tested Tinto's student integration theory through structural equation modeling using a national sample of 2,847 first-time entering community college students. Tinto theorized that the more academically and socially integrated a student is to the college environment, the more likely the student will persist…

  4. Modeling the Relationships among Topical Knowledge, Anxiety, and Integrated Speaking Test Performance: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Huang, Heng-Tsung Danny

    2010-01-01

    Thus far, few research studies have examined the practice of integrated speaking test tasks in the field of second/foreign language oral assessment. This dissertation utilized structural equation modeling (SEM) and qualitative techniques to explore the relationships among topical knowledge, anxiety, and integrated speaking test performance and to…

  5. Measuring Integrated Socioemotional Guidance at School: Factor Structure and Reliability of the Socioemotional Guidance Questionnaire (SEG-Q)

    ERIC Educational Resources Information Center

    Jacobs, Karen; Struyf, Elke

    2013-01-01

    Socioemotional guidance of students has recently become an integral part of education, however no instrument exists to measure integrated socioemotional guidance. This study therefore examines the factor structure and reliability of the Socioemotional Guidance Questionnaire. Psychometric properties of the Socioemotional Guidance Questionnaire and…

  6. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  7. NETTAB 2014: From high-throughput structural bioinformatics to integrative systems biology.

    PubMed

    Romano, Paolo; Cordero, Francesca

    2016-01-01

    The fourteenth NETTAB workshop, NETTAB 2014, was devoted to a range of disciplines going from structural bioinformatics, to proteomics and to integrative systems biology. The topics of the workshop were centred around bioinformatics methods, tools, applications, and perspectives for models, standards and management of high-throughput biological data, structural bioinformatics, functional proteomics, mass spectrometry, drug discovery, and systems biology.43 scientific contributions were presented at NETTAB 2014, including keynote, special guest and tutorial talks, oral communications, and posters. Full papers from some of the best contributions presented at the workshop were later submitted to a special Call for this Supplement.Here, we provide an overview of the workshop and introduce manuscripts that have been accepted for publication in this Supplement. PMID:26960985

  8. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  9. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  10. Techniques and equipment for assessing the structural integrity of subterranean tower anchor rods

    DOEpatents

    Hinz, William R.; Parker, Matthew J.

    2001-01-01

    Techniques and equipment for evaluating structural integrity of buried anchor rods in situ are disclosed. The techniques avoid excavation of soil and avoid, or at least reduce, the possibility of damage to the rods or the concrete in which they may be embedded when evaluations are conducted. Instead, ultrasonic energy is transmitted through the rod from a portable transducer, and returned energy (in either or both of direct and mode-converted states) may be analyzed to assist in detecting flaws, corrosion, wastage, or other degradation of the rod. Data from a field evaluation may be compared with baseline data maintained either for a specific rod or for rods of similar composition and length (or both), and periodic field evaluations of a rod may be used to analyze trends in its structure over time.

  11. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  12. The impact of active controls technology on the structural integrity of aeronautical vehicles

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry; Kaynes, Ian; Lee, Ben; Sparrow, James

    1993-01-01

    The findings of an investigation conducted under the auspices of The Technical Cooperation Program (TTCP) to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle are summarized. Important points concerning structural technology considerations implicit in applying active controls technology in new aircraft are summarized. These points are well founded and based upon information received from within the aerospace industry and government laboratories, acquired by sponsoring workshops which brought together experts from contributing and interacting technical disciplines, and obtained by conducting a case study to independently assess the state of the technology. The paper concludes that communication between technical disciplines is absolutely essential in the design of future high performance aircraft.

  13. Integrated photonic reservoir computing based on hierarchical time-multiplexing structure.

    PubMed

    Zhang, Hong; Feng, Xue; Li, Boxun; Wang, Yu; Cui, Kaiyu; Liu, Fang; Dou, Weibei; Huang, Yidong

    2014-12-15

    An integrated photonic reservoir computing (RC) based on hierarchical time-multiplexing structure is proposed by numerical simulations. A micro-ring array (MRA) is employed as a typical time delay implementation of RC. At the output port of the MRA, a secondary time-multiplexing is achieved by multi-mode interference (MMI) splitter and delay line array. This hierarchical time-multiplexing structure can ensure a large reservoir size with fast processing speed. Simulation results indicate that the proposed RC system yields better performance than previously reported ones. The achieved normalized mean square error between the system output and target sequence are 0.5% and 2.7% for signal classification and chaotic time series prediction, respectively, while the sample rate is as high as 1.3 Gbps. PMID:25607084

  14. A STRUCTURAL INTEGRITY ASSESSMENT OF UNDERGROUND PIPING ASSOCIATED WITH THE TRANSFER OF RADIOACTIVE WASTE

    SciTech Connect

    Wiersma, B

    2006-04-25

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure that the present condition of the piping was sound and to provide life expectancy estimates for the piping based on anticipated service. The assessment reviewed the original design of the piping, the potential and observed degradation mechanisms, the results from past inspections of the piping, and a Fitness-For-Service evaluation for a section of piping that experienced pitting in a locally thinned area. The assessment concluded that the piping was structurally sound. Assuming that service conditions remain the same, the piping will remain functional for its intended service life.

  15. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  16. Uniting extrinsic vectorization and shell structure for efficient SIMD evaluation of electron repulsion integrals

    NASA Astrophysics Data System (ADS)

    Ramdas, Tirath; Egan, Gregory K.; Abramson, David; Baldridge, Kim K.

    2008-06-01

    Future computer architectures are likely to feature greater reliance on single instruction multiple data (SIMD) processing for high throughput processing of data-intensive workloads. For algorithms that rely heavily on electron repulsion integrals (ERIs), exploitation of SIMD processing requires extrinsic vectorization, i.e. the sorting of ERIs into sets with equivalent class that may be computed with an identical instruction stream. Such sorting is incongruous with the commonly exploited shell structure whereby ERI are generated over shells such that initialization/bootstrap values may be reused, yielding significant savings in ERI evaluation time. In this work, we discuss how extrinsic vectorization may be unified with shell structure through the exploitation of memory access locality.

  17. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    SciTech Connect

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  18. Comparison of strain sensitivity of bare and structure-integrated fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lebid, Solomija Y.; Hofmann, Detlef; Basedau, Frank; Daum, Werner

    2003-07-01

    For the last decade sensor architectures with embedded fibers found their application in large structure monitoring and proved their capability to replace existing techniques for monitoring of linear strain, temporary or permanent none-uniform strain and load, temperature, vibrations, bending, or complex strain-temperature, vibrations-temperature influences, etc. Such sensor architectures, called smart structures, use different sensing mechanisms, in one of which - fiber Bragg grating (FBG) - is applied as a sensitive element. Because of high sensitivity, absolute measurement ability, possibility to work reliable in adverse environment, such as electromagnetic fields, radiation, extreme temperature, and quick response time, FBGs are object of numerous research of leading laboratories worldwide. Some problems are still remaining in this field, although there have been some ways found to solve part of them. This paper discusses some aspects of different fixing mechanisms of FBG and provides evaluation and comparison of methods of FBG integration in sensor housing or in sensor architecture.

  19. Propulsion system structural integration and engine integrity; Proceedings of the Symposium, U.S. Naval Postgraduate School, Monterey, Calif., September 3-6, 1974

    NASA Technical Reports Server (NTRS)

    Walker, W. J.

    1975-01-01

    Current problems involving the structural integrity of propulsion systems, and proposed approaches to solving them, are reviewed. Areas investigated include the stall hammershock at the engine inlet, distortion-induced vibration in fan and compressor blading, modeling engine static structures with conical-shell finite elements, design and development of low-cost, self-contained bearing lubrication systems for turbine engines, and roller bearing slip and skidding damage. Individual items are announced in this issue.

  20. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  1. Structural integrity of the limbic-prefrontal connection: Neuropathological correlates of anxiety in Williams syndrome.

    PubMed

    Ng, Rowena; Brown, Timothy T; Järvinen, Anna M; Erhart, Matthew; Korenberg, Julie R; Bellugi, Ursula; Halgren, Eric

    2016-01-01

    Williams syndrome (WS) is a genetic condition characterized by a hypersocial personality and desire to form close relationships, juxtaposed with significant anxieties of nonsocial events. The neural underpinnings of anxiety in individuals with WS are currently unknown. Aberrations in the anatomical and microstructural integrity of the uncinate fasciculus (UF) have been recently implicated in social and generalized anxiety disorders. Based on these findings, we tested the hypothesis that the reported anxieties in individuals with WS share similar neuropathological correlates. Toward this end, diffusion tensor imaging (DTI) methods were employed to examine the microstructural integrity (fractional anisotropy, mean diffusivity, longitudinal diffusivity) of the UF in 18 WS and 15 typically developing adults (TD). Anxiety and sociability questionnaires were administered to determine associations with DTI indices of UF across groups. Results revealed comparable white matter integrity of the UF across groups, yet elevated subjective experience of anxiety in those with WS. Additionally, sociability and UF microstructural properties were dissociated across both groups. Whereas no relationships were found between DTI indices and anxiety in TD participants, strong negative associations were observed between these constructs in individuals with WS. Findings indicated that increased anxiety manifested by individuals with WS was associated with DTI measures of the UF and may signal structural or possibly physiological aberration involving this tract within the prefrontal-temporal network. PMID:26214361

  2. Exemplary design of a DICOM structured report template for CBIR integration into radiological routine

    NASA Astrophysics Data System (ADS)

    Welter, Petra; Deserno, Thomas M.; Gülpers, Ralph; Wein, Berthold B.; Grouls, Christoph; Günther, Rolf W.

    2010-03-01

    The large and continuously growing amount of medical image data demands access methods with regards to content rather than simple text-based queries. The potential benefits of content-based image retrieval (CBIR) systems for computer-aided diagnosis (CAD) are evident and have been approved. Still, CBIR is not a well-established part of daily routine of radiologists. We have already presented a concept of CBIR integration for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. The retrieval result is composed as a Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR) document. The use of DICOM SR provides interchange with PACS archive and image viewer. It offers the possibility of further data mining and automatic interpretation of CBIR results. However, existing standard templates do not address the domain of CBIR. We present a design of a SR template customized for CBIR. Our approach is based on the DICOM standard templates and makes use of the mammography and chest CAD SR templates. Reuse of approved SR sub-trees promises a reliable design which is further adopted to the CBIR domain. We analyze the special CBIR requirements and integrate the new concept of similar images into our template. Our approach also includes the new concept of a set of selected images for defining the processed images for CBIR. A commonly accepted pre-defined template for the presentation and exchange of results in a standardized format promotes the widespread application of CBIR in radiological routine.

  3. Ultrasonic Sensing and Life Prediction for the DARPA Structural Integrity Prognosis System

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.; Cobb, Adam C.; Kacprzynski, Gregory J.

    2007-03-01

    The overall objective of the DARPA Structural Integrity Prognosis System (SIPS) program is to develop technologies to advance material damage state condition assessment with limited or no dedicated maintenance action. As a part of the sensors thrust area, an in situ ultrasonic sensing method was developed and demonstrated to detect cracks initiating from fastener holes and provide an estimate of total crack area. Crack area estimates were combined with load history data, projected future loads, and life prediction models to determine a probability density function for time-to-failure. The ultrasonic method utilizes two shear wave angle beam transducers operating in through transmission mode which are mounted on either side of the hole. The transmitted wave travels through the area of expected cracking, and the presence of cracks around the fastener holes decreases the amount of acoustic energy that is received. Furthermore, as cracks open and close during the fatigue process, the received energy is modulated, i.e., decreased when the cracks are open versus closed, and this non-linear behavior is the basis of algorithms developed to detect and size fastener holes cracks. The ultrasonic method was demonstrated as part of an integrated SIPS demonstration whereby aircraft-grade aluminum subcomponents were fatigued to failure. Results are presented from both the ultrasonic measurements and the integrated life prediction software.

  4. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  5. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    PubMed

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs. PMID:26878319

  6. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. PMID:23261400

  7. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  8. Ocular Biocompatibility and Structural Integrity of Micro- and Nanostructured Poly(caprolactone) Films

    PubMed Central

    Bernards, Daniel A.; Bhisitkul, Robert B.; Wynn, Paula; Steedman, Mark R.; Lee, On-Tat; Wong, Fergus; Thoongsuwan, Somanus

    2013-01-01

    Abstract The identification of biomaterials that are well tolerated in the eye is important for the development of new ocular drug delivery devices and implants, and the application of micro- and nanoengineered devices to biomedical treatments is predicated on the long-term preservation within the target organ or tissue of the very small functional design elements. This study assesses the ocular tolerance and durability of micro- and nanostructured biopolymer thin films injected or implanted into the rabbit eye. Structured poly(caprolactone) (PCL) thin films were placed in adult rabbit eyes for survival studies, with serial ophthalmic examinations over 6 months. Morphologic abnormalities and device/tissue reactions were evaluated by histologic studies, and scanning electron microscopy (SEM) of films was used to determine the structural integrity. Structured PCL thin films (20- to 40-μm thick) were constructed to design specifications with 50-μm linear microgrooves or arrays of nanopores with ∼30-nm diameters. After up to 9 months of ocular residency, SEM on devices retrieved from the eye showed preservation of micro- and nanostructural features. In ocular safety evaluations carried out over 6 months, serial examinations in 18 implanted eyes showed no evidence of chronic inflammation, cataractogenesis, or retinal toxicity. Postoperative ocular inflammation was seen in 67% of eyes for 1 week, and persistent corneal edema occurred in 1 eye. Histology revealed no ocular inflammation or morphologic abnormalities of ocular tissues. Thin-film/tissue responses such as cellular reaction, fibrosis, or surface biodeposits were not seen. Micro- and nanostructured PCL thin films exhibited acceptable ocular tolerance and maintained the structural integrity of design features while residing in the eye. Thin-film micro- and nanostructured PCL appears to be a feasible biomaterial for intraocular therapeutic applications. PMID:23391326

  9. A single epitaxial structure for the integration of lasers with heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Goyal, Anish Kumar

    This dissertation introduces a new method of monolithically integrating lasers and heterostructure bipolar transistors (HBTs). This method relies on placing the gain medium for lasers in the collector layer of an (Al,Ga)As HBT epitaxial structure. The trade-offs between laser and HBT performance which are associated with such an integration method are discussed in detail. Two designs based on this method were evaluated experimentally. In the first design, an Npn, emitter-up HBT epitaxial structure was modified to incorporated three Insb{0.2}Gasb{0.8}As QWs in the collector layer which serve as the optical gain media for lasers. 13 x 13 μmsp2 HBTs fabricated from this epi-material exhibited common emitter current gains >50 while 6×20\\ μmsp2 HBTs exhibited an fsb{t}=21 GHz and fsb{max}=6.8 GHz. The DC and high frequency characteristics of HBTs are consistent with their size, layer thicknesses, layer dopings, etc. Metal-clad lasers were also fabricated from this epi-material. For these lasers, a silver film deposited directly on the base served as both the upper optical cladding layer and p-electrode. Lasers exhibit pulsed threshold current densities as low as 440 A/cmsp2. The measured waveguide propagation loss of these metal-clad lasers is in excellent agreement with theory. The second design was based on a Pnp, collector-up HBT epitaxial structure. For HBTs, the extrinsic portion of the EB junction was not deactivated and resulted in HBTs with less than unity current gain. 6.5 mum stripe width, ridge waveguide lasers fabricated from this same material exhibited threshold current densities of ˜1300 A/cmsp2. This is approximately what is expected from the epitaxial layer design and device structure. Furthermore, the measured waveguide propagation loss of 14 cmsp{-1} is close to the anticipated value of 11.2 cmsp{-1}.

  10. Do we teach earth science in situ adequately?

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I.; Zhitov, E.; Zhitova, L.

    2006-12-01

    The Russian education system for future earth scientists inherited many good features from ex-Soviet times. Some schools even have unique conditions for teaching earth sciences, both in general, and in situ. For example, at the Department of Geology and Geophysics (DGG) of Novosibirsk State University (NSU) students apart from traditional academic geoscience field excursions are supposed to participate in real scientific expeditions, and the materials they get as the result are actually the basis of their course papers, diploma thesis, and PhD thesis. This is possible because Novosibirsk State University works in close connection with scientific institutions (the Institute of Geology and Mineralogy, the Institute of Oil and Gas Geophysics and others), and most instructors, professors and lecturers are from these institutions. There are five traditional field trips for DGG students of NSU: 1. Geology field trip at the Altay mountain region, a place of unique geological conditions and beautiful nature. 2. Geodesy field work in Academgorodok ( 30km from Novosibirsk). 3. Field trip in structural geology in Khakassia (Shira, the southern part of the Krasnoyarsk region, Siberia) (NSU has its own field camp there). 4. Geophysics field work in Burmistrovo (NSU has its own field camp there). 5. Mineralogy field trip in Tuva (Siberia). Besides the above mentioned field trips (being the academic part DGG education) each student is supposed to participate in at least one real scientific field trip for BsD, in two trips for MsD and much more for PhD. These field trips are chosen by students and the geography of these trips covers Siberia, Far East, Kamchatka, Sahkalin, and even foreign countries (Mongolia, China, etc). The students pay neither for their academic education, not for their later field trips; on the contrary, they get money for their work in real scientific field trips. However, there are many problems the Russian education system and universities face these days

  11. 21 CFR 514.117 - Adequate and well-controlled studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... production performance, or biased observation. One or more adequate and well-controlled studies are required... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Adequate and well-controlled studies. 514.117... Applications § 514.117 Adequate and well-controlled studies. (a) Purpose. The primary purpose of...

  12. 21 CFR 514.117 - Adequate and well-controlled studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... production performance, or biased observation. One or more adequate and well-controlled studies are required... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Adequate and well-controlled studies. 514.117... Applications § 514.117 Adequate and well-controlled studies. (a) Purpose. The primary purpose of...

  13. 21 CFR 514.117 - Adequate and well-controlled studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... production performance, or biased observation. One or more adequate and well-controlled studies are required... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Adequate and well-controlled studies. 514.117... Applications § 514.117 Adequate and well-controlled studies. (a) Purpose. The primary purpose of...

  14. 21 CFR 514.117 - Adequate and well-controlled studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... production performance, or biased observation. One or more adequate and well-controlled studies are required... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Adequate and well-controlled studies. 514.117... Applications § 514.117 Adequate and well-controlled studies. (a) Purpose. The primary purpose of...

  15. 21 CFR 514.117 - Adequate and well-controlled studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... production performance, or biased observation. One or more adequate and well-controlled studies are required... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Adequate and well-controlled studies. 514.117... Applications § 514.117 Adequate and well-controlled studies. (a) Purpose. The primary purpose of...

  16. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  17. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  18. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  19. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  20. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...