Science.gov

Sample records for adequate temporal resolution

  1. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  2. Songbirds tradeoff auditory frequency resolution and temporal resolution.

    PubMed

    Henry, Kenneth S; Gall, Megan D; Bidelman, Gavin M; Lucas, Jeffrey R

    2011-04-01

    Physical tradeoffs may in some cases constrain the evolution of sensory systems. The peripheral auditory system, for example, performs a spectral decomposition of sound that should result in a tradeoff between frequency resolution and temporal resolution. We assessed temporal resolution in three songbird species using auditory brainstem responses to paired click stimuli. Temporal resolution was greater in house sparrows (Passer domesticus) than Carolina chickadees (Poecile carolinensis) and white-breasted nuthatches (Sitta carolinensis), as predicted based on previous observations of broader auditory filters (lower frequency resolution) in house sparrows. Furthermore, within chickadees, individuals with broader auditory filters had greater temporal resolution. In contrast to predictions however, temporal resolution was similar between chickadees and nuthatches despite broader auditory filters in chickadees. These results and the results of a model simulation exploring the effect of broadened auditory filter bandwidth on temporal resolution in the auditory periphery strongly suggest that frequency resolution constrains temporal resolution in songbirds. Furthermore, our results suggest that songbirds have greater temporal resolution than some mammals, in agreement with recent behavioral studies. Species differences in temporal resolution may reflect adaptations for efficient processing of species-specific vocalizations, while individual differences within species may reflect experience-based developmental plasticity or hormonal effects.

  3. Flare Data in High Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Kaparová, J.

    Analysis of the September 23, 1998 flare H? spectra and filtergrams is presented. Spectra were obtained using multichannel flare spectrograph (MFS) at the Astronomical Institute in Ond?ejov, Czech Republic, having a temporal resolution of 25 frames/s and a spatial resolution of ?1? decreased by seeing to 3? - 5?. High temporal resolution was firstly used for detecting of the chromosphere response to the pulse beam heating.

  4. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  5. Selective temporal attention enhances the temporal resolution of visual perception: Evidence from a temporal order judgment task.

    PubMed

    Correa, Angel; Sanabria, Daniel; Spence, Charles; Tudela, Pío; Lupiáñez, Juan

    2006-01-27

    We investigated whether attending to a particular point in time affects temporal resolution in a task in which participants judged which of two visual stimuli had been presented first. The results showed that temporal resolution can be improved by attending to the relevant moment as indicated by the temporal cue. This novel finding is discussed in terms of the differential effects of spatial and temporal attention on temporal resolution.

  6. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Lurquin, Vanessa; Hay, William C.; Landwehr, Stefanie; Krishnamachari, Vishnu

    2010-02-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS SP5 II combines two technologies in one system: a conventional scanner for maximum resolution and a resonant scanner for high time resolution. For CARS microscopy, two picosecond near-infrared lasers are tightly overlapped spatially and temporally and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512×512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS SP5 II a powerful tool for multi-modal and three-dimensional imaging of chemical and biological samples. We will present our solution and show results from recent studies with the Leica instrument to illustrate the high flexibility of our system.

  7. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  8. Effect of temporal resolution on the accuracy of ADCP measurements

    USGS Publications Warehouse

    Gonzalez-Castro, J. A.; Oberg, K.; Duncker, J.J.

    2004-01-01

    The application of acoustic Doppler current profilers (ADCP's) in river flow measurements is promoting a great deal of progress in hydrometry. ADCP's not only require shorter times to collect data than traditional current meters, but also allow streamflow measurements at sites where the use of conventional meters is either very expensive, unsafe, or simply not possible. Moreover, ADCP's seem to offer a means for collecting flow data with spatial and temporal resolutions that cannot be achieved with traditional current-meters. High-resolution data is essential to characterize the mean flow and turbulence structure of streams, which can in turn lead to a better understanding of the hydrodynamic and transport processes in rivers. However, to properly characterize the mean flow and turbulence intensities of stationary flows in natural turbulent boundary layers, velocities need to be sampled over a long-enough time span. The question then arises, how long should velocities be sampled in the flow field to achieve an adequate temporal resolution? Theoretically, since velocities cannot be sampled over an infinitely long time interval, the error due to finite integration time must be considered. This error can be estimated using the integral time scale. The integral time scale is not only a measure of the time interval over which a fluctuating function is correlated with itself but also a measure of the time span over which the function is dependent on itself. This time scale, however, is not a constant but varies spatially in the flow field. In this paper we present an analysis of the effect of the temporal resolution (sampling time span) on the accuracy of ADCP measurements based on the integral time scale. Single ping velocity profiles collected with frequencies of 1 Hz in the Chicago River at Columbus Drive using an uplooking 600 kHz ADCP are used in this analysis. The integral time scale at different depths is estimated based on the autocorrelation function of the

  9. A CARS solution with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Landwehr, Stefanie; Lurquin, Vanessa; Hay, William C.; Krishnamachari, Vishnu; Schwarz, Ulf

    2011-03-01

    Confocal and multiphoton microscopy are powerful fluorescence techniques for morphological and dynamics studies of labeled elements. For non-fluorescent components, CARS (Coherent Anti-Stokes Raman Scattering) microscopy can be used for imaging various elements of cells such as lipids, proteins, DNA, etc. This technique is based on the intrinsic vibrational properties of the molecules. Leica Microsystems has combined CARS technology with its TCS SP5 II confocal microscope to provide several advantages for CARS imaging. The Leica TCS CARS combines two technologies in one system: a conventional scanner for maximum accuracy and a resonant scanner for highly time resolved imaging. For CARS microscopy, two picosecond near-infrared lasers are overlapped tightly, spatially and temporally, and sent directly into the confocal system. The conventional scanner can be used for morphological studies and the resonant scanner for following dynamic processes of unstained living cells. The fast scanner has several advantages over other solutions. First, the sectioning is truly confocal and does not suffer from spatial leakage. Second, the high speed (29 images/sec @ 512x512 pixels) provides fast data acquisition at video rates, allowing studies at the sub-cellular level. In summary, CARS microscopy combined with the tandem scanner makes the Leica TCS CARS a powerful tool for multimodal and three-dimensional imaging of chemical and biological sample.

  10. Optimizing the Temporal Resolution of Fast-Scan Cyclic Voltammetry

    PubMed Central

    2012-01-01

    Electrochemical detection with carbon-fiber microelectrodes has become an established method to monitor directly the release of dopamine from neurons and its uptake by the dopamine transporter. With constant potential amperometry (CPA), the measured current provides a real time view of the rapid concentration changes, but the method lacks chemical identification of the monitored species and markedly increases the difficulty of signal calibration. Monitoring with fast-scan cyclic voltammetry (FSCV) allows species identification and concentration measurements but often exhibits a delayed response time due to the time-dependent adsorption/desorption of electroactive species at the electrode. We sought to improve the temporal resolution of FSCV to make it more comparable to CPA by increasing the waveform repetition rate from 10 to 60 Hz with uncoated carbon-fiber electrodes. The faster acquisition led to diminished time delays of the recordings that tracked more closely with CPA measurements. The measurements reveal that FSCV at 10 Hz underestimates the normal rate of dopamine uptake by about 18%. However, FSCV collection at 10 and 60 Hz provide identical results when a dopamine transporter (DAT) blocker such as cocaine is bath applied. To verify further the utility of this method, we used transgenic mice that overexpress DAT. After accounting for the slight adsorption delay time, FSCV at 60 Hz adequately monitored the increased uptake rate that arose from overexpression of DAT and, again, was similar to CPA results. Furthermore, the utility of collecting data at 60 Hz was verified in an anesthetized rat by using a higher scan rate (2400 V/s) to increase sensitivity and the overall signal. PMID:22708011

  11. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  12. Investigation of temporal resolution required for CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuya; Ichikawa, Katsuhiro; Kawai, Tatsuya; Shibamoto, Yuta

    2012-03-01

    Sub-second multi-detector computed tomography systems (MDCTs) offer great potentials for improving cardiac imaging. However, since the temporal resolution of such CT systems is not sufficient, blurring and artifacts produced by fast cardiac motion are still problematic. The purposes of this study were to investigate the accurate method for measurement of temporal resolution (TR) of the cardiac CT and required TR for obtaining better CT coronary angiography (CTCA). We employed a dual source CT system (Somatom Definition, Siemens), which has various temporal resolution modes (83, 125, and 165 msec) for electro-cardiogram (ECG)-gated scanning. The temporal sensitivity profiles (TSPs) were measured by a new method using temporal impulse generated by metal ball (impulse method). The CTCA images of 200 patients with heart rates (HRs) ranging from 36 to 117 beat per minute (bpm) were visually evaluated using a 4-point scale. The 165-msec TR mode, which is mostly available on recent MDCTs, showed a sufficient image quality only at low HR (<= 60 bpm) for all 3 arteries. The image quality of 125-msec TR mode was acceptable at low to intermediate HRs (< 80 bpm) for LADs and LCXs, and insufficient for the RCAs in cases with HR more than 71 bpm. The 83-msec TR mode demonstrated excellent image quality except for cases with very quick motion of the RCAs at a high HR (>80 bpm).

  13. On some limitations on temporal resolution in imaging subpicosecond photoelectronics

    SciTech Connect

    Shchelev, M Ya; Andreev, S V; Degtyareva, V P; Kopaev, I A; Monastyrskiy, M A; Greenfield, D E

    2015-05-31

    Numerical modelling is used to analyse some effects restricting the enhancement of temporal resolution into the area better than 100 fs in streak image tubes and photoelectron guns. A particular attention is paid to broadening of an electron bunch as a result of Coulomb interaction. Possible ways to overcome the limitations under consideration are discussed. (extreme light fields and their applications)

  14. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  15. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2

    PubMed Central

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-01-01

    Introduction “Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action” (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result We used the independent t-test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level. PMID:27746835

  16. Parameter Transferability Across Spatial and Temporal Resolutions in Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, R.; Torfs, P. J.; Zappa, M.; Mizukami, N.; Clark, M. P.; Uijlenhoet, R.

    2015-12-01

    Improvements in computational power and data availability provided new opportunities for hydrological modeling. The increased complexity of hydrological models, however, also leads to time consuming optimization procedures. Moreover, observations are still required to calibrate the model. Both to decrease calculation time of the optimization and to be able to apply the model in poorly gauged basins, many studies have focused on transferability of parameters. We adopted a probabilistic approach to systematically investigate parameter transferability across both temporal and spatial resolution. A Variable Infiltration Capacity model for the Thur basin (1703km2, Switzerland) was set-up and run at four different spatial resolutions (1x1, 5x5, 10x10km, lumped) and three different temporal resolutions (hourly, daily, monthly). Three objective functions were used to evaluate the model: Kling-Gupta Efficiency (KGE(Q)), Nash-Sutcliffe Efficiency (NSE(Q)) and NSE(logQ). We used a Hierarchical Latin Hypercube Sample (Vorechovsky, 2014) to efficiently sample the most sensitive parameters. The model was run 3150 times and the best 1% of the runs was selected as behavioral. The overlap in selected behavioral sets for different spatial and temporal resolutions was used as indicators for parameter transferability. There was a large overlap in selected sets for the different spatial resolutions, implying that parameters were to a large extent transferable across spatial resolutions. The temporal resolution, however, had a larger impact on the parameters; it significantly affected the parameter distributions for at least four out of seven parameters. The parameter values for the monthly time step were found to be substantially different from those for daily and hourly time steps. This suggests that the output from models which are calibrated on a monthly time step, cannot be interpreted or analysed on an hourly or daily time step. It was also shown that the selected objective

  17. Frequency-temporal resolution of hearing measured by rippled noise.

    PubMed

    Supin AYa; Popov, V V; Milekhina, O N; Tarakanov, M B

    1997-06-01

    Frequency-temporal resolution of hearing was measured in normal hearers using rippled noise stimulation in conjunction with a phase-reversal test. The principle of the test was to interchange peak and trough positions (the phase reversal) and to find the highest ripple density at which such interchange is detectable depending on reversal rate. The measurements were made using narrow-band noises with center frequencies of 0.5-4 kHz. The ripple-density resolution limits were constant at phase-reversal rates below 2-3/s and diminished at higher phase-reversal rates. A model is proposed to explain the data based on the envelope fluctuations inherent in noise; these fluctuations are supposed to limit detection of frequency-temporal sound patterns.

  18. Solar Flares at High Spatial and Temporal Resolution

    DTIC Science & Technology

    2012-11-01

    AFRL-AFOSR-UK-TR-2012-0055 Solar Flares at High Spatial and Temporal Resolution Professor Mihalis Mathioudakis Queen’s...2012 2. REPORT TYPE Final Report 3. DATES COVERED (From – To) 20 July 2009 – 19 July 2012 4. TITLE AND SUBTITLE Solar Flares at High Spatial and...Distribution A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Solar flares vary in

  19. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    NASA Astrophysics Data System (ADS)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  20. Temporal limits on rubber hand illusion reflect individuals' temporal resolution in multisensory perception.

    PubMed

    Costantini, Marcello; Robinson, Jeffrey; Migliorati, Daniele; Donno, Brunella; Ferri, Francesca; Northoff, Georg

    2016-12-01

    Synchronous, but not asynchronous, multisensory stimulation has been successfully employed to manipulate the experience of body ownership, as in the case of the rubber hand illusion. Hence, it has been assumed that the rubber hand illusion is bound by the same temporal rules as in multisensory integration. However, empirical evidence of a direct link between the temporal limits on the rubber hand illusion and those on multisensory integration is still lacking. Here we provide the first comprehensive evidence that individual susceptibility to the rubber hand illusion depends upon the individual temporal resolution in multisensory perception, as indexed by the temporal binding window. In particular, in two studies we showed that the degree of temporal asynchrony necessary to prevent the induction of the rubber hand illusion depends upon the individuals' sensitivity to perceiving asynchrony during visuo-tactile stimulation. That is, the larger the temporal binding window, as inferred from a simultaneity judgment task, the higher the level of asynchrony tolerated in the rubber hand illusion. Our results suggest that current neurocognitive models of body ownership can be enriched with a temporal dimension. Moreover, our results suggest that the different aspects of body ownership operate over different time scales.

  1. Temporal and spatial resolution of HF ocean radars

    NASA Astrophysics Data System (ADS)

    Heron, Malcom L.; Atwater, Daniel P.

    2013-03-01

    The spatial and temporal resolutions of the two main types of HF radar are compared, with reference to the phasedarray and the crossed-loop direction-finding systems which make up the Australian Coastal Ocean radar Network. Both genres use a swept frequency "chirp" modulation to define the range of a pixel being observed but the method for determining the azimuth direction of the pixel is a strong point of differentiation. The phased-array systems produce independent maps of surface currents in about 1/7 of the time for the crossed-loop systems because of contrasting noise performance of the antennas. The use of beam-forming analysis in the phased-arrays is shown to give spatial resolutions, for vector currents, of about 10 km close to the shore, and 25 km at ranges of 150 km. The corresponding vector current spatial resolutions for the crossed-loop systems are 40 km and 60 km respectively.

  2. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians.

    PubMed

    Kumar, Prawin; Sanju, Himanshu Kumar; Nikhil, J

    2016-10-01

    Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF). All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0). Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower) active discrimination threshold in vocal musicians in comparison to non-musicians.

  3. Challenges of High Resolution Diffusion Imaging of the Human Medial Temporal Lobe in Alzheimer's Disease

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2011-01-01

    The human medial temporal lobe performs an essential role in memory formation and retrieval. Diseases involving the hippocampus such as Alzheimer's disease present a unique opportunity for advanced imaging techniques to detect abnormalities at an early stage. In particular, it is possible that diffusion imaging may measure abnormal microarchitecture beyond the realm of macroscopic imaging. However, this task is formidable because of the detailed anatomy of the medial temporal lobe, the difficulties in obtaining high quality diffusion images of adequate resolution, and challenges in diffusion data processing. Moreover, it is unclear if any differences will be significant for an individual patient or simply groups of patients. Successful endeavors will need to address each of these challenges in an integrated fashion. The rewards of such analysis may be detection of microscopic disease in vivo, which could represent a landmark accomplishment for the field of neuroradiology. PMID:22158129

  4. Temperature dependence of temporal resolution in an insect nervous system.

    PubMed

    Franz, A; Ronacher, B

    2002-05-01

    The vast majority of animals are poikilotherms, and thus face the problem that the temperature of their nervous systems rather smoothly follows the temperature changes imposed by their environment. Since basic properties of nerve cells, e.g., the time constants of ion channels, strongly depend on temperature, a temperature shift likely affects the processing of the temporal structure of sensory stimuli. This can be critical in acoustic communication systems in which time patterns of signals are decisive for recognition by the receiver. We investigated the temperature dependence of the responses of locust auditory receptors and interneurons by varying the temperature of the experimental animals during intracellular recordings. The resolution of fast amplitude modulations of acoustic signals was determined in a gap detection paradigm. In auditory receptors and local (second order) interneurons, temporal resolution was improved at higher temperatures. This gain could be attributed to a higher precision of spike timing. In a third-order neuron, a rise in temperature affected the interactions of inhibition and excitation in a complex manner, also resulting in a better resolution of gaps in the millisecond range.

  5. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  6. Synthesis of rainfall time series in a high temporal resolution

    NASA Astrophysics Data System (ADS)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  7. Temporal resolution and temporal integration of short pulses at the auditory periphery of echolocating animals

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsakova, L. K.

    2004-05-01

    To explain the temporal integration and temporal resolution abilities revealed in echolocating animals by behavioral and electrophysiological experiments, the peripheral coding of sounds in the high-frequency auditory system of these animals is modeled. The stimuli are paired pulses similar to the echolocating signals of the animals. Their duration is comparable with or smaller than the time constants of the following processes: formation of the firing rate of the basilar membrane, formation of the receptor potentials of internal hair cells, and recovery of the excitability of spiral ganglion neurons. The models of auditory nerve fibers differ in spontaneous firing rate, response thresholds, and abilities to reproduce small variations of the stimulus level. The formation of the response to the second pulse of a pair of pulses in the multitude of synchronously excited high-frequency auditory nerve fibers may occur in only two ways. The first way defined as the stochastic mechanism implies the formation of the response to the second pulse as a result of the responses of the fibers that did not respond to the first pulse. This mechanism is based on the stochastic nature of the responses of auditory nerve fibers associated with the spontaneous firing rate. The second way, defined as the repeatition mechanism, implies the appearance of repeated responses in fibers that already responded to the first pulse but suffered a decrease in their response threshold after the first spike generation. This mechanism is based on the deterministic nature of the responses of fibers associated with refractoriness. The temporal resolution of pairs of short pulses, which, according to the data of behavioral experiments, is about 0.1 0.2 ms, is explained by the formation of the response to the second pulse through the stochastic mechanism. A complete recovery of the response to the second pulse, which, according to the data of electrophysiological studies of short-latency evoked brainstem

  8. Improving Diamagnetic Flux Temporal Resolution to Measure ELM Energy Loss

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Baylor, L. R.; Evans, T. E.; Leonard, A. W.; Osborne, T. H.; Strait, E. J.

    2010-11-01

    When an ELM occurs in a tokamak, a substantial loss of stored thermal energy can occur in a very short time, resulting in a change in the plasma diamagnetism. A diamagnetic loop is therefore an attractive diagnostic for characterizing the change in energy during ELMs. A loop external to the vessel can be used but it is bandwidth-limited by the vessel wall, therefore the signal is severely attenuated above 40 Hz in DIII-D. The temporal resolution can be improved by combining the (slow) diamagnetic signal with a properly scaled internal (fast) toroidal BT signal. The results agree with finely-spaced EFIT equilibrium reconstructions to within 10% before each ELM, but the diamagnetic calculation often shows up to twice the drop in energy at the ELM. The BT signal reveals the magnetic change completes in 0.5 ms or less with occasional dynamics above 10 kHz. This improved temporal resolution allows comparison of phenomenology in natural vs. pellet-triggered ELMs, and also effects of partial ELM suppression under resonant magnetic perturbation.

  9. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  10. High resolution autofocus for spatial temporal biomedical research

    NASA Astrophysics Data System (ADS)

    Li, Sihong; Cui, Xiaodong; Huang, Wei

    2013-11-01

    Maintaining focus has been a critical but challenging issue in optical microscopy, particularly for microscopic imaging systems currently used in biomedical research. During live cell imaging, environmental temperature fluctuations and other factors contribute to the unavoidable focus drift. For single molecular imaging and super resolution, focus drift can be significant even over short durations. The current commercial and experimental solutions are either optically complicated, expensive, or with limited axial resolution. Here, we present a simple autofocus solution based on low cost solid state laser and imaging sensor. By improving the optical train design and using real-time data analysis, improvement in axial resolution by approximately two orders of magnitudes over the focal depth of microscope objectives can be achieved. This solution has been tested for prolonged live cell imaging for fast ramping up in environmental chamber temperature and large daily swing in room temperature. In addition, this system can be used to spatial-temporally measure the surface for three-dimensional cell culture and tissue engineering, with flexibility that exceeds commercially available systems.

  11. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  12. A resolution to permit the waiving of the reading of an amendment if the text and adequate notice are provided.

    THOMAS, 112th Congress

    Sen. Udall, Mark [D-CO

    2011-01-27

    01/27/2011 Resolution agreed to in Senate, having achieved 60 votes in the affirmative, without amendment by Yea-Nay Vote. 81 - 15. Record Vote Number: 3. (text: CR S327) (All Actions) Tracker: This bill has the status Passed SenateHere are the steps for Status of Legislation:

  13. Tactile Feedback Display with Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  14. Tactile feedback display with spatial and temporal resolutions.

    PubMed

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  15. Spatial and temporal resolution of fluid flows: LDRD final report

    SciTech Connect

    Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.

    1998-02-01

    This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.

  16. Temporal modulation transfer function for efficient assessment of auditory temporal resolution.

    PubMed

    Shen, Yi; Richards, Virginia M

    2013-02-01

    Two common measures of auditory temporal resolution are the temporal modulation transfer function (TMTF) and the gap detection threshold (GDT). The current study addresses the lack of efficient psychophysical procedures for collecting TMTFs and the lack of literature on the comparisons of TMTF and GDT. Two procedures for efficient measurements of the TMTF are proposed: (1) A Bayesian procedure that adaptively chooses the stimulus modulation rate and depth to maximize the information gain from each trial and (2) a procedure that reduces the data collection to two adaptive staircase tracks. Results from experiments I and II showed that, for broadband carriers, these approaches provided similar results compared to TMTFs measured using traditional methods despite taking less than 10 min for data collection. Using these efficient procedures, TMTFs were measured from a large number of naive listeners and were compared to the gap detection thresholds collected from the same ears in experiment III. Results showed that the sensitivity parameter estimated from the TMTF measurements correlated well with the GDTs, whereas the cutoff rate is either uncorrelated or positively correlated with the gap detection threshold. These results suggest caution in interpreting a lower GDT as evidence for less sluggish temporal processing.

  17. The land component of the global climate system with adequate spatial resolution. Final report, September 1, 1991--August 31, 1994

    SciTech Connect

    Dickinson, R.E.; Hahmann, A.N.; Zeng, X.; Chen, M.; Vaughan, J.; Auvine, B.A.

    1994-11-30

    The focus of the work done under this grant has been to couple global circulation models (in particular, the National Center for Atmospheric Research (NCAR) Community Climate Model Version 2 (CCM2)) to a land-surface model at a much finer mesh than that used for the atmospheric processes. The end objective has been to incorporate into the CHAMMP modeling system a state-of-the-art land model on a mesh independent of the atmospheric model resolution. Efforts have emphasized the following: development and graphical displays of the fine-mesh land surface boundary conditions; the data structures required to carry out integrations on the land fine-mesh; the physical parameterization required to diaggregate model precipitation; analyses of the NCAR 10-year control simulation of the frozen version of CM2/BATS; implementation of changes in the cloud optical properties to mitgate excess incident solar radiation and temperatures over middle latitudes in the Northern Hemisphere summer; prototype development of the CCM2/BASTS fine-mesh treatment.

  18. Spectral sensitivity, spatial resolution and temporal resolution and their implications for conspecific signalling in cleaner shrimp.

    PubMed

    Caves, Eleanor M; Frank, Tamara M; Johnsen, Sönke

    2016-02-01

    Cleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis, Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean ± s.e.m.) 518 ± 5, 518 ± 2 and 533 ± 3 nm, respectively. Temporal resolution in dark-adapted eyes was 39 ± 1.3, 36 ± 0.6 and 34 ± 1.3 Hz. Spatial resolution was 9.9 ± 0.3, 8.3 ± 0.1 and 11 ± 0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity.

  19. Spatio-temporal resolution of primary processes of photosynthesis.

    PubMed

    Junge, Wolfgang

    2015-01-01

    Technical progress in laser-sources and detectors has allowed the temporal and spatial resolution of chemical reactions down to femtoseconds and Å-units. In photon-excitable systems the key to chemical kinetics, trajectories across the vibrational saddle landscape, are experimentally accessible. Simple and thus well-defined chemical compounds are preferred objects for calibrating new methodologies and carving out paradigms of chemical dynamics, as shown in several contributions to this Faraday Discussion. Aerobic life on earth is powered by solar energy, which is captured by microorganisms and plants. Oxygenic photosynthesis relies on a three billion year old molecular machinery which is as well defined as simpler chemical constructs. It has been analysed to a very high precision. The transfer of excitation between pigments in antennae proteins, of electrons between redox-cofactors in reaction centres, and the oxidation of water by a Mn4Ca-cluster are solid state reactions. ATP, the general energy currency of the cell, is synthesized by a most agile, rotary molecular machine. While the efficiency of photosynthesis competes well with photovoltaics at the time scale of nanoseconds, it is lower by an order of magnitude for crops and again lower for bio-fuels. The enormous energy demand of mankind calls for engineered (bio-mimetic or bio-inspired) solar-electric and solar-fuel devices.

  20. High resolution temporal rainfall data generation for climate change studies

    NASA Astrophysics Data System (ADS)

    Rehan Anis, Muhammad; Rode, Michael

    2010-05-01

    The lack of temporal high-resolution rainfall data is one of the most prominent limiting factors in hydrological and water quality simulations. Most climate change models predict that precipitation patterns will change and that extreme meteorological events are likely to occur more frequently. For climate change studies future climate scenarios are needed which are generally available on daily or six hourly time step. Fine timescale rainfall data of at least 30 minute is required for soil erosion and sediment transport calculations. However, such data are not available for future climate conditions. Therefore it is necessary to develop a disaggregation procedure which is applicable for a wide range of daily and hourly rainfall data. This study evaluates the generation of high-resolution rainfall data at a point location. We use the coupling of the Hyetos and Cascade approach to disaggregate the daily rainfall data up to 10 minute rainfall intensities. In this study we developed a criteria by dividing the daily rainfall data into four different categories according to their magnitude, i.e. 1-10 mm, 11-25 mm, 26-50 mm and 51-above mm and disaggregate each category according to the following three steps: (1) calculating the Bartlett-Lewis Rectangular Pulse Parameter (BLRP) from historical data, (2) disaggregate the future statistically downscaled data (WETTREG Model) using historical BLRP parameters and Hyetos disaggregation model (disaggregate from daily to hourly); and (3) further disaggregation of hourly data into sub-hourly up to 10 minute rainfall intensity using random multiplicative cascade approach. The combination of two models, Hyetos and Cascade approach are successfully applied on the complete range of precipitation. We tested this technique on summer and winter precipitation on different amounts for selected stations with varying elevations to cover a range of rainfall pattern. Dividing the rainfall amount into magnitude categories gives us good result

  1. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  2. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    SciTech Connect

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  3. Spectral and temporal resolutions of information-bearing acoustic changes for understanding vocoded sentencesa)

    PubMed Central

    Stilp, Christian E.; Goupell, Matthew J.

    2015-01-01

    Short-time spectral changes in the speech signal are important for understanding noise-vocoded sentences. These information-bearing acoustic changes, measured using cochlea-scaled entropy in cochlear implant simulations [CSECI; Stilp et al. (2013). J. Acoust. Soc. Am. 133(2), EL136–EL141; Stilp (2014). J. Acoust. Soc. Am. 135(3), 1518–1529], may offer better understanding of speech perception by cochlear implant (CI) users. However, perceptual importance of CSECI for normal-hearing listeners was tested at only one spectral resolution and one temporal resolution, limiting generalizability of results to CI users. Here, experiments investigated the importance of these informational changes for understanding noise-vocoded sentences at different spectral resolutions (4–24 spectral channels; Experiment 1), temporal resolutions (4–64 Hz cutoff for low-pass filters that extracted amplitude envelopes; Experiment 2), or when both parameters varied (6–12 channels, 8–32 Hz; Experiment 3). Sentence intelligibility was reduced more by replacing high-CSECI intervals with noise than replacing low-CSECI intervals, but only when sentences had sufficient spectral and/or temporal resolution. High-CSECI intervals were more important for speech understanding as spectral resolution worsened and temporal resolution improved. Trade-offs between CSECI and intermediate spectral and temporal resolutions were minimal. These results suggest that signal processing strategies that emphasize information-bearing acoustic changes in speech may improve speech perception for CI users. PMID:25698018

  4. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis

    PubMed Central

    Tabelow, Karsten; König, Reinhard; Polzehl, Jörg

    2016-01-01

    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809

  5. From runoff to rainfall: inverse rainfall-runoff modelling in a high temporal resolution

    NASA Astrophysics Data System (ADS)

    Herrnegger, M.; Nachtnebel, H. P.; Schulz, K.

    2014-12-01

    This paper presents a novel technique to calculate mean areal rainfall in a high temporal resolution of 60 min on the basis of an inverse conceptual rainfall-runoff model and runoff observations. Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. Additionally, the density of the monitoring network in mountainous regions is low and measurements are subjected to major errors, which lead to significant uncertainties in areal rainfall estimates. The most reliable hydrological information available refers to runoff, which in the presented work is used as input for a rainfall-runoff model. Thereby a conceptual, HBV-type model is embedded in an iteration algorithm. For every time step a rainfall value is determined, which results in a simulated runoff value that corresponds to the observation. To verify the existence, uniqueness and stability of the inverse rainfall, numerical experiments with synthetic hydrographs as inputs into the inverse model are carried out successfully. The application of the inverse model with runoff observations as driving input is performed for the Krems catchment (38.4 km2), situated in the northern Austrian Alpine foothills. Compared to station observations in the proximity of the catchment, the inverse rainfall sums and time series have a similar goodness of fit, as the independent INCA rainfall analysis of Austrian Central Institute for Meteorology and Geodynamics (ZAMG). Compared to observations, the inverse rainfall estimates show larger rainfall intensities. Numerical experiments show, that cold state conditions in the inverse model do not influence the inverse rainfall estimates, when considering an adequate spin-up time. The application of the inverse model is a feasible approach to obtain improved estimates of mean areal rainfall. These can be used to enhance interpolated rainfall fields, e.g. for the estimation of rainfall correction factors, the parameterisation of elevation dependency or the

  6. Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools

    PubMed Central

    O'Reilly, Christian; Nielsen, Tore

    2015-01-01

    Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: (1) that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; (2) because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; (3) reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew's correlation coefficient, F1-score, or Cohen's κ is necessary for adequate evaluation; (4) reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; (5) performance differences between tested automated detectors were found to be similar to those between available expert scorings; (6) much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldomly posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment. PMID:26157375

  7. Stimulus, Task, and Learning Effects on Measures of Temporal Resolution: Implications for Predictors of Language Outcome

    ERIC Educational Resources Information Center

    Smith, Nicholas A.; Trainor, Laurel J.; Gray, Kellie; Plantinga, Judy A.; Shore, David I.

    2008-01-01

    Purpose: Some studies find that temporal processing ability predicts language outcome whereas other studies do not. Resolution of this debate is hindered by the variety of temporal measures used, nonsensory loading of the tasks, and differential amounts of practice across studies. The goal of this study was to examine the effects of stimulus…

  8. Smooth pursuit eye movements improve temporal resolution for color perception.

    PubMed

    Terao, Masahiko; Watanabe, Junji; Yagi, Akihiro; Nishida, Shin'ya

    2010-06-21

    Human observers see a single mixed color (yellow) when different colors (red and green) rapidly alternate. Accumulating evidence suggests that the critical temporal frequency beyond which chromatic fusion occurs does not simply reflect the temporal limit of peripheral encoding. However, it remains poorly understood how the central processing controls the fusion frequency. Here we show that the fusion frequency can be elevated by extra-retinal signals during smooth pursuit. This eye movement can keep the image of a moving target in the fovea, but it also introduces a backward retinal sweep of the stationary background pattern. We found that the fusion frequency was higher when retinal color changes were generated by pursuit-induced background motions than when the same retinal color changes were generated by object motions during eye fixation. This temporal improvement cannot be ascribed to a general increase in contrast gain of specific neural mechanisms during pursuit, since the improvement was not observed with a pattern flickering without changing position on the retina or with a pattern moving in the direction opposite to the background motion during pursuit. Our findings indicate that chromatic fusion is controlled by a cortical mechanism that suppresses motion blur. A plausible mechanism is that eye-movement signals change spatiotemporal trajectories along which color signals are integrated so as to reduce chromatic integration at the same locations (i.e., along stationary trajectories) on the retina that normally causes retinal blur during fixation.

  9. Integration of High-resolution Data for Temporal Bone Surgical Simulations

    PubMed Central

    Wiet, Gregory J.; Stredney, Don; Powell, Kimerly; Hittle, Brad; Kerwin, Thomas

    2016-01-01

    Purpose To report on the state of the art in obtaining high-resolution 3D data of the microanatomy of the temporal bone and to process that data for integration into a surgical simulator. Specifically, we report on our experience in this area and discuss the issues involved to further the field. Data Sources Current temporal bone image acquisition and image processing established in the literature as well as in house methodological development. Review Methods We reviewed the current English literature for the techniques used in computer-based temporal bone simulation systems to obtain and process anatomical data for use within the simulation. Search terms included “temporal bone simulation, surgical simulation, temporal bone.” Articles were chosen and reviewed that directly addressed data acquisition and processing/segmentation and enhancement with emphasis given to computer based systems. We present the results from this review in relationship to our approach. Conclusions High-resolution CT imaging (≤100μm voxel resolution), along with unique image processing and rendering algorithms, and structure specific enhancement are needed for high-level training and assessment using temporal bone surgical simulators. Higher resolution clinical scanning and automated processes that run in efficient time frames are needed before these systems can routinely support pre-surgical planning. Additionally, protocols such as that provided in this manuscript need to be disseminated to increase the number and variety of virtual temporal bones available for training and performance assessment. PMID:26762105

  10. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    SciTech Connect

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-11-15

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  11. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    PubMed

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  12. Biomechanics meets the ecological niche: the importance of temporal data resolution.

    PubMed

    Kearney, Michael R; Matzelle, Allison; Helmuth, Brian

    2012-03-15

    The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.

  13. Psychoacoustic Characteristics of Tinnitus versus Temporal Resolution in Subjects with Normal Hearing Sensitivity

    PubMed Central

    Ibraheem, Ola Abdallah; Hassaan, Mohammad Ramadan

    2016-01-01

    Introduction Cochlear or neural mechanisms of tinnitus generation may affect auditory temporal resolution in tinnitus patients even with normal audiometry. Thus, studying the correlation between tinnitus characteristics and auditory temporal resolution in subjects with tinnitus may help in proper modification of tinnitus management strategy. Objective This study aims to examine the relationship between the psychoacoustic measures of tinnitus and the auditory temporal resolution in subjects with normal audiometry. Methods Two normal hearing groups with ages ranging from 20 to 45 years were involved: control group of 15 adults (30 ears) without tinnitus and study group of 15 adults (24 ears) with tinnitus. Subjective scaling of annoyance and sleep disturbance caused by tinnitus, basic audiological evaluation, tinnitus psychoacoustic measures and Gaps in Noise test were performed. Data from both groups were compared using independent sample t-test. Psychoacoustic measures of tinnitus and Gaps in Noise test parameters of the tinnitus group were correlated with Pearson's correlation coefficient. Results Significantly higher hearing threshold, higher approximate threshold and lower correct Gaps in Noise scores were observed in tinnitus ears. There was no significant correlation between psychoacoustic measures of tinnitus and Gaps in Noise test parameters of the tinnitus group. Conclusion Auditory temporal resolution impairment was found in tinnitus patients, which could be attributed to cochlear impairment or altered neural firing within the auditory pathway. It is recommended to include temporal resolution testing in the tinnitus evaluation battery to provide a proper management planning. PMID:28382121

  14. Temporal resolution limits of time-to-frequency transformations.

    PubMed

    Fernández-Pousa, Carlos R

    2006-10-15

    Time-to-frequency converters are devices that transfer the intensity of a light pulse to its spectrum. The two architectures of these converters are studied: a dispersive line followed by a phase modulator and a single time lens operating in the spectral Fraunhofer regime. These two configurations are shown not to be equivalent in general: the first one provides an incoherent time-to-frequency mapping, whereas the second depends on the degree of coherence of the pulse. In this case, the recorded spectrum is the intensity of a partially coherent residually dispersed pulse, and the spectral Fraunhofer condition is the requirement of negligible residual dispersion. Converters operated outside the spectral Fraunhofer limit can achieve a subpicosecond resolution with moderate time-lens phase factors. Their use for pulse characterization is briefly analyzed.

  15. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties.

  16. Temporal Super Resolution Enhancement of Echocardiographic Images Based on Sparse Representation.

    PubMed

    Gifani, Parisa; Behnam, Hamid; Haddadi, Farzan; Sani, Zahra Alizadeh; Shojaeifard, Maryam

    2016-01-01

    A challenging issue for echocardiographic image interpretation is the accurate analysis of small transient motions of myocardium and valves during real-time visualization. A higher frame rate video may reduce this difficulty, and temporal super resolution (TSR) is useful for illustrating the fast-moving structures. In this paper, we introduce a novel framework that optimizes TSR enhancement of echocardiographic images by utilizing temporal information and sparse representation. The goal of this method is to increase the frame rate of echocardiographic videos, and therefore enable more accurate analyses of moving structures. For the proposed method, we first derived temporal information by extracting intensity variation time curves (IVTCs) assessed for each pixel. We then designed both low-resolution and high-resolution overcomplete dictionaries based on prior knowledge of the temporal signals and a set of prespecified known functions. The IVTCs can then be described as linear combinations of a few prototype atoms in the low-resolution dictionary. We used the Bayesian compressive sensing (BCS) sparse recovery algorithm to find the sparse coefficients of the signals. We extracted the sparse coefficients and the corresponding active atoms in the low-resolution dictionary to construct new sparse coefficients corresponding to the high-resolution dictionary. Using the estimated atoms and the high-resolution dictionary, a new IVTC with more samples was constructed. Finally, by placing the new IVTC signals in the original IVTC positions, we were able to reconstruct the original echocardiography video with more frames. The proposed method does not require training of low-resolution and high-resolution dictionaries, nor does it require motion estimation; it does not blur fast-moving objects, and does not have blocking artifacts.

  17. A co-training, mutual learning approach towards mapping snow cover from multi-temporal high-spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhu, Liujun; Xiao, Pengfeng; Feng, Xuezhi; Zhang, Xueliang; Huang, Yinyou; Li, Chengxi

    2016-12-01

    High-spatial and -temporal resolution snow cover maps for mountain areas are needed for hydrological applications and snow hazard monitoring. The Chinese GF-1 satellite is potential to provide such information with a spatial resolution of 8 m and a revisit of 4 days. The main challenge for the extraction of multi-temporal snow cover from high-spatial resolution images is that the observed spectral signature of snow and snow-free areas is non-stationary in both spatial and temporal domains. As a result, successful extraction requires adequate labelled samples for each image, which is difficult to be achieved. To solve this problem, a semi-supervised multi-temporal classification method for snow cover extraction (MSCE) is proposed. This method extends the co-training based algorithms from single image classification to multi-temporal ones. Multi-temporal images in MSCE are treated as different descriptions of the same land surface, and consequently, each pixel has multiple sets of features. Independent classifiers are trained on each feature set using a few labelled samples, and then, they are iteratively re-trained in a mutual learning way using a great number of unlabelled samples. The main principle behind MSCE is that the multi-temporal difference of land surface in spectral space can be the source of mutual learning inspired by the co-training paradigm, providing a new strategy to deal with multi-temporal image classification. The experimental findings of multi-temporal GF-1 images confirm the effectiveness of the proposed method.

  18. Methods of photoelectrode characterization with high spatial and temporal resolution

    DOE PAGES

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; ...

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occurmore » at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.« less

  19. Methods of photoelectrode characterization with high spatial and temporal resolution

    SciTech Connect

    Esposito, Daniel V.; Baxter, Jason B.; John, Jimmy; Lewis, Nathan S.; Moffat, Thomas P.; Ogitsu, Tadashi; O'Neil, Glen D.; Pham, Tuan Anh; Talin, A. Alec; Velazquez, Jesus M.; Wood, Brandon C.

    2015-06-19

    Here, materials and photoelectrode architectures that are highly efficient, extremely stable, and made from low cost materials are required for commercially viable photoelectrochemical (PEC) water-splitting technology. A key challenge is the heterogeneous nature of real-world materials, which often possess spatial variation in their crystal structure, morphology, and/or composition at the nano-, micro-, or macro-scale. Different structures and compositions can have vastly different properties and can therefore strongly influence the overall performance of the photoelectrode through complex structure–property relationships. A complete understanding of photoelectrode materials would also involve elucidation of processes such as carrier collection and electrochemical charge transfer that occur at very fast time scales. We present herein an overview of a broad suite of experimental and computational tools that can be used to define the structure–property relationships of photoelectrode materials at small dimensions and on fast time scales. A major focus is on in situ scanning-probe measurement (SPM) techniques that possess the ability to measure differences in optical, electronic, catalytic, and physical properties with nano- or micro-scale spatial resolution. In situ ultrafast spectroscopic techniques, used to probe carrier dynamics involved with processes such as carrier generation, recombination, and interfacial charge transport, are also discussed. Complementing all of these experimental techniques are computational atomistic modeling tools, which can be invaluable for interpreting experimental results, aiding in materials discovery, and interrogating PEC processes at length and time scales not currently accessible by experiment. In addition to reviewing the basic capabilities of these experimental and computational techniques, we highlight key opportunities and limitations of applying these tools for the development of PEC materials.

  20. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    PubMed

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated.

  1. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; Cha, W.; Wild, S. M.; Stephenson, G. B.; Fuoss, P. H.

    2016-05-01

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. This approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.

  2. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    SciTech Connect

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; Cha, W.; Wild, S. M.; Stephenson, G. B.; Fuoss, P. H.

    2016-05-19

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. This approach, which we call "chrono CDI," may find use in improving the time resolution in other imaging techniques.

  3. Pseudo-continuous arterial spin labeling technique for measuring CBF dynamics with high temporal resolution.

    PubMed

    Silva, A C; Kim, S G

    1999-09-01

    Cerebral blood flow (CBF) can be measured noninvasively with nuclear magnetic resonance (NMR) by using arterial water as an endogenous perfusion tracer. However, the arterial spin labeling (ASL) techniques suffer from poor temporal resolution due to the need to wait for the exchange of labeled arterial spins with tissue spins to produce contrast. In this work, a new ASL technique is introduced, which allows the measurement of CBF dynamics with high temporal and spatial resolution. This novel method was used in rats to determine the dynamics of CBF changes elicited by somatosensory stimulation with a temporal resolution of 108 ms. The onset time of the CBF response was 0.6 +/- 0.4 sec (mean +/- SD) after onset of stimulation (n = 10). The peak response was observed 4.4 +/- 3.7 sec (mean +/- SD) after stimulation began. These results are in excellent agreement with previous data obtained with invasive techniques, such as laser-Doppler flowmetry and hydrogen clearance, and suggest the appropriateness of this novel technique to probe CBF dynamics in functional and pathological studies with high temporal and spatial resolution. Magn Reson Med 42:425-429, 1999.

  4. A system for optically controlling neural circuits with very high spatial and temporal resolution

    PubMed Central

    Pandarinath, Chethan; Carlson, Eric T.; Nirenberg, Sheila

    2015-01-01

    Optogenetics offers a powerful new approach for controlling neural circuits. It has a vast array of applications in both basic and clinical science. For basic science, it opens the door to unraveling circuit operations, since one can perturb specific circuit components with high spatial (single cell) and high temporal (millisecond) resolution. For clinical applications, it allows new kinds of selective treatments, because it provides a method to inactivate or activate specific components in a malfunctioning circuit and bring it back into a normal operating range [1–3]. To harness the power of optogenetics, though, one needs stimulating tools that work with the same high spatial and temporal resolution as the molecules themselves, the channelrhodopsins. To date, most stimulating tools require a tradeoff between spatial and temporal precision and are prohibitively expensive to integrate into a stimulating/recording setup in a laboratory or a device in a clinical setting [4, 5]. Here we describe a Digital Light Processing (DLP)-based system capable of extremely high temporal resolution (sub-millisecond), without sacrificing spatial resolution. Furthermore, it is constructed using off-the-shelf components, making it feasible for a broad range of biology and bioengineering labs. Using transgenic mice that express channelrhodopsin-2 (ChR2), we demonstrate the system’s capability for stimulating channelrhodopsin-expressing neurons in tissue with single cell and sub-millisecond precision. PMID:25699292

  5. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume

    NASA Astrophysics Data System (ADS)

    Crimaldi, J. P.; Koseff, J. R.

    Two techniques are described for measuring the scalar structure of turbulent flows. A planar laser-induced fluorescence technique is used to make highly resolved measurements of scalar spatial structure, and a single-point laser-induced fluorescence probe is used to make highly resolved measurements of scalar temporal structure. The techniques are used to measure the spatial and temporal structure of an odor plume released from a low-momentum, bed-level source in a turbulent boundary layer. For the experimental setup used in this study, a spatial resolution of 150μm and a temporal resolution of 1,000Hz are obtained. The results show a wide range of turbulent structures in rich detail; the nature of the structure varies significantly in different regions of the plume.

  6. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    SciTech Connect

    Schoendube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-15

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  7. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2015-02-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of urbanisation of flood-prone areas and ongoing urban densification. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction in cities. In this paper, a detailed study of the sensitivity of urban hydrodynamic response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar were used as input into a detailed hydrodynamic sewer model for an urban catchment in the city of Rotterdam, the Netherlands. The aim was to characterise how the effect of space and time aggregation on rainfall structure affects hydrodynamic modelling of urban catchments, for resolutions ranging from 100 to 2000 m and from 1 to 10 min. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm characteristics and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show that for rainfall resolution lower than half the catchment size, rainfall volumes mean and standard deviations decrease as a result of smoothing of rainfall gradients. Moreover, deviations in maximum water depths, from 10 to 30% depending on the storm, occurred for rainfall resolution close to storm size, as a result of rainfall aggregation. Model results also showed that modelled runoff peaks are more sensitive to rainfall resolution than maximum in-sewer water depths as flow routing has a damping effect on in-sewer water level variations. Temporal resolution aggregation of rainfall inputs led to

  8. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  9. Partially parallel imaging with phase-sensitive data: Increased temporal resolution for magnetic resonance temperature imaging.

    PubMed

    Bankson, James A; Stafford, R Jason; Hazle, John D

    2005-03-01

    Magnetic resonance temperature imaging can be used to monitor the progress of thermal ablation therapies, increasing treatment efficacy and improving patient safety. High temporal resolution is important when therapies rapidly heat tissue, but many approaches to faster image acquisition compromise image resolution, slice coverage, or phase sensitivity. Partially parallel imaging techniques offer the potential for improved temporal resolution without forcing such concessions. Although these techniques perturb image phase, relative phase changes between dynamically acquired phase-sensitive images, such as those acquired for MR temperature imaging, can be reliably measured through partially parallel imaging techniques using reconstruction filters that remain constant across the series. Partially parallel and non-accelerated phase-difference-sensitive data can be obtained through arrays of surface coils using this method. Average phase differences measured through partially parallel and fully Fourier encoded images are virtually identical, while phase noise increases with g(sqrt)L as in standard partially parallel image acquisitions..

  10. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  11. Resolution of spatial and temporal visual attention in infants with fragile X syndrome.

    PubMed

    Farzin, Faraz; Rivera, Susan M; Whitney, David

    2011-11-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder.

  12. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Gevaert, A. I.; Parinussa, R. M.; Renzullo, L. J.; van Dijk, A. I. J. M.; de Jeu, R. A. M.

    2016-03-01

    Space-borne passive microwave radiometers are used to derive land surface parameters such as surface soil moisture and vegetation optical depth (VOD). However, the value of such products in regional hydrology is limited by their coarse resolution. In this study, the land parameter retrieval model (LPRM) is used to derive enhanced resolution (∼10 km) soil moisture and VOD from advanced microwave scanning radiometer (AMSR-E) brightness temperatures sharpened by a modulation technique based on high-frequency observations. A precipitation mask based on brightness temperatures was applied to remove precipitation artefacts in the sharpened LPRM products. The spatial and temporal patterns in the resulting products are evaluated against field-measured and modeled soil moisture as well as the normalized difference vegetation index (NDVI) over mainland Australia. Results show that resolution enhancement accurately sharpens the boundaries of different vegetation types, lakes and wetlands. Significant changes in temporal agreement between LPRM products and related datasets are limited to specific areas, such as lakes and coastal areas. Spatial correlations, on the other hand, increase over most of Australia. In addition, hydrological signals from irrigation and water bodies that were absent in the low-resolution soil moisture product become clearly visible after resolution enhancement. The increased information detail in the high-resolution LPRM products should benefit hydrological studies at regional scales.

  13. Electrostatic analyzer design for solar wind proton measurements with high temporal, energy, and angular resolutions

    NASA Astrophysics Data System (ADS)

    Cara, Antoine; Lavraud, Benoit; Fedorov, Andrei; De Keyser, Johan; DeMarco, Rossana; Marcucci, M. Federica; Valentini, Francesco; Servidio, Sergio; Bruno, Roberto

    2017-02-01

    We present the design study of an electrostatic analyzer that permits combined high temporal, energy, and angular resolution measurements of solar wind ions. The requirements for high temporal, energy, and angular resolutions, combined with the need for sufficient counting statistics, lead to an electrostatic analyzer with large radius (140 mm) and large geometric factor. The resulting high count rates require the use of channel electron multipliers (CEMs), instead of microchannel plates, to avoid saturation. The large radius further permits the placement of 32 CEM detectors at the analyzer focal plane, thereby providing very high angular resolution in azimuth (1.5°). Electrostatic simulations were performed to define the analyzer geometric factor, energy resolution, analyzer constant (K), elevation response, etc. Simulations were also performed to define the geometry of the deflectors and collimator that are used to provide the proper energy resolution, field of view, and angular resolution (1.5°) in elevation as well (the total field of view of the design is ±24° × ±24°). We show how this design permits unprecedented measurements of the fine structure of the solar wind proton beam and other important features such as temperature anisotropy. This design is used for the Cold Solar Wind instrument of the medium-class Turbulent Heating ObserveR mission, currently in phase A at the European Space Agency. These unprecedented measurement capabilities are in accordance with and even beyond the requirements of the mission.

  14. Voice gender identification by cochlear implant users: The role of spectral and temporal resolution

    NASA Astrophysics Data System (ADS)

    Fu, Qian-Jie; Chinchilla, Sherol; Nogaki, Geraldine; Galvin, John J.

    2005-09-01

    The present study explored the relative contributions of spectral and temporal information to voice gender identification by cochlear implant users and normal-hearing subjects. Cochlear implant listeners were tested using their everyday speech processors, while normal-hearing subjects were tested under speech processing conditions that simulated various degrees of spectral resolution, temporal resolution, and spectral mismatch. Voice gender identification was tested for two talker sets. In Talker Set 1, the mean fundamental frequency values of the male and female talkers differed by 100 Hz while in Talker Set 2, the mean values differed by 10 Hz. Cochlear implant listeners achieved higher levels of performance with Talker Set 1, while performance was significantly reduced for Talker Set 2. For normal-hearing listeners, performance was significantly affected by the spectral resolution, for both Talker Sets. With matched speech, temporal cues contributed to voice gender identification only for Talker Set 1 while spectral mismatch significantly reduced performance for both Talker Sets. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to 4-8 spectral channels. The results suggest that, because of the reduced spectral resolution, cochlear implant patients may attend strongly to periodicity cues to distinguish voice gender.

  15. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a

  16. H-alpha profile observations of a limb flare with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Graeter, M.

    1990-12-01

    The impulsive phase of a 1N/M2.0 limb flare on September 8, 1988 was observed in H-alpha with high temporal resolution. With an imaging spectrograph line profiles have been acquired every 2.3 sec. The temporal evolution in the blue and red wing has been correlated with hard X-ray data from HXRBS. It is shown that a prominent spike in the blue wing of H-alpha was delayed with respect to the corresponding hard X-ray burst by 7-8 sec. With the exception of the spike in the blue wing of H-alpha, the temporal development of the line profile is compatible with the predictions for nonthermal electron heating during the impulsive phase.

  17. The Combined Effects of Aging and Hearing Loss on Temporal Resolution and Recognition of Reverberant Speech

    NASA Astrophysics Data System (ADS)

    Halling, Dan C.

    Listeners perform more poorly on a speech-recognition task when in a reverberant listening condition than a non -reverberant one. Elderly listeners experience even greater difficulty than young listeners. It has been suggested that this greater difficulty can be almost entirely explained by taking into account the hearing-impairment that typically accompanies the aging process. Nevertheless, existing evidence suggests that elderly hearing-impaired listeners still experience greater difficulty than young hearing -impaired listeners. Some have suggested that elderly listeners, in addition to the hearing loss, also exhibit poorer temporal resolution than young listeners, poorer than even young hearing-impaired listeners. Temporal resolution and speech -recognition performance was evaluated in 8 young normal -hearing listeners, 8 elderly normal-hearing listeners, and 12 elderly listeners with hearing impairment of varying degree. The results suggested that there was an effect of both age and hearing loss on temporal resolution and speech-recognition performance. Additional analyses indicated that the age effects may have actually been caused by slight elevations in the quiet thresholds for the elderly normal -hearing subjects relative to the young normal-hearing subjects. The results also suggested that individual differences in hearing loss and temporal resolution underlie individual differences in speech-recognition performance. Finally, an objective measure of predicting speech intelligibility, the Speech Transmission Index (STI), was evaluated as to its adequacy as a tool for predicting speech-recognition performance in young and elderly, normal-hearing and hearing-impaired, listeners in anechoic or reverberant conditions. Several derivations of the STI provided tight-fitting functions relating percent correct to STI, one of which requires only knowledge of the listener's quiet thresholds and the acoustical properties of the room.

  18. High-temporal Resolution Sediment Fingerprinting with Uncertainty: A Bayesian Approach

    NASA Astrophysics Data System (ADS)

    Cooper, Richard; Krueger, Tobi; Hiscock, Kevin; Rawlins, Barry

    2014-05-01

    A high-temporal resolution fluvial sediment source apportionment model, set within an empirical Bayesian framework, is presented for the River Wensum Demonstration Test Catchment (DTC), UK. Direct X-ray fluorescence (XRF) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis of sediment covered filter papers were used in conjunction with ISCO automatic water samplers to monitor suspended particulate matter (SPM) geochemistry at high-temporal resolution throughout the progression of five heavy precipitation events during 2012-2013. Exploiting the spatial and temporal variation in four potential sediment source areas and SPM geochemistry respectively, we are able to apportion sediment contributions from eroding stream channel banks, arable topsoils, damaged road verges and agricultural field drains at 60-120 minute resolution. For all monitored precipitation episodes, pre- and post-event conditions are dominated by elevated SPM calcium concentrations that indicate major sediment inputs from carbonate-rich subsurface sources. Conversely, precipitation events coincide with an increase in concentrations of clay-associated elements and a consequent increase in predicted contributions from surface sources. Employing a Gibbs sampling Markov Chain Monte-Carlo mixing model procedure has enabled full characterisation of both spatial geochemical variability and instrument precision to quantify uncertainty around posterior distributions. All model source apportionment estimates correspond favourably with understanding of the regional geology, analysis of hysteresis behaviour, and visual observations of catchment processes. The results presented here demonstrate how to directly analyse SPM trapped on filter papers by spectroscopy to yield the high-temporal resolution source apportionment estimates required by catchment managers to help mitigate the deleterious effects of land-to-river sediment transfer.

  19. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Bruni, G.; Reinoso, R.; van de Giesen, N. C.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-06-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of their high degree of imperviousness, implementation of infrastructures, and changes in precipitation patterns due to climate change. Accurate information of convective storm characteristics at high spatial and temporal resolution is a crucial input for urban hydrological models to be able to simulate fast runoff processes and enhance flood prediction. In this paper, a detailed study of the sensitivity of urban hydrological response to high resolution radar rainfall was conducted. Rainfall rates derived from X-band dual polarimetric weather radar for four rainstorms were used as input into a detailed hydrodynamic sewer model for an urban catchment in Rotterdam, the Netherlands. Dimensionless parameters were derived to compare results between different storm conditions and to describe the effect of rainfall spatial resolution in relation to storm and hydrodynamic model properties: rainfall sampling number (rainfall resolution vs. storm size), catchment sampling number (rainfall resolution vs. catchment size), runoff and sewer sampling number (rainfall resolution vs. runoff and sewer model resolution respectively). Results show catchment smearing effect for rainfall resolution approaching half the catchment size, i.e. for catchments sampling numbers greater than 0.5 averaged rainfall volumes decrease about 20%. Moreover, deviations in maximum water depths, form 10 to 30% depending on the storm, occur for rainfall resolution close to storm size, describing storm smearing effect due to rainfall coarsening. Model results also show the sensitivity of modelled runoff peaks and maximum water depths to the resolution of the runoff areas and sewer density respectively. Sensitivity to temporal resolution of rainfall input seems low compared to spatial resolution, for the storms analysed in this study. Findings are in agreement with previous studies on natural catchments, thus the sampling

  20. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  1. Spacecraft relative guidance via spatio-temporal resolution in atmospheric density forecasting

    NASA Astrophysics Data System (ADS)

    Guglielmo, David; Pérez, David; Bevilacqua, Riccardo; Mazal, Leonel

    2016-12-01

    Spacecraft equipped with the capability to vary their ballistic coefficient can use differential drag as the control force to perform propellant-less relative maneuvers. Because atmospheric drag is proportional to atmospheric density, uncertainty in atmospheric density makes the generation and tracking of drag-based guidances difficult. Spatio-temporal resolution, or the mapping of density information to altitude and time, is shown in this work to improve atmospheric density estimation from forecasted density for spacecraft in LEO. This is achieved by propagating simulated orbits for two spacecraft using forecasted density. Additionally, a receding-horizon control algorithm is introduced, with the goal of improving the tracking of guidances. Using a simulated perfect forecast of the atmospheric density for propagation of the orbits, relative guidance trajectories are generated and tracked, establishing the benefit of adding spatio-temporal resolution. Next, imperfect density forecasting is added, indicating that the benefit of spatio-temporal resolution is retained in the presence of imperfect forecasting. Finally, a receding-horizon control algorithm is used with imperfect forecasting, demonstrating that receding-horizon control improves the tracking of guidances compared to single-horizon control.

  2. Shift and Mean Algorithm for Functional Imaging with High Spatio-Temporal Resolution

    PubMed Central

    Rama, Sylvain

    2015-01-01

    Understanding neuronal physiology requires to record electrical activity in many small and remote compartments such as dendrites, axon or dendritic spines. To do so, electrophysiology has long been the tool of choice, as it allows recording very subtle and fast changes in electrical activity. However, electrophysiological measurements are mostly limited to large neuronal compartments such as the neuronal soma. To overcome these limitations, optical methods have been developed, allowing the monitoring of changes in fluorescence of fluorescent reporter dyes inserted into the neuron, with a spatial resolution theoretically only limited by the dye wavelength and optical devices. However, the temporal and spatial resolutive power of functional fluorescence imaging of live neurons is often limited by a necessary trade-off between image resolution, signal to noise ratio (SNR) and speed of acquisition. Here, I propose to use a Super-Resolution Shift and Mean (S&M) algorithm previously used in image computing to improve the SNR, time sampling and spatial resolution of acquired fluorescent signals. I demonstrate the benefits of this methodology using two examples: voltage imaging of action potentials (APs) in soma and dendrites of CA3 pyramidal cells and calcium imaging in the dendritic shaft and spines of CA3 pyramidal cells. I show that this algorithm allows the recording of a broad area at low speed in order to achieve a high SNR, and then pick the signal in any small compartment and resample it at high speed. This method allows preserving both the SNR and the temporal resolution of the signal, while acquiring the original images at high spatial resolution. PMID:26635526

  3. Compressed sensing for super-resolution spatial and temporal laser detection and ranging

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Schertzer, Stephane; Christnacher, Frank

    2016-10-01

    In the past decades, laser aided electro-optical sensing has reached high maturity and several commercial systems are available at the market for various but specific applications. These systems can be used for detection i.e. imaging as well as ranging. They cover laser scanning devices like LiDAR and staring full frame imaging systems like laser gated viewing or LADAR. The sensing capabilities of these systems is limited by physical parameter (like FPA array size, temporal band width, scanning rate, sampling rate) and is adapted to specific applications. Change of system parameter like an increase of spatial resolution implies the setup of a new sensing device with high development cost or the purchase and installation of a complete new sensor unit. Computational imaging approaches can help to setup sensor devices with flexible or adaptable sensing capabilities. Especially, compressed sensing is an emerging computational method which is a promising candidate to realize super-resolution sensing with the possibility to adapt its performance to various sensing tasks. It is possible to increase sensing capabilities with compressed sensing to gain either higher spatial and/or temporal resolution. Then, the sensing capabilities depend no longer only on the physical performance of the device but also on the computational effort and can be adapted to the application. In this paper, we demonstrate and discuss laser aided imaging using CS for super-resolution tempo-spatial imaging and ranging.

  4. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  5. Beyond spicule dynamics: spicule and fibril spectroscopy at high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Mendes Domingos Pereira, T.; Rouppe van der Voort, L.

    2015-12-01

    Solar spicules are chromospheric fibrils observed at the solar limb. They are observed everywhere in the Sun, but their origin is not yet understood. Much of our understanding of spicules has been obtained through filtergram observations and/or focused on the dynamics of spicules. Spectroscopic studies have been usually limited by spatial extent/resolution, temporal resolution, or variable seeing. In this work we make use of a unique time series of imaging spectroscopy at high spatial and temporal resolution, obtained with the Swedish Solar Telescope under excellent seeing and coordinated with the IRIS mission. With these data we characterize the evolution of spectra along quiet Sun fibrils and spicules, and discuss what makes them visible in filtergrams and sets them apart from other chromospheric fibrils. With combined H-alpha and Ca II H high-resolution observations we also discuss how spicules appear in these two lines, a long standing issue that has been interpreted in conflicting ways. Finally, using the wide range of IRIS diagnostics we put together the spectral evolution of spicules through the chromosphere and transition region.

  6. The sensitivity of landscape evolution models to spatial and temporal rainfall resolution

    NASA Astrophysics Data System (ADS)

    Coulthard, Tom J.; Skinner, Christopher J.

    2016-09-01

    Climate is one of the main drivers for landscape evolution models (LEMs), yet its representation is often basic with values averaged over long time periods and frequently lumped to the same value for the whole basin. Clearly, this hides the heterogeneity of precipitation - but what impact does this averaging have on erosion and deposition, topography, and the final shape of LEM landscapes? This paper presents results from the first systematic investigation into how the spatial and temporal resolution of precipitation affects LEM simulations of sediment yields and patterns of erosion and deposition. This is carried out by assessing the sensitivity of the CAESAR-Lisflood LEM to different spatial and temporal precipitation resolutions - as well as how this interacts with different-size drainage basins over short and long timescales. A range of simulations were carried out, varying rainfall from 0.25 h × 5 km to 24 h × Lump resolution over three different-sized basins for 30-year durations. Results showed that there was a sensitivity to temporal and spatial resolution, with the finest leading to > 100 % increases in basin sediment yields. To look at how these interactions manifested over longer timescales, several simulations were carried out to model a 1000-year period. These showed a systematic bias towards greater erosion in uplands and deposition in valley floors with the finest spatial- and temporal-resolution data. Further tests showed that this effect was due solely to the data resolution, not orographic factors. Additional research indicated that these differences in sediment yield could be accounted for by adding a compensation factor to the model sediment transport law. However, this resulted in notable differences in the topographies generated, especially in third-order and higher streams. The implications of these findings are that uncalibrated past and present LEMs using lumped and time-averaged climate inputs may be under-predicting basin sediment

  7. Performance evaluation of spatio-temporal multi-resolution analysis with deinterlacer banks

    NASA Astrophysics Data System (ADS)

    Ishida, Takuma; Muramatsu, Shogo; Kitagawa, Daisuke; Uchita, Jun; Hiki, Minoru; Kikuchi, Hisakazu

    2005-07-01

    In this work, hierarchical motion compensated three-dimensional (3-D) filter banks for spatio-temporal multi-resoution analysis are presented as new tools for scalable video format control. For recent developments in scalable video coding, most of them are based on 3-D wavelet transform with motion compensation. To achieve the function of frame-rate and spatial resolution scalabilities, motion compensated temporal filtering (MCTF) through lifting wavelet transform currently attracts many researchers as an effective temporal decomposition tool. As previous works, we proposed single stage deinterlacer banks as novel 3-D filter banks. Unlike other filter banks, our proposed system is constructed in a way unique to multi-dimensional systems by using invertible deinterlacers, which we have proposed before. The single stage deinterlacer banks decompose a progressive video into two subband sequences of a half frame-rate in the progressive scanning manner. Even though the system handles interlaced videos as intermediate data, introducing a multistage decomposition is simply achieved because the output sequences have also the progressive format as like the input. Our proposed hierarchical deinterlacer banks are accompanied by 2-D discrete wavelet transforms (DWT) as spatial transforms. The multistage technique provides interlaced sequences as well as several reduced-rate progressive sequences while maintaining the reconstruction of the original full-resolution full-rate video sequence. We show that fine granular control of spatio-temporal resolution can be acchieved through the hierarchical process. Some experimental results show novel functions and the significance of the proposed filter banks.

  8. Temporal Resolution of the Normal Ear in Listeners with Unilateral Hearing Impairment.

    PubMed

    Mishra, Srikanta K; Dey, Ratul; Davessar, Jai Lal

    2015-12-01

    Unilateral hearing loss (UHL) leads to an imbalanced input to the brain and results in cortical reorganization. In listeners with unilateral impairments, while the perceptual deficits associated with the impaired ear are well documented, less is known regarding the auditory processing in the unimpaired, clinically normal ear. It is commonly accepted that perceptual consequences are unlikely to occur in the normal ear for listeners with UHL. This study investigated whether the temporal resolution in the normal-hearing (NH) ear of listeners with long-standing UHL is similar to those in listeners with NH. Temporal resolution was assayed via measuring gap detection thresholds (GDTs) in within- and between-channel paradigms. GDTs were assessed in the normal ear of adults with long-standing, severe-to-profound UHL (N = 13) and age-matched, NH listeners (N = 22) at two presentation levels (30 and 55 dB sensation level). Analysis indicated that within-channel GDTs for listeners with UHL were not significantly different than those for the NH subject group, but the between-channel GDTs for listeners with UHL were poorer (by greater than a factor of 2) than those for the listeners with NH. The hearing thresholds in the normal or impaired ears were not associated with the elevated between-channel GDTs for listeners with UHL. Contrary to the common assumption that auditory processing capabilities are preserved for the normal ear in listeners with UHL, the current study demonstrated that a long-standing unilateral hearing impairment may adversely affect auditory perception--temporal resolution--in the clinically normal ear. From a translational perspective, these findings imply that the temporal processing deficits in the unimpaired ear of listeners with unilateral hearing impairments may contribute to their overall auditory perceptual difficulties.

  9. High temporal resolution cardiac cone-beam CT using a slowly rotating C-arm gantry

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Tang, Jie; Nett, Brian; Leng, Shuai; Zambelli, Joseph; Qi, Zhihua; Bevins, Nick; Reeder, Scott; Rowley, Howard

    2009-02-01

    Purpose: To achieve three dimensional isotropic dynamic cardiac CT imaging with high temporal resolution for evaluation of cardiac function with a slowly rotating C-arm system. Method and Materials: A recently introduced extension to compressed sensing, viz. Prior Image Constrained Compressed Sensing (PICCS), in which a prior image is used as a constraint in the reconstruction has enabled this application. An in-vivo animal experiment (e.g. a beagle model) was conducted using an interventional C-arm system. The imaging protocol was as follows: contrast was injected, the contrast equilibrated, breathing was suspended for ~14 seconds during which time 420 equally spaced projections were acquired. This data set was used to reconstruct a fully sampled blurred image volume using the conventional FDK algorithm (e.g. the prior image). Then the data set was retrospectively gated into 19 phases according to the recorded ECG signal (heart rate ~ 95bpm) and images were reconstructed with the PICCS algorithm. Results: Cardiac MR was used as the gold standard due to its high temporal resolution. The same short-axis slice was selected from the PICCS-CT data set and the MR data set. Manual contouring on the peak systolic and peak diastolic frames was performed to assess the ejection fraction contribution from this single plane. The calculated ejection fractions with PICCS-CT agreed well with the MR results. Conclusion: We have demonstrated the ability to use a slowly rotating interventional C-arm system in order to make measurements of cardiac function. The new technique provides high isotropic spatial resolution (~0.5 mm) along with high temporal resolution (~ 33 ms). The evaluation of cardiac function demonstrated a great agreement with single slice cardiac MR.

  10. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  11. Compact hybrid real-time hyperspectral imaging system with high effective spatial, spectral, and temporal resolution

    NASA Astrophysics Data System (ADS)

    Roth, Filip; Abbadi, Ahmad; Herman, Ondrej; Pavelek, Martin; Prenosil, Vaclav

    2016-10-01

    Medical endoscopes for image-guided surgery commonly use standard color image sensors, discarding any more detailed spectral information. Medical spectroscopy devices with various spectral working ranges are specialized to specific medical procedures and in general are not usable for image-guided surgery due to limitations in spatial or temporal resolution. In this paper, we present an initial demonstrator of hyperspectral endoscope, composed of two image sensors with complementing parameters. Using this hybrid approach, combining sensors with different spatial and spectral resolutions and spectral ranges, we obtain improved coverage of all the respective parameters. After digitally processing and merging the video streams, while maintaining the better features of both, we obtain an imaging system providing high effective spatial, spectral, and temporal resolution. The system is based on field programmable gate arrays. It provides real-time video output (60 Hz), which is usable for navigation during image-guided surgery. The flexible system architecture allows for an easy extension of the processing algorithms and enables minimal video signal latency. Physical dimensions and portability of the system are comparable to standard off-the-shelf medical endoscope cameras. The device can output both processed video and standard visible light video signals on one or more video outputs of the system. The resulting processed video signal obtained from the combined image sensor data greatly increases the amount of useful information available to the end user.

  12. The Prevalence of Persistent Petrosquamosal Sinus and Other Temporal Bone Anatomical Variations on High-Resolution Temporal Bone Computed Tomography

    PubMed Central

    Bożek, Paweł; Kluczewska, Ewa; Misiołek, Maciej; Ścierski, Wojciech; Lisowska, Grażyna

    2016-01-01

    Background The aim of the study was to determine the prevalence of petrosquamosal sinus (PSS) and other temporal bone (TB) anatomical variations in various patients using high-resolution computed tomography (CT). Material/Methods We reviewed clinical and consecutively obtained CT data for 276 TBs of 138 patients. The incidence of TB anatomical variations was compared among patients with radiological markers of chronic otitis media (RCOM) and non-RCOM. Results The PSS incidence in our sample was 6.9%, and it was significantly higher in TBs with RCOM (14.6%). Selected anatomical variations of RCOM TBs were observed: lateral sigmoid sinus (14.5%), prominent sigmoid sinus (23.6%), PSS (14.6%), and high jugular bulb (17.3%). Lateral sigmoid sinus and prominent sigmoid sinus (p<0.01), high jugular bulb (p<0.05), and PSS (p<0.01) were observed more often in RCOM than in non-RCOM TBs. Conclusions The TB vascular and anatomical variations, including PSS, a high jugular bulb, and a laterally and prominent placed sigmoid sinus, were more often observed in TBs with RCOM. Presurgical imaging and CT-based navigation techniques for TB surgery can offer remarkable value for understanding the altered anatomy of this complex structure and can localize rare anatomical variations. PMID:27811834

  13. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin

    PubMed Central

    Baker, Christopher A; Elyada, Yishai M; Parra, Andres; Bolton, M McLean

    2016-01-01

    We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single-neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording. DOI: http://dx.doi.org/10.7554/eLife.14193.001 PMID:27525487

  14. Determination of Destructed and Infracted Forest Areas with Multi-temporal High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Unal, A.; Kaya, S.; Alganci, U.

    2015-12-01

    Migration from rural areas to city centers and their surroundings is an important problem of not only our country but also the countries that under development stage. This uncontrolled and huge amount of migration brings out urbanization and socio - economic problems. The demand on settling the industrial areas and commercial activities nearby the city centers results with a negative change in natural land cover on cities. Negative impacts of human induced activities on natural resources and land cover has been continuously increasing for decades. The main human activities that resulted with destruction and infraction of forest areas can be defined as mining activities, agricultural activities, industrial / commercial activities and urbanization. Temporal monitoring of the changes in spatial distribution of forest areas is significantly important for effective management and planning progress. Changes can occur as spatially large destructions or small infractions. Therefore there is a need for reliable, fast and accurate data sources. At this point, satellite images proved to be a good data source for determination of the land use /cover changes with their capability of monitoring large areas with reasonable temporal resolutions. Spectral information derived from images provides discrimination of land use/cover types from each other. Developments in remote sensing technology in the last decade improved the spatial resolution of satellites and high resolution images were started to be used to detect even small changes in the land surface. As being the megacity of Turkey, Istanbul has been facing a huge migration for the last 20 years and effects of urbanization and other human based activities over forest areas are significant. Main focus of this study is to determine the destructions and infractions in forest areas of Istanbul, Turkey with 2.5m resolution SPOT 5 multi-temporal satellite imagery. Analysis was mainly constructed on threshold based classification of

  15. Impact of laser phase and amplitude noises on streak camera temporal resolution

    SciTech Connect

    Wlotzko, V.; Uhring, W.; Summ, P.

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.

  16. Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves; Pielmeier, Christine

    2015-02-01

    Terrestrial radar interferometry is used in geotechnical applications for monitoring hazardous Earth or rock movements. In this study, we use it to continuously monitor snowpack displacements. As test site, the Dorfberg slope at Davos, Switzerland, was measured continuously during March 2014. The line of sight displacement was retrieved at a spatial resolution of millimeter to centimeter and a temporal resolution of up to 1 min independent of visibility. The results reveal several temperature-driven diurnal acceleration and deceleration cycles. The initiation of a small full-depth glide avalanche was observed after 50 cm total differential displacement. The maximum measured displacement of another differential glide area reached 43 cm/h without resulting in a full-depth avalanche even after a total measured differential displacement of 4.5 m. In regard of the difficulty to predict full-depth glide avalanches on the regional scale, the presented method has big potential for operational snow glide monitoring on critical slopes.

  17. Effects of Temporal Resolution on an Inferential Model of Animal Movement

    PubMed Central

    Postlethwaite, Claire M.; Dennis, Todd E.

    2013-01-01

    Recently, there has been much interest in describing the behaviour of animals by fitting various movement models to tracking data. Despite this interest, little is known about how the temporal ‘grain’ of movement trajectories affects the outputs of such models, and how behaviours classified at one timescale may differ from those classified at other scales. Here, we present a study in which random-walk state-space models were fit both to nightly geospatial lifelines of common brushtail possums (Trichosurus vulpecula) and synthetic trajectories parameterised from empirical observations. Observed trajectories recorded by GPS collars at 5-min intervals were sub-sampled at periods varying between 10 and 60 min, to approximate the effect of collecting data at lower sampling frequencies. Markov-Chain Monte-Carlo fitting techniques, using information about movement rates and turning angles between sequential fixes, were employed using a Bayesian framework to assign distinct behavioural states to individual location estimates. We found that in trajectories with higher temporal granularities behaviours could be clearly differentiated into ‘slow-area-restricted’ and ‘fast-transiting’ states, but for trajectories with longer inter-fix intervals this distinction was markedly less obvious. Specifically, turning-angle distributions varied from being highly peaked around either or at fine temporal scales, to being uniform across all angles at low sampling intervals. Our results highlight the difficulty of comparing model results amongst tracking-data sets that vary substantially in temporal grain, and demonstrate the importance of matching the observed temporal resolution of tracking devices to the timescales of behaviours of interest, otherwise inter-individual comparisons of inferred behaviours may be invalid, or important biological information may be obscured. PMID:23671558

  18. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics

    PubMed Central

    Frölich, Andreas; Spallek, Johanna; Forkert, Nils D.; Faizy, Tobias D.; Werner, Franziska; Knopp, Tobias; Krause, Dieter; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose The purpose of this work was to demonstrate the capability of magnetic particle imaging (MPI) to assess the hemodynamics in a realistic 3D aneurysm model obtained by additive manufacturing. MPI was compared with magnetic resonance imaging (MRI) and dynamic digital subtraction angiography (DSA). Materials and Methods The aneurysm model was of saccular morphology (7 mm dome height, 5 mm cross-section, 3–4 mm neck, 3.5 mm parent artery diameter) and connected to a peristaltic pump delivering a physiological flow (250 mL/min) and pulsation rate (70/min). High-resolution (4 h long) 4D phase contrast flow quantification (4D pc-fq) MRI was used to directly assess the hemodynamics of the model. Dynamic MPI, MRI, and DSA were performed with contrast agent injections (3 mL volume in 3 s) through a proximally placed catheter. Results and Discussion 4D pc-fq measurements showed distinct pulsatile flow velocities (20–80 cm/s) as well as lower flow velocities and a vortex inside the aneurysm. All three dynamic methods (MPI, MRI, and DSA) also showed a clear pulsation pattern as well as delayed contrast agent dynamics within the aneurysm, which is most likely caused by the vortex within the aneurysm. Due to the high temporal resolution of MPI and DSA, it was possible to track the contrast agent bolus through the model and to estimate the average flow velocity (about 60 cm/s), which is in accordance with the 4D pc-fq measurements. Conclusions The ionizing radiation free, 4D high resolution MPI method is a very promising tool for imaging and characterization of hemodynamics in human. It carries the possibility of overcoming certain disadvantages of other modalities like considerably lower temporal resolution of dynamic MRI and limited 2D characteristics of DSA. Furthermore, additive manufacturing is the key for translating powerful pre-clinical techniques into the clinic. PMID:27494610

  19. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    NASA Astrophysics Data System (ADS)

    Yin, S.; Xie, Y.; Liu, B.; Nearing, M. A.

    2015-10-01

    Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event (energy-intensity values - EI30) is calculated from the total kinetic energy and maximum 30 min intensity of individual events. However, these data are often unavailable in many areas of the world. The purpose of this study was to develop models based on commonly available rainfall data resolutions, such as daily or monthly totals, to calculate rainfall erosivity. Eleven stations with 1 min temporal resolution rainfall data collected from 1961 through 2000 in the eastern half of China were used to develop and calibrate 21 models. Seven independent stations, also with 1 min data, were utilized to validate those models, together with 20 previously published equations. The models in this study performed better or similar to models from previous research to estimate rainfall erosivity for these data. Using symmetric mean absolute percentage errors and Nash-Sutcliffe model efficiency coefficients, we can recommend 17 of the new models that had model efficiencies ≥ 0.59. The best prediction capabilities resulted from using the finest resolution rainfall data as inputs at a given erosivity timescale and by summing results from equations for finer erosivity timescales where possible. Results from this study provide a number of options for developing erosivity maps using coarse resolution rainfall data.

  20. A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution.

    PubMed

    Lingvall, Fredrik

    2004-04-01

    In this paper a beamforming method for ultrasonic array imaging is presented that performs both spatial and temporal deconvolution based on a minimum mean square error (MMSE) criteria. The presented MMSE receive mode beamformer performs a regularized inversion of the propagation operator for the ultrasonic array system at hand. The MMSE beamformer accounts for the transmit and receive processes, defined in terms of finite array element sizes, transmit focusing laws and electrical transducer characteristics. The MMSE beamformer is compared to the traditional delay-and-sum (DAS) beamformer with respect to both resolution and signal-to-noise ratio. The two algorithms are compared using both simulated and measured data. The simulated data was obtained using ultrasonic field simulations and the measured data was acquired using a linear phased array imaging wire targets in water. The results show that the MMSE beamformer has superior temporal and lateral resolution compared to DAS. It is also shown that the MMSE beamformer can be expressed as a filter bank, which enables parallel processing at high frame rates.

  1. Shared velocity encoding: a method to improve the temporal resolution of phase-contrast velocity measurements.

    PubMed

    Lin, Hung-Yu; Bender, Jacob A; Ding, Yu; Chung, Yiu-Cho; Hinton, Alice M; Pennell, Michael L; Whitehead, Kevin K; Raman, Subha V; Simonetti, Orlando P

    2012-09-01

    Phase-contrast magnetic resonance imaging (PC-MRI) is used routinely to measure fluid and tissue velocity with a variety of clinical applications. Phase-contrast magnetic resonance imaging methods require acquisition of additional data to enable phase difference reconstruction, making real-time imaging problematic. Shared Velocity Encoding (SVE), a method devised to improve the effective temporal resolution of phase-contrast magnetic resonance imaging, was implemented in a real-time pulse sequence with segmented echo planar readout. The effect of SVE on peak velocity measurement was investigated in computer simulation, and peak velocities and total flow were measured in a flow phantom and in volunteers and compared with a conventional ECG-triggered, segmented k-space phase-contrast sequence as a reference standard. Computer simulation showed a 36% reduction in peak velocity error from 8.8 to 5.6% with SVE. A similar reduction of 40% in peak velocity error was shown in a pulsatile flow phantom. In the phantom and volunteers, volume flow did not differ significantly when measured with or without SVE. Peak velocity measurements made in the volunteers using SVE showed a higher concordance correlation (0.96) with the reference standard than non-SVE (0.87). The improvement in effective temporal resolution with SVE reconstruction has a positive impact on the precision and accuracy of real-time phase-contrast magnetic resonance imaging peak velocity measurements.

  2. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    PubMed

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  3. Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe.

    PubMed

    Issa, Elias B; Papanastassiou, Alex M; DiCarlo, James J

    2013-09-18

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods.

  4. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Baoqiang; Wang, Hui; Fu, Buyin; Wang, Ruopeng; Sakadžić, Sava; Boas, David A.

    2017-01-01

    Optical coherence tomography (OCT) has been used to measure capillary red blood cell (RBC) flux. However, one important technical issue is that the accuracy of this method is subject to the temporal resolution (Δt) of the repeated RBC-passage B-scans. A ceiling effect arises due to an insufficient Δt limiting the maximum RBC-flux that can be measured. In this letter, we first present simulations demonstrating that Δt=1.5 ms permits measuring RBC-flux up to 150 RBCs/s with an underestimation of 9%. The simulations further show that measurements with Δt=3 and 4.5 ms provide relatively less accurate estimates for typical physiological fluxes. We provide experimental data confirming the simulation results showing that reduced temporal resolution (i.e., a longer Δt) results in an underestimation of mean flux and compresses the distribution of measured fluxes, which potentially confounds physiological interpretation of the results. The results also apply to RBC-passage measurements made with confocal and two-photon microscopy for estimating capillary RBC-flux.

  5. Ultra-High Resolution Diffusion Tensor Imaging of the Microscopic Pathways of the Medial Temporal Lobe

    PubMed Central

    Zeineh, Michael M.; Holdsworth, Samantha; Skare, Stefan; Atlas, Scott W.; Bammer, Roland

    2015-01-01

    Diseases involving the medial temporal lobes (MTL) such as Alzheimer’s disease and mesial temporal sclerosis pose an ongoing diagnostic challenge because of the difficulty in identifying conclusive imaging features, particularly in pre-clinical states. Abnormal neuronal connectivity may be present in the circuitry of the MTL, but current techniques cannot reliably detect those abnormalities. Diffusion tensor imaging (DTI) has shown promise in defining putative abnormalities in connectivity, but DTI studies of the MTL performed to date have shown neither dramatic nor consistent differences across patient populations. Conventional DTI methodology provides an inadequate depiction of the complex microanatomy present in the medial temporal lobe because of a typically employed low isotropic resolution of 2.0–2.5mm, a low signal-to-noise ratio (SNR), and echo-planar imaging (EPI) geometric distortions that are exacerbated by the inhomogeneous magnetic environment at the skull base. In this study, we pushed the resolving power of DTI to near-mm isotropic voxel size to achieve a detailed depiction of mesial temporal microstructure at 3T. High image fidelity and SNR at this resolution are achieved through several mechanisms: (1) acquiring multiple repetitions of the minimum field of view required for hippocampal coverage to boost SNR; (2) utilizing a single-refocused diffusion preparation to enhance SNR further; (3) performing a phase correction to reduce Rician noise; (4) minimizing distortion and maintaining left-right distortion symmetry with axial-plane parallel imaging; and (5) retaining anatomical and quantitative accuracy through the use of motion correction coupled with a higher-order eddy-current correction scheme. We combined this high-resolution methodology with a detailed segmentation of the MTL to identify tracks in all subjects that may represent the major pathways of the MTL, including the perforant pathway. Tractography performed on a subset of the data

  6. The effects of temporal resolution on species turnover and on testing metacommunity models.

    PubMed

    Tomasových, Adam; Kidwell, Susan M

    2010-05-01

    Patterns of low temporal turnover in species composition found within paleoecological time series contrast with the high turnover predicted by neutral metacommunity models and thus have been used to support nonneutral models. However, these predictions assume temporal resolution on the scale of a season or year, whereas individual fossil assemblages are typically time averaged to decadal or centennial timescales. We simulate the effects of time averaging by building time-averaged assemblages from local dispersal-limited, nonaveraged assemblages and compare the predicted turnover with observed patterns in mollusk and ostracod fossil records. Time averaging substantially reduces temporal turnover such that neutral predictions converge with those of trade-off and density-dependent models, and it tends to decrease species dominance and increase the proportion of rare species. Observed turnover rates are comparable to an appropriately scaled neutral model: patterns of high community stability can be produced or reinforced by time averaging alone. The community attributes of local time-averaged assemblages approach those of the metacommunity. Time-averaged assemblages are thus unlikely to capture attributes arising from processes operating at small spatial scales, but they should do well at capturing the turnover and diversity of metacommunities and thus will be a valuable basis for analyzing the large-scale processes that determine metacommunity evolution.

  7. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  8. An advection-based model to increase the temporal resolution of PIV time series.

    PubMed

    Scarano, Fulvio; Moore, Peter

    A numerical implementation of the advection equation is proposed to increase the temporal resolution of PIV time series. The method is based on the principle that velocity fluctuations are transported passively, similar to Taylor's hypothesis of frozen turbulence. In the present work, the advection model is extended to unsteady three-dimensional flows. The main objective of the method is that of lowering the requirement on the PIV repetition rate from the Eulerian frequency toward the Lagrangian one. The local trajectory of the fluid parcel is obtained by forward projection of the instantaneous velocity at the preceding time instant and backward projection from the subsequent time step. The trajectories are approximated by the instantaneous streamlines, which yields accurate results when the amplitude of velocity fluctuations is small with respect to the convective motion. The verification is performed with two experiments conducted at temporal resolutions significantly higher than that dictated by Nyquist criterion. The flow past the trailing edge of a NACA0012 airfoil closely approximates frozen turbulence, where the largest ratio between the Lagrangian and Eulerian temporal scales is expected. An order of magnitude reduction of the needed acquisition frequency is demonstrated by the velocity spectra of super-sampled series. The application to three-dimensional data is made with time-resolved tomographic PIV measurements of a transitional jet. Here, the 3D advection equation is implemented to estimate the fluid trajectories. The reduction in the minimum sampling rate by the use of super-sampling in this case is less, due to the fact that vortices occurring in the jet shear layer are not well approximated by sole advection at large time separation. Both cases reveal that the current requirements for time-resolved PIV experiments can be revised when information is poured from space to time. An additional favorable effect is observed by the analysis in the frequency

  9. Changes in extreme precipitation and their dependence on temporal resolution and precipitation classification

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Haerter, Jan; Hagemann, Stefan

    2010-05-01

    At short temporal resolutions it has been found in the literature that the rate of increase of heavy precipitation with temperature may well exceed the increase of moisture holding capacity of the atmosphere, as described by the Clausius-Clapeyron relation. While this may point towards strong dynamical processes in the atmosphere leading to dramatic moisture convergence and subsequent rapid lifting of moist air, the explanation may also lie in a statistical superposition of distinct meteorological phenomena, namely the dominance of large-scale (frontal) precipitation at lower temperatures and in the winter months, and convective (thunderstorm like) events at high temperatures. A high resolution data set of precipitation measurements are used to study the scaling relations of probability distributions of precipitation intensity and the dependence on the temporal resolution of the data. We use a data set of five-minute resolution precipitation observations from six German stations, each with over 30 year long measurement records. In a first step, a cascade of averaging intervals is computed to obtain the behaviour of precipitation intensity from the instantaneous to the daily resolution. While the distribution of the shortest timescale displays a strict power-law tail, it acquires a more elaborate scaling when precipitation and dry periods are mixed at longer averaging intervals. The typical event size of all events are found to be between 30 and 60 minutes. Next, the precipitation data is classified into stratiform and convective precipitation types using the EECRA data base of WMO station synoptic observations, corresponding to the exact locations of our precipitation data. The synoptic observations are available at three hourly time steps, and the classification is assumed to be valid for one hour before and after the time of the observation. Statistical properties - such as the probability density function for precipitation intensities and event statistics and

  10. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  11. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error

  12. Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study.

    PubMed

    Mento, Giovanni; Tarantino, Vincenza; Vallesi, Antonino; Bisiacchi, Patrizia Silvia

    2015-03-01

    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively.

  13. Retrieving Crops Green Area Index from High Temporal and Spatial Resolution Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Veloso, A.; Demarez, V.; Ceschia, E.

    2012-04-01

    This paper aims at firstly evaluating the correspondence between Normalized Difference Vegetation Index (NDVI) products from Formosat-2 (F2) and SPOT sensors and then to perform a comparative analysis of two methods for retrieving Green Area Index from high spatial and temporal resolution satellite data (F2 and SPOT). For this purpose, an empirical approach using NDVI plus field data and a Neural Network approach using the PROSAIL model are compared over four different crops: maize, soybean, sunflower and wheat. The performance of both methods were evaluated and compared with in-situ direct (destructive) and indirect (hemispherical photos) measurements. Results suggest better performances for the empirical approach (R², RMSE). Still the physically-based method leads to good results (R², RMSE). The latter seems to be more promising due to its portability and independence from field measurements. Therefore new perspectives to improve this approach are being envisaged.

  14. Functional second harmonic generation microscopy probes molecular dynamics with high temporal resolution

    PubMed Central

    Förderer, Moritz; Georgiev, Tihomir; Mosqueira, Matias; Fink, Rainer H. A.; Vogel, Martin

    2016-01-01

    Second harmonic generation (SHG) microscopy is a powerful tool for label free ex vivo or in vivo imaging, widely used to investigate structure and organization of endogenous SHG emitting proteins such as myosin or collagen. Polarization resolved SHG microscopy renders supplementary information and is used to probe different molecular states. This development towards functional SHG microscopy is calling for new methods for high speed functional imaging of dynamic processes. In this work we present two approaches with linear polarized light and demonstrate high speed line scan measurements of the molecular dynamics of the motor protein myosin with a time resolution of 1 ms in mammalian muscle cells. Such a high speed functional SHG microscopy has high potential to deliver new insights into structural and temporal molecular dynamics under ex vivo or in vivo conditions. PMID:26977360

  15. First radar measurements of ionospheric electric fields at sub-second temporal resolution

    NASA Astrophysics Data System (ADS)

    Greenwald, Raymond A.; Oksavik, Kjellmar; Barnes, Robin; Ruohoniemi, J. Michael; Baker, Joseph; Talaat, Elsayed R.

    2008-02-01

    A new multipulse sounding technique currently being used at the Wallops Island and Goose Bay SuperDARN radars has produced significant improvements in the temporal resolution of Doppler velocity measurements from which plasma velocities and electric fields are determined. The new technique allows Doppler velocities to be determined from every 200 ms multipulse sequence transmitted by the radar (equivalent to a 5 Hz measurement rate). To our knowledge, this is the highest Doppler measurement rate that has ever been attained with ionospheric radars. Tests of the new technique with the Wallops radar and Ottawa magnetometer revealed bursts of subauroral electric and magnetic field pulsations with periods of 13-20 s during a substorm expansion phase. These results indicate that SuperDARN measurements can be used to study highly dynamic processes in the coupled magnetosphere-ionosphere system, including storm and substorm electrodynamics, short-period pulsations and short-term variability in Joule heating.

  16. High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Lebedev, G. V.; Siegmund, O. H. W.; Vallerga, J. V.; Hull, J. S.; McPhate, J. B.; Jozwiak, C.; Chen, Y.; Guo, J. H.; Shen, Z. X.; Hussain, Z.

    2007-10-01

    This paper reports on the development of a high resolution electron/photon/ion imaging system which detects events with a timing accuracy of <160 ps FWHM and a two-dimensional spatial accuracy of ˜50 μm FWHM. The event counting detector uses microchannel plates for signal amplification and can sustain counting rates exceeding 1.5 MHz for evenly distributed events (0.4 MHz with 10% dead time for randomly distributed events). The detector combined with a time-of-flight angular resolved photoelectron energy analyzer was tested at a synchrotron beamline. The results of these measurements illustrate the unique capabilities of the analytical system, allowing simultaneous imaging of photoelectrons in momentum space and measurement of the energy spectrum, as well as filtering the data in user defined temporal and/or spatial windows.

  17. Optical Trapping Enabled Parallel Delivery of Biological Stimuli with High Spatial and Temporal Resolution

    PubMed Central

    Burnham, Daniel R.; Schneider, Thomas; Chiu, Daniel T.

    2013-01-01

    We have developed a method that employs nanocapsules, optical trapping, and single-pulse laser photolysis for delivering bioactive molecules to cells with both high spatial and temporal resolutions. This method is particularly suitable for a cell-culture setting, in which a single nanocapsule can be optically trapped and positioned at a pre-defined location next to the cell, followed by single-pulse laser photolysis to release the contents of the nanocapsule onto the cell. To parallelize this method such that a large array of nanocapsules can be manipulated, positioned, and photolyzed simultaneously, we have turned to the use of spatial light modulators and holographic beam shaping techniques. This paper outlines the progress we have made so far and details the issues we had to address in order to achieve efficient parallel optical manipulations of nanocapsules and particles. PMID:24465114

  18. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    SciTech Connect

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  19. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  20. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    PubMed

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  1. Multi-resolution analysis of high density spatial and temporal cloud inhomogeneity fields from HOPE campaign

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Macke, Andreas

    2015-04-01

    Clouds are the most complex structures in both spatial and temporal scales of the Earth's atmosphere that effect the downward surface reaching fluxes and thus contribute to large uncertainty in the global radiation budget. Within the framework of High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), a high density network of 99 pyranometer stations was set up around Jülich, Germany (~ 10 × 12 km2 area) during April to July 2013 to capture the small-scale variability in cloud induced radiation fields at the surface. In this study, we perform multi-resolution analysis of the downward solar irradiance variability at the surface from the pyranometer network to investigate the dependence of temporal and spatial averaging scales on the variance and spatial correlation for different cloud regimes. Preliminary results indicate that correlation is strongly scale-dependent where as the variance is dependent on the length of averaging period. Implications of our findings will be useful for quantifying the effect of spatial collocation while validating the satellite inferred solar irradiance estimates, and also to explore the link between cloud structure and radiation. We will present the details of our analysis and results.

  2. Sensitivity of snow models to the spatial and temporal resolution of meteorological forcing

    NASA Astrophysics Data System (ADS)

    Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Cassardo, Claudio; Balsamo, Gianpaolo; Provenzale, Antonello

    2014-05-01

    The simulation of snowpack dynamics in high elevation environments is facing the problem of the uncertainty and the spatial representativeness of the input data, owing to a high spatial variability of meteorological parameters in complex topography. In this study we evaluate the land-surface model UTOPIA (University of TOrino land Process Interaction in Atmosphere) single-layer snow scheme in order to assess its capability in reproducing the snow dynamics, i.e. the accumulation/melting processes and the snow depth temporal variability, and we compare it to the snow module of the Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land (HTESSEL) of the European Centre for Medium-range Weather Forecasts (ECMWF). The validation is performed using high-quality datasets provided by the two experimental snow-meteorological observation sites in Torgnon (2150 m a.s.l.) and Col de Porte (1325 m a.s.l.), located in the Italian and French Alps respectively. We assess the sensitivity of the models to the spatial and temporal resolution of the input data, comparing the case in which high-quality and high-frequency data are provided by individual stations at specific observation sites, as those employed in this study for validation, to the case in which data are provided by gridded datasets based on the spatial-temporal interpolation of surface station measurements. Interpolation, in its various forms, represents a source of uncertainty in the final gridded product, thus we evaluate the quality of the models estimates in case of increasing uncertainty in the input data.

  3. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  4. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the f

  5. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    NASA Astrophysics Data System (ADS)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  6. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    SciTech Connect

    Wei, Y. L.; Yu, D. L. Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong; Ida, K.; Hellermann, M. von

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  7. Continuous high-temporal resolution black carbon ice core records from Antarctica

    NASA Astrophysics Data System (ADS)

    Edwards, R.; McConnell, J. R.; Aristarain, A. J.; Curran, M. A.; Pedro, J.; Cataldo, M.; Evangelista, H.

    2008-12-01

    The Antarctic ice cap is a unique vantage point from which to observe the global background of black carbon aerosol (BC). Far removed from sources, BC in the Antarctic atmosphere is largely due to biomass burning at low- to mid-latitudes modulated by upper tropospheric (and perhaps stratospheric) transport, climate variability and human activity. BC aerosols have been investigated at several locations in Antarctica including the coastal stations Halley, Syowa and Neumayer, Amundsen-Scott at the South Pole and the South Shetland islands north of the Antarctic Peninsula. Beyond these time series little is known regarding the history of BC over Antarctica. Pioneering research by Petr Chylek demonstrated that it was possible to develop BC records from Antarctic ice cores, albeit with great difficulty and at low temporal resolution. We have recently developed an extremely sensitive analytical method capable of determining BC in Antarctic ice cores at sub annual resolution. This method has allowed us to build upon the research of Chylek and reconstruct BC deposition to Antarctica over the past 200 years at ~ monthly time scales. These "new- generation" records will be presented and the extent of which they reflect large scale BC aerosol variability discussed.

  8. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak.

    PubMed

    Wei, Y L; Yu, D L; Liu, L; Ida, K; von Hellermann, M; Cao, J Y; Sun, A P; Ma, Q; Chen, W J; Liu, Yi; Yan, L W; Yang, Q W; Duan, X R; Liu, Yong

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ∼1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8-7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode).

  9. Monitoring with high temporal resolution to search for optical transients in the wide field

    NASA Astrophysics Data System (ADS)

    Beskin, Grigory; Bondar, Sergey; Ivanov, Evgeny; Karpov, Sergey; Katkova, Elena; Pozanenko, Alexei; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Greco, Giuseppe; Molinari, Emilio; Covino, Stefano

    2008-02-01

    In order to detect and investigate short stochastic optical flares from a number of variable astrophysical objects (GRBs, SNs, flare stars, CVs, X-Ray binaries) of unknown localizations as well as near-earth objects (NEOs), both natural and artificial, it is necessary to perform the systematic monitoring of large regions of the sky with high temporal resolution. Here we describe the design of a system able to perform such a task, which consists of a wide-field camera with high time resolution able to detect and classify the transient events on a subsecond time scale, and a fast robotic telescope aimed to perform their detailed investigation. In a last few years we've created the prototype FAVOR wide-field camera, placed at North Caucasus near Russian 6-m telescope, and a complete two-telescope complex TORTOREM, combining TORTORA wide-field camera with REM robotic telescope and placed at La Silla ESO observatory. Its technical parameters and first results of operation are described.

  10. A multicrystal diffraction data-collection approach for studying structural dynamics with millisecond temporal resolution

    PubMed Central

    Schubert, Robin; Kapis, Svetlana; Gicquel, Yannig; Bourenkov, Gleb; Schneider, Thomas R.; Heymann, Michael; Betzel, Christian; Perbandt, Markus

    2016-01-01

    Many biochemical processes take place on timescales ranging from femto­seconds to seconds. Accordingly, any time-resolved experiment must be matched to the speed of the structural changes of interest. Therefore, the timescale of interest defines the requirements of the X-ray source, instrumentation and data-collection strategy. In this study, a minimalistic approach for in situ crystallization is presented that requires only a few microlitres of sample solution containing a few hundred crystals. It is demonstrated that complete diffraction data sets, merged from multiple crystals, can be recorded within only a few minutes of beamtime and allow high-resolution structural information of high quality to be obtained with a temporal resolution of 40 ms. Global and site-specific radiation damage can be avoided by limiting the maximal dose per crystal to 400 kGy. Moreover, analysis of the data collected at higher doses allows the time-resolved observation of site-specific radiation damage. Therefore, our approach is well suited to observe structural changes and possibly enzymatic reactions in the low-millisecond regime. PMID:27840678

  11. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Wei, Y. L.; Yu, D. L.; Liu, L.; Ida, K.; von Hellermann, M.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ˜1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8-7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode).

  12. A novel sensor to map auxin response and distribution at high spatio-temporal resolution.

    PubMed

    Brunoud, Géraldine; Wells, Darren M; Oliva, Marina; Larrieu, Antoine; Mirabet, Vincent; Burrow, Amy H; Beeckman, Tom; Kepinski, Stefan; Traas, Jan; Bennett, Malcolm J; Vernoux, Teva

    2012-01-15

    Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.

  13. Speech Perception in Tones and Noise via Cochlear Implants Reveals Influence of Spectral Resolution on Temporal Processing

    PubMed Central

    Kreft, Heather A.

    2014-01-01

    Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution. PMID:25315376

  14. Speech perception in tones and noise via cochlear implants reveals influence of spectral resolution on temporal processing.

    PubMed

    Oxenham, Andrew J; Kreft, Heather A

    2014-10-13

    Under normal conditions, human speech is remarkably robust to degradation by noise and other distortions. However, people with hearing loss, including those with cochlear implants, often experience great difficulty in understanding speech in noisy environments. Recent work with normal-hearing listeners has shown that the amplitude fluctuations inherent in noise contribute strongly to the masking of speech. In contrast, this study shows that speech perception via a cochlear implant is unaffected by the inherent temporal fluctuations of noise. This qualitative difference between acoustic and electric auditory perception does not seem to be due to differences in underlying temporal acuity but can instead be explained by the poorer spectral resolution of cochlear implants, relative to the normally functioning ear, which leads to an effective smoothing of the inherent temporal-envelope fluctuations of noise. The outcome suggests an unexpected trade-off between the detrimental effects of poorer spectral resolution and the beneficial effects of a smoother noise temporal envelope. This trade-off provides an explanation for the long-standing puzzle of why strong correlations between speech understanding and spectral resolution have remained elusive. The results also provide a potential explanation for why cochlear-implant users and hearing-impaired listeners exhibit reduced or absent masking release when large and relatively slow temporal fluctuations are introduced in noise maskers. The multitone maskers used here may provide an effective new diagnostic tool for assessing functional hearing loss and reduced spectral resolution.

  15. A new vehicle emission inventory for China with high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2013-12-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions (CO, NMHC, NOx, and PM2.5) for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  16. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  17. Estimation of crops biomass and evapotranspiration from high spatial and temporal resolutions remote sensing data

    NASA Astrophysics Data System (ADS)

    Claverie, Martin; Demarez, Valérie; Duchemin, Benoît.; Ceschia, Eric; Hagolle, Olivier; Ducrot, Danielle; Keravec, Pascal; Beziat, Pierre; Dedieu, Pierre

    2010-05-01

    Carbon and water cycles are closely related to agricultural activities. Agriculture has been indeed identified by IPCC 2007 report as one of the options to sequester carbon in soil. Concerning the water resources, their consumptions by irrigated crops are called into question in view of demographic pressure. In the prospect of an assessment of carbon production and water consumption, the use of crop models at a regional scale is a challenging issue. The recent availability of high spatial resolution (10 m) optical sensors associated to high temporal resolution (1 day) such as FORMOSAT-2 and, in the future, Venµs and SENTINEL-2 will offer new perspectives for agricultural monitoring. In this context, the objective of this work is to show how multi-temporal satellite observations acquired at high spatial resolution are useful for a regional monitoring of following crops biophysical variables: leaf area index (LAI), aboveground biomass (AGB) and evapotranspiration (ET). This study focuses on three summer crops dominant in South-West of France: maize, sunflower and soybean. A unique images data set (82 FORMOSAT-2 images over four consecutive years, 2006-2009) was acquired for this project. The experimental data set includes LAI and AGB measurements over eight agricultural fields. Two fields were intensively monitored where ET flux were measured with a 30 minutes time step using eddy correlation methods. The modelisation approach is based on FAO-56 method coupled with a vegetation functioning model based on Monteith theory: the SAFY model [5]. The model operates at a daily time step model to provide estimates of plant characteristics (LAI, AGB), soil conditions (soil water content) and water use (ET). As a key linking variable, LAI is deduced from FORMOSAT-2 reflectances images, and then introduced into the SAFY model to provide spatial and temporal estimates of these biophysical variables. Most of the SAFY parameters are crop related and have been fixed according to

  18. High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes

    PubMed Central

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications. PMID:24832571

  19. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery

    PubMed Central

    Zhang, Jingcheng; Pu, Ruiliang; Yuan, Lin; Wang, Jihua; Huang, Wenjiang; Yang, Guijun

    2014-01-01

    Powdery mildew is one of the most serious diseases that have a significant impact on the production of winter wheat. As an effective alternative to traditional sampling methods, remote sensing can be a useful tool in disease detection. This study attempted to use multi-temporal moderate resolution satellite-based data of surface reflectances in blue (B), green (G), red (R) and near infrared (NIR) bands from HJ-CCD (CCD sensor on Huanjing satellite) to monitor disease at a regional scale. In a suburban area in Beijing, China, an extensive field campaign for disease intensity survey was conducted at key growth stages of winter wheat in 2010. Meanwhile, corresponding time series of HJ-CCD images were acquired over the study area. In this study, a number of single-stage and multi-stage spectral features, which were sensitive to powdery mildew, were selected by using an independent t-test. With the selected spectral features, four advanced methods: mahalanobis distance, maximum likelihood classifier, partial least square regression and mixture tuned matched filtering were tested and evaluated for their performances in disease mapping. The experimental results showed that all four algorithms could generate disease maps with a generally correct distribution pattern of powdery mildew at the grain filling stage (Zadoks 72). However, by comparing these disease maps with ground survey data (validation samples), all of the four algorithms also produced a variable degree of error in estimating the disease occurrence and severity. Further, we found that the integration of MTMF and PLSR algorithms could result in a significant accuracy improvement of identifying and determining the disease intensity (overall accuracy of 72% increased to 78% and kappa coefficient of 0.49 increased to 0.59). The experimental results also demonstrated that the multi-temporal satellite images have a great potential in crop diseases mapping at a regional scale. PMID:24691435

  20. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.

    PubMed

    Jacobs, Christopher B; Ivanov, Ilia N; Nguyen, Michael D; Zestos, Alexander G; Venton, B Jill

    2014-06-17

    Fast-scan cyclic voltammetry (FSCV) can detect small changes in dopamine concentration; however, measurements are typically limited to scan repetition frequencies of 10 Hz. Dopamine oxidation at carbon-fiber microelectrodes (CFMEs) is dependent on dopamine adsorption, and increasing the frequency of FSCV scan repetitions decreases the oxidation current, because the time for adsorption is decreased. Using a commercially available carbon nanotube yarn, we characterized carbon nanotube yarn microelectrodes (CNTYMEs) for high-speed measurements with FSCV. For dopamine, CNTYMEs have a significantly lower ΔEp than CFMEs, a limit of detection of 10 ± 0.8 nM, and a linear response to 25 μM. Unlike CFMEs, the oxidation current of dopamine at CNTYMEs is independent of scan repetition frequency. At a scan rate of 2000 V/s, dopamine can be detected, without any loss in sensitivity, with scan frequencies up to 500 Hz, resulting in a temporal response that is four times faster than CFMEs. While the oxidation current is adsorption-controlled at both CFMEs and CNTYMEs, the adsorption and desorption kinetics differ. The desorption coefficient of dopamine-o-quinone (DOQ), the oxidation product of dopamine, is an order of magnitude larger than that of dopamine at CFMEs; thus, DOQ desorbs from the electrode and can diffuse away. At CNTYMEs, the rates of desorption for dopamine and dopamine-o-quinone are about equal, resulting in current that is independent of scan repetition frequency. Thus, there is no compromise with CNTYMEs: high sensitivity, high sampling frequency, and high temporal resolution can be achieved simultaneously. Therefore, CNTYMEs are attractive for high-speed applications.

  1. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  2. Multi-temporal database of High Resolution Stereo Camera (HRSC) images - Alpha version

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2014-04-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. The High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires highresolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region, which is

  3. Implications of the Temporal Resolution of Fire Emissions on Direct and Indirect Aerosol Effects

    NASA Astrophysics Data System (ADS)

    Darmenov, A.; Barahona, D.; Kim, K. M.; da Silva, A.; Colarco, P. R.; Govindaraju, R.

    2014-12-01

    Biomass burning is an important source of particulates and trace gases and a major element of the terrestrial carbon cycle. Well constrained emissions from open vegetation fires in both time and space are needed to model direct and indirect effect of biomass burning aerosols, homogeneous and heterogeneous chemistry in the atmosphere and perform credible integrated earth system analysis, climate and air pollution studies. However representing fires in regional and global numerical models is challenging because of the subgrid scales at which fire processes operate. An example of apparent discrepancy in scales is the use of monthly- or seasonal-mean fire emissions which given the stochastic nature of fires means that at certain spatial scales the temporal behavior of emissions becomes influenced by individual fire events and becomes more variable. The present study aims at investigating the impact of monthly-mean fire emissions on direct and indirect aerosol effects. Key element of our work is the use of fire radiative power (FRP) based emissions and a global fully interactive cloud-aerosol-radiation modeling system. We used the Goddard Earth Observing System Model, Version 5 (GEOS-5) with two moment cloud microphysics and explicit cloud droplet activation and ice nucleation. GEOS-5 is coupled with an online version of the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. Biomass burning emissions used in this study are from the Quick Fire Emission Dataset (QFED) available daily at up to 0.1 degrees horizontal resolution. We performed experiments with daily-mean and monthly-mean QFED emissions at two degree horizontal resolutions and report differences in aerosol burden and radiative forcing, for example we found that regional differences of clear-sky aerosol direct radiative effect at the surface and at the top of the atmosphere in MAM and JJA can be as high as 4 Wm-2 and 3 Wm-2, respectively.

  4. Temporal Resolution in Time Series and Probabilistic Models of Renewable Power Systems

    NASA Astrophysics Data System (ADS)

    Hoevenaars, Eric

    There are two main types of logistical models used for long-term performance prediction of autonomous power systems: time series and probabilistic. Time series models are more common and are more accurate for sizing storage systems because they are able to track the state of charge. However, the computational time is usually greater than for probabilistic models. It is common for time series models to perform 1-year simulations with a 1-hour time step. This is likely because of the limited availability of high resolution data and the increase in computation time with a shorter time step. Computation time is particularly important because these types of models are often used for component size optimization which requires many model runs. This thesis includes a sensitivity analysis examining the effect of the time step on these simulations. The results show that it can be significant, though it depends on the system configuration and site characteristics. Two probabilistic models are developed to estimate the temporal resolution error of a 1-hour simulation: a time series/probabilistic model and a fully probabilistic model. To demonstrate the application of and evaluate the performance of these models, two case studies are analyzed. One is for a typical residential system and one is for a system designed to provide on-site power at an aquaculture site. The results show that the time series/probabilistic model would be a useful tool if accurate distributions of the sub-hour data can be determined. Additionally, the method of cumulant arithmetic is demonstrated to be a useful technique for incorporating multiple non-Gaussian random variables into a probabilistic model, a feature other models such as Hybrid2 currently do not have. The results from the fully probabilistic model showed that some form of autocorrelation is required to account for seasonal and diurnal trends.

  5. High temporal resolution tracing of xylem CO2 transport in oak trees

    NASA Astrophysics Data System (ADS)

    Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael

    2016-04-01

    Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.

  6. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  7. High Resolution Satellite Multi-Temporal Interferometry for Landslide and Subsidence Hazard Assessment: An Overview

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nitti, D. O.; Nutricato, R.; Chiaradia, M.

    2014-12-01

    The new and planned satellite missions can not only provide global capacity for research-oriented and practical applications such as mapping, characterizing and monitoring of areas affected by slope and subsidence hazards, but also offer a possibility to push the research frontier and prompt innovative detailed-scale studies on ground movement dynamics and processes. Among a number of emerging space-based remote sensing techniques, synthetic aperture radar (SAR), multi-temporal interferometry (MTI) seems the most promising for important innovation in landslide and subsidence hazards assessment and monitoring. MTI is appealing to those concerned with terrain instability hazards because it can provide very precise information on slow displacements of the ground surface over vast areas with limited vegetation cover. Although MTI techniques are considered to have already reached the operational level, it is apparent that in both research and practice we are at present only beginning to benefit from the high-resolution imagery that is currently acquired by the new generation radar satellites (e.g. COSMO-SkyMed, TerraSAR-X). In this overview we illustrate the great potential of high resolution MTI and explain what this technique can deliver in terms of detection and monitoring of slope and subsidence hazards. This is done by considering different areas characterized by a wide range of geomorphic, climatic and vegetation conditions, and presenting selected case study examples of local to regional scale MTI applications from Europe, China and Haiti. We envision that the current approach to assessment of hazard can be transformed by capitalizing more on the presently underexploited advantage of the MTI technique, i.e. the capability to provide regularly spatially-dense quantitative information for large areas currently unaffected by instabilities, but where the terrain geomorphology and geology may indicate potential for future ground failures.

  8. Measuring radon-222 in soil gas with high spatial and temporal resolution.

    PubMed

    Huxtable, Darren; Read, David; Shaw, George

    2017-02-01

    In order to exploit (222)Rn as a naturally-occurring tracer in soils we need to sample and measure radon isotopes in soil gas with high spatial and temporal resolution, without disturbing in situ activity concentrations and fluxes. Minimisation of sample volume is key to improving the resolution with which soil gas can be sampled; an analytical method is then needed which can measure radon with appropriate detection limits and precision for soil gas tracer studies. We have designed a soil gas probe with minimal internal dead volume to allow us to sample soil gas volumes of 45 cm(3). Radon-222 is extracted from these samples into a mineral oil-based scintillation cocktail before counting on a conventional liquid scintillation counter. A detection limit of 320 Bq m(-3) (in soil gas) is achievable with a 1 h count. This could be further reduced but, in practice, is sufficient for our purpose since (222)Rn in soil gas typically ranges from 2000-50,000 Bq m(-3). The method is simple and provides several advantages over commonly used field-portable instruments, including smaller sample volumes, speed of deployment and reliability under field conditions. The major limitation is the need to count samples in a liquid scintillation counter within 2-3 days of collection, due to the short (3.824 day) radioactive half-life of (222)Rn. The method is not applicable to the very short-lived (55 s half-life) (220)Rn.

  9. Improving spatio-temporal resolution of infrared images to detect thermal activity of defect at the surface of inorganic glass

    NASA Astrophysics Data System (ADS)

    Corvec, Guillaume; Robin, Eric; Le Cam, Jean-Benoît; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2016-07-01

    This paper proposes a noise suppression methodology to improve the spatio-temporal resolution of infrared images. The methodology is divided in two steps. The first one consists in removing the noise from the temporal signal at each pixel. Three basic temporal filters are considered for this purpose: average filter, cost function minimization (FIT) and short time Fast Fourier Transform approach (STFFT). But while this step effectively reduces the temporal signal noise at each pixel, the infrared images may still appear noisy. This is due to a random distribution of a residual offset value of pixels signal. Hence in the second step, the residual offset is identified by considering thermal images for which no mechanical loading is applied. In this case, the temperature variation field is homogeneous and the value of temperature variation at each pixel is theoretically equal to zero. The method is first tested on synthetic images built from infrared computer-generated images combined with experimental noise. The results demonstrate that this approach permits to keep the spatial resolution of infrared images equal to 1 pixel. The methodology is then applied to characterize thermal activity of a defect at the surface of inorganic glass submitted to cyclic mechanical loading. The three basic temporal filters are quantitatively compared and contrasted. Results obtained demonstrate that, contrarily to a basic spatio-temporal approach, the denoising method proposed is suitable to characterize low thermal activity combined to strong spatial gradients induced by cyclic heterogeneous deformations.

  10. High Temporal and Spatial Resolution Electron Density Diagnostic for the Edge Plasma based on Stark Broadening

    NASA Astrophysics Data System (ADS)

    Zafar, Abdullah; Martin, Elijah; Shannon, Steve; Isler, Ralph; Caughman, John

    2016-10-01

    Passive spectroscopic measurements of Stark broadening have been reliably used to determine electron density for decades. However, a low-density limit ( 1014 cm-3) exists due to Doppler and instrument broadening of the spectral line profile. A synthetic electron density diagnostic capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free, spectral line profile of a Balmar series transition by using an active laser based technique. The diagnostic approach outlined here greatly reduces both of these broadening contributions using Doppler-free saturation spectroscopy (DFSS), allowing access to lower density regimes. The measured profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The modeling and experimental results for this active spectroscopic technique are presented for a magnetized (<=5 T), low-density (1011-1013 cm-3) plasma. Details of applying DFSS to the plasma edge are also discussed.

  11. Measurement of DNA translocation dynamics in a solid-state nanopore at 100-ns temporal resolution

    PubMed Central

    Shekar, Siddharth; Niedzwiecki, David J.; Chien, Chen-Chi; Ong, Peijie; Fleischer, Daniel A.; Lin, Jianxun; Rosenstein, Jacob K.; Drndic, Marija; Shepard, Kenneth L.

    2017-01-01

    Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (CNP) amplifier capable of low noise recordings at an unprecedented 10 MHz bandwidth. When integrated with state-of-the-art solid-state nanopores in silicon nitride membranes, we achieve an SNR of greater than 10 for ssDNA translocations at a measurement bandwidth of 5 MHz, which represents the fastest ion current recordings through nanopores reported to date. We observe transient features in ssDNA translocation events that are as short as 200 ns, which are hidden even at bandwidths as high as 1 MHz. These features offer further insights into the translocation kinetics of molecules entering and exiting the pore. This platform highlights the advantages of high-bandwidth translocation measurements made possible by integrating nanopores and custom-designed electronics. PMID:27332998

  12. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.

    PubMed

    Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-01

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.

  13. Multi-temporal database of High Resolution Stereo Camera (HRSC) images

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.

    2013-09-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. In addition, comparisons between Mariner, Viking and Mars Global Surveyor images suggest that more than one third of the Martian surface has brightened or darkened by at least 10% [6]. Albedo changes can have effects on the global heat balance and the circulation of winds, which can result in further surface changes [14-15]. In particular, the High Resolution Stereo Camera (HRSC) [16,17] on board Mars Express (MEx) covers large areas at high resolution and is therefore suited to detect the frequency, extent and origin of Martian surface changes. Since 2003 HRSC acquires high-resolution images of the Martian surface and contributes to Martian research, with focus on the surface morphology, the geology and mineralogy, the role of liquid water on the surface and in the atmosphere, on volcanism, as well as on the proposed climate change throughout the Martian history and has improved our understanding of the evolution of Mars significantly [18-21]. The HRSC data are available at ESA's Planetary Science Archive (PSA) as well as through the NASA Planetary Data System (PDS). Both data platforms are frequently used by the scientific community and provide additional software and environments to further generate map-projected and geometrically calibrated HRSC data. However, while previews of the images are available, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images in a specific region

  14. Toward noninvasive optical human brain mapping: improvements of the spectral, temporal, and spatial resolution of near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Heekeren, Hauke R.; Wenzel, Rudiger; Obrig, Hellmuth; Ruben, Jan; Ndayisaba, J.-P.; Luo, Qingming; Dale, A.; Nioka, Shoko; Kohl-Bareis, Matthias; Dirnagl, Ulrich; Villringer, Arno; Chance, Britton

    1997-08-01

    Near-infrared spectroscopy (NIRS) can detect changes in cerebral hemoglobin oxygenation in response to motor, visual or cognitive stimulation. This study explored potential improvements for functional human brain mapping with NIRS: (1) So far, only primary cortical areas, like motor cortex or primary visual areas were studied. We tested the feasibility of identifying an extrastriate visual motion area (MT) with single site NIRS. (2) The temporal resolution of commercial systems is on the order of seconds and their spectral resolution is poor. We tested the feasibility of the detection of cerebral hemoglobin oxygenation changes during visual stimulation at high temporal (100 ms) and spectral resolution (5 nm) using a whole spectrum approach (CCD-NIRS). (3) The spatial resolution of commercial systems is poor. In this study we used a 16 channel functional NIRS-imaging device to test the feasibility of mapping changes in cortical blood volume during visual stimulation (over primary and secondary areas). We show that (1) even conventional single site NIRS allows to identify secondary visual areas, (2) a CCD-NIRS system affords a high temporal (100 ms) and spectral (5 nm) resolution for the detection of changes in cerebral hemoglobin oxygenation during visual stimulation, (3) functional NIRS- imaging can localize focal blood volume changes over both primary and secondary cortical areas.

  15. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond.

    PubMed

    Hall, L T; Beart, G C G; Thomas, E A; Simpson, D A; McGuinness, L P; Cole, J H; Manton, J H; Scholten, R E; Jelezko, F; Wrachtrup, Jörg; Petrou, S; Hollenberg, L C L

    2012-01-01

    A quantitative understanding of the dynamics of biological neural networks is fundamental to gaining insight into information processing in the brain. While techniques exist to measure spatial or temporal properties of these networks, it remains a significant challenge to resolve the neural dynamics with subcellular spatial resolution. In this work we consider a fundamentally new form of wide-field imaging for neuronal networks based on the nanoscale magnetic field sensing properties of optically active spins in a diamond substrate. We analyse the sensitivity of the system to the magnetic field generated by an axon transmembrane potential and confirm these predictions experimentally using electronically-generated neuron signals. By numerical simulation of the time dependent transmembrane potential of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we show that the imaging system is capable of imaging planar neuron activity non-invasively at millisecond temporal resolution and micron spatial resolution over wide-fields.

  16. Features of the Jovian DAM radiation dynamic spectra as observed by modern receivers with high frequency-temporal resolution

    NASA Astrophysics Data System (ADS)

    Litvinenko, G.; Konovalenko, A.; Zakharenko, V.; Vinogradov, V.; Shaposhnikov, V.; Zarka, Ph.

    2012-09-01

    One of the promising approaches to investigating features of the Jovian decameter radio emission (DAM) is application of novel experimental techniques with a further detailed analysis of the obtained data using both well-known and modern mathematical methods. Several observational campaigns were performed in November 2009 with the use of the UTR-2 radio telescope (Kharkov, Ukraine) and efficient registration systems with high frequency and temporal resolutions (the antenna effective area is about 105 m2, the frequency resolution is 4 kHz, the temporal resolution is 0.25 ms, and the dynamic range is 70 dB) [1]. The main goal of these campaigns was to experimentally investigate new properties of the Jovian DAM emission which could be detected using the above mentioned equipment. Also an original software package was developed for control the digital receiver and for off-line data analysis at the postprocessing stage.

  17. High-resolution (spatial and temporal) Hydrodynamic Modeling in the Lower Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Karadogan, E.; Danchuk, S.; Berger, C.; Brown, G.; Willson, C.

    2007-12-01

    The lower Mississippi River is a highly engineered system existing in one of the world's largest deltas. This system is subject to a variety of spatial and temporal forcings due to its large watershed (drains about 41% of the continental U.S.) and from the Gulf of Mexico. Future perturbations on this system are anticipated due to the impacts of global climate change (e.g., rising eustatic sea level, changes in weather patterns) and from proposed modifications to the system such as diversion structures aimed at providing freshwater nutrients and sediments to the rapidly degrading coastal wetlands. Numerical modeling will play a large role in improving our understanding and management of the system and the ability to properly design future structural features. These models will need to have the necessary spatial and temporal resolution to account for the many important processes in the river, the Gulf of Mexico, and in the wetland areas where small distributary channels will form and wetting/drying must be accounted for. This paper will investigate the ability of a 2D shallow water and sediment model to reproduce the complex distributary development associated with flow diversions into quiescent bays. A reach of the Lower Mississippi River from Point a la Hache to the Gulf of Mexico was used as a test domain to evaluate the performance and capabilities of the U.S. Army Corps of Engineers ADaptive Hydraulics (ADH) model. ADH is an unstructured finite element modeling system that includes unsaturated Richards' equations for groundwater, Navier Stokes for nonhydrostatic flow calculations, and Shallow Water equations. ADH conducts automated refinement and coarsening of the mesh based upon flow characteristics. In this case the 2D shallow water model is being used. It includes coupled flow and sedimentation. An unstructured mesh was developed for the study area which includes detailed bathymetry and topography from available survey data. The mesh is fine enough to capture

  18. Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners.

    PubMed

    Gregan, Melanie J; Nelson, Peggy B; Oxenham, Andrew J

    2013-10-01

    Hearing-impaired (HI) listeners often show less masking release (MR) than normal-hearing listeners when temporal fluctuations are imposed on a steady-state masker, even when accounting for overall audibility differences. This difference may be related to a loss of cochlear compression in HI listeners. Behavioral estimates of compression, using temporal masking curves (TMCs), were compared with MR for band-limited (500-4000 Hz) speech and pure tones in HI listeners and age-matched, noise-masked normal-hearing (NMNH) listeners. Compression and pure-tone MR estimates were made at 500, 1500, and 4000 Hz. The amount of MR was defined as the difference in performance between steady-state and 10-Hz square-wave-gated speech-shaped noise. In addition, temporal resolution was estimated from the slope of the off-frequency TMC. No significant relationship was found between estimated cochlear compression and MR for either speech or pure tones. NMNH listeners had significantly steeper off-frequency temporal masking recovery slopes than did HI listeners, and a small but significant correlation was observed between poorer temporal resolution and reduced MR for speech. The results suggest either that the effects of hearing impairment on MR are not determined primarily by changes in peripheral compression, or that the TMC does not provide a sufficiently reliable measure of cochlear compression.

  19. High temporal resolution energetic particle soundings at the magnetopause on November 8, 1977, using ISEE 2

    SciTech Connect

    Fritz, T.A.; Fahnenstiel, S.C.

    1982-04-01

    We present a detailed analysis of >24 keV ion data obtained from the ISEE 2 satellite on an inbound crossing of the magnetopause at 1130 LT on November 8, 1977, from 0200 to 0330 UT. Based on the technique presented by Williams (1979) of sounding the position of the magnetopause using energetic particle azimuthal asymmetries, we exploit the four second time resolution available on the ISEE 2 satellite to determine the location, structure, orientation, and temporal variation of the magnetopause region. We find that the trapping boundary for energetic ions is sharp and well defined for approx.35 keV ions and that it corresponds most of the time to the time to earthward edge of the plasma boundary layer. Usually magnetosheath plasma penetrated the trapping boundary only up to distances approximately that of the plasma (1 keV) ion gyroradius (approx.100 km). On some occasions magnetosheath-like plasma was observed up to 800 km inside the trapping boundary but these occurrences were usually associated with rapid trapping boundary movement with velocities exceeding 50 km/s. If the trapping boundary determines the position of the last closed field line, the occasional occurrence of magnetosheath plasma deep inside the trapping boundary is inconsistent with accepted merging theories. The determination of the position of the trapping boundary using five separate ion energy channels from 24 to 70 keV was internally consistent for the lowest three channels although the higher energy channels consistently indicated somewhat smaller values. Radial motion was present affecting the position of the trapping boundary on two scales; a wave-like oscillation with a period of approx.105 s superimposed on a larger scale irregular 'breathing' motion. We argue that the wave nature of the trapping boundary was the cause of the slight difference between the higher and lower energy ion trapping boundary locations.

  20. Identification and characterisation of local aerosol sources using high temporal resolution measurements.

    PubMed

    Contini, D; Donateo, A; Cesari, D; Belosi, F; Francioso, S

    2010-09-01

    Aerosol and gaseous pollution measurements were carried out at an urban background site in the south of Italy located near an industrial complex. Collection of 24 h samples of PM10 and PM2.5 and successive chemical quantification of metals were performed. Data were compared with measurements taken at a suburban background site, located at 25 km distance. The comparison showed the presence of an industrial contribution with a well defined chemical emission profile, similar, in terms of metals content, to urban emissions. As this made difficult the quantitative characterisation of the contribution of the two sources to atmospheric PM, a statistical method based on the treatment of data arising from high temporal resolution measurements was developed. Data were taken with a micrometeorological station based on an integrating nephelometer (Mie pDR-1200) for optical detection of PM2.5 concentration, with successive evaluation of vertical turbulent fluxes using the eddy-correlation method. Results show that the contribution from the two sources (urban emissions and industrial releases) have a very different behaviour, with the industrial contribution being present at high wind velocity with short concentration peaks (average duration 4 min) associated to strong positive and negative vertical fluxes. The estimated contribution to PM2.5 is 2.3% over long-term averages. The urban emissions are mainly present at low wind velocity, with longer concentration peaks in the morning and late evening hours, generally associated to small positive vertical fluxes. The characterisation of the contribution was performed using deposition velocity V(d) that is on average -3.5 mm s(-1) and has a diurnal pattern, with negligible values during the night and a minimum value of around -9 mm s(-1) late in the afternoon. Results show a correlation between V(d), friction velocity and wind velocity that could be the basis for a parameterisation of V(d) to be used in dispersion codes.

  1. C-arm cone beam CT perfusion imaging using the SMART-RECON algorithm to improve temporal sampling density and temporal resolution

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Li, Ke; Schafer, Sebastian; Royalty, Kevin; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    In this work, a newly developed reconstruction algorithm, Synchronized MultiArtifact Reduction with Tomographic RECONstruction (SMART-RECON), was applied to C-arm cone beam CT perfusion (CBCTP) imaging. This algorithm contains a special rank regularizer, designed to reduce limited-view artifacts associated with super- short scan reconstructions. As a result, high temporal sampling and temporal resolution image reconstructions were achieved using an interventional C-arm x-ray system. The algorithm was evaluated in terms of the fidelity of the dynamic contrast update curves and the accuracy of perfusion parameters through numerical simulation studies. Results shows that, not only were the dynamic curves accurately recovered (relative root mean square error ∈ [3%, 5%] compared with [13%, 22%] for FBP), but also the noise in the final perfusion maps was dramatically reduced. Compared with filtered backprojection, SMART-RECON generated CBCTP maps with much improved capability in differentiating lesions with perfusion deficits from the surrounding healthy brain tissues.

  2. Investigation of spatial resolution and temporal performance of SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) with integrated electrostatic focusing

    NASA Astrophysics Data System (ADS)

    Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei

    2014-03-01

    We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.

  3. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    SciTech Connect

    Jia, X.; Jia, T. Q. Peng, N. N.; Feng, D. H.; Zhang, S. A.; Sun, Z. R.

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. The results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.

  4. Temporal resolution and spectral sensitivity of the visual system of three coastal shark species from different light environments.

    PubMed

    McComb, D Michelle; Frank, Tamara M; Hueter, Robert E; Kajiura, Stephen M

    2010-01-01

    Visual temporal resolution and scotopic spectral sensitivity of three coastal shark species (bonnethead Sphyrna tiburo, scalloped hammerhead Sphyrna lewini, and blacknose shark Carcharhinus acronotus) were investigated by electroretinogram. Temporal resolution was quantified under photopic and scotopic conditions using response waveform dynamics and maximum critical flicker-fusion frequency (CFF). Photopic CFF(max) was significantly higher than scotopic CFF(max) in all species. The bonnethead had the shortest photoreceptor response latency time (23.5 ms) and the highest CFF(max) (31 Hz), suggesting that its eyes are adapted for a bright photic environment. In contrast, the blacknose had the longest response latency time (34.8 ms) and lowest CFF(max) (16 Hz), indicating its eyes are adapted for a dimmer environment or nocturnal lifestyle. Scotopic spectral sensitivity revealed maximum peaks (480 nm) in the bonnethead and blacknose sharks that correlated with environmental spectra measured during twilight, which is a biologically relevant period of heightened predation.

  5. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    NASA Astrophysics Data System (ADS)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  6. High-resolution imaging-guided electroencephalography source localization: temporal effect regularization incorporation in LORETA inverse solution

    NASA Astrophysics Data System (ADS)

    Boughariou, Jihene; Zouch, Wassim; Slima, Mohamed Ben; Kammoun, Ines; Hamida, Ahmed Ben

    2015-11-01

    Electroencephalography (EEG) and magnetic resonance imaging (MRI) are noninvasive neuroimaging modalities. They are widely used and could be complementary. The fusion of these modalities may enhance some emerging research fields targeting the exploration better brain activities. Such research attracted various scientific investigators especially to provide a convivial and helpful advanced clinical-aid tool enabling better neurological explorations. Our present research was, in fact, in the context of EEG inverse problem resolution and investigated an advanced estimation methodology for the localization of the cerebral activity. Our focus was, therefore, on the integration of temporal priors to low-resolution brain electromagnetic tomography (LORETA) formalism and to solve the inverse problem in the EEG. The main idea behind our proposed method was in the integration of a temporal projection matrix within the LORETA weighting matrix. A hyperparameter is the principal fact for such a temporal integration, and its importance would be obvious when obtaining a regularized smoothness solution. Our experimental results clearly confirmed the impact of such an optimization procedure adopted for the temporal regularization parameter comparatively to the LORETA method.

  7. Robust temporal resolution of MSCT cardiac scan by rotation-time update scheme based on analysis of patient ECG database

    NASA Astrophysics Data System (ADS)

    Glasberg, S.; Farjon, D.; Ankry, M.; Eisenbach, S.; Shnapp, M.; Altman, A.

    2007-03-01

    We have analyzed 144 ECG wave-forms that were taken during cardiac CT exams to determine in retrospect the optimized timing for updating the gantry rotation-time. A score was defined, according to the number of heart beats during X-ray on, which fulfill the temporal resolution (tR)condition, tR<100mSec. The temporal resolution calculation was based on dual-cycle π/2 sector segmentation, where the data required for any image is collected during two heart cycle. The results yield a significant improvement of the tR score with the rotation-time update method relative to using a fixed minimal rotation-time of the gantry. The analysis suggest that full heart scan with better than 100mSec temporal resolution per slice can routinely be achieved in 128 slices MSCT scanner by performing gantry rotation-time -update after patient starts its breath hold. At these conditions the required breath-hold time is expected to be less than 15 seconds.

  8. Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging.

    PubMed

    Bonilha, Leonardo; Kobayashi, Eliane; Cendes, Fernando; Min Li, Li

    2004-06-01

    Quantitative analysis of brain structures in normal subjects and in different neurological conditions can be carried out in vivo through magnetic resonance imaging (MRI) volumetric studies. The use of high-resolution MRI combined with image post-processing that allows simultaneous multiplanar view may facilitate volumetric segmentation of temporal lobe structures. We define a protocol for volumetric studies of medial temporal lobe structures using high-resolution MR images and we studied 30 healthy subjects (19 women; mean age, 33 years; age range, 21-55 years). Images underwent field non-homogeneity correction and linear stereotaxic transformation into a standard space. Structures of interest comprised temporopolar, entorhinal, perirhinal, parahippocampal cortices, hippocampus, and the amygdala. Segmentation was carried out with multiplanar assessment. There was no statistically significant left/right-sided asymmetry concerning any structure analyzed. Neither gender nor age influenced the volumes obtained. The coefficient of repeatability showed no significant difference of intra- and interobserver measurements. Imaging post-processing and simultaneous multiplanar view of high-resolution MRI facilitates volumetric assessment of the medial portion of the temporal lobe with strict adherence to anatomic landmarks. This protocol shows no significant inter- and intraobserver variations and thus is reliable for longitudinal studies.

  9. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products

    PubMed Central

    Zheng, Yang; Wu, Bingfang; Zhang, Miao; Zeng, Hongwei

    2016-01-01

    Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at SPOT5’s spatial resolution and at MODIS’s temporal resolution and a phenology extraction algorithm based on NDVI time-series analysis. The feasibility of our phenology detection approach was evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and MODIS NDVI, with an R2 of greater than 0.69 and an root mean square error (RMSE) of less than 0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters, such as the start and end of season (SOS and EOS), were closely correlated with the field-observed data with an R2 of the SOS ranging from 0.68 to 0.86 and with an R2 of the EOS ranging from 0.72 to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high fragmented farmland, which is meaningful for the implementation of precision agriculture. PMID:27973404

  10. Spatial and temporal resolution of shear in an orbiting petri dish.

    PubMed

    Thomas, Jonathan Michael D; Chakraborty, Amlan; Sharp, M Keith; Berson, R Eric

    2011-01-01

    It is well documented that physiological and morphological properties of anchored cells are influenced by fluid shear stress. Common orbital shakers provide a means of simultaneously applying shear stress to cells for tens to hundreds of cases by loading the shaker with multiple dishes. However, the complex flow in orbiting dishes is amenable to analytical solution for resolving shear created by the fluid motion only for simplified conditions. The only existing quantification of shear in this flow is an equation that estimates a constant scalar value of shear for the entire surface of the dish. In practice, wall shear stress (WSS) will be oscillatory rather than steady due to the travelling waveform and will vary across the surface of the dish at any instant in time. This article presents a computational model that provides complete spatial and temporal resolution of WSS over the bottom surface of a dish throughout the orbital cycle. The model is reasonably well validated by the analytical solution, with resultant WSS magnitudes that are within 0.99 ± 0.42 dyne/cm(2) . The model results were compared to tangential WSS magnitudes obtained using one-dimensional optical velocimetry at discreet locations on the bottom of an orbiting dish. The experimental minimum and maximum WSS at 1 mm from the center of the dish were 6 and 7 dyne/cm(2) , respectively, whereas WSS generated from the computational model ranged from 0.5 to 8.5 dyne/cm(2) . The experimental minimum and maximum WSS at 12 mm from the center of the dish were 6 and 16 dyne/cm(2) , respectively, whereas WSS generated from the computational model ranged from 0.5 to 14 dyne/cm(2) . Discrepancies between the experimental and computational data may be attributed to a sparse sampling rate for the experimental probe, a sharp gradient at the sample area which could cause the unidirectional probe to be inaccurate if its location were not precise, and too few particles to track and a scattering of the signal by the

  11. High temporal resolution Br2, BrCl and BrO observations in coastal Antarctica

    NASA Astrophysics Data System (ADS)

    Buys, Z.; Brough, N.; Huey, L. G.; Tanner, D. J.; von Glasow, R.; Jones, A. E.

    2013-02-01

    There are few observations of speciated inorganic bromine in polar regions against which to test current theory. Here we report the first high temporal resolution measurements of Br2, BrCl and BrO in coastal Antarctica, made at Halley during spring 2007 using a Chemical Ionisation Mass Spectrometer (CIMS). We find indications for an artefact in daytime BrCl measurements arising from conversion of HOBr, similar to that already identified for observations of Br2 made using a similar CIMS method. Using the MISTRA model, we estimate that the artefact represents a conversion of HOBr to Br2 of the order of several tens of percent, while that for HOBr to BrCl is less but non-negligible. If the artefact is indeed due to HOBr conversion, then nighttime observations were unaffected. It also appears that all daytime BrO observations were artefact-free. Mixing ratios of BrO, Br2 and BrCl ranged from instrumental detection limits to 13 pptv (daytime), 45 pptv (nighttime), and 6 pptv (nighttime), respectively. We see considerable variability in the Br2 and BrCl observations over the measurement period which is strongly linked to the prevailing meteorology, and thus air mass origin. Higher mixing ratios of these species were generally observed when air had passed over the sea-ice zone prior to arrival at Halley, than from over the continent. Variation in the diurnal structure of BrO is linked to previous model work where differences in the photolysis spectra of Br2 and O3 is suggested to lead to a BrO maximum at sunrise and sunset, rather than a noon-time maxima. This suite of Antarctic data provides the first analogue to similar measurements made in the Arctic, and of note is that our maximum measured BrCl (nighttime) is less than half of the maximum measured during a similar period (spring-time) in the Arctic (also nighttime). This difference in maximum measured BrCl may also be the cause of a difference in the Br2 : BrCl ratio between the Arctic and Antarctic. An unusual event

  12. InSAR time series analysis for monitoring of natural and anthropogenic hazards with high temporal resolution (Invited)

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; d'Oreye, N.; Gonzalez, P. J.; Tiampo, K. F.

    2013-12-01

    Modern Synthetic Aperture Radar (SAR) satellites and satellite constellations are capable of acquiring data at high spatial resolution and increasing temporal resolution allowing detection of ground deformation signals with a minimal delay. Advanced interferometric SAR (InSAR) processing techniques, such as Small Baseline Subset (SBAS) and Multidimensional Small Baseline Subset (MSBAS) are capable of producing time series of ground deformation with a very high sub-centimeter precision. Additionally MSBAS allows combination of various InSAR data into a single set of vertical and horizontal deformation time series further improving their temporal resolution and precision. Developed methodologies are ready for operational monitoring of natural and anthropogenic hazards, including landslides, volcanoes, earthquakes and tectonic motion and ground subsidence caused by mining and groundwater extraction. Here we present various case studies where an InSAR time series analysis was able to map ground deformation with superior resolution and precision, including mining subsidence in the Greater Luxembourg region and southern Saskatchewan, groundwater extraction related subsidence in the Greater Vancouver Region, volcanic deformation in the Virunga Volcanic Province, and tectonic deformation and landslide in northern California. Often, InSAR is the best cost-efficient solution with no restrictions on spatial coverage, weather or lighting condition and timing. It is anticipated that the use of SAR data for mapping hazards will increase in the future as data access improves.

  13. Effect of Temporal and Spatial Rainfall Resolution on HSPF Predictive Performance and Parameter Estimation

    EPA Science Inventory

    Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...

  14. High Temporal Resolution Detection of Patient-Specific Glucose Uptake from Human ex Vivo Adipose Tissue On-Chip.

    PubMed

    Zambon, Alessandro; Zoso, Alice; Gagliano, Onelia; Magrofuoco, Enrico; Fadini, Gian Paolo; Avogaro, Angelo; Foletto, Mirto; Quake, Stephen; Elvassore, Nicola

    2015-07-07

    Human tissue in vitro models on-chip are highly desirable to dissect the complexity of a physio-pathological in vivo response because of their advantages compared to traditional static culture systems in terms of high control of microenvironmental conditions, including accurate perturbations and high temporal resolution analyses of medium outflow. Human adipose tissue (hAT) is a key player in metabolic disorders, such as Type 2 Diabetes Mellitus (T2DM). It is involved in the overall energy homeostasis not only as passive energy storage but also as an important metabolic regulator. Here, we aim at developing a large scale microfluidic platform for generating high temporal resolution of glucose uptake profiles, and consequently insulin sensitivity, under physio-pathological stimulations in ex vivo adipose tissues from nondiabetic and T2DM individuals. A multiscale mathematical model that integrates fluid dynamics and an intracellular insulin signaling pathway description was used for assisting microfluidic design in order to maximize measurement accuracy of tissue metabolic activity in response to perturbations. An automated microfluidic injection system was included on-chip for performing precise dynamic biochemical stimulations. The temporal evolution of culture conditions could be monitored for days, before and after perturbation, measuring glucose concentration in the outflow with high temporal resolution. As a proof of concept for detection of insulin resistance, we measured insulin-dependent glucose uptake by hAT from nondiabetic and T2DM subjects, mimicking the postprandial response. The system presented thus represents an important tool in dissecting the role of single tissues, such as hAT, in the complex interwoven picture of metabolic diseases.

  15. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    NASA Astrophysics Data System (ADS)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  16. Evaluating Climate Causation of Conflict in Darfur Using Multi-temporal, Multi-resolution Satellite Image Datasets With Novel Analyses

    NASA Astrophysics Data System (ADS)

    Brown, I.; Wennbom, M.

    2013-12-01

    Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors

  17. Visual short-term memory for high resolution associations is impaired in patients with medial temporal lobe damage.

    PubMed

    Koen, Joshua D; Borders, Alyssa A; Petzold, Michael T; Yonelinas, Andrew P

    2017-02-01

    The medial temporal lobe (MTL) plays a critical role in episodic long-term memory, but whether the MTL is necessary for visual short-term memory is controversial. Some studies have indicated that MTL damage disrupts visual short-term memory performance whereas other studies have failed to find such evidence. To account for these mixed results, it has been proposed that the hippocampus is critical in supporting short-term memory for high resolution complex bindings, while the cortex is sufficient to support simple, low resolution bindings. This hypothesis was tested in the current study by assessing visual short-term memory in patients with damage to the MTL and controls for high resolution and low resolution object-location and object-color associations. In the location tests, participants encoded sets of two or four objects in different locations on the screen. After each set, participants performed a two-alternative forced-choice task in which they were required to discriminate the object in the target location from the object in a high or low resolution lure location (i.e., the object locations were very close or far away from the target location, respectively). Similarly, in the color tests, participants were presented with sets of two or four objects in a different color and, after each set, were required to discriminate the object in the target color from the object in a high or low resolution lure color (i.e., the lure color was very similar or very different, respectively, to the studied color). The patients were significantly impaired in visual short-term memory, but importantly, they were more impaired for high resolution object-location and object-color bindings. The results are consistent with the proposal that the hippocampus plays a critical role in forming and maintaining complex, high resolution bindings. © 2016 Wiley Periodicals, Inc.

  18. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    Biomass burning injects many different gases and aerosols into the atmosphere that could have a harmful effect on air quality, climate, and human health. In this study, a comprehensive biomass burning emission inventory including domestic and in-field straw burning, firewood burning, livestock excrement burning, and forest and grassland fires is presented, which was developed for mainland China in 2012 based on county-level activity data, satellite data, and updated source-specific emission factors (EFs). The emission inventory within a 1 × 1 km2 grid was generated using geographical information system (GIS) technology according to source-based spatial surrogates. A range of key information related to emission estimation (e.g. province-specific proportion of domestic and in-field straw burning, detailed firewood burning quantities, uneven temporal distribution coefficient) was obtained from field investigation, systematic combing of the latest research, and regression analysis of statistical data. The established emission inventory includes the major precursors of complex pollution, greenhouse gases, and heavy metal released from biomass burning. The results show that the emissions of SO2, NOx, PM10, PM2.5, NMVOC, NH3, CO, EC, OC, CO2, CH4, and Hg in 2012 are 336.8 Gg, 990.7 Gg, 3728.3 Gg, 3526.7 Gg, 3474.2 Gg, 401.2 Gg, 34 380.4 Gg, 369.7 Gg, 1189.5 Gg, 675 299.0 Gg, 2092.4 Gg, and 4.12 Mg, respectively. Domestic straw burning, in-field straw burning, and firewood burning are identified as the dominant biomass burning sources. The largest contributing source is different for various pollutants. Domestic straw burning is the largest source of biomass burning emissions for all the pollutants considered, except for NH3, EC (firewood), and NOx (in-field straw). Corn, rice, and wheat represent the major crop straws. The combined emission of these three straw types accounts for 80 % of the total straw-burned emissions for each specific pollutant mentioned in this study

  19. Bipolar high temporal resolution measurements of snow UV albedo in Sodankylä and Marambio

    NASA Astrophysics Data System (ADS)

    Meinander, Outi; Kontu, Anna; Asmi, Eija; Sanchez, Ricardo; Mei, Miguel; de Leeuw, Gerrit

    2015-04-01

    In this presentation we will give an overview of our high temporal resolution polar snow UV albedo data from Arctic Sodankylä, and from Marambio, Antarctica. These both are WMO GAW stations with many measurement parameters relevant to the albedo data usage. We will also describe our campaign based polar albedo data (SNORTEX and SOS campaigns), and an important data set of light absorbing impurities (BC) in the Arctic snow. The black carbon (BC) has been estimated to be the second most important human emission after carbon dioxide, in terms of its climate forcing in the present-day atmosphere. The reflectance effect of BC deposited on snow surface is the bigger the smaller the wavelength, i.e. the albedo effect of BC is the biggest at UV. This is also shown in SNICAR-model simulated albedo values. In Sodankylä, our bipolar snow ultraviolet (UV) albedo research started within the International Polar Year (IPY) 2007-2008. In 2007, the continuous Sodankylä snow UV albedo measurements were installed in Sodankylä, in the operational albedo field of the Finnish Meteorological Institute Arctic Research Center (FMI-ARC). These Sodankylä 1-min data during snow time were soon compared with the German Antarctic Neumayer Station UV albedo data, also with the same sensor type. In both data we found an up to 10 % decrease in albedo as a function of time within a day, ranging from 0.77 to 0.67 in Sodankylä and from 0.96 to 0.86 in Neumeyer. Physical explanations to asymmetry were found for cases with high relative humidity and low surface temperature during the previous night, favorable to frost and higher albedo on the next morning; new snow on the previous night; snow melting during day time and refreezing during night. In Marambio, in the beginning of 2013, our new continuous Finnish-Argentinian co-operation snow UV albedo measurements were installed and started as part of a larger continuous meteorological and environmental instrumentation. These new UV radiation data

  20. A method for achieving an order-of-magnitude increase in the temporal resolution of a standard CRT computer monitor.

    PubMed

    Fiesta, Matthew P; Eagleman, David M

    2008-09-15

    As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.

  1. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Zhao, Yuanyuan; Li, Congcong; Yu, Le; Liu, Desheng; Gong, Peng

    2015-05-01

    Global land cover types in 2001 and 2010 were mapped at 250 m resolution with multiple year time series Moderate Resolution Imaging Spectrometer (MODIS) data. The map for each single year was produced not only from data of that particular year but also from data acquired in the preceding and subsequent years as temporal context. Slope data and geographical coordinates of pixels were also used. The classification system was derived from the finer resolution observation and monitoring of global land cover (FROM-GLC) project. Samples were based on the 2010 FROM-GLC project and samples for other years were obtained by excluding those changed from 2010. A random forest classifier was used to obtain original class labels and to estimate class probabilities for 2000-2002, and 2009-2011. The overall accuracies estimated from cross validation of samples are 74.93% for 2001 and 75.17% for 2010. The classification results were further improved through post processing. A spatial-temporal consistency model, Maximum a Posteriori Markov Random Fields (MAP-MRF), was first applied to improve land cover classification for each 3 consecutive years. The MRF outputs for 2001 and 2010 were then processed with a rule-based label adjustment method with MOD44B, slope and composited EVI series as auxiliary data. The label adjustment process relabeled the over-classified forests, water bodies and barren lands to alternative classes with maximum probabilities.

  2. Spatial-Temporal Dynamics of High-Resolution Animal Networks: What Can We Learn from Domestic Animals?

    PubMed Central

    Chen, Shi; Ilany, Amiyaal; White, Brad J.; Sanderson, Michael W.; Lanzas, Cristina

    2015-01-01

    Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways. PMID:26107251

  3. Temporal High-Resolution Computed Tomography and Magnetic Resonance Imaging of Congenital Inner Ear Anomalies in Children.

    PubMed

    Palabiyik, Figen Bakirtas; Hacikurt, Kadir

    2016-10-01

    Imaging plays an important role in determining indications of cochlear implantation and choosing candidates for the procedure in children. Temporal high-resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) can display precisely the complex anatomic structure of inner ear. Although HRCT permits detailed imaging of bony structures, MRI gives valuable information about membranous labyrinth, internal acoustic canal, and vestibulocochlear nerve. Magnetic resonance imaging examination of the brain should be performed at the same time to evaluate any coexistent brain parenchymal abnormality. These imaging modalities are complementary methods in evaluating congenital inner ear anomalies. The aim of this pictorial essay is to reviewing temporal HRCT and MRI findings of congenital inner ear anomalies.

  4. Generating high temporal and spatial resolution thermal band imagery using robust sharpening approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal infrared band imagery provides key information for detecting wild fires, mapping land surface energy fluxes and evapotranspiration, monitoring urban heat fluxes and drought monitoring. Thermal infrared (TIR) imagery at fine resolution is required for field scale applications. However, therma...

  5. Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer-derived surface albedo over global arid regions

    NASA Astrophysics Data System (ADS)

    Tsvetsinskaya, Elena A.; Schaaf, Crystal B.; Gao, Feng; Strahler, Alan H.; Dickinson, Robert E.

    2006-10-01

    We derive spectral and broadband surface albedo for global arid regions from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, at 1 km spatial resolution for 2001. MODIS data show considerable spatial variability both across various arid regions of the globe (from the bright deserts of northern Africa and the Arabian peninsula to substantially less reflective American and Asian deserts) and within regions (variability related to soil and rock types). For example, over arid northern Africa and the Arabian peninsula, albedo in the visible broadband varies by a factor of over 2, from the brightest sand sheets to the darkest luvisols. Few, if any, global and regional land-atmosphere models capture this observed spatial variability in surface albedo over arid regions. We suggest a scheme that relates soil groups (based on the United Nations Food and Agriculture Organization (FAO) soil classification) to MODIS-derived surface albedo statistics. This approach allows for an efficient representation in climate and weather forecasting models of the observed spatial and temporal variability in surface albedo over global deserts. Observed variability in albedo was reduced to a small (1-13, depending on the region) number of soil-related classes (end-members) that could be used in climate models. We also addressed the temporal evolution of albedo during 2001 over global deserts. Regions/soils of stable albedo with very low temporal variability were identified. For other regions/soils, temporal signals in albedo were related to ephemeral inundation with water or variations in sample size.

  6. Retinal temporal resolution and contrast sensitivity in the parasitic lamprey Mordacia mordax and its non-parasitic derivative Mordacia praecox.

    PubMed

    Warrington, Rachael E; Hart, Nathan S; Potter, Ian C; Collin, Shaun P; Hemmi, Jan M

    2017-04-01

    Lampreys and hagfishes are the sole extant representatives of the early agnathan (jawless) vertebrates. We compared retinal function of fully metamorphosed, immature Mordacia mordax (which are about to commence parasitic feeding) with those of sexually mature individuals of its non-parasitic derivative Mpraecox We focused on elucidating the retinal adaptations to dim-light environments in these nocturnally active lampreys, using electroretinography to determine the temporal resolution (flicker fusion frequency, FFF) and temporal contrast sensitivity of enucleated eyecups at different temperatures and light intensities. FFF was significantly affected by temperature and light intensity. Critical flicker fusion frequency (cFFF, the highest FFF recorded) of M. praecox and M. mordax increased from 15.1 and 21.8 Hz at 9°C to 31.1 and 36.9 Hz at 24°C, respectively. Contrast sensitivity of both species increased by an order of magnitude between 9 and 24°C, but remained comparatively constant across all light intensities. Although FFF values for Mordacia spp. are relatively low, retinal responses showed a particularly high contrast sensitivity of 625 in M. praecox and 710 in M. mordax at 24°C. This suggests selective pressures favour low temporal resolution and high contrast sensitivity in both species, thereby enhancing the capture of photons and increasing sensitivity in their light-limited environments. FFF indicated all retinal photoreceptors exhibit the same temporal response. Although the slow response kinetics (i.e. low FFF) and saturation of the response at bright light intensities characterise the photoreceptors of both species as rod-like, it is unusual for such a photoreceptor to be functional under scotopic and photopic conditions.

  7. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction

    NASA Astrophysics Data System (ADS)

    Zo, Il-Sung; Jee, Joon-Bum; Lee, Kyu-Tae; Kim, Bu-Yo

    2016-08-01

    Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m-2 (3.87 kWh m-2). These results show a difference of approximately ± 70 MJ m-2 (± 0.05 kWh m-2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.

  8. IN SITU HIGH TEMPORAL RESOLUTION ANALYSIS OF ELEMENTAL MERCURY IN NATURAL WATER (R827915)

    EPA Science Inventory

    Abstract

    Volatilization of elemental Hg represents an important Hg flux for many aquatic systems. In order to model this flux accurately, it is necessary to measure elemental Hg concentrations in air and water, as well as meteorological variables. Up to now, temporal r...

  9. Improved accuracy of quantitative parameter estimates in dynamic contrast-enhanced CT study with low temporal resolution

    SciTech Connect

    Kim, Sun Mo; Jaffray, David A.

    2016-01-15

    Purpose: A previously proposed method to reduce radiation dose to patient in dynamic contrast-enhanced (DCE) CT is enhanced by principal component analysis (PCA) filtering which improves the signal-to-noise ratio (SNR) of time-concentration curves in the DCE-CT study. The efficacy of the combined method to maintain the accuracy of kinetic parameter estimates at low temporal resolution is investigated with pixel-by-pixel kinetic analysis of DCE-CT data. Methods: The method is based on DCE-CT scanning performed with low temporal resolution to reduce the radiation dose to the patient. The arterial input function (AIF) with high temporal resolution can be generated with a coarsely sampled AIF through a previously published method of AIF estimation. To increase the SNR of time-concentration curves (tissue curves), first, a region-of-interest is segmented into squares composed of 3 × 3 pixels in size. Subsequently, the PCA filtering combined with a fraction of residual information criterion is applied to all the segmented squares for further improvement of their SNRs. The proposed method was applied to each DCE-CT data set of a cohort of 14 patients at varying levels of down-sampling. The kinetic analyses using the modified Tofts’ model and singular value decomposition method, then, were carried out for each of the down-sampling schemes between the intervals from 2 to 15 s. The results were compared with analyses done with the measured data in high temporal resolution (i.e., original scanning frequency) as the reference. Results: The patients’ AIFs were estimated to high accuracy based on the 11 orthonormal bases of arterial impulse responses established in the previous paper. In addition, noise in the images was effectively reduced by using five principal components of the tissue curves for filtering. Kinetic analyses using the proposed method showed superior results compared to those with down-sampling alone; they were able to maintain the accuracy in the

  10. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  11. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  12. Encoding and decoding spatio-temporal information for super-resolution microscopy

    PubMed Central

    Lanzanò, Luca; Coto Hernández, Iván; Castello, Marco; Gratton, Enrico; Diaspro, Alberto; Vicidomini, Giuseppe

    2015-01-01

    The challenge of increasing the spatial resolution of an optical microscope beyond the diffraction limit can be reduced to a spectroscopy task by proper manipulation of the molecular states. The nanoscale spatial distribution of the molecules inside the detection volume of a scanning microscope can be encoded within the fluorescence dynamics and decoded by resolving the signal into its dynamics components. Here we present a robust and general method to decode this information using phasor analysis. As an example of the application of this method, we optically generate spatially controlled gradients in the fluorescence lifetime by stimulated emission. Spatial resolution can be increased indefinitely by increasing the number of resolved dynamics components up to a maximum determined by the amount of noise. We demonstrate that the proposed method provides nanoscale imaging of subcellular structures, opening new routes in super-resolution microscopy based on the encoding/decoding of spatial information through manipulation of molecular dynamics. PMID:25833391

  13. Encoding and decoding spatio-temporal information for super-resolution microscopy.

    PubMed

    Lanzanò, Luca; Coto Hernández, Iván; Castello, Marco; Gratton, Enrico; Diaspro, Alberto; Vicidomini, Giuseppe

    2015-04-02

    The challenge of increasing the spatial resolution of an optical microscope beyond the diffraction limit can be reduced to a spectroscopy task by proper manipulation of the molecular states. The nanoscale spatial distribution of the molecules inside the detection volume of a scanning microscope can be encoded within the fluorescence dynamics and decoded by resolving the signal into its dynamics components. Here we present a robust and general method to decode this information using phasor analysis. As an example of the application of this method, we optically generate spatially controlled gradients in the fluorescence lifetime by stimulated emission. Spatial resolution can be increased indefinitely by increasing the number of resolved dynamics components up to a maximum determined by the amount of noise. We demonstrate that the proposed method provides nanoscale imaging of subcellular structures, opening new routes in super-resolution microscopy based on the encoding/decoding of spatial information through manipulation of molecular dynamics.

  14. Proxy-to-proxy calibration: increasing the temporal resolution of quantitative climate reconstructions.

    PubMed

    von Gunten, Lucien; D'Andrea, William J; Bradley, Raymond S; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index (U37(K)) with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of U37(K) to lake water temperature and the calibration of scanning VIS-RS data to down core U37(K) data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original U37(K) time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years.

  15. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    PubMed Central

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index () with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of to lake water temperature and the calibration of scanning VIS-RS data to down core data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years. PMID:22934132

  16. Ranging Behaviour of Verreaux's Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking.

    PubMed

    Murgatroyd, Megan; Underhill, Les G; Bouten, Willem; Amar, Arjun

    2016-01-01

    Information on movement ecology is key in understanding the drivers and limitations of life history traits and has a potential role in indicating environmental change. Currently we have a limited understanding of the parameters of movement of territory-bound raptors, which are sensitive to environmental change. In this study we used GPS tracking technology to obtain spatially (within 3 m) and temporally (c. 3 mins) high-resolution movement data on a small sample of Verreaux's eagle Aquila verreauxii during the pre-laying period (n = 4) with one additional example during the chick rearing period. We present GPS-derived home range estimates for this species and we examine temporal (timing, duration, frequency and speed) and spatial (total path length and maximum distance from nest) patterns of trips away from the nest. For eagles tagged in the agriculturally developed Sandveld region (n = 3), which is made up of a mosaic of land use types, we also undertook a habitat selection analysis. Home ranges were small and largely mutually exclusive. Trip activity was centred around midday, which is likely to be related to lift availability. Our habitat selection analysis found that eagles selected for near-natural and degraded habitat over natural or completely modified areas, suggesting that these eagles may have benefitted from some of the agricultural development in this region. Although our sample sizes are small, the resolution of our tracking data was essential in deriving this data over a relatively short time period and paves the way for future research.

  17. Harmful Algal Bloom Characterization at Ultra-High Spatial and Temporal Resolution Using Small Unmanned Aircraft Systems

    PubMed Central

    Van der Merwe, Deon; Price, Kevin P.

    2015-01-01

    Harmful algal blooms (HABs) degrade water quality and produce toxins. The spatial distribution of HAbs may change rapidly due to variations wind, water currents, and population dynamics. Risk assessments, based on traditional sampling methods, are hampered by the sparseness of water sample data points, and delays between sampling and the availability of results. There is a need for local risk assessment and risk management at the spatial and temporal resolution relevant to local human and animal interactions at specific sites and times. Small, unmanned aircraft systems can gather color-infrared reflectance data at appropriate spatial and temporal resolutions, with full control over data collection timing, and short intervals between data gathering and result availability. Data can be interpreted qualitatively, or by generating a blue normalized difference vegetation index (BNDVI) that is correlated with cyanobacterial biomass densities at the water surface, as estimated using a buoyant packed cell volume (BPCV). Correlations between BNDVI and BPCV follow a logarithmic model, with r2-values under field conditions from 0.77 to 0.87. These methods provide valuable information that is complimentary to risk assessment data derived from traditional risk assessment methods, and could help to improve risk management at the local level. PMID:25826055

  18. Comparison of analog and digital correlation methods suitable for ultrasonic structural health and load monitoring based on high temporal resolution

    NASA Astrophysics Data System (ADS)

    Birkelbach, Gerhard; Grill, Wolfgang

    2012-04-01

    Ultrasonic load and structural health monitoring schemes, based on high temporal resolution of the transport times of ultrasound, have lately been refined such that the achievable temporal resolution can reach 1 ps even for center frequencies in the lower MHz-regime. Whereas this technique was initiated with signal processing based on digitization and subsequent correlation by software controlled digital processing of the data, equipment has lately been designed and manufactured, allowing rather universal processing of low level analog signals by analog based correlations, employing digital references converted to respective analog signals. The signal and data processing schemes are presented and illustrated with experimental results. The advantages and disadvantages of both methods are discussed, including the limiting effects concerning restrictions given by technological and theoretical aspects. Basic features are demonstrated based on the actually developed and adapted instrumentation including software based operations for both principles of signal and data processing. Even though these methods are also used in ultrasonic imaging, the range of applications presented here focuses dominantly on ultrasonic structural health and load monitoring with bulk and guided acoustic waves.

  19. Real-time cannula navigation in biological tissue with high temporal and spatial resolution based on impedance spectroscopy.

    PubMed

    Trebbels, Dennis; Jugl, Michael; Zengerle, Roland

    2010-01-01

    In many medical applications a well-directed positioning of a cannula in body tissue is mandatory. Especially the accurate placing of the cannula tip in the tissue is important for efficient drug delivery or for accessing blood vessels and nerves. This paper presents a new approach for a universal cannula navigation system based on tissue classification on the cannula tip by impedance spectroscopy. The cannula serves as coaxial, open ended waveguide which is connected to remote measurement equipment. Objective of the new system is to reach a high spatial and temporal resolution for dynamic cannula guidance. Therefore the proposed coaxial cannula design has been analyzed by Finite Element Simulation to investigate the sensitivity of the cannula tip. For fast tissue impedance spectrum measurement the Time-Domain-Reflectometry method is used in order to achieve a high temporal resolution. Measurement data derived in the laboratory is analyzed and interpreted using the general Cole-Cole model for tissue. Based on the results we propose to use a chirp signal for impedance measurement in order to improve the sensitivity of the system towards specific tissue properties.

  20. Higher temporal resolution is necessary for continuous-wave near -infrared spectrophotometric monitors in both cerebral and muscular tissue oximetry

    NASA Astrophysics Data System (ADS)

    Chihara, Eiichi; Shiga, Toshikazu; Tanabe, Kazuhisa; Tanaka, Yoshifumi

    1998-01-01

    Conventional near infrared spectrophotometric monitors have temporal resolution of less than about 1 Hz. However, physiological Hb signals such as pulsation and muscle contraction have higher frequency than 1 Hz. Insufficient sampling rates inevitably lead aliasing of the recorded signals in tissue oximetry for both brain and muscle. Cerebral Hb signals (57 y.o. female artificially ventilated under general anesthesia) and thigh muscle (22 y.o. male with 20 W - 240 W exercise at 1 Hz cycling in semirecumbent ergometer) were measured with NIRS monitor with temporal resolution of 10 Hz (OMRON Co. Ltd., Japan). The detail of physiological fluctuations such as pulsation, ventilation, and muscle pumping was clearly recognized with a 10 Hz sampling. The comparison with recalculated waveforms at slower sampling rate (0.5 Hz, 1 Hz, 2 Hz) revealed that with slower sampling than 1 Hz cerebral respiratory waves were deformed by pulsation, and that magnitudes of muscle pumping could not be properly evaluated in dynamic exercise. In both pulsatile and muscle contractile cycle a phase delay between oxygenated component and deoxygenated one was also detected, which has been overlooked by conventional NIRS monitoring.

  1. Higher temporal resolution is necessary for continuous-wave near -infrared spectrophotometric monitors in both cerebral and muscular tissue oximetry

    NASA Astrophysics Data System (ADS)

    Chihara, Eiichi; Shiga, Toshikazu; Tanabe, Kazuhisa; Tanaka, Yoshifumi

    1997-12-01

    Conventional near infrared spectrophotometric monitors have temporal resolution of less than about 1 Hz. However, physiological Hb signals such as pulsation and muscle contraction have higher frequency than 1 Hz. Insufficient sampling rates inevitably lead aliasing of the recorded signals in tissue oximetry for both brain and muscle. Cerebral Hb signals (57 y.o. female artificially ventilated under general anesthesia) and thigh muscle (22 y.o. male with 20 W - 240 W exercise at 1 Hz cycling in semirecumbent ergometer) were measured with NIRS monitor with temporal resolution of 10 Hz (OMRON Co. Ltd., Japan). The detail of physiological fluctuations such as pulsation, ventilation, and muscle pumping was clearly recognized with a 10 Hz sampling. The comparison with recalculated waveforms at slower sampling rate (0.5 Hz, 1 Hz, 2 Hz) revealed that with slower sampling than 1 Hz cerebral respiratory waves were deformed by pulsation, and that magnitudes of muscle pumping could not be properly evaluated in dynamic exercise. In both pulsatile and muscle contractile cycle a phase delay between oxygenated component and deoxygenated one was also detected, which has been overlooked by conventional NIRS monitoring.

  2. Wide-field optical monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope

    NASA Astrophysics Data System (ADS)

    Beskin, G. M.; Karpov, S. V.; Biryukov, A. V.; Bondar, S. F.; Ivanov, E. A.; Katkova, E. V.; Orekhova, N. V.; Perkov, A. V.; Sasyuk, V. V.

    2017-01-01

    We describe the properties of Mini-MegaTORTORA (MMT-9) nine-channel wide-field optical sky monitoring system with subsecond temporal resolution. This instrument can observe sky areas as large as 900 deg2, perform photometry in three filters close to Johnson BV R system and polarimetry of selected objects or areas with 100-300 deg2 sizes. The limiting magnitude of the system is up to V = 11m for 0.1 s temporal resolution, and reaches V = 15m in minute-long exposures. The system is equipped with a powerful computing facility and dedicated software pipeline allowing it to perform automatic detection, real-time classification, and investigation of transient events of different nature located both in the near- Earth space and at extragalactic distances. The objects routinely detected by MMT-9 include faint meteors and artificial Earth satellites.We discuss astronomical tasks that can be solved using MMT-9, and present the results of the first two years of its operation. In particular, we report the parameters of the optical flare detected on June 25, 2016, which accompanied the gamma-ray burst GRB160625B.

  3. Decoding Overlapping Memories in the Medial Temporal Lobes Using High-Resolution fMRI

    ERIC Educational Resources Information Center

    Chadwick, Martin J.; Hassabis, Demis; Maguire, Eleanor A.

    2011-01-01

    The hippocampus is proposed to process overlapping episodes as discrete memory traces, although direct evidence for this in human episodic memory is scarce. Using green-screen technology we created four highly overlapping movies of everyday events. Participants were scanned using high-resolution fMRI while recalling the movies. Multivariate…

  4. Human-Impacted Waters: Temporal Evolution of Human Proximity to Rivers from Global High Resolution Nighttime Lights

    NASA Astrophysics Data System (ADS)

    Montanari, A.; Ceola, S.; Laio, F.

    2015-12-01

    The human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. However, a spatio-temporal detailed analysis is missing to date. In this analysis, we propose a novel method to quantify the temporal evolution and the spatial distribution of the anthropogenic presence along streams and rivers and in their immediate proximity at the global scale and at a high spatial resolution (i.e., nearly 1 km at the equator). We use satellite images of nocturnal lights, available as yearly snapshots from 1992 to 2013, and identify five distinct distance classes from the river network position. Our results show a temporal enhancement of human presence across the considered distance classes. In particular, we observed a higher human concentration in the vicinity of the river network, even though the frequency distribution of human beings in space has not significantly changed in the last two decades. Our results prove that fine scale remotely sensed data, as nightlights, may provide new perspectives in water science, improving our understanding of the human impact on water resources and water-related environments.

  5. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  6. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN

    NASA Astrophysics Data System (ADS)

    Shwetha, H. R.; Kumar, D. Nagesh

    2016-07-01

    Land Surface Temperature (LST) with high spatio-temporal resolution is in demand for hydrology, climate change, ecology, urban climate and environmental studies, etc. Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most commonly used sensors owing to its high spatial and temporal availability over the globe, but is incapable of providing LST data under cloudy conditions, resulting in gaps in the data. In contrast, microwave measurements have a capability to penetrate under clouds. The current study proposes a methodology by exploring this property to predict high spatio-temporal resolution LST under cloudy conditions during daytime and nighttime without employing in-situ LST measurements. To achieve this, Artificial Neural Networks (ANNs) based models are employed for different land cover classes, utilizing Microwave Polarization Difference Index (MPDI) at finer resolution with ancillary data. MPDI was derived using resampled (from 0.25° to 1 km) brightness temperatures (Tb) at 36.5 GHz channel of dual polarization from Advance Microwave Scanning Radiometer (AMSR)-Earth Observing System and AMSR2 sensors. The proposed methodology is tested over Cauvery basin in India and the performance of the model is quantitatively evaluated through performance measures such as correlation coefficient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE). Results revealed that during daytime, AMSR-E(AMSR2) derived LST under clear sky conditions corresponds well with MODIS LST resulting in values of r ranging from 0.76(0.78) to 0.90(0.96), RMSE from 1.76(1.86) K to 4.34(4.00) K and NSE from 0.58(0.61) to 0.81(0.90) for different land cover classes. During nighttime, r values ranged from 0.76(0.56) to 0.87(0.90), RMSE from 1.71(1.70) K to 2.43(2.12) K and NSE from 0.43(0.28) to 0.80(0.81) for different land cover classes. RMSE values found between predicted LST and MODIS LST during daytime under clear sky conditions were within acceptable

  7. Retrieving Aerosol in a Cloudy Environment: Aerosol Availability as a Function of Spatial and Temporal Resolution

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Mattoo, Shana; Levy, Robert C.; Heidinger, Andrew; Pierce, R. Bradley; Chin, Mian

    2011-01-01

    The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions, using the standard MODIS aerosol cloud mask applied to MODIS data and a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol availability is not the same as the cloud free fraction and takes into account the technqiues used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5x0.5 km for MODIS and 1x1 km for GOES, is systematically degraded to 1x1 km, 2x2 km, 4x4 km and 8x8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8x8 km. The results show that as pixel size increases, availability decreases until at 8x8 km 70% to 85% of the retrievals available at 0.5 km have been lost. The diurnal pattern of aerosol retrieval availability examined for one day in the summer suggests that coarse resolution sensors (i.e., 4x4 km or 8x8 km) may be able to retrieve aerosol early in the morning that would otherwise be missed at the time of current polar orbiting satellites, but not the diurnal aerosol properties due to cloud cover developed during the day. In contrast finer resolution sensors (i.e., 1x1 km or 2x2 km) have much better opportunity to retrieve aerosols in the partly cloudy scenes and better chance of returning the diurnal aerosol properties. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and that a generic cloud mask

  8. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  9. Towards a Methodology for Estimating Surface Pollutant Mixing Ratios from High Spatial and Temporal Resolution Retrievals, and its Applicability to High-Resolution Space Based Observations

    NASA Astrophysics Data System (ADS)

    Knepp, T.; Pippin, M.; Crawford, J.; Szykman, J.; Long, R.; Neil, D.; Fishman, J.

    2012-11-01

    A ground-based sun-tracking spectrometer system (Pandora) is used to retrieve high time and spatial resolution total-column nitrogen dioxide. These column observations are compared with data from a surface NOx instrument that employs a photolytic converter. The column data are inverted (via the EDAS-40 model) to yield surface mole fractions (i.e.ppb) that have typically high coefficients of correlation (e.g. R = 0.80) with surface data. Translating these column observations into boundary-layer mole fractions provides a direct NO2 data set that can significantly improve the understanding of emission, chemical transportation, effectiveness of control strategies, and predictive capabilities. Preliminary results regarding the relation of surface and column NO2 were presented. Total-column NO2 was recorded using a Pandora sun-tracking spectrometer system [1]. The Pandora instrument provides high-temporal resolution data, with a retrieval done every ~90s under clear-sky conditions. Surface NO2 was recorded using a Teledyne API 200EU with a photolytic converter.

  10. High-resolution temporal analysis of deep subseafloor microbial communities inhabiting basement fluids

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Lin, H. T.; Hsieh, C. C.; Rappe, M. S.

    2014-12-01

    The temporal variation in microbial communities inhabiting the anoxic, sediment-covered basaltic ocean basement is largely uncharacterized due to the inaccessible nature of the environment and difficulties associated with collection of samples from low-biomass microbial habitats. Here, a deep sea instrumented platform was employed on the Juan de Fuca Ridge in the summer of 2013 to collect 46 samples of basement fluids from the most recent generation of borehole observatories (U1362A and B), which feature multiple sampling horizons at a single location and fluid delivery lines manufactured using stainless steel or inert polytetrafluoroethylene (PTFE) parts. Included were three time-series deployments of the GEOmicrobe sled meant to resolve the fine-scale (i.e. hourly) temporal variation within in situ crustal microbial communities. Illumina technology was used to sequence small subunit ribosomal RNA (SSU rRNA) gene fragments from sediment, seawater, and subseafloor fluids. Similar to has been reported previously, basic differences in the three environments was observed. Fluid samples from depth horizons extending 30, 70, and ~200 meters sub-basement revealed differences in the observed microbial communities, indicating potential depth-specific zonation of microorganisms in the basaltic basement fluids. Extensive overlap between microorganisms collected from a single depth horizon but using two fluid delivery lines manufactured with different materials was observed, though some differences were also noted. Several archaeal (e.g. THSCG, MCG, MBGE, Archaeoglobus) and bacterial (e.g. Nitrospiraceae, OP8, KB1) lineages detected in previous years of basement fluid sampling nearby were found here, which further supports the notion that these microorganisms are stable residents of anoxic basaltic subseafloor fluids. Direct cell enumeration of samples collected from U1362A and U1362B revealed an elevated biomass compared to samples at these locations from previous years

  11. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL

    PubMed Central

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-01-01

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions. PMID:26086176

  12. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    PubMed

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  13. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  14. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis

    PubMed Central

    Davies, Tim; Jordan, Shawn N.; Chand, Vandana; Sees, Jennifer A.; Laband, Kimberley; Carvalho, Ana; Shirasu-Hiza, Mimi; Kovar, David R.; Dumont, Julien; Canman, Julie C.

    2014-01-01

    Summary To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ~17s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the C. elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, though its GAP activity is only required until just prior to closure. Finally, the Chromosomal Passenger Complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation. PMID:25073157

  15. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis.

    PubMed

    Davies, Tim; Jordan, Shawn N; Chand, Vandana; Sees, Jennifer A; Laband, Kimberley; Carvalho, Ana X; Shirasu-Hiza, Mimi; Kovar, David R; Dumont, Julien; Canman, Julie C

    2014-07-28

    To take full advantage of fast-acting temperature-sensitive mutations, thermal control must be extremely rapid. We developed the Therminator, a device capable of shifting sample temperature in ~17 s while simultaneously imaging cell division in vivo. Applying this technology to six key regulators of cytokinesis, we found that each has a distinct temporal requirement in the Caenorhabditis elegans zygote. Specifically, myosin-II is required throughout cytokinesis until contractile ring closure. In contrast, formin-mediated actin nucleation is only required during assembly and early contractile ring constriction. Centralspindlin is required to maintain division after ring closure, although its GAP activity is only required until just prior to closure. Finally, the chromosomal passenger complex is required for cytokinesis only early in mitosis, but not during metaphase or cytokinesis. Together, our results provide a precise functional timeline for molecular regulators of cytokinesis using the Therminator, a powerful tool for ultra-rapid protein inactivation.

  16. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  17. Temporal dynamics of selective attention and conflict resolution during cross-dimensional go-nogo decisions

    PubMed Central

    Kopp, Bruno; Tabeling, Sandra; Moschner, Carsten; Wessel, Karl

    2007-01-01

    Background Decision-making is a fundamental capacity which is crucial to many higher-order psychological functions. We recorded event-related potentials (ERPs) during a visual target-identification task that required go-nogo choices. Targets were identified on the basis of cross-dimensional conjunctions of particular colors and forms. Color discriminability was manipulated in three conditions to determine the effects of color distinctiveness on component processes of decision-making. Results Target identification was accompanied by the emergence of prefrontal P2a and P3b. Selection negativity (SN) revealed that target-compatible features captured attention more than target-incompatible features, suggesting that intra-dimensional attentional capture was goal-contingent. No changes of cross-dimensional selection priorities were measurable when color discriminability was altered. Peak latencies of the color-related SN provided a chronometric measure of the duration of attention-related neural processing. ERPs recorded over the frontocentral scalp (N2c, P3a) revealed that color-overlap distractors, more than form-overlap distractors, required additional late selection. The need for additional response selection induced by color-overlap distractors was severely reduced when color discriminability decreased. Conclusion We propose a simple model of cross-dimensional perceptual decision-making. The temporal synchrony of separate color-related and form-related choices determines whether or not distractor processing includes post-perceptual stages. ERP measures contribute to a comprehensive explanation of the temporal dynamics of component processes of perceptual decision-making. PMID:17705856

  18. A high spatio-temporal resolution optical pyrometer at the ORION laser facility

    NASA Astrophysics Data System (ADS)

    Floyd, Emma; Gumbrell, Edward T.; Fyrth, Jim; Luis, James D.; Skidmore, Jonathan W.; Patankar, Siddharth; Giltrap, Samuel; Smith, Roland

    2016-11-01

    A streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm. High light collection efficiency means that the diagnostic can transmit a measurable quantity of thermal emission at temperatures as low as 1 eV to the detector. This is achieved through the use of an f/1.4 objective, and a minimum number of reflecting and refracting surfaces to relay the image over 8 m with no vignetting over a 0.4 mm field of view with 12.5× magnification. All the system optics are highly corrected, to allow imaging with minimal aberrations over a broad spectral range. The detector is a highly sensitive Axis Photonique streak camera with a P820PSU streak tube. For the first time, two of these cameras have been absolutely calibrated at 1 ns and 2 ns sweep speeds under full operational conditions and over 8 spectral bands between 425 nm and 650 nm using a high-stability picosecond white light source. Over this range the cameras had a response which varied between 47 ± 8 and 14 ± 4 photons/count. The calibration of the optical imaging system makes absolute temperature measurements possible. Color temperature measurements are also possible due to the wide spectral range over which the system is calibrated; two different spectral bands can be imaged onto different parts of the photocathode of the same streak camera.

  19. Temporal Dynamics of Motivation-Cognitive Control Interactions Revealed by High-Resolution Pupillometry

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557

  20. Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2013-01-01

    Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control.

  1. Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites

    NASA Astrophysics Data System (ADS)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Han, Shin-Chan; Morcrette, Cyril J.

    2017-01-01

    New, viable, and sustainable observation strategies from a constellation of satellites have attracted great attention across many scientific communities. Yet the potential for monitoring global Earth outgoing radiation using such a strategy has not been explored. To evaluate the potential of such a constellation concept and to investigate the configuration requirement for measuring radiation at a time resolution sufficient to resolve the diurnal cycle for weather and climate studies, we have developed a new recovery method and conducted a series of simulation experiments. Using idealized wide field-of-view broadband radiometers as an example, we find that a baseline constellation of 36 satellites can monitor global Earth outgoing radiation reliably to a spatial resolution of 1000 km at an hourly time scale. The error in recovered daily global mean irradiance is 0.16 W m-2 and -0.13 W m-2, and the estimated uncertainty in recovered hourly global mean irradiance from this day is 0.45 W m-2 and 0.15 W m-2, in the shortwave and longwave spectral regions, respectively. Sensitivity tests show that addressing instrument-related issues that lead to systematic measurement error remains of central importance to achieving similar accuracies in reality. The presented error statistics therefore likely represent the lower bounds of what could currently be achieved with the constellation approach, but this study demonstrates the promise of an unprecedented sampling capability for better observing the Earth's radiation budget.

  2. Laser ablation ICP-MS measurements of trace metals in Douglas-fir: a preliminary analysis with submonthly temporal resolution

    NASA Astrophysics Data System (ADS)

    Wilkins, D. E.; Kohn, M. J.; Hinz, E.

    2008-12-01

    Tree-ring cores were collected from a long-lived Douglas-fir (Pseudotsuga menziesii) at Double Springs Pass in the Lost River Range of central Idaho. The tree-rings were dated to 16XX - a minimum age as the pith was not reached during coring because of internal decay. Three sections of the core - with date ranges of 1642-67, 1823-61, and 1971-2005 - were removed for laser ablation ICP-MS analysis. Samples were analyzed by using an Element2 high resolution ICP-MS operating with mass resolution (m/ Δm) of 400, and a New Wave Nd-YAG 213 nm laser system, with a spot size of 40 μm, a repetition rate of 20 Hz, and a fluence of 9-10 J/cm2. Intensities of Ca, Fe, Co, Ni, Cu, Zn, As, Sr, and Ba were collected in continuous traverses with a scan speed of 20 μm/sec, providing an effective spatial resolution of ~40 μm (~2s/analysis), or roughly a 1 to 2 week temporal resolution. Late wood ablated significantly better than early wood, leading to a clear annual signal in background-corrected intensities. Strong correlations occur among Ca-Sr±Ba, which generally exhibit low-amplitude variations, and among Ni-Cu- Zn, which generally exhibit high-amplitude variations. For some annual cycles, all data vary sympathetically, but in others the maxima in Ni-Cu-Zn vs. Ca-Sr are offset by several months. Most importantly, some elements, especially Co and As, exhibit long-term, possibly decadal variations, that may relate to climate factors such as the Pacific Decadal Oscillation. These data hold promise both for chemo-dendrochronology in wood that lacks obvious tree rings, and for characterizing climate variability in the late Holocene.

  3. A Method for Improving Temporal and Spatial Resolution of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Andres, R. J.

    2003-12-01

    Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels for each state in the union. This technique employs monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. To assess the success of this technique, the results from this method are compared with the data obtained from other independent methods. To determine the temporal success of the method, the resulting national time series is compared to the model produced by Carbon Dioxide Information Analysis Center (CDIAC) and the current model being developed by T. J. Blasing and C. Broniak at the Oak Ridge National Laboratory (ORNL). The University of North Dakota (UND) method fits well temporally with the results of the CDIAC and current ORNL research. To determine the success of the spatial component, the individual state results are compared to the annual state totals calculated by ORNL. Using ordinary least squares regression, the annual state totals of this method are plotted against the ORNL data. This allows a direct comparison of estimates in the form of ordered pairs against a one-to-one ideal correspondence line, and allows for easy detection of outliers in the results obtained by this estimation method. Analyzing the residuals of the linear regression model for each type of fuel permits an improved understanding of the strengths and shortcomings of the spatial component of this estimation technique. Spatially, the model is successful when compared to the current ORNL research. The primary advantages of this method are its ease of implementation and universal applicability. In general, this technique compares favorably to more labor-intensive methods that rely on more detailed data. The more detailed data is generally not available for most countries in the world. The methodology used

  4. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

    SciTech Connect

    Beye, M.; Krupin, O.; Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F.; Reid, A. H.; Rupp, D.; Lee, W.-S.; Scherz, A. O.; Chuang, Y.-D.; Cryan, J. P.; Glownia, J. M.; Foehlisch, A.; Durr, H. A.

    2012-03-19

    We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

  5. Mini-MegaTORTORA wide-field monitoring system with sub-second temporal resolution: observation of transient events

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-06-01

    Here we present a summary of first years of operation and first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (~900 square degrees) or narrow (~100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  6. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.

    2016-12-01

    Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-Mega-TORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.

  7. A gas-dynamic model for a flare on YZ CMi: interpretation of spectroscopic observations with high temporal resolution.

    NASA Astrophysics Data System (ADS)

    Katsova, M. M.; Livshits, M. A.; Butler, C. J.; Doyle, J. G.

    The spectra of a flare on YZ CMi, obtained with a temporal resolution of 60 seconds on March 4, 1985 and over the range 3600 - 4400 Å, are analysed using a gas-dynamic model. In this model, the optical radiation in the U-band, outside of flare maximum, is produced by a condensation formed during the gas-dynamic process. With the optical continuum described by a Planck function for a temperature of T ≍ 104K, the emitting source area S ≥ 5×1017cm2. The hydrogen plasma kinetics of an "8 levels plus continuum" model atom are calculated, and it is shown that the low slope of the Balmer decrement, just after the flare maximum, is connected with a large population in the second level of the hydrogen atom.

  8. MR appearance of the temporal evolution and resolution of spontaneous osteonecrosis of the knee: a case report

    PubMed Central

    Jureus, Jan; Hanni, Mari; Shalabi, Adel

    2017-01-01

    Spontaneous osteonecrosis of the knee (SONK) is a feared condition of unknown cause, in its classic form appearing in the medial femoral condyle in middle-aged or elderly subjects. Diagnosis with radiography is notoriously difficult with a long latency before typical changes appear. Magnetic resonance imaging (MRI) is regarded as a diagnostic tool with the possibility to give an earlier diagnosis with improved chances for treatment. However, also with MRI there may be an initial diagnostic blind spot before typical changes appear. Little is known about the temporal evolution of the MRI changes. In the current case report, a case of SONK is reported where serial imaging with MRI was performed, from initial symptoms to eventual resolution after almost three years. PMID:28203389

  9. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths

    SciTech Connect

    Sa, Jacinto; Fernandes, Daniel; Aiouache, Farid; Goguet, Alexandre; Hardacdre, Christopher; Lundie, David; Naeem, Wasif; Partridge Jr, William P; Stere, Cristina

    2010-01-01

    Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

  10. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE PAGES

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  11. MPI as high temporal resolution imaging technique for in vivo bolus tracking of Ferucarbotran in mouse model

    NASA Astrophysics Data System (ADS)

    Jung, C.; Salamon, J.; Hofmann, M.; Kaul, M. G.; Adam, G.; Ittrich, H.; Knopp, T.

    2016-03-01

    Purpose: The goal of this study was to achieve a real time 3D visualisation of the murine cardiovascular system by intravenously injected superparamagnetic nanoparticles using Magnetic particle imaging (MPI). Material and Methods: MPI scans of FVB mice were performed using a 3D imaging sequence (1T/m gradient strength, 10mT drive-field strength). A dynamic scan with a temporal resolution of 21.5ms per 3D volume acquisition was performed. 50μl ferucarbotran (Resovist®, Bayer Healthcare AG) were injected into the tail vein after baseline MPI measurements. As MPI delivers no anatomic information, MRI scans at a 7T ClinScan (Bruker) were performed using a T2-weighted 2D TSE sequence. The reconstruction of the MPI data was performed on the MPI console (ParaVision 6.0/MPI, Bruker). Image fusion was done using additional image processing software (Imalytics, Philips). The dynamic information was extracted using custom software developed in the Julia programming environment. Results: The combined MRI-MPI measurements were carried out successfully. MPI data clearly demonstrated the passage of the SPIO tracer through the inferior vena cava, the heart and finally the liver. By co-registration with MRI the anatomical regions were identified. Due to the volume frame rate of about 46 volumes per second a signal modulation with the frequency of the heart beat was detectable and a heart beat of 520 beats per minute (bpm) has been assumed. Moreover, the blood flow velocity of approximately 5cm/s in the vena cava has been estimated. Conclusions: The high temporal resolution of MPI allows real-time imaging and bolus tracking of intravenous injected nanoparticles and offers a real time tool to assess blood flow velocity.

  12. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge.

    PubMed

    Rodgers, Zachary B; Jain, Varsha; Englund, Erin K; Langham, Michael C; Wehrli, Felix W

    2013-10-01

    We present a technique for quantifying global cerebral metabolic rate of oxygen consumption (CMRO2) in absolute physiologic units at 3-second temporal resolution and apply the technique to quantify the dynamic CMRO2 response to volitional apnea. Temporal resolution of 3 seconds was achieved via a combination of view sharing and superior sagittal sinus-based estimation of total cerebral blood flow (tCBF) rather than tCBF measurement in the neck arteries. These modifications were first validated in three healthy adults and demonstrated to produce minimal errors in image-derived blood flow and venous oxygen saturation (SvO2) values. The technique was then applied in 10 healthy adults during an apnea paradigm of three repeated 30-second breath-holds. Subject-averaged baseline tCBF, arteriovenous oxygen difference (AVO2D), and CMRO2 were 48.6 ± 7.0 mL/100 g per minute, 29.4 ± 3.4 %HbO2, and 125.1 ± 11.4 μmol/100 g per minute, respectively. Subject-averaged maximum changes in tCBF and AVO2D were 43.5 ± 9.4% and -32.1 ± 5.7%, respectively, resulting in a small (6.0 ± 3.5%) but statistically significant (P=0.00044, two-tailed t-test) increase in average end-apneic CMRO2. This method could be used to investigate neurometabolic-hemodynamic relationships in normal physiology, to better define the biophysical origins of the BOLD signal, and to quantify neurometabolic responsiveness in diseases of altered neurovascular reactivity.

  13. GPS-based estimation of sub-daily and rapid polar motion at 15-minute temporal resolution

    NASA Astrophysics Data System (ADS)

    Sibois, Aurore; Bertiger, Willy; Desai, Shailen; Haines, Bruce

    2015-04-01

    We present results from the homogeneous re-analysis of ten years of data from a global Global Positioning System (GPS) network specifically targeting the recovery of the Earth's pole coordinates at 15-minute temporal resolution. We deliberately treat prograde semidiurnal nutation as retrograde diurnal polar motion in our parameter estimation strategy in order to gain insight into potential deficiencies in the sets of precession and nutation models applied. Doing so, we are able to retrieve meaningful polar motion signal in the retrograde diurnal frequency band. This leads us to evaluate the coupling between models of precession-nutation and diurnal variations on polar motion from the ocean tides on total observed polar motion. To assess the quality of our polar motion solution outside of the retrograde diurnal frequency band, we focus on its capability to recover tidally driven and non-tidal variations manifesting at the ultra-rapid (intra-daily) and rapid (characterized by periods ranging from 2 to 20 days) periods. We first evaluate the fit of our polar motion estimates to the IERS 2010 recommended model. This tidal analysis reveals discrepancies manifesting at specific tidal periods and stresses difficulties in separating technique-specific errors and estimation strategy artifacts from model errors. We discuss some of these error sources. After accounting for the effects of diurnal and semi-diurnal ocean tides in our estimation procedure, we convert our series of pole coordinates into the excitation formalism and contrast the resulting series with independently obtained geodynamic excitation functions. We demonstrate that increasing the temporal resolution does not compromise the fidelity of our estimates to predicted rapid variations in polar motion caused by the oceanic and atmospheric circulations. Our results infer a noise level of about 4 μas from our decade-long time series.

  14. Using large-scale neural models to interpret connectivity measures of cortico-cortical dynamics at millisecond temporal resolution

    PubMed Central

    Banerjee, Arpan; Pillai, Ajay S.; Horwitz, Barry

    2012-01-01

    Over the last two decades numerous functional imaging studies have shown that higher order cognitive functions are crucially dependent on the formation of distributed, large-scale neuronal assemblies (neurocognitive networks), often for very short durations. This has fueled the development of a vast number of functional connectivity measures that attempt to capture the spatiotemporal evolution of neurocognitive networks. Unfortunately, interpreting the neural basis of goal directed behavior using connectivity measures on neuroimaging data are highly dependent on the assumptions underlying the development of the measure, the nature of the task, and the modality of the neuroimaging technique that was used. This paper has two main purposes. The first is to provide an overview of some of the different measures of functional/effective connectivity that deal with high temporal resolution neuroimaging data. We will include some results that come from a recent approach that we have developed to identify the formation and extinction of task-specific, large-scale neuronal assemblies from electrophysiological recordings at a ms-by-ms temporal resolution. The second purpose of this paper is to indicate how to partially validate the interpretations drawn from this (or any other) connectivity technique by using simulated data from large-scale, neurobiologically realistic models. Specifically, we applied our recently developed method to realistic simulations of MEG data during a delayed match-to-sample (DMS) task condition and a passive viewing of stimuli condition using a large-scale neural model of the ventral visual processing pathway. Simulated MEG data using simple head models were generated from sources placed in V1, V4, IT, and prefrontal cortex (PFC) for the passive viewing condition. The results show how closely the conclusions obtained from the functional connectivity method match with what actually occurred at the neuronal network level. PMID:22291621

  15. Nano silver and nano zinc-oxide in surface waters - exposure estimation for Europe at high spatial and temporal resolution.

    PubMed

    Dumont, Egon; Johnson, Andrew C; Keller, Virginie D J; Williams, Richard J

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ~6 x 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production.Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L(-1) nano silver and 1.5 ng L(-1) nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L(-1) and 150 ng L(-1), respectively. Predicted concentrations were usually highest in July.

  16. SU-E-J-126: Respiratory Gating Quality Assurance: A Simple Method to Achieve Millisecond Temporal Resolution

    SciTech Connect

    McCabe, B; Wiersma, R

    2014-06-01

    Purpose: Low temporal latency between a gating on/off signal and a linac beam on/off during respiratory gating is critical for patient safety. Although, a measurement of temporal lag is recommended by AAPM Task Group 142 for commissioning and annual quality assurance, there currently exists no published method. Here we describe a simple, inexpensive, and reliable method to precisely measure gating lag at millisecond resolutions. Methods: A Varian Real-time Position Management™ (RPM) gating simulator with rotating disk was modified with a resistive flex sensor (Spectra Symbol) attached to the gating box platform. A photon diode was placed at machine isocenter. Output signals of the flex sensor and diode were monitored with a multichannel oscilloscope (Tektronix™ DPO3014). Qualitative inspection of the gating window/beam on synchronicity were made by setting the linac to beam on/off at end-expiration, and the oscilloscope's temporal window to 100 ms to visually examine if the on/off timing was within the recommended 100-ms tolerance. Quantitative measurements were made by saving the signal traces and analyzing in MatLab™. The on and off of the beam signal were located and compared to the expected gating window (e.g. 40% to 60%). Four gating cycles were measured and compared. Results: On a Varian TrueBeam™ STx linac with RPM gating software, the average difference in synchronicity at beam on and off for four cycles was 14 ms (3 to 30 ms) and 11 ms (2 to 32 ms), respectively. For a Varian Clinac™ 21EX the average difference at beam on and off was 127 ms (122 to 133 ms) and 46 ms (42 to 49 ms), respectively. The uncertainty in the synchrony difference was estimated at ±6 ms. Conclusion: This new gating QA method is easy to implement and allows for fast qualitative inspection and quantitative measurements for commissioning and TG-142 annual QA measurements.

  17. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  18. From runoff to rainfall: inverse rainfall-runoff modelling in a high temporal resolution

    NASA Astrophysics Data System (ADS)

    Herrnegger, M.; Nachtnebel, H. P.; Schulz, K.

    2015-11-01

    Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. Additionally, the density of the monitoring network in mountainous regions is low and measurements are subjected to major errors, which lead to significant uncertainties in areal rainfall estimates. In contrast, the most reliable hydrological information available refers to runoff, which in the presented work is used as input for an inverted HBV-type rainfall-runoff model that is embedded in a root finding algorithm. For every time step a rainfall value is determined, which results in a simulated runoff value closely matching the observed runoff. The inverse model is applied and tested to the Schliefau and Krems catchments, situated in the northern Austrian Alpine foothills. The correlations between inferred rainfall and station observations in the proximity of the catchments are of similar magnitude compared to the correlations between station observations and independent INCA (Integrated Nowcasting through Comprehensive Analysis) rainfall analyses provided by the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). The cumulative precipitation sums also show similar dynamics. The application of the inverse model is a promising approach to obtain additional information on mean areal rainfall. This additional information is not solely limited to the simulated hourly data but also includes the aggregated daily rainfall rates, which show a significantly higher correlation to the observed values. Potential applications of the inverse model include gaining additional information on catchment rainfall for interpolation purposes, flood forecasting or the estimation of snowmelt contribution. The application is limited to (smaller) catchments, which can be represented with a lumped model setup, and to the estimation of liquid rainfall.

  19. Enhanced Temporal Resolution with Ion Channel-Functionalized Sensors Using a Conductance-Based Measurement Protocol.

    PubMed

    Agasid, Mark T; Comi, Troy J; Saavedra, S Scott; Aspinwall, Craig A

    2017-01-17

    The binding of a target analyte to an ion channel (IC), which is readily detected electrochemically in a label-free manner with single-molecule selectivity and specificity, has generated widespread interest in using natural and engineered ICs as transducers in biosensing platforms. To date, the majority of developments in IC-functionalized sensing have focused on IC selectivity or sensitivity or development of suitable membrane environments and aperture geometries. Comparatively little work has addressed analytical performance criteria, particularly criteria required for temporal measurements of dynamic processes. We report a measurement protocol suitable for rapid, time-resolved monitoring (≤30 ms) of IC-modulated membrane conductance. Key features of this protocol include the reduction of membrane area and the use of small voltage steps (10 mV) and short duration voltage pulses (10 ms), which have the net effect of reducing the capacitive charging and decreasing the time required to achieve steady state currents. Application of a conductance protocol employing three sequential, 10 ms voltage steps (-10 mV, -20 mV, -30 mV) in an alternating, pyramid-like arrangement enabled sampling of membrane conductance every 30 ms. Using this protocol, dynamic IC measurements on black lipid membranes (BLMs) functionalized with gramicidin A were conducted using a fast perfusion system. BLM conductance decreased by 76 ± 7.5% within 30 ms of switching from solutions containing 0 to 1 M Ca(2+), which demonstrates the feasibility of using this approach to monitor rapid, dynamic chemical processes. Rapid conductance measurements will be broadly applicable to IC-based sensors that undergo analyte-specific gating.

  20. Single-Leaf Resolution of the Temporal Population Dynamics of Aureobasidium pullulans on Apple Leaves

    PubMed Central

    Woody, Scott T.; Spear, Russell N.; Nordheim, Erik V.; Ives, Anthony R.; Andrews, John H.

    2003-01-01

    The abundance of phylloplane microorganisms typically varies over several orders of magnitude among leaves sampled concurrently. Because the methods traditionally used to sample leaves are destructive, it has remained unclear whether this high variability is due to fixed differences in habitat quality among leaves or to asynchronous temporal variation in the microbial population density on individual leaves. We developed a novel semidestructive assay to repeatedly sample the same apple leaves from orchard trees over time by removing progressively more proximal ∼1-cm-wide transverse segments. Aureobasidium pullulans densities were determined by standard leaf homogenization and plating procedures and were expressed as CFU per square centimeter of segment. The A. pullulans population densities among leaves were lognormally distributed. The variability in A. pullulans population densities among subsections of a given leaf was one-third to one-ninth the variability among whole leaves harvested concurrently. Sequential harvesting of leaf segments did not result in detectable changes in A. pullulans density on residual leaf surfaces. These findings implied that we could infer whole-leaf A. pullulans densities over time by using partial leaves. When this successive sampling regimen was applied over the course of multiple 7- to 8-day experiments, the among-leaf effects were virtually always the predominant source of variance in A. pullulans density estimates. Changes in A. pullulans density tended to be synchronous among leaves, such that the rank order of leaves arrayed with respect to A. pullulans density was largely maintained through time. Occasional periods of asynchrony were observed, but idiosyncratic changes in A. pullulans density did not contribute appreciably to variation in the distribution of populations among leaves. This suggests that persistent differences in habitat (leaf) quality are primarily responsible for the variation in A. pullulans density among

  1. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  2. Imaging the propagation of shock waves with both high temporal and high spatial resolution using XFELs

    NASA Astrophysics Data System (ADS)

    Schropp, Andreas

    2013-06-01

    The emergence of x-ray sources of the fourth generation, so called x-ray free-electron lasers (XFELs), comes along with completely new research opportunities in various scientific fields. During the last year we developed an x-ray microscope based on beryllium compound refractive lenses (Be-CRLs), which is especially optimized for the XFEL environment and provides focusing capabilities down to 100nm and even below. Based on magnified x-ray phase contrast imaging, this new setup enables us to pursue high-resolution x-ray imaging experiments with single XFEL-pulses. In a first experiment, carried out at the Matter in Extreme Conditions (MEC) endstation of the LCLS, the performance of the instrument was investigated by direct imaging of shock waves in different materials. The shock wave was induced by an intense 150 ps optical laser pulse. The evolution of the shock wave was then monitored with the XFEL-beam. In this contribution we report on first analysis results of phase contrast imaging of shock waves in matter. In collaboration with Brice Arnold, Eric Galtier, Hae Ja Lee, Bob Nagler, Jerome Hastings, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; Damian Hicks, Yuan Ping, Gilbert Collins, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, USA; and Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Christian Schroer, Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden, Germany.

  3. Multi-temporal high resolution monitoring of debris-covered glaciers using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kraaijenbrink, Philip; Immerzeel, Walter; de Jong, Steven; Shea, Joseph; Pellicciotti, Francesca; Meijer, Sander; Shresta, Arun

    2016-04-01

    Debris-covered glaciers in the Himalayas are relatively unstudied due to the difficulties in fieldwork caused by the inaccessible terrain and the presence of debris layers, which complicate in situ measurements. To overcome these difficulties an unmanned aerial vehicle (UAV) has been deployed multiple times over two debris covered glaciers in the Langtang catchment, located in the Nepalese Himalayas. Using differential GPS measurements and the Structure for Motion algorithm the UAV imagery was processed into accurate high-resolution digital elevation models and orthomosaics for both pre- and post-monsoon periods. These data were successfully used to estimate seasonal surface flow and mass wasting by using cross-correlation feature tracking and DEM differencing techniques. The results reveal large heterogeneity in mass loss and surface flow over the glacier surfaces, which are primarily caused by the presence of surface features such as ice cliffs and supra-glacial lakes. Accordingly, we systematically analyze those features using an object-based approach and relate their characteristics to the observed dynamics. We show that ice cliffs and supra-glacial lakes are contributing to a significant portion of the melt water of debris covered glaciers and we conclude that UAVs have great potential in understanding the key surface processes that remain largely undetected by using satellite remote sensing.

  4. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  5. High spatial and temporal resolution measurement of mechanical properties in hydrogels by non-contact laser excitation

    NASA Astrophysics Data System (ADS)

    Hosoya, N.; Terashima, Y.; Umenai, K.; Maeda, S.

    2016-09-01

    Gels have received increased attention as potential materials for biological materials because they can exhibit similar mechanical properties. One obstacle for using gels is that their mechanical properties are significantly altered by defects, such as an inhomogeneous crosslink density distribution. If these defects could be detected and the values and spatial distributions of mechanical properties in the gel could be determined, it would be possible to apply gels for several fields. To achieve the high spatial and temporal resolution measurement of mechanical properties in hydrogels, in our method, a conventional contact excitation device is replaced with a non-contact excitation using laser ablation for the input and magnetic resonance elastography to measure stress waves is replaced with the Schlieren method with a high-speed camera. Magnetic resonance elastography is a local measurement technique, and consequently, requires a lot of time to characterize a sample, as well as does not have sufficient spatial resolution to obtain a broad range of elasticity coefficients of gels. We use laser ablation to apply non-contact impulse excitations to gels to generate stress waves inside them. We can determine mechanical properties of gels using the stress waves' propagation velocity.

  6. Instantaneous velocity measurement of AC electroosmotic flows by laser induced fluorescence photobleaching anemometer with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration

    2015-11-01

    Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.

  7. Increasing the accuracy and temporal resolution of two-filter radon-222 measurements by correcting for the instrument response

    NASA Astrophysics Data System (ADS)

    Griffiths, Alan D.; Chambers, Scott D.; Williams, Alastair G.; Werczynski, Sylvester

    2016-06-01

    Dual-flow-loop two-filter radon detectors have a slow time response, which can affect the interpretation of their output when making continuous observations of near-surface atmospheric radon concentrations. While concentrations are routinely reported hourly, a calibrated model of detector performance shows that ˜ 40 % of the signal arrives more than an hour after a radon pulse is delivered. After investigating several possible ways to correct for the detector's slow time response, we show that a Bayesian approach using a Markov chain Monte Carlo sampler is an effective method. After deconvolution, the detector's output is redistributed into the appropriate counting interval and a 10 min temporal resolution can be achieved under test conditions when the radon concentration is controlled. In the case of existing archived observations, collected under less ideal conditions, the data can be retrospectively reprocessed at 30 min resolution. In one case study, we demonstrate that a deconvolved radon time series was consistent with the following: measurements from a fast-response carbon dioxide monitor; grab samples from an aircraft; and a simple mixing height model. In another case study, during a period of stable nights and days with well-developed convective boundary layers, a bias of 18 % in the mean daily minimum radon concentration was eliminated by correcting for the instrument response.

  8. Is High Temporal Resolution Achievable for Paediatric Cardiac Acquisitions during Several Heart Beats? Illustration with Cardiac Phase Contrast Cine-MRI

    PubMed Central

    Bonnemains, Laurent; Odille, Freddy; Meyer, Christophe; Hossu, Gabriella; Felblinger, Jacques; Vuissoz, Pierre-André

    2015-01-01

    Background During paediatric cardiac Cine-MRI, data acquired during cycles of different lengths must be combined. Most of the time, Feinstein’s model is used to project multiple cardiac cycles of variable lengths into a mean cycle. Objective To assess the effect of Feinstein projection on temporal resolution of Cine-MRI. Methods 1/The temporal errors during Feinstein’s projection were computed in 306 cardiac cycles fully characterized by tissue Doppler imaging with 6-phase analysis (from a population of 7 children and young adults). 2/The effects of these temporal errors on tissue velocities were assessed by simulating typical tissue phase mapping acquisitions and reconstructions. 3/Myocardial velocities curves, extracted from high-resolution phase-contrast cine images, were compared for the 6 volunteers with lowest and highest heart rate variability, within a population of 36 young adults. Results 1/The mean of temporal misalignments was 30 ms over the cardiac cycle but reached 60 ms during early diastole. 2/During phase contrast MRI simulation, early diastole velocity peaks were diminished by 6.1 cm/s leading to virtual disappearance of isovolumic relaxation peaks. 3/The smoothing and erasing of isovolumic relaxation peaks was confirmed on tissue phase mapping velocity curves, between subjects with low and high heart rate variability (p = 0.05). Conclusions Feinstein cardiac model creates temporal misalignments that impair high temporal resolution phase contrast cine imaging when beat-to-beat heart rate is changing. PMID:26599755

  9. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales.

    PubMed

    Duan, Zheng; Liu, Junzhi; Tuo, Ye; Chiogna, Gabriele; Disse, Markus

    2016-12-15

    This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a complex topography, and independent ground data are available from a network of 101 rain gauges during 2000-2010. The eight products include the Version 7 TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis 3B42 product, three products from CMORPH (the Climate Prediction Center MORPHing technique), i.e., CMORPH_RAW, CMORPH_CRT and CMORPH_BLD, PCDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record), PGF (Global Meteorological Forcing Dataset for land surface modelling developed by Princeton University), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and GSMaP_MVK (Global Satellite Mapping of Precipitation project Moving Vector with Kalman-filter product). All eight products are evaluated against interpolated rain gauge data at the common 0.25° spatial resolution, and additional evaluations at native finer spatial resolution are conducted for CHIRPS (0.05°) and GSMaP_MVK (0.10°). Evaluation is performed at multiple temporal (daily, monthly and annual) and spatial scales (grid and watershed). Evaluation results show that in terms of overall statistical metrics the CHIRPS, TRMM and CMORPH_BLD comparably rank as the top three best performing products, while the PGF performs worst. All eight products underestimate and overestimate the occurrence frequency of daily precipitation for some intensity ranges. All products tend to show higher error in the winter months (December-February) when precipitation is low. Very slight difference can be observed in the evaluation metrics and aspects between at the aggregated 0.25° spatial resolution and at the native finer resolutions (0.05°) for CHIRPS and (0.10°) for GSMaP_MVK products. This study has implications

  10. The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment

    PubMed Central

    Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.

    2016-01-01

    Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and

  11. Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution.

    PubMed

    Debowska, Weronika; Wolak, Tomasz; Soluch, Pawel; Orzechowski, Mateusz; Kossut, Malgorzata

    2013-02-15

    Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually impaired subjects.

  12. High Spatio-Temporal Resolution Observations of Crater-Lake Surface Temperatures at Kawah Ijen Volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Caudron, C.; van Hinsberg, V.; Bani, P.; Hilley, G. E.; Kelly, P. J.

    2015-12-01

    Subaqueous volcanic eruptions comprise only 8% of all recorded eruptions in historical time, but have caused ~20% of fatalities associated with volcanic activity during this time (Mastin and Witter, 2000). Crater lakes, however, act as calorimeters, absorbing heat from intruding magma and integrating it over space and time and thus offer a unique opportunity to monitor volcanic activity. Kawah Ijen is a composite volcano located on east Java, Indonesia, whose crater hosts the largest natural hyperacidic lake (27 x 106 m3; pH <1) on Earth. As part of an international workshop on Kawah Ijen in September 2014, we tested a novel approach for mapping and monitoring variations in crater-lake apparent surface temperatures at high spatial (~30 cm) and temporal (every two minutes) resolution. We used a ground-based thermal infrared (TIR) camera from the crater rim to collect a set of visible imagery around the crater during the daytime and a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent surface temperatures typically ranged from ~21 to 28oC. At two locations, apparent surface temperatures were ~ 7 and 9 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. We observed large spatio-temporal variations in lake apparent surface temperatures, which were likely associated with wind-driven evaporative cooling of the lake surface. Our approach shows promise for continuous monitoring of crater-lake surface temperatures, particularly if the TIR camera is deployed as part of a permanent station with ancillary meteorological measurements to help distinguish temperature variations associated with atmospheric processes from those at depth within the lake and volcano.

  13. The influence of vegetation covers on soil moisture dynamics at high temporal resolution in scattered tree woodlands of Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, Javier; Schnabel, Susanne; Ceballos-Barbancho, Antonio

    2015-04-01

    Soil water is a key factor that controls the organization and functioning of dryland ecosystems. However, in spite of its great importance in ecohydrological processes, most of the studies focus on daily or longer timescales, while its dynamics at shorter timescales are very little known. The main objective of this work was to determine the role of vegetation covers (grassland and tree canopy) in the soil hydrological response using measurements with high temporal resolution in evergreen oak woodland with Mediterranean climate. For this, soil water content was monitored continuously with a temporal resolution of 30 minutes and by means of capacitance sensors, mainly for the hydrological years 2010-2011 and 2011-2012. They were installed at 5, 10 and 15 cm, and 5 cm above the bedrock and depending on soil profile. This distribution along the soil profile is justified because soils are generally very shallow and most of the roots are concentrated in the upper layer. The sensors were gathered in 8 soil moisture stations in two contrasting situations characterized by different vegetation covers: under tree canopy and in open spaces or grasslands. Soil moisture variations were calculated at rainfall event scale at top soil layer and deepest depth by the difference between the final and initial soil moisture registered by a sensor at the finish and the beginning of the rainfall event, respectively. Besides, as soil moisture changes are strongly influenced by antecedent conditions, different antecedent soil moisture conditions or states, from driest to wettest, were also defined. The works were carried out in 3 experimental farms of the Spanish region of Extremadura. Results obtained revealed that rainwater amount bypassing vegetation covers and reaching the soil may temporarily be modified by covers according to precipitation properties and antecedent environmental conditions (from dry to wet) before the rain episode. Rainfall amounts triggering a positive soil

  14. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  15. Enhanced Temporal Repeat Coverage at Landsat-like Resolution - a Low-cost, Small-sat Mission Concept

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Tucker, C. J.; Masek, J. G.; Brown, M. E.; Jarvis, C.

    2010-12-01

    Landsat images have been used to document land cover and land use change since 1972, spanning a period when global populations have more than doubled, and associated land transformations have increased at an escalating rate. This 38-year Landsat global archive constitutes perhaps the most valuable global change / climate data record available to the world. In late 2008, the USGS EROS Center implemented a decision to make their deep archive of Landsat imagery available to the world community free of charge. In less than two years following that implementation of a free data policy, well over three million scenes have been downloaded and analyzed by thousands of users from 186 different countries. A bulk of the resulting image analyses has been focused on using the Landsat archive for inter-annual assessments to monitor change over time. The often dramatic change detection results have served to heighten interest in not only maintaining the continuity of Landsat imaging, but in increasing the temporal repeat frequency to obtain more robust “within season” assessment capability. The scientific utility of dramatically improved temporal repeat coverage, permitting scientists to assess the nuances of within season fluctuations in productivity at 30 m resolution, anywhere on the globe, is clearly breathtaking. Sadly, the prospect of maintaining, let alone improving upon, the 8-day temporal repeat coverage provided by Landsat’s 5 and 7 over the last decade will be hard to realize due to the escalating production costs associated with building these high precision missions (i.e., $1B). There is a need to look for dramatically lower cost options to augment, but not replace, the classic Landsat missions. A group of Earth scientists affiliated with NASA’s Goddard Space Flight Center have taken a fresh look recently at developing a low-cost, small-sat Landsat-like imaging concept. Their goal has been to derive a cost-effective alternative solution that can provide

  16. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  17. Framework for automated spatio-temporal enhancement of coarse resolution leaf area index (FASE-LAI) – Application to MODIS LAI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-scale satellite-based Framework for Automated Spatio-temporal Enhancement of coarse-resolution leaf area index (LAI) products (FASE-LAI) has ben established to generate 4-day time-series of Landsat-scale LAI, thereby meeting the critical demands of applications needing frequent and high spat...

  18. Bias Adjustment of high spatial/temporal resolution Satellite Precipitation Estimation relying on Gauge-Based precipitation over China

    NASA Astrophysics Data System (ADS)

    Yu, J.; Pan, Y.; Shen, Y.

    2010-12-01

    Satellite precipitation data has been widely used in the forecasting and research of weather and climate because of its high spatial/temporal resolution, especially in the area of limited access to ground-based measurements. The distribution of gauge stations in China is very uniform with most gauge stations located in Eastern China and few gauge stations located in Western China. So the using of satellite precipitation data in China is very important. Although the satellite precipitation data has a good spatial construction, its estimation value is less accurate and has distinct systematic bias comparing to gauge-based one. The bias of satellite precipitation data should be adjusted before using it. In this paper, the CMORPH (Climate Prediction Center Morphing Technique) 30-min precipitation products is chosen to represent the large-scale precipitation of China and be adjusted based on hourly rain gauge analysis over China by interpolating from more than 10000 stations collected and quality controlled by the National Meteorological Information Center of the China Meteorological by using a probability density function (PDF) matching method (Wang and Xie, 2005). After bias-adjustment by PDF matching, we get a less systematic bias and high-resolution satellite precipitation product, which is hourly precipitation on a 0.1°latitude/longitude grid over China. Adjusted values are more close to the gauge observations, and the probability density function of corrected precipitation products is the same as that of the gauge-based precipitation. In Western China, the quantity value of corrected precipitation estimates is obviously increased comparing to the original estimate value. On the other hand, the spatial construction is still maintenance of satellite products.

  19. Preliminary characterization of diacylglycerol generation in human basophils: temporal relationship to histamine release and resolution of degranulation.

    PubMed

    Oriente, A; Hundley, T; Hubbard, W C; MacGlashan, D W

    1997-05-01

    Purified human basophils were examined for changes in diacylglycerol levels to determine whether the transient nature of a N-formyl-methionyl-leucyl-phenylalanine (fMLP) -stimulated elevation in membrane protein kinase C (PKC) activity could be explained by the transient production of diacylglycerol (DAG). In preliminary experiments total DAG levels were measured by the DAG kinase assay. Although elevations followed stimulation with 1 microM fMLP (basal levels of 15 pmol/10(6) basophils vs. 45 pmol/10(6) basophils at the 3-min time point), there were no detectable changes in the first 60 s of the reaction. Histamine release is typically complete by 30-45 s. Measurement of inositol trisphosphate indicated a rapid increase by 5 s of 2.5 pmol/10(6) basophils. If DAG were produced at similar levels, the DAG kinase assay would not have detected the elevation. Consequently, fMLP-stimulated basophils were examined for changes in 1-stearoyl, 2-arachidonoyl, 3-sn-glycerol (SA-DAG) and 1-oleoyl, 2-arachidonoyl, 3-sn-glycerol by GC-NICIMS (negative ion chemical ionization mass spectroscopy). A 5-s elevation in these two species averaged 2 pmol/10(6) basophils, consistent with the inositol trisphosphate levels and occurring during the period of histamine release. However, a much more pronounced second phase to the SA-DAG response also occurred, mirroring the total DAG levels. This second phase of the DAG response, either total or SA-DAG, was transient on a time scale temporally coincident with the appearance and resolution of degranulation sacs as measured by fluorescence microscopy. These data suggest that there is selective generation of DAG species in the early reaction and the later appearance of DAG may be related to the formation and resolution of granule structures that follow the secretion of histamine.

  20. Semi-automatic verification of cropland and grassland using very high resolution mono-temporal satellite images

    NASA Astrophysics Data System (ADS)

    Helmholz, Petra; Rottensteiner, Franz; Heipke, Christian

    2014-11-01

    Many public and private decisions rely on geospatial information stored in a GIS database. For good decision making this information has to be complete, consistent, accurate and up-to-date. In this paper we introduce a new approach for the semi-automatic verification of a specific part of the, possibly outdated GIS database, namely cropland and grassland objects, using mono-temporal very high resolution (VHR) multispectral satellite images. The approach consists of two steps: first, a supervised pixel-based classification based on a Markov Random Field is employed to extract image regions which contain agricultural areas (without distinction between cropland and grassland), and these regions are intersected with boundaries of the agricultural objects from the GIS database. Subsequently, GIS objects labelled as cropland or grassland in the database and showing agricultural areas in the image are subdivided into different homogeneous regions by means of image segmentation, followed by a classification of these segments into either cropland or grassland using a Support Vector Machine. The classification result of all segments belonging to one GIS object are finally merged and compared with the GIS database label. The developed approach was tested on a number of images. The evaluation shows that errors in the GIS database can be significantly reduced while also speeding up the whole verification task when compared to a manual process.

  1. A Dual Functional Electroactive and Fluorescent Probe for Coupled Measurements of Vesicular Exocytosis with High Spatial and Temporal Resolution.

    PubMed

    Liu, Xiaoqing; Savy, Alexandra; Maurin, Sylvie; Grimaud, Laurence; Darchen, François; Quinton, Damien; Labbé, Eric; Buriez, Olivier; Delacotte, Jérôme; Lemaître, Frédéric; Guille-Collignon, Manon

    2017-02-20

    In this work, Fluorescent False Neurotransmitter 102 (FFN102), a synthesized analogue of biogenic neurotransmitters, was demonstrated to show both pH-dependent fluorescence and electroactivity. To study secretory behaviors at the single-vesicle level, FFN102 was employed as a new fluorescent/electroactive dual probe in a coupled technique (amperometry and total internal reflection fluorescence microscopy (TIRFM)). We used N13 cells, a stable clone of BON cells, to specifically accumulate FFN102 into their secretory vesicles, and then optical and electrochemical measurements of vesicular exocytosis were experimentally achieved by using indium tin oxide (ITO) transparent electrodes. Upon stimulation, FFN102 started to diffuse out from the acidic intravesicular microenvironment to the neutral extracellular space, leading to fluorescent emissions and to the electrochemical oxidation signals that were simultaneously collected from the ITO electrode surface. The correlation of fluorescence and amperometric signals resulting from the FFN102 probe allows real-time monitoring of single exocytotic events with both high spatial and temporal resolution. This work opens new possibilities in the investigation of exocytotic mechanisms.

  2. Export of dissolved organic carbon and nitrate from grassland in winter using high temporal resolution, in situ UV sensing.

    PubMed

    Sandford, Richard C; Hawkins, Jane M B; Bol, Roland; Worsfold, Paul J

    2013-07-01

    Co-deployment of two reagentless UV sensors for high temporal resolution (15 min) real time determination of wintertime DOC and nitrate-N export from a grassland lysimeter plot (North Wyke, Devon, UK) is reported. They showed rapid, transient but high impact perturbations of DOC (5.3-23 mg CL(-1)) and nitrate-N export after storm/snow melt which discontinuous sampling would not have observed. During a winter freeze/thaw cycle, DOC export (1.25 kg Cha(-1)d(-1)) was significantly higher than typical UK catchment values (maximum 0.25 kg Chad(-1)) and historical North Wyke data (0.7 kg Cha(-1)d(-1)). DOC concentrations were inversely correlated with the key DOC physico-chemical drivers of pH (January r=-0.65), and conductivity (January r=-0.64). Nitrate-N export (0.8-1.5 mg NL(-1)) was strongly correlated with DOC export (r ≥ 0.8). The DOC:NO3-N molar ratios showed that soil microbial N assimilation was not C limited and therefore high N accrual was not promoted in the River Taw, which is classified as a nitrate vulnerable zone (NVZ). The sensor was shown to be an effective sentinel device for identifying critical periods when rapid ecosystem N accumulation could be triggered by a shift in resource stoichiometry. It is therefore a useful tool to help evaluate land management strategies and impacts from climate change and intensive agriculture.

  3. High temporal resolution measurements of ozone precursors in a rural background station. A two-year study.

    PubMed

    Navazo, M; Durana, N; Alonso, L; Gómez, M C; García, J A; Ilardia, J L; Gangoiti, G; Iza, J

    2008-01-01

    We present a very complete database of individual non-methane hydrocarbon (NMHC) measurements with high temporal resolution (hourly) in a rural background atmosphere. We show their use to characterize the biogenic NMHC as well as to identify the transport and impact of anthropogenic NMHC on rural areas. In January 2003 an automatic GC-FID analyzer of volatile organic compounds between 2 and 10 carbon atoms (C2-C10 VOCs) was placed in the centre of the Valderejo Natural Park in northern Iberia (42.87 degrees N, 3.22 degrees W), far away from important cities. The system operated continuously until December 2004. Data coverage was higher than 70% for a total of 59 VOC of both anthropogenic and biogenic origin, with detection limits in the range of pptv. Our results allow for the description of the behaviour of these compounds, in order to identify external impacts arriving to the sampling site which has been recognized to be highly representative of a rural background atmosphere. Biogenic VOC concentrations have been compared also with the calculated emissions, using Guenther's algorithm, and the discrepancies interpreted in terms of the different reactivity of such compounds.

  4. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  5. Strikingly rapid neural basis of motion-induced position shifts revealed by high temporal-resolution EEG pattern classification.

    PubMed

    Hogendoorn, Hinze; Verstraten, Frans A J; Cavanagh, Patrick

    2015-08-01

    Several visual illusions demonstrate that the neural processing of visual position can be affected by visual motion. Well-known examples are the flash-lag, flash-drag, and flash-jump effect. However, where and when in the visual processing hierarchy such interactions take place is unclear. Here, we used a variant of the flash-grab illusion (Vision Research 91 (2013), pp. 8-20) to shift the perceived positions of flashed stimuli, and applied multivariate pattern classification to individual 64-channel EEG trials to dissociate neural signals corresponding to veridical versus perceived position with high temporal resolution. We show illusory effects of motion on perceived position in three separate analyses: (1) A classifier can distinguish different perceived positions of a flashed object, even when the veridical positions are identical. (2) When the perceived positions of two objects presented in different locations become more similar, the classifier performs less well than when they become more different, even if the veridical positions remain unchanged. (3) Finally, a classifier can discriminate the perceived position of an object even when trained on objects presented in physically different positions. These effects are evident as early as 81ms post-stimulus, concurrent with the very first EEG signals indicating that any stimulus is present at all. This finding shows that the illusion must begin at an early level, probably as part of a predominantly feed-forward mechanism, leaving the influence of any recurrent processes to later stages in the development of the effect.

  6. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  7. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.

  8. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  9. A high-resolution temporal record of environmental changes in the Eastern Caribbean (Guadeloupe) from 40 to 10 ka BP

    NASA Astrophysics Data System (ADS)

    Royer, Aurélien; Malaizé, Bruno; Lécuyer, Christophe; Queffelec, Alain; Charlier, Karine; Caley, Thibaut; Lenoble, Arnaud

    2017-01-01

    In neotropical regions, fossil bat guano accumulated over time as laminated layers in caves, hence providing a high-resolution temporal record of terrestrial environmental changes. Additionally, cave settings have the property to preserve such organic sediments from processes triggered by winds (deflation, abrasion and sandblasting) and intense rainfall (leaching away). This study reports both stable carbon and nitrogen isotope compositions of frugivorous bat guano deposited in a well-preserved stratigraphic succession of Blanchard Cave on Marie-Galante, Guadeloupe. These isotopic data are discussed with regard to climate changes and its specific impact on Eastern Caribbean vegetation during the Late Pleistocene from 40 to 10 ka cal. BP. Guano δ13C values are higher than modern ones, suggesting noticeable vegetation changes. This provides also evidence for overall drier environmental conditions during the Pleistocene compared to today. Meanwhile, within this generally drier climate, shifts between wetter and drier conditions can be observed. Large temporal amplitudes in both δ13C and δ15N variations reaching up to 5.9‰ and 16.8‰, respectively, also indicate these oceanic tropical environments have been highly sensitive to regional or global climatic forcing. Stable isotope compositions of bat guano deposited from 40 to 35 ka BP, the Last Glacial Maximum and the Younger-Dryas reveal relatively wet environmental conditions whereas, at least from the end of the Heinrich event 1 and the Bølling period the region experienced drier environmental conditions. Nevertheless, when considering uncertainties in the model age, the isotopic record of Blanchard Cave show relatively similar variations with known proxy records from the northern South America and Central America, suggesting thus that the Blanchard Cave record is a robust proxy of past ITCZ migration. Teleconnections through global atmospheric pattern suggest that islands of the eastern Caribbean Basin could

  10. The temporal spectrum of the sdB pulsating star HS 2201+2610 at 2 ms resolution

    NASA Astrophysics Data System (ADS)

    Silvotti, R.; Janulis, R.; Schuh, S. L.; Charpinet, S.; Oswalt, T.; Silvestri, N.; Gonzalez Perez, J. M.; Kalytis, R.; Meištas, E.; Ališauskas, D.; Marinoni, S.; Jiang, X. J.; Reed, M. D.; Riddle, R. L.; Bernabei, S.; Heber, U.; Bärnbantner, O.; Cordes, O.; Dreizler, S.; Goehler, E.; Østensen, R.; Bochanski, J.; Carlson, G.

    2002-07-01

    In this article we present the results of more than 180 hours of time-series photometry on the low gravity (log g=5.4, Teff=29 300 K, log He/H=-3.0 by number) sdB pulsating star HS 2201+2610, obtained between September 2000 and August 2001. The temporal spectrum is resolved and shows 5 close frequencies: three main signals at 2860.94, 2824.10 and 2880.69 mu Hz, with amplitudes of about 1%, 0.5% and 0.1% respectively, are detected from single run observations; two further peaks with very low amplitude (<0.07%) at 2738.01 and 2921.82 mu Hz are confirmed by phase analysis on several independent runs. Due to the small number of detected frequencies, it is not possible to obtain a univocal identification of the excited modes and perform a detailed seismological analysis of the star. No clear signatures of rotational splitting are seen. Nevertheless, the observed period spectrum is well inside the excited period window obtained from pulsation calculations with nonadiabatic models having effective temperature and surface gravity close to the spectroscopic estimates. Due to its relatively simple temporal spectrum, HS 2201+2610 is a very good candidate for trying to measure the secular variation of the pulsation periods in time. With this purpose a long-term monitoring of the star was started. The results of the first 11 months show amplitude variations up to ~ 20% on time-scales of months, which are probably real, and allow us to measure the pulsation frequencies with an unprecedented 0.02 mu Hz resolution. Based on observations obtained at the following telescopes: Loiano 1.5 m (Bologna Astronomical Observatory), Moletai 1.65 m (Institute of Theoretical Physics and Astronomy, Vilnius), Calar Alto 2.2 and 1.2 m (German-Spanish Astronomical Center operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy), SARA 0.9 m (Southeastern Association for Research in Astronomy, at Kitt Peak, Arizona), Tenerife 0.8 m

  11. Analysing the Advantages of High Temporal Resolution Geostationary MSG SEVIRI Data Compared to Polar Operational Environmental Satellite Data for Land Surface Monitoring in Africa

    NASA Technical Reports Server (NTRS)

    Fensholt, R.; Anyamba, A.; Huber, S.; Proud, S. R.; Tucker, C. J.; Small, J.; Pak, E.; Rasmussen, M. O.; Sandholt, I.; Shisanya, C.

    2011-01-01

    Since 1972, satellite remote sensing of the environment has been dominated by polar-orbiting sensors providing useful data for monitoring the earth s natural resources. However their observation and monitoring capacity are inhibited by daily to monthly looks for any given ground surface which often is obscured by frequent and persistent cloud cover creating large gaps in time series measurements. The launch of the Meteosat Second Generation (MSG) satellite into geostationary orbit has opened new opportunities for land surface monitoring. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on-board MSG with an imaging capability every 15 minutes which is substantially greater than any temporal resolution that can be obtained from existing polar operational environmental satellites (POES) systems currently in use for environmental monitoring. Different areas of the African continent were affected by droughts and floods in 2008 caused by periods of abnormally low and high rainfall, respectively. Based on the effectiveness of monitoring these events from Earth Observation (EO) data the current analyses show that the new generation of geostationary remote sensing data can provide higher temporal resolution cloud-free (less than 5 days) measurements of the environment as compared to existing POES systems. SEVIRI MSG 5-day continental scale composites will enable rapid assessment of environmental conditions and improved early warning of disasters for the African continent such as flooding or droughts. The high temporal resolution geostationary data will complement existing higher spatial resolution polar-orbiting satellite data for various dynamic environmental and natural resource applications of terrestrial ecosystems.

  12. Bi-Temporal Analysis of High-Resolution Satellite Imagery in Support of a Forest Conservation Program in Western Uganda

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Lambin, E.; Audy, R.; Biryahwaho, B.; de Laat, J.; Jayachandran, S.

    2014-12-01

    Recent studies in land use sustainability have shown the conservation value of even small forest fragments in tropical smallholder agricultural regions. Forest patches provide important ecosystem services, wildlife habitat, and support human livelihoods. Our study incorporates multiple dates of high-resolution Quickbird imagery to map forest disturbance and regrowth in a smallholder agricultural landscape in western Uganda. This work is in support of a payments for ecosystem services (PES) project which uses a randomized controlled trial to assess the efficacy of PES for enhancing forest conservation. The research presented here details the remote sensing phase of this project. We developed an object-based methodology for detecting forest change from high-resolution imagery that calculates per class image reflectance and change statistics to determine persistent forest, non-forest, forest gain, and forest loss classes. The large study area (~ 2,400 km2) necessitated using a combination of 10 different image pairs of varying seasonality, sun angle, and viewing angle. We discuss the impact of these factors on mapping results. Reflectance data was used in conjunction with texture measures and knowledge-driven modeling to derive forest change maps. First, baseline Quickbird images were mapped into tree cover and non-tree categories based on segmented image objects and field inventory data, applied through a classification and regression tree (CART) classifier. Then a bi-temporal segmentation layer was generated and a series of object metrics from both image dates were extracted. A sample set of persistent forest objects that remained undisturbed was derived from the tree cover map and the red band (B3) change values. We calculated a variety of statistical indices for these persistent tree cover objects from the post- survey imagery to create maps of both forest cover loss and forest cover gain. These results are compared to visually assessed image objects in addition

  13. Measurements of Carbon Dioxide, Methane, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Forgeron, J.; Yasuhara, S.; Rella, C.; Jacobson, G. A.; Chiao, S.

    2012-12-01

    Measurements of Carbon Dioxide, Methane, and Other Related Tracers at High Spatial and Temporal Resolution in an Urban Environment Jeff Forgeron1,2, Scott Yasuhara1,2, Chris Rella1, Gloria Jacobson1, Sen Chiao2 1Picarro Inc., 3105 Patrick Henry Drive, Santa Clara California 95054 USA 2San Jose State University, 1 Washington Square, San Jose California USA JeffAForgeron@gmail.com The ability to quantify sources and sinks of carbon dioxide and methane on the urban scale is essential for understanding the atmospheric drivers to global climate change. In the 'top-down' approach, overall carbon fluxes are determined by combining remote measurements of carbon dioxide concentrations with complex atmospheric transport models, and these emissions measurements are compared to 'bottom-up' predictions based on detailed inventories of the sources and sinks of carbon, both anthropogenic and biogenic in nature. This approach, which has proven to be effective at continental scales, becomes challenging to implement at urban scales, due to poorly understood atmospheric transport models and high variability of the emissions sources in space (e.g., factories, highways, green spaces) and time (rush hours, factory shifts and shutdowns, and diurnal and seasonal variation in residential energy use). New measurement and analysis techniques are required to make sense of the carbon dioxide signal in cities. Here we present detailed, high spatial- and temporal- resolution greenhouse gas measurements made by multiple Picarro-CRDS analyzers in Silicon Valley in California. Real-time carbon dioxide data from a 12-month period are combined with real-time carbon monoxide, methane, acetylene, and carbon-13 measurements to partition the observed carbon dioxide concentrations between different anthropogenic sectors (e.g., transport, residential) and biogenic sources. Real-time wind rose data are also combined with real-time methane data to help identify the direction of local emissions of methane

  14. High resolution three-dimensional (256 to the 3rd) spatio-temporal measurements of the conserved scalar field in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Dahm, Werner J. A.; Buch, Kenneth A.

    Results from highly resolved three-dimensional spatio-temporal measurements of the conserved scalar field zeta(x,t) in a turbulent shear flow. Each of these experiments consists of 256 to the 3rd individual point measurements of the local instantaneous conserved scalar value in the flow. The spatial and temporal resolution of these measurements reach beyond the local Kolmogorov scale and resolve the local strain-limited molecular diffusion scale in the flow. The results clearly show molecular mixing occurring in thin strained laminar diffusion layers in a turbulent flow.

  15. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    NASA Astrophysics Data System (ADS)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of

  16. Discovering New Global Climate Patterns: Curating a 21-Year High Temporal (Hourly) and Spatial (40km) Resolution Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    Hou, C. Y.; Dattore, R.; Peng, G. S.

    2014-12-01

    The National Center for Atmospheric Research's Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40km Reanalysis dataset is a dynamically downscaled dataset with high temporal and spatial resolution. The dataset contains three-dimensional hourly analyses in netCDF format for the global atmospheric state from 1985 to 2005 on a 40km horizontal grid (0.4°grid increment) with 28 vertical levels, providing good representation of local forcing and diurnal variation of processes in the planetary boundary layer. This project aimed to make the dataset publicly available, accessible, and usable in order to provide a unique resource to allow and promote studies of new climate characteristics. When the curation project started, it had been five years since the data files were generated. Also, although the Principal Investigator (PI) had generated a user document at the end of the project in 2009, the document had not been maintained. Furthermore, the PI had moved to a new institution, and the remaining team members were reassigned to other projects. These factors made data curation in the areas of verifying data quality, harvest metadata descriptions, documenting provenance information especially challenging. As a result, the project's curation process found that: Data curator's skill and knowledge helped make decisions, such as file format and structure and workflow documentation, that had significant, positive impact on the ease of the dataset's management and long term preservation. Use of data curation tools, such as the Data Curation Profiles Toolkit's guidelines, revealed important information for promoting the data's usability and enhancing preservation planning. Involving data curators during each stage of the data curation life cycle instead of at the end could improve the curation process' efficiency. Overall, the project showed that proper resources invested in the curation process would give datasets the best chance to fulfill their potential to

  17. Combining High Temporal Resolution Gas Composition and Seismic Data to Identify Subsurface Fluid Movement within the Katmai Volcanic Complex, Alaska

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; West, M. E.; Aiuppa, A.; Holtkamp, S. G.; Giudice, G.; Whittaker, S.; Capecchiacci, F.; Ketner, D. M.; Tassi, F.; Paskievitch, J.; Chiodini, G.; Fiebig, J.; Rizzo, A. L.; Caliro, S.

    2015-12-01

    Volcano seismicity is often attributed to subsurface fluid movement; however the type of fluid (i.e. magma, volatiles, or hydrothermal waters) cannot be uniquely identified using seismic data alone. The chemical composition of volcanic gases released from active volcanoes can be used to distinguish magmatic from hydrothermal degassing, and to identify magma recharge from depth. In this project we use complementary geochemical and seismic datasets from three hydrothermally and seismically active volcanoes within the Katmai Volcanic Cluster, Alaska, in an effort to constrain seismic signatures of subsurface fluid movement. We combine new data collected in July and August 2013 from Mount Martin Volcano, with previously presented gas and seismic data from the nearby volcanoes of Mount Mageik and Trident. High temporal resolution (~1 Hz) major-species (e.g. H2O, CO2, SO2, H2S) gas composition measurements were collected over four ~30 minute sample periods each day for 2-4 week periods from the target volcanoes using campaign MultiGas instruments located adjacent to the primary degassing sources. These instruments were complemented by co-located broadband seismometers on the crater rims of Mount Martin and Mount Mageik, as well as by the Alaska Volcano Observatory Katmai seismic network, which consists of nine short-period and two broadband seismometers located within 30 km of the target volcanoes. Here we apply template-matching techniques to identify repeating earthquakes, and compare changes in shallow seismicity with changes in gas composition. Preliminary results from Trident suggest a potential link between an ~5 day SO2 gas pulse, presumed to reflect magma degassing, and shallow repeating earthquakes. In this study, we present analysis of ~4 weeks of new gas and seismic data from Mount Martin and expand on the analyses at Trident in an effort to provide robust correlations between potential geochemical and geophysical signals of subsurface fluid movement.

  18. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  19. Analysis of decade-long time series of GPS-based polar motion estimates at 15-min temporal resolution

    NASA Astrophysics Data System (ADS)

    Sibois, Aurore E.; Desai, Shailen D.; Bertiger, Willy; Haines, Bruce J.

    2017-02-01

    We present results from the generation of 10-year-long continuous time series of the Earth's polar motion at 15-min temporal resolution using Global Positioning System ground data. From our results, we infer an overall noise level in our high-rate polar motion time series of 60 μas (RMS). However, a spectral decomposition of our estimates indicates a noise floor of 4 μas at periods shorter than 2 days, which enables recovery of diurnal and semidiurnal tidally induced polar motion. We deliberately place no constraints on retrograde diurnal polar motion despite its inherent ambiguity with long-period nutation. With this approach, we are able to resolve damped manifestations of the effects of the diurnal ocean tides on retrograde polar motion. As such, our approach is at least capable of discriminating between a historical background nutation model that excludes the effects of the diurnal ocean tides and modern models that include those effects. To assess the quality of our polar motion solution outside of the retrograde diurnal frequency band, we focus on its capability to recover tidally driven and non-tidal variations manifesting at the ultra-rapid (intra-daily) and rapid (characterized by periods ranging from 2 to 20 days) periods. We find that our best estimates of diurnal and semidiurnal tidally induced polar motion result from an approach that adopts, at the observation level, a reasonable background model of these effects. We also demonstrate that our high-rate polar motion estimates yield similar results to daily-resolved polar motion estimates, and therefore do not compromise the ability to resolve polar motion at periods of 2-20 days.

  20. Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging.

    PubMed

    Maredia, Neil; Radjenovic, Aleksandra; Kozerke, Sebastian; Larghat, Abdulghani; Greenwood, John P; Plein, Sven

    2010-12-01

    k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P < 0.001). There were no significant differences in MPRI and MPR values derived by each sequence. Maximizing spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis.

  1. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Gailhard, J.; Kuentz, A.; Hingray, B.

    2015-12-01

    Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km2). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models - especially concerning spatial homogeneity - while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883-2010). Citation: Kuentz, A., Mathevet, T., Gailhard, J., and Hingray, B.: Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric

  2. Temporal and spectral resolution of hearing in patients with precipitous hearing loss: Gap release of masking (GRM) and the role of cognitive function

    NASA Astrophysics Data System (ADS)

    Vestergaard, Martin D.

    2005-04-01

    The purpose of this experiment was to measure temporal acuity and spectral resolution of hearing in new hearing-aid users over a period of time post-fitting, and to demonstrate the extent to which performance might change over time. For one-octave wide maskers with and without spectral and temporal gaps, masking was measured repeatedly over 3 months post-fitting. GRM was characterized as the release from masking under the gap conditions. The cognitive skills of the participants were assessed with two tests for measuring working memory capacity and lexical vigilance. The results showed that while the masking by one-octave wide noise maskers without any gaps was constant over time, GRM increased over time for maskers involving a temporal gap. Moreover, at low frequencies where the subjects had normal hearing-threshold levels, they performed as hearing-impaired for the spectral-gap condition. For the temporal-gap condition, they performed as normally hearing at both low and high frequencies. These results suggest that patients with precipitous hearing loss do not maintain normal spectral resolution through the low-frequency region, in which the hearing threshold levels are otherwise normal. Surprisingly, the results also showed moderate though highly significant correlation between lexical vigilance and GRM. [Work supported by the William Demant Foundation.] a)Currently at CNBH, Dept. Physiol., University of Cambridge, CB2 3EG Cambridge, UK.

  3. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM method

    NASA Astrophysics Data System (ADS)

    Kuentz, A.; Mathevet, T.; Gailhard, J.; Hingray, B.

    2015-01-01

    Improving the understanding of past climatic or hydrologic variability has received a large attention in different fields of geosciences, such as glaciology, dendrochronology, sedimentology or hydrology. Based on different proxies, each research community produces different kind of climatic or hydrologic reanalyses, at different spatio-temporal scales and resolution. When considering climate or hydrology, numerous studies aim at characterising variability, trends or breaks using observed time-series of different regions or climate of world. However, in hydrology, these studies are usually limited to reduced temporal scale (mainly few decades, seldomly a century) because they are limited to observed time-series, that suffers from a limited spatio-temporal density. This paper introduces a new model, ANATEM, based on a combination of local observations and large scale climatic informations (such as 20CR Reanalysis). This model allow to build long-term air temperature and precipitation time-series, with a high spatio-temporal resolution (daily time-step, few km2). ANATEM was tested on the air temperature and precipitation time-series of 22 watersheds situated on the Durance watershed, in the french Alps. Based on a multi-criteria and multi-scale diagnostic, the results show that ANATEM improves the performances of classical statistical models. ANATEM model have been validated on a regional level, improving spatial homogeneity of performances and on independent long-term time-series, being able to capture the regional low-frequency variabilities over more than a century (1883-2010).

  4. A realistic framework for investigating decision-making in the brain with high spatio-temporal resolution using simultaneous EEG/fMRI and joint ICA.

    PubMed

    Kyathanahally, Sreenath; Franco-Watkins, Ana; Zhang, Xiaoxia; Calhoun, Vince; Deshpande, Gopikrishna

    2016-07-12

    Human decision-making is a multidimensional construct, driven by a complex interplay between external factors, internal biases and computational capacity constraints. Here we propose a layered approach to experimental design in which multiple tasks - from simple to complex - with additional layers of complexity introduced at each stage, are incorporated for investigating decision-making. This is demonstrated using tasks involving intertemporal choice between immediate and future prospects. Previous functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) studies have separately investigated the spatial and temporal neural substrates, respectively, of specific factors underlying decision making. In contrast, we performed simultaneous acquisition of EEG/fMRI data and fusion of both modalities using joint independent component analysis (jICA) such that: (i) the native temporal/spatial resolutions of either modality is not compromised and (ii) fast temporal dynamics of decision-making as well as involved deeper striatal structures can be characterized. We show that spatio-temporal neural substrates underlying our proposed complex intertemporal task simultaneously incorporating rewards, costs and uncertainty of future outcomes can be predicted (using a linear model) from neural substrates of each of these factors, which were separately obtained by simpler tasks. This was not the case for spatial and temporal features obtained separately from fMRI and EEG respectively. However, certain prefrontal activations in the complex task could not be predicted from activations in simpler tasks, indicating that the assumption of pure insertion has limited validity. Overall, our approach provides a realistic and novel framework for investigating the neural substrates of decision making with high spatio-temporal resolution.

  5. High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions

    SciTech Connect

    Chatterjee, Gourab Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Kumar, G. Ravindra

    2014-01-15

    A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The μm-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

  6. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.; Fiandaca, Gianluca; Auken, Esben; Adamson, Kathryn; Lane, Timothy; Elberling, Bo

    2014-05-01

    With climatic changes, permafrost thawing and changes in active layer dynamics influencing microbial activity and greenhouse gas feedbacks to the climate system, understanding of the interaction between biogeochemical and thermal processes in the ground is of increasing interest. Here we present results of from an on-going field experiment, where the active layer dynamics are monitored using direct current (DC) resistivity and induced polarization (IP) measurements at high temporal resolution. These DC/IP measurements are supplemented by pore water analysis, continuous ground temperature monitoring (0-150 cm depth) and structural information from ground penetrating radar (GPR). The study site (N69°15', W53°30', 30 m a.s.l.) is located at a Vaccinium/Empetrum heath tundra area near the Arctic Station on Qeqertarsuaq on the west coast of Greenland. Mean air temperatures of the warmest (July) and the coldest (February-March) months are 7.1 and -16.0°C, respectively. The DC/IP monitoring system was installed in July 2013 and has since been acquiring at least 6 data sets per day on a 42-electrode profile with 0.5 m electrode spacing. Recorded data include DC resistivity, stacked full-decay IP responses and full waveform data at 1 kHz sampling frequency. The monitoring system operates fully automatic and data are backed up locally and uploaded to a web server. Time-lapse DC resistivity inversions of data acquired during the freezing period of October - December 2013 clearly image the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with soil temperature measurements at different depths indicates a linear relationship between the logarithm of electrical resistivity and temperature. Preliminary time-lapse inversions of the full-decay induced polarization (IP) data indicate a decrease of chargeability with freezing of the ground

  7. Estimating gross primary productivity (GPP) of forests across southern England at high spatial and temporal resolution using the FLIGHT model

    NASA Astrophysics Data System (ADS)

    Pankaew, Prasan; Milton, Edward; Dawson, Terry; Dash, Jadu

    2013-04-01

    and spring period and under-estimate GPP in the summer months. Correction factors were computed based on the midday GPP for each month of the year. The modified FLIGHT model was used to estimate GPP from each of the two forest sites at hourly intervals over a year. Both sites showed a strong linear relationship between GPP estimated from FLIGHT and GPP measured by FLUXNET (Alice Holt forest, R2=0.96, RMSE = 2.39 μmol m-2 s-1, MBE = 1.32 μmol m-2 s-1 , Wytham Wood R2 = 0.97, RMSE = 1.42 μmol m-2 s-1, MBE = 0.57 μmol m-2 s-1). The results suggest that the modified FLIGHT model could be used to estimate GPP at hourly intervals over non-instrumented forest sites across southern England, and thereby obtain regional estimates of GPP at high spatial and temporal resolution. Reference North, P. R. J. (1996). Three-Dimensional Forest Light Interaction Model Using a Monte Carlo Method. IEEE Transactions on Geoscience and Remote Sensing, 34(4), 946-956.

  8. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  9. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  10. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    NASA Technical Reports Server (NTRS)

    Hartman, Brian Davis

    1995-01-01

    A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal

  11. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    NASA Astrophysics Data System (ADS)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  12. Building long-term and high spatio-temporal resolution precipitation and air temperature reanalyses by mixing local observations and global atmospheric reanalyses: the ANATEM model

    NASA Astrophysics Data System (ADS)

    Kuentz, A.; Mathevet, T.; Gailhard, J.; Hingray, B.

    2015-06-01

    Efforts to improve the understanding of past climatic or hydrologic variability have received a great deal of attention in various fields of geosciences such as glaciology, dendrochronology, sedimentology and hydrology. Based on different proxies, each research community produces different kinds of climatic or hydrologic reanalyses at different spatio-temporal scales and resolutions. When considering climate or hydrology, many studies have been devoted to characterising variability, trends or breaks using observed time series representing different regions or climates of the world. However, in hydrology, these studies have usually been limited to short temporal scales (mainly a few decades and more rarely a century) because they require observed time series (which suffer from a limited spatio-temporal density). This paper introduces ANATEM, a method that combines local observations and large-scale climatic information (such as the 20CR Reanalysis) to build long-term probabilistic air temperature and precipitation time series with a high spatio-temporal resolution (1 day and a few km2). ANATEM was tested on the reconstruction of air temperature and precipitation time series of 22 watersheds situated in the Durance River basin, in the French Alps. Based on a multi-criteria and multi-scale diagnosis, the results show that ANATEM improves the performance of classical statistical models - especially concerning spatial homogeneity - while providing an original representation of uncertainties which are conditioned by atmospheric circulation patterns. The ANATEM model has been also evaluated for the regional scale against independent long-term time series and was able to capture regional low-frequency variability over more than a century (1883-2010).

  13. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhou, Zhiwen; Duncan, Emily W.; Lv, Ligang; Liao, Kaihua; Feng, Huihui

    2017-02-01

    Spatio-temporal variability of soil moisture (θ) is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time θ monitoring methods. This restricted the comprehensive and intensive examination of θ dynamics. In this study, we integrated the manual and real-time monitored data to depict the hillslope θ dynamics with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear (support vector machines-SVM) models were used to predict θ at 39 manual sites (collected 1-2 times per month) with θ collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each depth and manual site, an optimal prediction model was then determined at this depth of this site. Results showed that θ at the 39 manual sites can be reliably predicted (root mean square errors <0.028 m3 m-3) using both SMLR and SVM. The linear or non-linear relationship between θ at each manual site and at the three real-time monitoring sites was the main reason for choosing SMLR or SVM as the optimal prediction model. The subsurface flow dynamics was an important factor that determined whether the relationship was linear or non-linear. Depth to bedrock, elevation, topographic wetness index, profile curvature, and θ temporal stability influenced the selection of prediction model since they were related to the subsurface soil water distribution and movement. Using this approach, hillslope θ spatial distributions at un-sampled times and dates can be predicted. Missing information of hillslope θ dynamics can be acquired successfully.

  14. High Temporal Resolution Measurements to Investigate Carbon Dynamics in Subtropical Peat Soils Using Automated Ground Penetrating Radar (GPR) Measurements at the Laboratory Scale

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Wright, W. J.; Job, M. J.; Comas, X.

    2015-12-01

    Peatlands have the capability to produce and release significant amounts of free phase biogenic gasses (CO2, CH4) into the atmosphere and are thus regarded as key contributors of greenhouse gases into the atmosphere. Many studies throughout the past two decades have investigated gas flux dynamics in peat soils; however a high resolution temporal understanding in the variability of these fluxes (particularly at the matrix scale) is still lacking. This study implements an array of hydrogeophysical methods to investigate the temporal variability in biogenic gas accumulation and release in high resolution for a large 0.073 m3 peat monolith from the Blue Cypress Preserve in central Florida. An autonomous rail system was constructed in order to estimate gas content variability (i.e. build-up and release) within the peat matrix using a series of continuous, uninterrupted ground penetrating radar (GPR) transects along the sample. This system ran non-stop implementing a 0.01 m shot interval using high frequency (1.2 GHz) antennas. GPR measurements were constrained with an array of 6 gas traps fitted with time-lapse cameras in order to capture gas releases at 15 minute intervals. A gas chromatograph was used to determine CH4 and CO2 content of the gas collected in the gas traps. The aim of this study is to investigate the temporal variability in the accumulation and release of biogenic gases in subtropical peat soils at the lab scale at a high resolution. This work has implications for better understanding carbon dynamics in subtropical freshwater peatlands and how climate change may alter such dynamics.

  15. Evaluation of High-Temporal-Resolution Bedload Sensors for Tracking Channel Bed Movement and Transport Thresholds in Forested Mountain Headwater Catchments.

    NASA Astrophysics Data System (ADS)

    Martin, S.; Conklin, M. H.; Bales, R. C.

    2014-12-01

    High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or

  16. The Multi-Temporal Database of High Resolution Stereo Camera (HRSC) and Planetary Images of Mars (MUTED): A Tool to Support the Identification of Surface Changes

    NASA Astrophysics Data System (ADS)

    Erkeling, G.; Luesebrink, D.; Hiesinger, H.; Reiss, D.; Jaumann, R.

    2015-10-01

    Image data transmitted to Earth by Martian spacecraft since the 1970s, for example by Mariner and Viking, Mars Global Surveyor (MGS), Mars Express (MEx) and the Mars Reconnaissance Orbiter (MRO) showed, that the surface of Mars has changed dramatically and actually is continually changing [e.g., 1-8]. The changes are attributed to a large variety of atmospherical, geological and morphological processes, including eolian processes [9,10], mass wasting processes [11], changes of the polar caps [12] and impact cratering processes [13]. The detection of surface changes in planetary image data is closely related to the spatial and temporal availability of images in a specific region. While previews of the images are available at ESA's Planetary Science Archive (PSA), through the NASA Planetary Data System (PDS) and via other less frequently used databases, there is no possibility to quickly and conveniently see the spatial and temporal availability of HRSC images and other planetary image data in a specific region, which is important to detect the surface changes that occurred between two or more images. In addition, it is complicated to get an overview of the image quality and label information for images covering the same area. However, the investigation of surface changes represents a key element in martian research and has implications for the geologic, morphologic and climatic evolution of Mars. In order to address these issues, we developed the "Multi- Temporal Database of High Resolution Stereo Camera (HRSC) Images" (MUTED), which represents a tool for the identification of the spatial and multi-temporal coverage of planetary image data from Mars. Scientists will be able to identify the location, number, and time range of acquisition of overlapping HRSC images. MUTED also includes images of other planetary image datasets such as those of the Context Camera (CTX), the Mars Orbiter Camera (MOC), the Thermal Emission Imaging System (THEMIS), and the High Resolution

  17. Analysis of High Spatial, Temporal, and Directional Resolution Recordings of Biological Sounds in the Southern California Bight

    DTIC Science & Technology

    2013-09-30

    set continued, requiring minimal effort since the processing software was developed in the first year . Copies of the remaining unclassified data were...Ancillary and oceanographic data for the temporal and spatial attributes of the data set were gathered in the first year of this program and...program was on the biological sounds at low to mid frequencies recorded during a large experiment off the southern California coast in 1999. The efforts

  18. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions

    PubMed Central

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-01-01

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven’t been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value < 0.001); Root Mean Square Error (RMSE) values were 0.0245, 0.0300, 0.0401, respectively; and ERGAS values were 0.5416, 0.6507, 0.8737, respectively. The USTARM showed consistently higher performance than STARM when the degree of heterogeneity ranged from 2 to 10, highlighting that the use of this method provides the capacity to solve the data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation. PMID:26861334

  19. 5 CFR 919.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Adequate evidence. 919.900 Section 919.900 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 919.900 Adequate...

  20. Analysing and Quantifying Vegetation Responses to Rainfall with High Resolution Spatio-Temporal Time Series Data for Different Ecosystems and Ecotones in Queensland

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Udelhoven, T.

    2012-07-01

    Vegetation responses and ecosystem function are spatially variable and influenced by climate variability. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was used to combine MODIS (Moderate Resolution Imaging Spectrometer) and Landsat TM/ETM+ (Thematic Mapper/ Enhanced Thematic Mapper plus) imagery for an 8 year dataset (2000-2007) at 30m spatial resolution with 8 day intervals. This dataset allows for a functional analysis of ecosystem responses, suitable for heterogeneous landscapes. Derived vegetation index information in form of the NDVI (Normalised Difference Vegetation Index) was used to investigate the relationship between vegetation responses and gridded rainfall data for regional ecosystems. A hierarchical decomposition of the time series has been carried out in which relationships among the time-series were individually assessed for deterministic time-series components (trend component and seasonality) as well as for the stochastic seasonal anomalies. While no common long-term trends in NDVI and rainfall data in the time period considered exist, there is however, a strong concurrence in the seasonally of NDVI and rainfall data. This component accounts for the majority of variability in the time-series. On the level of seasonal anomalies, these relationships are more subtle. The statistical analysis required, among others, the removal of temporal autocorrelation for an unbiased assessment of significance. Significant lagged correlations between rainfall and NDVI were found in complex Queensland savannah vegetation communities. For grasslands and open woodlands, significant relationships with lag times between 8 and 16 days were found. For denser, evergreen vegetation communities greater lag times of up to 2.5 months were found. The derived distributed lag models may be used for short-term NDVI and biomass predictions on the spatial resolution scale of Landsat (30m).

  1. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions

  2. Regional downscaling of temporal resolution in near-surface wind from statistically downscaled Global Climate Models (GCMs) for use in San Francisco Bay coastal flood modeling

    NASA Astrophysics Data System (ADS)

    O'Neill, A.; Erikson, L. H.; Barnard, P.

    2013-12-01

    While Global Climate Models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues (MACA) provide daily near-surface winds at an appropriate spatial resolution for wave modeling within San Francisco Bay. Using 30 years (1975-2004) of climatological data from four representative stations around San Francisco Bay, a library of example daily wind conditions for four corresponding over-water sub-regions is constructed. Empirical cumulative distribution functions (ECDFs) of station conditions are compared to MACA GFDL hindcasts to create correction factors, which are then applied to 21st century MACA wind projections. For each projection day, a best match example is identified via least squares error among all stations from the library. The best match's daily variation in velocity components (u/v) is used as an analogue of representative wind variation and is applied at 3-hour increments about the corresponding sub-region's projected u/v values. High temporal resolution reconstructions using this methodology on hindcast MACA fields from 1975-2004 accurately recreate extreme wind values within the San Francisco Bay, and because these extremes in wind forcing are of key importance in wave and subsequent coastal flood modeling, this represents a valuable method of generating near-surface wind vectors for use in coastal flood modeling.

  3. Analysis of high resolution temperature observation for spatial and temporal soil moisture variation in an unstable slope

    NASA Astrophysics Data System (ADS)

    Krzeminska, D. M.; Steele-Dunne, S. C.; Rutten, M. M.; Bogaard, T. A.; Sailhac, P.; Géraud, Y.

    2009-04-01

    Hydrological processes control the behaviour of many unstable slopes hence their importance for landslide hazard is generally accepted. The unsaturated zone buffers precipitation and moisture conditions of this zone affect distribution, intensity and time delay of ground water recharges. Therefore, high resolution monitoring of hydrological features of the near surface soil layer is necessary, especially when studying rainfall triggered landslides. The aim of our research is to test the use of temperature as a tracer for soil moisture distribution. Recently, much research attention has been given to the temperature measurements as surveying technique in the hydrological studies. We applied so-called distributed temperature sensing (DTS) fibre optic cable to obtain high resolution soil temperature observation. Two cables were installed in the soil (approximately at 25 cm depth) at different location within the landslide to measure the near surface soil temperature with 2 m spatial resolution and 3 minutes time step. We will present the result obtained during the field campaigns that took place at Super-Sauze landslide, French Alps. Phase and amplitude shifts of temperature signal will be analyzed and related to the soil moisture dynamics. Moreover, the temperature signals will be confronted with the coupled soil heat flux and soil moisture flux model. Furthermore, the temperature data set will be used to evaluate the time variation of the soil moisture content and position of ground water level based on the determination of the soil thermal parameters fluctuation. Our work will discuss the applicability of distributed temperature sensing for hydrological studies, especially to monitor soil moisture distribution and development of preferential flow paths in a landslide area.

  4. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, Ch.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2011-08-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, for instance, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme

  5. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Scheel, M. L. M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G. J.

    2010-10-01

    Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio. The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance. In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed. Different sources of errors and uncertainties introduced by the sensors, sensor-specific algorithm aspects and the TMPA processing scheme are discussed

  6. 10 Yr Spatial and Temporal Trends of PM2.5 Concentrations in the Southeastern US Estimated Using High-resolution Satellite Data

    NASA Technical Reports Server (NTRS)

    Hu, X.; Waller, L. A.; Lyapustin, A.; Wang, Y.; Liu, Y.

    2013-01-01

    Long-term PM2.5 exposure has been reported to be associated with various adverse health outcomes. However, most ground monitors are located in urban areas, leading to a potentially biased representation of the true regional PM2.5 levels. To facilitate epidemiological studies, accurate estimates of spatiotemporally continuous distribution of PM2.5 concentrations are essential. Satellite-retrieved aerosol optical depth (AOD) has been widely used for PM2.5 concentration estimation due to its comprehensive spatial coverage. Nevertheless, an inherent disadvantage of current AOD products is their coarse spatial resolutions. For instance, the spatial resolutions of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imaging SpectroRadiometer (MISR) are 10 km and 17.6 km, respectively. In this paper, a new AOD product with 1 km spatial resolution retrieved by the multi-angle implementation of atmospheric correction (MAIAC) algorithm was used. A two-stage model was developed to account for both spatial and temporal variability in the PM2.5-AOD relationship by incorporating the MAIAC AOD, meteorological fields, and land use variables as predictors. Our study area is in the southeastern US, centered at the Atlanta Metro area, and data from 2001 to 2010 were collected from various sources. The model was fitted for each year individually, and we obtained model fitting R2 ranging from 0.71 to 0.85, MPE from 1.73 to 2.50 g m3, and RMSPE from 2.75 to 4.10 g m3. In addition, we found cross validation R2 ranging from 0.62 to 0.78, MPE from 2.00 to 3.01 g m3, and RMSPE from 3.12 to 5.00 g m3, indicating a good agreement between the estimated and observed values. Spatial trends show that high PM2.5 levels occurred in urban areas and along major highways, while low concentrations appeared in rural or mountainous areas. A time series analysis was conducted to examine temporal trends of PM2.5 concentrations in the study area from 2001 to 2010. The results showed

  7. The ORCA West Coast Regional Project - Atmospheric Top-Down Modeling to constrain Regional Carbon Budgets at high Temporal and Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2008-12-01

    The ORCA project aims at determining the regional carbon balance of Oregon, California and Washington, with a special focus on the effect of disturbance history and climate variability on carbon sources and sinks. ORCA provides a regional test of the overall NACP strategy by demonstrating bottom-up and top-down modeling approaches to derive carbon balances at subregional to regional scales. The ORCA top-down modeling component has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. High-precision atmospheric CO2 concentrations are monitored as continuous time series in hourly timesteps at 5 locations within the model domain, west to east from the Pacific Coast to the Great Basin, and include two flux sites for evaluation of computed fluxes. Terrestrial biosphere carbon fluxes are simulated at an effective spatial resolution of smaller than 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Flux computation assimilates high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present results on regional carbon budgets for the ORCA modeling domain that have been optimized using Bayesian inversion and the information provided by the network of high-precision CO2 observations. We address the influence of spatial and temporal resolution in the general modeling setup on the findings, and test the level of detail that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model

  8. Monitoring of the Spatial Distribution and Temporal Dynamics of the Green Vegetation Fraction of Croplands in Southwest Germany Using High-Resolution RapidEye Satellite Images

    NASA Astrophysics Data System (ADS)

    Imukova, Kristina; Ingwersen, Joachim; Streck, Thilo

    2014-05-01

    The green vegetation fraction (GVF) is a key input variable to the evapotranspiration scheme applied in the widely used NOAH land surface model (LSM). In standard applications of the NOAH LSM, the GVF is taken from a global map with a 15 km×15 km resolution. The central objective of the present study was (a) to derive gridded GVF data in a high spatial and temporal resolution from RapidEye images for a region in Southwest Germany, and (b) to improve the representation of the GVF dynamics of croplands in the NOAH LSM for a better simulation of water and energy exchange between land surface and atmosphere. For the region under study we obtained monthly RapidEye satellite images with a resolution 5 m×5 m by the German Aerospace Center (DLR). The images hold five spectral bands: blue, green, red, red-edge and near infrared (NIR). The GVF dynamics were determined based on the Normalized Difference Vegetation Index (NDVI) calculated from the red and near-infrared bands of the satellite images. The satellite GVF data were calibrated and validated against ground truth measurements. Digital colour photographs above the canopy were taken with a boom-mounted digital camera at fifteen permanently marked plots (1 m×1 m). Crops under study were winter wheat, winter rape and silage maize. The GVF was computed based on the red and the green band of the photographs according to Rundquist's method (2002). Based on the obtained calibration scheme GVF maps were derived in a monthly resolution for the region. Our results confirm a linear relationship between GVF and NDVI and demonstrate that it is possible to determine the GVF of croplands from RapidEye images based on a simple two end-member mixing model. Our data highlight the high variability of the GVF in time and space. At the field scale, the GVF was normally distributed with a coefficient of variation of about 32%. Variability was mainly caused by soil heterogeneities and management differences. At the regional scale the GVF

  9. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  10. Laboratory based study of dynamical processes by 4D X-ray CT with sub-second temporal resolution

    NASA Astrophysics Data System (ADS)

    Vavřík, D.; Jakůbek, J.; Kumpova, I.; Pichotka, M.

    2017-02-01

    There are numerous applications for which is advantageous to obtain X-ray transmission data necessary for 3D computed tomography (CT) within seconds or faster. The required high frame rates for data acquisition became available during the last decade due to intensive synchrotron radiation sources together with appropriate X-ray imaging detectors. It will be shown in this work that sub-second recording of the full CT data set can be reached even in laboratory conditions employing high power microfocus tubes together with a semiconductor pixelated detector. As an example, bubbles nucleation and evolution during dissolving of a pill in the water, releasing carbon dioxide will be shown in 3D with 2 Hz time resolution.

  11. Feasibility study for reconstructing the spatial-temporal structure of TIDs from high-resolution backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Fridman, Sergey; Hausman, Mark; San Antonio, Geoffrey S.

    2016-05-01

    Over-the-horizon radar (OTHR) utilizes the reflective "sky wave" property of the ionosphere for high-frequency radiowaves to illuminate targets at ranges extending to several thousand kilometers. However, the ionospheric "mirror" is not static but exhibits geographic, diurnal, seasonal, and solar cycle variations. NorthWest Research Associates has developed an ionospheric data assimilation capability called Global Positioning Satellite Ionospheric Inversion (GPSII; pronounced "gypsy") that allows real-time modeling of the ionospheric structure for the purpose of accurate coordinate registration (CR; OTHR geolocation). However, the ionosphere is routinely subjected to traveling ionospheric disturbances (TIDs), and the deflection of HF sky wave signals by unmodeled TIDs remains a troubling source of CR errors (tens of kilometers). Traditional OTHR tools for ionospheric sounding (vertical and backscatter ionograms) do not resolve the fine spatial structure associated with TIDs. The collection of backscatter ionograms using the full aperture of the OTHR was recently demonstrated, thus providing enhanced resolution in radar azimuth in comparison with conventional OTHR backscatter soundings that utilize only a fraction of the OTHR receiver array. Leading edges of such backscatter ionograms demonstrate prominent spatial features associated with TIDs. We investigate the feasibility of recovering TID perturbations of ionospheric electron density from high-resolution backscatter ionograms. We incorporated a model of naturally occurring TIDs into a numerical ray tracing code that allows the generation of synthetic OTHR data. We augmented GPSII to assimilate time series of full-aperture backscatter ionogram leading edge data. Results of the simulation show that GPSII is able to reproduce the TID structure used to generate the backscatter ionograms reasonably well.

  12. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets.

    PubMed

    Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong

    2017-03-14

    Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots.

  13. Automated Wetland Delineation from Multi-Frequency and Multi-Polarized SAR Images in High Temporal and Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Moser, L.; Schmitt, A.; Wendleder, A.

    2016-06-01

    Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  14. Ranging Behaviour of Verreaux’s Eagles during the Pre-Breeding Period Determined through the Use of High Temporal Resolution Tracking

    PubMed Central

    Underhill, Les G.; Bouten, Willem; Amar, Arjun

    2016-01-01

    Information on movement ecology is key in understanding the drivers and limitations of life history traits and has a potential role in indicating environmental change. Currently we have a limited understanding of the parameters of movement of territory-bound raptors, which are sensitive to environmental change. In this study we used GPS tracking technology to obtain spatially (within 3 m) and temporally (c. 3 mins) high-resolution movement data on a small sample of Verreaux’s eagle Aquila verreauxii during the pre-laying period (n = 4) with one additional example during the chick rearing period. We present GPS-derived home range estimates for this species and we examine temporal (timing, duration, frequency and speed) and spatial (total path length and maximum distance from nest) patterns of trips away from the nest. For eagles tagged in the agriculturally developed Sandveld region (n = 3), which is made up of a mosaic of land use types, we also undertook a habitat selection analysis. Home ranges were small and largely mutually exclusive. Trip activity was centred around midday, which is likely to be related to lift availability. Our habitat selection analysis found that eagles selected for near-natural and degraded habitat over natural or completely modified areas, suggesting that these eagles may have benefitted from some of the agricultural development in this region. Although our sample sizes are small, the resolution of our tracking data was essential in deriving this data over a relatively short time period and paves the way for future research. PMID:27723832

  15. Using digital image processing to characterize the Campbell-Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.

    2014-09-01

    The Campbell-Stokes sunshine recorder (CSSR) has been one of the most commonly used instruments for measuring sunshine duration (SD) through the burn length of a given CSSR card. Many authors have used SD to obtain information about cloudiness and solar radiation (by using Ångström-Prescott type formulas). Contrarily, the burn width has not been used systematically. In principle, the burn width increases for increasing direct beam irradiance. The aim of this research is to show the relationship between burn width and direct solar irradiance (DSI), and to prove whether this relationship depends on the type of CSSR and burning card. A semi-automatic method based on image processing of digital scanned images of burnt cards is presented. With this method, the temporal evolution of the burn width with 1 min resolution can be obtained. From this, SD is easily calculated and compared with the traditional (i.e. visual) determination. The method tends to slightly overestimate SD but the thresholds that are used in the image processing could be adjusted to obtain an unbiased estimation. Regarding the burn width, results show that there is a high correlation between two different models of CSSRs, as well as a strong relationship between burn widths and DSI at a high-temporal resolution. Thus, for example, hourly DSI may be estimated from the burn width with higher accuracy than based on burn length (for one of the CSSR, relative root mean squared error 24 and 30% respectively; mean bias error -0.6 and -30.0 W m-2 respectively). The method offers a practical way to exploit long-term sets of CSSR cards to create long time series of DSI. Since DSI is affected by atmospheric aerosol content, CSSR records may also become a proxy measurement for turbidity and atmospheric aerosol loading.

  16. Using digital image processing to characterize the Campbell-Stokes sunshine recorder and to derive high-temporal resolution direct solar irradiance

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.

    2015-01-01

    The Campbell-Stokes sunshine recorder (CSSR) has been one of the most commonly used instruments for measuring sunshine duration (SD) through the burn length of a given CSSR card. Many authors have used SD to obtain information about cloudiness and solar radiation (by using Ångström-Prescott type formulas), but the burn width has not been used systematically. In principle, the burn width increases for increasing direct beam irradiance. The aim of this research is to show the relationship between burn width and direct solar irradiance (DSI) and to prove whether this relationship depends on the type of CSSR and burning card. A method of analysis based on image processing of digital scanned images of burned cards is used. With this method, the temporal evolution of the burn width with 1 min resolution can be obtained. From this, SD is easily calculated and compared with the traditional (i.e., visual) determination. The method tends to slightly overestimate SD, but the thresholds that are used in the image processing could be adjusted to obtain an improved estimation. Regarding the burn width, experimental results show that there is a high correlation between two different models of CSSRs, as well as a strong relationship between burn widths and DSI at a high-temporal resolution. Thus, for example, hourly DSI may be estimated from the burn width with higher accuracy than based on burn length (for one of the CSSR, relative root mean squared error is 24 and 30%, respectively; mean bias error is -0.6 and -30.0 W m-2, respectively). The method offers a practical way to exploit long-term sets of CSSR cards to create long time series of DSI. Since DSI is affected by atmospheric aerosol content, CSSR records may also become a proxy measurement for turbidity and atmospheric aerosol loading.

  17. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.

    PubMed

    Yuan, Han; Ding, Lei; Zhu, Min; Zotev, Vadim; Phillips, Raquel; Bodurka, Jerzy

    2016-03-01

    Functional magnetic resonance imaging (fMRI) studies utilizing measures of hemodynamic signal, such as the blood oxygenation level-dependent (BOLD) signal, have discovered that resting-state brain activities are organized into multiple large-scale functional networks, coined as resting-state networks (RSNs). However, an important limitation of the available fMRI studies is that hemodynamic signals only provide an indirect measure of the neuronal activity. In contrast, electroencephalography (EEG) directly measures electrophysiological activity of the brain. However, little is known about the brain-wide organization of such spontaneous neuronal population signals at the resting state. It is not entirely clear if or how the network structure built upon slowly fluctuating hemodynamic signals is represented in terms of fast, dynamic, and spontaneous neuronal activity. In this study, we investigated the electrophysiological representation of RSNs from simultaneously acquired EEG and fMRI data in the resting human brain. We developed a data-driven analysis approach that reconstructed multiple large-scale electrophysiological networks from high-resolution EEG data alone. The networks derived from EEG were then compared with RSNs independently derived from simultaneously acquired fMRI in their spatial structures as well as temporal dynamics. Results reveal spatially and temporally specific electrophysiological correlates for the fMRI-RSNs. Findings suggest that the spontaneous activity of various large-scale cortical networks is reflected in macroscopic EEG potentials.

  18. Nano silver and nano zinc-oxide in surface waters – Exposure estimation for Europe at high spatial and temporal resolution

    PubMed Central

    Dumont, Egon; Johnson, Andrew C.; Keller, Virginie D.J.; Williams, Richard J.

    2015-01-01

    Nano silver and nano zinc-oxide monthly concentrations in surface waters across Europe were modeled at ∼6 × 9 km spatial resolution. Nano-particle loadings from households to rivers were simulated considering household connectivity to sewerage, sewage treatment efficiency, the spatial distribution of sewage treatment plants, and their associated populations. These loadings were used to model temporally varying nano-particle concentrations in rivers, lakes and wetlands by considering dilution, downstream transport, water evaporation, water abstraction, and nano-particle sedimentation. Temporal variability in concentrations caused by weather variation was simulated using monthly weather data for a representative 31-year period. Modeled concentrations represent current levels of nano-particle production. Two scenarios were modeled. In the most likely scenario, half the river stretches had long-term average concentrations exceeding 0.002 ng L−1 nano silver and 1.5 ng L−1 nano zinc oxide. In 10% of the river stretches, these concentrations exceeded 0.18 ng L−1 and 150 ng L−1, respectively. Predicted concentrations were usually highest in July. PMID:25463731

  19. Forest fuel treatment detection using multi-temporal airborne Lidar data and high resolution aerial imagery ---- A case study at Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Su, Y.; Guo, Q.; Collins, B.; Fry, D.; Kelly, M.

    2014-12-01

    Forest fuel treatments (FFT) are often employed in Sierra Nevada forest (located in California, US) to enhance forest health, regulate stand density, and reduce wildfire risk. However, there have been concerns that FFTs may have negative impacts on certain protected wildlife species. Due to the constraints and protection of resources (e.g., perennial streams, cultural resources, wildlife habitat, etc.), the actual FFT extents are usually different from planned extents. Identifying the actual extent of treated areas is of primary importance to understand the environmental influence of FFTs. Light detection and ranging (Lidar) is a powerful remote sensing technique that can provide accurate forest structure measurements, which provides great potential to monitor forest changes. This study used canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne Lidar data to detect FFTs by an approach combining a pixel-wise thresholding method and a object-of-interest segmentation method. We also investigated forest change following the implementation of landscape-scale FFT projects through the use of normalized difference vegetation index (NDVI) and standardized principle component analysis (PCA) from multi-temporal high resolution aerial imagery. The same FFT detection routine was applied on the Lidar data and aerial imagery for the purpose of comparing the capability of Lidar data and aerial imagery on FFT detection. Our results demonstrated that the FFT detection using Lidar derived CC products produced both the highest total accuracy and kappa coefficient, and was more robust at identifying areas with light FFTs. The accuracy using Lidar derived CHM products was significantly lower than that of the result using Lidar derived CC, but was still slightly higher than using aerial imagery. FFT detection results using NDVI and standardized PCA using multi-temporal aerial imagery produced almost identical total accuracy and kappa coefficient

  20. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  1. Spatio-temporal resolution of autumnal mid-latitude clouds on Titan as probes of waves and instabilities

    NASA Astrophysics Data System (ADS)

    Arias-Young, T. M.; Mitchell, J.; Adamkovics, M.; Caballero, R.

    2013-12-01

    Since mid-2004, the Cassini spacecraft has provided images of clouds on Titan, the largest moon of Saturn. The Cassini Imaging Science Subsystem (ISS) captured images over a period of about 24 hours from Dec. 13 to 14, 2009, that show methane clouds in the troposphere concentrated in a band between 45 and 63 degrees south latitude, a streak-shaped mid-latitude cloud system extending across half the globe, traveling several hundred kilometers during the day-long period of observation. The sequence of images obtained throughout this flyby allowed us to create a movie of clouds moving across the moon's surface background. We present the analysis of this mid-latitude cloud system based on observations of the movie produced from the ISS mapped images and the three-dimensional Titan global circulation model (GCM) developed by the UCLA group [Mitchell et al. 2011], which exhibits streak features similar to those found in the Cassini data. The observed cloud features give us both spatial and temporal information that reveals how the clouds evolve in time, which is then compared to the GCM by evaluating the modeled time series on the same time scale as the observed cloud evolution. The atmosphere on Titan is quite barotropic since there is very little temperature difference from equator to pole, and although the altitude of these clouds is yet to be established, the model suggests that there is enough temperature gradient to drive a weakly unstable extratropical instability, similar to the baroclinic instability driving mid-latitude weather systems on Earth. The results of the simulations and the implications for Titan's atmospheric instabilities will be discussed.

  2. Impact of temporal resolution of inputs on hydrological model performance: An analysis based on 2400 flood events

    NASA Astrophysics Data System (ADS)

    Ficchì, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-07-01

    Hydro-climatic data at short time steps are considered essential to model the rainfall-runoff relationship, especially for short-duration hydrological events, typically flash floods. Also, using fine time step information may be beneficial when using or analysing model outputs at larger aggregated time scales. However, the actual gain in prediction efficiency using short time-step data is not well understood or quantified. In this paper, we investigate the extent to which the performance of hydrological modelling is improved by short time-step data, using a large set of 240 French catchments, for which 2400 flood events were selected. Six-minute rain gauge data were available and the GR4 rainfall-runoff model was run with precipitation inputs at eight different time steps ranging from 6 min to 1 day. Then model outputs were aggregated at seven different reference time scales ranging from sub-hourly to daily for a comparative evaluation of simulations at different target time steps. Three classes of model performance behaviour were found for the 240 test catchments: (i) significant improvement of performance with shorter time steps; (ii) performance insensitivity to the modelling time step; (iii) performance degradation as the time step becomes shorter. The differences between these groups were analysed based on a number of catchment and event characteristics. A statistical test highlighted the most influential explanatory variables for model performance evolution at different time steps, including flow auto-correlation, flood and storm duration, flood hydrograph peakedness, rainfall-runoff lag time and precipitation temporal variability.

  3. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  4. High spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors

    USGS Publications Warehouse

    Nouri, Hamideh; Beecham, Simon; Anderson, Sharolyn; Nagler, Pamela

    2014-01-01

    Evapotranspiration estimation has benefitted from recent advances in remote sensing and GIS techniques particularly in agricultural applications rather than urban environments. This paper explores the relationship between urban vegetation evapotranspiration (ET) and vegetation indices derived from newly-developed high spatial resolution WorldView-2 imagery. The study site was Veale Gardens in Adelaide, Australia. Image processing was applied on five images captured from February 2012 to February 2013 using ERDAS Imagine. From 64 possible two band combinations of WorldView-2, the most reliable one (with the maximum median differences) was selected. Normalized Difference Vegetation Index (NDVI) values were derived for each category of landscape cover, namely trees, shrubs, turf grasses, impervious pavements, and water bodies. Urban landscape evapotranspiration rates for Veale Gardens were estimated through field monitoring using observational-based landscape coefficients. The relationships between remotely sensed NDVIs for the entire Veale Gardens and for individual NDVIs of different vegetation covers were compared with field measured urban landscape evapotranspiration rates. The water stress conditions experienced in January 2013 decreased the correlation between ET and NDVI with the highest relationship of ET-Landscape NDVI (Landscape Normalized Difference Vegetation Index) for shrubs (r2 = 0.66) and trees (r2 = 0.63). However, when the January data was excluded, there was a significant correlation between ET and NDVI. The highest correlation for ET-Landscape NDVI was found for the entire Veale Gardens regardless of vegetation type (r2 = 0.95, p > 0.05) and the lowest one was for turf (r2 = 0.88, p > 0.05). In support of the feasibility of ET estimation by WV2 over a longer period, an algorithm recently developed that estimates evapotranspiration rates based on the Enhanced Vegetation Index (EVI) from MODIS was employed. The results revealed a significant positive

  5. Linking innovative measurement technologies (ConMon and Dataflow© systems) for high-resolution temporal and spatial dissolved oxygen criteria assessment.

    PubMed

    O'Leary, C A; Perry, E; Bayard, A; Wainger, L; Boynton, W R

    2015-10-01

    One consequence of nutrient-induced eutrophication in shallow estuarine waters is the occurrence of hypoxia and anoxia that has serious impacts on biota, habitats, and biogeochemical cycles of important elements. Because of the important role of dissolved oxygen (DO) on these ecosystem features, a variety of DO criteria have been established as indicators of system condition. However, DO dynamics are complex and vary on time scales ranging from diel to decadal and spatial scales from meters to multiple kilometers. Because of these complexities, determining DO criteria attainment or failure remains difficult. We propose a method for linking two common measurement technologies for shallow water DO criteria assessment using a Chesapeake Bay tributary as a test case. Dataflow© is a spatially intensive (30-60-m collection intervals) system used to map surface water conditions at the whole estuary scale, and ConMon is a high-frequency (15-min collection intervals) fixed station approach. The former technology is effective with spatial descriptions but poor regarding temporal resolution, while the latter provides excellent temporal but very limited spatial resolution. Our methodology for combining the strengths of these measurement technologies involved a sequence of steps. First, a statistical model of surface water DO dynamics, based on temporally intense ConMon data, was developed. The results of this model were used to calculate daily DO minimum concentrations. Second, this model was then inserted into Dataflow©-generated spatial maps of DO conditions and used to adjust measured DO concentrations to daily minimum concentrations. This information was used to assess DO criteria compliance at the full tributary scale. Model results indicated that it is vital to consider the short-term time scale DO criteria across both space and time concurrently. Large fluctuations in DO occurred within a 24-h time period, and DO dynamics varied across the length and width of the

  6. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements.

    PubMed

    Akiyama, T; Van Zeeland, M A; Boivin, R L; Carlstrom, T N; Chavez, J A; Muscatello, C M; O'Neill, R C; Vasquez, J; Watkins, M; Martin, W; Colio, A; Finkenthal, D K; Brower, D L; Chen, J; Ding, W X; Perry, M

    2016-12-01

    A heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 10(17) m(-2). Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

  7. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.; Chavez, J. A.; Muscatello, C. M.; O'Neill, R. C.; Vasquez, J.; Watkins, M.; Martin, W.; Colio, A.; Finkenthal, D. K.; Brower, D. L.; Chen, J.; Ding, W. X.; Perry, M.

    2016-12-01

    A heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m-2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

  8. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  9. Asbestos/NESHAP adequately wet guidance

    SciTech Connect

    Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

    1990-12-01

    The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

  10. On the combined use of high temporal resolution, optical satellite data for flood monitoring and mapping: a possible contribution from the RST approach

    NASA Astrophysics Data System (ADS)

    Faruolo, M.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Among natural disasters, floods are ones of those more common and devastating, often causing high environmental, economical and social costs. When a flooding event occurs, timely information about precise location, extent, dynamic evolution, etc., is highly required in order to effectively support civil protection activities aimed at managing the emergency. Satellite remote sensing may represent a supplementary information source, providing mapping and continuous monitoring of flooding extent as well as a quick damage assessment. Such purposes need frequently updated satellite images as well as suitable image processing techniques, able to identify flooded areas with reliability and timeliness. Recently, an innovative satellite data analysis approach (named RST, Robust Satellite Technique) has been applied to NOAA-AVHRR (Advanced Very High Resolution Radiometer) satellite data in order to dynamically map flooded areas. Thanks to a multi-temporal analysis of co-located satellite records and an automatic change detection scheme, such an approach allows to overcome major drawbacks related to the previously proposed methods (mostly not automatic and based on empirically chosen thresholds, often affected by false identifications). In this paper, RST approach has been for the first time applied to both AVHRR and EOS/MODIS (Moderate Resolution Imaging Spectroradiometer) data, in order to assess its potential - in flooded area mapping and monitoring - on different satellite packages characterized by different spectral and spatial resolutions. As a study case, the flooding event which hit the Europe in August 2002 has been selected. Preliminary results shown in this study seem to confirm the potential of such an approach in providing reliable and timely information, useful for near real time flood hazard assessment and monitoring, using both MODIS and AVHRR data. Moreover, the combined use of information coming from both satellite packages (easily achievable thanks to the

  11. Detecting shifts in gene regulatory networks during time-course experiments at single-time-point temporal resolution.

    PubMed

    Takenaka, Yoichi; Seno, Shigeto; Matsuda, Hideo

    2015-10-01

    Comprehensively understanding the dynamics of biological systems is one of the greatest challenges in biology. Vastly improved biological technologies have provided vast amounts of information that must be understood by bioinformatics and systems biology researchers. Gene regulations have been frequently modeled by ordinary differential equations or graphical models based on time-course gene expression profiles. The state-of-the-art computational approaches for analyzing gene regulations assume that their models are same throughout time-course experiments. However, these approaches cannot easily analyze transient changes at a time point, such as diauxic shift. We propose a score that analyzes the gene regulations at each time point. The score is based on the information gains of information criterion values. The method detects the shifts in gene regulatory networks (GRNs) during time-course experiments with single-time-point resolution. The effectiveness of the method is evaluated on the diauxic shift from glucose to lactose in Escherichia coli. Gene regulation shifts were detected at two time points: the first corresponding to the time at which the growth of E. coli ceased and the second corresponding to the end of the experiment, when the nutrient sources (glucose and lactose) had become exhausted. According to these results, the proposed score and method can appropriately detect the time of gene regulation shifts. The method based on the proposed score provides a new tool for analyzing dynamic biological systems. Because the score value indicates the strength of gene regulation at each time point in a gene expression profile, it can potentially infer hidden GRNs from time-course experiments.

  12. The potential origins and palaeoenvironmental implications of high temporal resolution δ 18O heterogeneity in coral skeletons

    NASA Astrophysics Data System (ADS)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2010-10-01

    δ 18O was determined at high spatial resolution (beam diameter ˜30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ 18O variations that typically cover skeletal distances equivalent to periods of ˜20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ 18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ 11B. We model predicted skeletal δ 18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO 2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ 18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ˜80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO 2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO 2. Seasonal skeletal δ 18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ 18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ 18O heterogeneity.

  13. Analysis of the seasonal and interannual evolution of Jakobshavn Isbrae from 2010-2013 using high spatial/temporal resolution DEM and velocity data

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Moratto, Z. M.; Alexandrov, O.; Floricioiu, D.; Morin, P. J.; Porter, C. C.; Beyer, R. A.; Fong, T.

    2013-12-01

    Greenland's large marine-terminating outlet glaciers have displayed marked retreat, speedup, and thinning in recent decades. Jakobshavn Isbrae, one of Greenland's largest outlet glaciers, has retreated ~15 km, accelerated ~150%, and thinned ~200 m since the early 1990s. Here, we present the first comprehensive analysis of high spatial (~2-5 m/px) and temporal (daily-monthly) resolution elevation and velocity data for Jakobshavn from 7/2010 to 7/2013. We have developed an automated processing pipeline using open-source software (Ames Stereo Pipeline, GDAL/OGR, NumPy/SciPy, etc.) to produce orthoimage, digital elevation model (DEM), and surface velocity products from DigitalGlobe WorldView-1/2 stereo imagery (~0.5 m/px, ~17 km swath width). Our timeseries consists of 35 WV DEMs (~2-4 m/px) covering the lower trunks of the main+north branches and fjord, but also extending >110 km inland. We supplement this record with 7 TanDEM-X DEMs (~5 m/px, ~35 km swath width) between 6/2011-9/2012. Elevation data from IceBridge ATM/LVIS, ICESat GLAS, and GPS campaigns provide absolute control data over fixed surfaces (i.e., exposed bedrock). Observed WV DEM offsets are consistent with DigitalGlobe's published value of 5.0 m CE90/LE90 horizontal/vertical accuracy. After DEM co-registration, we observe sub-meter horizontal and vertical absolute accuracy. Velocity data are derived from TerraSAR-X data with 11 day repeat interval. Supplemental velocity data are derived through correlation of high-resolution WV DEM/image data. The contemporaneous DEM and velocity data provide full 3D displacement vectors for each time interval, allowing for the analysis of both Eulerian and Lagrangian elevation change. The lower trunk of Jakobshavn displays significant seasonal velocity variations, with recent rates of ~8 km/yr during winter to >17 km/yr during summer. DEM data show corresponding elevation changes of -30 to -45 m in summer and +15 to +20 m in winter, corresponding to integrated volumes

  14. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  15. High spatial and temporal resolution observations of pulsatile changes in blood echogenicity in the common carotid artery of rats.

    PubMed

    Nam, Kweon-Ho; Bok, Tae-Hoon; Kong, Qi; Paeng, Dong-Guk

    2013-09-01

    Previous studies have found that ultrasound backscatter from blood in vascular flow systems varies under pulsatile flow, with the maximum values occurring during the systolic period. This phenomenon is of particular interest in hemorheology because it is contrary to the well-known fact that red blood cell (RBC) aggregation, which determines the intensity of ultrasound backscatter from blood, decreases at a high systolic shear rate. In the present study, a rat model was used to provide basic information on the characteristics of blood echogenicity in arterial blood flow to investigate the phenomenon of RBC aggregation under pulsatile flow. Blood echogenicity in the common carotid arteries of rats was measured using a high-frequency ultrasound imaging system with a 40-MHz probe. The electrocardiography-based kilohertz visualization reconstruction technique was employed to obtain high-temporal-resolution and high-spatial-resolution time-course B-mode cross-sectional and longitudinal images of the vessel. The experimental results indicate that blood echogenicity in rat carotid arteries varies during a cardiac cycle. Blood echogenicity tends to decrease during early systole and reaches its peak during late systole, followed by a slow decline thereafter. The time delay of the echogenicity peak from peak systole in the present results is the main difference from previous in vitro and in vivo observations of backscattering peaks during early systole, which may be caused by the very rapid heart rates and low RBC aggregation tendency of rats compared with humans and other mammalian species. The present study may provide useful information elucidating the characteristics of RBC aggregation in arterial blood flow.

  16. Sensitivity of advective transfer times across the North Atlantic Ocean to the temporal and spatial resolution of model velocity data: Implication for European eel larval transport

    NASA Astrophysics Data System (ADS)

    Blanke, Bruno; Bonhommeau, Sylvain; Grima, Nicolas; Drillet, Yann

    2012-05-01

    European eel (Anguilla anguilla) larvae achieve one of the longest larval migrations of the marine realm, i.e., more than 6000 km from their spawning grounds in the Sargasso Sea to European continental shelves. The duration of this migration remains debated, between 7 months and 3 years. This information is, however, crucial since it determines the period over which larvae are affected by environmental conditions and hence the subsequent recruitment success. We investigate the pathways and duration of trans-Atlantic connections using 3 years of high-resolution (daily, 1/12°) velocity fields available from a Mercator-Océan model configuration without data assimilation. We study specifically the effect of spatial and temporal resolutions on our estimates by applying various filters in time (from daily to 12-day averages) and space (from 1/12° to 1° gridcell aggregation) to the nominal model outputs. Numerical particles are released in the presumed European eel spawning area and considered as passive tracers at three specific depths (around 0, 50, and 200 m). We diagnose particularly the intensity of the water transfer between suitable control sections that encompass the eel larva distribution. Transit ages are also investigated, with a particular focus on the pathways that minimize the connection times between the western and eastern North Atlantic. We show that small-scale structures (eddies and filaments) contribute to faster connections though they also correspond to additional complexity in trajectories. The shortest pathways mostly follow the Gulf Stream and the North Atlantic Drift, whereas interior connections require longer transfers that prove less compatible with biological observations.

  17. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zweiacker, K.; McKeown, J. T.; Liu, C.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Wiezorek, J. M. K.

    2016-08-01

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ˜1.3 m s-1 to ˜2.5 m s-1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s-1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  18. A novel algorithm for monitoring reservoirs under all-weather conditions at a high temporal resolution through passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Gao, Huilin

    2016-08-01

    Flood mitigation in developing countries has been hindered by a lack of near real-time reservoir storage information at high temporal resolution. By leveraging satellite passive microwave observations over a reservoir and its vicinity, we present a globally applicable new algorithm to estimate reservoir storage under all-weather conditions at a 4 day time step. A weighted horizontal ratio (WHR) based on the brightness temperatures at 36.5 GHz is introduced, with its coefficients calibrated against an area training data set over each reservoir. Using a predetermined area-elevation (A-H) relationship, these coefficients are then applied to the microwave data to calculate the storage. Validation results over four reservoirs in South Asia indicate that the microwave-based storage estimations (after noise reduction) perform well (with coefficients of determination ranging from 0.41 to 0.74). This is the first time that passive microwave observations are fused with other satellite data for quantifying the storage of individual reservoirs.

  19. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  20. Towards widespread exploitation of high resolution multi-temporal interferometry for monitoring landslide activity: a case-study of Southern Gansu, China

    NASA Astrophysics Data System (ADS)

    Wasowski, Janusz; Bovenga, Fabio; Dijkstra, Tom; Meng, Xingmin; Nutricato, Raffaele; Chiaradia, Maria Teresa

    2014-05-01

    Although Multi-Temporal Interferometry (MTI) techniques are considered to have already reached the operational level, it is apparent that, in both research and practice, we are only just beginning to benefit from the high resolution imagery that is currently acquired by the new generation of radar satellites. MTI techniques are not applicable in any environment, but, nonetheless, we foresee a strong possibility that in the future these techniques will see widespread exploitation in support of slope hazard assessments. MTI applications will become increasingly important in cases where little or no conventional monitoring is feasible (e.g. remote locations and limited funds). The tremendous potential of MTI is illustrated using selected examples of applications ranging from local to catchment scales. A particular focus is on the use of MTI for the investigation of slope instability in the remote high mountain region of Zhouqu, Southern Gansu, known to be affected by large magnitude (M7-8) earthquakes and catastrophic mass movements. The MTI processing of high resolution (~3 m) COSMO/SkyMed (CSK) satellite images produced spatially dense information (more than 1000 radar targets/km2) on ground surface displacements. A substantial portion of the radar targets showed significant displacements (from few to over 100 mm/yr), denoting widespread slope instability. In particular, the MTI results provided valuable information on the activity of some very large, apparently slow moving landslides that represent a persistent hazard to the local population and infrastructure, particularly as these landslides are known to undergo periods of increased activity resulting in river damming and disastrous flooding. Given the general lack of field monitoring data on slope instability in Southern Gansu, the MTI-derived displacements offer a unique form of remote displacement monitoring that provides valuable information to experts tasked with formulating strategies for hazard management

  1. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    NASA Astrophysics Data System (ADS)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  2. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR), P. R. China

    NASA Astrophysics Data System (ADS)

    Leempoel, K.; Satyaranayana, B.; Bourgeois, C.; Zhang, J.; Chen, M.; Wang, J.; Bogaert, J.; Dahdouh-Guebas, F.

    2013-08-01

    Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc.) to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China) were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively). Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (-36%) was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%), the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements) (August-September, 2009) as well as spectral reflectance values (obtained from pansharpened GeoEye-1), both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73-100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%). In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m) for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e.g. Kandelia obovata

  3. Inferring runoff generation processes through high resolution spatial and temporal UV-Vis absorbance measurements in a mountainous headwater catchment in Southern Ecuador

    NASA Astrophysics Data System (ADS)

    Windhorst, David; Schob, Sarah; Zang, Carina; Crespo, Patricio; Breuer, Lutz

    2015-04-01

    The alpine grassland páramo - typically occurring in the headwater catchments of the Andes - plays an important role in flow regulation, hydropower generation and local water supply. However, hydrological and hydro-biogeochemical processes in the páramo and their potential reactions to climate and land use change are largely unknown. Therefore, we used a UV-Vis absorbance spectrometer to investigate fluxes of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity and nitrate (NO3-N) in a small headwater catchment (91.31 km²) in the páramo in south Ecuador on a 5 min temporal and 100 m spatial resolution to gain first insights in its hydrological functioning. Spatial sampling was realized during three snapshot sampling campaigns along the 14.2 km long stream between October 2013 and January 2014, while temporal sampling took place at a permanent sampling site within the catchment between February and June 2014. To identify the runoff generation processes the spatial patterns have been associated with local site specific (e.g. fish ponds) and sub-catchment wide (e.g. land use) characteristics. Storm flow events within the time series allowed to further study temporal changes and rotational patterns of concentration-discharge relations (hysteresis). In total, 35 events were identified to be suitable for analyzing hysteresis effects of BOD, COD, and turbidity. Nitrate concentrations could be studied for 20 events. Regardless of the flow conditions nitrate leaching increased with a growing share of non-native pine forests or pastures in the study area. During low flow conditions, the high water holding capacity of the upstream páramo areas ensured a continuous supply of BOD to the stream. Pasture and pine forest sites, mostly occurring in the downstream section of the stream, contributed to BOD only during discharge events. Contradicting the expectations the trout farms along the lower part of the streams had a relatively closed nutrient cycle and

  4. Final Technical Report for "High-resolution temporal variations in groundwater chemistry: Tracing the links between climate, hydrology, and element mobility in the vadose zone"

    SciTech Connect

    Jay L. Banner

    2002-04-23

    In spite of a developing emphasis on geochemical methods in studies of modern hydrologic systems, there have been few attempts to examine temporal fluctuations in groundwater chemistry and element mobility in the near-surface environment. Relatively little is known regarding how groundwaters evolve over 10 to 10,000 year scales, yet this knowledge provides a critical framework for understanding the links between climate and hydrology, the evolution of soils, and element migration in the vadose environment. Recent analytical advances allow U-series measurements to be applied to developing high-resolution chronologies of Pleistocene and Holocene carbonates. The potential of these new tools is examined through an analysis of two well-defined, active karst systems in (1) Barbados and (2) Texas. (1) The research effort on Barbados has developed methods of estimating recharge and inferring the spatial and seasonal distribution of recharge to the Pleistocene limestone aquifer on Barbados. A new method has been developed to estimate recharge based on oxygen isotope variations in rainwater and groundwater. Inter-annual recharge variations indicate that recharge is dependent on the distribution of rainfall throughout the year rather than total annual rainfall. Consequently, a year when rainfall occurs primarily during the peak wet season months (August through November) may have more recharge than a year when rainfall is more evenly distributed through the year. These results lay important groundwork for analysis of rainfall/recharge variations over different time scales based on isotopic records presently being constructed using Barbados speleothems from the same aquifer. (2) The chronology of speleothems (cave calcite deposits) from three caves across 130 kilometers in central Texas provides a 71,000-year record of temporal changes in hydrology and climate. Fifty-three ages were determined by mass spectrometric 238U - 230Th and 235U - 231Pa analyses. The accuracy of the

  5. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    SciTech Connect

    Zweiacker, K.; McKeown, J. T.; Liu, C.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Wiezorek, J. M. K.

    2016-08-04

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s–1 to ~2.5 m s–1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s–1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  6. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    DOE PAGES

    Zweiacker, K.; McKeown, J. T.; Liu, C.; ...

    2016-08-04

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of themore » metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ~1.3 m s–1 to ~2.5 m s–1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s–1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. As a result, using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.« less

  7. Polarity and temporality of high-resolution y-chromosome distributions in India identify both indigenous and exogenous expansions and reveal minor genetic influence of Central Asian pastoralists.

    PubMed

    Sengupta, Sanghamitra; Zhivotovsky, Lev A; King, Roy; Mehdi, S Q; Edmonds, Christopher A; Chow, Cheryl-Emiliane T; Lin, Alice A; Mitra, Mitashree; Sil, Samir K; Ramesh, A; Usha Rani, M V; Thakur, Chitra M; Cavalli-Sforza, L Luca; Majumder, Partha P; Underhill, Peter A

    2006-02-01

    Although considerable cultural impact on social hierarchy and language in South Asia is attributable to the arrival of nomadic Central Asian pastoralists, genetic data (mitochondrial and Y chromosomal) have yielded dramatically conflicting inferences on the genetic origins of tribes and castes of South Asia. We sought to resolve this conflict, using high-resolution data on 69 informative Y-chromosome binary markers and 10 microsatellite markers from a large set of geographically, socially, and linguistically representative ethnic groups of South Asia. We found that the influence of Central Asia on the pre-existing gene pool was minor. The ages of accumulated microsatellite variation in the majority of Indian haplogroups exceed 10,000-15,000 years, which attests to the antiquity of regional differentiation. Therefore, our data do not support models that invoke a pronounced recent genetic input from Central Asia to explain the observed genetic variation in South Asia. R1a1 and R2 haplogroups indicate demographic complexity that is inconsistent with a recent single history. Associated microsatellite analyses of the high-frequency R1a1 haplogroup chromosomes indicate independent recent histories of the Indus Valley and the peninsular Indian region. Our data are also more consistent with a peninsular origin of Dravidian speakers than a source with proximity to the Indus and with significant genetic input resulting from demic diffusion associated with agriculture. Our results underscore the importance of marker ascertainment for distinguishing phylogenetic terminal branches from basal nodes when attributing ancestral composition and temporality to either indigenous or exogenous sources. Our reappraisal indicates that pre-Holocene and Holocene-era--not Indo-European--expansions have shaped the distinctive South Asian Y-chromosome landscape.

  8. Serum thyroglobulin reference intervals in regions with adequate and more than adequate iodine intake.

    PubMed

    Wang, Zhaojun; Zhang, Hanyi; Zhang, Xiaowen; Sun, Jie; Han, Cheng; Li, Chenyan; Li, Yongze; Teng, Xiaochun; Fan, Chenling; Liu, Aihua; Shan, Zhongyan; Liu, Chao; Weng, Jianping; Teng, Weiping

    2016-11-01

    The purpose of this study was to establish normal thyroglobulin (Tg) reference intervals (RIs) in regions with adequate and more than adequate iodine intake according to the National Academy of Clinical Biochemistry (NACB) guidelines and to investigate the relationships between Tg and other factors.A total of 1317 thyroid disease-free adult subjects (578 men, 739 nonpregnant women) from 2 cities (Guangzhou and Nanjing) were enrolled in this retrospective, observational study. Each subject completed a questionnaire and underwent physical and ultrasonic examination. Serum Tg, thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), Tg antibody (TgAb), and urinary iodine concentration (UIC) were measured. Reference groups were established on the basis of TSH levels: 0.5 to 2.0 and 0.27 to 4.2 mIU/L.The Tg RIs for Guangzhou and Nanjing were 1.6 to 30.0 and 1.9 to 25.8 ng/mL, respectively. No significant differences in Tg were found between genders or among different reference groups. Stepwise linear regression analyses showed that TgAb, thyroid volume, goiter, gender, age, and TSH levels were correlated with Tg.In adults from regions with adequate and more than adequate iodine intake, we found that Tg may be a suitable marker of iodine status; gender-specific Tg RI was unnecessary; there was no difference between Tg RIs in regions with adequate and more than adequate iodine intake; and the TSH criterion for selecting the Tg reference population could follow the local TSH reference rather than 0.5 to 2.0 mIU/L.

  9. Serum thyroglobulin reference intervals in regions with adequate and more than adequate iodine intake

    PubMed Central

    Wang, Zhaojun; Zhang, Hanyi; Zhang, Xiaowen; Sun, Jie; Han, Cheng; Li, Chenyan; Li, Yongze; Teng, Xiaochun; Fan, Chenling; Liu, Aihua; Shan, Zhongyan; Liu, Chao; Weng, Jianping; Teng, Weiping

    2016-01-01

    Abstract The purpose of this study was to establish normal thyroglobulin (Tg) reference intervals (RIs) in regions with adequate and more than adequate iodine intake according to the National Academy of Clinical Biochemistry (NACB) guidelines and to investigate the relationships between Tg and other factors. A total of 1317 thyroid disease-free adult subjects (578 men, 739 nonpregnant women) from 2 cities (Guangzhou and Nanjing) were enrolled in this retrospective, observational study. Each subject completed a questionnaire and underwent physical and ultrasonic examination. Serum Tg, thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb), Tg antibody (TgAb), and urinary iodine concentration (UIC) were measured. Reference groups were established on the basis of TSH levels: 0.5 to 2.0 and 0.27 to 4.2 mIU/L. The Tg RIs for Guangzhou and Nanjing were 1.6 to 30.0 and 1.9 to 25.8 ng/mL, respectively. No significant differences in Tg were found between genders or among different reference groups. Stepwise linear regression analyses showed that TgAb, thyroid volume, goiter, gender, age, and TSH levels were correlated with Tg. In adults from regions with adequate and more than adequate iodine intake, we found that Tg may be a suitable marker of iodine status; gender-specific Tg RI was unnecessary; there was no difference between Tg RIs in regions with adequate and more than adequate iodine intake; and the TSH criterion for selecting the Tg reference population could follow the local TSH reference rather than 0.5 to 2.0 mIU/L. PMID:27902589

  10. GHG emissions quantification at high spatial and temporal resolution at urban scale: the case of the town of Sassari (NW Sardinia - Italy)

    NASA Astrophysics Data System (ADS)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using

  11. Survival of the 1%: Consequences of a Two-Phase Dynamic of Aragonitic Shell Loss and Stabilization for the Temporal Resolution of Proxy Data

    NASA Astrophysics Data System (ADS)

    Kidwell, S. M.; Tomasovych, A.; Alexander, C. R., Jr.; Kaufman, D. S.; leonard-Pingel, J.

    2014-12-01

    of shell microstructure, all within the mixed layer, and the coarser temporal resolution of permanently buried shell assemblages, underscore the need to acquire a suite of replicate measurements per increment and to assume that some porewater equilibration of original shell has likely occurred.

  12. Adequate mathematical modelling of environmental processes

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.

    2012-04-01

    In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same

  13. Integrating satellite imagery-derived data and GIS-based solar radiation algorithms to map solar radiation in high temporal and spatial resolutions for the province of Salta, Argentina

    NASA Astrophysics Data System (ADS)

    Ramirez Camargo, Luis; Dorner, Wolfgang

    2016-10-01

    An accurate estimation of solar radiation availability is vital for planning solar energy generation systems. Classically, this type of estimation is made by cumulating data for periods of one year and serves to determine locations with the highest solar radiation availability. However, the integration of high shares of technologies such as photovoltaics in the energy matrix and the evaluation of the economic viability of these systems under time-dependent promotion mechanisms, also requires estimations in a high temporal resolution. When looking at the yearly solar resource availability, the north-west of Argentina is one of the regions of the world with the highest solar radiation potential. Yet estimations are available mainly in low spatial resolutions and there are only few studies that try to characterize the temporal variability of the solar resource in this part of the world. This paper presents a methodology to integrate satellite imagery derived data and a GIS-based solar radiation algorithm in order to generate a high resolution solar irradiance spatiotemporal data set for the province of Salta, north-west Argentina. This data set describes in a better way the differences in solar resource availability between flat and mountainous regions in the province, serves to accurately identify locations with the highest global solar radiation and to characterize its variability on time. Furthermore, the presented methodology can be easily replicated for the rest of South America that is covered by Down-welling Surface Shortwave Flux (DSSF) product provided by the Land Surface Analysis Satellite Applications Facility.

  14. Long-Term Quantitative Precipitation Estimates (QPE) at High Spatial and Temporal Resolution over CONUS: Bias-Adjustment of the Radar-Only National Mosaic and Multi-sensor QPE (NMQ/Q2) Precipitation Reanalysis (2001-2012)

    NASA Astrophysics Data System (ADS)

    Prat, Olivier; Nelson, Brian; Stevens, Scott; Seo, Dong-Jun; Kim, Beomgeun

    2015-04-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (NEXRAD) network over Continental United States (CONUS) is completed for the period covering from 2001 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Several in-situ datasets are available to assess the biases of the radar-only product and to adjust for those biases to provide a multi-sensor QPE. The rain gauge networks that are used such as the Global Historical Climatology Network-Daily (GHCN-D), the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), and the Climate Reference Network (CRN), have different spatial density and temporal resolution. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. The objective of this work is threefold. First, we investigate how the different in-situ networks can impact the precipitation estimates as a function of the spatial density, sensor type, and temporal resolution. Second, we assess conditional and un-conditional biases of the radar-only QPE for various time scales (daily, hourly, 5-min) using in-situ precipitation observations. Finally, after assessing the bias and applying reduction or elimination techniques, we are using a unique in-situ dataset merging the different RG networks (CRN, ASOS, HADS, GHCN-D) to

  15. Multiple single-point imaging (mSPI) as a tool for capturing and characterizing MR signals and repetitive signal disturbances with high temporal resolution: the MRI scanner as a high-speed camera.

    PubMed

    Bakker, Chris J G; van Gorp, Jetse S; Verwoerd, Jan L; Westra, Albert H; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R

    2013-09-01

    In this paper we aim to lay down and demonstrate the use of multiple single-point imaging (mSPI) as a tool for capturing and characterizing steady-state MR signals and repetitive disturbances thereof with high temporal resolution. To achieve this goal, various 2D mSPI sequences were derived from the nearest standard 3D imaging sequences by (i) replacing the excitation of a 3D slab by the excitation of a 2D slice orthogonal to the read axis, (ii) setting the readout gradient to zero, and (iii) leaving out the inverse Fourier transform in the read direction. The thus created mSPI sequences, albeit slow with regard to the spatial encoding part, were shown to result into a series of densely spaced 2D single-point images in the time domain enabling monitoring of the evolution of the magnetization with a high temporal resolution and without interference from any encoding gradients. The high-speed capabilities of mSPI were demonstrated by capturing and characterizing the free induction decays and spin echoes of substances with long T2s (>30 ms) and long and short T2*s (4 - >30 ms) and by monitoring the perturbation of the transverse magnetization by, respectively, a titanium cylinder, representing a static disturbance; a pulsed magnetic field gradient, representing a stimulus inherent to a conventional MRI experiment; and a pulsed electric current, representing an external stimulus. The results of the study indicate the potential of mSPI for assessing the evolution of the magnetization and, when properly synchronized with the acquisition, repeatable disturbances thereof with a temporal resolution that is ultimately limited by the bandwidth of the receiver, but in practice governed by the SNR of the experiment and the magnitude of the disturbance. Potential applications of mSPI can be envisaged in research areas that are concerned with MR signal behavior, MR system performance and MR evaluation of magnetically evoked responses.

  16. Temporal resolution of misfolded prion protein transport, accumulation, glial activation, and neuronal death in the retinas of mice inoculated with scrapie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is a lack of pathologic landmarks to describe the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between the transport of misfolded prion protein from the brain to the retina, the accumulation of PrPSc in the retina, the respon...

  17. Use of Aerial high resolution visible imagery to produce large river bathymetry: a multi temporal and spatial study over the by-passed Upper Rhine

    NASA Astrophysics Data System (ADS)

    Béal, D.; Piégay, H.; Arnaud, F.; Rollet, A.; Schmitt, L.

    2011-12-01

    Aerial high resolution visible imagery allows producing large river bathymetry assuming that water depth is related to water colour (Beer-Bouguer-Lambert law). In this paper we aim at monitoring Rhine River geometry changes for a diachronic study as well as sediment transport after an artificial injection (25.000 m3 restoration operation). For that a consequent data base of ground measurements of river depth is used, built on 3 different sources: (i) differential GPS acquisitions, (ii) sounder data and (iii) lateral profiles realized by experts. Water depth is estimated using a multi linear regression over neo channels built on a principal component analysis over red, green and blue bands and previously cited depth data. The study site is a 12 km long reach of the by-passed section of the Rhine River that draws French and German border. This section has been heavily impacted by engineering works during the last two centuries: channelization since 1842 for navigation purposes and the construction of a 45 km long lateral canal and 4 consecutive hydroelectric power plants of since 1932. Several bathymetric models are produced based on 3 different spatial resolutions (6, 13 and 20 cm) and 5 acquisitions (January, March, April, August and October) since 2008. Objectives are to find the optimal spatial resolution and to characterize seasonal effects. Best performances according to the 13 cm resolution show a 18 cm accuracy when suspended matters impacted less water transparency. Discussions are oriented to the monitoring of the artificial reload after 2 flood events during winter 2010-2011. Bathymetric models produced are also useful to build 2D hydraulic model's mesh.

  18. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of...

  19. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section 716.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of...

  20. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo Ndebele's…

  1. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  2. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  3. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  4. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  5. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  6. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  7. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  8. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  9. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  10. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  11. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  12. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  13. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  14. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  15. A model for quantitative correction of coronary calcium scores on multidetector, dual source, and electron beam computed tomography for influences of linear motion, calcification density, and temporal resolution: A cardiac phantom study

    SciTech Connect

    Greuter, M. J. W.; Groen, J. M.; Nicolai, L. J.; Dijkstra, H.; Oudkerk, M.

    2009-11-15

    Purpose: The objective of this study is to quantify the influence of linear motion, calcification density, and temporal resolution on coronary calcium determination using multidetector computed tomography (MDCT), dual source CT (DSCT), and electron beam tomography (EBT) and to find a quantitative method which corrects for the influences of these parameters using a linear moving cardiac phantom. Methods: On a robotic arm with artificial arteries with four calcifications of increasing density, a linear movement was applied between 0 and 120 mm/s (step of 10 mm/s). The phantom was scanned five times on 64-slice MDCT, DSCT, and EBT using a standard acquisition protocol. The average Agatston, volume, and mass scores were determined for each velocity, calcification, and scanner. Susceptibility to motion was quantified using a cardiac motion susceptibility (CMS) index. Resemblance to EBT and physical volume and mass was quantified using a {Delta} index. Results: Increasing motion artifacts were observed at increasing velocities on all scanners, with increasing severity from EBT to DSCT to 64-slice MDCT. The calcium score showed a linear dependency on motion from which a correction factor could be derived. This correction factor showed a linear dependency on the mean calcification density with a good fit for all three scoring methods and all three scanners (0.73{<=}R{sup 2}{<=}0.95). The slope and offset of this correction factor showed a linear dependency on temporal resolution with a good fit for all three scoring methods and all three scanners (0.83{<=}R{sup 2}{<=}0.98). CMS was minimal for EBT and increasing values were observed for DSCT and highest values for 64-slice MDCT. CMS was minimal for mass score and increasing values were observed for volume score and highest values for Agatston score. For all densities and scoring methods DSCT showed on average the closest resemblance to EBT calcium scores. When using the correction factor, CMS index decreased on average by

  16. Multi-Spectral Sensor Driven Solar EUV Irradiance Models with Improved Spectro-Temporal Resolution for Space Weather Applications at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Thiemann, Edward M. B.

    Solar extreme ultraviolet (EUV) radiation is a primary driver of space weather at Earth and Mars. At Earth, this radiation can affect satellite drag and disrupt communication and navigation signals. At Mars, it contributes to the loss of a once dense atmosphere to space. Recent EUV irradiance instruments, such as the EUV Monitor (EUVM) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter and the EUV and X-ray Irradiance Sensors (EXIS) on the next generation Geostationary Operational Environmental Satellites (GOES) use multi-spectral sensors to measure key portions of the EUV spectrum which drive models to estimate the complete EUV spectral irradiance. This thesis develops new models for use by EUVM and EXIS using three distinct methods. 1) Empirical models use predetermined correlations with available measurements to estimate the spectral irradiance. I use new high resolution and high time cadence measurements from the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO) to improve model spectral resolution and reduce uncertainty. I develop the FISM-M model for MAVEN and the L1B Operational Model for EXIS, each with 5-10% typical uncertainties. 2) Semi-empirical models reconstruct the spectrum by weighting a set of reference spectra according to solar activity estimated with broadband measurements. The SynRef model is developed for EUVM to improve the spectral resolution by 10-100X from 0-6 nm. A semi-empirical model is also developed for the solar H Lyman-alpha line using newly published 1.5 picometer resolution spectra from SOHO/SUMER, and is used to retrieve Mars H-corona densities from EUVM occultation measurements. 3) I develop the Lumped Element Thermal Model (LETM) for specifically modeling the time evolution of EUV flare emissions. I show that hot and cool EUV flare emission light curves are related through the low pass filter equation. This new effect is used to motivate a simple flare cooling model which can accurately

  17. Local structure and nanoscale homogeneity of CeO2-ZrO2: differences and similarities to parent oxides revealed by luminescence with temporal and spectral resolution.

    PubMed

    Tiseanu, Carmen; Parvulescu, Vasile; Avram, Daniel; Cojocaru, Bogdan; Boutonnet, Magali; Sanchez-Dominguez, Margarita

    2014-01-14

    Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase. However, the evolution of Eu(3+)-delayed luminescence from cubic ceria-like to tetragonal zirconia-like emission reveals the formation of CeO2- and ZrO2-rich nanodomains and provides evidence for early phase separation. For Eu(3+)-CeO2-ZrO2 calcined at 1000 °C, the emission of Eu(3+) reveals both structural and compositional inhomogeneity. Our study identifies the differences between the local structure properties of CeO2 and ZrO2 parent oxides and CeO2-ZrO2 mixed oxide, also confirming the special chemical environment of the oxygen atoms in the mixed oxide as reported earlier by Extended X-ray Absorption Fine Structure investigations.

  18. Spatial and temporal variability of column-integrated CO2: identifying drivers and variations from high-resolution model simulations and OCO-2 observations

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Ott, L.; Wennberg, P. O.; Kawa, S. R.; O'Dell, C.; Osterman, G. B.; Wunch, D.

    2015-12-01

    Isolating the drivers and variations in column-averaged dry air mole fraction of carbon dioxide (XCO2) is essential for mining information from space-based remote-sensing observations, such as those available from the Orbiting Carbon Observatory-2 (OCO-2). Contrary to the large number of studies analyzing the variability of surface CO2 concentrations, studies analyzing the spatiotemporal variability of XCO2 are relatively limited. More importantly, these results are either based on a sparse network of ground-based total column observations (i.e., from the Total Column Carbon Observing Network - TCCON) or derived from low-resolution model simulations. In this study, using the high-resolution (~7 km) GEOS-5 model simulated fields and the high-density observations from OCO-2, we investigate how variability in surface fluxes and/or meteorological drivers impact the observed XCO2 variability across a range of scales. The study focuses on ~13:30 LT and is designed to highlight the significant contributors to local and regional scale XCO2 variability from daily to seasonal timescales. In collaboration with the OCO-2 Validation team, the variability information is also being used to identify small geographical areas (<1° or ~100km) where the XCO2 is expected to be relatively constant. These small areas then serve as target regions for examining the potential of external variables (for e.g., surface reflectance, aerosol) to generate biases (variability) in the XCO2 retrievals in those regions. We will also show comparison results of the model-based variability analyses with the variability statistics derived from actual OCO-2 retrievals. This comparison serves as an important consistency check for the simulated fields from the GEOS-5 model. Finally, we will review these results in terms of assessing and quantifying representation errors as well as developing and implementing data thinning/'superobbing' algorithms for OCO-2 retrievals.

  19. An Efficient Single-Molecule Resolution Method for Simulating Spatio-Temporal Dynamics of Protein Interaction Networks that Involve the Cell Membranes

    NASA Astrophysics Data System (ADS)

    Yogurtcu, Osman N.; Johnson, Margaret E.

    A significant number of the cellular protein interaction networks, such as the receptor mediated signaling and vesicle trafficking pathways, includes membranes as a molecular assembly platform. Computer simulations can provide insight into the dynamics of complex formation and help identify the principles that govern recruitment and assembly on the membranes. Here, we introduce the Free-Propagator Re-weighting (FPR) algorithm, a recently developed method that efficiently simulates the spatio-temporal dynamics of multiprotein complex formation both in the solution and on the membranes. In the FPR, the position of each protein is propagated using the Brownian motion and the reactions between pairs of proteins can occur upon collisions. Depending on the dimensionality of the interaction, the association probabilities are determined by solving the Smoluchowski diffusion equations in 2D or 3D and trajectory reweighting allows us to obtain the exact association rates for all the reactive pairs. Using the FPR, in this presentation, we investigate the interaction dynamics of the receptor mediated endocytic network as a case study and discuss the possible effects of membrane binding and molecular crowding on the formation of complexes. Supported by the NIGMS/NIH under R00GM098371.

  20. Region 9: Arizona Adequate Letter (10/14/2003)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadben,. Director, to Nancy Wrona and Dennis Smith informing them that Maricopa County's motor vehicle emissions budgets in the 2003 MAGCO Maintenance Plan are adequate for transportation conformity purposes.

  1. Region 6: Texas Adequate Letter (4/16/2010)

    EPA Pesticide Factsheets

    This letter from EPA to Texas Commission on Environmental Quality determined 2021 motor vehicle emission budgets for nitrogen oxides (NOx) and volatile organic compounds (VOCs) for Beaumont/Port Arthur area adequate for transportation conformity purposes

  2. Region 2: New Jersey Adequate Letter (5/23/2002)

    EPA Pesticide Factsheets

    This April 22, 2002 letter from EPA to the New Jersey Department of Environmental Protection determined 2007 and 2014 Carbon Monoxide (CO) Mobile Source Emissions Budgets adequate for transportation conformity purposes and will be announced in the Federal

  3. Region 8: Colorado Adequate Letter (10/29/2001)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Denvers' particulate matter (PM10) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  4. Region 1: New Hampshire Adequate Letter (8/12/2008)

    EPA Pesticide Factsheets

    This July 9, 2008 letter from EPA to the New Hampshire Department of Environmental Services, determined the 2009 Motor Vehicle Emissions Budgets (MVEBs) are adequate for transportation conformity purposes and will be announced in the Federal Register (FR).

  5. Region 8: Colorado Adequate Letter (1/20/2004)

    EPA Pesticide Factsheets

    This letter from EPA to Colorado Department of Public Health and Environment determined Greeleys' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes and will be announced in the FR.

  6. Region 8: Utah Adequate Letter (6/10/2005)

    EPA Pesticide Factsheets

    This letter from EPA to Utah Department of Environmental Quality determined Salt Lake Citys' and Ogdens' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  7. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  8. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  9. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  10. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  11. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of Applications § 970.404 Adequate exploration plan. Before he may certify an application, the Administrator must...

  12. Region 6: New Mexico Adequate Letter (8/21/2003)

    EPA Pesticide Factsheets

    This is a letter from Carl Edlund, Director, to Alfredo Santistevan regarding MVEB's contained in the latest revision to the Albuquerque Carbon Monoxide State Implementation Plan (SIP) are adequate for transportation conformity purposes.

  13. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  14. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  15. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  16. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  17. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  18. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contained in a system of records are adequately trained to protect the security and privacy of such records..., by degaussing or by overwriting with the appropriate security software, in accordance...

  19. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... require access to and use of records contained in a system of records are adequately trained to protect... with the appropriate security software, in accordance with regulations of the Archivist of the...

  20. Region 9: Nevada Adequate Letter (3/30/2006)

    EPA Pesticide Factsheets

    This is a letter from Deborah Jordan, Director, to Leo M. Drozdoff regarding Nevada's motor vehicle emissions budgets in the 2005 Truckee Meadows CO Redesignation Request and Maintenance Plan are adequate for transportation conformity decisions.

  1. Photon event distribution sampling: an image formation technique for scanning microscopes that permits tracking of sub-diffraction particles with high spatial and temporal resolutions.

    PubMed

    Larkin, J D; Publicover, N G; Sutko, J L

    2011-01-01

    In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens.

  2. Investigations of the spatial and temporal resolution of retrievals of atmospheric carbon dioxide from the Atmospheric InfraRed Sounder (AIRS).

    NASA Astrophysics Data System (ADS)

    Maddy, Eric Sean

    As the dominant anthropogenic greenhouse gas, carbon dioxide (CO 2), represents an important component of climate change (IPCC 2007). Owing to burning of fossil fuels and deforestation, atmospheric CO2 concentrations have increased over 110 parts-per-million by volume (ppmv) from 270 ppmv to 380 ppmv since the dawn of the Industrial Revolution. Understanding of the spatial distribution of the sources and sinks of atmospheric CO 2 is necessary not only to predict the future atmospheric abundances but also their effect on future climate. Although designed for deriving high precision temperature and moisture profiles, NASA's Atmospheric InfraRed Sounder (AIRS) IR measurements include broad vertical sensitivity (between 3 and 10 km) to atmospheric CO2 variations. Coupled with AIRS' broad swath pattern and a technique referred to as "cloud-clearing" these measurements enable daily global spatial coverage. Nevertheless, AIRS' ability to determine the spatial distribution of carbon dioxide (CO2) is strongly dependent on its ability to separate the radiative effects of CO2 from temperature not to mention measurement uncertainties due to clouds and other geophysical variables such as moisture and ozone. This research presents a thorough investigation into the temporal and spatial scales that the AIRS can separate temperature (and other geophysical variables) from CO2. Through our detailed understanding of the way satellites view the Earth's atmosphere, we have developed an algorithm capable of retrieving global middle-to-upper tropospheric CO2 concentrations in all-weather conditions with total uncertainties ranging between 1 to 2 ppmv. From a radiative perspective, roughly equivalent to 30 mK to 60 mK, 1 to 2 ppmv, is an awesome feat for a space-borne sensor. Necessary for the remarkable performance of this algorithm, we developed methodologies capable of separating the radiative effect of CO2 variability from temperature, improved the fast rapid transmittance algorithm

  3. Grazer Effects on Stream Primary Production and Nitrate Utilization: Estimating Feedbacks Under Reduced Nitrate Levels at High-Temporal Resolutions from the Patch to Reach-Scale

    NASA Astrophysics Data System (ADS)

    Reijo, C. J.; Cohen, M. J.

    2015-12-01

    While nutrient enrichment is often identified as the leading cause for changes in stream gross primary production (GPP) and shifts in vegetative communities, other factors such as grazers influence overall stream structure and function. Evidence shows that grazers are a top-down control on algae in streams; however, the specific feedbacks between overall stream metabolism, grazer effects, and nutrient cycling have been variable and little is known about these interactions at nutrient levels below ambient. To further our understanding of these linkages, a nutrient depletion chamber was created and paired with high-resolution in situ sensors to estimate stream metabolism and characterize nitrate uptake (UNO3) pathways (i.e. plant uptake and denitrification). The Plexiglas chamber blocks flow and nutrient supply, inserts into upper sediments, allows light in and sediment-water-air interactions to occur. At Gum Slough Springs, FL, nitrate was reduced from ambient levels (1.40 mg N/L) to below regulatory thresholds (ca. 0.20 mg N/L) within one week. Paired chambers with and without the presence of snails (Elimia floridensis) were deployed across submerged aquatic vegetation (SAV; Vallisneria americana) and algae (Lyngbya) substrates. Results show that GPP and UNO3 were higher under SAV (70 g O2/m2/d and 300 mg NO3/m2/d, respectively) and a general lack of nutrient limitation even at low [NO3]. Grazer effects differed by vegetation type as it alleviated the reduction of NO3 levels and GPP under SAV but enhanced the decrease of algal GPP and NO3 levels over time. Continued work includes estimating grazer effects on denitrification, quantifying snail nutrient excretion contributions, and scaling up all estimates from the patch to reach level. Overall, this study will further our understanding of grazer-production-nutrient interactions within stream systems, making it possible to predict changes in feedbacks when one part of the biotic or abiotic ecosystem is altered.

  4. An Assessment of the Ability of Potential Satellite Instruments to Resolve Spatial and Temporal Variability of Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Andrews, A.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    Sufficiently precise satellite observations with adequate spatial and temporal resolution would substantially increase our knowledge of the atmospheric CO2 distribution and would undoubtedly lead to reduced uncertainty in estimates of the global carbon budget. An overview of possible strategies for measuring CO2 from space will be presented, including IR and nearby measurements, active sensors and broad band and narrow band passive sensors. The ability of potential satellite instruments with a variety of orbits, horizontal resolution and vertical weighting functions to capture the variation in atmospheric CO2 mixing ratios will be illustrated using a combination of surface data, aircraft data and model results.

  5. Regulatory requirements for providing adequate veterinary care to research animals.

    PubMed

    Pinson, David M

    2013-09-01

    Provision of adequate veterinary care is a required component of animal care and use programs in the United States. Program participants other than veterinarians, including non-medically trained research personnel and technicians, also provide veterinary care to animals, and administrators are responsible for assuring compliance with federal mandates regarding adequate veterinary care. All program participants therefore should understand the regulatory requirements for providing such care. The author provides a training primer on the US regulatory requirements for the provision of veterinary care to research animals. Understanding the legal basis and conditions of a program of veterinary care will help program participants to meet the requirements advanced in the laws and policies.

  6. Long-Term Large-Scale Bias-Adjusted Precipitation Estimates at High Spatial and Temporal Resolution Derived from the National Mosaic and Multi-Sensor QPE (NMQ/Q2) Precipitation Reanalysis over CONUS

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Seo, D. J.; Kim, B.

    2014-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over Continental United States (CONUS) is nearly completed for the period covering from 2000 to 2012. This important milestone constitutes a unique opportunity to study precipitation processes at a 1-km spatial resolution for a 5-min temporal resolution. However, in order to be suitable for hydrological, meteorological and climatological applications, the radar-only product needs to be bias-adjusted and merged with in-situ rain gauge information. Rain gauge networks such as the Hydrometeorological Automated Data System (HADS), the Automated Surface Observing Systems (ASOS), the Climate Reference Network (CRN), and the Global Historical Climatology Network - Daily (GHCN-D) are used to adjust for those biases and to merge with the radar only product to provide a multi-sensor estimate. The challenges related to incorporating non-homogeneous networks over a vast area and for a long-term record are enormous. Among the challenges we are facing are the difficulties incorporating differing resolution and quality surface measurements to adjust gridded estimates of precipitation. Another challenge is the type of adjustment technique. After assessing the bias and applying reduction or elimination techniques, we are investigating the kriging method and its variants such as simple kriging (SK), ordinary kriging (OK), and conditional bias-penalized Kriging (CBPK) among others. In addition we hope to generate estimates of uncertainty for the gridded estimate. In this work the methodology is presented as well as a comparison between the radar-only product and the final multi-sensor QPE product. The comparison is performed at various time scales from the sub-hourly, to annual. In addition, comparisons over the same period with a suite of lower resolution QPEs derived from ground based radar

  7. Test-retest reliability of high angular resolution diffusion imaging acquisition within medial temporal lobe connections assessed via tract based spatial statistics, probabilistic tractography and a novel graph theory metric.

    PubMed

    Kuhn, T; Gullett, J M; Nguyen, P; Boutzoukas, A E; Ford, A; Colon-Perez, L M; Triplett, W; Carney, P R; Mareci, T H; Price, C C; Bauer, R M

    2016-06-01

    This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained.

  8. Test-Retest Reliability of High Angular Resolution Diffusion Imaging Acquisition within Medial Temporal Lobe Connections Assessed via Tract Based Spatial Statistics, Probabilistic Tractography and a Novel Graph Theory Metric

    PubMed Central

    Kuhn, T.; Gullett, J. M.; Nguyen, P.; Boutzoukas, A. E.; Ford, A.; Colon-Perez, L. M.; Triplett, W.; Carney, P.R.; Mareci, T. H.; Price, C. C.; Bauer, R. M.

    2015-01-01

    Introduction This study examined the reliability of high angular resolution diffusion tensor imaging (HARDI) data collected on a single individual across several sessions using the same scanner. Methods HARDI data was acquired for one healthy adult male at the same time of day on ten separate days across a one-month period. Environmental factors (e.g. temperature) were controlled across scanning sessions. Tract Based Spatial Statistics (TBSS) was used to assess session-to-session variability in measures of diffusion, fractional anisotropy (FA) and mean diffusivity (MD). To address reliability within specific structures of the medial temporal lobe (MTL; the focus of an ongoing investigation), probabilistic tractography segmented the Entorhinal cortex (ERc) based on connections with Hippocampus (HC), Perirhinal (PRc) and Parahippocampal (PHc) cortices. Streamline tractography generated edge weight (EW) metrics for the aforementioned ERc connections and, as comparison regions, connections between left and right rostral and caudal anterior cingulate cortex (ACC). Coefficients of variation (CoV) were derived for the surface area and volumes of these ERc connectivity-defined regions (CDR) and for EW across all ten scans, expecting that scan-to-scan reliability would yield low CoVs. Results TBSS revealed no significant variation in FA or MD across scanning sessions. Probabilistic tractography successfully reproduced histologically-verified adjacent medial temporal lobe circuits. Tractography-derived metrics displayed larger ranges of scanner-to-scanner variability. Connections involving HC displayed greater variability than metrics of connection between other investigated regions. Conclusions By confirming the test retest reliability of HARDI data acquisition, support for the validity of significant results derived from diffusion data can be obtained. PMID:26189060

  9. Comparability and Reliability Considerations of Adequate Yearly Progress

    ERIC Educational Resources Information Center

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  10. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate actively in accordance with your Articles and within the context of your business plan, as... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL...

  11. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operate actively in accordance with your Articles and within the context of your business plan, as... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL...

  12. Is the Stock of VET Skills Adequate? Assessment Methodologies.

    ERIC Educational Resources Information Center

    Blandy, Richard; Freeland, Brett

    In Australia and elsewhere, four approaches have been used to determine whether stocks of vocational education and training (VET) skills are adequate to meet industry needs. The four methods are as follows: (1) the manpower requirements approach; (2) the international, national, and industry comparisons approach; (3) the labor market analysis…

  13. Do Beginning Teachers Receive Adequate Support from Their Headteachers?

    ERIC Educational Resources Information Center

    Menon, Maria Eliophotou

    2012-01-01

    The article examines the problems faced by beginning teachers in Cyprus and the extent to which headteachers are considered to provide adequate guidance and support to them. Data were collected through interviews with 25 school teachers in Cyprus, who had recently entered teaching (within 1-5 years) in public primary schools. According to the…

  14. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order...

  15. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order...

  16. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order...

  17. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order...

  18. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order...

  19. Understanding Your Adequate Yearly Progress (AYP), 2011-2012

    ERIC Educational Resources Information Center

    Missouri Department of Elementary and Secondary Education, 2011

    2011-01-01

    The "No Child Left Behind Act (NCLB) of 2001" requires all schools, districts/local education agencies (LEAs) and states to show that students are making Adequate Yearly Progress (AYP). NCLB requires states to establish targets in the following ways: (1) Annual Proficiency Target; (2) Attendance/Graduation Rates; and (3) Participation…

  20. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Adequate yearly progress in general. 200.13 Section 200.13 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE...

  1. 34 CFR 200.13 - Adequate yearly progress in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Adequate yearly progress in general. 200.13 Section 200.13 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE...

  2. Region 9: Arizona Adequate Letter (11/1/2001)

    EPA Pesticide Factsheets

    This is a letter from Jack P. Broadbent, Director, Air Division to Nancy Wrona and James Bourney informing them of the adequacy of Revised MAG 1999 Serious Area Carbon Monoxide Plan and that the MAG CO Plan is adequate for Maricopa County.

  3. From daily to sub-daily time steps - Creating a high temporal and spatial resolution climate reference data set for hydrological modeling and bias-correction of RCM data

    NASA Astrophysics Data System (ADS)

    Willkofer, Florian; Wood, Raul R.; Schmid, Josef; von Trentini, Fabian; Ludwig, Ralf

    2016-04-01

    The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. It builds on the conjoint analysis of a large ensemble of the CRCM5, driven by 50 members of the CanESM2, and the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change on the dynamics of extreme events. A critical point in the entire project is the preparation of a meteorological reference dataset with the required temporal (1-6h) and spatial (500m) resolution to be able to better evaluate hydrological extreme events in mesoscale river basins. For Bavaria a first reference data set (daily, 1km) used for bias-correction of RCM data was created by combining raster based data (E-OBS [1], HYRAS [2], MARS [3]) and interpolated station data using the meteorological interpolation schemes of the hydrological model WaSiM [4]. Apart from the coarse temporal and spatial resolution, this mosaic of different data sources is considered rather inconsistent and hence, not applicable for modeling of hydrological extreme events. Thus, the objective is to create a dataset with hourly data of temperature, precipitation, radiation, relative humidity and wind speed, which is then used for bias-correction of the RCM data being used as driver for hydrological modeling in the river basins. Therefore, daily data is disaggregated to hourly time steps using the 'Method of fragments' approach [5], based on available training stations. The disaggregation chooses fragments of daily values from observed hourly datasets, based on similarities in magnitude and behavior of previous and subsequent events. The choice of a certain reference station (hourly data, provision of fragments) for disaggregating daily station data (application

  4. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, Boyu; Wu, Lin; Mao, Hongjun; Gong, Sunning; He, Jianjun; Zou, Chao; Song, Guohua; Li, Xiaoyu; Wu, Zhong

    2016-03-01

    This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal-spatial resolution (HTSVE) for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016).

  5. Army General Fund Adjustments Not Adequately Documented or Supported

    DTIC Science & Technology

    2016-07-26

    statements were unreliable and lacked an adequate audit trail. Furthermore, DoD and Army managers could not rely on the data in their accounting...risk that AGF financial statements will be materially misstated and the Army will not achieve audit readiness by the congressionally mandated...and $6.5 trillion in yearend adjustments made to Army General Fund data during FY 2015 financial statement compilation. We conducted this audit in

  6. Estimation of yield and water requirements of maize crops combining high spatial and temporal resolution images with a simple crop model, in the perspective of the Sentinel-2 mission

    NASA Astrophysics Data System (ADS)

    Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie

    2016-04-01

    Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret

  7. Genetic modification of preimplantation embryos: toward adequate human research policies.

    PubMed

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo modification proposals might not receive adequate scientific and ethical scrutiny. This article describes current policy shortcomings and recommends policy actions designed to ensure that the investigational genetic modification of embryos meets accepted standards for research on human subjects.

  8. Elements for adequate informed consent in the surgical context.

    PubMed

    Abaunza, Hernando; Romero, Klaus

    2014-07-01

    Given a history of atrocities and violations of ethical principles, several documents and regulations have been issued by a wide variety of organizations. They aim at ensuring that health care and clinical research adhere to defined ethical principles. A fundamental component was devised to ensure that the individual has been provided the necessary information to make an informed decision regarding health care or participation in clinical research. This article summarizes the history and regulations for informed consent and discusses suggested components for adequate consent forms for daily clinical practice in surgery as well as clinical research.

  9. A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Roughly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone.

    PubMed

    van der Weele, Corine M; Jiang, Hai S; Palaniappan, Krishnan K; Ivanov, Viktor B; Palaniappan, Kannapan; Baskin, Tobias I

    2003-07-01

    A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request.

  10. The role of meltwater variability in modulating diurnal to inter-annual ice-sheet flow: New insights from a ~decade of high-temporal resolution GPS observations on the western Greenland margin

    NASA Astrophysics Data System (ADS)

    Stevens, L. A.; Behn, M. D.; Das, S. B.; Joughin, I.; van den Broeke, M.; Herring, T.; McGuire, J. J.

    2015-12-01

    Meltwater-driven processes across the ablation zone of the Greenland Ice Sheet are controlled by seasonal fluxes as well as shorter-term variability in surface melt. Few high-temporal resolution GPS observations of ice-sheet flow extend for longer than a couple years, limiting multiyear analyses of seasonal variability in ice-sheet flow. Using a small GPS network installed at ~1000-m above sea level (m a.s.l.) operating from 2006-2014, and supplemented with a larger array of 20 GPS stations installed from 2011­-2014, we observe nine years of ice-sheet surface motion on the western margin of the Greenland Ice Sheet. The GPS array spans a horizontal distance of 30 km across an elevation range of 700-1250 m a.s.l., and captures the ice-sheet's velocity response to the seasonal melt cycle. By combining the GPS array measurements with temperature, precipitation, and runoff estimates from the Regional Atmospheric Climate Model (RACMO), we examine the relationship between ice-sheet flow and surface melt variability both at the seasonal scale (i.e., during melt onset, summer melt season and melt cessation) as well as during transient high melt periods such as precipitation events, anomalously high melt episodes, and supraglacial lake drainages. We observe varying surface motion following early versus late summer extended melt events, with early-season extended melt events inducing longer sustained speed-up than late summer events. We also examine differences in the timing of melt onset and magnitude, comparing the anomalously high runoff observed across the ice sheet in 2010 and 2012 against the average to low runoff observed in the years comprising the remainder of the record. This nearly decadal record improves our understanding of the role of meltwater variability in modulating ice-sheet flow on diurnal to inter-annual timescales.

  11. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors

    USGS Publications Warehouse

    Angal, Amit; Xiong, Xiaoxiong; Choi, Tae-young; Chander, Gyanesh; Wu, Aisheng

    2010-01-01

    Remote sensing imagery is effective for monitoring environmental and climatic changes because of the extent of the global coverage and long time scale of the observations. Radiometric calibration of remote sensing sensors is essential for quantitative & qualitative science and applications. Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing sensors. This paper focuses on the use of the Sonoran Desert site to monitor the radiometric stability of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The results are compared with the widely used Libya 4 Desert site in an attempt to evaluate the suitability of the Sonoran Desert site for sensor inter-comparison and calibration stability monitoring. Since the overpass times of ETM+ and MODIS differ by about 30 minutes, the impacts due to different view geometries or test site Bi-directional Reflectance Distribution Function (BRDF) are also presented. In general, the long-term drifts in the visible bands are relatively large compared to the drift in the near-infrared bands of both sensors. The lifetime Top-of-Atmosphere (TOA) reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.1% per year (except ETM+ Band 1 and MODIS Band 3) over the two sites used for the study. The use of a semi-empirical BRDF model can reduce the impacts due to view geometries, thus enabling a better estimate of sensor temporal drifts.

  12. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, B. Y.; Wu, L.; Mao, H. J.; Gong, S. L.; He, J. J.; Zou, C.; Song, G. H.; Li, X. Y.; Wu, Z.

    2015-10-01

    As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).

  13. A New Algorithm for Computational Image Analysis of Deformable Motion at High Spatial and Temporal Resolution Applied to Root Growth. Roughly Uniform Elongation in the Meristem and Also, after an Abrupt Acceleration, in the Elongation Zone1

    PubMed Central

    van der Weele, Corine M.; Jiang, Hai S.; Palaniappan, Krishnan K.; Ivanov, Viktor B.; Palaniappan, Kannapan; Baskin, Tobias I.

    2003-01-01

    A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution. The software implements an image processing algorithm using a novel combination of optical flow methods for deformable motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates components of motion parallel and perpendicular to the local tangent of the root's midline. A variation of the software has been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato (Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for RootflowRT is available from the corresponding author on request. PMID:12857796

  14. Quantifying dose to the reconstructed breast: Can we adequately treat?

    SciTech Connect

    Chung, Eugene; Marsh, Robin B.; Griffith, Kent A.; Moran, Jean M.; Pierce, Lori J.

    2013-04-01

    To evaluate how immediate reconstruction (IR) impacts postmastectomy radiotherapy (PMRT) dose distributions to the reconstructed breast (RB), internal mammary nodes (IMN), heart, and lungs using quantifiable dosimetric end points. 3D conformal plans were developed for 20 IR patients, 10 autologous reconstruction (AR), and 10 expander-implant (EI) reconstruction. For each reconstruction type, 5 right- and 5 left-sided reconstructions were selected. Two plans were created for each patient, 1 with RB coverage alone and 1 with RB + IMN coverage. Left-sided EI plans without IMN coverage had higher heart Dmean than left-sided AR plans (2.97 and 0.84 Gy, p = 0.03). Otherwise, results did not vary by reconstruction type and all remaining metrics were evaluated using a combined AR and EI dataset. RB coverage was adequate regardless of laterality or IMN coverage (Dmean 50.61 Gy, D95 45.76 Gy). When included, IMN Dmean and D95 were 49.57 and 40.96 Gy, respectively. Mean heart doses increased with left-sided treatment plans and IMN inclusion. Right-sided treatment plans and IMN inclusion increased mean lung V{sub 20}. Using standard field arrangements and 3D planning, we observed excellent coverage of the RB and IMN, regardless of laterality or reconstruction type. Our results demonstrate that adequate doses can be delivered to the RB with or without IMN coverage.

  15. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  16. Prostate cancer between prognosis and adequate/proper therapy

    PubMed Central

    Grozescu, T; Popa, F

    2017-01-01

    Knowing the indolent, non-invasive nature of most types of prostate cancer, as well as the simple fact that the disease seems more likely to be associated with age rather than with other factors (50% of men at the age of 50 and 80% at the age of 80 have it [1], with or without presenting any symptom), the big challenge of this clinical entity was to determine severity indicators (so far insufficient) to guide the physician towards an adequate attitude in the clinical setting. The risk of over-diagnosing and over-treating many prostate cancer cases (indicated by all the major European and American studies) is real and poses many question marks. The present paper was meant to deliver new research data and to reset the clinical approach in prostate cancer cases. PMID:28255369

  17. The cerebellopontine angle: does the translabyrinthine approach give adequate access?

    PubMed

    Fagan, P A; Sheehy, J P; Chang, P; Doust, B D; Coakley, D; Atlas, M D

    1998-05-01

    A long-standing but unfounded criticism of the translabyrinthine approach is the misperception that this approach does not give adequate access to the cerebellopontine angle. Because of what is perceived as limited visualization and operating space within the cerebellopontine angle, some surgeons still believe that the translabyrinthine approach is inappropriate for large acoustic tumors. In this study, the surgical access to the cerebellopontine angle by virtue of the translabyrinthine approach is measured and analyzed. The parameters are compared with those measured for the retrosigmoid approach. This series objectively confirms that the translabyrinthine approach offers the neurotologic surgeon a shorter operative depth to the tumor, via a similar-sized craniotomy. This permits superior visualization by virtue of a wider angle of surgical access. Such access is achieved with the merit of minimal cerebellar retraction.

  18. Barriers to adequate prenatal care utilization in American Samoa

    PubMed Central

    Hawley, Nicola L; Brown, Carolyn; Nu’usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T

    2013-01-01

    Objective To describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Methods Using data from prenatal clinic records, women (n=692) were categorized according to the Adequacy of Prenatal Care Utilization Index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way Analysis of Variance (ANOVA) and independent samples t-tests. Results Between 2001 and 2008 85.4% of women received inadequate prenatal care. Parity (P=0.02), maternal unemployment (P=0.03), and both parents being unemployed (P=0.03) were negatively associated with the timing of prenatal care initation. Giving birth in 2007–2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 versus 25.12 weeks; P<0.01) and improved adequacy of received services (95.04% versus 83.8%; P=0.02). Conclusion The poor prenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007–2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population. PMID:24045912

  19. Video resolution enhancement

    NASA Astrophysics Data System (ADS)

    Schultz, Richard R.; Stevenson, Robert L.

    1995-03-01

    With the advent of High Definition Television, it will become desirable to convert existing video sequence data into higher-resolution formats. This conversion process already occurs within the human visual system to some extent, since the perceived spatial resolution of a sequence appears much higher than the actual spatial resolution of an individual frame. This paper addresses how to utilize both the spatial and temporal information present in a sequence in order to generate high-resolution video. A novel observation model based on motion compensated subsampling is proposed for a video sequence. Since the reconstruction problem is ill-posed, Bayesian restoration with a discontinuity-preserving prior image model is used to extract high-resolution image sequences will be shown, with dramatic improvements provided over various single frame interpolation methods.

  20. a New Spatial and Temporal Fusion Model

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Huang, Bo

    2016-06-01

    As Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) has a tradeoff between the high temporal resolution and high spatial resolution, this paper proposed a spatial and temporal model with auto-regression error correction (AREC) method to blend the two types of images in order to obtain the composed image with both high spatial and temporal resolution. Experiments and validation were conducted on a data set located in Shenzhen, China and compared with Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) in several objective indexes and visual analysis. It was found that AREC could effectively predict the land cover changes and the fusion results had better performances versus the ones of STARFM.

  1. Systemic Crisis of Civilization: In Search for Adequate Solution

    NASA Astrophysics Data System (ADS)

    Khozin, Grigori

    In December 1972 a jumbo jet crashed in the Florida Everglades with the loss of 101 lives. The pilot, distracted by a minor malfunction, failed to note until too late the warning signal that - correctly - indicated an impending disaster. His sudden, astonished cry of Hey, what happening here? were his last words 1. Three decades after this tragic episode, as the Humankind approaches the threshold of the third Millennium, the problem of adequate reaction to warning signals of different nature and of distinguishing minor malfunctions in everyday life of society, in economy and technology as well as in evolution of biosphere from grave threats to the world community and the phenomenon of life on our planet remains crucial to human survival and the future of Civilization. Rational use of knowledge and technology available to the world community remains in this context the corner stone of discussions on the destiny of the intelligent life both on the planet Earth and in the Universe (the fact of intelligent life in the Universe is to be detected by the Humankind)…

  2. ENSURING ADEQUATE SAFETY WHEN USING HYDROGEN AS A FUEL

    SciTech Connect

    Coutts, D

    2007-01-22

    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  3. DARHT -- an adequate EIS: A NEPA case study

    SciTech Connect

    Webb, M.D.

    1997-08-01

    In April 1996 the US District Court in Albuquerque ruled that the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility Environmental Impact Statement (EIS), prepared by the Los Alamos Area Office, US Department of Energy (DOE), was adequate. The DARHT EIS had been prepared in the face of a lawsuit in only 10 months, a third of the time usually allotted for a DOE EIS, and for only a small fraction of the cost of a typical DOE EIS, and for only a small fraction of the cost of a typical DOE EIS. It subject was the first major facility to be built in decades for the DOE nuclear weapons stockpile stewardship program. It was the first EIS to be prepared for a proposal at DOE`s Los Alamos National Laboratory since 1979, and the first ever prepared by the Los Alamos Area Office. Much of the subject matter was classified. The facility had been specially designed to minimize impacts to a nearby prehistoric Native American ruin, and extensive consultation with American Indian Pueblos was required. The week that the draft EIS was published Laboratory biologists identified a previously unknown pair of Mexican spotted owls in the immediate vicinity of the project, bringing into play the consultation requirements of the Endangered Species Act. In spite of these obstacles, the resultant DARHT EIS was reviewed by the court and found to meet all statutory and regulatory requirements; the court praised the treatment of the classified material which served as a basis for the environmental analysis.

  4. Dose Limits for Man do not Adequately Protect the Ecosystem

    SciTech Connect

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words, if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.

  5. On Adequate Comparisons of Antenna Phase Center Variations

    NASA Astrophysics Data System (ADS)

    Schoen, S.; Kersten, T.

    2013-12-01

    One important part for ensuring the high quality of the International GNSS Service's (IGS) products is the collection and publication of receiver - and satellite antenna phase center variations (PCV). The PCV are crucial for global and regional networks, since they introduce a global scale factor of up to 16ppb or changes in the height component with an amount of up to 10cm, respectively. Furthermore, antenna phase center variations are also important for precise orbit determination, navigation and positioning of mobile platforms, like e.g. the GOCE and GRACE gravity missions, or for the accurate Precise Point Positioning (PPP) processing. Using the EUREF Permanent Network (EPN), Baire et al. (2012) showed that individual PCV values have a significant impact on the geodetic positioning. The statements are further supported by studies of Steigenberger et al. (2013) where the impact of PCV for local-ties are analysed. Currently, there are five calibration institutions including the Institut für Erdmessung (IfE) contributing to the IGS PCV file. Different approaches like field calibrations and anechoic chamber measurements are in use. Additionally, the computation and parameterization of the PCV are completely different within the methods. Therefore, every new approach has to pass a benchmark test in order to ensure that variations of PCV values of an identical antenna obtained from different methods are as consistent as possible. Since the number of approaches to obtain these PCV values rises with the number of calibration institutions, there is the necessity for an adequate comparison concept, taking into account not only the numerical values but also stochastic information and computational issues of the determined PCVs. This is of special importance, since the majority of calibrated receiver antennas published by the IGS origin from absolute field calibrations based on the Hannover Concept, Wübbena et al. (2000). In this contribution, a concept for the adequate

  6. Are Vancomycin Trough Concentrations Adequate for Optimal Dosing?

    PubMed Central

    Youn, Gilmer; Jones, Brenda; Jelliffe, Roger W.; Drusano, George L.; Rodvold, Keith A.; Lodise, Thomas P.

    2014-01-01

    The current vancomycin therapeutic guidelines recommend the use of only trough concentrations to manage the dosing of adults with Staphylococcus aureus infections. Both vancomycin efficacy and toxicity are likely to be related to the area under the plasma concentration-time curve (AUC). We assembled richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with various levels of renal function. With Pmetrics, the nonparametric population modeling package for R, we compared AUCs estimated from models derived from trough-only and peak-trough depleted versions of the full data set and characterized the relationship between the vancomycin trough concentration and AUC. The trough-only and peak-trough depleted data sets underestimated the true AUCs compared to the full model by a mean (95% confidence interval) of 23% (11 to 33%; P = 0.0001) and 14% (7 to 19%; P < 0.0001), respectively. In contrast, using the full model as a Bayesian prior with trough-only data allowed 97% (93 to 102%; P = 0.23) accurate AUC estimation. On the basis of 5,000 profiles simulated from the full model, among adults with normal renal function and a therapeutic AUC of ≥400 mg · h/liter for an organism for which the vancomycin MIC is 1 mg/liter, approximately 60% are expected to have a trough concentration below the suggested minimum target of 15 mg/liter for serious infections, which could result in needlessly increased doses and a risk of toxicity. Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter. PMID:24165176

  7. Is clinical measurement of anatomic axis of the femur adequate?

    PubMed

    Wu, Chi-Chuan

    2017-03-23

    Background and purpose - The accuracy of using clinical measurement from the anterior superior iliac spine (ASIS) to the center of the knee to determine an anatomic axis of the femur has rarely been studied. A radiographic technique with a full-length standing scanogram (FLSS) was used to assess the adequacy of the clinical measurement. Patients and methods - 100 consecutive young adult patients (mean age 34 (20-40) years) with chronic unilateral lower extremity injuries were studied. The pelvis and intact contralateral lower extremity images in the FLSS were selected for study. The angles between the tibial axis and the femoral shaft anatomic axis (S-AA), the piriformis anatomic axis (P-AA), the clinical anatomic axis (C-AA), and the mechanical axis (MA) were compared between sexes. Results - Only the S-AA and C-AA angles were statistically significantly different in the 100 patients (3.6° vs. 2.8°; p = 0.03). There was a strong correlation between S-AA, P-AA, and C-AA angles (r > 0.9). The average intersecting angle between MA and S-AA in the femur in the 100 patients was 5.5°, and it was 4.8° between MA and C-AA. Interpretation - Clinical measurement of an anatomic axis from the ASIS to the center of the knee may be an adequate and acceptable method to determine lower extremity alignment. The optimal inlet for antegrade femoral intramedullary nailing may be the lateral edge of the piriformis fossa.

  8. Temporal indiscriminateness: the case of cluster bombs.

    PubMed

    Cavanaugh, T A

    2010-03-01

    This paper argues that the current stock of anti-personnel cluster bombs are temporally indiscriminate, and, therefore, unjust weapons. The paper introduces and explains the idea of temporal indiscriminateness. It argues that to honor non-combatant immunity-in addition to not targeting civilians-one must adequately target combatants. Due to their high dud rate, cluster submunitions fail to target combatants with sufficient temporal accuracy, and, thereby, result in avoidable serious harm to non-combatants. The paper concludes that non-combatant immunity and the principle of discrimination require a moratorium on the use of current cluster munitions.

  9. Space-time super-resolution.

    PubMed

    Shechtman, Eli; Caspi, Yaron; Irani, Michal

    2005-04-01

    We propose a method for constructing a video sequence of high space-time resolution by combining information from multiple low-resolution video sequences of the same dynamic scene. Super-resolution is performed simultaneously in time and in space. By "temporal super-resolution," we mean recovering rapid dynamic events that occur faster than regular frame-rate. Such dynamic events are not visible (or else are observed incorrectly) in any of the input sequences, even if these are played in "slow-motion." The spatial and temporal dimensions are very different in nature, yet are interrelated. This leads to interesting visual trade-offs in time and space and to new video applications. These include: 1) treatment of spatial artifacts (e.g., motion-blur) by increasing the temporal resolution and 2) combination of input sequences of different space-time resolutions (e.g., NTSC, PAL, and even high quality still images) to generate a high quality video sequence. We further analyze and compare characteristics of temporal super-resolution to those of spatial super-resolution. These include: How many video cameras are needed to obtain increased resolution? What is the upper bound on resolution improvement via super-resolution? What is the temporal analogue to the spatial "ringing" effect?

  10. Does the World Health Organization criterion adequately define glaucoma blindness?

    PubMed Central

    Mokhles, P; Schouten, JSAG; Beckers, HJM; Webers, CAB

    2017-01-01

    Purpose Blindness in glaucoma is difficult to assess with merely the use of the current World Health Organization (WHO) definition (a visual field restricted to 10° in a radius around central fixation), as this criterion does not cover other types of visual field loss that are encountered in clinical practice and also depict blindness. In this study, a 5-point ordinal scale was developed for the assessment of common visual field defect patterns, with the purpose of comparing blindness as outcome to the findings with the WHO criterion when applied to the same visual fields. The scores with the two methods were compared between two ophthalmologists. In addition, the variability between these assessors in assessing the different visual field types was determined. Methods Two glaucoma specialists randomly assessed a sample of 423 visual fields from 77 glaucoma patients, stripped of all indices and masked for all patient variables. They applied the WHO criterion and a 5-point ordinal scale to all visual fields for the probability of blindness. Results The WHO criterion was mostly found applicable and in good agreement for both assessors to visual fields depicting central island of vision or a temporal crescent. The percentage of blindness scores was higher when using the ordinal scale, 21.7% and 19.6% for assessors A and B, respectively, versus 14.4% and 11.3% for the WHO criterion. However, Kappa was lower, 0.71 versus 0.78 for WHO. Conclusions The WHO criterion is strictly applied and shows good agreement between assessors; however, blindness does not always fit this criterion. More visual fields are labeled as blind when a less stringent criterion is used, but this leads to more interobserver variability. A new criterion that describes the extent, location, and depth of visual field defects together with their consequence for the patient’s quality of life is needed for the classification of glaucoma blindness. PMID:28280297

  11. The need for adequate ethical guidelines for qualitative health research.

    PubMed

    Guerriero, Iara Coelho Zito; Dallari, Sueli Gandolfi

    2008-01-01

    This paper discusses adequacy as to the application of Brazilian guidelines, Resolution 196/96(1) and complementaries to qualitative health researches, considering that these are based on non-positivistic paradigms. Frequently, decisions about the research are made together with the studied community. There is a concern with justice and social change. And, since subjectivity can be considered their privileged instrument, such researchers seek a balance between objectivity and subjectivity, discussing how to overcome the researcher's view. We have studied the application and the concept of research found in international and in the Brazilian guidelines. We have noticed that they adopt a positivist conception of research, which establishes 1) the hypothesis test, 2) that all procedures are previously defined by the researcher; 3) neutrality of the researcher and of the knowledge produced. We will present some characteristics of qualitative research; the ethical implications in the way as qualitative research is conceived in non-positivist paradigms and a brief history of these guidelines. Our conclusion: it is inadequate to analyze qualitative researches using these documents, and we suggest the design of specific guidelines for them.

  12. Temporal resolution of PrPSc transport, PrPSc accumulation, activation of glia and neuronal death in retinas from C57Bl/6 mice inoculated with RML scrapie: Relevance to biomarkers of prion disease progression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is a lack of pathologic landmarks to objectively evaluate the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between transport of misfolded prion protein to the retina from the brain, accumulation of PrPSc in the retina, the re...

  13. Impact of spatial resolution of the precipitation data on hydrological Forecast

    NASA Astrophysics Data System (ADS)

    Davis, M.; Bardossy, A.; Sudheer, K.

    2013-05-01

    Flooding is a devastating problem for many countries all over the world. Real time forecasting is a necessary non-structural measure to fight against the damage. Adequate quantitative forecasting of the flood is necessary to provide enough precaution for the affected population. Time lead in the forecast is also a matter of concern considering its significance in the preparedness. The time-lead of forecast depends on the computational time along with the various other issues. The computation time depends on the whether the model is data intensive or process intensive. Considering the use of spatially distributed models in the forecast, the main dynamic data involved in the rainfall runoff models are the precipitation measurement. The data intensity of that depends on the spatial and temporal resolution of the precipitation data. The spatial resolution of the precipitation has the significance in the spatially distributed hydrological models. Neither should the resolution be so less that the quantitative prediction is disturbed nor too much to affect the time lead considerably. Finer spatial resolution of precipitation data may not even yield better forecast (A.Bardossy and T.Das, 2008). So the current study focuses on the impact of spatial and temporal resolution of the hydrological forecast. The spatially distributed model of HBV and HYMOD is being used for the analysis. Spatial resolutions from 1, 4, 9 and 25 square kilometers and a temporal resolution of daily to hourly time-series is also being analysed for their respective effects on prediction. The data from rain gauges are interpolated using the External Drift Kriging Method (EDK). The calibrations of the models are carried out using the Robust Parameter Estimation (ROPE) algorithm (S.K Singh and A. Bardossy, 2010). The framework is illustrated on the Upper Neckar catchment with 13 sub-catchments located in South West Germany. Preliminary results are encouraging. The optimum spatial resolution can be

  14. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  15. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  16. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  17. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  18. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  19. Temporal Coding of Volumetric Imagery

    NASA Astrophysics Data System (ADS)

    Llull, Patrick Ryan

    'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration

  20. Temporal mapping and analysis

    NASA Technical Reports Server (NTRS)

    O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)

    2011-01-01

    A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.

  1. The Human Right to Adequate Housing: A Tool for Promoting and Protecting Individual and Community Health

    PubMed Central

    Thiele, Bret

    2002-01-01

    The human right to adequate housing is enshrined in international law. The right to adequate housing can be traced to the Universal Declaration of Human Rights, which was unanimously adopted by the world community in 1948. Since that time, the right to adequate housing has been reaffirmed on numerous occasions and further defined and elaborated. A key component of this right is habitability of housing, which should comply with health and safety standards. Therefore, the right to adequate housing provides an additional tool for advocates and others interested in promoting healthful housing and living conditions and thereby protecting individual and community health. PMID:11988432

  2. Temporal ghost imaging with pseudo-thermal speckle light

    NASA Astrophysics Data System (ADS)

    Devaux, Fabrice; Phan Huy, Kien; Denis, Séverine; Lantz, Eric; Moreau, Paul-Antoine

    2017-02-01

    We report ghost imaging of a single non-reproducible temporal signal with kHz resolution by using pseudo-thermal speckle light patterns and a single detector array with a million of pixels working without any temporal resolution. A set of speckle patterns is generated deterministically at a sampling rate of tens kHz, multiplied by the temporal signal and time integrated in a single shot by the camera. The temporal information is retrieved by computing the spatial intensity correlations between this time integrated image and each speckle pattern of the set.

  3. 9 CFR 2.40 - Attending veterinarian and adequate veterinary care (dealers and exhibitors).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... veterinary care (dealers and exhibitors). 2.40 Section 2.40 Animals and Animal Products ANIMAL AND PLANT... and Adequate Veterinary Care § 2.40 Attending veterinarian and adequate veterinary care (dealers and... veterinary care to its animals in compliance with this section. (1) Each dealer and exhibitor shall employ...

  4. 9 CFR 2.3