Science.gov

Sample records for adequate thermal environment

  1. Thermal Environments.

    ERIC Educational Resources Information Center

    Rutgers, Norman

    The role that a good thermal environment plays in the educational process is discussed. Design implications arise from an analysis of the heating and ventilating principles as apply to vocational-technical facilities. The importance of integrating thermal components in the total design is emphasized. (JS)

  2. Dynamic thermal environment and thermal comfort.

    PubMed

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research.

  3. Dynamic thermal environment and thermal comfort.

    PubMed

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. PMID:26171688

  4. A high UV environment does not ensure adequate Vitamin D status

    NASA Astrophysics Data System (ADS)

    Kimlin, M. G.; Lang, C. A.; Brodie, A.; Harrison, S.; Nowak, M.; Moore, M. R.

    2006-12-01

    Queensland has the highest rates of skin cancer in the world and due to the high levels of solar UV in this region it is assumed that incidental UV exposure should provide adequate vitamin D status for the population. This research was undertaken to test this assumption among healthy free-living adults in south-east Queensland, Australia (27°S), at the end of winter. This research was approved by Queensland University of Technology Human Research Ethics Committee and conducted under the guidelines of the Declaration of Helsinki. 10.2% of the sample had serum vitamin D levels below 25nm/L (deficiency) and a further 32.3% had levels between 25nm/L and 50nm/L (insufficiency). Vitamin D deficiency and insufficiency can occur at the end of winter, even in sunny climates. The wintertime UV levels in south-east Queensland (UV index 4-6) are equivalent to summertime UV levels in northern regions of Europe and the USA. These ambient UV levels are sufficient to ensure synthesis of vitamin D requirements. We investigated individual UV exposure (through a self reported sun exposure questionnaire) and found correlations between exposure and Vitamin D status. Further research is needed to explore the interactions between the solar UV environment and vitamin D status, particularly in high UV environments, such as Queensland.

  5. Optimizing the neonatal thermal environment.

    PubMed

    Sherman, Tami Irwin; Greenspan, Jay S; St Clair, Nancy; Touch, Suzanne M; Shaffer, Thomas H

    2006-01-01

    Devices used to maintain thermal stability in preterm infants have advanced over time from the first incubator reported by Jean-Louis-Paul Denuce in 1857 to the latest Versalet Incuwarmer and Giraffe Omnibed devices today. Optimizing the thermal environment has proven significant for improving the chances of survival for small infants. Understanding the basic physiologic principles and current methodology of thermoregulation is important in the clinical care of these tiny infants. This article highlights principles of thermoregulation and the technologic advances that provide thermal support to our vulnerable

  6. Polyphenol oxidase activity as a potential intrinsic index of adequate thermal pasteurization of apple cider.

    PubMed

    Chen, L; Ingham, B H; Ingham, S C

    2004-05-01

    In response to increasing concerns about microbial safety of apple cider, the U.S. Food and Drug Administration has mandated treatment of cider sufficient for a 5-log reduction of the target pathogen. Pasteurization has been suggested as the treatment most likely to achieve a 5-log reduction, with Escherichia coli O157:H7 as the target pathogen. Regulators and processors need a reliable method for verifying pasteurization, and apple cider polyphenol oxidase (PPO) activity was studied as a potential intrinsic index for thermal pasteurization. The effect of pasteurization conditions and apple cider properties on PPO activity and survival of three pathogens (E. coli O157:H7, Salmonella, and Listeria monocytogenes) was studied using a Box-Behnken response surface design. Factors considered in the design were pasteurization conditions, i.e., hold temperature (60, 68, and 76 degrees C), preheat time (10, 20, 30 s), and hold time (0, 15, 30 s), pH, and sugar content ((o)Brix) of apple cider. Response surface contour plots were constructed to illustrate the effect of these factors on PPO activity and pathogen survival. Reduction in PPO activity of at least 50% was equivalent to a 5-log reduction in E. coli O157:H7 or L. monocytogenes for cider at pH 3.7 and 12.5 (o)Brix. Further studies, however, are needed to verify the relationship between PPO activity and pathogen reduction in cider with various pH and (o)Brix values.

  7. Pressure Ratio to Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro; Wang, Winston

    2012-01-01

    A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.

  8. Respirator performance for STEL exposures in thermal environments

    SciTech Connect

    Visage, M.D.

    1987-01-01

    An irritant smoke qualitative field test procedure was developed and used to evaluate the performance of rubber and silicone facepiece models of a half-mask air-purifying respirator under thermal and non-thermal working conditions for 37 maintenance workers at a coal-fired, electrical power generation plant. Prior to participating in field testing, subjects were screened using an irritant smoke qualitative fit test. During initial fit testing, 30% of the subjects failed to fit, and additional failures in subsequent tests resulted in an overall failure rate of 42%. The subjects experienced respiratory failures in both thermal and non-thermal environments even after the poor fits had been eliminated by the use of a fit test. Over 90% of the failures in the thermal environment and all of the failures in the non-thermal environment occurred within the first 9 min of the 15-min test period. The effectiveness of respirators of both facepiece materials was decreased significantly (p < .05) during thermal working conditions. Half-mask respirators of the type studied were found to provide inadequate protection for STEL exposures in thermal environments and may be inappropriate for use for a large percentage of working population. The irritant smoke qualitative field test procedure was shown to be effective for evaluating short-term performance of negative pressure, half-mask respirators, providing there are no interfering air currents, where HEPA or HEPA combination cartridges will provide adequate respiratory protection.

  9. Cellulolytic Microorganisms from Thermal Environments

    SciTech Connect

    Vishnivetskaya, Tatiana A; Raman, Babu; Phelps, Tommy Joe; Podar, Mircea; Elkins, James G

    2012-01-01

    Thermal, anaerobic environments rich in decaying plant material are a potential source of novel cellulolytic bacteria. Samples collected from geothermal aquifers in the Yellowstone National Park (YNP) were used to select for cellulolytic thermophiles. Laboratory enrichments on dilute-acid pretreated plant biomass (switchgrass, Populus), and crystalline cellulose (Avicel) resulted in the isolation of 247 environmental clones. The majority of individual clones were affiliated with the cellulolytic bacteria of phylum Firmicutes, followed by xylanolytic and saccharolytic members of the phylum Dictyoglomi. Among the Firmicutes, the clones were affiliated with the genera Caldicellulosiruptor (54.4%), Caloramator (11.5%), Thermoanaerobacter (8.8%), Thermovenabulum (4.1%), and Clostridium (2.0%). From established anaerobic thermophilic enrichments a total of 81 single strains of the genera Caldicellulosiruptor (57%) and Thermoanaerobacter (43%) were isolated. With continuous flow enrichment on Avicel, increases in the relative abundance of Caloramator sp. was observed over clones detected from the Caldicellulosiruptor. Complex communities of interacting microorganisms bring about cellulose decomposition in nature, therefore using up-to-date approaches may yield novel cellulolytic microorganisms with high activity and a rapid rate of biomass conversion to biofuels.

  10. Simple Thermal Environment Model (STEM) User's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C.G.; Batts, G. W.; Anderson, B. J.; James, B. F.

    2001-01-01

    This report presents a Simple Thermal Environment Model (STEM) for determining appropriate engineering design values to specify the thermal environment of Earth-orbiting satellites. The thermal environment of a satellite, consists of three components: (1) direct solar radiation, (2) Earth-atmosphere reflected shortwave radiation, as characterized by Earth's albedo, and (3) Earth-atmosphere-emitted outgoing longwave radiation (OLR). This report, together with a companion "guidelines" report provides methodology and guidelines for selecting "design points" for thermal environment parameters for satellites and spacecraft systems. The methods and models reported here are outgrowths of Earth Radiation Budget Experiment (ERBE) satellite data analysis and thermal environment specifications discussed by Anderson and Smith (1994). In large part, this report is intended to update (and supersede) those results.

  11. Thermal protection of the newborn in resource-limited environments.

    PubMed

    Lunze, K; Hamer, D H

    2012-05-01

    Appropriate thermal protection of the newborn prevents hypothermia and its associated burden of morbidity and mortality. Yet, current global birth practices tend to not adequately address this challenge. Here, we discuss the pathophysiology of hypothermia in the newborn, its prevention and therapeutic options with particular attention to resource-limited environments. Newborns are equipped with sophisticated mechanisms of body temperature regulation. Neonatal thermoregulation is a critical function for newborn survival, regulated in the hypothalamus and mediated by endocrine pathways. Hypothermia activates cellular metabolism through shivering and non-shivering thermogenesis. In newborns, optimal temperature ranges are narrow and thermoregulatory mechanisms easily overwhelmed, particularly in premature and low-birth weight infants. Hyperthermia most commonly is associated with dehydration and potentially sepsis. The lack of thermal protection promptly leads to hypothermia, which is associated with detrimental metabolic and other pathophysiological processes. Simple thermal protection strategies are feasible at community and institutional levels in resource-limited environments. Appropriate interventions include skin-to-skin care, breastfeeding and protective clothing or devices. Due to poor provider training and limited awareness of the problem, appropriate thermal care of the newborn is often neglected in many settings. Education and appropriate devices might foster improved hypothermia management through mothers, birth attendants and health care workers. Integration of relatively simple thermal protection interventions into existing mother and child health programs can effectively prevent newborn hypothermia even in resource-limited environments. PMID:22382859

  12. Quantum cloning disturbed by thermal Davies environment

    NASA Astrophysics Data System (ADS)

    Dajka, Jerzy; Łuczka, Jerzy

    2016-06-01

    A network of quantum gates designed to implement universal quantum cloning machine is studied. We analyze how thermal environment coupled to auxiliary qubits, `blank paper' and `toner' required at the preparation stage of copying, modifies an output fidelity of the cloner. Thermal environment is described in terms of the Markovian Davies theory. We show that such a cloning machine is not universal any more but its output is independent of at least a part of parameters of the environment. As a case study, we consider cloning of states in a six-state cryptography's protocol. We also briefly discuss cloning of arbitrary input states.

  13. Natural selection on thermal performance in a novel thermal environment.

    PubMed

    Logan, Michael L; Cox, Robert M; Calsbeek, Ryan

    2014-09-30

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361

  14. Rover Low Gain Antenna Qualification for Deep Space Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert; Prater, Jack L.

    2013-01-01

    A method to qualify the Rover Low Gain Antenna (RLGA) for use during the Mars Science Laboratory (MSL) mission has been devised. The RLGA antenna must survive all ground operations, plus the nominal 670 Martian sol mission that includes the summer and winter seasons of the Mars thermal environment. This qualification effort was performed to verify that the RLGA design, its bonding, and packaging processes are adequate. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed on the RLGA hardware before the start of the qualification test. Functional intermittent RF tests were performed during thermal chamber breaks over the course of the complete qualification test. For the return loss measurements, the RLGA antenna was moved to a test area. A vector network analyzer was calibrated over the operational frequency range of the antenna. For the RLGA, a simple return loss measurement was performed. A total of 2,010 (3 670 or 3 times mission thermal cycles) thermal cycles was performed. Visual inspection of the RLGA hardware did not show any anomalies due to the thermal cycling. The return loss measurement results of the RLGA antenna after the PQV (Package Qualification and Verification) test did not show any anomalies. The antenna pattern data taken before and after the PQV test at the uplink and downlink frequencies were unchanged. Therefore, the developed design of RLGA is qualified for a long-duration MSL mission.

  15. Drosophila larvae: Thermal ecology in changing environments

    NASA Astrophysics Data System (ADS)

    Wang, George

    Temperature affects almost all aspects of life. Although much work has been done to assess the impact of temperature on organismal performance, relatively little is known about how organisms behaviorally regulate temperature, how these behaviors effect population fitness, or how changing climate may interact with these behaviors. I explore these questions with the model system Drosophila larvae. Larvae are small, with a low thermal mass and limited capacity for physiological thermoregulation. Mortality is generally high in larvae, with large potential impacts on population growth rate. Thus behavioral thermoregulation in larvae should be of critical selective importance. I present a review of the current knowledge of Drosophila thermal preference. I describe quantifiable thermoregulatory behaviors ( TMV and TW) unique to larvae. I show interspecific variation of these behaviors in Drosophila melanogaster and several close relatives, and intraspecific variation between populations collected from different environments. I also investigate these behaviors in two mutant lines, ssa and biz, to investigate the genetic basis of these behaviors. I show that larval thermoregulatory systems are independent of those of adults. Further these thermoregulatory behaviors differ between two sister species, D. yakuba and D. santomea. Although these two species readily hybridize in laboratory conditions, very few hybrids are observed in the field. The surprising result that hybrids of D. yakuba and D. santomea seem to inherit TMV from D. yakuba suggests a novel extrinsic isolation mechanism between the two species. I explore how fitness is the result of the interaction between genetics and the environment. I utilize Monte Carlo simulation to show how non-linear norms of reaction generate variation in populations even in the absence of behavior or epigenetic evolutionary mechanisms. Finally I investigate the global distribution of temperatures in which these organisms exist using

  16. Qualification of UHF Antenna for Extreme Martian Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Amaro, Luis R.; Brown, Paula R.; Usiskin, Robert

    2013-01-01

    The purpose of this development was to validate the use of the external Rover Ultra High Frequency (RUHF) antenna for space under extreme thermal environments to be encountered during the surface operations of the Mars Science Laboratory (MSL) mission. The antenna must survive all ground operations plus the nominal 670 Martian sol mission that includes summer and winter seasons of the Mars thermal environment.The qualification effort was to verify that the RUHF antenna design and its bonding and packaging processes are adequate to survive the harsh environmental conditions. The RUHF is a quadrifilar helix antenna mounted on the MSL Curiosity rover deck. The main components of the RUHF antenna are the helix structure, feed cables, and hybrid coupler, and the high-power termination load. In the case of MSL rover externally mounted hardware, not only are the expected thermal cycle depths severe, but there are temperature offsets between the Mars summer and winter seasons. The total number of temperature cycles needed to be split into two regimes of summer cycles and winter cycles. The qualification test was designed to demonstrate a survival life of three times more than all expected ground testing, plus a nominal 670 Martian sol missions. Baseline RF tests and a visual inspection were performed prior to the start of the qualification test. Functional RF tests were performed intermittently during chamber breaks over the course of the qualification test. For the RF return loss measurements, the antenna was tested in a controlled environment outside the thermal chamber with a vector network analyzer that was calibrated over the antenna s operational frequency range. A total of 2,010 thermal cycles were performed. Visual inspection showed a dulling of the solder material. This change will not affect the performance of the antenna. No other changes were observed. RF tests were performed on the RUHF helix antenna, hybrid, and load after the 2,010 qualification cycles test

  17. Light in Thermal Environments (LITE) Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Light emitted from high temperature black smokers (350 C) at mid-ocean ridge spreading centers has been documented, but the source of this light and its photochemical and biological consequences have yet to be investigated. Preliminary studies indicate that thermal radiation alone might account for the 'glow' and that a novel photoreceptor in shrimp colonizing black smoker chimneys may detect this 'glow.' A more controversial question is whether there may be sufficient photon flux of appropriate wavelengths to support geothermally-driven photosynthesis (GDP) by microorganisms. Although only a very low level of visible and near infrared light may be emitted from any single hydrothermal vent, several aspects of the light make it of more than enigmatic interest. First, the light is clearly linked to geophysical (and perhaps geochemical) processes; its attributes may serve as powerful index parameters for monitoring change in these processes. Second, while the glow at a vent orifice is a very local phenomenon, more expansive subsurface environments may be illuminated, thereby increasing the spatial scale at which biological consequences of this light might be considered. Third, in contrast to intermittent bioluminescent light sources in the deep sea, the light emitted at vents almost certainly glows or flickers continuously over the life of the individual black smokers (years to decades); collectively, light emitted from black smokers along the ocean's spreading centers superimposed on background Cerenkov radiation negates the concept of the deep sea as an environment devoid of abiotic light. Finally, the history of hydrothermal activity predates the origin of life; light in the deep sea has been a continuous phenomenon on a geological time scale and may have served either as a seed or refugium for the evolution of biological photochemical reactions or adaptations.

  18. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.

    PubMed

    Mulhollem, Joshua J; Suski, Cory D; Wahl, David H

    2015-08-01

    Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2-5°C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8°C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups. PMID:25869216

  19. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.

    PubMed

    Mulhollem, Joshua J; Suski, Cory D; Wahl, David H

    2015-08-01

    Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2-5°C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8°C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups.

  20. Study on thermally induced vibration of flexible boom in various thermal environments of vacuum chamber

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Oh, Kyung-Won; Park, Hyun-Bum; Sugiyama, Y.

    2005-02-01

    In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft such as the thin solar panel and the flexible cantilever with the attached tip mass in space, the thermally-induced vibration including thermal flutter of the flexible thin boom with the concentrated tip mass was experimentally investigated at various thermal environments using a heat lamp and both vacuum and air condition using the vacuum chamber. In this experimental study, divergence speed, natural frequency and thermal strains of the thermally-induced vibration were comparatively evaluated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the earth orbit satellite in solar radiation environment from the earth eclipse region including umbra and penumbra was simulated using the vacuum chamber and power control of the heating lamp.

  1. Effects of Thermal Environments on the Thermal Shock Resistance of Ultra-High Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Weiguo; Fang, Daining

    In the present study, the temperature-dependent thermal shock resistance parameter of Ultra-High Temperature Ceramics (UHTCs) was measured based on the current evaluation theories of thermal shock resistance parameters, since the material parameters of UHTCs are very sensitive to the changes of temperature. The influence of some important thermal environment parameters on the thermal shock resistance and critical temperature difference of rupture of UHTCs were studied. By establishing the relation between the temperature and the thermal or mechanical properties of the UHTCs, we found that thermal shock behavior of UHTCs is strongly affected by the surface heat transfer coefficient, heat transfer condition and initial temperature of the thermal shock.

  2. Thermal conductivity of graphene nanoribbons in noble gaseous environments

    SciTech Connect

    Zhong, Wei-Rong Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan

    2014-02-24

    We investigate the thermal conductivity of suspended graphene nanoribbons in noble gaseous environments using molecular dynamics simulations. It is reported that the thermal conductivity of perfect graphene nanoribbons decreases with the gaseous pressure. The decreasing is more obvious for the noble gas with large atomic number. However, the gaseous pressure cannot change the thermal conductivity of defective graphene nanoribbons apparently. The phonon spectra of graphene nanoribbons are also provided to give corresponding supports.

  3. Casing strength degradation in thermal environment of steam injection wells

    NASA Astrophysics Data System (ADS)

    Hidayat, M. I. P.; Irawan, S.; Zaki Abdullah, Mohamad

    2016-04-01

    Degradation of the casing strength in relation with thermal cycles of steam injection process is still less explored in literature. In this paper, three-dimensional finite element (FE) analysis of casing strength degradation in thermal environment of steam injection wells is presented. 3D FE models consisting of casing-cement-formation system are developed in this study. Grade N80 casing is employed with the casing length of 3.048 m. In the analysis, cyclic thermal stresses induced on the casing in thermal environment of steam injection wells from 25 °C to 360 °C are first examined to verify the feasibility of the 3D FE models. Degradation of the casing strength in the thermal environment is subsequently investigated by applying an external pressure that represents formation pressure to the casing-cement system. The results show that the casing capability to resist the pressure is lowering as the number of thermal cycles extends, thus causing casing strength degradation in the thermal application. It is also shown that the casing may fail under external pressure below its specified collapse strength i.e. 10 % lower than the reference casing strength obtained at 360 °C.

  4. Thermal criticality in a repository environment

    SciTech Connect

    Morris, E.E.

    1995-11-01

    This report explores a scenario in which burial containers fail and fissile material is transported through the tuff by water to some location, away from the burial site, where an over-moderated critical mass gradually accumulates. Because of the low solubilities of plutonium and uranium, and the low ground water velocities, the analysis shows that such a scenario with {sup 239}Pu is probably impossible because the time required to accumulate a critical mass is large compared with the half-life of the {sup 239}Pu. In the case of {sup 235}U, the analysis indicates that the accumulation rates are so low that relatively small fission power levels would consume the {sup 235}U as fast as it accumulates, and that the thermal conductivity of the tuff is large enough to prevent a significant increase in temperature. Thus, the conditions for the removal of water by boiling and the associated autocatalytic increase in reactivity are not met in the case of {sup 235}U. An explosive release of energy does not appear to be possible. A simple water voiding model, which allows water removal at about the fastest possible rate, was used to explore a scenario in which the fuel accumulation rate was arbitrarily increased enough to cause water boiling and the associated dryout of the tuff. Calculations for this case indicate that disruption of the tuff, leading to a neutronic shutdown, would probably occur before an explosive energy release could be generated. Additional scenarios, which should be investigated in future work are identified.

  5. Microbiology of methanogenesis in thermal, volcanic environments.

    PubMed

    Zeikus, J G; Ben-Bassat, A; Hegge, P W

    1980-07-01

    Microbial methanogenesis was examined in thermal waters, muds, and decomposing algal-bacterial mats associated with volcanic activity in Yellowstone National Park. Radioactive tracer studies with [(14)C]glucose, acetate, or carbonate and enrichment culture techniques demonstrated that methanogenesis occurred at temperatures near 70 degrees C but below 80 degrees C and correlated with hydrogen production from either geothermal processes or microbial fermentation. Three Methanobacterium thermoautotrophicum strains (YT1, YTA, and YTC) isolated from diverse volcanic habitats differed from the neotype sewage strain DeltaH in deoxyribonucleic acid guanosine-plus-cytosine content and immunological properties. Microbial methanogenesis was characterized in more detail at a 65 degrees C site in the Octopus Spring algal-bacterial mat ecosystem. Here methanogenesis was active, was associated with anaerobic microbial decomposition of biomass, occurred concomitantly with detectable microbial hydrogen formation, and displayed a temperature activity optimum near 65 degrees C. Enumeration studies estimated more than 10(9) chemoorganotrophic hydrolytic bacteria and 10(6) chemolithotrophic methanogenic bacteria per g (dry weight) of algal-bacterial mat. Enumeration, enrichment, and isolation studies revealed that the microbial population was predominantly rod shaped and asporogenous. A prevalent chemoorganotrophic organism in the mat that was isolated from an end dilution tube was a taxonomically undescribed gram-negative obligate anaerobe (strain HTB2), whereas a prevalent chemolithotrophic methanogen isolated from an end dilution tube was identified as M. thermoautotrophicum (strain YTB). Taxonomically recognizable obligate anaerobes that were isolated from glucose and xylose enrichment cultures included Thermoanaerobium brockii strain HTB and Clostridium thermohydrosulfuricum strain 39E. The nutritional properties, growth temperature optima, growth rates, and fermentation products

  6. External Ventricular Catheters: Is It Appropriate to Use an Open/Monitor Position to Adequately Trend Intracranial Pressure in a Neuroscience Critical Care Environment?

    PubMed

    Sunderland, Nicole E; Villanueva, Nancy E; Pazuchanics, Susan J

    2016-10-01

    Intracranial pressure (ICP) monitoring can be an important assessment tool in critically and acutely ill patients. An external ventricular drain offers a comprehensive way to monitor ICP and drain cerebrospinal fluid. The Monro-Kellie hypothesis, Pascal's principle, and fluid dynamics were used to formulate an assumption that an open/monitor position on the stopcock is an adequate trending measure for ICP monitoring while concurrently draining cerebrospinal fluid. Data were collected from 50 patients and totaled 1053 separate number sets. The open/monitor position was compared with the clamped position every hour. An order for "open to drain" was needed for appropriate measurement and nursing care. Results showed the absolute average differences between open/monitor and clamped positions at 1.6268 mm Hg. This finding suggests that it is appropriate to use an open/monitor position via an external ventricular drain for adequate trending of patients' ICP. PMID:27579963

  7. The Assessment of the Thermal Environment. A Review

    PubMed Central

    Macpherson, R. K.

    1962-01-01

    The development of methods for the assessment of the thermal environment is traced, and the reasons for the devising of special indices of thermal stress are discussed. The more important of the indices are described, and it is shown that they conform to a restricted number of types. The general trend in their evolution is indicated and some guidance is given in their use. PMID:14468056

  8. Thermal stress analysis of composites in the space environment

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1993-01-01

    A finite element micromechanics approach was utilized to investigate the thermally induced stress fields in continuous fiber reinforced polymer matrix composites at temperatures typical of spacecraft operating environments. The influence of laminate orientation was investigated with a simple global/local formulation. Thermal stress calculations were used to predict probable damage initiation locations, and the results were compared to experimentally observed damage in several epoxy matrix composites. The influence of an interphase region on the interfacial stress states was investigated.

  9. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment.

    PubMed

    Mermillod-Blondin, F; Lefour, C; Lalouette, L; Renault, D; Malard, F; Simon, L; Douady, C J

    2013-05-01

    The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of three isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by an annual temperature amplitude of less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies, although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.

  10. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  11. Temperature measurements using multicolor pyrometry in thermal radiation heating environments.

    PubMed

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-01

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100-2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700-1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments. PMID:24784642

  12. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Jiang, Junfeng; Song, Luyao; Liu, Tiegen; Zhang, Jingchuan; Liu, Kun; Wang, Shuang; Yin, Jinde; Zhao, Peng; Xie, Jihui; Wu, Fan; Zhang, Xuezhi

    2013-12-01

    We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement.

  13. Human thermal physiological and psychological responses under different heating environments.

    PubMed

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems.

  14. Thermal Radiation from Nuclear Detonations in Urban Environments

    SciTech Connect

    Marrs, R E; Moss, W C; Whitlock, B

    2007-06-04

    There are three principal causes of ''prompt'' casualties from a nuclear detonation: nuclear (gamma-ray and neutron) radiation, thermal radiation, and blast. Common estimates of the range of these prompt effects indicate that thermal radiation has the largest lethal range [1]. Non-lethal skin burns, flash blindness, and retinal burns occur out to much greater range. Estimates of casualties from thermal radiation assume air bursts over flat terrain. In urban environments with multiple buildings and terrain features, the extent of thermal radiation may be significantly reduced by shadowing. We have developed a capability for calculating the distribution of thermal energy deposition in urban environments using detailed 3D computer models of actual cities. The size, height, and radiated power from the fireball as a function of time are combined with ray tracing to calculate the energy deposition on all surfaces. For surface bursts less than 100 kt in locations with large buildings or terrain features, the calculations confirm the expected reduction in thermal damage.

  15. Thermal environment. [physiological basis for temperature tolerance limits

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.

    1979-01-01

    The physiological effects, discomfort, and performance degradation associated with an imbalanced thermal environment are discussed. Temperature tolerance limits are set using thermoregulation models and experimental results. The effects of interacting environmental factors, individual variations, and exposure duration on tolerance limits are considered.

  16. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  17. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  18. The influence of outdoor thermal environment on young Japanese females.

    PubMed

    Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2014-07-01

    The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The

  19. The influence of outdoor thermal environment on young Japanese females

    NASA Astrophysics Data System (ADS)

    Kurazumi, Yoshihito; Ishii, Jin; Kondo, Emi; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Sakoi, Tomonori; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2014-07-01

    The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relationship between the physiological and psychological responses of humans and the enhanced conduction-corrected modified effective temperature (ETFe). Subjective experiments were conducted in an outdoor environment. Subjects were exposed to the thermal environment in a standing posture. Air temperature, humidity, air velocity, short wave solar radiation, long wave radiation, ground surface temperature, sky factor, and the green solid angle were measured. The temperatures of skin exposed to the atmosphere and in contact with the ground were measured. Thermal sensation and thermal comfort were measured by means of rating the whole-body thermal sensation (cold-hot) and the whole body thermal comfort (comfortable-uncomfortable) on a linear scale. Linear rating scales are given for the hot (100) and cold (0), and comfortable (100) and uncomfortable (0) directions only. Arbitrary values of 0 and 100 were assigned to each endpoint, the reported values read in, and the entire length converted into a numerical value with an arbitrary scale of 100 to give a linear rating scale. The ETFe considered to report a neither hot nor cold, thermally neutral sensation of 50 was 35.9 °C, with 32.3 °C and 42.9 °C, respectively, corresponding to the low and high temperature ends of the ETFe considered to report a neither comfortable nor uncomfortable comfort value of 50. The mean skin temperature considered to report a neither hot nor cold, thermally neutral sensation of 50 was 33.3 °C, with 31.0 °C and 34.3 °C, respectively, corresponding to the low and high temperature ends of the mean skin temperature considered to report a neither comfortable nor uncomfortable comfort value of 50. The

  20. Thermal preparation of foods in space-vehicle environments

    NASA Technical Reports Server (NTRS)

    Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.

    1974-01-01

    Convection is the primary heat transfer mechanism for most foods heated in an earth-based environment. In contrast, in the low-gravity environment of space flight, the primary heat transfer mechanism is conduction (or radiation in the absence of a conducting medium). Conduction heating is significantly slower and less efficient than convection heating. This fact poses a problem for food heating during space flight. A numerical model has been developed to evaluate this problem. This model simulates the food-heating process for Skylab. The model includes the effect of a thermally controlled on/off heat flux. Parametric studies using this model establish how the required heating time is affected by: the thermal diffusivity of the nutrient materials, the power level of the heater, the initial food temperatures, and the food container dimensions.

  1. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  2. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  3. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  4. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Brannon, David; Ryan, Robert E.; Underwood, Lauren W.; Russell, Kristen

    2010-01-01

    In the polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can drop to temperatures of 100 K or lower. These sites may serve as cold traps, capturing ice and other volatile compounds, possibly for eons. Interestingly, ice stored in these locations could potentially alter how lunar exploration is conducted. Within craters inside craters (double-shaded craters) that are shaded from thermal re-radiation and from solar illuminated regions, even colder regions should exist and, in many cases, temperatures in these regions never exceed 50 K. Working in these harsh environments with existing conventional systems, exploration or mining activities could be quite daunting and challenging. However, if the unique characteristics of these environments were exploited, the power, weight, and total mass that is required to be carried from the Earth to the Moon for lunar exploration and research would be substantially reduced. In theory, by minimizing the heat transfer between an object and the lunar surface, temperatures near absolute zero can be produced. In a single or double-shaded crater, if the object was isolated from the variety of thermal sources and was allowed to radiatively cool to space, the achievable temperature would be limited by the 3 K cosmic background and the anomalous solar wind that can strike the object being cooled. Our analysis shows that under many circumstances, with some simple thermal radiation shielding, it is possible to establish environments with temperatures of several degrees Kelvin.

  5. Thermal state of permafrost in urban environment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Kerimov, A. G.; Shiklomanov, N. I.; Streletskiy, D. A.; Shkoda, V. S.; Anduschenko, F. D.

    2014-12-01

    Large industrial centers on permafrost are characterized by a set of geocryological conditions different from natural environment. Thermal state of foundations on permafrost in areas of economic development depends on climate trends and upon technogenic impacts, such as type of impact, area of facility, permafrost temperature and duration of the technogenic pressure. Technogenic degradation of permafrost is evident in most urban centers on permafrost leading to deterioration of geotechnical environment and particularly foundations of buildings and structures. This situation is exacerbated by climate warming in such cities as Vorkuta, Chita, Nerungry, Salekhard and others where temperature rises at a rate of 0.4 - 1.2 oC/decade over the last 40 years. To evaluate impact of climate warming and technogenic factors on permafrost temperature regime and foundation bearing capacity we compared five facilities in Norilsk, the largest city on permafrost. The facilities were selected to represent different parts of the town, different ages of built-up environment and were located in different permafrost and lithological conditions. We found a leading role of technogenic factors relative to climatic ones in dynamics of thermal state of permafrost in urban environment. Climate warming in Norilsk (0.15 oC/decade) was a small contributor, but gave an additional input to deterioration of geotechnical environment on permafrost. At the same time, implementation of engineering solutions of permafrost temperature cooling (such as crawl spaces) result in lowering of permafrost temperature. Field surveys in Yamburg showed that under some facilities permafrost temperature decreased by 1-1.5 C oC over the last 15 years despite pronounced in the region climate warming of 0.5 oC/decade. This shows that despite deterioration of permafrost conditions in the most Arctic regions due to technogenic pressure and climate warming, implementation of adequate engineering solutions allows

  6. Mapping Thermal Habitat of Ectotherms Based on Behavioral Thermoregulation in a Controlled Thermal Environment

    NASA Astrophysics Data System (ADS)

    Fei, T.; Skidmore, A.; Liu, Y.

    2012-07-01

    Thermal environment is especially important to ectotherm because a lot of physiological functions rely on the body temperature such as thermoregulation. The so-called behavioural thermoregulation function made use of the heterogeneity of the thermal properties within an individual's habitat to sustain the animal's physiological processes. This function links the spatial utilization and distribution of individual ectotherm with the thermal properties of habitat (thermal habitat). In this study we modelled the relationship between the two by a spatial explicit model that simulates the movements of a lizard in a controlled environment. The model incorporates a lizard's transient body temperatures with a cellular automaton algorithm as a way to link the physiology knowledge of the animal with the spatial utilization of its microhabitat. On a larger spatial scale, 'thermal roughness' of the habitat was defined and used to predict the habitat occupancy of the target species. The results showed the habitat occupancy can be modelled by the cellular automaton based algorithm at a smaller scale, and can be modelled by the thermal roughness index at a larger scale.

  7. Do fluctuating temperature environments elevate coral thermal tolerance?

    NASA Astrophysics Data System (ADS)

    Oliver, T. A.; Palumbi, S. R.

    2011-06-01

    In reef corals, much research has focused on the capacity of corals to acclimatize and/or adapt to different thermal environments, but the majority of work has focused on distinctions in mean temperature. Across small spatial scales, distinctions in daily temperature variation are common, but the role of such environmental variation in setting coral thermal tolerances has received little attention. Here, we take advantage of back-reef pools in American Samoa that differ in thermal variation to investigate the effects of thermally fluctuating environments on coral thermal tolerance. We experimentally heat-stressed Acropora hyacinthus from a thermally moderate lagoon pool (temp range 26.5-33.3°C) and from a more thermally variable pool that naturally experiences 2-3 h high temperature events during summer low tides (temp range 25.0-35°C). We compared mortality and photosystem II photochemical efficiency of colony fragments exposed to ambient temperatures (median: 28.0°C) or elevated temperatures (median: 31.5°C). In the heated treatment, moderate pool corals showed nearly 50% mortality whether they hosted heat-sensitive (49.2 ± 6.5% SE; C2) or heat-resistant (47.0 ± 11.2% SE; D) symbionts. However, variable pool corals, all of which hosted heat-resistant symbionts, survived well, showing low mortalities (16.6 ± 8.8% SE) statistically indistinguishable from controls held at ambient temperatures (5.1-8.3 ± 3.3-8.3% SE). Similarly, moderate pool corals hosting heat-sensitive algae showed rapid rates of decline in algal photosystem II photochemical efficiency in the elevated temperature treatment (slope = -0.04 day-1 ± 0.007 SE); moderate pool corals hosting heat-resistant algae showed intermediate levels of decline (slope = -0.039 day-1 ± 0.007 SE); and variable pool corals hosting heat-resistant algae showed the least decline (slope = -0.028 day-1 ± 0.004 SE). High gene flow among pools suggests that these differences probably reflect coral acclimatization

  8. Optimized Radiator Geometries for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin

    2013-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft's vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approximately 325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Intense Thermal Infrared Reflector (ITIR), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of ITIR is the absence of louvers or other moving parts and its simple geometry (no parabolic shapes). ITIR consists of a specularly reflective shielding surface and a diffuse radiating surface joined to form a horizontally oriented V-shape (shielding surface on top). The point of intersection of these surfaces is defined by two angles, those which define the tilt of each surface with respect to the local horizontal. The optimum set of these angles is determined on a case-by-case basis. The idea assumes minimal conductive heat transfer between shielding and radiating surfaces, and a practical design would likely stack sets of these surfaces on top of one another to reduce radiator thickness.

  9. Numerical Analysis of Thermal Comfort at Urban Environment

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.

    2009-08-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (athletic park), named "Serafeio Athletic and Cultural Centre," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  10. Wave propagation of functionally graded material plates in thermal environments.

    PubMed

    Sun, Dan; Luo, Song-Nan

    2011-12-01

    The wave propagation of an infinite functionally graded plate in thermal environments is studied using the higher-order shear deformation plate theory. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. Numerical examples show that the characteristics of wave propagation in the functionally graded plate are relates to the volume fraction index and thermal environment of the functionally graded plate. The influences of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

  11. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  12. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  13. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  14. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects. PMID:19481236

  15. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near

  16. Carbon fiber composite characterization in adverse thermal environments.

    SciTech Connect

    Gomez-Vasquez, Sylvia; Brown, Alexander L.; Hubbard, Joshua A.; Ramirez, Ciro J.; Dodd, Amanda B.

    2011-05-01

    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities.

  17. Characterization of an energy storage capacitor in abnormal thermal environments

    SciTech Connect

    Edwards, L.R.; Chen, K.C.; Baron, R.V.

    2000-01-05

    There are applications of high-voltage, energy-storage, capacitors where it is desirable that the energy storage capability can be reliably and predictably negated in abnormal environments such as fire. This property serves as a safety feature to prevent events of unintended consequence. The present paper describes studies of the thermal response characteristics of a cylindrically wound, discrete Mylar film/foil capacitor design. The experimental setups that simulate fires will be presented. Three different heat input geometries were employed: uniform radial input, spot radial input, and axial input. Heat input was controlled via feedback system to maintain specific temperature ramp rates. Both capacitor voltage and current were monitored during the thermal excursion to ascertain the failure temperature, i.e. when the capacitor permanently shorts. Temperature of failure data is presented for the three heat input cases along with a statistical analysis of the results and application implications. The physics of failure will be described in terms of the thermal/mechanical properties of the Mylar.

  18. Extended Operation of Stirling Convertors in a Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2006-01-01

    A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.

  19. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  20. Turtle embryos move to optimal thermal environments within the egg.

    PubMed

    Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo

    2013-08-23

    A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms.

  1. Thermal modeling of carbon-epoxy laminates in fire environments.

    SciTech Connect

    McGurn, Matthew T. , Buffalo, NY); DesJardin, Paul Edward , Buffalo, NY); Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account for flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.

  2. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  3. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.

    PubMed

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.

  4. Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.

    PubMed

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  5. Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment

    PubMed Central

    Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi

    2013-01-01

    In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691

  6. Occupational exposure to cold thermal environments: a field study in Portugal.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2008-09-01

    The present work is essentially dedicated to the study of cold thermal environments. The analysis includes 32 industrial units from 6 activity sectors and the measurements were carried out in 101 workplaces. Different environmental conditions were identified and a clear relationship with the different types of workplaces was established. The work environments were thus allocated to three typical exposure categories corresponding to freezing and refrigerating cold stores and free-running or controlled air temperature manufacturing workplaces. In order to characterize the level of cold exposure, the method proposed by ISO/TR 11079, Technical Report, 1st edn, International Organization for Standardization, Geneva (1993) was adopted. The results for each activity sector demonstrate that a significant percentage of workers are repeatedly exposed to extreme conditions with insufficient clothing insulation. A value between 20 and 40% corresponds to the most critical situation, where the selected clothing ensemble does not provide adequate insulation (I (clr) < IREQ (min)). The ideal scenario, represented by I (clr) values between IREQ (min) and IREQ (neutral), shows the lowest percentages with an overall result of only 10%. When all the sectors are considered together, from a total of 3,667 workers, about one-third (1,151) are exposed to the cold. Among the workplaces under analysis, 14 are characterized by a continuous exposure greater than the DLE (neutral). Those who work under such conditions, on average, have a time shift 60 min longer than the calculated DLE value. PMID:18066581

  7. Thermal adaptability of large white pigs in the tropical environment

    NASA Astrophysics Data System (ADS)

    Dede, T. I.

    1983-09-01

    Twenty-four Large White weaners-twelve males and twelve females, were randomly divided into three groups of eight (four males and four females per two separate pens) and were assigned to three groups of two pens each for the males and the females weaners. One group of two pens was without wallow facility (control), one other group was provided with wallows (wet) and the third group was in air-conditioned room (cold). Twice a day, the respiratory rate and the rectal temperatures were measured early in the mornings at 8.00 9.00 hrs (A.M.) and late in the early evenings at 16.00 18.00 hrs. The mean respiratory frequency (A.M) ranged from 7 to 9; 6 12 and 8 13 breaths per minute for the cold, wet and control respectively while the mean respiratory frequency (P.M.) ranged from 6 to 9, 10 to 17 and 13 to 19 breaths per minute for the cold, wet and control respectively. The mean rectal temperatures (A.M.) ranged very slightly from 38.54° to 39.12°C; 38.50° to 39.05°C and 38.61°C to 39°C for the cold, wet as control respectively while the mean rectal temperatures (P.M.) ranged from 39.00° to 39.22°C; 38.97° to 39.29°C and 39.28° to 39.55°C for the cold, wet and control respectively. The animals were maintained for another seven to ten weeks and were slaughtered. The slaughter characteristics did not indicate an appreciable thermal stress except for the reproductive organs which showed weight increase indicating reduced efficiency of the thermally stressed animals as is the case in the tropical environment.

  8. The effect of environment on thermal barrier coating lifetime

    DOE PAGES

    Pint, Bruce A.; Unocic, Kinga A.; Haynes, James Allen

    2016-03-15

    While the water vapor content of the combustion gas in natural gas-fired land-based turbines is ~10%, it can be 20–85% with coal-derived (syngas or H2) fuels or innovative turbine concepts for more efficient carbon capture. Additional concepts envisage working fluids with high CO2 contents to facilitate carbon capture and sequestration. To investigate the effects of changes in the gas composition on thermal barrier coating (TBC) lifetime, furnace cycling tests (1-h and 100-h cycles) were performed in air with 10, 50, and 90 vol. % water vapor and CO2-10% H2O and compared to prior results in dry air or O2. Twomore » types of TBCs were investigated: (1) diffusion bond coatings (Pt-diffusion or Pt-modified aluminide) with commercial electron-beam physical vapor-deposited yttria-stabilized zirconia (YSZ) top coatings on second-generation superalloy N5 and N515 substrates and (2) high-velocity oxygen fuel (HVOF) sprayed MCrAlYHfSi bond coatings with air plasma-sprayed YSZ top coatings on superalloys X4, 1483, or 247 substrates. For both types of coatings exposed in 1-h cycles, the addition of water vapor resulted in a decrease in coating lifetime, except for Pt-diffusion coatings which were unaffected by the environment. In 100-h cycles, environment was less critical, perhaps because coating failure was chemical (i.e., due to interdiffusion) rather than mechanical. As a result, in both 1-h and 100-h cycles, CO2 did not appear to have any negative effect on coating lifetime.« less

  9. Frequency stabilization of laser diodes in an aggressive thermal environment

    NASA Astrophysics Data System (ADS)

    Minch, J. R.; Walther, F. G.; Savage, S.; Plante, A.; Scalesse, V.

    2015-03-01

    Mobile free-space laser communication systems must reconcile the requirements of low size, weight, and power with the ability to both survive and operate in harsh thermal and mechanical environments. In order to minimize the aperture size and amplifier power requirements of such systems, communication links must exhibit performance near theoretical limits. Such performance requires laser transmitters and receiver filters and interferometers to maintain frequency accuracy to within a couple hundred MHz of the design frequency. We demonstrate an approach to achieving high frequency stability over wide temperature ranges by using conventional DFB lasers, tuned with TEC and current settings, referenced to an HCN molecular frequency standard. A HCN cell absorption line is scanned across the TEC set-point to adjust the DFB laser frequency. Once the center of the line is determined, the TEC set-point is offset as required to obtain frequency agility. To obtain large frequency offsets from an HCN absorption line, as well as continuous laser source operation, a second laser is offset from the reference laser and the resulting beat tone is detected in a photoreceiver and set to the desired offset using a digital frequency-locked loop. Using this arrangement we have demonstrated frequency accuracy and stability of better than 8 MHz RMS over an operational temperature range of 0ºC to 50º C, with operation within minutes following 8 hour soaks at -40º C and 70º C.

  10. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media.

  11. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media. PMID:20544104

  12. Turtle embryos move to optimal thermal environments within the egg

    PubMed Central

    Zhao, Bo; Li, Teng; Shine, Richard; Du, Wei-Guo

    2013-01-01

    A recent study demonstrated that the embryos of soft-shelled turtles can reposition themselves within their eggs to exploit locally warm conditions. In this paper, we ask whether turtle embryos actively seek out optimal thermal environments for their development, as do post-hatching individuals. Specifically, (i) do reptile embryos move away from dangerously high temperatures as well as towards warm temperatures? and (ii) is such embryonic movement due to active thermoregulation, or (more simply) to passive embryonic repositioning caused by local heat-induced changes in viscosity of fluids within the egg? Our experiments with an emydid turtle (Chinemys reevesii) show that embryos avoid dangerously high temperatures by moving to cooler regions of the egg. The repositioning of embryos is an active rather than passive process: live embryos move towards a heat source, whereas dead ones do not. Overall, our results suggest that behavioural thermoregulation by turtle embryos is genuinely analogous to the thermoregulatory behaviour exhibited by post-hatching ectotherms. PMID:23760168

  13. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    SciTech Connect

    Jordan, Eric; Gell, Maurice

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  14. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment.

    PubMed

    Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard

    2013-01-01

    The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed.

  15. The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment.

    PubMed

    Bröde, Peter; Błazejczyk, Krzysztof; Fiala, Dusan; Havenith, George; Holmér, Ingvar; Jendritzky, Gerd; Kuklane, Kalev; Kampmann, Bernhard

    2013-01-01

    The growing need for valid assessment procedures of the outdoor thermal environment in the fields of public weather services, public health systems, urban planning, tourism & recreation and climate impact research raised the idea to develop the Universal Thermal Climate Index UTCI based on the most recent scientific progress both in thermo-physiology and in heat exchange theory. Following extensive validation of accessible models of human thermoregulation, the advanced multi-node 'Fiala' model was selected to form the basis of UTCI. This model was coupled with an adaptive clothing model which considers clothing habits by the general urban population and behavioral changes in clothing insulation related to actual environmental temperature. UTCI was developed conceptually as an equivalent temperature. Thus, for any combination of air temperature, wind, radiation, and humidity, UTCI is defined as the air temperature in the reference condition which would elicit the same dynamic response of the physiological model. This review analyses the sensitivity of UTCI to humidity and radiation in the heat and to wind in the cold and compares the results with observational studies and internationally standardized assessment procedures. The capabilities, restrictions and potential future extensions of UTCI are discussed. PMID:23411753

  16. Heat and Mass Transport from Thermally Degrading Thin Cellulosic Materials in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Kushida, G.; Baum, H. R.; Kashiwagi, T.; Di Blasi, C.

    1992-01-01

    Attention is given to a theoretical model describing the behavior of a thermally thin cellulosic sheet heated by external thermal radiation in a quiescent microgravity environment. This model describes thermal and oxidative degradation of the sheet and the heat and mass transfer of evolved degradation products from the heated cellulosic surface into the gas phase. Two calculations are carried out: heating without thermal degradation, and heating with thermal degradation of the sheet with endothermic pyrolysis, exothermic thermal oxidative degradation, and highly exothermic char oxidation. It is shown that pyrolysis is the main degradation reaction. Self-sustained smoldering is controlled and severely limited by the reduced oxygen supply.

  17. Woven Thermal Protection System (Woven TPS) for Extreme Entry Environments

    NASA Video Gallery

    The Woven Thermal Protection System (WTPS) project explores an innovative way to design, develop and manufacture a family of ablative TPS materials using weaving technology and testing them in the ...

  18. Characterization factors for thermal pollution in freshwater aquatic environments.

    PubMed

    Verones, Francesca; Hanafiah, Marlia Mohd; Pfister, Stephan; Huijbregts, Mark A J; Pelletier, Gregory J; Koehler, Annette

    2010-12-15

    To date the impact of thermal emissions has not been addressed in life cycle assessment despite the narrow thermal tolerance of most aquatic species. A method to derive characterization factors for the impact of cooling water discharges on aquatic ecosystems was developed which uses space and time explicit integration of fate and effects of water temperature changes. The fate factor is calculated with a 1-dimensional steady-state model and reflects the residence time of heat emissions in the river. The effect factor specifies the loss of species diversity per unit of temperature increase and is based on a species sensitivity distribution of temperature tolerance intervals for various aquatic species. As an example, time explicit characterization factors were calculated for the cooling water discharge of a nuclear power plant in Switzerland, quantifying the impact on aquatic ecosystems of the rivers Aare and Rhine. The relative importance of the impact of these cooling water discharges was compared with other impacts in life cycle assessment. We found that thermal emissions are relevant for aquatic ecosystems compared to other stressors, such as chemicals and nutrients. For the case of nuclear electricity investigated, thermal emissions contribute between 3% and over 90% to Ecosystem Quality damage.

  19. Entanglement evolution of a two-mode Gaussian system in various thermal environments

    NASA Astrophysics Data System (ADS)

    Mihaescu, Tatiana; Isar, Aurelian

    2015-12-01

    We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.

  20. Entanglement evolution of a two-mode Gaussian system in various thermal environments

    SciTech Connect

    Mihaescu, Tatiana Isar, Aurelian

    2015-12-07

    We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.

  1. That Elusive, Eclectic Thing Called Thermal Environment: What a Board Should Know About It

    ERIC Educational Resources Information Center

    Schutte, Frederick

    1970-01-01

    Discussion of proper thermal environment for protection of sophisticated educational equipment such as computer and data-processing machines, magnetic tapes, closed-circuit television and video tape communications systems.

  2. Thermal Analysis--Human Comfort--Indoor Environments. NBS Special Publication 491.

    ERIC Educational Resources Information Center

    Mangum, Billy W., Ed.; Hill, James E., Ed.

    Included in these proceedings are 11 formal papers presented by leading researchers in the field of thermal comfort and heat stress at a symposium held for the purpose of exploring new aspects of indoor thermal environments, caused primarily by the impact of energy conservation in new and existing buildings. The contributed papers were from…

  3. Potential ecological risks of thermal-treated waste recombination DNA discharged into an aquatic environment.

    PubMed

    Fu, Xiao H; Wang, Lei; Li, Meng N; Zeng, Xiao F; Le, Yi Q

    2011-01-01

    It has been shown that thermal-treatment at 100 ° C can denature deoxyribonucleic acid (DNA), yet this does not cause it to break down completely. To clarify the risk of gene pollution from thermal-treated recombinant DNA, the renaturation characteristics of thermal-denatured plasmid pET-28b and its persistence in aquatic environments were investigated. The results revealed that the double-stranded structure and transforming activity of the thermal-treated plasmid DNA could be recovered even if the thermal-treatment was conducted at 120 ° C. The presence of sodium chloride (NaCl) and ethylenediamine tetraacetic acid (EDTA) led to the increase of renaturation efficiency of the denatured DNA. When thermal-treated plasmid DNA was discharged into simulated aquatic environments with pH values from 5 to 9, it showed a longer persistence at pH 7 and 8 than that at 5, 6 and 9; however, the denatured plasmid DNA could persist for more than 33 min at any pH. Moreover, a higher ionic strength further protected the thermal-denatured plasmids from degradation in the simulated aquatic environment. These results indicated that when the thermal-treated DNA was discharged into an aquatic environment, it might not break down completely in a short period. Therefore, there is the potential for the discarded DNA to renature and transform, which might result in gene pollution.

  4. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  5. Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    NASA Technical Reports Server (NTRS)

    Gonzales, G.; Stackpoole, M.

    2014-01-01

    NASAs future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, high pressures and short entry durations, in order for CP to be feasible from a mass perspective. In 2012 the Game Changing Development Program in NASAs Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASAs most challenging entry missions. The high entry conditions pose certification challenges in existing ground based test facilities. Recent updates to NASAs IHF and AEDCs H3 high temperature arcjet test facilities enable higher heatflux (2000 Wcm2) and high pressure (5 atm) testing of TPS. Some recent thermal tests of woven TPS will be discussed in this paper. These upgrades have provided a way to test higher entry conditions of potential outer planet and Venus missions and provided a baseline against carbon phenolic material. The results of these tests have given preliminary insight to sample configuration and physical recession profile characteristics.

  6. Controlling the Thermal Environment of the Co-ordinated Classroom.

    ERIC Educational Resources Information Center

    Harmon, Darell Boyd

    The classroom environment is a working surround in which children, through participating in organized experiences, can grow and develop in an optimum manner. Classroom design requires organization of principles of environmental control in order to assure efficient and successful performance. This control cannot be left to chance. In considering…

  7. Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.; Lee, Ho-Jun

    1996-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.

  8. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  9. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  10. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  11. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  12. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  13. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  14. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  15. 40 CFR 716.25 - Adequate file search.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the...

  16. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  17. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Adequate tools and resources. 51.354... Requirements § 51.354 Adequate tools and resources. (a) Administrative resources. The program shall maintain the administrative resources necessary to perform all of the program functions including...

  18. Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Ash, Robert L.

    1989-01-01

    A method of predicting the radiant heat flux distribution produced by a bank of tubular quartz heaters was applied to a radiant system consisting of a single unreflected lamp irradiating a flat metallic incident surface. In this manner, the method was experimentally verified for various radiant system parameter settings and used as a source of input for a finite element thermal analysis. Two finite element thermal analyses were applied to a thermal system consisting of a thin metallic panel exposed to radiant surface heating. A two-dimensional steady-state finite element thermal analysis algorithm, based on Galerkin's Method of Weighted Residuals (GFE), was formulated specifically for this problem and was used in comparison to the thermal analyzers of the Engineering Analysis Language (EAL). Both analyses allow conduction, convection, and radiation boundary conditions. Differences in the respective finite element formulation are discussed in terms of their accuracy and resulting comparison discrepancies. The thermal analyses are shown to perform well for the comparisons presented here with some important precautions about the various boundary condition models. A description of the experiment, corresponding analytical modeling, and resulting comparisons are presented.

  19. Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment.

    PubMed

    Bates, Amanda E; Lee, Raymond W; Tunnicliffe, Verena; Lamare, Miles D

    2010-05-04

    The thermal characteristics of an organism's environment affect a multitude of parameters, from biochemical to evolutionary processes. Hydrothermal vents on mid-ocean ridges are created when warm hydrothermal fluids are ejected from the seafloor and mixed with cold bottom seawater; many animals thrive along these steep temperature and chemical gradients. Two-dimensional temperature maps at vent sites have demonstrated order of magnitude thermal changes over centimetre distances and at time intervals from minutes to hours. To investigate whether animals adapt to this extreme level of environmental variability, we examined differences in the thermal behaviour of mobile invertebrates from aquatic habitats that vary in thermal regime. Vent animals were highly responsive to heat and preferred much cooler fluids than their upper thermal limits, whereas invertebrates from other aquatic environments risked exposure to warmer temperatures. Avoidance of temperatures well within their tolerated range may allow vent animals to maintain a safety margin against rapid temperature fluctuations and concomitant toxicity of hydrothermal fluids.

  20. Environment and evolution through the Paleocene-Eocene thermal maximum.

    PubMed

    Gingerich, Philip D

    2006-05-01

    The modern orders of mammals, Artiodactyla, Perissodactyla and Primates (APP taxa), first appear in the fossil record at the Paleocene-Eocene boundary, c. 55 million years ago. Their appearance on all three northern continents has been linked to diversification and dispersal in response to rapid environmental change at the beginning of a worldwide 100 000-200 000-year Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion. As I discuss here, global environmental events such as the PETM have had profound effects on evolution in the geological past and must be considered when modeling the history of life. The PETM is also relevant when considering the causes and consequences of global greenhouse warming.

  1. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  2. Natural environment and thermal behaviour of Dimetrodon limbatus.

    PubMed

    Florides; Kalogirou; Tassou; Wrobel

    2001-02-01

    This paper examines the body temperature variation of Dimetrodon during the different seasons of the year. The effect of the sail of Dimetrodon on its body temperature is also evaluated. It is shown that the sail of pelycosaurs provided an advantage to the reptile by warming it up quicker in the morning in cold environments. This would be a benefit, allowing Dimetrodon to prey on large reptiles, above 55kg, in the early morning while they were sluggish. From the results presented a climate similar to that of March for Cyprus could be representative of that of Permian period.

  3. Natural environment and thermal behaviour of Dimetrodon limbatus.

    PubMed

    Florides; Kalogirou; Tassou; Wrobel

    2001-02-01

    This paper examines the body temperature variation of Dimetrodon during the different seasons of the year. The effect of the sail of Dimetrodon on its body temperature is also evaluated. It is shown that the sail of pelycosaurs provided an advantage to the reptile by warming it up quicker in the morning in cold environments. This would be a benefit, allowing Dimetrodon to prey on large reptiles, above 55kg, in the early morning while they were sluggish. From the results presented a climate similar to that of March for Cyprus could be representative of that of Permian period. PMID:11070340

  4. Coupled thermal/chemical/mechanical modeling of insensitive explosives in thermal environments

    SciTech Connect

    Nichols, A.L. III

    1996-05-01

    The ability to predict the response of a weapon system that contains insensitive explosives to elevated temperatures is important in understanding its safety characteristics. To model such a system at elevated temperatures in a finite element computer code requires a variety of capabilities. These modeling capabilities include thermal diffusion and convection to transport the heat to the explosives in the weapon system, temperature based chemical reaction modeling of the decomposition of the explosive materials, and mechanical modeling of both the metal casing and the unreacted and decomposed explosive. The Chemical TOPAZ code has been developed to model coupled thermal/chemical problems where we do not need to model the mass motion. We have also developed the LYNX2D code, based on PALM2D and Chemical TOPAZ, which is an implicit, two-dimensional coupled thermal/chemical/mechanical finite element model computer code. Some representative examples are shown. {copyright} {ital 1996 American Institute of Physics.}

  5. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations

    PubMed Central

    Tobler, Ray; Hermisson, Joachim; Schlötterer, Christian

    2015-01-01

    Thermal stress is a pervasive selective agent in natural populations that impacts organismal growth, survival, and reproduction. Drosophila melanogaster exhibits a variety of putatively adaptive phenotypic responses to thermal stress in natural and experimental settings; however, accompanying assessments of fitness are typically lacking. Here, we quantify changes in fitness and known thermal tolerance traits in replicated experimental D. melanogaster populations following more than 40 generations of evolution to either cyclic cold or hot temperatures. By evaluating fitness for both evolved populations alongside a reconstituted starting population, we show that the evolved populations were the best adapted within their respective thermal environments. More strikingly, the evolved populations exhibited increased fitness in both environments and improved resistance to both acute heat and cold stress. This unexpected parallel response appeared to be an adaptation to the rapid temperature changes that drove the cycling thermal regimes, as parallel fitness changes were not observed when tested in a constant thermal environment. Our results add to a small, but growing group of studies that demonstrate the importance of fluctuating temperature changes for thermal adaptation and highlight the need for additional work in this area. PMID:26080903

  6. Assessment of thermal environment landscape over five megacities in China based on Landsat 8

    NASA Astrophysics Data System (ADS)

    Meng, Dan; Yang, Siyao; Gong, Huili; Li, Xiaojuan; Zhang, Jing

    2016-04-01

    The urban thermal environment is an important element for the urban ecological environment and climate. As megacities are affected by severe thermal environment, this paper selected Landsat 8 to retrieve land surface temperature (LST) studying the thermal environment of five megacities in China including Beijing, Shanghai, Guangzhou, Tianjin, and Chengdu. Three methods have been applied, quantifying the surface urban heat island intensity, landscape pattern metrics, and spatial autocorrelation. Three main conclusions have been drawn as follows. First, high-LST area is located in the central urban area. Second, the medium-temperature region is the most prevalent. The class-based and the landscape-based metrics can detect the pattern of thermal landscape. The fragmentation is low both in low and high temperature level classes. Third, global Moran's I suggests there is spatial clustering of thermal landscape. Local Moran's I map was able to detect several high-high and low-low clusters, which are the main types of thermal landscape.

  7. Self-correcting quantum memory in a thermal environment

    SciTech Connect

    Chesi, Stefano; Roethlisberger, Beat; Loss, Daniel

    2010-08-15

    The ability to store information is of fundamental importance to any computer, be it classical or quantum. To identify systems for quantum memories, which rely, analogously to classical memories, on passive error protection (''self-correction''), is of greatest interest in quantum information science. While systems with topological ground states have been considered to be promising candidates, a large class of them was recently proven unstable against thermal fluctuations. Here, we propose two-dimensional (2D) spin models unaffected by this result. Specifically, we introduce repulsive long-range interactions in the toric code and establish a memory lifetime polynomially increasing with the system size. This remarkable stability is shown to originate directly from the repulsive long-range nature of the interactions. We study the time dynamics of the quantum memory in terms of diffusing anyons and support our analytical results with extensive numerical simulations. Our findings demonstrate that self-correcting quantum memories can exist in 2D at finite temperatures.

  8. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y203 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-20 percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  9. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y2O3 specimens survived 3000 of the 0.5 sec cycles with falling. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 1 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-2O percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  10. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  11. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  12. Heated-Atmosphere Airship for the Titan Environment: Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Heller, R. S.; Landis, G. A.; Hepp, A. F.; Colozza, A. J.

    2012-01-01

    Future exploration of Saturn's moon Titan can be carried out by airships. Several lighter-than-atmosphere gas airships and passive drifting heated-atmosphere balloon designs have been studied, but a heated-atmosphere airship could combine the best characteristics of both. This work analyses the thermal design of such a heated-atmosphere vehicle, and compares the result with a lighter-than-atmosphere (hydrogen) airship design. A design tool was created to enable iteration through different design parameters of a heated-atmosphere airship (diameter, number of layers, and insulating gas pocket thicknesses) and evaluate the feasibility of the resulting airship. A baseline heated-atmosphere airship was designed to have a diameter of 6 m (outer diameter of 6.2 m), three-layers of material, and an insulating gas pocket thickness of 0.05 m between each layer. The heated-atmosphere airship has a mass of 161.9 kg. A similar mission making use of a hydrogen-filled airship would require a diameter of 4.3 m and a mass of about 200 kg. For a long-duration mission, the heated-atmosphere airship appears better suited. However, for a mission lifetime under 180 days, the less complex hydrogen airship would likely be a better option.

  13. Aerodynamic heating environment definition/thermal protection system selection for the HL-20

    NASA Technical Reports Server (NTRS)

    Wurster, K. E.; Stone, H. W.

    1993-01-01

    Definition of the aerothermal environment is critical to any vehicle such as the HL-20 Personnel Launch System that operates within the hypersonic flight regime. Selection of an appropriate thermal protection system design is highly dependent on the accuracy of the heating-environment prediction. It is demonstrated that the entry environment determines the thermal protection system design for this vehicle. The methods used to predict the thermal environment for the HL-20 Personnel Launch System vehicle are described. Comparisons of the engineering solutions with computational fluid dynamic predictions, as well as wind-tunnel test results, show good agreement. The aeroheating predictions over several critical regions of the vehicle, including the stagnation areas of the nose and leading edges, windward centerline and wing surfaces, and leeward surfaces, are discussed. Results of predictions based on the engineering methods found within the MINIVER aerodynamic heating code are used in conjunction with the results of the extensive wind-tunnel tests on this configuration to define a flight thermal environment. Finally, the selection of the thermal protection system based on these predictions and current technology is described.

  14. Galileo probe forebody thermal protection - Benchmark heating environment calculations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Nicolet, W. E.

    1981-01-01

    Solutions are presented for the aerothermal heating environment for the forebody heatshield of candidate Galileo probe. Entry into both the nominal and cool-heavy model atmospheres were considered. Solutions were obtained for the candidate heavy probe with a weight of 310 kg and a lighter probe with a weight of 290 kg. In the flowfield analysis, a finite difference procedure was employed to obtain benchmark predictions of pressure, radiative and convective heating rates, and the steady-state wall blowing rates. Calculated heating rates for entry into the cool-heavy model atmosphere were about 60 percent higher than those predicted for the entry into the nominal atmosphere. The total mass lost for entry into the cool-heavy model atmosphere was about 146 kg and the mass lost for entry into the nominal model atmosphere was about 101 kg.

  15. Coupled harmonic systems as quantum buses in thermal environments

    NASA Astrophysics Data System (ADS)

    Nicacio, F.; Semião, F. L.

    2016-09-01

    In this work, we perform a careful study of a special arrangement of coupled systems that consists of two external harmonic oscillators weakly coupled to an arbitrary network (data bus) of strongly interacting oscillators. Our aim is to establish simple effective Hamiltonians and Liouvillians allowing an accurate description of the dynamics of the external oscillators regardless of the topology of the network. By simple, we mean an effective description using just a few degrees of freedom. With the methodology developed here, we are able to treat general topologies and, under certain structural conditions, to also include the interaction with external environments. In order to illustrate the predictability of the simplified dynamics, we present a comparative study with the predictions of the numerically obtained exact description in the context of propagation of energy through the network.

  16. Shuttle payload bay thermal environments: Summary and conclusion report for STS Flights 1-5

    NASA Technical Reports Server (NTRS)

    Fu, J. H.; Graves, G. R.

    1987-01-01

    The thermal data for the payload bay of the first five shuttle flights is summarized and the engineering evaluation of that data is presented. After a general discussion on mission profiles and vehicle configurations, the thermal design and flight instrumentation systems of the payload bay are described. The thermal flight data sources and a categorization of the data are then presented. A thermal flight data summarization section provides temperature data for the five phases of a typical mission profile. These are: prelaunch, ascent, on-orbit, entry and postlanding. The thermal flight data characterization section encompasses this flight data for flight to flight variations, payload effects, temperature ranges, and other variations. Discussion of the thermal environment prediction models in use by industry and various NASA Centers, and the results predicted by these models, is followed by an evaluation of the correlation between the actual flight data and the results predicted by the models. Finally, the available thermal data are evaluated from the viewpoint of the user concerned with establishing the thermal environment in the payload bay. The data deficiencies are discussed and recommendations for their elimination are presented.

  17. Prediction of air temperature for thermal comfort of people in outdoor environments

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua

    2007-05-01

    Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.

  18. Thermal-environment testing of a 30-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  19. The underwater environment: cardiopulmonary, thermal, and energetic demands.

    PubMed

    Pendergast, D R; Lundgren, C E G

    2009-01-01

    Water covers over 75% of the earth, has a wide variety of depths and temperatures, and holds a great deal of the earth's resources. The challenges of the underwater environment are underappreciated and more short term compared with those of space travel. Immersion in water alters the cardio-endocrine-renal axis as there is an immediate translocation of blood to the heart and a slower autotransfusion of fluid from the cells to the vascular compartment. Both of these changes result in an increase in stroke volume and cardiac output. The stretch of the atrium and transient increase in blood pressure cause both endocrine and autonomic changes, which in the short term return plasma volume to control levels and decrease total peripheral resistance and thus regulate blood pressure. The reduced sympathetic nerve activity has effects on arteriolar resistance, resulting in hyperperfusion of some tissues, which for specific tissues is time dependent. The increased central blood volume results in increased pulmonary artery pressure and a decline in vital capacity. The effect of increased hydrostatic pressure due to the depth of submersion does not affect stroke volume; however, a bradycardia results in decreased cardiac output, which is further reduced during breath holding. Hydrostatic compression, however, leads to elastic loading of the chest wall and negative pressure breathing. The depth-dependent increased work of breathing leads to augmented respiratory muscle blood flow. The blood flow is increased to all lung zones with some improvement in the ventilation-perfusion relationship. The cardiac-renal responses are time dependent; however, the increased stroke volume and cardiac output are, during head-out immersion, sustained for at least hours. Changes in water temperature do not affect resting cardiac output; however, maximal cardiac output is reduced, as is peripheral blood flow, which results in reduced maximal exercise performance. In the cold, maximal cardiac output

  20. Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment

    PubMed Central

    Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong

    2014-01-01

    Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132

  1. Health risk assessment of inhalable particulate matter in Beijing based on the thermal environment.

    PubMed

    Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong

    2014-12-01

    Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones.

  2. Effect of space environment on composite materials and thermal coatings (AO 138-9)

    NASA Technical Reports Server (NTRS)

    Parcelier, Michel

    1991-01-01

    The results are presented of experiments located in one of FRECOPA canister on epoxy-matrix carbon fiber reinforced composite materials, adhesives, and thermal coatings. Only thermal coatings and some composite materials were exposed to direct space environment for the first year, while other materials (for mechanical and expansion tests) were located in the lower levels (subjected to only vacuum and thermal cycling). In order to assess the degradation of materials after space aging, reference specimens were stored in clean room for the duration of LDEF mission and tested at the same time as the aged specimens.

  3. Breathing thermal manikins for indoor environment assessment: important characteristics and requirements.

    PubMed

    Melikov, Arsen

    2004-09-01

    Recently, breathing thermal manikins have been developed and used for indoor environment measurement, evaluation and optimization as well as validation of the computational fluid dynamic predictions of airflow around a human body. Advances in the assessment of occupants' thermal comfort and perceived air quality by means of breathing thermal manikins have also been made. In order to perform accurate measurements and realistic evaluation and assessment, the design and characteristics of a manikin must comply with certain requirements. The most important of these, such as the number, size and shape of body segments, control mode, breathing simulation etc., are discussed and specified in this paper.

  4. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis.

    PubMed

    Baldanzi, Simone; Weidberg, Nicolas F; Fusi, Marco; Cannicci, Stefano; McQuaid, Christopher D; Porri, Francesca

    2015-12-01

    Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations. Generally, broadly distributed species show variation in thermal physiology between populations. Within their distributional ranges, populations at the edges are assumed to experience more challenging environments than central populations (fundamental niche breadth hypothesis). We have investigated differences in thermal tolerance and thermal sensitivity under increasing/decreasing temperatures among geographically separated populations of the sandhopper Talorchestia capensis along the South African coasts. We tested whether the thermal tolerance and thermal sensitivity of T. capensis differ between central and marginal populations using a non-parametric constraint space analysis. We linked thermal sensitivity to environmental history by using historical climatic data to evaluate whether individual responses to temperature could be related to natural long-term fluctuations in air temperatures. Our results demonstrate that there were significant differences in the thermal response of T. capensis populations to both increasing/decreasing temperatures. Thermal sensitivity (for increasing temperatures only) was negatively related to temperature variability and positively related to temperature predictability. Two different models fitted the geographical distribution of thermal sensitivity and thermal tolerance. Our results confirm that widespread species show differences in physiology among populations by providing evidence of contrasting thermal responses in individuals subject to different environmental conditions at the limits of the species' spatial range. When considering the complex interactions between individual physiology and species ranges, it is not sufficient to consider mean environmental temperatures, or even temperature variability; the predictability of that variability may be critical. PMID

  5. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis.

    PubMed

    Baldanzi, Simone; Weidberg, Nicolas F; Fusi, Marco; Cannicci, Stefano; McQuaid, Christopher D; Porri, Francesca

    2015-12-01

    Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations. Generally, broadly distributed species show variation in thermal physiology between populations. Within their distributional ranges, populations at the edges are assumed to experience more challenging environments than central populations (fundamental niche breadth hypothesis). We have investigated differences in thermal tolerance and thermal sensitivity under increasing/decreasing temperatures among geographically separated populations of the sandhopper Talorchestia capensis along the South African coasts. We tested whether the thermal tolerance and thermal sensitivity of T. capensis differ between central and marginal populations using a non-parametric constraint space analysis. We linked thermal sensitivity to environmental history by using historical climatic data to evaluate whether individual responses to temperature could be related to natural long-term fluctuations in air temperatures. Our results demonstrate that there were significant differences in the thermal response of T. capensis populations to both increasing/decreasing temperatures. Thermal sensitivity (for increasing temperatures only) was negatively related to temperature variability and positively related to temperature predictability. Two different models fitted the geographical distribution of thermal sensitivity and thermal tolerance. Our results confirm that widespread species show differences in physiology among populations by providing evidence of contrasting thermal responses in individuals subject to different environmental conditions at the limits of the species' spatial range. When considering the complex interactions between individual physiology and species ranges, it is not sufficient to consider mean environmental temperatures, or even temperature variability; the predictability of that variability may be critical.

  6. Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel A.

    2012-09-01

    A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment. The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector, q=0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.

  7. Diffusion in a soft confining environment: Dynamic effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Palmieri, Benoit; Safran, Samuel

    2013-03-01

    A dynamical model of a soft, thermally fluctuating two-dimensional tube is used to study the effect of thermal fluctuations of a confining environment on diffusive transport. The tube fluctuations in both space and time are driven by Brownian motion and suppressed by surface tension and the rigidity of the surrounding environment. The dynamical fluctuations modify the concentration profile boundary condition at the tube surface. They decrease the diffusive transport rate through the tube for two important cases: uniform tube fluctuations (wave vector, q = 0 mode) for finite tube lengths and fluctuations of any wave vector for infinitely long tubes.

  8. Do Large-Scale Exams Adequately Assess Inquiry? An Evaluation of the Alignment of the Inquiry Behaviors in New York State's "Living Environment Regents Examination" to the NYS Inquiry Standard

    ERIC Educational Resources Information Center

    Day, Heather L.; Matthews, Dorothy M.

    2008-01-01

    The "Living Environment Regents Examination" is meant to provide a measure of the quality of New York State students' knowledge and understanding of biological content and science inquiry ability, as it is defined in the "MST Standards" and the "Living Environment Core Curriculum". This article examines the degree to which the inquiry behaviors…

  9. A standard predictive index of human response to the thermal environment

    SciTech Connect

    Gagge, A.P.; Fobelets, A.P.; Berglund, L.G.

    1986-01-01

    Temperature and sensory indicates of human response to the thermal environment are often expressed in terms of the known response in a controlled laboratory environment, as a standard. The three rational indices of this type to be considered are ASHRAE's Standard Effective Temperature (SET*) Index, defined as the equivalent dry bulb temperature of an isothermal environment at 50% RH in which a subject, while wearing clothing standardized for activity concerned, would have the same heat stress (skin temperature T/sub sk/) and thermo-regulatory strain (skin wettedness, w) as in the actual test environment; Fanger's Predicted Mean Vote (PMV) Index, defined in terms of the heat load that would be required to restore a state of ''Comfort'' and evaluated by his Comfort Equation; and Winslow's Skin Wettedness Index of ''Thermal Discomfort'' (DISC) defined in terms of the fraction of the body surface, wet with perspiration, required to regulate body temperature by evaporative cooling.

  10. Degradation of thermal control materials under a simulated radiative space environment

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Sridhara, N.

    2012-11-01

    A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite

  11. Thermal stability and energy harvesting characteristics of Au nanorods: harsh environment chemical sensing

    NASA Astrophysics Data System (ADS)

    Karker, Nicholas; Dharmalingam, Gnanaprakash; Carpenter, Michael A.

    2015-05-01

    Monitoring the levels of polluting gases such as CO and NOx from high temperature (500°C and higher) combustion environments requires materials with high thermal stability and resilience that can withstand harsh oxidizing and reducing environments. Au nanorods (AuNRs) have shown potential in plasmonic gas sensing due to their catalytic activity, high oxidation stability, and absorbance sensitivity to changes in the surrounding environment. By using electron beam lithography, AuNR geometries can be patterned with tight control of the rod dimensions and spacings, allowing tunability of their optical properties. Methods such as NR encapsulation within an yttria-stabilized zirconia overcoat layer with subsequent annealing procedures will be shown to improve temperature stability within a simulated harsh environment. Since light sources and spectrometers are typically required to obtain optical measurements, integration is a major barrier for harsh environment sensing. Plasmonic sensing results will be presented where thermal energy is harvested by the AuNRs, which replaces the need for an external incident light source. Results from gas sensing experiments that utilize thermal energy harvesting are in good agreement with experiments which use an external incident light source. Principal component analysis results demonstrate that by selecting the most "active" wavelengths in a plasmonic band, the wavelength space can be reduced from hundreds of monitored wavelengths to just four, without loss of information about selectivity of the AuNRs. By combining thermal stability, the thermal energy harvesting capability, and the selectivity in gas detection (achieved through multivariate analysis), integration of plasmonic sensors into combustion environments can be greatly simplified.

  12. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.

    2014-01-01

    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  13. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    NASA Technical Reports Server (NTRS)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  14. Entanglement of formation in two-mode Gaussian systems in a thermal environment

    NASA Astrophysics Data System (ADS)

    Dumitru, Irina; Isar, Aurelian

    2015-12-01

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.

  15. Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)

    2001-01-01

    Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.

  16. Entanglement of formation in two-mode Gaussian systems in a thermal environment

    SciTech Connect

    Dumitru, Irina Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.

  17. 34 CFR 85.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Adequate evidence. 85.900 Section 85.900 Education Office of the Secretary, Department of Education GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 85.900 Adequate evidence. Adequate evidence means information sufficient to support...

  18. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  19. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  20. 12 CFR 380.52 - Adequate protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Adequate protection. 380.52 Section 380.52... ORDERLY LIQUIDATION AUTHORITY Receivership Administrative Claims Process § 380.52 Adequate protection. (a... interest of a claimant, the receiver shall provide adequate protection by any of the following means:...

  1. 21 CFR 1404.900 - Adequate evidence.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Adequate evidence. 1404.900 Section 1404.900 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY GOVERNMENTWIDE DEBARMENT AND SUSPENSION (NONPROCUREMENT) Definitions § 1404.900 Adequate evidence. Adequate evidence means information sufficient...

  2. Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1996-01-01

    Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.

  3. Evolution of a quantum harmonic oscillator coupled to a minimal thermal environment

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.

    2016-10-01

    In this paper it is studied the influence of a minimal thermal environment on the dynamics of a quantum harmonic oscillator (labelled A), prepared in a coherent state. The environment itself consists of a second oscillator (labelled B), initially in a thermal state. Two types of interaction Hamiltonians are considered, and the time-evolution of the reduced density operator of oscillator A is compared to the one obtained from the usual master equation approach, i.e., assuming that oscillator A is coupled to a large reservoir. An analysis of the linear entropy evolution of oscillator A shows that simplified models may be able to describe important features related to the phenomenon of decoherence, such as the rapid growth of the linear entropy, as well as its dependence on the effective temperature of the environment.

  4. Modeling the thermal and structural response of engineered systems to abnormal environments

    SciTech Connect

    Skocypec, R.D.; Thomas, R.K.; Moya, J.L.

    1993-10-01

    Sandia National Laboratories (SNL) is engaged actively in research to improve the ability to accurately predict the response of engineered systems to thermal and structural abnormal environments. Abnormal environments that will be addressed in this paper include: fire, impact, and puncture by probes and fragments, as well as a combination of all of the above. Historically, SNL has demonstrated the survivability of engineered systems to abnormal environments using a balanced approach between numerical simulation and testing. It is necessary to determine the response of engineered systems in two cases: (1) to satisfy regulatory specifications, and (2) to enable quantification of a probabilistic risk assessment (PRA). In a regulatory case, numerical simulation of system response is generally used to guide the system design such that the system will respond satisfactorily to the specified regulatory abnormal environment. Testing is conducted at the regulatory abnormal environment to ensure compliance.

  5. Analytical predictions for lightweight optics in a gravitational and thermal environment

    NASA Astrophysics Data System (ADS)

    Pepi, John W.

    1987-01-01

    The design of high-performance quality lightweight mirrors necessitated by payload requirements must be shown to be capable of resisting environmental-load-induced distortion. Such loading can include thermal gradients in the presence of flux loading, or extreme thermal soak in the cryogenic environments demanded by IR systems. Additionally, for aircraft systems, the optics may be subject to a changing gravitational vector, causing performance error. For orbital systems, gravitational error is a major concern as well, as it is necessary to perform meaningful ground tests prior to the zero-g release condition. These mirrors must exhibit excellent stiffness and thermal expansion characteristics, particularly in a passive system, and often in an active system as the mirror size increases but the aerial density requirement does not. To meet the stringent requirements, analyses for mirrors of various sizes, both solid and lightweight, are presented to show the effects of material properties and inhomogeneities on performance characteristics in the presence of a thermal and gravitational environment. Included is the effect of kinematic mount location and coefficient of thermal expansion uncertainties. Passive and active focus performance is compared, and design points are indicated for actively controlled deformable mirror requirements.

  6. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment.

    PubMed

    Fragata, Inês; Lopes-Cunha, Miguel; Bárbaro, Margarida; Kellen, Bárbara; Lima, Margarida; Faria, Gonçalo S; Seabra, Sofia G; Santos, Mauro; Simões, Pedro; Matos, Margarida

    2016-01-01

    Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real-time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.

  7. The study of the thermal imaging law on several objects in winter environment

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-yu; Pang, Min-hui

    2013-09-01

    Some thermal imaging experiments have been done about a building with a door made of iron, copperplate and aluminum flake, several trees, marbles, a glass window and a concrete wall under different conditions in a winter day while the environmental temperature and relative humidity are simultaneously measured by an electronic sensor. The experimental results show that the thermal imaging temperatures of the targets are related to the category of materials, and presenting some laws with the environment temperature changing. All of the thermal imaging temperature of the targets obviously varies with the atmospheric environment temperature by the large temperature difference. The changes of the surface temperature of metals are more obviously than nonmetals. The thermal imaging temperature of the door made of iron is more easily affected by the atmospheric environment temperature than copperplate while aluminum flake is more difficultly affected than copperplate under the same condition. The temperature of an ordinary concrete wall is obviously higher than the one painted by oil paint. Under the same condition, the changes of glasses are the most in all of the nonmetal targets.

  8. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals

    PubMed Central

    Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.

    2015-01-01

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  9. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.

  10. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.

    PubMed

    Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H

    2015-12-29

    The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359

  11. System-environment correlations for dephasing two-qubit states coupled to thermal baths

    NASA Astrophysics Data System (ADS)

    Costa, A. C. S.; Beims, M. W.; Strunz, W. T.

    2016-05-01

    Based on the exact dynamics of a two-qubit system and environment, we investigate system-environment (SE) quantum and classical correlations. The coupling is chosen to represent a dephasing channel for one of the qubits and the environment is a proper thermal bath. First we discuss the general issue of dilation for qubit phase damping. Based on the usual thermal bath of harmonic oscillators, we derive criteria of separability and entanglement between an initial X state and the environment. Applying these criteria to initial Werner states, we find that entanglement between the system and environment is built up in time for temperatures below a certain critical temperature Tcrit. On the other hand, the total state remains separable during those short times that are relevant for decoherence and loss of entanglement in the two-qubit state. Close to Tcrit the SE correlations oscillate between separable and entangled. Even though these oscillations are also observed in the entanglement between the two qubits, no simple relation between the loss of entanglement in the two-qubit system and the build-up of entanglement between the system and environment is found.

  12. Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Égerházi, Lilla; Unger, János

    2012-11-01

    During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET = 29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function ( R 2 = 0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.

  13. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  14. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Astrophysics Data System (ADS)

    Page, Arthur T.

    2001-07-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  15. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  16. Mission Life Thermal Analysis and Environment Correlation for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew B.; Peabody, Hume

    2012-01-01

    Standard thermal analysis practices include stacking worst-case conditions including environmental heat loads, thermo-optical properties and orbital beta angles. This results in the design being driven by a few bounding thermal cases, although those cases may only represent a very small portion of the actual mission life. The NASA Goddard Space Flight Center Thermal Branch developed a procedure to predict the flight temperatures over the entire mission life, assuming a known beta angle progression, variation in the thermal environment, and a degradation rate in the coatings. This was applied to the Global Precipitation Measurement core spacecraft. In order to assess the validity of this process, this work applies the similar process to the Lunar Reconnaissance Orbiter. A flight-correlated thermal model was exercised to give predictions of the thermal performance over the mission life. These results were then compared against flight data from the first two years of the spacecraft s use. This is used to validate the process and to suggest possible improvements for future analyses.

  17. Thermal environment in eight low-energy and twelve conventional Finnish houses.

    PubMed

    Kähkönen, Erkki; Salmi, Kari; Holopainen, Rauno; Pasanen, Pertti; Reijula, Kari

    2015-11-01

    We assessed the thermal environment of eight recently built low-energy houses and twelve conventional Finnish houses. We monitored living room, bedroom and outdoor air temperatures and room air relative humidity from June 2012 to September 2013. Perceived thermal environment was evaluated using a questionnaire survey during the heating, cooling and interim seasons. We compared the measured and perceived thermal environments of the low-energy and conventional houses. The mean air temperature was 22.8 °C (21.9-23.8 °C) in the low-energy houses, and 23.3 °C (21.4-26.5 °C) in the conventional houses during the summer (1. June 2013-31. August 2013). In the winter (1. December 2012-28. February 2013), the mean air temperature was 21.3 °C (19.8-22.5 °C) in the low-energy houses, and 21.6 °C (18.1-26.4 °C) in the conventional houses. The variation of the air temperature was less in the low-energy houses than that in the conventional houses. In addition, the occupants were on average slightly more satisfied with the indoor environment in the low-energy houses. However, there was no statistically significant difference between the mean air temperature and relative humidity of the low-energy and conventional houses. Our measurements and surveys showed that a good thermal environment can be achieved in both types of houses.

  18. The validity of mass body temperature screening with ear thermometers in a warm thermal environment.

    PubMed

    Suzuki, Tatsuhiko; Wada, Koji; Wada, Yuko; Kagitani, Hideaki; Arioka, Tetsuya; Maeda, Koji; Kida, Kenichi

    2010-10-01

    Identification of people who have a fever in public places during the occurrence of emerging infectious diseases is essential for controlling disease spread. The measurement of body temperature could identify infected persons. The environment affects body temperature, but little is known about the validity of measurements under different thermal environments. Therefore, the aim of this study was to determine the validity of measuring body temperature in cold and warm environments. We recruited 50 participants aged 18-69 years (26 males, 24 females) to measure body temperature using an axillary thermometer and an ear thermometer and by infrared thermal imaging (thermography). The body temperature obtained with an axillary thermometer was used as a reference; receiver operating characteristic (ROC) analysis was conducted to determine the validity of temperatures obtained by measurement with an ear thermometer and thermography at 36.7°C (median of the axillary body temperature). The area under the ROC curve (AUC) indicates the validity of measurements. The AUC for ear thermometers in a warm environment (mean temperature: 20.0°C) showed a fair accuracy (AUC: 0.74 [95% CI: 0.64-0.83]), while that (AUC: 0.62 [95% CI: 0.51-0.72]) in a cold environment (mean temperature: 12.6°C) and measurements with thermography used in both environments (AUC: 0.57 [95% CI: 0.45-0.68] in a warm environment and AUC: 0.65 [95% CI: 0.54-0.76] in a cold environment) showed a low accuracy. In conclusion, in a warm environment, measurement of body temperature with an ear thermometer is a valid procedure and effective for mass body temperature screening.

  19. Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Justus, C. G.; Batts, G. W.

    2001-01-01

    Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.

  20. Gaussian geometric discord of two-mode systems in a thermal environment

    SciTech Connect

    Suciu, Serban Isar, Aurelian

    2014-11-24

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the Gaussian geometric discord for a system consisting of two non-interacting non-resonant bosonic modes embedded in a thermal environment. We take as initial state of the system a two-mode squeezed thermal state and describe the time evolution of the Gaussian geometric discord under the influence of the thermal bath. By tracing the distance between the state of the considered subsystem and the closest classical-quantum Gaussian state we evaluate the Gaussian geometric discord for all times and temperatures. The geometric discord has finite values between 0 and 1 and decreases asymptotically to zero at large times and temperatures with oscillations on the time axis.

  1. Thermal effects on human performance in office environment measured by integrating task speed and accuracy.

    PubMed

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-05-01

    We have proposed a method in which the speed and accuracy can be integrated into one metric of human performance. This was achieved by designing a performance task in which the subjects receive feedback on their performance by informing them whether they have committed errors, and if did, they can only proceed when the errors are corrected. Traditionally, the tasks are presented without giving this feedback and thus the speed and accuracy are treated separately. The method was examined in a subjective experiment with thermal environment as the prototypical example. During exposure in an office, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given, compared to the performance of tasks presented without feedback.

  2. Effects of asteroid and comet impacts on thermal environment and atmopsheric erosion

    NASA Astrophysics Data System (ADS)

    Wallemacq, Quentin; Gillmann, Cedric; Karatekin, Ozgur; Dehant, Veronique

    2016-04-01

    Asteroid and comet impacts have implications on the atmospheric and thermal evolution of terrestrial planets and hence on their habitability. They can affect the planetary evolution by eroding the mass of the atmosphere and by depositing energy at the surface. These effects depend on impactor and surface parameters, including composition, size, density and impactor velocity. In this study, we investigate the effects of impactors of various sizes on the environment and on the evolution of the mantle and atmosphere of terrestrial planets with a special emphasis on Mars. Models with different levels of complexity are used to explore the thermal effects and the atmospheric erosion ; They vary from semi-analytical models to fully coupled subsurface/atmosphere numerical codes. While small impactors with relatively small velocities have only local and time-limited effects, large impactors can create a strong thermal anomaly affecting both the crust and the mantle, which can trigger a change in the dynamic patterns of the mantle.

  3. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    SciTech Connect

    Elizabeth M. Lenihan

    2003-12-12

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC

  4. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  5. Replica grating study. [response to aerospace environment, thermal vacuum, and electron irradiation

    NASA Technical Reports Server (NTRS)

    Gunter, R. C., Jr.

    1975-01-01

    Methods are outlined which were used to test the response of replica diffraction gratings to a space environment, specifically the response of the replica gratings to thermal-vacuum and electron irradiation stress. It is concluded that there probably is some degradation to thermal stress, but that there is probably no significant degradation due to a vacuum environment. It is further concluded that the degradation of performance of replica gratings because of electron irradiation is due to the interaction of the electrons and the replica grating substrate and not to the replication material itself. Replica and original gratings on the same substrate material should thus respond to particle irradiation in the same manner. A study is presented on the variation of refraction index of a space-related material, Nd:CaF2, with wavelength, percent neodymium doping, and temperature.

  6. Effects of natural environment on first generation solid rocket booster thermal protection system materials

    NASA Technical Reports Server (NTRS)

    Webb, D. D.

    1988-01-01

    The effort to demonstrate, by real-time exposure, the effects of the natural environment at Kennedy Space Center, Florida, upon the Thermal Protection System (TPS) of the Solid Rocket Booster (SRB) is summarized, and that the overall SRB TPS configuration is verified to meet all requirements for resistance to the conditions associated with outdoor weathering, including: solar radiation; temperature; humidity; precipitation; wind; sand/dust abrasion; static electricity; salt spray; fungus; and atmospheric oxidants. The evaluation criterion for this project was based upon flatwise tensile properties, visual inspection, color change, and thermal performance. Based upon the evaluation of the changes in these properties, it is concluded that properly applied and topcoat-protected TPS can satisfactorily withstand the conditions of the natural environment at KSC for exposures up to six months.

  7. The correlation between thermal and noxious gas environments, pig productivity and behavioral responses of growing pigs.

    PubMed

    Choi, Hong Lim; Han, Sang Hwa; Albright, Louis D; Chang, Won Kyung

    2011-09-01

    Correlations between environmental parameters (thermal range and noxious gas levels) and the status (productivity, physiological, and behavioral) of growing pigs were examined for the benefit of pig welfare and precision farming. The livestock experiment was conducted at a Seoul National University station in South Korea. Many variations were applied and the physiological and behavioral responses of the growing pigs were closely observed. Thermal and gas environment parameters were different during the summer and winter seasons, and the environments in the treatments were controlled in different manners. In the end, this study finds that factors such as Average Daily Gain (ADG), Adrenocorticotropic Hormone (ACTH), stress, posture, and eating habits were all affected by the controlled environmental parameters and that appropriate control of the foregoing could contribute to the improvement of precision farming and pig welfare.

  8. Enhanced quantum nonlocality induced by the memory of a thermal-squeezed environment

    NASA Astrophysics Data System (ADS)

    Chen, Po-Wen; Manirul Ali, Md; Chen, Shiaw-Huei

    2016-09-01

    We investigate the transient non-Markovian dynamics of quantum nonlocality for a pair of two-level atoms coupled to a common thermal-squeezed environment. We use Bell-CHSH inequality, steering inequality, and entanglement as theoretical tools to investigate the nonlocality dynamics. We see significant differences between the non-Markovian nonlocality dynamics and its Markovian counterpart. We mainly focus on quantum steering nonlocality which has gained much interest recently. An enhanced quantum nonlocality is shown through the violation of steering inequality and entanglement in the non-Markovian regime of the structured environment. A close correspondence is shown between steering nonlocality and entanglement dynamics.

  9. The Study of Simulated Space Radiation Environment Effect on Conductive Properties of ITO Thermal Control Materials

    NASA Astrophysics Data System (ADS)

    Wei-Quan, Feng; Chun-Qing, Zhao; Zi-Cai, Shen; Yi-Gang, Ding; Fan, Zhang; Yu-Ming, Liu; Hui-Qi, Zheng; Xue, Zhao

    In order to prevent detrimental effects of ESD caused by differential surface charging of spacecraft under space environments, an ITO transparent conductive coating is often deposited on the thermal control materials outside spacecraft. Since the ITO coating is exposed in space environment, the environment effects on electrical property of ITO coatings concern designers of spacecraft deeply. This paper introduces ground tests to simulate space radiation environmental effects on conductive property of ITO coating. Samples are made of ITO/OSR, ITO/Kapton/Al and ITO/FEP/Ag thermal control coatings. Simulated space radiation environment conditions are NUV of 500ESH, 40 keV electron of 2 × 1016 е/cm2, 40 keV proton of 2.5 × 1015 p/cm2. Conductive property is surface resistivity measured in-situ in vacuum. Test results proved that the surface resistivity for all ITO coatings have a sudden decrease in the beginning of environment test. The reasons for it may be the oxygen vacancies caused by vacuum and decayed RIC caused by radiation. Degradation in conductive properties caused by irradiation were found. ITO/FEP/Ag exhibits more degradation than other two kinds. The conductive property of ITO/kapton/Al is stable for vacuum irradiation. The analysis of SEM and XPS found more crackers and less Sn and In concentration after irradiation which may be the reason for conductive property degradation.

  10. AFLPs and Mitochondrial Haplotypes Reveal Local Adaptation to Extreme Thermal Environments in a Freshwater Gastropod

    PubMed Central

    Quintela, María; Johansson, Magnus P.; Kristjánsson, Bjarni K.; Barreiro, Rodolfo; Laurila, Anssi

    2014-01-01

    The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher FST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Mývatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Mývatn and highlight the utility of genome scans in detecting adaptive divergence. PMID:25007329

  11. A new experimental setup for making thermal emission measurements in a simulated lunar environment.

    PubMed

    Thomas, I R; Greenhagen, B T; Bowles, N E; Donaldson Hanna, K L; Temple, J; Calcutt, S B

    2012-12-01

    One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also. PMID:23278007

  12. A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator

    NASA Technical Reports Server (NTRS)

    Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean

    2013-01-01

    Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.

  13. The effects of urban stream improving the thermal environment in urban area

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ki; Na, Sang-il; Park, Jong-hwa

    2012-10-01

    Urban areas create distinctive urban climates by Urban Heat Island (UHI) that is the temperature increase in urban areas compared to that in surrounding rural areas and is caused by number of factors, such as land use / land cover (LULC) change, concentration of population and increase anthropogenic heat. In general, the study of thermal environment in urban area focused on UHI intensity and phenomenon. Recently, climate improvement has been studied using water and green belt of urban, as interest in UHI phenomenon mitigation or enhancement has been increased. Therefore in this study, effects of urban stream on urban thermal environment were analyzed using remotely sensed data. The Landsat 7 ETM+ data acquired on 6 September 2009 were utilized to derive the surface Temperature (Ts) and surface energy balance using Surface Energy Balance Algorithms for Land (SEBAL) (Bastiaanssen et al., 1998). The surface energy budget consists of net radiation at the surface (Rn), sensible heat flux to the air (H), latent heat flux (LE) and soil heat flux (G). The net radiation flux is computed by subtracting all outgoing radiant fluxes (K↑: shortwave outgoing, L↑ longwave outgoing) from all incoming radiant fluxes (K↓ shortwave incoming, L↓: longwave incoming). This is given in the surface energy budget equation: Rn = H + LE + G = K↓ - K↑ + L↓ - L↑. The result indicates that the Ts of urban stream are1 °C lower than circumjacent urban area, LE flux of urban stream is higher than surrounding urban area. However, land covers of streamside and around stream with concrete, asphalt and barren belt are comprised of hot spot zone that deteriorates urban thermal environment. And urban stream does perform a role of cool spot zone that improves urban thermal environment.

  14. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  15. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  16. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  17. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment

    NASA Astrophysics Data System (ADS)

    Singh, Aadesh P.; Kodan, Nisha; Mehta, Bodh R.

    2016-05-01

    The effect of thermal treatment on TiO2 thin films under oxygen deficient environment (5% H2 in Ar) at partial pressure of 2 × 10-2 Torr have been studied for photoelectrochemical (PEC) water splitting application. Thermal treatment in anatase TiO2 thin films exhibits a shift in optical absorption from UV to visible region and activates TiO2 for water splitting application under visible light. X-ray photoelectron spectroscopy results showed that the thermal treated thin films contain oxygen vacancies, which suggests improved charge transport. Optical absorption, X-ray spectroscopy (XPS) and Kelvin probe force microscope (KPFM) studies show reduction in band gap by 0.36 eV, shift in valence band maximum by 0.49 eV towards the Fermi level and work function values by 0.3 eV towards the vacuum level. The pristine TiO2 thin films exhibit very less photoactivity in terms of photocurrent density, whereas thermally treated thin films displayed a markedly enhanced photocurrent density of ∼2.41 mA/cm2 at 0.23 V vs. Ag/AgCl. Higher values of photocurrent density in thermal treated TiO2 films have been explained in terms of change in the optical and electrical properties along with energy band diagram.

  18. Loss of Shallow Geothermal Resources in Urban Environment Due to the Absence of Thermal Management Policies

    NASA Astrophysics Data System (ADS)

    García-Gil, A.; Vázquez-Suñé, E.; Sánchez-Navarro, J. A.

    2014-12-01

    Shallow geothermal energy resources are of interest worldwide for the development of strategies against climate change. The current regulative framework for the sustainable implementation of the technologies exploiting this resources is facing several barriers. In the case of groundwater heat pumps, the thermal interference between exploitations may be endangering their feasibility in urban environments. Uncertainty in prediction of the sustainability of shallow geothermal energy development in urban groundwater bodies stems from the absence of a scientific-based legal regulatory framework which protects stakeholders from thermal interferences between existent exploitations systems. The present work consists of a numerical study aimed at understanding and predicting the thermal interference between groundwater heat pumps where several induced heat plumes in an urban ground water body coalesce, thus generating a heat island effect. A transient groundwater flow and heat transport model was developed to reproduce complex high-resolution data obtained from local monitoring specifically designed to control the aquifer respond to geothermal exploitation. The model aims to reproduce the groundwater flow and heat transport processes in a shallow alluvial aquifer exploited by 27 groundwater heat pumps and influenced by a river-aquifer relationship dominated by flood events mainly occurring in winter when the surface temperature is between 3 and 10 ºC. The results from the simulations have quantified the time-space thermal interference between exploitation systems and the consequences of river-aquifer thermal exchange. The results obtained showed the complexity of thermal management of the aquifer due to the transient activity of exploitations over space and time. With the actual exploitation regime of shallow geothermal resources in the investigated area the model predicts a temperature rising tendency in the production wells until 2019 which can compromise the coefficient

  19. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster.

    PubMed

    Cooper, Brandon S; Hammad, Loubna A; Fisher, Nicholas P; Karty, Jonathan A; Montooth, Kristi L

    2012-06-01

    Theory predicts that developmental plasticity, the capacity to change phenotypic trajectory during development, should evolve when the environment varies sufficiently among generations, owing to temporal (e.g., seasonal) variation or to migration among environments. We characterized the levels of cellular plasticity during development in populations of Drosophila melanogaster experimentally evolved for over three years in either constant or temporally variable thermal environments. We used two measures of the lipid composition of cell membranes as indices of physiological plasticity (a.k.a. acclimation): (1) change in the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) and (2) change in lipid saturation (number of double bonds) in cool (16°C) relative to warm (25°C) developmental conditions. Flies evolved under variable environments had a greater capacity to acclimate the PE/PC ratio compared to flies evolved in constant environments, supporting the prediction that environments with high among-generation variance favor greater developmental plasticity. Our results are consistent with the selective advantage of a more environmentally sensitive allele that may have associated costs in constant environments.

  20. Experimental investigation on interstage thermal environment of launch vehicle with multijets in wind tunnel

    NASA Astrophysics Data System (ADS)

    Lin, J.; Cao, C.; Wu, Y.; Zhang, S.

    2013-06-01

    During the stage separation course of a launch vehicle, the environment of the stage is quite serious because of the high temperature and pressure. It is very important to investigate the pressure and heat flux distribution under the interstage thermal environment, as is good for the design of stage configuration. This paper presents the test technique of a thermal environment simulation with multi-jets of the launch vehicle stage separation in 1-meter-diameter hypersonic wind tunnel (HWT). The internal and external flows run simultaneously. A hot jet technique that makes use of five engine jets at the same time is adopted to simulate the internal flow. Pressure and heat flux measurements have also been developed. Pressure, temperature and heat flux characteristics of the first-stage fore-envelop head and the second-stage aft-envelop head which vary with different separation distances and different exhaust windows are introduced. The results indicate that the environment of a small stage separation distance is severe. The smaller separation distance is, the less is the uniformity of pressure, temperature, and heat flux distributions. A coaxial thermocouple is available to measure the heat flux between stages, whereas the accuracy of the heat flux measurement as well as the heat flux simulation rules need further exploring and studying.

  1. Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments.

    PubMed

    Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni

    2013-10-01

    Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence.

  2. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    PubMed Central

    2011-01-01

    Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C) in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass), and each trait harboured significant additive genetic variance in the standard temperature (27°C) only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass). Of the female traits measured, only ovary mass for crickets reared at the cooler

  3. Detecting Changes of Thermal Environment over the Bohai Coastal Region by Spectral Change Vector Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jia, G.

    2009-12-01

    Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was

  4. Subjective estimations of thermal environment in recreational urban spaces—Part 2: international comparison

    NASA Astrophysics Data System (ADS)

    Kántor, Noémi; Unger, János; Gulyás, Ágnes

    2012-11-01

    The present paper is the second part of our study in which we compare the results obtained in Szeged (Hungary) with those achieved through earlier outdoor thermal comfort projects based on simultaneous questionnaire surveys and on-site meteorological measurements. The main characteristics of the selected studies—conducted in Hungary, Sweden, Portugal, Canada, Taiwan and across Europe in the frame of project RUROS—are reviewed, emphasizing the common features and also the discrepancies in the applied methodology. We discuss their potential effects on the evolution and interpretation of the results concerning the subjective assessment of the thermal environment. Another aspect of the comparison focuses on the regional climatic differences naturally ensuing from the various locations, which left their marks on the results related to both physiological acclimatization and mental adaptation. The compared results of different studies include correlation coefficients expressing interrelationships between the different aspects of subjective estimations (thermal sensation, perceptions, preferences) and also between subjective assessments and the corresponding meteorological parameters. We compare neutral temperatures (expressed in physiological equivalent temperature, PET) which arose for Taiwan and Hungary, as well as thermal sensation zones for local inhabitants. Subjectively assessed temperature values of Sweden and Hungarians are analyzed according to the measured air temperature. According to our experiences the methodology should be standardized for the level of field surveys and also for the level of data processing in order to make the data collected in different locations comparable.

  5. Thermal Properties and Structural Stability of LaCoO3 in Reducing and Oxidizing Environments

    SciTech Connect

    Radovic, Miladin; Speakman, Scott A; Allard Jr, Lawrence Frederick; Payzant, E Andrew; Lara-Curzio, Edgar; Kriven, Waltraud M; Lloyd, John; Fegely, Laura C; Orlovskaya, Nina

    2008-09-01

    Thermal expansion of LaCoO3 perovskite in air and 4% H2/96% Ar reducing atmosphere has been studied by Thermal Mechanical Analysis (TMA). The thermal behavior of LaCoO3 in air exhibits a non-linear expansion in 100 400 C temperature range. A significant increase of CTE measured in air both during heating and cooling experiments occurs in the 200 250 C temperature range, corresponding to a known spin state transition. LaCoO3 is found to be unstable in a reducing atmosphere. It undergoes a series of expansion and contractions due to phase transformations beginning around 500 C with very intensive chemical/phase changes at 850oC and above. These expansions and contractions are directly related to the formation of La3Co3O8, La2CoO4, La4Co3O10, La2O3, CoO, and other Co compounds due to the reducing atmosphere. Although LaCoO3 is a good ionic and electronic conductor and catalyst, its high thermal expansion as well structural instability in reducing environments presents a serious restriction for its application in solid oxide fuel cells, sensors or gas separation membranes.

  6. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment.

    PubMed

    Höppe, P

    1999-10-01

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower. PMID:10552310

  7. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment.

    PubMed

    Höppe, P

    1999-10-01

    With considerably increased coverage of weather information in the news media in recent years in many countries, there is also more demand for data that are applicable and useful for everyday life. Both the perception of the thermal component of weather as well as the appropriate clothing for thermal comfort result from the integral effects of all meteorological parameters relevant for heat exchange between the body and its environment. Regulatory physiological processes can affect the relative importance of meteorological parameters, e.g. wind velocity becomes more important when the body is sweating. In order to take into account all these factors, it is necessary to use a heat-balance model of the human body. The physiological equivalent temperature (PET) is based on the Munich Energy-balance Model for Individuals (MEMI), which models the thermal conditions of the human body in a physiologically relevant way. PET is defined as the air temperature at which, in a typical indoor setting (without wind and solar radiation), the heat budget of the human body is balanced with the same core and skin temperature as under the complex outdoor conditions to be assessed. This way PET enables a layperson to compare the integral effects of complex thermal conditions outside with his or her own experience indoors. On hot summer days, for example, with direct solar irradiation the PET value may be more than 20 K higher than the air temperature, on a windy day in winter up to 15 K lower.

  8. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A

  9. Integrity evaluation of lower thermal shield under exposure to HFBR environment

    SciTech Connect

    Kassir, M.; Weeks, J.; Bandyopadhyay, K.; Shewmon, P.

    1998-01-01

    The effects of exposure to the HFBR environment on the carbon steel in the HFBR lower thermal shield were evaluated. Corrosion was found to be a non-significant degradation process. Radiation embrittlement has occurred; portions of the plate closest to the reactor are currently operating in the lower-shelf region of the Charpy impact curve (i.e., below the fracture toughness transition temperature). In this region, the effects of radiation on the mechanical properties of carbon steel are believed to have been saturated, so that no further deterioration is anticipated. A fracture toughness analysis shows that a large factor of safety (> 1.5) exists against propagation of credible hypothetical flaws. Therefore, the existing lower thermal shield structure is suitable for continued operation of the HFBR.

  10. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    In this article, combined effect of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is investigated by developing various refined beam theories which capture shear deformation influences needless of any shear correction factor. The material properties of FG nanobeam are temperature dependent and change gradually along the thickness through the power-law model. Size-dependent description of the nanobeam is performed applying nonlocal elasticity theory of Eringen. Nonlocal governing equations of embedded FG nanobeam in hygro-thermal environment obtained from Hamilton's principle are solved analytically. To verify the validity of the developed theories, the results of the present work are compared with those available in the literature. The effects of various hygro-thermal loadings, elastic foundation, gradient index, nonlocal parameter, and slenderness ratio on the vibrational behavior of FG nanobeams modeled via various beam theories are explored.

  11. EARLY THERMAL X-RAY EMISSION FROM LONG GAMMA-RAY BURSTS AND THEIR CIRCUMSTELLAR ENVIRONMENTS

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-02-10

    We performed a series of hydrodynamical calculations of an ultrarelativistic jet propagating through a massive star and the circumstellar matter (CSM) to investigate the interaction between the ejecta and the CSM. We succeed in distinguishing two qualitatively different cases in which the ejecta are shocked and adiabatically cool. To examine whether the cocoon expanding at subrelativistic speeds emits any observable signal, we calculate the expected photospheric emission from the cocoon. It is found that the emission can explain early thermal X-ray emission recently found in some long gamma-ray bursts (GRBs). The result implies that the difference of the circumstellar environment of long GRBs can be probed by observing their early thermal X-ray emission.

  12. Time dependent quantum thermodynamics of a coupled quantum oscillator system in a small thermal environment

    SciTech Connect

    Barnes, George L.; Kellman, Michael E.

    2013-12-07

    Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is “designed” by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of “classicalizing” behavior in the approach to thermal equilibrium are briefly considered.

  13. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  14. Physics and applications of atmospheric non-thermal air plasma with reference to environment

    NASA Astrophysics Data System (ADS)

    Marode, E.; Djermoune, D.; Dessante, P.; Deniset, C.; Ségur, P.; Bastien, F.; Bourdon, A.; Laux, C.

    2009-12-01

    Since air is a natural part of our environment, special attention is given to the study of plasmas in air at atmospheric pressure and their applications. This fact promoted the study of electrical conduction in air-like mixtures, i.e. mixtures containing an electronegative gas component. If the ionization growth is not limited its temporal evolution leads to spark formation, i.e. a thermal plasma of several thousand kelvins in a quasi-local thermodynamic equilibrium state. But before reaching such a thermal state, a plasma sets up where the electrons increase their energy characterized by an electron temperature Te much higher than that of heavy species T or T+ for the ions. Since the plasma is no longer characterized by only one temperature T, it is said to be in a non-thermal plasma (NTP) state. Practical ways are listed to prevent electron ionization from going beyond the NTP states. Much understanding of such NTP may be gathered from the study of the simple paradigmatic case of a discharge induced between a sharp positively stressed point electrode facing a grounded negative plane electrode. Some physical properties will be gathered from such configurations and links underlined between these properties and some associated applications, mostly environmental. Aerosol filtration and electrostatic precipitators, pollution control by removal of hazardous species contained in flue gas exhaust, sterilization applications for medical purposes and triggering fuel combustion in vehicle motors are among such applications nowadays.

  15. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    PubMed Central

    Issakhov, Alibek

    2014-01-01

    This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions. PMID:24991644

  16. Mathematical modelling of thermal process to aquatic environment with different hydrometeorological conditions.

    PubMed

    Issakhov, Alibek

    2014-01-01

    This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions. PMID:24991644

  17. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand.

    PubMed

    Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa

    2009-04-15

    Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.

  18. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  19. Land surface thermal environment during heat wave event measured by satellite observation

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yang, Song

    2014-11-01

    In summer 2013, mainly from July to August, most parts of China continued to experience an unusually severe heat wave with exceptionally high air temperatures, based on the records measured at meteorological stations. As a supplement to the weather station networks, remotely sensed observation can quantify detailed variation of surface temperature at relatively high spatial resolution, owing to its ability to provide a complete and homogeneous data sources. In addition to the GHCN CAMS gridded land air surface temperature, land surface temperature products of MODIS including MOD11C3/MYD11C3 and MOD11A2/MYD11A2 were used to evaluate the anomaly of summertime thermal environment over the South China in 2013. To investigate the impacts of heat wave event on built environment, the MODIS Land Cover Type yearly product (MCD12Q1) was collected. Regional thermal anomaly was observed in both air and surface temperature measurements, especially for August. Statistics based on MOD11A2/MYD11A2 shows the spatio-temporal variation of land surface temperature at regional scale, and the heterogeneous characteristics in diurnal cycle are also shown. Compared with other types, the urban and built-up generally presents larger surface temperature at daytime. Detailed analyses were further conducted for three selected regions roughly covering the Yangtze River Delta, the Pearl River Delta, and the areas around Wuhan City respectively. Findings indicate that urban and built-up exhibits more distinct thermal contrast to its surroundings at daytime, in contrast to the situation at nighttime. This thermal contrast was defined as surface urban heat island intensity (UHII) calculated using a newly proposed procedure, in this paper. The UHII shows both time- and geography-dependent variations. Meanwhile, the UHII over medium and small cities was even more obvious and larger than that over megalopolitan areas. These preliminary findings suggest that land use and land cover changes as a

  20. Influence of boundary slip effect on thermal environment in thermo-chemical non-equilibrium flow

    NASA Astrophysics Data System (ADS)

    Miao, Wenbo; Zhang, Liang; Li, Junhong; Cheng, Xiaoli

    2014-12-01

    A kind of new hypersonic vehicle makes long-time flight in transitional flow regime where boundary slip effect caused by low gas density will have an important influence on the thermal environment around the vehicles. Numerical studies on the boundary slip effect as hypersonic vehicles fly in high Mach number has been carried out. The method for solving non-equilibrium flows considering slip boundary, surface catalysis and chemical reactions has been built up, and been validated by comparing the thermal environment results with STS-2 flight test data. The mechanism and rules of impact on surface heat flux by different boundary slip level (Knudsen number from 0.01 to 0.05) has been investigated in typical hypersonic flow conditions. The results show that the influence mechanisms of boundary slip effect are different on component diffusion heat flux and convective heat flux; slip boundary increases the near wall temperature which diminish the convective heat; whereas enhances the near wall gas diffusion heat because of the internal energy's growing. Component diffusion heat flux takes a smaller portion of the total heat flux, so the slip boundary reduces the total wall heat flux. As Knudsen number goes up, the degree of rarefaction increases, the influences of slip boundary on convective and component diffusion heat flux are both enhanced, total heat flux grows by a small margin, and boundary slip effect is more distinct.

  1. Thermal history sensors for non-destructive temperature measurements in harsh environments

    SciTech Connect

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  2. Effect of thermal environment evolution on AlN bulk sublimation crystal growth

    NASA Astrophysics Data System (ADS)

    Cai, D.; Zheng, L. L.; Zhang, H.; Zhuang, D.; Herro, Z. G.; Schlesser, R.; Sitar, Z.

    2007-08-01

    To obtain a large and thick AlN single crystal during sublimation growth, it is very important to maintain the thermal environment suitable for growth inside the crucible during a long period of time (>50 h). In this paper, an in-house developed integrated model capable of describing inductive, radiative and conductive heat transfer will be used to simulate the transient behavior of thermal environment inside the crucible during a 40-h experiment growth. Effects of graphite insulation degradation on temperature distribution inside the crucible will be investigated. Simulation results will be compared with the experimental data to study the effects of the insulation degradation-induced particle deposition, geometric variation of source material and crystal size enlargement on the temperature distribution in the crucible and the growth rate. The relationship between graphite insulation degradation and power input change of the induction-heated system will be established. The evolution of temperature difference between the source material and crystal, which is the driving force for growth, will be presented. This study will also provide the explanation of mechanism underling substantial reduction of growth rate after a long experiment run.

  3. SRB thermal protection systems materials test results in an arc-heated nitrogen environment

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1979-01-01

    The external surface of the Solid Rocket Booster (SRB) will experience imposed thermal and shear environments due to aerodynamic heating and radiation heating during launch, staging and reentry. This report is concerned with the performance of the various TPS materials during the staging maneuver. During staging, the wash from the Space Shuttle Main Engine (SSME) exhust plumes impose severe, short duration, thermal environments on the SRB. Five different SRB TPS materials were tested in the 1 MW Arc Plasma Generator (APG) facility. The maximum simulated heating rate obtained in the APG facility was 248 Btu/sq ft./sec, however, the test duration was such that the total heat was more than simulated. Similarly, some local high shear stress levels of 0.04 psia were not simulated. Most of the SSME plume impingement area on the SRB experiences shear stress levels of 0.02 psia and lower. The shear stress levels on the test specimens were between 0.021 and 0.008 psia. The SSME plume stagnation conditions were also simulated.

  4. Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    SciTech Connect

    Liu, K.-L.; Goan, H.-S.

    2007-08-15

    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use the quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.

  5. Thermal history sensors for non-destructive temperature measurements in harsh environments

    NASA Astrophysics Data System (ADS)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-01

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  6. Differentially expressed genes associated with adaptation to different thermal environments in three sympatric Cuban Anolis lizards.

    PubMed

    Akashi, Hiroshi D; Cádiz Díaz, Antonio; Shigenobu, Shuji; Makino, Takashi; Kawata, Masakado

    2016-05-01

    How animals achieve evolutionary adaptation to different thermal environments is an important issue for evolutionary biology as well as for biodiversity conservation in the context of recent global warming. In Cuba, three sympatric species of Anolis lizards (Anolis allogus, A. homolechis and A. sagrei) inhabit different thermal microhabitats, thereby providing an excellent opportunity to examine how they have adapted to different environmental temperatures. Here, we performed RNA-seq on the brain, liver and skin tissues from these three species to analyse their transcriptional responses at two different temperatures. In total, we identified 400, 816 and 781 differentially expressed genes (DEGs) between the two temperatures in A. allogus, A. homolechis and A. sagrei, respectively. Only 62 of these DEGs were shared across the three species, indicating that global transcriptional responses have diverged among these species. Gene ontology (GO) analysis showed that large numbers of ribosomal protein genes were DEGs in the warm-adapted A. homolechis, suggesting that the upregulation of protein synthesis is an important physiological mechanism in the adaptation of this species to hotter environments. GO analysis also showed that GO terms associated with circadian regulation were enriched in all three species. A gene associated with circadian regulation, Nr1d1, was detected as a DEG with opposite expression patterns between the cool-adapted A. allogus and the hot-adapted A. sagrei. Because the environmental temperature fluctuates more widely in open habitats than in forests throughout the day, the circadian thermoregulation could also be important for adaptation to distinct thermal habitats.

  7. Asbestos/NESHAP adequately wet guidance

    SciTech Connect

    Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

    1990-12-01

    The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

  8. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  9. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  10. Relevance of thermal environment to human health: a case study of Ondo State, Nigeria

    NASA Astrophysics Data System (ADS)

    Omonijo, Akinyemi Gabriel; Adeofun, Clement Olabinjo; Oguntoke, Olusegun; Matzarakis, Andreas

    2013-07-01

    The interconnection between weather and climate and the performance, well-being, and human health cannot be overemphasized. The relationship between them is of both local and global significance. Information about weather, climate, and thermal environment is very important to human health and medical practitioners. The most crucial environmental information needed by medical practitioners and for maintaining human health, performance, and well-being are thermal conditions. The study used meteorological variables: air temperature, relative humidity, wind speed, solar radiation, and RayMan model as an analytical tool to compute physiologically equivalent temperature (PET) in order to assess thermo-physiological thresholds in Ondo State. The study revealed that there are marked spatial and seasonal variations in the environmental thermal conditions in the study area. The results of physiologically equivalent temperature for different grades of thermal sensation and physiological stress on human beings indicate that about 60 % of the total study period (1998-2008) fall under physiological stress level of moderate heat stress (PET 31-36 °C). In derived savannah, 32.6 % out of the total study period was under strong heat stress. In view of this, the study concluded that Ondo State may likely be prone to heat-related ailments and that some of the death recorded in the State, in recent times, may be heat-related mortality, but this is difficult to ascertain because there is no postmortem records in Nigeria where it could be confirmed. This type of study is relevant to help government to improve health care interventions and achieve Millennium Development Goals in health sector.

  11. Effects of low Earth orbit environment on the Long Duration Exposure Facility thermal control coatings

    NASA Technical Reports Server (NTRS)

    Sampair, Thomas R.; Berrios, William M.

    1992-01-01

    One of the benefits of the Long Duration Exposure Facility (LDEF) was the opportunity to study the before and after effects of low earth orbit space environment on the spacecraft thermal control coatings. Since the LDEF's thermal control was totally passive by design, the selection of the external surface absorptivity to emissivity ratio (alpha/epsilon) and the ability for the coating to retain the alpha/epsilon over time was an important consideration in the thermal design of the LDEF. The primary surface coating chosen for the LDEF structure was clear chromic anodized aluminum with an average design alpha/epsilon of 0.32/0.16. External surface absorptivity (alpha) and emissivity (epsilon) were measured on all intercostals, longerons, tray mounting flanges, thermal control panels, and a limited number of experiment surface coatings after the experiment trays were removed from the LDEF structure. All surface alpha/epsilon measurements were made using portable hand held infrared and solar spectrum reflectometers. The absorptivity measurements were taken with a Devices and Services SSR-ER version 5.0 solar spectra reflectometer which has a stated uncertainty of +/- 0.01, and all normal emissivity measurements were made using the Gier Dunkle DB-100 infrared reflectometer also with a stated uncertainty of +/- 0.01. Both instruments were calibrated in the laboratory by LaRC instrumentation personnel before being used in the field at KSC. A combined total of 733 measurements were taken on the anodized aluminum hardware which included the structure (intercostals, longerons, and center ring), earth and space end thermal control panels, and experiment tray mounting flanges. The facility thermal control coatings measured in this survey cover 33 percent of the total exposed LDEF surface area. To correlate low earth orbit environmental effects on the anodized coatings, measurements were taken in both exposed and unexposed surfaces and compared to quality assurance (QA

  12. Supervision of Student Teachers: How Adequate?

    ERIC Educational Resources Information Center

    Dean, Ken

    This study attempted to ascertain how adequately student teachers are supervised by college supervisors and supervising teachers. Questions to be answered were as follows: a) How do student teachers rate the adequacy of supervision given them by college supervisors and supervising teachers? and b) Are there significant differences between ratings…

  13. Small Rural Schools CAN Have Adequate Curriculums.

    ERIC Educational Resources Information Center

    Loustaunau, Martha

    The small rural school's foremost and largest problem is providing an adequate curriculum for students in a changing world. Often the small district cannot or is not willing to pay the per-pupil cost of curriculum specialists, specialized courses using expensive equipment no more than one period a day, and remodeled rooms to accommodate new…

  14. Toward More Adequate Quantitative Instructional Research.

    ERIC Educational Resources Information Center

    VanSickle, Ronald L.

    1986-01-01

    Sets an agenda for improving instructional research conducted with classical quantitative experimental or quasi-experimental methodology. Includes guidelines regarding the role of a social perspective, adequate conceptual and operational definition, quality instrumentation, control of threats to internal and external validity, and the use of…

  15. An Adequate Education Defined. Fastback 476.

    ERIC Educational Resources Information Center

    Thomas, M. Donald; Davis, E. E. (Gene)

    Court decisions historically have dealt with educational equity; now they are helping to establish "adequacy" as a standard in education. Legislatures, however, have been slow to enact remedies. One debate over education adequacy, though, is settled: Schools are not financed at an adequate level. This fastback is divided into three sections.…

  16. Funding the Formula Adequately in Oklahoma

    ERIC Educational Resources Information Center

    Hancock, Kenneth

    2015-01-01

    This report is a longevity, simulational study that looks at how the ratio of state support to local support effects the number of school districts that breaks the common school's funding formula which in turns effects the equity of distribution to the common schools. After nearly two decades of adequately supporting the funding formula, Oklahoma…

  17. Association between thermal environment and Salmonella in fecal samples from dairy cattle in midwestern United States.

    PubMed

    Likavec, Tasha; Pires, Alda F A; Funk, Julie A

    2016-07-01

    The objective of this study was to describe the association between thermal measures in the barn environment (pen temperature and humidity) and fecal shedding of Salmonella in dairy cattle. A repeated cross-sectional study was conducted within a commercial dairy herd located in the midwestern United States. Five pooled fecal samples were collected monthly from each pen for 9 mo and submitted for microbiological culture. Negative binomial regression methods were used to test the association [incidence rate ratio (IRR)] between Salmonella pen status (the count of Salmonella-positive pools) and thermal environmental parameters [average temperature and temperature humidity index (THI)] for 3 time periods (48 h, 72 h, and 1 wk) before fecal sampling. Salmonella was cultured from 10.8% [39/360; 95% confidence interval (CI): 7.8% to 14.5%] of pooled samples. The highest proportion of positive pools occurred in August. The IRR ranged from 1.26 (95% CI: 1.15 to 1.39, THI 1 wk) to 4.5 (95% CI: 2.13 to 9.51, heat exposure 1 wk) across all thermal parameters and lag time periods measured. For example, the incidence rate of Salmonella-positive pools increased by 54% for every 5°C increment in average temperature (IRR = 1.54; 95% CI: 1.29 to 1.85) and 29% for every 5-unit increase in THI (IRR = 1.29; 95% CI: 1.16 to 1.42) during the 72 h before sampling. The incidence rate ratio for pens exposed to higher temperatures (> 25°C) was 4.5 times (95% CI: 2.13 to 9.51) the incidence rate ratio for pens exposed to temperatures < 25°C in the 72 h before sampling. Likewise, the incidence rate ratio for pens exposed to THI > 70 was 4.23 times greater (95% CI: 2.1 to 8.28) than when the THI was < 70 in the 72 h before sampling. An association was found between the thermal environment and Salmonella shedding in dairy cattle. Further research is warranted in order to fully understand the component risks associated with the summer season and increased Salmonella shedding. PMID:27408330

  18. Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Hsu, Shih-Yung; Huang, Jen-Te; Liu, Jorn-Hon; Huang, Yu-Li

    2013-05-01

    Legionella are commonly found in natural and man-made aquatic environments and are able to inhabit various species of protozoa. The relationship between the occurrence of Legionella spp. within protozoa and human legionellosis has been demonstrated; however, the proportions of intracellular and extracellular Legionella spp. in the aquatic environment were rarely reported. In this study, we developed a new method to differentiate intracellular and extracellular Legionella spp. in the aquatic environment. Water samples from three thermal spring recreational areas in southeastern Taiwan were collected and analyzed. For each water sample, concurrent measurements were performed for Legionella spp. and their free-living amoebae hosts. The overall detection rate was 32 % (16/50) for intracellular Legionella spp. and 12 % (6/50) for extracellular Legionella spp. The most prevalent host of Legionella spp. was Hartmannella vermiformis. The identified Legionella spp. differed substantially between intracellular and extracellular forms. The results showed that it may be necessary to differentiate intracellular and extracellular forms of Legionella spp.

  19. Assessment of Human Safety and Thermal Comfort in High-Temperature Environment: CFD and Human Thermoregulation Model

    NASA Astrophysics Data System (ADS)

    Xuefeng, Han; Wenguo, Weng; Shifei, Shen

    2010-05-01

    The safety and the thermal comfort of victims and firefighters are important in the building fires, which are a little dependent on the occupant fatalities. In order to investigate the effects of the dangerous environment on human body in fires, numerical calculation of the heat transfer and human thermoregulation are presented in this paper. The numerical manikins coupled with human thermal models were proved as powerful tools for visualizing thermal comfort. The two-node model by Gagge and multi-code thermoregulation models were investigated, and the Gagge's model was coupled with the CFD for high-temperature environment simulation, with which a numerical manikin was built. During the simulation, temperatures of skin and core compartment of Computer Simulated Person (CPS) were recorded respectively, and the Predicted Mean Vote index values were counted. The thermal load on skin is much higher than neutral cases and the skin can be burnt in minutes if no protection and heat abstraction methods were introduced. Though existing models can predict thermal comfort in general indoor environment, they are not suitable in predicting the thermal comfort with high-temperature cases. It was suggested that more research combining CFD coupling thermoregulation models with thermal manikin experiment are needed.

  20. Models of coefficient of thermal expansion (CTE) for Gilsocarbon graphites irradiated in inert and oxidising environments

    NASA Astrophysics Data System (ADS)

    Eason, Ernest D.; Hall, Graham N.; Marsden, Barry J.; Heys, Graham B.

    2013-05-01

    This paper presents the development and validation of an empirical model of radiation effects on coefficient of thermal expansion (CTE) for the Gilsocarbon graphites used in Advanced Gas-cooled Reactors (AGRs). The combined irradiation and oxidation model is based in part on a new model of fast neutron damage in inert environment. The new inert model shows an increase to an "upper shelf" irradiated CTE value at very low dose, then CTE values decrease with increasing dose following a hyperbolic tangent function. The effect of the actual exposure in AGRs is modelled by shifting the inert model in both dose and CTE directions to agree with the CTE measurements on material trepanned from moderator bricks in operating AGRs. The shift in the inert model that is needed to match the trepanned data varies significantly by reactor. The new model predicts randomly-selected validation data that were not used in model fitting as well as it fits the calibration data.

  1. Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.

    2007-01-01

    The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.

  2. The definition of the low earth orbital environment and its effect on thermal control materials

    NASA Technical Reports Server (NTRS)

    Durcanin, J. T.; Chalmers, D. R.; Visentine, J. T.

    1987-01-01

    The LEO environment and its effects on thermal-control materials (TCMs) being evaluated for use in long-term-mission space structures such as the Space Station are characterized, summarizing the results of recent space and laboratory experiments. Factors examined include atomic oxygen (a serious problem out to 600-700 km), ionizing radiation, solar UV radiation, solid particles (manmade debris and micrometeoroids, a significant hazard out to about 1000 km), and synergistic effects. Numerical data on the expected intensity of these effects for the different Space Station components, the resistance of specific TCMs to the effects, and the effectiveness of protective coatings are compiled in extensive tables and illustrated with diagrams, graphs, and micrographs.

  3. Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments

    SciTech Connect

    Lee, E.H.; Maziasz, P.J.; Rowcliffe, A.F.

    1980-01-01

    Transmission electron diffraction techniques coupled with quantitative x-ray energy dispersive spectroscopy have been used to characterize the phases which develop in austenitic stainless steels during exposure to thermal and to irradiation environments. In AISI 316 and Ti-modified stainless steels some thirteen phases have been identified and characterized in terms of their crystal structure and chemical composition. Irradiation does not produce any completely new phases. However, as a result of radiation-induced segregation principally of Ni and Si, and of enhanced diffusion rates, several major changes in phase relationships occur during irradiation. Firstly, phases characteristic of remote regions of the phase diagram appear unexpectedly and dissolve during postirradiation annealing (radiation-induced phases). Secondly, some phases develop with their compositions significantly altered by the incorporation of Ni or Si (radiation-modified phases).

  4. Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments

    NASA Astrophysics Data System (ADS)

    Fazelzadeh, S. Ahmad; Ghavanloo, Esmaeal

    2014-02-01

    Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simply-supported configuration. Based on the nonlocal plate theory which incorporates size effects into the classical theory, closed-form expressions for the frequencies and relative frequency shifts of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of temperature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS-based mass sensor increases with increasing temperature difference. [Figure not available: see fulltext.

  5. Investigation of Primary Dew-Point Saturator Efficiency in Two Different Thermal Environments

    NASA Astrophysics Data System (ADS)

    Zvizdic, D.; Heinonen, M.; Sestan, D.

    2015-08-01

    The aim of this paper is to describe the evaluation process of the performance of the low-range saturator (LRS), when exposed to two different thermal environments. The examined saturator was designed, built, and tested at MIKES (Centre for Metrology and Accreditation, Finland), and then transported to the Laboratory for Process Measurement (LPM) in Croatia, where it was implemented in a new dew-point calibration system. The saturator works on a single-pressure-single-pass generation principle in the dew/frost-point temperature range between and . The purpose of the various tests performed at MIKES was to examine the efficiency and non-ideality of the saturator. As a test bath facility in Croatia differs from the one used in Finland, the same tests were repeated at LPM, and the effects of different thermal conditions on saturator performance were examined. Thermometers, pressure gauges, an air preparation system, and water for filling the saturator at LPM were also different than those used at MIKES. Results obtained by both laboratories indicate that the efficiency of the examined saturator was not affected either by the thermal conditions under which it was tested or by equipment used for the tests. Both laboratories concluded that LRS is efficient enough for a primary realization of the dew/frost-point temperature scale in the range from to , with flow rates between and . It is also shown that a considerable difference of the pre-saturator efficiency, indicated by two laboratories, did not have influence to the overall performance of the saturator. The results of the research are presented in graphical and tabular forms. This paper also gives a brief description of the design and operation principle of the investigated low-range saturator.

  6. Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen.

    PubMed

    Sicot, F X; Mesnage, M; Masselot, M; Exposito, J Y; Garrone, R; Deutsch, J; Gaill, F

    2000-09-29

    The annelid Alvinella pompejana is probably the most heat-tolerant metazoan organism known. Previous results have shown that the level of thermal stability of its interstitial collagen is significantly greater than that of coastal annelids and of vent organisms, such as the vestimentiferan Riftia pachyptila, living in colder parts of the deep-sea hydrothermal environment. In order to investigate the molecular basis of this thermal behavior, we cloned and sequenced a large cDNA molecule coding the fibrillar collagen of Alvinella, including one half of the helical domain and the entire C-propeptide domain. For comparison, we also cloned the 3' part of the homologous cDNA from Riftia. Comparison of the corresponding helical domains of these two species, together with that of the previously sequenced domain of the coastal lugworm Arenicola marina, showed that the increase in proline content and in the number of stabilizing triplets correlate with the outstanding thermostability of the interstitial collagen of A. pompejana. Phylogenetic analysis showed that triple helical and the C-propeptide parts of the same collagen molecule evolve at different rates, in favor of an adaptive mechanism at the molecular level. PMID:10993725

  7. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  8. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-­-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-­-shield for extreme entry environment.

  9. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  10. Courtship Song Does Not Increase the Rate of Adaptation to a Thermally Stressful Environment in a Drosophila melanogaster Laboratory Population

    PubMed Central

    Cabral, Larry G.; Holland, Brett

    2014-01-01

    Courtship song in D. melanogaster contributes substantially to male mating success through female selection. We used experimental evolution to test whether this display trait is maintained through adaptive female selection because it indicates heritable male quality for thermal stress tolerance. We used non-displaying, outbred populations of D. melanogaster (nub1) mutants and measured their rate of adaptation to a new, thermally stressful environment, relative to wild-type control populations that retained courtship song. This design retains sexually selected conflict in both treatments. Thermal stress should select across genomes for newly beneficial alleles, increasing the available genetic and phenotypic variation and, therefore, the magnitude of female benefit derived from courtship song. Following introduction to the thermally stressful environment, net reproductive rate decreased 50% over four generations, and then increased 19% over the following 16 generations. There were no differences between the treatments. Possible explanations for these results are discussed. PMID:25365209

  11. Characteristics of Trailer Thermal Environment during Commercial Swine Transport Managed under U.S. Industry Guidelines.

    PubMed

    Xiong, Yijie; Green, Angela; Gates, Richard S

    2015-01-01

    Transport is a critical factor in modern pork production and can seriously affect swine welfare. While previous research has explored thermal conditions during transport, the impact of extreme weather conditions on the trailer thermal environment under industry practices has not been well documented; and the critical factors impacting microclimate are not well understood. To assess the trailer microclimate during transport events, an instrumentation system was designed and installed at the central ceiling level, pig level and floor-level in each of six zones inside a commercial swine trailer. Transport environmental data from 34 monitoring trips (approximately 1-4 h in duration each) were collected from May, 2012, to February, 2013, with trailer management corresponding to the National Pork Board Transport Quality Assurance (TQA) guidelines in 31 of these trips. According to the TQA guidelines, for outdoor temperature ranging from 5 °C (40 °F) to 27 °C (80 °F), acceptable thermal conditions were observed based on the criteria that no more than 10% of the trip duration was above 35 °C (95 °F) or below 0 °C (32 °F). Recommended bedding, boarding and water application were sufficient in this range. Measurements support relaxing boarding guidelines for moderate outdoor conditions, as this did not result in less desirable conditions. Pigs experienced extended undesirable thermal conditions for outdoor temperatures above 27 °C (80 °F) or below 5 °C (40 °F), meriting a recommendation for further assessment of bedding, boarding and water application guidelines for extreme outdoor temperatures. An Emergency Livestock Weather Safety Index (LWSI) condition was observed inside the trailer when outdoor temperature exceeded 10 °C (50 °F); although the validity of LWSI to indicate heat stress for pigs during transport is not well established. Extreme pig surface temperatures in the rear and middle zones of the trailer were more frequently experienced than in the

  12. Characteristics of Trailer Thermal Environment during Commercial Swine Transport Managed under U.S. Industry Guidelines.

    PubMed

    Xiong, Yijie; Green, Angela; Gates, Richard S

    2015-01-01

    Transport is a critical factor in modern pork production and can seriously affect swine welfare. While previous research has explored thermal conditions during transport, the impact of extreme weather conditions on the trailer thermal environment under industry practices has not been well documented; and the critical factors impacting microclimate are not well understood. To assess the trailer microclimate during transport events, an instrumentation system was designed and installed at the central ceiling level, pig level and floor-level in each of six zones inside a commercial swine trailer. Transport environmental data from 34 monitoring trips (approximately 1-4 h in duration each) were collected from May, 2012, to February, 2013, with trailer management corresponding to the National Pork Board Transport Quality Assurance (TQA) guidelines in 31 of these trips. According to the TQA guidelines, for outdoor temperature ranging from 5 °C (40 °F) to 27 °C (80 °F), acceptable thermal conditions were observed based on the criteria that no more than 10% of the trip duration was above 35 °C (95 °F) or below 0 °C (32 °F). Recommended bedding, boarding and water application were sufficient in this range. Measurements support relaxing boarding guidelines for moderate outdoor conditions, as this did not result in less desirable conditions. Pigs experienced extended undesirable thermal conditions for outdoor temperatures above 27 °C (80 °F) or below 5 °C (40 °F), meriting a recommendation for further assessment of bedding, boarding and water application guidelines for extreme outdoor temperatures. An Emergency Livestock Weather Safety Index (LWSI) condition was observed inside the trailer when outdoor temperature exceeded 10 °C (50 °F); although the validity of LWSI to indicate heat stress for pigs during transport is not well established. Extreme pig surface temperatures in the rear and middle zones of the trailer were more frequently experienced than in the

  13. Qubit-mediated time-robust entangling of oscillators in thermal environments

    SciTech Connect

    Tufarelli, Tommaso; Bose, Sougato; Kim, M. S.

    2009-12-15

    We consider two separated oscillators initially in equilibrium and continuously interacting with thermal environments and propose a way to entangle them using a mediating qubit. An appropriate interaction allows for an analytic treatment of the open system, removes the necessity of fine-tuning interaction times, and results in a high tolerance of the entanglement to finite temperature. The entanglement thus produced between the oscillators can be verified either through a Bell inequality relying on oscillator parity measurements or through conditional extraction of the entanglement on two mutually noninteracting qubits. The latter process also shows that the generated mixed-entangled state of the oscillators is an useful resource for entangling qubits. By allowing for influences from environments, taking feasible qubit-oscillator interactions and measurement settings, this scheme should be implementable in a variety of experimental setups. The method presented for the solution of the master equation can also be adapted to a variety of problems involving the same form of qubit-oscillator interaction

  14. Heart rate in Palaemon northropi (Rankin) in relation to acute changes in thermal environment

    SciTech Connect

    Swanson, C.J.; Wingard, C.; Kitakis, F. )

    1991-03-15

    The Glass Shrimp (Palaemon northropi), common to shallow water/tide pool environs of Atlantic waters, was examined in a series of experiments whereby the temperature-dependence of steady-state heart rate was assessed after acute, controlled changed in their thermal environment. Collection site, tide pool variations averaged 17.2-31.6C/24 hr. period. Accordingly, steady-state heart rates were determined at 5, 15, 25, and 30C by using both timed, optical recording and impedance methods. Mean values obtained were 88bpm (5C), 181 bpm(15C), 236bpm(25C), and 52bpm(30C). Calculated Q{sub 10} determinations ranged from the limits of 1.3 to 2.1 excluding the highest temperature state used. Specimens used averaged 0.62gm wet body weight, and no significant difference between males and gravid females was found. Additionally, the impedance method employed allowed for more precise rate determinations at high heart rates: at the lower heart rates, there was no difference between optically-timed vs. impedance method. Measurement at 30C characteristically showed a severe depression of heart rate, and high mortality after determinations. It is concluded that in situ field survival of Palaemon northropi may involve a time-dependence and/or other mechanisms whereby upper environmental temperatures may be abated.

  15. A comparison of methods for total community DNA preservation and extraction from various thermal environments.

    PubMed

    Mitchell, Kendra R; Takacs-Vesbach, Cristina D

    2008-10-01

    The widespread use of molecular techniques in studying microbial communities has greatly enhanced our understanding of microbial diversity and function in the natural environment and contributed to an explosion of novel commercially viable enzymes. One of the most promising environments for detecting novel processes, enzymes, and microbial diversity is hot springs. We examined potential biases introduced by DNA preservation and extraction methods by comparing the quality, quantity, and diversity of environmental DNA samples preserved and extracted by commonly used methods. We included samples from sites representing the spectrum of environmental conditions that are found in Yellowstone National Park thermal features. Samples preserved in a non-toxic sucrose lysis buffer (SLB), along with a variation of a standard DNA extraction method using CTAB resulted in higher quality and quantity DNA than the other preservation and extraction methods tested here. Richness determined using DGGE revealed that there was some variation within replicates of a sample, but no statistical difference among the methods. However, the sucrose lysis buffer preserved samples extracted by the CTAB method were 15-43% more diverse than the other treatments.

  16. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    NASA Astrophysics Data System (ADS)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  17. Characteristics of Trailer Thermal Environment during Commercial Swine Transport Managed under U.S. Industry Guidelines

    PubMed Central

    Xiong, Yijie; Green, Angela; Gates, Richard S.

    2015-01-01

    Simple Summary Temperature and thermal conditions of the interior of a swine trailer during transport were monitored over a broad range of outdoor conditions (34 trips total) managed according to industry best practice (Transport Quality Assurance (TQA) guidelines (NPB, 2008)). For the outdoor temperature range of 5 °C (40 °F) to 27 °C (80 °F), generally acceptable trailer thermal conditions were observed according to the TQA. Beyond this outdoor temperature range, undesirable conditions within the trailer were prevalent. Areas for potential improvement in transport management were identified. Stops resulted in rapid increases in temperature, which could be beneficial during cooler outdoor temperatures, but detrimental for warmer outdoor temperatures. Abstract Transport is a critical factor in modern pork production and can seriously affect swine welfare. While previous research has explored thermal conditions during transport, the impact of extreme weather conditions on the trailer thermal environment under industry practices has not been well documented; and the critical factors impacting microclimate are not well understood. To assess the trailer microclimate during transport events, an instrumentation system was designed and installed at the central ceiling level, pig level and floor-level in each of six zones inside a commercial swine trailer. Transport environmental data from 34 monitoring trips (approximately 1–4 h in duration each) were collected from May, 2012, to February, 2013, with trailer management corresponding to the National Pork Board Transport Quality Assurance (TQA) guidelines in 31 of these trips. According to the TQA guidelines, for outdoor temperature ranging from 5 °C (40 °F) to 27 °C (80 °F), acceptable thermal conditions were observed based on the criteria that no more than 10% of the trip duration was above 35 °C (95 °F) or below 0 °C (32 °F). Recommended bedding, boarding and water application were sufficient in this range

  18. Early age thermal conditioning immediately reduces body temperature of broiler chicks in a tropical environment.

    PubMed

    De Basilio, V; Requena, F; León, A; Vilariño, M; Picard, M

    2003-08-01

    Early age thermal conditioning (TC) durably improves resistance of broilers to heat stress and reduces body temperature (Tb). Three experiments on broiler chicks were conducted to evaluate the effects of TC at 5 d of age on Tb variation measured by thermometer between 4 and 7 d of age, under a tropical environment. Because manipulation of chickens to measure Tb with a thermometer may increase Tb, a preliminary experiment on 13 3-to-4-wk-old male broilers compared Tb measured by telemetry to Tb measured in the terminal colon during three successive periods at 22, 33, and 22 degrees C. During heat exposure, Tb rapidly increased by 0.9 degrees C and plateaued over 24 h. During the last period, seven of the broilers rapidly reduced Tb to a plateau lower than the initial Tb, although six broilers exhibited more variable Tb. Measurement by thermometer underestimated on average core Tb by 0.28 degrees C at 22 degrees C and by 0.57 degrees C at 33 degrees C, whereas Tb recorded by telemetry was not affected by manipulation of the chickens. TC reduced Tb 24 h later in the three experiments. Compared to unexposed control chicks (N), 12 h of TC at 40 degrees C did not significantly reduce Tb at 7 d of age, although 24 h did. TC at 38 and 40 degrees C over 24 h significantly reduced Tb variation from 4 to 7 d of age compared to N chicks, whereas 36 degrees C did not. Withdrawing feed from the chicks for 2 h prior to measurement did not significantly reduce Tb at 4 and 7 d of age, but Tb reduction due to TC was greater in fed chicks (0.28 degrees C) than in chicks without feed (0.05 degrees C). Early age thermal conditioning at 38 to 40 degrees C at 5 d of age for 24 h reduced body temperature of 7-d-old male broilers.

  19. Nutritional and environmental studies on an ocean-going oil tanker. 1. Thermal environment

    PubMed Central

    Collins, K. J.; Eddy, T. P.; Lee, D. E.; Swann, P. G.

    1971-01-01

    Collins, K. J., Eddy, T. P., Lee, D. E., and Swann, P. G. (1971).Brit. J. industr. Med.,28, 237-245. Nutritional and environmental studies on an ocean-going oil tanker. I. Thermal environment. Investigations were made on board a modern, air-conditioned oil tanker (S.S. Esso Newcastle) en route to the Persian Gulf in July to August 1967 in order to study thermal conditions in the working environment, and the nutritional status of the crew, and to examine the interrelationship between climate and nutritional balance. In this introductory paper an account is given of the aims and design of the experiments together with details of the environmental survey. The voyage round Africa lasted one month, with high ambient temperatures of 37·7°C dry bulb, 30·8°C wet bulb (100/87°F) occurring only on the last few days into and out of the Persian Gulf. Mean accommodation temperature was maintained in the zone of comfort throughout, and at 23·9°C (75°F) Corrected Effective Temperature (CET) in the Gulf. On a previous voyage in a tanker without air-conditioning CETs up to 31·6°C (89°F) had been recorded in the accommodation in the same ambient conditions. With exposure to high solar radiation in the Gulf, the deck officer's cabins and bridge house in the upper superstructure became uncomfortably warm (CET exceeding 26·6°C (80°F)) and in these temperatures skilled performance is likely to deteriorate. The main thermal problems in the working environment were associated with the engine and boiler rooms which were consistently 11 to 17°C (20 to 30°F) higher than ambient temperature. For personnel on watch, the levels of heat stress were high but not intolerable if advantage was taken of the air blowers. Conditions under which emergency or repair tasks were carried out in very hot engine-room spaces were examined and often found to allow only a small margin of safety. Predicted average tolerance times were deduced from the Wet Bulb Globe Temperature (WBGT) scale of

  20. Hydrogeochemistry of thermal springs in saline salar-like environments in the High Andes

    NASA Astrophysics Data System (ADS)

    Lagos Durán, L. V.; Reich, M.; Achurra, L.; Morata, D.

    2014-12-01

    Evaporitic deposits and precipitates represent significant sinks of mobile cations (Li, As, B) and halides (Cl, I) in salar-like basin environments along the Andean volcanic belt in northern Chile. Li and B are particularly interesting because of their high concentrations in evaporitic minerals and geothermal waters in the region. Although these compositional features have been previously recognized in high-altitude salt lakes in northern Chile, the nature and extent of mixing processes between true evaporitic and geothermal endmembers in such environments is poorly understood. In a context where geothermal targeting methods need to be increasingly precise, a clearer understanding of what controls the localization of concealed geothermal resources is a prerequisite for more efficient exploration. Therefore, it is necessary to constrain surface saline inputs that can mask the deep imprints of the geothermal reservoir. On this basis, northern Chile offers a unique opportunity to test these features due to the large number of evaporitic closed basins containing thermal springs. To date, only a very limited number of studies have reported trace element concentrations and B, Li and Sr isotopes in salar-like waters aimed at differentiating the relative contributions of both members. In this study, we sampled water from high-altitude lakes with and without surficial thermal activity. This was complemented with geothermal water analyses from northern Chile and previously published data. In addition, we report preliminary dissolution experiments of evaporite minerals (e.g. ulexite, halite, gypsum, aragonite) to pure distilled water. These minerals were taken from two selected hydrological domains, located in the southern and northern part of the Chilean Central Volcanic Zone. Geochemical analyses of water run products from the aforementioned experiments at different temperatures (25 and 87°C, 500 hours of interaction each), confirmed that selected common elements (Cl, Li

  1. Thermal environment downscaling under the climate chenage in Seto-Inland Sea of Japan

    NASA Astrophysics Data System (ADS)

    Imai, Y.; Mori, N.; Ninomiya, J.; Yasuda, T.; Mase, H.

    2015-12-01

    Introduction There are many studies have been conducted to project future change and assess the impacts. The latest IPCC AR5 WGI reports that there are many impact assessments of large scale changes in coastal and ocean environments but few studies on regional scale changes. We analyzed global and regional near-sea surface physical changes based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) data. The downscaling of regional ocean targeting the semi-enclosed Seto-Inland Sea of Japan by Regional Ocean Modeling System (ROMS) considering the results of CMIP5. We analyzed the future projection of thermal environmental changes of the Seto-Inland Sea based on the downscaling results. Regional analysis of CMIP5 Analysis of CMIP5 was conducted for the historical climate and future climate at the end of 21st century considering two different emission scenarios (RCP4.5 and RCP8.5). All available 61 GCMs in CMIP5 were considered for analysis and the future changes of 11 atmospheric and oceanic variables were computed in detail. Spatial distribution of sea surface temperature (SST) showed a consistent increase overall, with local non-homogeneity. For example, an increase SST more than 4 degrees in the Northwest Pacific against to global mean SST increase of 2.6 degrees. The projection of the Seto-Inland Sea environment Dynamical downscaling for Seto-Inland Sea was calculated for the year 2093 forcing future changes from CMIP5 analysis results to project future regional environmental changes in West-Japan. The results of hindcast were compared with observed results and future climate conditions were added to hindcast results. The SST shows a remarkable increase of about 3.6 degrees in the summer but it is less in the future winter. The major change of water temperature change is increasing trend in upper 20m layer, and thermal e-folding depth in the future climate becomes shallower. The warming tendency decreases with depth in shallow water region but is different

  2. Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments.

    PubMed

    Da Silva, Roberto Gomes; Maia, Alex Sandro C; de Macedo Costa, Leonardo Lelis

    2015-05-01

    This paper presents a new thermal stress index for dairy cows in inter-tropical regions, with special mention to the semi-arid ones. Holstein cows were measured for rectal temperature (T R), respiratory rate (F R) and rates of heat exchange by convection (C), radiation (R), skin surface evaporation (E S) and respiratory evaporation (E R) in the north eastern region of Brazil, after exposure to sun for several hours. Average environmental measurements during the observations were air temperature (T A) 32.4 °C (24.4-38.9°), wind speed (U) 1.8 m.s(-1) (0.01-11.0), relative humidity 63.6 % (36.8-81.5) and short-wave solar radiation 701.3 W m(-2) (116-1,295). The effective radiant heat load (ERHL) was 838.5 ± 4.9 W m(-2). Values for the atmospheric transmittance (τ) were also determined for tropical regions, in order to permit adequate estimates of the solar radiation. The average value was τ = 0.611 ± 0.004 for clear days with some small moving clouds, with a range of 0.32 to 0.91 in the day period from 1000 to 1300 hours. Observed τ values were higher (0.62-0.66) for locations near the seacoast and in those regions well-provided with green fields. Effects of month, location and time of the day were all statistically significant (P < 0.01). A total of 1,092 data were obtained for cows exposed for 1 to 8 h to sun during the day; in 7 months (February, March, April, July, August, September and November), 4 days per month on the average. A principal component analysis summarised the T R, F R, C, R, E S and E R measurements into just one synthetic variable (y 1); several indexes were then obtained by multiple regression of y 1 on the four environmental variables and its combinations, by using Origin 8.1 software (OriginLab Corp.). The chosen equation was the index of thermal stress for cows, ITSC = 77.1747 + 4.8327 T A - 34.8189 U + 1.111 U (2) + 118.6981 P V - 14.7956 P V (2) - 0.1059 ERHL with r (2) = 0.812. The

  3. Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments

    NASA Astrophysics Data System (ADS)

    Da Silva, Roberto Gomes; Maia, Alex Sandro C.; de Macedo Costa, Leonardo Lelis

    2015-05-01

    This paper presents a new thermal stress index for dairy cows in inter-tropical regions, with special mention to the semi-arid ones. Holstein cows were measured for rectal temperature ( T R), respiratory rate ( F R) and rates of heat exchange by convection ( C), radiation ( R), skin surface evaporation ( E S) and respiratory evaporation ( E R) in the north eastern region of Brazil, after exposure to sun for several hours. Average environmental measurements during the observations were air temperature ( T A) 32.4 °C (24.4-38.9°), wind speed ( U) 1.8 m.s-1 (0.01-11.0), relative humidity 63.6 % (36.8-81.5) and short-wave solar radiation 701.3 W m-2 (116-1,295). The effective radiant heat load (ERHL) was 838.5 ± 4.9 W m-2. Values for the atmospheric transmittance ( τ) were also determined for tropical regions, in order to permit adequate estimates of the solar radiation. The average value was τ = 0.611 ± 0.004 for clear days with some small moving clouds, with a range of 0.32 to 0.91 in the day period from 1000 to 1300 hours. Observed τ values were higher (0.62-0.66) for locations near the seacoast and in those regions well-provided with green fields. Effects of month, location and time of the day were all statistically significant ( P < 0.01). A total of 1,092 data were obtained for cows exposed for 1 to 8 h to sun during the day; in 7 months (February, March, April, July, August, September and November), 4 days per month on the average. A principal component analysis summarised the T R, F R, C, R, E S and E R measurements into just one synthetic variable ( y 1); several indexes were then obtained by multiple regression of y 1 on the four environmental variables and its combinations, by using Origin 8.1 software (OriginLab Corp.). The chosen equation was the index of thermal stress for cows, ITSC = 77.1747 + 4.8327 T A - 34.8189 U + 1.111 U 2 + 118.6981 P V - 14.7956 P V 2 - 0.1059 ERHL with r 2 = 0.812. The correlations of ITSC with T R, F R, C, E S, R and E R

  4. Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments.

    PubMed

    Da Silva, Roberto Gomes; Maia, Alex Sandro C; de Macedo Costa, Leonardo Lelis

    2015-05-01

    This paper presents a new thermal stress index for dairy cows in inter-tropical regions, with special mention to the semi-arid ones. Holstein cows were measured for rectal temperature (T R), respiratory rate (F R) and rates of heat exchange by convection (C), radiation (R), skin surface evaporation (E S) and respiratory evaporation (E R) in the north eastern region of Brazil, after exposure to sun for several hours. Average environmental measurements during the observations were air temperature (T A) 32.4 °C (24.4-38.9°), wind speed (U) 1.8 m.s(-1) (0.01-11.0), relative humidity 63.6 % (36.8-81.5) and short-wave solar radiation 701.3 W m(-2) (116-1,295). The effective radiant heat load (ERHL) was 838.5 ± 4.9 W m(-2). Values for the atmospheric transmittance (τ) were also determined for tropical regions, in order to permit adequate estimates of the solar radiation. The average value was τ = 0.611 ± 0.004 for clear days with some small moving clouds, with a range of 0.32 to 0.91 in the day period from 1000 to 1300 hours. Observed τ values were higher (0.62-0.66) for locations near the seacoast and in those regions well-provided with green fields. Effects of month, location and time of the day were all statistically significant (P < 0.01). A total of 1,092 data were obtained for cows exposed for 1 to 8 h to sun during the day; in 7 months (February, March, April, July, August, September and November), 4 days per month on the average. A principal component analysis summarised the T R, F R, C, R, E S and E R measurements into just one synthetic variable (y 1); several indexes were then obtained by multiple regression of y 1 on the four environmental variables and its combinations, by using Origin 8.1 software (OriginLab Corp.). The chosen equation was the index of thermal stress for cows, ITSC = 77.1747 + 4.8327 T A - 34.8189 U + 1.111 U (2) + 118.6981 P V - 14.7956 P V (2) - 0.1059 ERHL with r (2) = 0.812. The

  5. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  6. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.

    1987-01-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K.

  7. Thermal response of integral multicomponent composites to a high-energy aerothermodynamic heating environment with surface temperature to 1800 K

    SciTech Connect

    Stewart, D.A.; Leiser, D.B.

    1987-08-01

    Laminated composite insulations developed for potential use on advanced spacecraft operating between GEO and LEO were tested in an aerothermodynamic environment simulating an AOTV aerobraking maneuver (altitude 82.3 km and velocity = 9.0 km/s). Comparisons are discussed between these data and predictions of in-depth temperature response using dynamical thermal conductivity values to 2000 K. 8 references.

  8. Performance of full size metallic and RSI thermal protection systems in a Mach 7 environment. [Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Bohon, H. L.; Sawyer, J. W.; Hunt, L. R.; Weinstein, I.

    1975-01-01

    The integrity and reusability of three flight-weight metallic and RSI thermal protection systems, designed for the Shuttle entry environment, have been demonstrated. Each model successfully survived over 23 entry thermal cycles without serious degradation. The metallic systems were more tolerant of the hostile environment and provided a higher degree of reusability than did the RSI. Thermal expansion slip joints of the metallic TPS successfully prevented hot gas ingress to the substructure. The RSI demonstrated high damage tolerance and field repairs increased its reusability. Heat-transfer tests to further assess RSI gap heating indicate that stacked tile orientations may impose a penalty on tile thickness. Parameters influencing RSI impingement heating were determined, and the heating data were correlated.

  9. Tent caterpillars are robust to variation in leaf phenology and quality in two thermal environments.

    PubMed

    Sarfraz, Rana M; Kharouba, Heather M; Myers, Judith H

    2013-10-01

    The synchrony between emergence of spring-active, insect herbivores and the budburst of their host plants could be affected by warming temperatures with influences on the availability and quality of foliage as it undergoes physical and chemical changes. This can affect the growth and survival of insects. Here, we used sun-exposed and shaded trees to determine whether the synchrony between egg hatch of western tent caterpillar, Malacosoma californicum pluviale Dyar (Lepidoptera:Lasiocampidae) and budburst of its host red alder, Alnus rubra Bongard (Betulaceae)changes with different thermal environments (temperature and light together). To explore the potential outcome of a shift in phenological synchrony, we used laboratory assays of larval growth and survival to determine the effect of variation in young, youthful and mature leaves from sun-exposed and shaded trees. While the average higher temperature of sun-exposed trees advanced the timing of budburst and egg hatch, synchrony was not disrupted. Leaf quality had no significant influence on growth or survival in the laboratory for early instars reared as family groups. Later instar larvae, however, performed best on mature leaves from sun-exposed trees. The robust relationship between leaf and larval development of western tent caterpillars suggests that warming climates may not have a strong negative impact on their success through shifts in phenological synchrony, but might influence other aspects of leaf quality and larval condition.

  10. The influence of the thermal environment on the stray light performances of infrared telescope systems

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Yao, Xiuwen; Zhang, Bin; Zeng, Shuguang; He, Pan

    2010-05-01

    Infrared telescopes are often required to work in a complex thermal environment. A long time of daytime heating will cause the temperature of the telescope dome and the surrounding facilities different from the ambient air during the night. Different levels of temperature controlling and the accuracy of forecasting will lead to the temperature departures between the components in the system. Furthermore, the contaminated particles settled on the optical elements will change the optical characteristics of the optical elements. All of these factors will degrade the stray light performances of infrared telescopes. In this paper, taking Cassegrain as a typical example and using the optical analysis software, i.e., ASAP, the three-dimensional simulation models of the infrared telescope and the dome has been built up. On this basis, the stray light performances and the variation of the systems have been simulated and analyzed for the different cases of the different coating for the dome, the change of the temperature of primary and ambient, as well as the existence of the mirror contamination. The effective emissivity has been introduced and the stray light performance of the systems has been evaluated. The results indicate that the contaminated particles settled on the optical elements will degrade the system performances significantly, whereas the influences of other factors are relatively small. Therefore, it is of great importance to focus on the contaminated particles settled on the optical elements to adopt proper methods to improve the stray light performances of infrared telescope systems.

  11. Evaluation of reformulated thermal control coatings in a simulated space environment. Part 1: YB-71

    NASA Technical Reports Server (NTRS)

    Cerbus, Clifford A.; Carlin, Patrick S.

    1994-01-01

    The Air Force Space and Missile Systems Center and Wright Laboratory Materials Directorate (WL/ML) have sponsored and effort to effort to reformulate and qualify Illinois Institute of Technology Research Institute (IITRI) spacecraft thermal control coatings. S13G/LO-1, Z93, and YB-71 coatings were reformulated because the potassium silicate binder, Sylvania PS-7, used in the coatings is no longer manufactured. Coatings utilizing the binder's replacement candidate, Kasil 2130, manufactured by The Philadelphia Quartz (PQ) Corporation, Baltimore, Maryland, and undergoing testing at the Materials Directorate's Space Combined Effects Primary Test and Research Equipment (SCEPTRE) Facility operated by the University of Dayton Research Institute (UDRI). The simulated space environment consists of combined ultraviolet (UV) and electron exposure with in site specimen reflectance measurements. A brief description of the effort at IITRI, results and discussion from testing the reformulated YB-71 coating in SCEPTRE, and plans for further testing of reformulated Z93 and S13G/LO-1 are presented.

  12. Numerical modelling of distribution the discharged heat water from thermal power plant on the aquatic environment

    NASA Astrophysics Data System (ADS)

    Issakhov, Alibek

    2016-06-01

    The paper presents a mathematical model of distribution the discharged heat water from thermal power plant under various operational capacities on the aquatic environment. It was solved by the Navier-Stokes and temperature equations for an incompressible fluid in a stratified medium were based on the splitting method by physical parameters which approximated by the finite volume method. The numerical solution of the equation system was divided into four stages. At the first step it was assumed that the momentum transfer carried out only by convection and diffusion. While the intermediate velocity field was solved by 5-step Runge-Kutta method. At the second stage, the pressure field was solved by found the intermediate velocity field. Whereas Poisson equation for the pressure field was solved by Jacobi method. The third step assumes that the transfer was carried out only by pressure gradient. Finally the fourth step of the temperature equation was also solved as motion equations, with 5-step Runge-Kutta method. The algorithm was parallelized on high-performance computer. The obtained numerical results of three-dimensional stratified turbulent flow were compared with experimental data. What revealed qualitatively and quantitatively approximately the basic laws of hydrothermal processes occurring in the reservoir-cooler.

  13. Neural computing thermal comfort index PMV for the indoor environment intelligent control system

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Chen, Yifei

    2013-03-01

    Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.

  14. The effect of Al implantation on the thermal oxidation of stainless steel in aggressive environments

    SciTech Connect

    Noli, F.; Misaelides, P.; Giorginis, G.; Baumann, H.; Pavlidou, E.

    2000-04-01

    AISI-321 steel samples were implanted with Al ions (implantation-energy: 40 keV; dose: 2 {times} 10{sup 17} ions/cm{sup 2}). Thermal oxidation of the samples was performed at 450, 550, 600, and 650 C for periods varying from 1 to 6 days in air and in a corrosive CO{sub 2}-containing environment. Nuclear Reaction Analysis (NRA) and Rutherford Backscattering Spectrometry (RBS) were used to investigate the oxidized samples. A significant improvement of the oxidation resistance of the implanted material in comparison to the nonimplanted material was observed. This especially applies for samples oxidized at high temperatures. The aluminum depth distribution determined by NRA [using the resonance at 992keV of the {sup 27}Al(p,{gamma}){sup 28}Si nuclear reaction] and RBS, indicated no variation of the Al profile in the temperature region 450--600 C, whereas at 650 C a slight Al diffusion was observed. Scanning electron microscopy (SEM-EDS) was applied to study the surface morphology and the constitution of the oxide scale formed, as well as to explain the influence of Al implantation of the oxidation behavior of AISI-321 austenitic stainless steel.

  15. Non-thermal emission in astrophysical environments: From pulsars to supernova remnants

    NASA Astrophysics Data System (ADS)

    Lomiashvili, David

    The study of electromagnetic radiation from distant astrophysical objects provides essential data in understanding physics of these sources. In particular, non-thermal radiation provides great insight into the properties of local environments, particle populations, and emission mechanisms, knowledge which otherwise would remain untapped. Throughout the projects conducted for this dissertation, we modeled certain aspects of observed non-thermal emission from three classes of sources: radio pulsars, pulsar wind nebulae, and supernova remnants. Orbital variation in the double pulsar system PSR J0737-3039A/B can be used to probe the details of the magnetospheric structure of pulsar B. Strongly magnetized wind from pulsar A distorts the magnetosphere of pulsar B in a way similar to the solar wind's distortion of the Earth's magnetosphere. Using the two complimentary models of pulsar B's magnetosphere, adapted from the Earth's magnetosphere models by Dungey and Tsyganenko, we determine the precise location of the coherent radio emission generation region in pulsar B's magnetosphere. This analysis is complemented by modeling the observed evolution of the pulse profiles of B due to geodetic precession. The emission region is located at about 3750 stellar radii and has a horseshoe-like shape centered on the polar magnetic field lines. The best fit angular parameters of the emission region indicate that radio emission is generated on the field lines which, according to the theoretical models, originate close to the poles and carry the maximum current. When considered together, not only do the results of the two models converge, they can explain why the modulation of B's radio emission at A's period is observed only within a certain orbital phase region. We discuss the implications of these results for pulsar magnetospheric models and mechanisms of coherent radio emission generation. We also developed a spatially-resolved, analytic model for the high-energy non-thermal

  16. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    This paper investigates the thermal stability of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates based on the nonlocal theory and a refined plate model. The METE-FG nanoplate is subjected to the external electric potential, magnetic potential and different temperature rises. Interaction of elastic medium with the METE-FG nanoplate is modeled via Winkler-Pasternak foundation model. The governing equations are derived by using the Hamilton principle and solved by using an analytical method to determine the critical buckling temperatures. To verify the validity of the developed model, the results of the present work are compared with those available in the literature. A detailed parametric study is conducted to study the influences of the nonlocal parameter, foundation parameters, temperature rise, external electric and magnetic potentials on the size-dependent thermal buckling characteristics of METE-FG nanoplates.

  17. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Exemptions for pesticides adequately... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The...

  18. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Exemptions for pesticides adequately... PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PESTICIDE REGISTRATION AND CLASSIFICATION PROCEDURES Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The...

  19. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulated by another Federal agency. 152.20 Section 152.20 Protection of Environment ENVIRONMENTAL... Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides... has determined, in accordance with FIFRA sec. 25(b)(1), that they are adequately regulated by...

  20. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulated by another Federal agency. 152.20 Section 152.20 Protection of Environment ENVIRONMENTAL... Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides... has determined, in accordance with FIFRA sec. 25(b)(1), that they are adequately regulated by...

  1. 40 CFR 152.20 - Exemptions for pesticides adequately regulated by another Federal agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulated by another Federal agency. 152.20 Section 152.20 Protection of Environment ENVIRONMENTAL... Exemptions § 152.20 Exemptions for pesticides adequately regulated by another Federal agency. The pesticides... has determined, in accordance with FIFRA sec. 25(b)(1), that they are adequately regulated by...

  2. Long-term measurement of indoor thermal environment and energy performance in a detached wooden house with passive solar systems

    SciTech Connect

    Ishikawa, Yoshimi; Yoshino, Hiroshi; Sasaki, Chikashi

    1998-07-01

    The indoor thermal environment, energy performance and energy consumption for a detached wooden house equipped with two passive solar systems, were investigated over a period of three years. The house with a floor area of 188 m{sup 2} was constructed in the autumn of 1993 in Sendai, Japan; and was well insulated and very airtight compared with other houses in Japan. There are six occupants. Heating equipment is comprises of a thermal storage space heater using night-time electricity and a vented firewood furnace on the first floor. Each room is ventilated all day by a central ventilation system. Two passive solar systems were incorporated: a concrete floor in the southern perimeter of the living room as a direct gain system, and an earth tube embedded around the circumference of the house to supply fresh air. The principal results obtained are as follows: (1) The indoor environment during the heating season was more thermally comfortable, compared with that or ordinary houses in Japan. (2) The concrete floor played a role of thermal storage, which absorbed and released heat for decreasing the fluctuation of room temperature. (3) The earth tube supplied air with lower temperature in the summer and higher temperature in the winter to the room, that the outdoor air temperature. This thermal performance did not decrease in spite of the long-term use. (4) The annual amount of energy consumption of this house was less than that of ordinary houses in the northern part of Japan.

  3. Is a vegetarian diet adequate for children.

    PubMed

    Hackett, A; Nathan, I; Burgess, L

    1998-01-01

    The number of people who avoid eating meat is growing, especially among young people. Benefits to health from a vegetarian diet have been reported in adults but it is not clear to what extent these benefits are due to diet or to other aspects of lifestyles. In children concern has been expressed concerning the adequacy of vegetarian diets especially with regard to growth. The risks/benefits seem to be related to the degree of restriction of he diet; anaemia is probably both the main and the most serious risk but this also applies to omnivores. Vegan diets are more likely to be associated with malnutrition, especially if the diets are the result of authoritarian dogma. Overall, lacto-ovo-vegetarian children consume diets closer to recommendations than omnivores and their pre-pubertal growth is at least as good. The simplest strategy when becoming vegetarian may involve reliance on vegetarian convenience foods which are not necessarily superior in nutritional composition. The vegetarian sector of the food industry could do more to produce foods closer to recommendations. Vegetarian diets can be, but are not necessarily, adequate for children, providing vigilance is maintained, particularly to ensure variety. Identical comments apply to omnivorous diets. Three threats to the diet of children are too much reliance on convenience foods, lack of variety and lack of exercise.

  4. Individual thermal profiles as a basis for comfort improvement in space and other environments

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.

    2002-01-01

    , depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.

  5. Studies on Lunar Base construction: architectural environment, thermal balance, economic technologies, local materials, on site assembly

    NASA Astrophysics Data System (ADS)

    Boldoghy, B.; Kummert, J.; Szilagyi, I.; Varga, T.; Berczi, Sz.

    We studied the strategies, technologies, designs of the Lunar Base architectural construction from the viewpoint of physical constraints (i.e. energy balance, strength and insulating properties of the lunar materials), engineering constraints (i.e. building technology, transports, insulating layers) and geological environment (allocation of the buildings). Our results contain proposals on the general strategy, on the local production technology, on arrangement and insulation solutions and the emplacement of the lunar base. We propose a complex architectural design for the lunar environment. It is economic to place the first long term used buildings below the surface. This way large mass of lunar soil can be used as insulator. Lunar soil can be moved by a lunar rover buldoser to cover the deposited container with regolith. We propose a double insulating layer system both using lunar soil as thermal insulator. We also propose a geological setting of the implementation of the architectural units in a groove or small valley mouth where not only the deposition of soil is economic but the enlargement of the station is possible in valley direction. Using the insulating and strength data of the lunar soil the following main technology phases of construction of the lunar base architecture are proposed. After transport of the primary container ISS type unit blocks from Earth to the lunar surface: 1) grading and basis forming in the bedrock for the frame, 2) assembly of the architectural constructions of the frame, (from frame units a spatial skeletal structure is built on the site which holds the stresses and load of the weight of both the cylindrical modules and the other insulating layers), 3) parallel filling the insulating quilted-coat like units with lunar fine soil, 4) fixing the quilted-coat like second insulating units to the surface of ISS type unit blocks, 5) final emplacement of the container blocks on the frame, 6) burial of the living bubble units by the lunar

  6. Case study of skin temperature and thermal perception in a hot outdoor environment.

    PubMed

    Pantavou, Katerina; Chatzi, Evriklia; Theoharatos, George

    2014-08-01

    Focusing on the understanding and the estimation of the biometeorological conditions during summer in outdoor places, a field study was conducted in July 2010 in Athens, Greece over 6 days at three different sites: Syntagma Square, Ermou Street and Flisvos coast. Thermo-physiological measurements of five subjects were carried out from morning to evening for each site, simultaneously with meteorological measurements and subjective assessments of thermal sensation reported by questionnaires. The thermo-physiological variables measured were skin temperature, heat flux and metabolic heat production, while meteorological measurements included air temperature, relative humidity, wind speed, globe temperature, ground surface temperature and global radiation. The possible relation of skin temperature with the meteorological parameters was examined. Theoretical values of mean skin temperature and mean radiant temperature were estimated applying the MENEX model and were compared with the measured values. Two biometeorological indices, thermal sensation (TS) and heat load (HL)-were calculated in order to compare the predicted thermal sensation with the actual thermal vote. The theoretically estimated values of skin temperature were underestimated in relation to the measured values, while the theoretical model of mean radiant temperature was more sensitive to variations of solar radiation compared to the experimental values. TS index underestimated the thermal sensation of the five subjects when their thermal vote was 'hot' or 'very hot' and overestimated thermal sensation in the case of 'neutral'. The HL index predicted with greater accuracy thermal sensation tending to overestimate the thermal sensation of the subjects.

  7. Physiological and behavioral temperature regulation of men in simulated nonuniform thermal environments between 18 and 30 degrees C.

    PubMed

    Gwosdow, A R; Berglund, L G

    1989-06-01

    Human thermoregulatory responses to nonuniform thermal environments was studied by simulating the situation with altered clothing distribution. Clothing was symmetrically or asymmetrically distributed over the body surface. Esophageal and local skin temperatures, metabolism, skin heat flux, evaporative heat loss and subjective responses of six sedentary men were measured at air temperatures between 18 and 30 degrees C. Clothing distribution significantly (p less than 0.05) influenced thermoregulatory responses only at 18 degrees C. At 18 degrees C, the bilaterally asymmetric clothing resulted in a higher (p less than 0.05) esophageal temperature compared to the symmetric condition. Mean skin temperatures did not differ with clothing distribution over the range of air temperatures studied, but at 18 degrees C whole body thermal sensation was warmer (p less than 0.05) for the asymmetric compared to the symmetric group. This increased perception of warm thermal sensation was significantly correlated to the difference in skin temperature across the body.

  8. Adequate mathematical modelling of environmental processes

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.

    2012-04-01

    In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same

  9. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics.

    PubMed

    Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika

    2012-01-01

    The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m(-2) (who is walking at 4 km h(-1) on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being--via PMV--directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

  10. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics

    NASA Astrophysics Data System (ADS)

    Staiger, Henning; Laschewski, Gudrun; Grätz, Angelika

    2012-01-01

    The Perceived Temperature (PT) is an equivalent temperature based on a complete heat budget model of the human body. It has proved its suitability for numerous applications across a wide variety of scales from micro to global and is successfully used both in daily forecasts and climatological studies. PT is designed for staying outdoors and is defined as the air temperature of a reference environment in which the thermal perception would be the same as in the actual environment. The calculation is performed for a reference subject with an internal heat production of 135 W m-2 (who is walking at 4 km h-1 on flat ground). In the reference environment, the mean radiant temperature equals the air temperature and wind velocity is reduced to a slight draught. The water vapour pressure remains unchanged. Under warm/humid conditions, however, it is implicitly related to a relative humidity of 50%. Clothing is adapted in order to achieve thermal comfort. If this is impossible, cold or heat stress will occur, respectively. The assessment of thermal perception by means of PT is based on Fanger's Predicted Mean Vote (PMV) together with additional model extensions taking account of stronger deviations from thermal neutrality. This is performed using a parameterisation based on a two-node model. In the cold, it allows the mean skin temperature to drop below the comfort value. In the heat, it assesses additionally the enthalpy of sweat-moistened skin and of wet clothes. PT has the advantages of being self-explanatory due to its deviation from air temperature and being—via PMV—directly linked to a thermo-physiologically-based scale of thermal perception that is widely used and has stood the test of time. This paper explains in detail the basic equations of the human heat budget and the coefficients of the parameterisations.

  11. The possible effects of the natural and induced space environment on the optical and thermal properties of EOS surfaces

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Heppner, Richard A.

    1992-01-01

    Space missions, including that of EOS (Earth Observing System), will continue to be subjected to both the natural and induced space environment. The concerns associated with this fact will not go away. The NASA and DoD have recognized the need for long-life stability of materials and structures to the space environment. The major areas of interest include: thermal cycling, UV degradation, space radiation exposure, orbital debris, atomic oxygen erosion, and contamination control. Having flown a number of space environmental effects monitors, SAIC has developed both a data base to understand the magnitude of this problem and mitigation techniques to reduce the impact.

  12. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  13. Reconstruction of the thermal environment evolution from subsurface temperature distribution in Japan and Thailand

    NASA Astrophysics Data System (ADS)

    Hamamoto, H.; Yamano, M.; Goto, S.; Hachinohe, S.; Shiraishi, H.; Ishiyama, T.; Miyakoshi, A.; Taniguchi, M.; Arimoto, H.; Kitaoka, K.

    2012-12-01

    Temperature changes at the ground surface propagate into the underground and disturb the subsurface temperature structure. Analyzing disturbances in the subsurface temperature structure, we can reconstruct the past ground surface temperature (GST) change, which is closely related to the past surface air temperature change. This method can be applied to studies of thermal environment evolution in urban areas such as the development of "heat islands". We have been investigating GST histories in three areas, which are located in Japan and Thailand. The three areas are the northern part of Kanto area, Osaka area, and Bangkok area. Kanto area and Osaka area have the greatest and second greatest population in Japan, each other. Bangkok area has the greatest population in Thailand. In the northern part of Kanto area, we conducted measurements of temperature profiles in groundwater monitoring wells at 25 sites in 2009, 2010, and 2011. In Osaka area, temperature profiles were measured at 31 sites in 2011 as the project of the Sumitomo Foundation (M. Taniguchi). In Bangkok area, we measured temperature profiles at 45 sites in 2004, 2006, 2008, and 2010. We examined the shapes of the temperature profiles and selected ones that are not significantly disturbed by groundwater flow. Reconstruction of GST history for the last about 300 hundred years was made at two sites in the northern part of Kanto area, at six sites in Osaka area, and at six sites in Bangkok area. We used a multi-layer model that allows layers with different thermal properties, determining layer boundaries based on lithology of the formations around the wells. All of the reconstructed GST histories show surface warming in the last century. In the northern part of Kanto area, the amount of the temperature increase from 1700 to 2010 is about 2.5 K at both sites. In Osaka area, the amount of the temperature increase from 1700 to 2010 ranges from 2.5 K to 5.0 K and is larger in the city center and the southern part

  14. A nonventing cooling system for space environment extravehicular activity, using radiation and regenerable thermal storage

    NASA Technical Reports Server (NTRS)

    Bayes, Stephen A.; Trevino, Luis A.; Dinsmore, Craig E.

    1988-01-01

    This paper outlines the selection, design, and testing of a prototype nonventing regenerable astronaut cooling system for extravehicular activity space suit applications, for mission durations of four hours or greater. The selected system consists of the following key elements: a radiator assembly which serves as the exterior shell of the portable life support subsystem backpack; a layer of phase change thermal storage material, n-hexadecane paraffin, which acts as a regenerable thermal capacitor; a thermoelectric heat pump; and an automatic temperature control system. The capability for regeneration of thermal storage capacity with and without the aid of electric power is provided.

  15. Relationships of Periglacial Processes to Habitat Quality and Thermal Environment of Pikas (Lagomorpha, Ochotona) in Alpine and High-Latitude Environments (Invited)

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Smith, A. T.; Hik, D. S.

    2009-12-01

    Patterned-ground and related periglacial features such as rock-glaciers and fractured-rock talus are emblematic of cold and dry arctic environments. The freeze-thaw processes that cause these features were first systematically investigated in the pioneering work of Linc Washburn. Unusual internal and autonomous micro-climatic and hydrologic processes of these features, however, are only beginning to be understood. Such features occur also in temperate latitude mountains, often in surprising abundance in regions such as the Great Basin (NV, USA) and San Juan Mtns (CO, USA), where they occur as active as well as relict (neoglacial or Pleistocene) features. Rock-dwelling species of pikas (Ochotona) in temperate North American and Asian mountains and in North American high-latitudes have long been known for their preference for talus habitats. We are investigating geomorphic, climatic, and hydrologic attributes of these periglacial features for their role in habitat quality and thermal environment of pikas. PRISM-modeled and observed climatic conditions from a range of talus types for Ochotona princeps in California and the western Great Basin (USA) indicate that, 1) thermal conditions of intra-talus-matrix in summer are significantly colder than talus-surface temperatures and colder than adjacent slopes and forefield wetlands where pika forage; 2) near-talus-surface locations (where haypiles are situated) are warmer in winter than intra-talus-matrix temperatures; 3) high-quality wetland vegetation in talus forefields is promoted by year-round persistence of outlet springs, seeps, and streams characteristic of active taluses. The importance of snowpack to winter thermal conditions is highlighted from these observations, suggesting a greater sensitivity of habitat in dry temperate regions such as eastern California and Nevada USA to warming winter minimum temperatures than in regions or elevations where snowpacks are more persistent. In regions where warming air

  16. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a submonolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3-4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 300 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 degrees to 35 degrees. Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  17. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  18. Some Oobservations of the Role of Component Size in Solder Joint Degradation under Thermal Cycling Environments

    NASA Technical Reports Server (NTRS)

    Winslow, J.; Wen, L-C.

    1995-01-01

    Experimental results will be presented from a continuing investigation into the influence of component size and configuration of thermal cycling lifetimes, observed in a set of quadpak electronic component packages.

  19. Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki

    2011-02-01

    Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.

  20. Dose Limits for Man do not Adequately Protect the Ecosystem

    SciTech Connect

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words, if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.

  1. Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2013-01-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages of high interconnect density, very good thermal and electrical performance, and compatibility with standard surface-mount packaging assembly processes. CCGA packages are used in space applications such as in logics and microprocessor functions, telecommunications, flight avionics, and payload electronics. As these packages tend to have less solder joint strain relief than leaded packages, the reliability of CCGA packages is very important for short- and long-term space missions. Certain planetary satellites require operations of thermally uncontrolled hardware under extremely cold and hot temperatures with large diurnal temperature change from day to night. The planetary protection requires the hardware to be baked at +125 C for 72 hours to kill microbugs to avoid any biological contamination, especially for sample return missions. Therefore, the present CCGA package reliability research study has encompassed the temperature range of 185 to +125 C to cover various NASA deep space missions. Advanced 1152 and 1272 CCGA packaging interconnects technology test hardware objects have been subjected to ex treme temperature thermal cycles from 185 to +125 C. X-ray inspections of CCGA packages have been made before thermal cycling. No anomalous behavior and process problems were observed in the x-ray images. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of increasing number of thermal cycles. Electrical continuity measurements of daisy chains have shown no anomalies, even until 596 thermal cycles. Optical inspections of hardware have shown a significant fatigue for CCGA 1152 packages over CCGA 1272 packages. No catastrophic failures have been observed yet in the results. Process qualification and assembly are required to optimize the CCGA assembly processes. Optical inspections of CCGA boards have been made after 258 and 596 thermal

  2. Heat transfer in fish: are short excursions between habitats a thermoregulatory behaviour to exploit resources in an unfavourable thermal environment?

    PubMed

    Pépino, Marc; Goyer, Katerine; Magnan, Pierre

    2015-11-01

    Temperature is the primary environmental factor affecting physiological processes in ectotherms. Heat-transfer models describe how the fish's internal temperature responds to a fluctuating thermal environment. Specifically, the rate coefficient (k), defined as the instantaneous rate of change in body temperature in relation to the difference between ambient and body temperature, summarizes the combined effects of direct thermal conduction through body mass, passive convection (intracellular and intercellular fluids) and forced convective heat transfer (cardiovascular system). The k-coefficient is widely used in fish ecology to understand how body temperature responds to changes in water temperature. The main objective of this study was to estimate the k-coefficient of brook charr equipped with internal temperature-sensitive transmitters in controlled laboratory experiments. Fish were first transferred from acclimation tanks (10°C) to tanks at 14, 19 or 23°C (warming experiments) and were then returned to the acclimation tanks (10°C; cooling experiments), thus producing six step changes in ambient temperature. We used non-linear mixed models to estimate the k-coefficient. Model comparisons indicated that the model incorporating the k-coefficient as a function of absolute temperature difference (dT: 4, 9 and 13°C) best described body temperature change. By simulating body temperature in a heterogeneous thermal environment, we provide theoretical predictions of maximum excursion duration between feeding and resting areas. Our simulations suggest that short (i.e. <60 min) excursions could be a common thermoregulatory behaviour adopted by cold freshwater fish species to sustain body temperature below a critical temperature threshold, enabling them to exploit resources in an unfavourable thermal environment.

  3. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    PubMed

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  4. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

  5. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime.

    PubMed

    Nienow, J A; McKay, C P; Friedmann, E I

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock. PMID:11538333

  6. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Mathematical models of the thermal regime.

    PubMed

    Nienow, J A; McKay, C P; Friedmann, E I

    1988-11-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15°. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135° or greater than 225°. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock. PMID:24201713

  7. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment

    NASA Astrophysics Data System (ADS)

    Katavoutas, George; Flocas, Helena A.; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75 % of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25 %, under direct solar radiation and exceeds 75 % for a walking person under direct solar radiation.

  8. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their integrated solar absorptance ( ) and thermal emittance ( ) values determined experimentally. The three simulants included JSC-1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that / varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the Moon will be strongly dependent on the and of the dust in the specific locality

  9. Effect of Simulant Type on the Absorptance and Emittance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2010-01-01

    During the Apollo program the effects of lunar dust on thermal control surfaces was found to be more significant than anticipated, with several systems overheating due to deposition of dust on them. In an effort to reduce risk to future missions, a series of tests has been initiated to characterize the effects of dust on these surfaces, and then to develop technologies to mitigate that risk. Given the variations in albedo across the lunar surface, one variable that may be important is the darkness of the lunar dust, and this study was undertaken to address that concern. Three thermal control surfaces, AZ-93 white paint and AgFEP and AlFEP second surface mirrors were dusted with three different lunar dust simulants in a simulated lunar environment, and their solar absorptivity and thermal emissivity values determined experimentally. The three simulants included JSC 1AF, a darker mare simulant, NU-LHT-1D, a light highlands simulant, and 1:1 mixture of the two. The response of AZ-93 was found to be slightly more pronounced than that of AgFEP. The increased with fractional dust coverage in both types of samples by a factor of 1.7 to 3.3, depending on the type of thermal control surface and the type of dust. The of the AZ-93 decreased by about 10 percent when fully covered by dust, while that of AgFEP increased by about 10 percent. It was found that alpha/epsilon varied by more than a factor of two depending on the thermal control surface and the darkness of the dust. Given that the darkest simulant used in this study may be significantly lighter than the darkest dust that could be encountered on the lunar surface, it becomes apparent that the performance degradation of thermal control surfaces due to dust on the moon will be strongly dependent on the and of the dust in the specific locality.

  10. Dynamic modeling of human thermal comfort after the transition from an indoor to an outdoor hot environment.

    PubMed

    Katavoutas, George; Flocas, Helena A; Matzarakis, Andreas

    2015-02-01

    Thermal comfort under non-steady-state conditions primarily deals with rapid environmental transients and significant alterations of the meteorological conditions, activity, or clothing pattern within the time scale of some minutes. In such cases, thermal history plays an important role in respect to time, and thus, a dynamic approach is appropriate. The present study aims to investigate the dynamic thermal adaptation process of a human individual, after his transition from a typical indoor climate to an outdoor hot environment. Three scenarios of thermal transients have been considered for a range of hot outdoor environmental conditions, employing the dynamic two-node IMEM model. The differences among them concern the radiation field, the activity level, and the body position. The temporal pattern of body temperatures as well as the range of skin wettedness and of water loss have been investigated and compared among the scenarios and the environmental conditions considered. The structure and the temporal course of human energy fluxes as well as the identification of the contribution of body temperatures to energy fluxes have also been studied and compared. In general, the simulation results indicate that the response of a person, coming from the same neutral indoor climate, varies depending on the scenario followed by the individual while being outdoors. The combination of radiation field (shade or not) with the kind of activity (sitting or walking) and the outdoor conditions differentiates significantly the thermal state of the human body. Therefore, 75% of the skin wettedness values do not exceed the thermal comfort limit at rest for a sitting individual under the shade. This percentage decreases dramatically, less than 25%, under direct solar radiation and exceeds 75% for a walking person under direct solar radiation.

  11. Robust Vehicle Detection under Various Environments to Realize Road Traffic Flow Surveillance Using an Infrared Thermal Camera

    PubMed Central

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized. PMID:25763384

  12. Robust vehicle detection under various environments to realize road traffic flow surveillance using an infrared thermal camera.

    PubMed

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2015-01-01

    To realize road traffic flow surveillance under various environments which contain poor visibility conditions, we have already proposed two vehicle detection methods using thermal images taken with an infrared thermal camera. The first method uses pattern recognition for the windshields and their surroundings to detect vehicles. However, the first method decreases the vehicle detection accuracy in winter season. To maintain high vehicle detection accuracy in all seasons, we developed the second method. The second method uses tires' thermal energy reflection areas on a road as the detection targets. The second method did not achieve high detection accuracy for vehicles on left-hand and right-hand lanes except for two center-lanes. Therefore, we have developed a new method based on the second method to increase the vehicle detection accuracy. This paper proposes the new method and shows that the detection accuracy for vehicles on all lanes is 92.1%. Therefore, by combining the first method and the new method, high vehicle detection accuracies are maintained under various environments, and road traffic flow surveillance can be realized.

  13. Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria.

    PubMed

    Omonijo, Akinyemi Gabriel; Matzarakis, Andreas; Oguntoke, Olusegun; Adeofun, Clement Olabinjo

    2012-09-01

    We investigated the temporal and spatial dynamics, as well as the seasonal occurrence of measles in Ondo state, Nigeria, to better understand the role of the thermal environment in the occurrence of the childhood killer disease measles, which ranks among the top ten leading causes of child deaths worldwide. The linkages between measles and atmospheric environmental factors were examined by correlating human-biometeorological parameters in the study area with reported clinical cases of measles for the period 1998-2008. We also applied stepwise regression analysis in order to determine the human-biometeorological parameters that lead to statistical changes in reported clinical cases of measles. We found that high reported cases of measles are associated with the least populated areas, where rearing and cohabitation of livestock/domestic animals within human communities are common. There was a significant correlation (P < 0.01) between monthly cases of measles and human-biometeorological parameters except wind speed and vapour pressure. High transmission of measles occurred in the months of January to May during the dry season when human thermal comfort indices are very high. This highlights the importance of the thermal environment in disease demographics since it accounted for more than 40% variation in measles transmission within the study period.

  14. Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria

    NASA Astrophysics Data System (ADS)

    Omonijo, Akinyemi Gabriel; Matzarakis, Andreas; Oguntoke, Olusegun; Adeofun, Clement Olabinjo

    2012-09-01

    We investigated the temporal and spatial dynamics, as well as the seasonal occurrence of measles in Ondo state, Nigeria, to better understand the role of the thermal environment in the occurrence of the childhood killer disease measles, which ranks among the top ten leading causes of child deaths worldwide. The linkages between measles and atmospheric environmental factors were examined by correlating human-biometeorological parameters in the study area with reported clinical cases of measles for the period 1998-2008. We also applied stepwise regression analysis in order to determine the human-biometeorological parameters that lead to statistical changes in reported clinical cases of measles. We found that high reported cases of measles are associated with the least populated areas, where rearing and cohabitation of livestock/domestic animals within human communities are common. There was a significant correlation ( P < 0.01) between monthly cases of measles and human-biometeorological parameters except wind speed and vapour pressure. High transmission of measles occurred in the months of January to May during the dry season when human thermal comfort indices are very high. This highlights the importance of the thermal environment in disease demographics since it accounted for more than 40% variation in measles transmission within the study period.

  15. Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Salari, Erfan

    2015-08-01

    In this paper, the thermal effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams subjected to various types of thermal loading is investigated by presenting a Navier type solution and employing a semi analytical differential transform method (DTM) for the first time. Two kinds of thermal loading, namely, linear temperature rise and nonlinear temperature rise are studied. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying DTM. According to the numerical results, it is revealed that the proposed modeling and semi analytical approach can provide accurate frequency results of the FG nanobeams as compared to analytical results and also some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, mode number and boundary conditions on the normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

  16. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  17. Designing Experiments on Thermal Interactions by Secondary-School Students in a Simulated Laboratory Environment

    ERIC Educational Resources Information Center

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-01-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…

  18. Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities

    NASA Technical Reports Server (NTRS)

    Koscheyev, V. S.; Leon, G. R.; Hubel, A.; Nelson, E. D.; Tranchida, D.

    2000-01-01

    BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.

  19. Study Task for Determining the Effects of Boost-Phase Environments on Densified Propellants Thermal Conditions for Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Haberbusch, Mark S.; Meyer, Michael L. (Technical Monitor)

    2002-01-01

    A thermodynamic study has been conducted that investigated the effects of the boost-phase environment on densified propellant thermal conditions for expendable launch vehicles. Two thermodynamic models were developed and utilized to bound the expected thermodynamic conditions inside the cryogenic liquid hydrogen and oxygen propellant tanks of an Atlas IIAS/Centaur launch vehicle during the initial phases of flight. The ideal isentropic compression model was developed to predict minimum pressurant gas requirements. The thermal equilibrium model was developed to predict the maximum pressurant gas requirements. The models were modified to simulate the required flight tank pressure profiles through ramp pressurization, liquid expulsion, and tank venting. The transient parameters investigated were: liquid temperature, liquid level, and pressurant gas consumption. Several mission scenarios were analyzed using the thermodynamic models, and the results indicate that flying an Atlas IIAS launch vehicle with densified propellants is feasible and beneficial but may require some minor changes to the vehicle.

  20. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    PubMed

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-01-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface. PMID:25078347

  1. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  2. Space simulation test for thermal control materials

    NASA Technical Reports Server (NTRS)

    Hardgrove, W. R.

    1990-01-01

    Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.

  3. Operation of the JPL Satellite Test Assistant Robot (STAR) and Its Integral Infrared Imaging Camera in a Thermal/Vacuum Test Environment

    NASA Technical Reports Server (NTRS)

    McAffee, D.

    1994-01-01

    A new multi-axis multi-camera, robotic inspection system has been developed for use inside JPL's thermal/vacuum test chambers wherein satellites and other flight hardware are tested in a simulated space environment.

  4. The influence of the free space environment on the superlight-weight thermal protection system: conception, methods, and risk analysis

    NASA Astrophysics Data System (ADS)

    Yatsenko, Vitaliy; Falchenko, Iurii; Fedorchuk, Viktor; Petrushynets, Lidiia

    2016-07-01

    This report focuses on the results of the EU project "Superlight-weight thermal protection system for space application (LIGHT-TPS)". The bottom line is an analysis of influence of the free space environment on the superlight-weight thermal protection system (TPS). This report focuses on new methods that based on the following models: synergetic, physical, and computational. This report concentrates on four approaches. The first concerns the synergetic approach. The synergetic approach to the solution of problems of self-controlled synthesis of structures and creation of self-organizing technologies is considered in connection with the super-problem of creation of materials with new functional properties. Synergetics methods and mathematical design are considered according to actual problems of material science. The second approach describes how the optimization methods can be used to determine material microstructures with optimized or targeted properties. This technique enables one to find unexpected microstructures with exotic behavior (e.g., negative thermal expansion coefficients). The third approach concerns the dynamic probabilistic risk analysis of TPS l elements with complex characterizations for damages using a physical model of TPS system and a predictable level of ionizing radiation and space weather. Focusing is given mainly on the TPS model, mathematical models for dynamic probabilistic risk assessment and software for the modeling and prediction of the influence of the free space environment. The probabilistic risk assessment method for TPS is presented considering some deterministic and stochastic factors. The last approach concerns results of experimental research of the temperature distribution on the surface of the honeycomb sandwich panel size 150 x 150 x 20 mm at the diffusion welding in vacuum are considered. An equipment, which provides alignment of temperature fields in a product for the formation of equal strength of welded joints is

  5. Thermal Pollution Math Model. Volume 1. Thermal Pollution Model Package Verification and Transfer. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.

    1980-01-01

    Two three dimensional, time dependent models, one free surface, the other rigid lid, were verified at Anclote Anchorage and Lake Keowee respectively. The first site is a coastal site in northern Florida; the other is a man-made lake in South Carolina. These models describe the dispersion of heated discharges from power plants under the action of ambient conditions. A one dimensional, horizontally-averaged model was also developed and verified at Lake Keowee. The data base consisted of archival in situ measurements and data collected during field missions. The field missions were conducted during winter and summer conditions at each site. Each mission consisted of four infrared scanner flights with supporting ground truth and in situ measurements. At Anclote, special care was taken to characterize the complete tidal cycle. The three dimensional model results compared with IR data for thermal plumes on an average within 1 C root mean square difference. The one dimensional model performed satisfactorily in simulating the 1971-1979 period.

  6. Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.

  7. Face Recognition in Low-Light Environments Using Fusion of Thermal Infrared and Intensified Imagery

    NASA Astrophysics Data System (ADS)

    Socolinsky, Diego A.; Wolff, Lawrence B.

    This chapter presents a study of face recognition performance as a function of light level using intensified near infrared imagery in conjunction with thermal infrared imagery. Intensification technology is the most prevalent in both civilian and military night vision equipment and provides enough enhancement for human operators to perform standard tasks under extremely low light conditions. We describe a comprehensive data collection effort undertaken to image subjects under carefully controlled illumination and quantify the performance of standard face recognition algorithms on visible, intensified, and thermal imagery as a function of light level. Performance comparisons for automatic face recognition are reported using the standardized implementations from the Colorado State University Face Identification Evaluation System, as well as Equinox's algorithms. The results contained in this chapter should constitute the initial step for analysis and deployment of face recognition systems designed to work in low-light conditions.

  8. Face recognition in low-light environments using fusion of thermal infrared and intensified imagery

    NASA Astrophysics Data System (ADS)

    Socolinsky, Diego A.; Wolff, Lawrence B.; Lundberg, Andrew J.

    2006-05-01

    This paper presents a study of face recognition performance as a function of light level using intensified near infrared imagery in conjunction with thermal infrared imagery. Intensification technology is the most prevalent in both civilian and military night vision equipment, and provides enough enhancement for human operators to perform standard tasks under extremely low-light conditions. We describe a comprehensive data collection effort undertaken by the authors to image subjects under carefully controlled illumination and quantify the performance of standard face recognition algorithms on visible, intensified and thermal imagery as a function of light level. Performance comparisons for automatic face recognition are reported using the standardized implementations from the CSU Face Identification Evaluation System, as well as Equinox own algorithms. The results contained in this paper should constitute the initial step for analysis and deployment of face recognition systems designed to work in low-light level conditions.

  9. An inhomogeneous thermal block model of man for the electromagnetic environment

    SciTech Connect

    Chatterjee, I.; Gandhi, O.P.

    1983-11-01

    An inhomogeneous four layer block thermal model of a human body, composed of 476 electromagnetic-sensitive cubical cells has been developed to study the effects of electromagnetic radiation. Varying tissue properties defined by thermal conductivity, specific heat, blood flow rate and metabolic heat production are accounted for by equations. Peripheral cell temperature is weight-averaged for total cell volume and is thereby higher than actual skin temperature. During electromagnetic field exposure, additional factors considered are increased blood flow rate caused by vasodilation and sweat-induced heat loss. Hot spots have been located in the model and numerical results are presented. Subjected to plane wave iradiation, the model's sweating and insensible perspiration cease and all temperatures converge. Testing during electromagnetic hyperthemia shows all temperature body parts to increase approximately at the same rate.

  10. Modeling thermal environments in large blast/thermal simulator (LB/TS). Technical report, 17 March 1983-28 February 1984

    SciTech Connect

    Chambers, B.S.

    1986-04-30

    This work was conducted in support of the use of aluminum-liquid oxygen (LOX) thermal-radiation simulators (TRS) in the planned large blast/thermal simulator (LB/TS). The type of TRS is the so-called flame or torch TRS. The tasks performed consisted of the following activities: (1) the TRS predictor models were extended to account for different burn rates, (2) conditions unique to the LB/TS were considered from a modeling viewpoint, (3) four camera systems were used to characterize the spectral and temperature variations of a four nozzle TRS, (4) calorimeter baffles were designed, constructed, and used to obtain source-resolved irradiance data. Relationships to scale TRS output to fuel-flow rate were hypothesized and compared to available data. The results are encouraging but inconclusive. With the existence of source-resolved irradiance data, an improvement was made to the TRS predictor models; this improvement has applicability to TRS use in predicting free field environments. The photographic and spectral measurement made in the visible were useful to understanding the TRS flame structure. The baffled calorimeter experiments yielded data directly usable to improve models.

  11. A New Approach to Predicting the Thermal Environment in Buildings at the Early Design Stage. Building Research Establishment Current Paper 2/74.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    The paper argues that existing computer programs for thermal predictions do not produce suitable information for architects, particularly at the early stages of design. It reviews the important building features that determine the thermal environment and the need for heating and cooling plant. Graphical design aids are proposed, with examples to…

  12. Effect of space environment on composite materials and thermal coatings (A0138-9)

    NASA Technical Reports Server (NTRS)

    Parcelier, Michel; Assie, Jean Pierre

    1992-01-01

    This paper presents an experiment within the FRECOPA project on composite materials, adhesives, and thermal coatings. The aging of the specimens was limited because of the canister closing, the location on the trailing edge and the arrangement of the specimens inside the canister. The results show no evidence of change for several graphite fiber reinforced epoxy matrix composite materials as well as for two adhesives. Minor changes can be found on some second surface mirrors.

  13. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Miao, Shiguang; Shen, Shuanghe; Li, Ju; Zhang, Benzhi; Zhang, Ziyue; Chen, Xiujie

    2015-03-01

    Sky view factor (SVF), which is an indicator of urban canyon geometry, affects the surface energy balance, local air circulation, and outdoor thermal comfort. This study focused on a continuous and long-term meteorological observation system to investigate the effects of SVF on outdoor thermal conditions and physiological equivalent temperature (PET) in the central business district (CBD) of Beijing (which is located within Chaoyang District), specifically addressed current knowledge gaps for SVF-PET relationships in cities with typical continental/microthermal climates. An urban sub-domain scale model and the RayMan model were used to diagnose wind fields and to calculate SVF and long-term PET, respectively. Analytical results show that the extent of shading contributes to variations in thermal perception distribution. Highly shaded areas (SVF <0.3) typically exhibit less frequent hot conditions during summer, while enduring longer periods of cold discomfort in winter than moderately shaded areas (0.3< SVF <0.5) and slightly shaded areas (SVF >0.5), and vice versa. Because Beijing has a monsoon-influenced humid continental climate with hot summers and long, cold, windy, and dry winters, a design project that ideally provides moderate shading should be planned to balance hot discomfort in summer and cold discomfort in winter, which effectively prolongs the comfort periods in outdoor spaces throughout the entire year. This research indicate that climate zone characteristics, urban environmental conditions, and thermal comfort requirements of residents must be accounted for in local-scale scientific planning and design, i.e., for urban canyon streets and residential estates.

  14. S-2 stage 1/25 scale model base region thermal environment test. Volume 1: Test results, comparison with theory and flight data

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; French, E. P.; Sexton, H.

    1973-01-01

    A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.

  15. Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp?

    PubMed

    Foray, Vincent; Desouhant, Emmanuel; Voituron, Yann; Larvor, Vanessa; Renault, David; Colinet, Hervé; Gibert, Patricia

    2013-01-01

    Tolerance of ectotherm species to cold stress is highly plastic according to thermal conditions experienced prior to cold stress. In this study, we investigated how cold tolerance varies with developmental temperature (at 17, 25 and 30°C) and whether developmental temperature induces different metabolic profiles. Experiments were conducted on the two populations of the parasitoid wasp, Venturia canescens, undergoing contrasting thermal regimes in their respective preferential habitat (thermally variable vs. buffered). We predicted the following: i) development at low temperatures improves the cold tolerance of parasitoid wasps, ii) the shape of the cold tolerance reaction norm differs between the two populations, and iii) these phenotypic variations are correlated with their metabolic profiles. Our results showed that habitat origin and developmental acclimation interact to determine cold tolerance and metabolic profiles of the parasitoid wasps. Cold tolerance was promoted when developmental temperatures declined and population originating from variable habitat presented a higher cold tolerance. Cold tolerance increases through the accumulation of metabolites with an assumed cryoprotective function and the depression of metabolites involved in energy metabolism. Our data provide an original example of how intraspecific cold acclimation variations correlate with metabolic response to developmental temperature.

  16. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    PubMed

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats. PMID:27208484

  17. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  18. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    PubMed

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats.

  19. Exploiting Lunar Natural and Augmented Thermal Environments for Exploration and Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; McKellip, Rodney; Brannon, David P.; Russell, Kristen J.

    2008-01-01

    Near the poles of the Moon, there are permanently shadowed craters whose surface temperatures never exceed 100 K. Craters within craters, commonly referred to as double-shaded craters, have areas where even colder regions exist with, in many cases, temperatures that should never exceed 50 K. The presence of water ice possibly existing in permanently shaded areas of the moon has been hypothesized, discussed, and studied since Watson et al. [1] predicted the possibility of ice on the moon. Ingersoll et al. [2] estimated that the maximum sublimation rate for ice is less than 1 cm per billion years for these types of environments. These potential ice stores have many uses for lunar exploration, potentially providing precious water and rocket fuel for any human exploration or future colonization. The temperatures within these regions offer unprecedented high-vacuum cryogenic environments, which in their natural state could support cryogenic applications such as high-temperature superconductors and associated devices that could be derived. The potential application of naturally occurring cryogenic environments in conjunction with simple methods to augment these environments to achieve even colder temperatures opens the potential use of many additional cryogenic techniques. Besides ice stores and the potential for continuous solar illumination for power production, the unique cryogenic conditions at the lunar poles provide an environment that could reduce the power, weight, and total mass that would have to be carried from the Earth to the Moon for lunar exploration and research.

  20. Analogue Materials Measured Under Simulated Lunar and Asteroid Environments: Application to Thermal Infrared Measurements of Airless Bodies

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Pieters, C. M.; Patterson, W., III; Moriarty, D.

    2012-12-01

    Remote sensing observations provide key insights into the composition and evolution of planetary surfaces. A fundamentally important component to any remote sensing study of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The near-surface vacuum environment of airless bodies like the Moon and asteroids creates a thermal gradient in the upper hundred microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements [e.g. Logan et al. 1973, Salisbury and Walter 1989, Thomas et al. 2010, Donaldson Hanna et al. 2012]. Compared to ambient conditions, these effects include: (1) the Christiansen feature (CF), an emissivity maximum diagnostic of mineralogy and average composition, shifts to higher wavenumbers and (2) an increase in spectral contrast of the CF relative to the Reststrahlen bands (RB), the fundamental molecular vibration bands due to Si-O stretching and bending. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured. The Asteroid and Lunar Environment Chamber (ALEC) is the newest addition to the RELAB at Brown University. The vacuum chamber simulates the space environment experienced by the near-surface soils of the Moon and asteroids. The internal rotation stage allows for six samples and two blackbodies to be measured without breaking vacuum (<10-4 mbar). Liquid nitrogen is used to cool the interior of the chamber, creating a cold, low emission environment (mimicking the space environment) for heated samples to radiate into. Sample cups can be heated in one of three configurations: (1) from below using heaters embedded in the base of the sample cup, (2) from above using a solar-like radiant heat source, and (3) from

  1. Thermal and hydrothermal stability of selected polymers in a nuclear reactor environment

    NASA Astrophysics Data System (ADS)

    Kim, Jinho

    The focus of this study is the development and understanding of polymer based burnable poison rod assemblies (BPRAs) in pressurized water reactors (PWRs). This material substitution reduces the water displacement penalty at the end of cycle (EOC) currently found with the B4C/Al 2O3 BPRAs that displace moderator water in PWRs. This gives rise to a longer fuel cycle due to the extra moderation from hydrogen in polymer structures. Finding synthetic polymers that endure a severe nuclear reactor circumstance is a challenge. Aside from the proper thermal stability at the range of 350--600°C in the core for a single cycle, the hydrothermal stability at near-critical water condition (350°C, 20.7MPa) is required to maintain the safe and controlled nuclear reaction because a danger comes if water might possibly penetrate inside the burnable poison rod by the failure of zircaloy cladding. There are two approaches to obtain a boron source (burnable position material) in hydrogen containing polymers. One is to utilize the boron source directly by synthesizing boron-containing polymers. A second approach is to find commercial polymers that have an appropriate thermal, hydrothermal, radiational stability and high hydrogen content; and then add an inorganic boron source such as B4C to form a composite material. Poly (diacetylene-siloxane-carborane)s and other silicon based precursor polymers were introduced to observe their thermal and hydrothermal stability. However, we found that the degradation of Si-O-Si, which was presented in the polymer, was an unfavorable disadvantage under near-critical water (350°C, 20.7MPa) even though they formed dense network structures. In addition, the Si-O bond is quite sensitive to variety of reagents, including base and acid. Therefore, the degradation rate might be accelerated by high H+ and OH- ion concentrations at the near-critical water condition. For the second approach, a number of candidate matrix polymers were screened for new

  2. Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2012-01-01

    Human thermal comfort assessments pertaining to exercise while in outdoor environments can improve urban and recreational planning. The current study applied a simple four-segment skin temperature approach to the COMFA (COMfort FormulA) outdoor energy balance model. Comparative results of measured mean skin temperature ( {{bar{T}}}nolimits_{{Msk}} ) with predicted {{bar{T}}}nolimits_{{sk}} indicate that the model accurately predicted {{bar{T}}}nolimits_{{sk}} , showing significantly strong agreement ( r = 0.859, P < 0.01) during outdoor exercise (cycling and running). The combined 5-min mean variation of the {{bar{T}}}nolimits_{{sk}} RMSE was 1.5°C, with separate cycling and running giving RMSE of 1.4°C and 1.6°C, respectively, and no significant difference in residuals. Subjects' actual thermal sensation (ATS) votes displayed significant strong rank correlation with budget scores calculated using both measured and predicted {{bar{T}}}nolimits_{{sk}} ( r s = 0.507 and 0.517, respectively, P < 0.01). These results show improved predictive strength of ATS of subjects as compared to the original and updated COMFA models. This psychological improvement, plus {{bar{T}}}nolimits_{{sk}} and T c validations, enables better application to a variety of outdoor spaces. This model can be used in future research studying linkages between thermal discomfort, subsequent decreases in physical activity, and negative health trends.

  3. Thermal biology of the toad Rhinella schneideri in a seminatural environment in southeastern Brazil

    PubMed Central

    Noronha-de-Souza, Carolina R; Bovo, Rafael P; Gargaglioni, Luciane H; Andrade, Denis V; Bícego, Kênia C

    2015-01-01

    The toad, Rhinella schneideri, is a large-bodied anuran amphibian with a broad distribution over South America. R. schneideri is known to be active at night during the warm/rainy months and goes into estivation during the dry/cold months; however, there is no data on the range of body temperatures (Tb) experienced by this toad in the field, and how environmental factors, thermoregulatory behaviors or activity influence them. By using implantable temperature dataloggers, we provide an examination of Tb variation during an entire year under a seminatural setting (emulating its natural habitat) monitored with thermosensors. We also used data on preferred Tb, allowing us to express the effectiveness of thermoregulation quantitatively. Paralleling its cycle of activity, R. schneideri exhibited differences in its daily and seasonal profile of Tb variation. During the active season, toads spent daytime hours in shelters and, therefore, did not explore microhabitats with higher thermal quality, such as open areas in the sun. At nighttime, the thermal suitability of microhabitats shifted as exposed microhabitats experienced greater temperature drops than the more insulated shelter. As toads became active at night, they were driven to the more exposed areas and, as a result, thermoregulatory effectiveness decreased. Our results, therefore, indicate that, during the active season, a compromise between thermoregulation and nocturnal activity may be at play. During the estivation period, R. schneideri spent the entire day cycle inside the shelter. As toads did not engage in nocturnal activity in those areas with low thermal quality, the overall effectiveness of thermoregulation was, indeed, elevated. In conclusion, we showed that daily and seasonal variation in Tb of an anuran species is highly associated with their respective pattern of activity and may involve important physiological and ecological compromises. PMID:27227075

  4. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments

    NASA Astrophysics Data System (ADS)

    Coutts, Andrew M.; White, Emma C.; Tapper, Nigel J.; Beringer, Jason; Livesley, Stephen J.

    2016-04-01

    Urban street trees provide many environmental, social, and economic benefits for our cities. This research explored the role of street trees in Melbourne, Australia, in cooling the urban microclimate and improving human thermal comfort (HTC). Three east-west (E-W) oriented streets were studied in two contrasting street canyon forms (deep and shallow) and between contrasting tree canopy covers (high and low). These streets were instrumented with multiple microclimate monitoring stations to continuously measure air temperature, humidity, solar radiation, wind speed and mean radiant temperature so as to calculate the Universal Thermal Climate Index (UTCI) from May 2011 to June 2013, focusing on summertime conditions and heat events. Street trees supported average daytime cooling during heat events in the shallow canyon by around 0.2 to 0.6 °C and up to 0.9 °C during mid-morning (9:00-10:00). Maximum daytime cooling reached 1.5 °C in the shallow canyon. The influence of street tree canopies in the deep canyon was masked by the shading effect of the tall buildings. Trees were very effective at reducing daytime UTCI in summer largely through a reduction in mean radiant temperature from shade, lowering thermal stress from very strong (UTCI > 38 °C) down to strong (UTCI > 32 °C). The influence of street trees on canyon air temperature and HTC was highly localized and variable, depending on tree cover, geometry, and prevailing meteorological conditions. The cooling benefit of street tree canopies increases as street canyon geometry shallows and broadens. This should be recognized in the strategic placement, density of planting, and species selection of street trees.

  5. Thermal biology of the toad Rhinella schneideri in a seminatural environment in southeastern Brazil.

    PubMed

    Noronha-de-Souza, Carolina R; Bovo, Rafael P; Gargaglioni, Luciane H; Andrade, Denis V; Bícego, Kênia C

    2015-01-01

    The toad, Rhinella schneideri, is a large-bodied anuran amphibian with a broad distribution over South America. R. schneideri is known to be active at night during the warm/rainy months and goes into estivation during the dry/cold months; however, there is no data on the range of body temperatures (Tb) experienced by this toad in the field, and how environmental factors, thermoregulatory behaviors or activity influence them. By using implantable temperature dataloggers, we provide an examination of Tb variation during an entire year under a seminatural setting (emulating its natural habitat) monitored with thermosensors. We also used data on preferred Tb, allowing us to express the effectiveness of thermoregulation quantitatively. Paralleling its cycle of activity, R. schneideri exhibited differences in its daily and seasonal profile of Tb variation. During the active season, toads spent daytime hours in shelters and, therefore, did not explore microhabitats with higher thermal quality, such as open areas in the sun. At nighttime, the thermal suitability of microhabitats shifted as exposed microhabitats experienced greater temperature drops than the more insulated shelter. As toads became active at night, they were driven to the more exposed areas and, as a result, thermoregulatory effectiveness decreased. Our results, therefore, indicate that, during the active season, a compromise between thermoregulation and nocturnal activity may be at play. During the estivation period, R. schneideri spent the entire day cycle inside the shelter. As toads did not engage in nocturnal activity in those areas with low thermal quality, the overall effectiveness of thermoregulation was, indeed, elevated. In conclusion, we showed that daily and seasonal variation in Tb of an anuran species is highly associated with their respective pattern of activity and may involve important physiological and ecological compromises. PMID:27227075

  6. Thermal Influence of a Large Green Space on a Hot Urban Environment.

    PubMed

    Sugawara, Hirofumi; Shimizu, Shogo; Takahashi, Hideo; Hagiwara, Shinsuke; Narita, Ken-Ichi; Mikami, Takehiko; Hirano, Tatsuki

    2016-01-01

    City-scale warming is becoming a serious problem in terms of human health. Urban green spaces are expected to act as a countermeasure for urban warming, and therefore better understanding of the micro-climate benefits of urban green is needed. This study quantified the thermal influence of a large green park in Tokyo, Japan on the surrounding urban area by collecting long-term measurements. Apparent variations in the temperature difference between the park and surrounding town were found at both the diurnal and seasonal scales. Advection by regional-scale wind and turbulent mixing transfers colder air from the park to urban areas in its vicinity. The extent of the park's thermal influence on the town was greater on the downwind side of the park (450 m) than on the upwind side (65 m). The extent was also greater in an area where the terrain slopes down toward the town. Even on calm nights, the extent of the thermal influence extended by the park breeze to an average of 200 m from the park boundary. The park breeze was characterized by its divergent flow in a horizontal plane, which was found to develop well in calm conditions late at night (regional scale wind <1.5 m s and after 02:00 LST). The average magnitude of the cooling effect of the park breeze was estimated at 39 Wm. This green space tempered the hot summer nights on a city block scale. These findings can help urban planners in designing a heat-adapted city.

  7. By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon

    2016-01-01

    By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.

  8. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress

    PubMed Central

    2013-01-01

    Background Beneficial mutations play an essential role in bacterial adaptation, yet little is known about their fitness effects across genetic backgrounds and environments. One prominent example of bacterial adaptation is antibiotic resistance. Until recently, the paradigm has been that antibiotic resistance is selected by the presence of antibiotics because resistant mutations confer fitness costs in antibiotic free environments. In this study we show that it is not always the case, documenting the selection and fixation of resistant mutations in populations of Escherichia coli B that had never been exposed to antibiotics but instead evolved for 2000 generations at high temperature (42.2°C). Results We found parallel mutations within the rpoB gene encoding the beta subunit of RNA polymerase. These amino acid substitutions conferred different levels of rifampicin resistance. The resistant mutations typically appeared, and were fixed, early in the evolution experiment. We confirmed the high advantage of these mutations at 42.2°C in glucose-limited medium. However, the rpoB mutations had different fitness effects across three genetic backgrounds and six environments. Conclusions We describe resistance mutations that are not necessarily costly in the absence of antibiotics or compensatory mutations but are highly beneficial at high temperature and low glucose. Their fitness effects depend on the environment and the genetic background, providing glimpses into the prevalence of epistasis and pleiotropy. PMID:23433244

  9. Self-reported segregation experience throughout the life course and its association with adequate health literacy.

    PubMed

    Goodman, Melody S; Gaskin, Darrell J; Si, Xuemei; Stafford, Jewel D; Lachance, Christina; Kaphingst, Kimberly A

    2012-09-01

    Residential segregation has been shown to be associated with health outcomes and health care utilization. We examined the association between racial composition of five physical environments throughout the life course and adequate health literacy among 836 community health center patients in Suffolk County, NY. Respondents who attended a mostly White junior high school or currently lived in a mostly White neighborhood were more likely to have adequate health literacy compared to those educated or living in predominantly minority or diverse environments. This association was independent of the respondent's race, ethnicity, age, education, and country of birth.

  10. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-08-01

    In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.

  11. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  12. Post-flight Analysis of Mars Science Laboratory Entry Aerothermal Environment and Thermal Protection System Response

    NASA Technical Reports Server (NTRS)

    White, Todd Richard; Mahazari, Milad; Bose, Deepak; Santos, Jose Antonio

    2013-01-01

    The Mars Science Laboratory successfully landed on the Martian surface on August 5th, 2012. The rover was protected from the extreme heating environments of atmospheric entry by an ablative heatshield. This Phenolic Impregnated Carbon Ablator heatshield was instrumented with a suite of embedded thermocouples, isotherm sensors, and pressure transducers. The sensors monitored the in-depth ablator response, as well as the surface pressure at discrete locations throughout the hypersonic deceleration. This paper presents a comparison of the flight data with post-entry estimates. An assessment of the aerothermal environments, as well as the in-depth response of the heatshield material is made, and conclusions regarding the overall performance of the ablator at the suite locations are presented.

  13. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  14. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.

    PubMed

    Manenti, T; Loeschcke, V; Moghadam, N N; Sørensen, J G

    2015-11-01

    The selective past of populations is presumed to affect the levels of phenotypic plasticity. Experimental evolution at constant temperatures is generally expected to lead to a decreased level of plasticity due to presumed costs associated with phenotypic plasticity when not needed. In this study, we investigated the effect of experimental evolution in constant, predictable and unpredictable daily fluctuating temperature regimes on the levels of phenotype plasticity in several life history and stress resistance traits in Drosophila simulans. Contrary to the expectation, evolution in the different regimes did not affect the levels of plasticity in any of the traits investigated even though the populations from the different thermal regimes had evolved different stress resistance and fitness trait means. Although costs associated with phenotypic plasticity are known, our results suggest that the maintenance of phenotypic plasticity might come at low and negligible costs, and thus, the potential of phenotypic plasticity to evolve in populations exposed to different environmental conditions might be limited.

  15. Thin film heat flux sensors fabricated on copper substrates for thermal measurements in microfluidic environments

    NASA Astrophysics Data System (ADS)

    Jasperson, Benjamin A.; Schmale, Joshua; Qu, Weilin; Pfefferkorn, Frank E.; Turner, Kevin T.

    2014-12-01

    Micro-scale heat flux sensors are fabricated on bulk copper surfaces using a combination of lithography-based microfabrication and micro end milling. The heat flux sensors are designed to enable heat transfer measurements on an individual pin in a copper micro pin fin heat sink. Direct fabrication of the sensors on copper substrates minimizes the thermal resistance between the sensor and pin. To fabricate the devices, copper wafers were polished to a flatness and roughness suitable for microfabrication and standard processes, including photolithography, polyimide deposition via spinning, and metal deposition through physical vapor deposition were tailored for use on the unique copper substrates. Micro end milling was then used to create 3D pin features and segment the devices from the copper substrate. Temperature calibrations of the sensors were performed using a tube furnace and the heat flux sensing performance was assessed through laser-based tests. This paper describes the design, fabrication and calibration of these integrated heat flux sensors.

  16. By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2016-01-01

    Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results.

  17. Operation of a Thin-Film Inflatable Concentrator System Demonstrated in a Solar Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.

  18. Possible ways of reducing the effect of thermal power facilities on the environment

    NASA Astrophysics Data System (ADS)

    Zroichikov, N. A.; Prokhorov, V. B.; Tupov, V. B.; Arkhipov, A. M.; Fomenko, M. V.

    2015-02-01

    The main trends in the integrated solution of thermal power engineering environmental problems are pointed out taking the Mosenergo power company as an example, and the data are given with respect to the structure of the power engineering equipment of the city of Moscow and its change, energy consumption, and generation of heat and electric energy. The dynamics of atmospheric air pollution of Moscow from 1990 to 2010, as well as the main measures on reducing the adverse effect of the power engineering equipment operation, is given. The results of original designs by the Department of Boiler Installations and Power Engineering Ecology (KU&EE) are given concerning the reduction of nitrogen oxides emissions and the decrease of the noise impact produced by the power engineering equipment.

  19. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semi-annual technical progress report, February 1996--July 1996

    SciTech Connect

    Banovic, S.W.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-08-01

    Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO{sub x}, emissions to the environment. To reduce NO{sub x}, emissions, new low NO{sub x}, combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO{sub x} environments, H{sub 2}S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures. One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

  20. Thermal State Of Permafrost In Urban Environment Under Changing Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V. I.; Kerimov, A. G.; Kurchatova, A.; Andruschenko, F.; Gubanov, A.

    2015-12-01

    Risks and damage, caused by deformation of building and constructions in cryolithozone, are growing for decades. Worsening of cryo-ecological situation and loss of engineering-geocryological safety are induced by both technogenic influences on frozen basement and climate change. In such towns on permafrost as Vorkuta, Dixon more than 60% of objects are deformed, in Yakutsk, Igarka- nearly 40%, in Norilsk, Talnakh, Mirnij 35%, in old indigenous villages - approximately 100%; more than 80% ground dams with frozen cores are in poor condition. This situation is accompanied by activation of dangerous cryogenic processes. For example in growing seasonally-thaw layer is strengthening frost heave of pipeline foundation: only on Yamburg gas condensate field (Taz Peninsula) are damaged by frost heave and cut or completely replaced 3000 - 5000 foundations of gas pipelines. Intensity of negative effects strongly depends on regional geocryology, technogenic loads and climatic trends, and in Arctic we see a temperature rise - warming, which cause permafrost temperature rise and thaw). In built areas heat loads are more diverse: cold foundations (under the buildings with ventilated cellars or near termosyphons) are close to warm areas with technogenic beddings (mainly sandy), that accumulate heat, close to underground collectors for communications, growing thaw zones around, close to storages of snows, etc. Note that towns create specific microclimate with higher air temperature. So towns are powerful technogenic (basically, thermal) presses, placed on permafrost; in cooperation with climate changes (air temperature rise, increase of precipitation) they cause permafrost degradation. The analysis of dozens of urban thermal fields, formed in variable cryological and soil conditions, showed, that nearly 70% have warming trend, 20% - cooling and in 10% of cases the situation after construction is stable. Triggered by warming of climate changes of vegetation, depth and temperature of

  1. Formation of Biogenic Fe-Oxyhydroxides in an Extreme Thermal Environment

    NASA Astrophysics Data System (ADS)

    Peng, X.; Chen, S.; Xu, H.

    2014-12-01

    Biogenic Fe-oxyhydroxides have been widely found in freshwater and marine environments. Many studies have suggested a microbial role in iron precipitation in these settings, through either direct metabolic activities of bacteria or passive sorption and nucleation reaction. Due to the complex origin of biogenic Fe-oxyhydroxides, however, it is still a great challenge to ascertain the exact role of microorganisms in the formation of biogenic Fe-oxyhydroxides in nature environments, especially in Fe-rich neutral pH environments. Here, we report the geomicrobiological characterization of Fe-rich reddish precipitates from a high Fe, near-neutral pH hot spring with a temperature of 42 to 73°C located in the Rehai Geothermal Field, Tengchong, China. Abundant sheath-like Fe-oxyhydroxides, which are composed largely of Fe, Si, O and other trace elements, are scattered in the reddish precipitates and exhibit a diversity of morphologies and sizes. The sheath-like Fe-oxyhydroxides consist of ferrihydrites rather than more crystalline Fe oxides. Molecular evidences show that no chemolithotrophic Fe oxidizers were identified. Various thermophiles, mainly including cyanobacteria, Planctomycetes, β-proteobacteria, Deinococci-Thermus and Chlorobi, may be involved in the formation of the sheath-like Fe-oxyhydroxides, through simply acting as binding and nucleation surface for Fe-oxyhydroxides. The oxygen produced by cyanobacteria that dominate the microbial community may greatly accelerate the oxidization of Fe(II) in the spring. Biogenic sheath-like Fe-oxyhydroxides in such a hot, near-neutral pH, Fe-rich spring have important implications for geochemical cycles driven by microorganisms, the origin of microfossils and the formation of banded iron formations (BIFs) in the Archean ocean.

  2. Disturbed nights and 3-4 month old infants: the effects of feeding and thermal environment.

    PubMed

    Wailoo, M P; Petersen, S A; Whitaker, H

    1990-05-01

    Parents completed a prospective diary of a night's sleep for 87, 3-4 month old infants at home whose body temperatures were continuously recorded. We found that about half of the babies disturbed their parents in the night. Breast fed babies were more likely to wake parents in the middle of the night. The babies who disturbed their parents in the middle of the night were significantly more heavily wrapped in significantly warmer rooms. We suggest that discomfort from efforts at active thermoregulation in warm environments may lead some babies to disturb their parents at 'unsocial hours'.

  3. Galileo probe thermal protection: Entry heating environments and spallation experiments design

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Nicolet, W.; Sandhu, S.; Dodson, J.

    1979-01-01

    A valid procedure was developed for predicting wall heating and ablation rates about the probe forebody. Entropy layer effects on convective heating rate were analyzed and the computed results are given. A feasibility study to perform an experiment, the selection of a candidate test facility, and the definition of a test matrix are described. The material selection, fabrication, and evaluation of the metal containing carbon-carbon composites for use on the Galileo probe are summarized. The effect of various Jovian atmospheric models on entry heating environment is considered as well as the effect of the nonspherical shape of the planet on entry trajectory.

  4. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  5. Modeling of gaseous reacting flow and thermal environment of liquid rocket injectors

    NASA Astrophysics Data System (ADS)

    Sozer, Emre

    Reacting flow and thermal fields around the injector critically affect the performance and life of liquid rocket engines. The performance gain by enhanced mixing is often countered by increased heat flux to the chamber wall, which can result in material failure. A CFD based design approach can aid in optimization of competing objectives by providing detailed flow field data and an ability to feasibly evaluate a large number of design configurations. To address issues related to the CFD analysis of such flows, various turbulence and combustion modeling aspects are assessed. Laminar finite-rate chemistry and steady laminar flamelet combustion models are adopted to facilitate individual assessments of turbulence-chemistry interactions (TCI) and chemical non-equilibrium. Besides the experimental wall heat transfer information, assessments are aided by evaluations of time scales, grid sensitivity, wall treatments and kinetic schemes. Several multi-element injector configurations are considered to study element-to-element interactions. Under the conditions considered, chemical non-equilibrium effect is found to be unimportant. TCI is found to noticeably alter the flow and thermal fields near the injector and the flame surface. In the multi-element injector case, due to proximity of the outer row injector elements to the wall, wall heat flux distribution is also significantly affected by TCI. The near wall treatment is found to critically affect wall heat flux predictions. A zonal treatment, blending the low-Reynolds number model and the law-of-the-wall approach is shown to improve the accuracy significantly. Porous materials such as Rigimesh are often used as the injector face plate of liquid rocket engines. A multi-scale model which eliminates the empirical dependence of conventional analysis methods, is developed. The resulting model is tested using experimental information showing excellent agreement. The model development and assessment presented for both injector

  6. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  7. 13 CFR 108.200 - Adequate capital for NMVC Companies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order to... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for...

  8. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  9. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 1 2013-07-01 2013-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  10. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  11. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 1 2014-07-01 2014-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  12. 34 CFR 200.20 - Making adequate yearly progress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Making adequate yearly progress. 200.20 Section 200.20... Basic Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.20 Making... State data system; (vi) Include, as separate factors in determining whether schools are making AYP for...

  13. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  14. 9 CFR 305.3 - Sanitation and adequate facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if...

  15. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  16. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  17. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  18. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining...

  19. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Qualifying for an SBIC License Capitalizing An Sbic § 107.200 Adequate capital...

  20. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  1. 21 CFR 201.5 - Drugs; adequate directions for use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs; adequate directions for use. 201.5 Section 201.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.5 Drugs; adequate directions for use....

  2. 7 CFR 4290.200 - Adequate capital for RBICs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adequate capital for RBICs. 4290.200 Section 4290.200 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Qualifications for the RBIC Program Capitalizing A Rbic § 4290.200 Adequate capital for RBICs. You must meet...

  3. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya

    ERIC Educational Resources Information Center

    Parker, Jan

    2014-01-01

    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo…

  4. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    NASA Astrophysics Data System (ADS)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  5. Thermal/Mechanical Durability of Polymer-Matrix Composites in Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Whitley, Karen S.; Grenoble, Ray W.; Bandorawalla, Tozer

    2003-01-01

    In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric-matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 as a function of temperature and aging. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimens ply lay-ups. Specimens were preconditioned with one set of coupons being isothermally aged for 576 hours at -184 C, in an unloaded state. Another set of corresponding coupons were mounted in constant strain fixtures such that a constant uniaxial strain was applied to the specimens for 576 hours at -184 C. A third set was mechanically cycled in tension at -184 C. The measured properties indicated that temperature, aging, and loading mode can all have significant influence on performance. Moreover, this influence is a strong function of laminate stacking sequence. Thermal-stress calculations based on lamination theory predicted that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material because of aging at cryogenic temperatures. ________________

  6. Preliminary results of thermal igniter experiments in H/sub 2/-air-steam environments. [PWR; BWR

    SciTech Connect

    Lowry, W.

    1981-01-01

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft/sup 3/ insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program.

  7. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-09-01

    This article examines the application of nonlocal strain gradient elasticity theory to wave dispersion behavior of a size-dependent functionally graded (FG) nanobeam in thermal environment. The theory contains two scale parameters corresponding to both nonlocal and strain gradient effects. A quasi-3D sinusoidal beam theory considering shear and normal deformations is employed to present the formulation. Mori-Tanaka micromechanical model is used to describe functionally graded material properties. Hamilton's principle is employed to obtain the governing equations of nanobeam accounting for thickness stretching effect. These equations are solved analytically to find the wave frequencies and phase velocities of the FG nanobeam. It is indicated that wave dispersion behavior of FG nanobeams is significantly affected by temperature rise, nonlocality, length scale parameter and material composition.

  8. Expected very-near-field thermal environments for advanced spent-fuel and defense high-level waste packages

    SciTech Connect

    Rickertsen, L.D.; Misplon, M.A.; Claiborne, H.C.

    1982-03-01

    The very-near-field thermal environments expected in a nuclear waste repository in a salt formation have been evaluated for the Westinghouse Form I advanced waste package concepts. The repository descriptions used to supplement the waste package designs in these analyses are realistic and take into account design constraints to assure conservatism. As a result, areal loadings are well below the acceptable values established for salt repositories. Predicted temperatures are generally well below any temperature limits which have been discussed for waste packages in a salt formation. These low temperatures result from the conservative repository designs. Investigations are also made of the sensitivity of these temperatures to areal loading, canister separation, and other design features.

  9. Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Meadow, James; Rohr, Jason R; Redecker, Dirk; Zabinski, Catherine A

    2011-06-01

    The relative importance of dispersal and niche restrictions remains a controversial topic in community ecology, especially for microorganisms that are often assumed to be ubiquitous. We investigated the impact of these factors for the community assembly of the root-symbiont arbuscular mycorrhizal fungi (AMF) by sampling roots from geothermal and nonthermal grasslands in Yellowstone National Park (YNP), followed by sequencing and RFLP of AMF ribosomal DNA. With the exception of an apparent generalist RFLP type closely related to Glomus intraradices, a distance-based redundancy analysis indicated that the AMF community composition correlated with soil pH or pH-driven changes in soil chemistry. This was unexpected, given the large differences in soil temperature and plant community composition between the geothermal and nonthermal grasslands. RFLP types were found in either the acidic geothermal grasslands or in the neutral to alkaline grasslands, one of which was geothermal. The direct effect of the soil chemical environment on the distribution of two AMF morphospecies isolated from acidic geothermal grasslands was supported in a controlled greenhouse experiment. Paraglomus occultum and Scutellospora pellucida were more beneficial to plants and formed significantly more spores when grown in acidic than in alkaline soil. Distance among grasslands, used as an estimate of dispersal limitations, was not a significant predictor of AMF community similarity within YNP, and most fungal taxa may be part of a metacommunity. The isolation of several viable AMF taxa from bison feces indicates that wide-ranging bison could be a vector for at least some RFLP types among grasslands within YNP. In support of classical niche theory and the Baas-Becking hypothesis, our results suggest that AMF are not limited by dispersal at the scale of YNP, but that the soil environment appears to be the primary factor affecting community composition and distribution.

  10. Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments.

    PubMed

    Bruneaux, Matthieu; Nikinmaa, Mikko; Laine, Veronika N; Lindström, Kai; Primmer, Craig R; Vasemägi, Anti

    2014-12-01

    Metabolic responses to temperature changes are crucial for maintaining the energy balance of an individual under seasonal temperature fluctuations. To understand how such responses differ in recently isolated populations (<11,000 years), we studied four Baltic populations of the nine-spined stickleback (Pungitius pungitius L.) from coastal locations (seasonal temperature range, 0-29°C) and from colder, more thermally stable spring-fed ponds (1-19°C). Salinity and predation pressure also differed between these locations. We acclimatized wild-caught fish to 6, 11, and 19°C in common garden conditions for 4-6 months and determined their aerobic scope and hepatosomatic index (HSI). The freshwater fish from the colder (2-14°C), predator-free pond population exhibited complete temperature compensation for their aerobic scope, whereas the coastal populations underwent metabolic rate reduction during the cold treatment. Coastal populations had higher HSI than the colder pond population at all temperatures, with cold acclimation accentuating this effect. The metabolic rates and HSI for freshwater fish from the pond with higher predation pressure were more similar to those of the coastal ones. Our results suggest that ontogenic effects and/or genetic differentiation are responsible for differential energy storage and metabolic responses between these populations. This work demonstrates the metabolic versatility of the nine-spined stickleback and the pertinence of an energetic framework to better understand potential local adaptations. It also demonstrates that instead of using a single acclimation temperature thermal reaction norms should be compared when studying individuals originating from different thermal environments in a common garden setting.

  11. Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments.

    PubMed

    Bruneaux, Matthieu; Nikinmaa, Mikko; Laine, Veronika N; Lindström, Kai; Primmer, Craig R; Vasemägi, Anti

    2014-12-01

    Metabolic responses to temperature changes are crucial for maintaining the energy balance of an individual under seasonal temperature fluctuations. To understand how such responses differ in recently isolated populations (<11,000 years), we studied four Baltic populations of the nine-spined stickleback (Pungitius pungitius L.) from coastal locations (seasonal temperature range, 0-29°C) and from colder, more thermally stable spring-fed ponds (1-19°C). Salinity and predation pressure also differed between these locations. We acclimatized wild-caught fish to 6, 11, and 19°C in common garden conditions for 4-6 months and determined their aerobic scope and hepatosomatic index (HSI). The freshwater fish from the colder (2-14°C), predator-free pond population exhibited complete temperature compensation for their aerobic scope, whereas the coastal populations underwent metabolic rate reduction during the cold treatment. Coastal populations had higher HSI than the colder pond population at all temperatures, with cold acclimation accentuating this effect. The metabolic rates and HSI for freshwater fish from the pond with higher predation pressure were more similar to those of the coastal ones. Our results suggest that ontogenic effects and/or genetic differentiation are responsible for differential energy storage and metabolic responses between these populations. This work demonstrates the metabolic versatility of the nine-spined stickleback and the pertinence of an energetic framework to better understand potential local adaptations. It also demonstrates that instead of using a single acclimation temperature thermal reaction norms should be compared when studying individuals originating from different thermal environments in a common garden setting. PMID:25389079

  12. Repeatability of gradient ultrahigh pressure liquid chromatography-tandem mass spectrometry methods in instrument-controlled thermal environments.

    PubMed

    Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T

    2016-08-26

    The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. PMID:27457561

  13. Repeatability of gradient ultrahigh pressure liquid chromatography-tandem mass spectrometry methods in instrument-controlled thermal environments.

    PubMed

    Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T

    2016-08-26

    The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions.

  14. Thermal Stability of Hi-Nicalon SiC Fiber in Nitrogen and Silicon Environments

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Garg, A.

    1995-01-01

    The room temperature tensile strength of uncoated and two types of pyrolytic boron nitride coated (PBN and Si-rich PBN) Hi-Nicalon SiC fibers was determined after 1 to 400 hr heat treatments to 1800 C under N2 pressures of 0.1, 2, and 4 MPa, and under 0.1 Mpa argon and vacuum environments. In addition, strength stability of both uncoated and coated fibers embedded in silicon powder and exposed to 0.1 MPa N2 for 24 hrs at temperatures to 1400 C was investigated. The uncoated and both types of BN coated fibers exposed to N2 for 1 hr showed noticeable strength degradation above 1400 C and 1600 C, respectively. The strength degradation appeared independent of nitrogen pressure, time of heat treatment, and surface coatings. TEM microstructural analysis suggests that flaws created due to SiC grain growth are responsible for the strength degradation. In contact with silicon powder, the uncoated and both types of PBN coated fibers degrade rapidly above 1350 C.

  15. The effects of simulated low Earth orbit environments on spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.; Stidham, Curtis R.; Stueber, Thomas J.; Booth, Roy E.

    1993-01-01

    Candidate Space Station Freedom radiator coatings including Z-93, YB-71, anodized aluminum and SiO(x) coated silvered Teflon have been characterized for optical properties degradation upon exposure to environments containing atomic oxygen, vacuum ultraviolet (VUV) radiation, and/or silicone contamination. YB-71 coating showed a blue-gray discoloration, which has not been observed in space, upon exposure in atomic oxygen facilities which also provide exaggerated VUV radiation. This is evidence that damage mechanisms occur in these ground laboratory facilities which are different from those which occur in space. Radiator coatings exposed to an electron cyclotron resonance (ECR) atomic oxygen source in the presence of silicone-containing samples showed severe darkening from the intense VUV radiation provided by the ECR and from silicone contamination. Samples exposed to atomic oxygen from the ECR source and to VUV lamps, simultaneously, with in situ reflectance measurement, showed that significantly greater degradation occurred when samples received line-of-site ECR beam exposure than when samples were exposed to atomic oxygen scattered off of quartz surfaces without line-of-site view of the ECR beam. For white paints, exposure to air following atomic oxygen/VUV exposure reversed the darkening due to VUV damage. This illustrates the importance of in situ reflectance measurement.

  16. The effects of simulated low Earth orbit environments on spacecraft thermal control coatings

    NASA Astrophysics Data System (ADS)

    Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.; Stidham, Curtis R.; Stueber, Thomas J.; Booth, Roy E.

    1993-05-01

    Candidate Space Station Freedom radiator coatings including Z-93, YB-71, anodized aluminum and SiO(x) coated silvered Teflon have been characterized for optical properties degradation upon exposure to environments containing atomic oxygen, vacuum ultraviolet (VUV) radiation, and/or silicone contamination. YB-71 coating showed a blue-gray discoloration, which has not been observed in space, upon exposure in atomic oxygen facilities which also provide exaggerated VUV radiation. This is evidence that damage mechanisms occur in these ground laboratory facilities which are different from those which occur in space. Radiator coatings exposed to an electron cyclotron resonance (ECR) atomic oxygen source in the presence of silicone-containing samples showed severe darkening from the intense VUV radiation provided by the ECR and from silicone contamination. Samples exposed to atomic oxygen from the ECR source and to VUV lamps, simultaneously, with in situ reflectance measurement, showed that significantly greater degradation occurred when samples received line-of-site ECR beam exposure than when samples were exposed to atomic oxygen scattered off of quartz surfaces without line-of-site view of the ECR beam. For white paints, exposure to air following atomic oxygen/VUV exposure reversed the darkening due to VUV damage. This illustrates the importance of in situ reflectance measurement.

  17. Thermal shielding by subliming volume reflectors in convective and intense radiative environments.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Green, M. J.; Weston, K. C.

    1973-01-01

    The behavior of dielectric materials having densely packed internal scattering centers subject to extreme convective and radiative environments is analyzed. Experiments have shown that these materials act as volume reflectors of incident radiation even when the exposed surface is being eroded by thermochemical ablation. The analysis was applied to interpret experiments of subliming Teflon models exposed to combined radiative and convective fluxes up to 1.7 kW/sq cm for several seconds. Results show that, although the exposed surface receded at an apparently steady rate, the internal temperature climbed continually, due to internal absorption of radiation and would have caused failure internally if the test duration were extended a few seconds. Thus, performance is time-limited by the internal absorption coefficient. Results were obtained for larger configurations and other materials. Typically, Teflon shells may withstand radiant fluxes up to 20 kW/sq cm for about 5 sec and fritted quartz up to 50 kW/sq cm for about 8 sec (corresponding to the Jupiter entry).

  18. Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment.

    PubMed

    Zhang, Quan-Guo; Buckling, Angus

    2011-03-01

    Understanding the conditions under which rapid evolutionary adaptation can prevent population extinction in deteriorating environments (i.e. evolutionary rescue) is a crucial aim in the face of global climate change. Despite a rapidly growing body of work in this area, little attention has been paid to the importance of interspecific coevolutionary interactions. Antagonistic coevolution commonly observed between hosts and parasites is likely to retard evolutionary rescue because it often reduces population sizes, and results in the evolution of costly host defence and parasite counter-defence. We used experimental populations of a bacterium Pseudomonas fluorescens SBW25 and a bacteriophage virus (SBW25Φ2), to study how host-parasite coevolution impacts viral population persistence in the face of gradually increasing temperature, an environmental stress for the virus but not the bacterium. The virus persisted much longer when it evolved in the presence of an evolutionarily constant host genotype (i.e. in the absence of coevolution) than when the bacterium and virus coevolved. Further experiments suggest that both a reduction in population size and costly infectivity strategies contributed to viral extinction as a result of coevolution. The results highlight the importance of interspecific evolutionary interactions for the evolutionary responses of populations to global climate change.

  19. Maternal thermal environment induces plastic responses in the reproductive life history of oviparous lizards.

    PubMed

    Ma, Liang; Sun, Bao-Jun; Li, Shu-Ran; Sha, Wei; Du, Wei-Guo

    2014-01-01

    Adaptive plasticity may shift phenotypic traits close to a new optimum for directional selection and probably facilitates adaptive evolution in new environments. However, such plasticity has rarely been reported in life-history evolution, despite overwhelming evidence of life-history variation both among and within species. In this study, the temperatures experienced by gravid females of Scincella modesta were manipulated to identify maternally induced plasticity in reproductive traits and the significance of such changes in the evolution of life history. Consistent with the geographic pattern of life history, the study demonstrated that low temperatures delayed egg oviposition, resulting in a more advanced embryonic developmental stage at oviposition and shorter incubation periods compared with warm temperatures. In addition, females maintained at low temperatures produced larger eggs and hence heavier hatchlings than those at warm temperatures. This study demonstrated that environmental temperatures can induce plastic responses in egg retention and offspring size, and these maternally mediated changes in reproductive life history seem to be adaptive in the light of latitudinal clines of these traits in natural populations.

  20. Effects of wind and rain on thermal responses of humans in a mildly cold environment.

    PubMed

    Yamane, Motoi; Oida, Yukio; Ohnishi, Norikazu; Matsumoto, Takaaki; Kitagawa, Kaoru

    2010-05-01

    The purpose of the present study was to clarify the effects of wind and rain on peripheral heat loss by non-exercising minimally clothed humans in a mildly cold environment. Seven healthy young male subjects wearing only shorts rested in a standing position for 20 min at an ambient temperature of 15 degrees C under three conditions: without exposure to wind or rain (CON), with exposure to wind (3 m/s) (WIND) and with exposure to wind (3 m/s) and rain (40 mm/h) (WIND + RAIN). Mean heat loss measured using a heat flux transducer was significantly greater in the subjects exposed to WIND + RAIN compared to those exposed to CON and WIND conditions (p < 0.01). Metabolic heat production was significantly greater under WIND + RAIN than under CON and WIND (p < 0.01). Decrease in heat storage was significantly larger at WIND + RAIN compared with CON and WIND (p < 0.01). Mean skin temperature was significantly lower under WIND + RAIN than under CON and WIND conditions (p < 0.01). These results indicate that peripheral heat loss significantly increases when humans are exposed to wind and rain for a short period (20 min) under a mildly cold condition.

  1. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... is adequate to limit potential contamination by Cryptosporidium oocysts. The adequacy of the...

  2. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... is adequate to limit potential contamination by Cryptosporidium oocysts. The adequacy of the...

  3. Thermal and chemical stabilization of ethylene/vinyl acetate/vinyl alcohol (EVA-OH) terpolymers under nitroplasticizer environments

    SciTech Connect

    Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.; Labouriau, Andrea

    2014-09-17

    Here, we compare the aging behaviors of cross-linked ethylene/vinyl acetate/vinyl alcohol terpolymers, also referred to as EVA-OH, when they are either immersed in nitroplasticizer (NP) liquid or exposed to NP vapor at different temperatures. And while thermogravimetric analysis and differential scanning calorimetry are used to probe the thermal stability of aged NP and polymers, Fourier transform infrared, gel permeation chromatography, ultra-violet/vis, and nuclear magnetic resonance are used to probe their structural changes over the aging process. Our study confirms that NP degrades through C[BOND]N cleavage, and releases HONO molecules at a slightly elevated temperature (<75°C). As these molecules accumulate in the vapor phase, they react among themselves to create an acidic environment. Therefore, these chemical constituents in the NP vapor significantly accelerate the hydrolysis of EVA-OH polymer. When the hydrolysis occurs in both vinyl acetate and urethane groups and the scission at the cross-linker progresses, EVA-OH becomes vulnerable to further degradation in the NP vapor environment. Finally, through the comprehensive characterization, the possible degradation mechanisms of the terpolymers are proposed.

  4. Thermal and chemical stabilization of ethylene/vinyl acetate/vinyl alcohol (EVA-OH) terpolymers under nitroplasticizer environments

    DOE PAGES

    Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.; Labouriau, Andrea

    2014-09-17

    Here, we compare the aging behaviors of cross-linked ethylene/vinyl acetate/vinyl alcohol terpolymers, also referred to as EVA-OH, when they are either immersed in nitroplasticizer (NP) liquid or exposed to NP vapor at different temperatures. And while thermogravimetric analysis and differential scanning calorimetry are used to probe the thermal stability of aged NP and polymers, Fourier transform infrared, gel permeation chromatography, ultra-violet/vis, and nuclear magnetic resonance are used to probe their structural changes over the aging process. Our study confirms that NP degrades through C[BOND]N cleavage, and releases HONO molecules at a slightly elevated temperature (<75°C). As these molecules accumulate inmore » the vapor phase, they react among themselves to create an acidic environment. Therefore, these chemical constituents in the NP vapor significantly accelerate the hydrolysis of EVA-OH polymer. When the hydrolysis occurs in both vinyl acetate and urethane groups and the scission at the cross-linker progresses, EVA-OH becomes vulnerable to further degradation in the NP vapor environment. Finally, through the comprehensive characterization, the possible degradation mechanisms of the terpolymers are proposed.« less

  5. A role for the thermal environment in defining co-stimulation requirements for CD4(+) T cell activation.

    PubMed

    Zynda, Evan R; Grimm, Melissa J; Yuan, Min; Zhong, Lingwen; Mace, Thomas A; Capitano, Maegan; Ostberg, Julie R; Lee, Kelvin P; Pralle, Arnd; Repasky, Elizabeth A

    2015-01-01

    Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever.

  6. A role for the thermal environment in defining co-stimulation requirements for CD4(+) T cell activation.

    PubMed

    Zynda, Evan R; Grimm, Melissa J; Yuan, Min; Zhong, Lingwen; Mace, Thomas A; Capitano, Maegan; Ostberg, Julie R; Lee, Kelvin P; Pralle, Arnd; Repasky, Elizabeth A

    2015-01-01

    Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever. PMID:26131730

  7. Influence of a hot and humid environment on thermal transport across the interface between a Ag thin-film line and a substrate

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Noguchi, Kyohei; Saka, Masumi

    2016-04-01

    To evaluate the reliability of Ag thin-film lines for a wide range of applications in electronic devices, knowledge of the thermal transport across the interface between the line and the underlying substrate is of great importance. This is because such thermal transport significantly affects the temperature distribution in the line, the electrical performance of the line and the service life of the device the line is installed on. In this work, we examine the influence of a hot and humid environment on the thermal transport across the interface between a Ag thin-film line and a substrate. By performing a series of current-stressing experiments using the four-point probe method at atmospheric conditions (296 K and 30 RH%) on a Ag thin-film line for different durations of exposure to a hot and humid environment (323 K and 90 RH%), the electrical resistivity was found to increase with the exposure duration. Such an increase is believed to be the result of a decrease in the interfacial thermal conductance, which indicates less thermal transport from the line to the substrate. Moreover, by observing the surface morphology changes in the line and conducting a one-dimensional electro-thermal analysis, such variations can be attributed to the generation and growth of voids within the line, which hinder heat transfer from the line to the substrate through the interface.

  8. Carbon uptake in low dissolved inorganic carbon environments: the effect of limited carbon availability on photosynthetic organisms in thermal waters

    NASA Astrophysics Data System (ADS)

    Myers, K. D.; Omelon, C. R.; Bennett, P.

    2010-12-01

    Photosynthesis is the primary carbon fixation process in thermal waters below 70°C, but some hydrothermal waters have extremely low dissolved inorganic carbon (DIC), potentially limiting the growth of inorganic carbon fixing organisms such as algae and cyanobacteria. To address the issue of how carbon is assimilated by phototrophs in these environments, we conducted experiments to compare inorganic carbon uptake mechanisms by two phylogenetically distinct organisms collected from geographically distinct carbon limited systems: the neutral pH geothermal waters of El Tatio, Chile, and the acidic geothermal waters of Tantalus Creek in Norris Geyser Basin, Yellowstone National Park. Discharge waters at El Tatio have low total DIC concentrations (2 to 6 ppm) found mainly as HCO3-; this is in contrast to even lower measured DIC values in Tantalus Creek (as low as 0.13 ppm) that, due to a measured pH of 2.5, exists primarily as CO2. Cyanobacteria and algae are innately physiologically plastic, and we are looking to explore the possibility that carbon limitation in these environments is extreme enough to challenge that plasticity and lead to a suite of carbon uptake adaptations. We hypothesize that these microorganisms utilize adaptive modes of Ci uptake that allow them to survive under these limiting conditions. Cyanobacteria (primarily Synechococcus spp.) isolated from El Tatio can utilize either passive CO2 uptake or active HCO3- uptake mechanisms, in contrast to the eukaryotic alga Cyanidium spp. from Tantalus Creek, which is restricted to an energy-dependent CO2 uptake mechanism. To test this hypothesis, we conducted pH drift experiments (Omelon et al., 2008) to examine changes in pH and [DIC] under a range of pH and [DIC] culture conditions. This work provides baseline information upon which we will begin to investigate the effects of low [DIC] on the growth of phototrophs collected from these and other less carbon limited systems.

  9. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments.

    PubMed

    Kenkel, C D; Meyer, E; Matz, M V

    2013-08-01

    Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA-Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down-regulated by 92-fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up-regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta-oxidation enzyme acyl-CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance. PMID:23899402

  10. Silicified virus-like nanoparticles in an extreme thermal environment: implications for the preservation of viruses in the geological record.

    PubMed

    Peng, X; Xu, H; Jones, B; Chen, S; Zhou, H

    2013-11-01

    Biofilms that grow around Gumingquan hot spring (T = 71 °C, pH = 9.2) in the Rehai geothermal area, Tengchong, China, are formed of various cyanobacteria, Firmicutes, Aquificae, Thermodesulfobacteria, Desulfurococcales, and Thermoproteales. Silicified virus-like nanoparticles, 40-200 nm in diameter, are common inside the microbial cells and the extracellular polymeric substances around the cells. These nanoparticles, which are formed of a core encased by a silica cortex, are morphologically akin to known viruses and directly comparable to silicified virus-like particles that were produced in biofilms cultured in the laboratory. The information obtained from examination of the natural and laboratory-produced samples suggests that viruses can be preserved by silicification, especially while they are still encased in their host cells. These results expand our views of virus-host mineral interaction in extreme thermal environments and imply that viruses can be potentially preserved and identified in the geological record.

  11. Optical properties of thermal control coatings contaminated by MMH/N2O4 5-pound thruster in a vacuum environment with solar simulation.

    NASA Technical Reports Server (NTRS)

    Sommers, R. D.; Raquet, C. A.; Cassidy, J. F.

    1972-01-01

    Cat-a-lac Black and S13G thermal control coatings were exposed to the exhaust of a thrustor in a simulated space environment. Vacuum was maintained at less than 10 microtorr during thrustor firing in the liquid helium cooled facility. The thrustor was fired in a 50-millisecond pulse mode, and the accumulated firing time was 224 seconds. Solar absorptance and thermal emittance of the coatings were measured in-situ at intervals of 300 pulses, using a calorimetric technique. The Cat-a-lac Black coatings showed no change in solar absorptance or thermal emittance. The S13G showed up to 25% increase in solar absorptance but no change in thermal emittance.

  12. Thermal Environment in Schools.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This publication attempts to provide some basic descriptions of the various systems and components of climate control and to point out some of the factors to be considered in the selection of the mechanical equipment. The principles of heat gain and loss and ventilation as they relate to a comfortable temperature are discussed. Illustrative…

  13. Effects of vegetation, structural and human factors on the thermal performance of residences in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Kliman, Susan Schaefer

    The objectives of the study were to examine and quantify the relationship between vegetation and the thermal performance of residences in a hot arid environment. Also explored were structural and human influences on residential energy consumption. A primary goal was to determine how much energy savings could be realized through strategic planting of vegetation. This study sought to validate previous simulation and modeling studies that documented annual savings of 2--11% on residential cooling loads. Also examined was whether shrubs and grass could provide a benefit similar to that of trees, assessing the importance of evapotranspiration versus shading. An empirical study was conducted using 105 existing homes in the metropolitan area of Tucson, Arizona. Data included construction type, amenities, living habits of occupants, and energy consumption for heating and cooling over a two-year period. These data were analyzed with a combination of bivariate and multivariate analyses to examine direct correlations between specific variables and energy consumption and the relative importance of each variable. These analyses were unable to document any measurable savings in summer cooling loads as a result of vegetation adjacent to the house, and the presence of trees actually increased the winter heating load by 2%. While trees provide important shading benefits, and can reduce the direct solar gain through the windows of a house, analysis demonstrated that structural and human factors were the most important aspects in residential energy consumption. The size of the house is of primary importance. Houses with evaporative cooling consumed significantly less energy than those with air conditioning. Thermostat settings and habits regarding thermostat operation were the most critical human factors. Occupants who adjusted their thermostats a few degrees cooler in winter and warmer in summer realized measurable savings. Occupants who turned their heating and cooling equipment

  14. Understanding Your Adequate Yearly Progress (AYP), 2011-2012

    ERIC Educational Resources Information Center

    Missouri Department of Elementary and Secondary Education, 2011

    2011-01-01

    The "No Child Left Behind Act (NCLB) of 2001" requires all schools, districts/local education agencies (LEAs) and states to show that students are making Adequate Yearly Progress (AYP). NCLB requires states to establish targets in the following ways: (1) Annual Proficiency Target; (2) Attendance/Graduation Rates; and (3) Participation Rates.…

  15. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  16. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  17. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  18. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  19. 15 CFR 970.404 - Adequate exploration plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Adequate exploration plan. 970.404...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Certification of...

  20. Adequate Schools and Inadequate Education: An Anthropological Perspective.

    ERIC Educational Resources Information Center

    Wolcott, Harry F.

    To illustrate his claim that schools generally do a remarkably good job of schooling while the society makes inadequate use of other means to educate young people, the author presents a case history of a young American (identified pseudonymously as "Brad") whose schooling was adequate but whose education was not. Brad, jobless and homeless,…

  1. Comparability and Reliability Considerations of Adequate Yearly Progress

    ERIC Educational Resources Information Center

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  2. 13 CFR 107.200 - Adequate capital for Licensees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Adequate capital for Licensees. 107.200 Section 107.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS... operate actively in accordance with your Articles and within the context of your business plan,...

  3. Assessing Juvenile Sex Offenders to Determine Adequate Levels of Supervision.

    ERIC Educational Resources Information Center

    Gerdes, Karen E.; And Others

    1995-01-01

    This study analyzed the internal consistency of four inventories used by Utah probation officers to determine adequate and efficacious supervision levels and placement for juvenile sex offenders. Three factors accounted for 41.2 percent of variance (custodian's and juvenile's attitude toward intervention, offense characteristics, and historical…

  4. 4 CFR 200.14 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... identifiable personal data and automated systems shall be adequately trained in the security and privacy of... records in which identifiable personal data are processed or maintained, including all reports and output... personal records or data; must minimize, to the extent practicable, the risk that skilled technicians...

  5. Do Beginning Teachers Receive Adequate Support from Their Headteachers?

    ERIC Educational Resources Information Center

    Menon, Maria Eliophotou

    2012-01-01

    The article examines the problems faced by beginning teachers in Cyprus and the extent to which headteachers are considered to provide adequate guidance and support to them. Data were collected through interviews with 25 school teachers in Cyprus, who had recently entered teaching (within 1-5 years) in public primary schools. According to the…

  6. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes.

    PubMed

    Nagel, Manuel; Kleineidam, Christoph J

    2015-01-01

    Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant's ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature.

  7. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes

    PubMed Central

    Nagel, Manuel; Kleineidam, Christoph J.

    2015-01-01

    Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant’s ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature. PMID:26388753

  8. Two cold-sensitive neurons within one sensillum code for different parameters of the thermal environment in the ant Camponotus rufipes.

    PubMed

    Nagel, Manuel; Kleineidam, Christoph J

    2015-01-01

    Ants show high sensitivity when responding to minute temperature changes and are able to track preferred temperatures with amazing precision. As social insects, they have to detect and cope with thermal fluctuations not only for their individual benefit but also for the developmental benefit of the colony and its brood. In this study we investigate the sensory basis for the fine-tuned, temperature guided behaviors found in ants, specifically what information about their thermal environment they can assess. We describe the dose-response curves of two cold-sensitive neurons, associated with the sensillum coelocapitulum on the antenna of the carpenter ant Camponotus rufipes.One cold-sensitive neuron codes for temperature changes, thus functioning as a thermal flux-detector. Neurons of such type continuously provide the ant with information about temperature transients (TT-neuron). The TT-neurons are able to resolve a relative change of 37% in stimulus intensity (ΔT) and antennal scanning of the thermal environment may aid the ant's ability to use temperature differences for orientation.The second cold-sensitive neuron in the S. coelocapitulum responds to temperature only within a narrow temperature range. A temperature difference of 1.6°C can be resolved by this neuron type. Since the working range matches the preferred temperature range for brood care of Camponotus rufipes, we hypothesize that this temperature sensor can function as a thermal switch to trigger brood care behavior, based on absolute (steady state) temperature. PMID:26388753

  9. Thermal Pollution Mathematical Model. Volume 3: User's Manual for One-Dimensional Numerical Model for the Seasonal Thermocline. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A user's manual for a one dimensional thermal model to predict the temperature profiles of a deep body of water for any number of annual cycles is presented. The model is essentially a set of partial differential equations which are solved by finite difference methods using a high speed digital computer. The model features the effects of area change with depth, nonlinear interaction of wind generated turbulence and buoyancy, adsorption of radiative heat flux below the surface, thermal discharges, and the effects of vertical convection caused by discharge. The main assumption in the formulation is horizontal homogeneity. The environmental impact of thermal discharges from power plants is emphasized. Although the model is applicable to most lakes, a specific site (Lake Keowee, S.C.) application is described in detail. The programs are written in FORTRAN 5.

  10. Estimation of soil moisture-thermal infrared emissivity relation in arid and semi-arid environments using satellite observations

    NASA Astrophysics Data System (ADS)

    Grazia Blasi, Maria; Masiello, Guido; Serio, Carmine; Venafra, Sara; Liuzzi, Giuliano; Dini, Luigi

    2016-04-01

    The retrieval of surface parameters is very important for various aspects concerning the climatological and meteorological context. At this purpose surface emissivity represents one of the most important parameters useful for different applications such as the estimation of climate changes and land cover features. It is known that thermal infrared (TIR) emissivity is affected by soil moisture, but there are very few works in literature on this issue. This study is aimed to analyze and find a relation between satellite soil moisture data and TIR emissivity focusing on arid and semi-arid environments. These two parameters, together with the land surface temperature, are fundamental for a better understanding of the physical phenomena implied in the soil-atmosphere interactions and the surface energy balance. They are also important in several fields of study, such as climatology, meteorology, hydrology and agriculture. In particular, there are several studies stating a correlation between soil moisture and the emissivity at 8-9 μm in desertic soils, which corresponds to the quartz Reststrahlen, a feature which is typical of sandy soils. We investigated several areas characterized by arid or semi-arid environments, focusing our attention on the Dahra desert (Senegal), and on the Negev desert (Israel). For the Dahra desert we considered both in situ, provided by the International Soil Moisture Network, and satellite soil moisture data, from ASCAT and AMSR-E sensors, for the whole year 2011. In the case of the Negev desert soil moisture data are derived from ASCAT observations and we computed a soil moisture index from a temporal series of SAR data acquired by the Cosmo-SkyMed constellation covering a period of six months, from June 2015 to November 2015. For both cases soil moisture data were related to the retrieved TIR emissivity from the geostationary satellite SEVIRI in three different spectral channels, at 8.7 μm, 10.8 μm and 12 μm. A Kalman filter physical

  11. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities.

    PubMed

    Frey, Desta L; Gagnon, Patrick

    2015-01-01

    In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds

  12. Thermal and Hydrodynamic Environments Mediate Individual and Aggregative Feeding of a Functionally Important Omnivore in Reef Communities

    PubMed Central

    Frey, Desta L.; Gagnon, Patrick

    2015-01-01

    In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE

  13. Thermal and hydrodynamic environments mediate individual and aggregative feeding of a functionally important omnivore in reef communities.

    PubMed

    Frey, Desta L; Gagnon, Patrick

    2015-01-01

    In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds

  14. Studies of a new class of high electro-thermal performing Polyimide embedded with 3D scaffold in the harsh environment of outer space

    NASA Astrophysics Data System (ADS)

    Loeblein, Manuela; Bolker, Asaf; Tsang, Siu Hon; Atar, Nurit; Uzan-Saguy, Cecile; Verker, Ronen; Gouzman, Irina; Grossman, Eitan; Teo, Edwin Hang Tong

    The polymer class of Polyimides (PIs) has been wide-spread in the use of outer space coatings due to their chemical stability and flexibility. Nevertheless, their poor thermal conductivity and completely electrically insulating characteristics have caused severe limitations, such as thermal management challenges and spacecraft electrostatic charging, which forces the use of additional materials such as brittle ITO in order to completely resist the harsh environment of space. For this reason, we developed a new composite material via infiltration of PI with a 3D scaffold which improves PIs performance and resilience and enables the use of only a single flexible material to protect spacecraft. Here we present a study of this new material based on outer-space environment simulated on ground. It includes an exhaustive range of tests simulating space environments in accordance with European Cooperation for Space Standard (ECSS), which includes atomic oxygen (AO) etching, Gamma-ray exposure and outgassing properties over extended periods of time and under strenuous mechanical bending and thermal annealing cycles. Measurement methods for the harsh environment of space and the obtained results will be presented.

  15. Thermal Characteristics of Urban Landscapes

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.

    1998-01-01

    Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.

  16. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

  17. Characterization of Textiles Used in Chefs' Uniforms for Protection Against Thermal Hazards Encountered in the Kitchen Environment.

    PubMed

    Zhang, Han; McQueen, Rachel H; Batcheller, Jane C; Ehnes, Briana L; Paskaluk, Stephen A

    2015-10-01

    Within the kitchen the potential for burn injuries arising from contact with hot surfaces, flames, hot liquid, and steam hazards is high. The chef's uniform can potentially offer some protection against such burns by providing a protective barrier between the skin and the thermal hazard, although the extent to which can provide some protection is unknown. The purpose of this study was to examine whether fabrics used in chefs' uniforms were able to provide some protection against thermal hazards encountered in the kitchen. Fabrics from chefs' jackets and aprons were selected. Flammability of single- and multiple-layered fabrics was measured. Effect of jacket type, apron and number of layers on hot surface, hot water, and steam exposure was also measured. Findings showed that all of the jacket and apron fabrics rapidly ignited when exposed to a flame. Thermal protection against hot surfaces increased as layers increased due to more insulation. Protection against steam and hot water improved with an impermeable apron in the system. For wet thermal hazards increasing the number of permeable layers can decrease the level of protection due to stored thermal energy. As the hands and arms are most at risk of burn injury increased insulation and water-impermeable barrier in the sleeves would improve thermal protection with minimal compromise to overall thermal comfort. PMID:25925745

  18. Characterization of Textiles Used in Chefs' Uniforms for Protection Against Thermal Hazards Encountered in the Kitchen Environment.

    PubMed

    Zhang, Han; McQueen, Rachel H; Batcheller, Jane C; Ehnes, Briana L; Paskaluk, Stephen A

    2015-10-01

    Within the kitchen the potential for burn injuries arising from contact with hot surfaces, flames, hot liquid, and steam hazards is high. The chef's uniform can potentially offer some protection against such burns by providing a protective barrier between the skin and the thermal hazard, although the extent to which can provide some protection is unknown. The purpose of this study was to examine whether fabrics used in chefs' uniforms were able to provide some protection against thermal hazards encountered in the kitchen. Fabrics from chefs' jackets and aprons were selected. Flammability of single- and multiple-layered fabrics was measured. Effect of jacket type, apron and number of layers on hot surface, hot water, and steam exposure was also measured. Findings showed that all of the jacket and apron fabrics rapidly ignited when exposed to a flame. Thermal protection against hot surfaces increased as layers increased due to more insulation. Protection against steam and hot water improved with an impermeable apron in the system. For wet thermal hazards increasing the number of permeable layers can decrease the level of protection due to stored thermal energy. As the hands and arms are most at risk of burn injury increased insulation and water-impermeable barrier in the sleeves would improve thermal protection with minimal compromise to overall thermal comfort.

  19. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    SciTech Connect

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply to Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item. 'Best

  20. MOLECULAR ENVIRONMENT AND THERMAL X-RAY SPECTROSCOPY OF THE SEMICIRCULAR YOUNG COMPOSITE SUPERNOVA REMNANT 3C 396

    SciTech Connect

    Su Yang; Yang Ji; Lu Dengrong; Yang Chen; Zhou Xin; Koo, Bon-Chul; Jeong, Il-Gyo; DeLaney, Tracey

    2011-01-20

    We have investigated the molecular environment of the semicircular composite supernova remnant (SNR) 3C 396 and performed a Chandra spatially resolved thermal X-ray spectroscopic study of this young SNR. With our CO millimeter observations, we find that the molecular clouds (MCs) at V{sub LSR}{approx} 84 km s{sup -1} can better explain the multiwavelength properties of the remnant than the V{sub LSR} = 67-72 km s{sup -1} MCs that are suggested by Lee et al. At around 84 km s{sup -1}, the western boundary of the SNR is perfectly confined by the western molecular wall. The CO emission fades out from west to east, indicating that the eastern region is of low gas density. In particular, an intruding finger/pillar-like MC, which may be shocked at the tip, can well explain the X-ray and radio enhancement in the southwest and some infrared filaments there. The SNR-MC interaction is also favored by the relatively elevated {sup 12}CO J = 2-1/J = 1-0 line ratios in the southwestern 'pillar tip' and the molecular patch on the northwestern boundary. The redshifted {sup 12}CO (J = 1-0 and J = 2-1) wings (86-90 km s{sup -1}) of an eastern 81 km s{sup -1} molecular patch may be the kinematic evidence for shock-MC interaction. We suggest that the 69 km s{sup -1} MCs are in the foreground based on H I self-absorption while the 84 km s{sup -1} MCs at a distance of 6.2 kpc (the tangent point) are in physical contact with SNR 3C 396. The X-ray spectral analysis suggests an SNR age of {approx}3 kyr. The metal enrichment of the X-ray emitting gas in the north and south implies a 13-15 M{sub sun} B1-B2 progenitor star.

  1. [Abdominal cure procedures. Adequate use of Nobecutan Spray].

    PubMed

    López Soto, Rosa María

    2009-12-01

    Open abdominal wounds, complicated by infection and/or risk of eventration tend to become chronic and usually require frequent prolonged cure. Habitual changing of bandages develop into one of the clearest risk factors leading to the deterioration of perilesional cutaneous integrity. This brings with it new complications which draw out the evolution of the process, provoking an important deterioration in quality of life for the person who suffers this and a considerable increase in health costs. What is needed is a product and a procedure which control the risk of irritation, which protect the skin, which favor a patient's comfort and which shorten treatment requirements while lowering health care expenses. This report invites medical personnel to think seriously about the scientific rationale, and treatment practice, as to why and how to apply Nobecutan adequately, this reports concludes stating the benefits in the adequate use of this product. The objective of this report is to guarantee the adequate use of this product in treatment of complicated abdominal wounds. This product responds to the needs which are present in these clinical cases favoring skin care apt isolation and protection, while at the same time, facilitating the placement and stability of dressings and bandages used to cure wounds. In order for this to happen, the correct use of this product is essential; medical personnel must pay attention to precautions and recommendations for proper application. The author's experiences in habitual handling of this product during various years, included in the procedures for standardized cures for these wounds, corroborates its usefulness; the author considers use of this product to be highly effective while being simple to apply; furthermore, one succeeds in providing quality care and optimizes resources employed.

  2. Thermal Pollution Mathematical Model. Volume 5: User's Manual for Three-Dimensional Rigid-Lid Model. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    A user's manual for a three dimensional, rigid lid model used for hydrothermal predictions of closed basins subjected to a heated discharge together with various other inflows and outflows is presented. The model has the capability to predict (1) wind driven circulation; (2) the circulation caused by inflows and outflows to the domain; and (3) the thermal effects in the domain, and to combine the above processes. The calibration procedure consists of comparing ground truth corrected airborne radiometer data with surface isotherms predicted by the model. The model was verified for accuracy at various sites and results are found to be fairly accurate in all verification runs.

  3. Effect of thermal stress, restricted feeding and combined stresses (thermal stress and restricted feeding) on growth and plasma reproductive hormone levels of Malpura ewes under semi-arid tropical environment.

    PubMed

    Sejian, V; Maurya, V P; Naqvi, S M K

    2011-04-01

    A study was conducted to assess the effect of thermal, nutritional and combined stresses (thermal and nutritional) on the growth, oestradiol and progesterone levels during oestrus cycles in Malpura ewes. Twenty-eight adult Malpura ewes were used in the present study. The ewes were randomly allocated into four groups, viz., GI (n=7; control), GII (n=7; thermal stress), GIII (n=7; restricted feeding) and GIV (n=7; combined stress). The animals were stall fed with a diet consisting of 60% roughage and 40% concentrate. GI and GII ewes were provided with ad libitum feeding while GIII and GIV ewes were provided with restricted feed (30% intake of GI and GII ewes) to induce nutritional insufficiency. GII and GIV ewes were kept in climatic chamber at 40°C and 55% RH for 6 h a day between 10:00 and 16:00 hours to induce thermal stress for a period of two oestrous cycles. Parameters studied were body weight, oestrus incidences, plasma oestradiol 17-β, plasma progesterone, conception rate, gestation period, lambing rate, and birth weight of lambs. The results indicate that combined stress significantly (p<0.05) reduced body weight, oestrus duration, birth weight of lambs, and oestradiol 17-β whereas significantly (p < 0.05) increased oestrus cycle length and progesterone. Furthermore, the results reveal that on comparative basis, ewes were able to better adapt in terms of growth and reproduction to restricted feeding than thermal stress. However, when restricted feeding was coupled with thermal stress it had significant (p<0.05) influence on body weight, average daily gain, oestradiol 17-β and progesterone concentrations. This showed that combined stress were more detrimental for these reproductive hormones in Malpura ewes under a hot semi-arid environment.

  4. Quantifying dose to the reconstructed breast: Can we adequately treat?

    SciTech Connect

    Chung, Eugene; Marsh, Robin B.; Griffith, Kent A.; Moran, Jean M.; Pierce, Lori J.

    2013-04-01

    To evaluate how immediate reconstruction (IR) impacts postmastectomy radiotherapy (PMRT) dose distributions to the reconstructed breast (RB), internal mammary nodes (IMN), heart, and lungs using quantifiable dosimetric end points. 3D conformal plans were developed for 20 IR patients, 10 autologous reconstruction (AR), and 10 expander-implant (EI) reconstruction. For each reconstruction type, 5 right- and 5 left-sided reconstructions were selected. Two plans were created for each patient, 1 with RB coverage alone and 1 with RB + IMN coverage. Left-sided EI plans without IMN coverage had higher heart Dmean than left-sided AR plans (2.97 and 0.84 Gy, p = 0.03). Otherwise, results did not vary by reconstruction type and all remaining metrics were evaluated using a combined AR and EI dataset. RB coverage was adequate regardless of laterality or IMN coverage (Dmean 50.61 Gy, D95 45.76 Gy). When included, IMN Dmean and D95 were 49.57 and 40.96 Gy, respectively. Mean heart doses increased with left-sided treatment plans and IMN inclusion. Right-sided treatment plans and IMN inclusion increased mean lung V{sub 20}. Using standard field arrangements and 3D planning, we observed excellent coverage of the RB and IMN, regardless of laterality or reconstruction type. Our results demonstrate that adequate doses can be delivered to the RB with or without IMN coverage.

  5. Analysis of Vegetation Within A Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Ridd, Merrill K.

    1998-01-01

    High spatial resolution (5 m) remote sensing data obtained using the airborne Thermal Infrared Multispectral Scanner (TIMS) sensor for daytime and nighttime have been used to measure thermal energy responses for 2 broad classes and 10 subclasses of vegetation typical of the Salt Lake City, Utah urban landscape. Polygons representing discrete areas corresponding to the 10 subclasses of vegetation types have been delineated from the remote sensing data and are used for analysis of upwelling thermal energy for day, night, and the change in response between day and night or flux, as measured by the TIMS. These data have been used to produce three-dimensional graphs of energy responses in W/ sq m for day, night, and flux, for each urban vegetation land cover as measured by each of the six channels of the TIMS sensor. Analysis of these graphs provides a unique perspective for both viewing and understanding thermal responses, as recorded by the TIMS, for selected vegetation types common to Salt Lake City. A descriptive interpretation is given for each of the day, night, and flux graphs along with an analysis of what the patterns mean in reference to the thermal properties of the vegetation types surveyed in this study. From analyses of these graphs, it is apparent that thermal responses for vegetation can be highly varied as a function of the biophysical properties of the vegetation itself, as well as other factors. Moreover, it is also seen where vegetation, particularly trees, has a significant influence on damping or mitigating the amount of thermal radiation upwelling into the atmosphere across the Salt Lake City urban landscape. Published by Elsevier Science Ltd.

  6. The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c' from the thermophilic purple sulfur bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yukihiro; Kasuga, Sachiko; Unno, Masashi; Furusawa, Takashi; Osoegawa, Shinsuke; Sasaki, Yuko; Ohno, Takashi; Wang-Otomo, Zheng-Yu

    2015-04-01

    A soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy. In the oxidized forms, D131K and D131G mutants exhibited denaturing temperatures significantly lower than that of the recombinant control Cyt c'. In contrast, R129K and R129A mutants denatured at nearly identical temperatures with the control Cyt c', indicating that the C-terminal D131 is an important residue maintaining the enhanced thermal stability of Tch. tepidum Cyt c'. The control Cyt c' and all of the mutants increased their thermal stability upon the reduction. Interestingly, D131K exhibited narrow DSC curves and unusual thermodynamic parameters in both redox states. The RR spectra of the control Cyt c' exhibited characteristic bands at 1,635 and 1,625 cm(-1), ascribed to intermediate spin (IS) and high spin (HS) states, respectively. The IS/HS distribution was differently affected by the D131 and R129 mutations and pH changes. Furthermore, R129 mutants suggested the lowering of their redox potentials. These results strongly indicate that the D131 and R129 residues play significant roles in maintaining the thermal stability and modulating the local heme environment of Tch. tepidum Cyt c'.

  7. Thermal Pollution Mathematical Model. Volume 2: Verification of One-Dimensional Numerical Model at Lake Keowee. [environment impact of thermal discharges from power plants

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.

  8. Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Mcanelly, W. B.; Young, C. T. K.

    1973-01-01

    Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.

  9. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    SciTech Connect

    Sinton, W.M.; Kaminski, C.

    1988-08-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake. 35 references.

  10. Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs

    NASA Technical Reports Server (NTRS)

    Sinton, William M.; Kaminski, Charles

    1988-01-01

    Observations of Io during eclipses by Jupiter in 1981-1984 are reported. Data obtained at 3.45-30 microns using bolometer system No. 1 on the 3-m IRTF telescope at Mauna Kea are presented in extensive tables and graphs and analyzed by means of least-squares fitting of thermophysical models to the eclipse cooling and heating curves, thermal-radiation calculations for the Io volcanoes, and comparison with Voyager data. Best fits are obtained for a model comprising (1) a bright region with a vertically inhomogeneous surface and (2) a dark vertically homogeneous region with thermal inertia only about 0.1 times that of (1). Little evidence of volcanic-flux variability during the period is found, and the majority (but not all) of the excess thermal IR radiation in the sub-Jovian hemisphere is attributed to the Loki volcano and its lava lake.

  11. University role in astronaut life support systems: Portable thermal control systems

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1971-01-01

    One of the most vital life support systems is that used to provide the astronaut with an adequate thermal environment. State-of-the-art techniques are reviewed for collecting and rejecting excess heat loads from the suited astronaut. Emphasis is placed on problem areas which exist and which may be suitable topics for university research. Areas covered include thermal control requirements and restrictions, methods of heat absorption and rejection or storage, and comparison between existing methods and possible future techniques.

  12. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  13. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  14. Studying the urban thermal environment under a human-biometeorological point of view: The case of a large coastal metropolitan city, Athens

    NASA Astrophysics Data System (ADS)

    Katavoutas, George; Georgiou, Giorgos K.; Asimakopoulos, Dimosthenis N.

    2015-01-01

    The thermal environment in modern cities has become potentially unfavorable and harmful for its residents, as a result of urbanization and industrialization. Exposure to these extreme thermal conditions increases the heat stress of people in cities considerably. In this context, the present study aims to investigate the urban thermal environment of the large coastal metropolitan city of Athens, in a human-biometeorologically significant way, utilizing the thermo-physiological assessment index PET. The analysis was based on three hour measurements derived from three-year datasets (2006-2009), at 12 monitoring sites located in the urban complex of Athens, on its boundaries and beyond them. The differences of PET values have been investigated in order to attribute urban and exurban thermal characteristics to the considered sites. The frequency and spatial distribution of PET as well as the urban/rural differences of PET have also been analyzed. Finally, a trend analysis has been applied in order to detect possible PET trends by employing long-term recording data (1985-2008). In terms of thermal human-biometeorological conditions, the analysis reveals that among the considered stations, those located inside the urban complex and the industrialized area present urban thermal characteristics, regardless the fact that they are installed either in a park and on a hill or at an open field. The spatial distribution of PET, at 0200 LST, shows a difference of about 3 to 4 °C, on the main axis of the city (SSW-NNE) in the summer period, while the difference exceeds 2.5 °C in the winter period. In general, cooler (less warm) thermal perception is observed at the north/northeast sites of the city as well as at the areas beyond the eastern boundaries of it. The PET differences between urban and rural sites hold a positive sign, except of those at 0500 LST and at 0800 LST. The highest differences are noted at 1400 LST and the most intense of them is noticed in the summer period

  15. Choices for achieving adequate dietary calcium with a vegetarian diet.

    PubMed

    Weaver, C M; Proulx, W R; Heaney, R

    1999-09-01

    To achieve adequate dietary calcium intake, several choices are available that accommodate a variety of lifestyles and tastes. Liberal consumption of dairy products in the diet is the approach of most Americans. Some plants provide absorbable calcium, but the quantity of vegetables required to reach sufficient calcium intake make an exclusively plant-based diet impractical for most individuals unless fortified foods or supplements are included. Also, dietary constituents that decrease calcium retention, such as salt, protein, and caffeine, can be high in the vegetarian diet. Although it is possible to obtain calcium balance from a plant-based diet in a Western lifestyle, it may be more convenient to achieve calcium balance by increasing calcium consumption than by limiting other dietary factors.

  16. Genetic Modification of Preimplantation Embryos: Toward Adequate Human Research Policies

    PubMed Central

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo modification proposals might not receive adequate scientific and ethical scrutiny. This article describes current policy shortcomings and recommends policy actions designed to ensure that the investigational genetic modification of embryos meets accepted standards for research on human subjects. PMID:15016248

  17. Bioelement effects on thyroid gland in children living in iodine-adequate territory.

    PubMed

    Gorbachev, Anatoly L; Skalny, Anatoly V; Koubassov, Roman V

    2007-01-01

    Endemic goitre is a primary pathology of thyroid gland and critical medico social problem in many countries. A dominant cause of endemic goitre is iodine deficiency. However, besides primary iodine deficiency, the goitre may probably develop due to effects of other bioelement imbalances, essential to thyroid function maintenance. Here we studied 44 cases of endemic goitre in prepubertal children (7-10 y.o.) living in iodine-adequate territory. Thyroid volume was estimated by ultrasonometry. Main bioelements (Al, Ca, Cd, Co, Cr, Cu, Fe, Hg, I, Mg, Mn, Pb, Se, Si, Zn) were determined in hair samples by ICP-OES/ICP-MS method. Relationships between hair content of bioelements and thyroid gland size were estimated by multiple regressions. The regression model revealed significant positive relations between thyroid volume and Cr, Si, Mn contents. However, the actual factor of thyroid gland increase was only Si excess in organism. Significant negative relations of thyroid volume were revealed with I, Mg, Zn, Se, Co and Cd. In spite of this, the actual factors of thyroid gland volume increasing were I, Co, Mg and Se deficiency. Total bioelement contribution in thyroid impairment was estimated as 24%. Thus, it was suggested that endemic goitre in iodine-adequate territory can be formed by bioelement imbalances, namely Si excess and Co, Mg, Se shortage as well as endogenous I deficiency in spite of iodine-adequate environment.

  18. Optical fiber embedding in thermal spray coating promises new smart materials design able to operate under harsh environment

    NASA Astrophysics Data System (ADS)

    Duo, Yi; Costil, Sophie; Pfeiffer, Pierre; Serio, Bruno

    2014-05-01

    The in-situ detection of temperature or stresses produced by the thermal spraying process is important for both the optimization of the elaboration conditions and the subsequent service monitoring of these systems. Optical fiber sensors are excellent candidates for this area of application since they can be embedded into the layers of several dissimilar materials of smart structures. This work relates mainly to the process of embedding optical fibers into ceramic coatings and to the characteristics of the embedded fiber. Firstly, thermal flame spraying is chosen as the elaboration process. Next, a thermal model is proposed in order to evaluate the thermal strain variation with the temperature during the elaboration process in the structure. Finally, a microscopic observation of the embedded optical fiber in the ceramic coating is reported, the mechanical adhesion strength of the embedded fiber is evaluated and the results of the optical attenuation change during the elaboration process are given. They show that no significant fluctuation of the optical power transmitted in the fiber is observed.

  19. Vacuum compatible large uniform-radiance source for ground calibration of satellite cameras inside a thermal vacuum environment

    NASA Astrophysics Data System (ADS)

    Arecchi, Angelo V.; Pal, Samir; Jablonski, Joseph W.; Gervais, Marc; Gugliotta, Mark; Seth, Harish; Bhardwaj, Arun; Sahoo, Hari Sankar

    2008-08-01

    A vacuum compatible integrating sphere was built to operate inside a thermal vacuum chamber. This paper presents the design and test results for a 1.65 meter diameter vacuum compatible integrating sphere with a 1.0 meter diameter exit port and approximately 10kW of internal tungsten lamps. Liquid nitrogen is used as cooling medium to remove the heat generated by these lamps. There are no moving parts inside the vacuum chamber. The radiance is monitored with two filter-wheel detectors, one TE-cooled silicon and one TE-cooled germanium, as well as a TE-cooled silicon array spectrometer. All three detectors are located outside the thermal vacuum chamber and view the sphere radiance through fiber optic cables. The system was tested inside a thermal vacuum chamber at NASA Goddard Space Flight Center before commissioning in the 5.5 meter thermal vacuum chamber at Space Applications Centre in Ahmedabad, India. Results of tests of radiance uniformity, radiance levels, and radiance stability are presented. Comparisons of the filter radiometers with the array spectrometer are also presented.

  20. Quantum Decoherence and Thermalization at Finite Temperatures of Non-Degenerate Spin Systems via Small Spin Environments

    NASA Astrophysics Data System (ADS)

    Novotny, M. A.; Jin, F.; De Raedt, H.; Michielsen, K.

    2016-09-01

    We study the case of a small quantum spin system S with a non-degenerate groundstate coupled to a small quantum spin bath. Finite temperature measures for both quantum decoherence and thermalization are studied. The computational results, obtained from exact diagonalization, compare well with a recent perturbation theory prediction, even when the system and bath are of comparable sizes.

  1. The Metal-enriched Thermal Composite Supernova Remnant Kesteven 41 (G337.8-0.1) in a Molecular Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Gao-Yuan; Chen, Yang; Su, Yang; Zhou, Xin; Pannuti, Thomas G.; Zhou, Ping

    2015-01-01

    The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8-0.1) and performed a millimeter observation toward this source in the 12CO, 13CO, and C18O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3-2.6 keV and an ionization timescale of 0.1-1.2 × 1012 cm-3 s. The metal species S and Ar are overabundant, with 1.2-2.7 and 1.3-3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of -50 km s-1 and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an H I cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of >~ 18 M ⊙ for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper.

  2. THE METAL-ENRICHED THERMAL COMPOSITE SUPERNOVA REMNANT KESTEVEN 41 (G337.8-0.1) IN A MOLECULAR ENVIRONMENT

    SciTech Connect

    Zhang, Gao-Yuan; Chen, Yang; Zhou, Ping; Su, Yang; Zhou, Xin; Pannuti, Thomas G.

    2015-01-20

    The physical nature of thermal composite supernova remnants (SNRs) remains controversial. We have revisited the archival XMM-Newton and Chandra data of the thermal composite SNR Kesteven 41 (Kes 41 or G337.8–0.1) and performed a millimeter observation toward this source in the {sup 12}CO, {sup 13}CO, and C{sup 18}O lines. The X-ray emission, mainly concentrated toward the southwestern part of the SNR, is characterized by distinct S and Ar He-like lines in the spectra. The X-ray spectra can be fitted with an absorbed nonequilibrium ionization collisional plasma model at a temperature of 1.3-2.6 keV and an ionization timescale of 0.1-1.2 × 10{sup 12} cm{sup –3} s. The metal species S and Ar are overabundant, with 1.2-2.7 and 1.3-3.8 solar abundances, respectively, which strongly indicate the presence of a substantial ejecta component in the X-ray-emitting plasma of this SNR. Kes 41 is found to be associated with a giant molecular cloud (MC) at a systemic local standard of rest velocity of –50 km s{sup –1} and confined in a cavity delineated by a northern molecular shell, a western concave MC that features a discernible shell, and an H I cloud seen toward the southeast of the SNR. The birth of the SNR in a preexisting molecular cavity implies a mass of ≳ 18 M {sub ☉} for the progenitor if it was not in a binary system. Thermal conduction and cloudlet evaporation seem to be feasible mechanisms to interpret the X-ray thermal composite morphology, and the scenario of gas reheating by the shock reflected from the cavity wall is quantitatively consistent with the observations. An updated list of thermal composite SNRs is also presented in this paper.

  3. Optical properties of thermal control coating contaminated by MMH/N2O4 5-pound thruster in a vacuum environment with solar simulation

    NASA Technical Reports Server (NTRS)

    Sommers, R. D.; Raquet, C. A.; Cassidy, J. F.

    1972-01-01

    Cat-a-lac Black, and S13G thermal control coatings were exposed to the exhaust of a thruster in a simulated space environment. Vacuum was maintained at less than 10 to the minus 5th power torr during thruster firing in the liquid helium cooled facility. The thruster was fired in a 50-millisecond pulse mode and the accumulated firing time was 224 seconds. Solar absorptance (alpha sub s) and thermal emittance (sigma) of the coatings were measured in-situ at intervals of 300 pulses. A calorimetric technique was used to measure alpha sub s and sigma. The tests, technique, and test results are presented. The Cat-a-lac Black coatings showed no change in alpha sub s or sigma. The S13G showed up to 25 percent increase in alpha sub s but no change in sigma.

  4. A review of modeling issues and analysis methods for the thermal response of cargoes transported in the Safe Secure Trailer subjected to fire environments

    SciTech Connect

    Howell, J.R.; Larsen, M.E.

    1998-05-01

    This paper discusses thermal analysis in support of probabilistic risk assessment (PRA) to predict the heating of cargoes shipped in vehicles like the Safe Secure Trailer. Fire environments contribute very significantly to the risk associated with ground transport of special nuclear materials. The tradeoff between thermal model complexity and the affordable number of scenarios used to represent the hazard space is discussed as it impacts PRA. The relevant heat transfer mechanisms are discussed along with the applicability of methods from the literature for analysis of these mechanisms. Many of the subject`s real problems remain too complex for affordable and rigorous analysis. Available models are generally restricted to idealizations that are quickly obviated by real effects. Approximate treatment methods, striving to produce conservative, realistic estimates are also discussed.

  5. Interactive effects of thermal environment and dietary amino acid and fat levels on rate and efficiency of growth of pigs housed in a conventional nursery.

    PubMed

    Schenck, B C; Stahly, T S; Cromwell, G L

    1992-12-01

    In four trials, 480 weanling pigs were housed in a conventional nursery maintained at 20 or 30 degrees C, which represented a cool and hot thermal environment, respectively. They were allowed ad libitum access to corn-soybean meal-dried whey diets containing .7, 1.0, or 1.3% lysine and 0 or 5% added fat (choice white grease). The pigs were weaned between 27 and 33 d of age (7.27 +/- .90 kg) and penned in groups of five for the duration of the 42-d trials. Pigs housed in the cool environment consumed more feed (P < .01), gained more weight (P < .01), and utilized feed more efficiently (P < .01) than those in the hot environment. As dietary lysine levels were increased in the 20 and 30 degrees C environments, daily weight gains and gain:feed ratios increased linearly (P < .01) from d 0 to 21 and quadratically (P < .01) from d 21 to 42. However, the magnitudes of the increases were less in the cool environment, resulting in temperature x lysine interactions (P < .05). As the pig's feed intake, body weight, and heat production increased over time, the 20 and 30 degrees C environments became progressively warmer relative to the animal's zone of thermoneutrality. The associated reductions over time in energy and lysine intakes relative to the pigs' maintenance needs resulted in an increase in the concentration of dietary lysine needed to maximize rate and efficiency of gain in the 30 degrees C environment but not in the 20 degrees C environment (temperature x lysine x period interaction, P < .10).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A particle image velocimetry validation database in the inoor environment using a breathing thermal manakin in rotational motion

    EPA Science Inventory

    Determination of indoor exposure levels commonly involves assumptions of fully mixed ventilation conditions. In the effort to determine contaminant levels with efficiency, the nodal approach is common in modeling of the indoor environment. To quantify the transport phenomenon or ...

  7. A simplified analytical solution for thermal response of a one-dimensional, steady state transpiration cooling system in radiative and convective environment

    NASA Technical Reports Server (NTRS)

    Kubota, H.

    1976-01-01

    A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.

  8. In hot and cold water: differential life-history traits are key to success in contrasting thermal deep-sea environments.

    PubMed

    Marsh, Leigh; Copley, Jonathan T; Tyler, Paul A; Thatje, Sven

    2015-07-01

    Few species of reptant decapod crustaceans thrive in the cold-stenothermal waters of the Southern Ocean. However, abundant populations of a new species of anomuran crab, Kiwa tyleri, occur at hydrothermal vent fields on the East Scotia Ridge. As a result of local thermal conditions at the vents, these crabs are not restricted by the physiological limits that otherwise exclude reptant decapods south of the polar front. We reveal the adult life history of this species by piecing together variation in microdistribution, body size frequency, sex ratio, and ovarian and embryonic development, which indicates a pattern in the distribution of female Kiwaidae in relation to their reproductive development. High-density 'Kiwa' assemblages observed in close proximity to sources of vent fluids are constrained by the thermal limit of elevated temperatures and the availability of resources for chemosynthetic nutrition. Although adult Kiwaidae depend on epibiotic chemosynthetic bacteria for nutrition, females move offsite after extrusion of their eggs to protect brooding embryos from the chemically harsh, thermally fluctuating vent environment. Consequently, brooding females in the periphery of the vent field are in turn restricted by low-temperature physiological boundaries of the deep-water Southern Ocean environment. Females have a high reproductive investment in few, large, yolky eggs, facilitating full lecithotrophy, with the release of larvae prolonged, and asynchronous. After embryos are released, larvae are reliant on locating isolated active areas of hydrothermal flow in order to settle and survive as chemosynthetic adults. Where the cold water restricts the ability of all adult stages to migrate over long distances, these low temperatures may facilitate the larvae in the location of vent sites by extending the larval development period through hypometabolism. These differential life-history adaptations to contrasting thermal environments lead to a disjunct life history

  9. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  10. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments.

    PubMed

    Cull, F; Suski, C D; Shultz, A; Danylchuk, A J; O'Connor, C M; Murchie, K J; Cooke, S J

    2015-01-01

    Anthropogenic climate change is altering temperature regimes for coastal marine fishes. However, given that temperature changes will not occur in isolation of other stressors, it is necessary to explore the potential consequences of stress on the thermal tolerances and preferences of tropical marine fish in order to understand the thresholds for survival, and predict the associated coastal ecological consequences. In this study, we used exogenous cortisol injections to investigate the effects of a thermal challenge on checkered puffers (Sphoeroides testudineus) as a secondary stressor. There were no significant differences between control and cortisol-treated fish 48h following cortisol treatment for swimming ability (using a chase to exhaustion protocol), blood glucose concentrations or standard metabolic rate. In the lab, control and cortisol-treated puffers were exposed to ambient (29.1±1.5°C), ambient +5°C (heat shock) and ambient -5°C (cold shock) for 4h and to evaluate the consequences of abrupt temperature change on puff performance and blood physiology. Following cold shock, control fish exhibited increases in cortisol levels and weak 'puff' performance. Conversely, fish dosed with cortisol exhibited consistently high cortisol levels independent of thermal treatment, although there was a trend for an attenuated cortisol response in the cortisol-treated fish to the cold shock treatment. A 20-day complementary field study conducted in the puffer's natural habitat, a tidal creek in Eleuthera, The Bahamas, revealed that cortisol-injected fish selected significantly cooler temperatures, measured using accumulated thermal units, when compared to controls. These results, and particularly the discrepancies between consequences documented in the laboratory and the ecological trends observed in the field, highlight the need to establish the link between laboratory and field data to successfully develop management policies and conservation initiatives with regards

  11. Larval melanism in a geometrid moth: promoted neither by a thermal nor seasonal adaptation but desiccating environments.

    PubMed

    Välimäki, Panu; Kivelä, Sami M; Raitanen, Jani; Pakanen, Veli-Matti; Vatka, Emma; Mäenpää, Maarit I; Keret, Netta; Tammaru, Toomas

    2015-05-01

    Spatiotemporal variation in the degree of melanism is often considered in the context of thermal adaptation, melanism being advantageous under suboptimal thermal conditions. Yet, other mutually nonexclusive explanations exist. Analysis of geographical patterns combined with laboratory experiments on the mechanisms of morph induction helps to unveil the adaptive value of particular cases of polyphenism. In the context of the thermal melanism hypothesis and seasonal adaptations, we explored an array of environmental factors that may affect the expression and performance of nonmelanic vs. melanic larval morphs in different latitudinal populations of the facultatively bivoltine moth Chiasmia clathrata (Lepidoptera: Geometridae). Geographical variation in larval coloration was independent of average temperatures experienced by the populations in the wild. The melanic morph was, however, more abundant in dry than in mesic habitats. In the laboratory, the melanic morph was induced especially under a high level of incident radiation but also at relatively high temperatures, but independently of photoperiod. Melanic larvae had higher growth rates and shorter development times than the nonmelanic ones when both temperature and the level of incident radiation were high. Our results that melanism is induced and advantageous in warm desiccating conditions contradict the thermal melanism hypothesis for this species. Neither has melanism evolved to compensate time constraints due to forthcoming autumn. Instead, larvae solve seasonal variation in the time available for growth by an elevated growth rate and a shortened larval period in the face of autumnal photoperiods. The phenotypic response to the level of incident radiation and a lack of adaptive adjustment of larval growth trajectories in univoltine populations underpin the role of deterministic environmental variation in the evolution of irreversible adaptive plasticity and seasonal polyphenism.

  12. Consequences of experimental cortisol manipulations on the thermal biology of the checkered puffer (Sphoeroides testudineus) in laboratory and field environments.

    PubMed

    Cull, F; Suski, C D; Shultz, A; Danylchuk, A J; O'Connor, C M; Murchie, K J; Cooke, S J

    2015-01-01

    Anthropogenic climate change is altering temperature regimes for coastal marine fishes. However, given that temperature changes will not occur in isolation of other stressors, it is necessary to explore the potential consequences of stress on the thermal tolerances and preferences of tropical marine fish in order to understand the thresholds for survival, and predict the associated coastal ecological consequences. In this study, we used exogenous cortisol injections to investigate the effects of a thermal challenge on checkered puffers (Sphoeroides testudineus) as a secondary stressor. There were no significant differences between control and cortisol-treated fish 48h following cortisol treatment for swimming ability (using a chase to exhaustion protocol), blood glucose concentrations or standard metabolic rate. In the lab, control and cortisol-treated puffers were exposed to ambient (29.1±1.5°C), ambient +5°C (heat shock) and ambient -5°C (cold shock) for 4h and to evaluate the consequences of abrupt temperature change on puff performance and blood physiology. Following cold shock, control fish exhibited increases in cortisol levels and weak 'puff' performance. Conversely, fish dosed with cortisol exhibited consistently high cortisol levels independent of thermal treatment, although there was a trend for an attenuated cortisol response in the cortisol-treated fish to the cold shock treatment. A 20-day complementary field study conducted in the puffer's natural habitat, a tidal creek in Eleuthera, The Bahamas, revealed that cortisol-injected fish selected significantly cooler temperatures, measured using accumulated thermal units, when compared to controls. These results, and particularly the discrepancies between consequences documented in the laboratory and the ecological trends observed in the field, highlight the need to establish the link between laboratory and field data to successfully develop management policies and conservation initiatives with regards

  13. Thermal preferences and limits of Triatoma brasiliensis in its natural environment--field observations while host searching.

    PubMed

    Catalá, Silvia; Bezerra, Claudia Mendonça; Diotaiuti, Lileia

    2015-09-01

    The goal of this work was to explore the thermal relationship between foraging Triatoma brasiliensis and its natural habitat during the hottest season in the state of Ceará, Brazil. The thermal profiles were determined using infrared analysis. Although the daily temperature of rock surfaces varied in a wide range, T. brasiliensis selected to walk through areas with temperatures between 31.7-40.5ºC. The temperature of T. brasiliensis body surface ranged from 32.8-34.4ºC, being higher in legs than the abdomen. A strong relationship was found between the temperature of the insect and the temperature of rock crevices where they were hidden (r: 0.96, p < 0.05). The species was active at full sunlight being a clear example of how the light-dark rhythm may be altered, even under predation risk. Our results strongly suggest a thermal borderline for T. brasiliensis foraging activity near 40ºC. The simultaneous determination of insect body and rock temperatures here presented are the only obtained in natural habitats for this or other triatomines.

  14. Thermal Barrier and Protective Coatings to Improve the Durability of a Combustor Under a Pulse Detonation Engine Environment

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming

    2008-01-01

    Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.

  15. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers

    SciTech Connect

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-05-01

    Research is presently being initiated to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituents` size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. During the last quarter, model Ni-Al{sub 2}O{sub 3} powder cermet composites were produced at Idaho National Engineering Laboratory by the Hot Isostatic Pressing (HIP) technique. The composite samples contained 0, 21, 27, 37, and 45 volume percent of Al{sub 2}O{sub 2} in a nickel matrix with an average size of alumina particles of 12 micrometers. The increase in volume fraction of alumina in the nickel matrix from 0 to 45% led to an increase in hardness of these composites from 85 to 180 HV{sub 1000}. The experimental procedure and preliminary microstructural characterization of Ni-Al{sub 2}O{sub 3} composites are presented in this progress report along with plans for the research in coming year. 3 figs.

  16. DARHT - an `adequate` EIS: A NEPA case study

    SciTech Connect

    Webb, M.D.

    1997-08-01

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility Environmental Impact Statement (EIS) provides a case study that is interesting for many reasons. The EIS was prepared quickly, in the face of a lawsuit, for a project with unforeseen environmental impacts, for a facility that was deemed urgently essential to national security. Following judicial review the EIS was deemed to be {open_quotes}adequate.{close_quotes} DARHT is a facility now being built at Los Alamos National Laboratory (LANL) as part of the Department of Energy (DOE) nuclear weapons stockpile stewardship program. DARHT will be used to evaluate the safety and reliability of nuclear weapons, evaluate conventional munitions and study high-velocity impact phenomena. DARHT will be equipped with two accelerator-driven, high-intensity X-ray machines to record images of materials driven by high explosives. DARHT will be used for a variety of hydrodynamic tests, and DOE plans to conduct some dynamic experiments using plutonium at DARHT as well.

  17. ENSURING ADEQUATE SAFETY WHEN USING HYDROGEN AS A FUEL

    SciTech Connect

    Coutts, D

    2007-01-22

    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  18. Quantifying variability within water samples: the need for adequate subsampling.

    PubMed

    Donohue, Ian; Irvine, Kenneth

    2008-01-01

    Accurate and precise determination of the concentration of nutrients and other substances in waterbodies is an essential requirement for supporting effective management and legislation. Owing primarily to logistic and financial constraints, however, national and regional agencies responsible for monitoring surface waters tend to quantify chemical indicators of water quality using a single sample from each waterbody, thus largely ignoring spatial variability. We show here that total sample variability, which comprises both analytical variability and within-sample heterogeneity, of a number of important chemical indicators of water quality (chlorophyll a, total phosphorus, total nitrogen, soluble molybdate-reactive phosphorus and dissolved inorganic nitrogen) varies significantly both over time and among determinands, and can be extremely high. Within-sample heterogeneity, whose mean contribution to total sample variability ranged between 62% and 100%, was significantly higher in samples taken from rivers compared with those from lakes, and was shown to be reduced by filtration. Our results show clearly that neither a single sample, nor even two sub-samples from that sample is adequate for the reliable, and statistically robust, detection of changes in the quality of surface waters. We recommend strongly that, in situations where it is practicable to take only a single sample from a waterbody, a minimum of three sub-samples are analysed from that sample for robust quantification of both the concentrations of determinands and total sample variability. PMID:17706740

  19. Space Environment Exposure Results from the MISSE 5 Polymer Film Thermal Control Experiment on the International Space Station

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Dever, Joyce A.

    2009-01-01

    It is known that polymer films can degrade in space due to exposure to the environment, but the magnitude of the mechanical property degradation and the degree to which the different environmental factors play a role in it is not well understood. This paper describes the results of an experiment flown on the Materials International Space Station Experiment (MISSE) 5 to determine the change in tensile strength and % elongation of some typical polymer films exposed in a nadir facing environment on the International Space Station and where possible compare to similar ram and wake facing experiments flown on MISSE 1 to get a better indication of the role the different environments play in mechanical property change.

  20. On Adequate Comparisons of Antenna Phase Center Variations

    NASA Astrophysics Data System (ADS)

    Schoen, S.; Kersten, T.

    2013-12-01

    One important part for ensuring the high quality of the International GNSS Service's (IGS) products is the collection and publication of receiver - and satellite antenna phase center variations (PCV). The PCV are crucial for global and regional networks, since they introduce a global scale factor of up to 16ppb or changes in the height component with an amount of up to 10cm, respectively. Furthermore, antenna phase center variations are also important for precise orbit determination, navigation and positioning of mobile platforms, like e.g. the GOCE and GRACE gravity missions, or for the accurate Precise Point Positioning (PPP) processing. Using the EUREF Permanent Network (EPN), Baire et al. (2012) showed that individual PCV values have a significant impact on the geodetic positioning. The statements are further supported by studies of Steigenberger et al. (2013) where the impact of PCV for local-ties are analysed. Currently, there are five calibration institutions including the Institut für Erdmessung (IfE) contributing to the IGS PCV file. Different approaches like field calibrations and anechoic chamber measurements are in use. Additionally, the computation and parameterization of the PCV are completely different within the methods. Therefore, every new approach has to pass a benchmark test in order to ensure that variations of PCV values of an identical antenna obtained from different methods are as consistent as possible. Since the number of approaches to obtain these PCV values rises with the number of calibration institutions, there is the necessity for an adequate comparison concept, taking into account not only the numerical values but also stochastic information and computational issues of the determined PCVs. This is of special importance, since the majority of calibrated receiver antennas published by the IGS origin from absolute field calibrations based on the Hannover Concept, Wübbena et al. (2000). In this contribution, a concept for the adequate

  1. Improving access to adequate pain management in Taiwan.

    PubMed

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment.

  2. Are women with psychosis receiving adequate cervical cancer screening?

    PubMed Central

    Tilbrook, Devon; Polsky, Jane; Lofters, Aisha

    2010-01-01

    ABSTRACT OBJECTIVE To investigate the rates of cervical cancer screening among female patients with psychosis compared with similar patients without psychosis, as an indicator of the quality of primary preventive health care. DESIGN A retrospective cohort study using medical records between November 1, 2004, and November 1, 2007. SETTING Two urban family medicine clinics associated with an academic hospital in Toronto, Ont. PARTICIPANTS A random sample of female patients with and without psychosis between the ages of 20 and 69 years. MAIN OUTCOME MEASURES Number of Papanicolaou tests in a 3-year period. RESULTS Charts for 51 female patients with psychosis and 118 female patients without psychosis were reviewed. Of those women with psychosis, 62.7% were diagnosed with schizophrenia, 19.6% with bipolar disorder, 17.6% with schizoaffective disorder, and 29.4% with other psychotic disorders. Women in both groups were similar in age, rate of comorbidities, and number of full physical examinations. Women with psychosis were significantly more likely to smoke (P < .0001), to have more primary care appointments (P = .035), and to miss appointments (P = .0002) than women without psychosis. After adjustment for age, other psychiatric illnesses, number of physical examinations, number of missed appointments, and having a gynecologist, women with psychosis were significantly less likely to have had a Pap test in the previous 3 years compared with women without psychosis (47.1% vs 73.7%, respectively; odds ratio 0.19, 95% confidence interval 0.06 to 0.58). CONCLUSION Women with psychosis are more than 5 times less likely to receive adequate Pap screening compared with the general population despite their increased rates of smoking and increased number of primary care visits. PMID:20393098

  3. Improving access to adequate pain management in Taiwan.

    PubMed

    Scholten, Willem

    2015-06-01

    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment. PMID:26068436

  4. THE THERMAL EVOLUTION OF ICES IN THE ENVIRONMENTS OF NEWLY FORMED STARS: THE CO{sub 2} DIAGNOSTIC

    SciTech Connect

    Cook, A. M.; Whittet, D. C. B.; Shenoy, S. S.; Gerakines, P. A.; White, D. W.; Chiar, J. E.

    2011-04-01

    Archival data from the Infrared Spectrometer of the Spitzer Space Telescope are used to study the 15 {mu}m absorption feature of solid CO{sub 2} toward 28 young stellar objects (YSOs) of approximately solar mass. Fits to the absorption profile using laboratory spectra enable categorization according to the degree of thermal processing of the ice matrix that contains the CO{sub 2}. The majority of YSOs in our sample (20 out of 28) are found to be consistent with a combination of polar (H{sub 2}O-rich) and nonpolar (CO-rich) ices at low temperature; the remainder exhibit profile structure consistent with partial crystallization as the result of significant heating. Ice-phase column densities of CO{sub 2} are determined and compared with those of other species. Lines of sight with crystallization signatures in their spectra are found to be systematically deficient in solid-phase CO, as expected if CO is being sublimated in regions where the ices are heated to crystallization temperatures. Significant variation is found in the CO{sub 2} abundance with respect to both H{sub 2}O (the dominant ice constituent) and total dust column (quantified by the extinction, A{sub V}). YSOs in our sample display typically higher CO{sub 2} concentrations (independent of evidence for thermal processing) in comparison to quiescent regions of the prototypical cold molecular cloud. This suggests that enhanced CO{sub 2} production is driven by photochemical reactions in proximity to some YSOs, and that photoprocessing and thermal processing may occur independently.

  5. Real-Time Thermographic-Phosphor-Based Temperature Measurements of Thermal Barrier Coating Surfaces Subjected to a High-Velocity Combustor Burner Environment

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.

    2011-01-01

    Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.

  6. Development and application of a thermal desorption-based method for the determination of nicotine in inddor environments

    SciTech Connect

    Jenkins, R.A.; Thompson, C.V.; Higgins, C.E.

    1988-01-01

    A personal monitoring system for the determination of exposure to nicotine has been developed. The system consists of a sampling cartidge packed with 200 mg of Tenax GC/sup R/ and a small, constant flow, personal sampling pump. After sampling, the cartridges are analyzed by triethylamine-assisted thermal desorption gas chromatography with nitrogen-selective detection. Collection and desorption efficiencies for the cartridges have been determined. The system has been applied in a variety of work sites, and in 36 restaurants, where measured concentrations of nicotine ranged from 0.5 to 37.2 ..mu..gm/sup /minus/3/. 25 refs., 2 figs., 4 tabs.

  7. Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans.

    PubMed

    Gangloff, Eric J; Vleck, David; Bronikowski, Anne M

    2015-01-01

    Interactions at all levels of ecology are influenced by the rate at which energy is obtained, converted, and allocated. Trade-offs in energy allocation within individuals in turn form the basis for life-history theory. Here we describe tests of the influences of temperature, developmental environment, and genetic background on measures of growth efficiency and resting metabolic rate in an ectothermic vertebrate, the western terrestrial garter snake (Thamnophis elegans). After raising captive-born snakes from divergent life-history ecotypes on thermal regimes mimicking natural habitat differences (2 × 2 experimental design of ecotype and thermal environment), we measured oxygen consumption rate at temperatures spanning the activity range of this species. We found ecotypic differences in the reaction norms of snakes across the measured range of temperatures and a temperature-dependent allometric relationship between mass and metabolic rate predicted by the metabolic-level boundaries hypothesis. Additionally, we present evidence of within-individual trade-offs between growth efficiency and resting metabolic rate, as predicted by classic life-history theory. These observations help illuminate the ultimate and proximate factors that underlie variation in these interrelated physiological and life-history traits. PMID:26658251

  8. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments.

    PubMed

    Filingeri, D; Redortier, B; Hodder, S; Havenith, G

    2014-01-31

    The central integration of thermal (i.e. cold) and mechanical (i.e. pressure) sensory afferents is suggested as to underpin the perception of skin wetness. However, the role of temperature and mechanical inputs, and their interaction, is still unclear. Also, it is unknown whether this intra-sensory interaction changes according to the activity performed or the environmental conditions. Hence, we investigated the role of peripheral cold afferents, and their interaction with tactile afferents, in the perception of local skin wetness during rest and exercise in thermo-neutral and warm environments. Six cold-dry stimuli, characterized by decreasing temperatures [i.e. -4, -8 and -15 °C below the local skin temperature (T(sk))] and by different mechanical pressures [i.e. low pressure (LP): 7 kPa; high pressure (HP): 10 kPa], were applied on the back of 8 female participants (age 21 ± 1 years), while they were resting or cycling in 22 or 33 °C ambient temperature. Mean and local Tsk, thermal and wetness perceptions were recorded during the tests. Cold-dry stimuli produced drops in Tsk with cooling rates in a range of 0.06-0.4 °C/s. Colder stimuli resulted in increasing coldness and in stimuli being significantly more often perceived as wet, particularly when producing skin cooling rates of 0.18 °C/s and 0.35 °C/s. However, when stimuli were applied with HP, local wetness perceptions were significantly attenuated. Wetter perceptions were recorded during exercise in the warm environment. We conclude that thermal inputs from peripheral cutaneous afferents are critical in characterizing the perception of local skin wetness. However, the role of these inputs might be modulated by an intra-sensory interaction with the tactile afferents. These findings indicate that human sensory integration is remarkably multimodal.

  9. Thermal analysis experiment to evaluate the stability of multilayer coatings in a space environment close to the sun

    NASA Astrophysics Data System (ADS)

    Monaco, G.; Corso, A. J.; Zuppella, P.; Nicolosi, P.; Windt, D. L.; Pelizzo, M. G.

    2011-06-01

    The next SOLO (SOLar Orbiter) mission will carry onboard the METIS (Multi Element Telescope for Imaging and Spectroscopy) instrument which will perform broad-band and polarized imaging of the visible K-corona and narrow-band imaging of the UV (HI Ly α, 121.6 nm) and EUV (He II Ly α, 30.4 nm) corona as well as in the visible spectral range. Several multilayer optics with high reflectivity in the all ranges of interest have been studied. Since SOLO will fly at the short distance from the Sun of 0.23 AU at its perihelion, a careful determination of the heat load and the solar wind effect on the multilayers must be carried in order to check if degradation occurs. To test thermal stability, a thermal analysis experiment has been conceived: the proposed multilayer structures, which are based on different pairs of materials and different capping layers design, must be subjected both to heating and cooling, reproducing the temperatures experienced in orbit. Reflectance in the EUV range of interest has been measured before and after each treatment to verify possible degradation.

  10. 1-D Transient Thermal Modeling of an Ablative Material (MCC-1) Exposed to a Simulated Convective Titan 4 Launch Environment

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Crain, William K.; Stuckey, C. Irvin; Palko, Richard L.

    1998-01-01

    The purpose of the work is to demonstrate that the flat test panel substrate temperatures are consistent with analysis predictions for MCC-1 applied to a aluminum substrate. The testing was performed in an aerothermal facility on samples of three different thicknesses of MCC-1 on an aluminum substrate. The results of the test were compared with a Transient Thermal model. The key assumptions of the Transient Thermal model were: (1) a one-dimensional heat transfer; (2) a constant ablation recession rate (determined from pre and post-test measurements); (3) ablation temperature of 540 degrees F; (4) Char left behind the ablation front; and (5) temperature jump correction for incident heat transfer coefficient. Two methods were used to model the heating of bare MCC-1: (1) Directly input surface temperature as a function of time; and (2) Aerothermal heating using calibration plate data and subtracting the radiation losses to tunnel walls. The results are presented as graphs. This article is presented in Viewgraph format.

  11. Evaluation of Titanium Nitride-Modified Bondcoat System Used in Thermal Barrier Coating in Corrosive Salts Environment at High Temperature

    NASA Astrophysics Data System (ADS)

    Qureshi, Imran Nazir; Shahid, Muhammad; Nusair Khan, A.; Durrani, Yaseer A.

    2015-12-01

    Thermal barrier coating (TBC) systems were produced by air plasma spraying system on nickel base superalloy. These coatings were composed of a Y2O3-stabilized ZrO2 topcoat and a CoNiCrAlY bondcoat and are known as standard TBC. In this paper, standard TBC samples were compared with TiN-modified bondcoat TBC samples. Titanium nitride was deposited by utilizing a physical vapor deposition technique. Both TBC systems were exposed to high temperature in the presence of corrosive salts, i.e. a mixture of V2O5 and Na2SO4 (50:50) for 50 h. It was observed that the TiN-modified samples showed better results in terms of oxidation resistance and delamination. The formation of Cr2Ti n-2O2 n-1 phases at the interface of the topcoat-bondcoat, in TiN-modified samples were found to enhance the thermal and oxidation properties of the TBC.

  12. Experiment on large scale plume interaction with a stratified gas environment resembling the thermal activity of a autocatalytic recombiner

    SciTech Connect

    Mignot, G.; Kapulla, R.; Paladino, D.; Zboray, R.

    2012-07-01

    Computational Fluid Dynamics codes (CFD) are increasingly being used to simulate containment conditions after various transient accident scenarios. Consequently, the reliability of such codes must be tested against experimental data. Such validation experiments related to gas mixing and hydrogen transport within containment compartments addressing the effect of heat source are presented in this paper. The experiments were conducted in the large-scale thermal-hydraulics PANDA facility located at the Paul-Scherrer-Inst. (PSI) in Switzerland, in the frame of the OECD/SETH-2 project. A 10 kW electric heater simulating the thermal activity of the autocatalytic recombiner was activated at full power in a containment vessel at the top of which a thick helium layer is initially present. The hot plume interacts with the bottom of the helium layer which is slowly eroded until complete break up at 1350 s. After final erosion of the layer a strong temperature and concentration gradient is maintained in the vessel below the heater inlet as well as in the adjacent vessel below the interconnecting pipe. A detailed characterization of the operating heater suggests the presence of cold gas ingress at the outlet that affects the flow in the chimney. This can be of concern if present in a real PAR unit. (authors)

  13. Near-surface seismic velocity changes in a salt-dominated environment due to shaking and thermal stressing

    NASA Astrophysics Data System (ADS)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-05-01

    We report on results from a seismic station of the Integrated Plate Boundary Observatory Chile (IPOC) showing a superior sensitivity of seismic velocity changes in the surrounding medium to shaking and temperature. 5 years of daily autocorrelations of the IPOC network are analyzed with passive image interferometry. Due to the particular geological conditions we observe a high sensitivity of the medium around the station near Patache (PATCX) resulting in annual periodic velocity variations and temporary velocity reductions induced by ground shaking. We observe a linear relationship between the amplitude of the velocity reductions and the peak ground acceleration (PGA) of nearby earthquakes at station PATCX. Although velocity reductions are also observed at other stations of the IPOC array for the Mw 7.7 Tocopilla earthquake a clear relationship between the PGA of this earthquake and the induced velocity reductions at the different stations is not visible. Furthermore, we observe velocity variations with an annual and daily period. We present different arguments that these periodic changes are caused by variations of the atmospheric temperature. In this context we construct a model that starts at observed temperature variations and evaluates thermal stresses induced by the temperature gradients. Using radiative transfer based sensitivity kernels and third order elastic constants we relate the distribution of thermal stress in the subsurface to observable time shifts of coda waves. The model is able to reproduce the major features confirming that stress changes in the subsurface can be detected with noise based monitoring.

  14. Adequate iron stores and the 'Nil nocere' principle.

    PubMed

    Hollán, S; Johansen, K S

    1993-01-01

    There is a need to change the policy of unselective iron supplementation during periods of life with physiologically increased cell proliferation. Levels of iron stores to be regarded as adequate during infancy and pregnancy are still not well established. Recent data support the view that it is not justified to interfere with physiological adaptations developed through millions of years by sophisticated and precisely coordinated regulation of iron absorption, utilization and storage. Recent data suggest that the chelatable intracellular iron pool regulates the expression of proteins with central importance in cellular iron metabolism (TfR, ferritin, and erythroid 5-aminolevulinic synthetase) in a coordinately controlled way through an iron dependent cytosolic mRNA binding protein, the iron regulating factor (IRF). This factor is simultaneously a sensor and a regulator of iron levels. The reduction of ferritin levels during highly increased cell proliferation is a mirror of the increased density of TfRs. An abundance of data support the vigorous competition for growth-essential iron between microbial pathogens and their vertebrate hosts. The highly coordinated regulation of iron metabolism is probably crucial in achieving a balance between the blockade of readily accessible iron to invading organisms and yet providing sufficient iron for the immune system of the host. The most evident adverse clinical effects of excess iron have been observed in immunodeficient patients in tropical countries and in AIDS patients. Excess iron also increases the risk of initiation and promotion of malignant processes by iron binding to DNA and by the iron-catalysed release of free radicals. Oxygen radicals were shown to damage critical biomolecules leading, apart from cancer, to a variety of human disease states, including inflammation and atherosclerosis. They are also involved in processes of aging and thrombosis. Recent clinical trials have suggested that the use of iron

  15. Beneficial effects of a ketamine/atropine combination in soman-poisoned rats under a neutral thermal environment.

    PubMed

    Barbier, Laure; Canini, Frédéric; Giroud, Céline; Beaup, Claire; Foquin, Annie; Maury, Renaud; Denis, Josiane; Peinnequin, André; Dorandeu, Frédéric

    2015-09-01

    Exposure to organophosphorus (OP) compounds, such as pesticides and the chemical warfare agents (soman and sarin), respectively represents a major health problem and a threat for civilian and military communities. OP poisoning may induce seizures, status epilepticus and even brain lesions if untreated. We recently proved that a combination of atropine sulfate and ketamine, a glutamatergic antagonist, was effective as an anticonvulsant and neuroprotectant in mice and guinea-pigs exposed to soman. Since OP exposure may also occur in conditions of heat strain due to climate, wearing of protective gears or physical exercise, we previously demonstrated that ketamine/atropine association may be used in a hot environment without detrimental effects. In the present study, we assess soman toxicity and evaluate the effects of the ketamine/atropine combination on soman toxicity in a warm thermoneutral environment. Male Wistar rats, exposed to 31°C (easily reached under protective equipments), were intoxicated by soman and treated with an anesthetic dose of ketamine combined with atropine sulfate. Body core temperature and spontaneous locomotor activity were continuously monitored using telemetry. At the end of the warm exposure, blood chemistry and brain mRNA expression of some specific genes were measured. In soman-intoxicated animals, metabolic and genic modifications were related to convulsions rather than to soman intoxication by itself. In the warm environment, ketamine/atropine combination did not produce any side-effect on the assessed variables. Furthermore, the ketamine/atropine combination exhibited beneficial therapeutic effects on soman-intoxicated rats such as a limitation of convulsion-induced hyperthermia and of the increase in some blood chemistry markers.

  16. Beneficial effects of a ketamine/atropine combination in soman-poisoned rats under a neutral thermal environment.

    PubMed

    Barbier, Laure; Canini, Frédéric; Giroud, Céline; Beaup, Claire; Foquin, Annie; Maury, Renaud; Denis, Josiane; Peinnequin, André; Dorandeu, Frédéric

    2015-09-01

    Exposure to organophosphorus (OP) compounds, such as pesticides and the chemical warfare agents (soman and sarin), respectively represents a major health problem and a threat for civilian and military communities. OP poisoning may induce seizures, status epilepticus and even brain lesions if untreated. We recently proved that a combination of atropine sulfate and ketamine, a glutamatergic antagonist, was effective as an anticonvulsant and neuroprotectant in mice and guinea-pigs exposed to soman. Since OP exposure may also occur in conditions of heat strain due to climate, wearing of protective gears or physical exercise, we previously demonstrated that ketamine/atropine association may be used in a hot environment without detrimental effects. In the present study, we assess soman toxicity and evaluate the effects of the ketamine/atropine combination on soman toxicity in a warm thermoneutral environment. Male Wistar rats, exposed to 31°C (easily reached under protective equipments), were intoxicated by soman and treated with an anesthetic dose of ketamine combined with atropine sulfate. Body core temperature and spontaneous locomotor activity were continuously monitored using telemetry. At the end of the warm exposure, blood chemistry and brain mRNA expression of some specific genes were measured. In soman-intoxicated animals, metabolic and genic modifications were related to convulsions rather than to soman intoxication by itself. In the warm environment, ketamine/atropine combination did not produce any side-effect on the assessed variables. Furthermore, the ketamine/atropine combination exhibited beneficial therapeutic effects on soman-intoxicated rats such as a limitation of convulsion-induced hyperthermia and of the increase in some blood chemistry markers. PMID:26205086

  17. Limitations in thermal scale modeling

    NASA Technical Reports Server (NTRS)

    Macgregor, R. K.

    1971-01-01

    Thermal scale modeling limitations for radiation- conduction system of unmanned spacecraft, discussing material thermal properties, model dimensions, instrumentation effects and environment simulation

  18. An Optimized Adsorbent Sampling Combined to Thermal Desorption GC-MS Method for Trimethylsilanol in Industrial Environments

    PubMed Central

    Lee, Jae Hwan; Jia, Chunrong; Kim, Yong Doo; Kim, Hong Hyun; Pham, Tien Thang; Choi, Young Seok; Seo, Young Un; Lee, Ike Woo

    2012-01-01

    Trimethylsilanol (TMSOH) can cause damage to surfaces of scanner lenses in the semiconductor industry, and there is a critical need to measure and control airborne TMSOH concentrations. This study develops a thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) method for measuring trace-level TMSOH in occupational indoor air. Laboratory method optimization obtained best performance when using dual-bed tube configuration (100 mg of Tenax TA followed by 100 mg of Carboxen 569), n-decane as a solvent, and a TD temperature of 300°C. The optimized method demonstrated high recovery (87%), satisfactory precision (<15% for spiked amounts exceeding 1 ng), good linearity (R2 = 0.9999), a wide dynamic mass range (up to 500 ng), low method detection limit (2.8 ng m−3 for a 20-L sample), and negligible losses for 3-4-day storage. The field study showed performance comparable to that in laboratory and yielded first measurements of TMSOH, ranging from 1.02 to 27.30 μg/m3, in the semiconductor industry. We suggested future development of real-time monitoring techniques for TMSOH and other siloxanes for better maintenance and control of scanner lens in semiconductor wafer manufacturing. PMID:22966229

  19. Thermally Sprayed Aluminum (TSA) Coatings for Extended Design Life of 22%Cr Duplex Stainless Steel in Marine Environments

    NASA Astrophysics Data System (ADS)

    Paul, S.; Shrestha, S.; Lee, C. M.; Harvey, M. D. F.

    2013-03-01

    In this article, evaluation of sealed and unsealed thermally sprayed aluminum (TSA) for the protection of 22%Cr duplex stainless steel (DSS) from corrosion in aerated, elevated temperature synthetic seawater is presented. The assessments involved general and pitting corrosion tests, external chloride stress corrosion cracking (SCC), and hydrogen-induced stress cracking (HISC). These tests indicated that DSS samples, which would otherwise fail on their own in a few days, did not show pitting or fail under chloride SCC and HISC conditions when coated with TSA (with or without a sealant). TSA-coated specimens failed only at very high stresses (>120% proof stress). In general, TSA offered protection to the underlying or exposed steel by cathodically polarizing it and forming a calcareous deposit in synthetic seawater. The morphology of the calcareous deposit was found to be temperature dependent and in general was of duplex nature. The free corrosion rate of TSA in synthetic seawater was measured to be ~5-8 μm/year at ~18 °C and ~6-7 μm/year at 80 °C.

  20. Optical tests of a space mechanism under an adverse environment: GAIA secondary mirror mechanism under vaccum and thermal controlled conditions

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Belenguer Dávila, Tomás; Urgoiti, Eduardo; Ramírez Quintana, Argiñe

    2007-09-01

    In this work, the optical evaluation of a mechanism for space applications under vacuum and temperature controlled conditions at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA) is reported. The mechanism was developed by the Spanish company SENER to fulfill the high performance requirements from ESA technology preparatory program for GAIA Astrometric Mission; in particular, a five degrees of freedom (dof), three translations and two rotations positioning mechanism for the secondary mirror of the GAIA instrument. Both interferometric tests and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions: vacuum and thermal controlled conditions, up to a 10 -6mbar and 100K. The scope of this paper will cover the measurements concept selection, the presentation of verification activities, the results of such dedicated optical measurements, the correlation with the mechanical models and a brief description of the design process followed to meet the test requirements.

  1. Bronchoalveolar Lavage (BAL) for Research; Obtaining Adequate Sample Yield

    PubMed Central

    Collins, Andrea M.; Rylance, Jamie; Wootton, Daniel G.; Wright, Angela D.; Wright, Adam K. A.; Fullerton, Duncan G.; Gordon, Stephen B.

    2014-01-01

    We describe a research technique for fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) using manual hand held suction in order to remove nonadherent cells and lung lining fluid from the mucosal surface. In research environments, BAL allows sampling of innate (lung macrophage), cellular (B- and T- cells), and humoral (immunoglobulin) responses within the lung. BAL is internationally accepted for research purposes and since 1999 the technique has been performed in > 1,000 subjects in the UK and Malawi by our group. Our technique uses gentle hand-held suction of instilled fluid; this is designed to maximize BAL volume returned and apply minimum shear force on ciliated epithelia in order to preserve the structure and function of cells within the BAL fluid and to preserve viability to facilitate the growth of cells in ex vivo culture. The research technique therefore uses a larger volume instillate (typically in the order of 200 ml) and employs manual suction to reduce cell damage. Patients are given local anesthetic, offered conscious sedation (midazolam), and tolerate the procedure well with minimal side effects. Verbal and written subject information improves tolerance and written informed consent is mandatory. Safety of the subject is paramount. Subjects are carefully selected using clear inclusion and exclusion criteria. This protocol includes a description of the potential risks, and the steps taken to mitigate them, a list of contraindications, pre- and post-procedure checks, as well as precise bronchoscopy and laboratory techniques. PMID:24686157

  2. Human subject protection in India - is it adequate?

    PubMed

    Mahaluxmivala, Narges

    2010-01-01

    India's experience in clinical trials is shorter in time than that of the developed countries but as in everything else in the current globalizing environment, business compulsions characterized by compressed timelines are strong persuaders to catch up. Most global pharmaceutical and biotechnology organizations include India in their strategic plans, Immediate implementation of aspects that attract benefit are an urgent necessity. Technical and ethical issues that remain unresolved constrain India from reaching its deserved potential. To take fullest advantage of the current inflow of clinical trials, India must adopt, without delay, an all-inclusive approach and invest in a widespread and comprehensive GCP-compliance programme taking into account India-related cultural and socioeconomic issues. The initiative should not be allowed to flag. Government, the pharmaceutical and biotechnological research industries, the medical and pharmacy profession including relevant training institutes, the media and the public have a stake in such investment. The programme should involve assessing gaps in current clinical trial compliance measures and possible solutions, set the field for rectification and ensure implementation through mandate and penalty as feasible.

  3. Human subject protection in India - is it adequate?

    PubMed

    Mahaluxmivala, Narges

    2010-01-01

    India's experience in clinical trials is shorter in time than that of the developed countries but as in everything else in the current globalizing environment, business compulsions characterized by compressed timelines are strong persuaders to catch up. Most global pharmaceutical and biotechnology organizations include India in their strategic plans, Immediate implementation of aspects that attract benefit are an urgent necessity. Technical and ethical issues that remain unresolved constrain India from reaching its deserved potential. To take fullest advantage of the current inflow of clinical trials, India must adopt, without delay, an all-inclusive approach and invest in a widespread and comprehensive GCP-compliance programme taking into account India-related cultural and socioeconomic issues. The initiative should not be allowed to flag. Government, the pharmaceutical and biotechnological research industries, the medical and pharmacy profession including relevant training institutes, the media and the public have a stake in such investment. The programme should involve assessing gaps in current clinical trial compliance measures and possible solutions, set the field for rectification and ensure implementation through mandate and penalty as feasible. PMID:21829776

  4. Bronchoalveolar lavage (BAL) for research; obtaining adequate sample yield.

    PubMed

    Collins, Andrea M; Rylance, Jamie; Wootton, Daniel G; Wright, Angela D; Wright, Adam K A; Fullerton, Duncan G; Gordon, Stephen B

    2014-01-01

    We describe a research technique for fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) using manual hand held suction in order to remove nonadherent cells and lung lining fluid from the mucosal surface. In research environments, BAL allows sampling of innate (lung macrophage), cellular (B- and T- cells), and humoral (immunoglobulin) responses within the lung. BAL is internationally accepted for research purposes and since 1999 the technique has been performed in > 1,000 subjects in the UK and Malawi by our group. Our technique uses gentle hand-held suction of instilled fluid; this is designed to maximize BAL volume returned and apply minimum shear force on ciliated epithelia in order to preserve the structure and function of cells within the BAL fluid and to preserve viability to facilitate the growth of cells in ex vivo culture. The research technique therefore uses a larger volume instillate (typically in the order of 200 ml) and employs manual suction to reduce cell damage. Patients are given local anesthetic, offered conscious sedation (midazolam), and tolerate the procedure well with minimal side effects. Verbal and written subject information improves tolerance and written informed consent is mandatory. Safety of the subject is paramount. Subjects are carefully selected using clear inclusion and exclusion criteria. This protocol includes a description of the potential risks, and the steps taken to mitigate them, a list of contraindications, pre- and post-procedure checks, as well as precise bronchoscopy and laboratory techniques.

  5. Chemical analyses of soil samples collected from the vicinity of the thermal test complex at Sandia National Laboratories, New Mexico environs, 2006.

    SciTech Connect

    Miller, Mark Laverne; Nieto, Danielle M.

    2007-01-01

    In the summer of 2006, the Environmental Programs and Assurance Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), collected surface soil samples at 37 locations within one mile of the vicinity of the newly constructed Thermal Test Complex (TTC) for the purpose of determining baseline conditions against which potential future impacts to the environs from operations at the facility could be assessed. These samples were submitted to an offsite analytical laboratory for metal-in-soil analyses. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference set against which to assess potential future operational impacts at the TTC. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data are presented in graphical format with narrative commentaries on particular items of interest.

  6. Time-lapse and UAV Thermal Imaging of Glacial and Periglacial Environments in the Peruvian Andes (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    McKenzie, J. M.; Wigmore, O.; Aubry-Wake, C.; Mark, B. G.; Hellstrom, R. A.; Lautz, L.

    2015-12-01

    In the tropics, the acquisition of high-resolution geospatial data of high-mountain glacial and periglacial systems presents unique challenges due to remote site access and very high elevations. For glaciers and hydrologic systems, a key variable of interest is surface temperature as it constrains glacier melt rates, traces hydrologic processes, and is needed for the calibration of energy budget models. We present results from two studies that acquired high resolution temperature data from the Cuchillacocha Glacier, Peru (9.24°S, 77.21°W). The glacier resides on the western drainage of the Cordillera Blanca with an elevation range of 4700 to 6096 m. In the first study we use high resolution time-lapse infrared imagery (5-10 minute interval over 3 days; 0.6 m2 pixel size) to observe diel changes in the surface energy budget of the glacier and to demonstrate how radiation from bare rock adjacent to the glacier may affect melt rates. In the second study we use a newly developed, inexpensive unmanned aerial vehicle (UAV) for high resolution multispectral mapping of the glacier (2 cm resolution orthomosaic and 5 cm resolution DEM). We present results showing how the time-lapse and the high-resolution UAV imagery can be combined to further strengthen our understanding of the Cuchillacocha Glacier's energy budget and possible insights about turbulent heat fluxes. While the new instruments provide unprecedented data acquisition capabilities, there is an outstanding need for proper data correction. Spatial/thermal control points and post-processing algorithms are needed to produce quantifiable datasets. For example, our post-processed time-lapse imagery has an r2 > 0.9 after emissivity, transmissivity and offset corrections.

  7. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2011-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.

  8. Thermal Design Overview of the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn

    2002-01-01

    Contents include the following: Mission Overview. Thermal Environments. Driving Thermal Requirements. Thermal Design Approach. Thermal Control Block Diagram. Thermal Design Description. Thermal Analysis Results Summary. Testing Plans. Issues & Concerns.

  9. Percentage of Adults with High Blood Pressure Whose Hypertension Is Adequately Controlled

    MedlinePlus

    ... is Adequately Controlled Percentage of Adults with High Blood Pressure Whose Hypertension is Adequately Controlled Heart disease ... Survey. Age Group Percentage of People with High Blood Pressure that is Controlled by Age Group f94q- ...

  10. Effects of the thermal environment on metabolism of deoxynivalenol and thermoregulatory response of sheep fed on corn silage grown at enriched atmospheric carbon dioxide and drought.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Döll, Susanne; Manderscheid, Remy; Weigel, Hans-Joachim; Erbs, Martin; Höltershinken, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2012-11-01

    Future livestock production is likely to be affected by both rising ambient temperatures and indirect effects mediated by modified growth conditions of feed plants such as increased atmospheric CO2 concentrations and drought. Corn was grown at elevated CO2 concentrations of 550 ppm and drought stress using free air carbon dioxide enrichment technology. Whole plant silages were generated and fed to sheep kept at three climatic treatments. Differential blood count was performed. Plasma DON and de-epoxy-DON concentration were measured. Warmer environment increased rectal and skin temperatures and respiration rates (p < 0.001 each) but did not affect blood parameters and the almost complete metabolization of DON into de-epoxy-DON. Altered growth conditions of the corn fed did not have single effects on sheep body temperature measures and differential blood count. Though the thermoregulatory activity of sheep was influenced by the thermal environment, the investigated cultivation factors did not indicate considerable impacts on the analysed parameters. PMID:23606193

  11. Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment.

    PubMed

    Dias E Silva, Tairon Pannunzio; Costa Torreão, Jacira Neves da; Torreão Marques, Carlo Aldrovandi; de Araújo, Marcos Jácome; Bezerra, Leílson Rocha; Kumar Dhanasekaran, Dinesh; Sejian, Veerasamy

    2016-07-01

    This study was conducted to evaluate the effect of multiple stress factors (thermal, nutritional and pregnancy type) on two different native track breeds of ewes as reflected by their adaptive capability under semi-arid environment. The multiple stressor experiment was conducted in twenty-four ewes (12 Santa Inês and 12 Morada Nova ewes). Both heat stress and pregnancy stress was common to all four groups. However, the animals were divided into further two groups within each breed on the basis of nutrition regimen. According the groupings were: Group 1 (Six Santa Ines ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 2 (Six Santa Ines ewes; heat stress; nutrition at 1.5% BW; twin pregnancy); groups Group 3 (Six Morada Nova ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 4 (Six Morada Nova ewes; heat stress; nutrition at 1.5% BW; twin pregnancy). All the animals in the experiment were pregnant. Heat stress was induced by exposing all animals to summer heat stress in outside environment while the nutritional regimen followed was at 0.5% and 1.5% level of body weight (BW) respectively in each breed. The experiment was conducted in a completely randomized design with two breeds, two nutritional treatments and two pregnancy types, 10 repetitions for physiological parameters and six for blood parameters, with repeated measures over time. Physiological parameters (respiratory rate, pulse rate and rectal temperature) were measured with the animals at rest in the morning and afternoon, 0600-0700 and 1300-1400h, respectively, every seven days. Blood samples were collected every 14d for determination of serum glucose, triglycerides, cholesterol, urea and creatinine. We found interaction effect between breed and pregnancy type on respiratory rate and rectal temperature with greater values in Santa Inês ewes than Morada Nova ewes. However, there was no significant fixed effect of pregnancy type and supplementation level on physiological

  12. Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment.

    PubMed

    Dias E Silva, Tairon Pannunzio; Costa Torreão, Jacira Neves da; Torreão Marques, Carlo Aldrovandi; de Araújo, Marcos Jácome; Bezerra, Leílson Rocha; Kumar Dhanasekaran, Dinesh; Sejian, Veerasamy

    2016-07-01

    This study was conducted to evaluate the effect of multiple stress factors (thermal, nutritional and pregnancy type) on two different native track breeds of ewes as reflected by their adaptive capability under semi-arid environment. The multiple stressor experiment was conducted in twenty-four ewes (12 Santa Inês and 12 Morada Nova ewes). Both heat stress and pregnancy stress was common to all four groups. However, the animals were divided into further two groups within each breed on the basis of nutrition regimen. According the groupings were: Group 1 (Six Santa Ines ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 2 (Six Santa Ines ewes; heat stress; nutrition at 1.5% BW; twin pregnancy); groups Group 3 (Six Morada Nova ewes; heat stress; nutrition at 0.5% of BW; single pregnancy); Group 4 (Six Morada Nova ewes; heat stress; nutrition at 1.5% BW; twin pregnancy). All the animals in the experiment were pregnant. Heat stress was induced by exposing all animals to summer heat stress in outside environment while the nutritional regimen followed was at 0.5% and 1.5% level of body weight (BW) respectively in each breed. The experiment was conducted in a completely randomized design with two breeds, two nutritional treatments and two pregnancy types, 10 repetitions for physiological parameters and six for blood parameters, with repeated measures over time. Physiological parameters (respiratory rate, pulse rate and rectal temperature) were measured with the animals at rest in the morning and afternoon, 0600-0700 and 1300-1400h, respectively, every seven days. Blood samples were collected every 14d for determination of serum glucose, triglycerides, cholesterol, urea and creatinine. We found interaction effect between breed and pregnancy type on respiratory rate and rectal temperature with greater values in Santa Inês ewes than Morada Nova ewes. However, there was no significant fixed effect of pregnancy type and supplementation level on physiological

  13. 76 FR 51041 - Hemoglobin Standards and Maintaining Adequate Iron Stores in Blood Donors; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... HUMAN SERVICES Food and Drug Administration Hemoglobin Standards and Maintaining Adequate Iron Stores in... Standards and Maintaining Adequate Iron Stores in Blood Donors.'' The purpose of this public workshop is to... donor safety and blood availability, and potential measures to maintain adequate iron stores in...

  14. 21 CFR 801.5 - Medical devices; adequate directions for use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical devices; adequate directions for use. 801... (CONTINUED) MEDICAL DEVICES LABELING General Labeling Provisions § 801.5 Medical devices; adequate directions for use. Adequate directions for use means directions under which the layman can use a device...

  15. 36 CFR 13.960 - Who determines when there is adequate snow cover?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adequate snow cover? 13.960 Section 13.960 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Snowmachine (snowmobile) Operations § 13.960 Who determines when there is adequate snow cover? The superintendent will determine when snow cover is adequate for snowmachine use. The superintendent will follow...

  16. 36 CFR 13.960 - Who determines when there is adequate snow cover?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adequate snow cover? 13.960 Section 13.960 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Snowmachine (snowmobile) Operations § 13.960 Who determines when there is adequate snow cover? The superintendent will determine when snow cover is adequate for snowmachine use. The superintendent will follow...

  17. 36 CFR 13.960 - Who determines when there is adequate snow cover?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adequate snow cover? 13.960 Section 13.960 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Snowmachine (snowmobile) Operations § 13.960 Who determines when there is adequate snow cover? The superintendent will determine when snow cover is adequate for snowmachine use. The superintendent will follow...

  18. 36 CFR 13.960 - Who determines when there is adequate snow cover?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adequate snow cover? 13.960 Section 13.960 Parks, Forests, and Public Property NATIONAL PARK SERVICE... Preserve Snowmachine (snowmobile) Operations § 13.960 Who determines when there is adequate snow cover? The superintendent will determine when snow cover is adequate for snowmachine use. The superintendent will follow...

  19. Quantifying of the Thermal Dynamic Characteristics of the Combustion System for Underground Coal Fire and its Impact on Environment in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    ZENG, Qiang; Tiyip, Tashpolat; Wuttke, Manfred; NIE, Jing; PU, Yan

    2015-04-01

    Underground Coal fire (UCF) is one disaster associated with coal mining activities around the world. The UCF not only burns up the coal reservoir, but also causes serious environmental problems, such as the pollution to air, the damage to soils, and the contamination to surface and underground water and consequently the health problem to human beings. In the present paper, the authors attempts to quantify the thermal dynamic characteristics of the combustion system for UCF and its impact on environment by modeling, including delineating the physical boundary of UCF zone, modeling of the capacity of the oxygen supply to UCF, modeling the intensity of heat generation from UCF and modeling the process of heat transfer within UCF and its surrounding environment. From this research, results were obtained as follows: First of all, based on the rock control theory, a model was proposed to depict the physical boundary of UCF zone which is important for coal fire research. Secondly, with analyzing the characteristics of air and smoke flow within UCF zone, an air/smoke flow model was proposed and consequently a method was put forward to calculate the capacity of oxygen supply to the UCF. Thirdly, with analyzing the characteristics of coal combustion within UCF zone, a method of calculating the intensity of heat generation from UCF, i.e., the heat source models, was established. Heat transfer with UCF zone includes the heat conductivity within UCF zone, the heat dissipation by radiation from the surface of fire zone, and the heat dissipation by convection as well as the heat loss taken away by mass transport. The authors also made an effort to depict the process of heat transfer by quantitative methods. Finally, an example of Shuixigou coal fire was given to illustrate parts of above models. Further more, UCF's impact on environment, such as the heavy metals contamination to surface soil of fire zone and the characteristics of gaseous pollutants emission from the UCF also was

  20. Improved ASTM G72 Test Method for Ensuring Adequate Fuel-to-Oxidizer Ratios

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana Tapia

    2016-01-01

    The ASTM G72/G72M-15 Standard Test Method for Autogenous Ignition Temperature of Liquids and Solids in a High-Pressure Oxygen-Enriched Environment is currently used to evaluate materials for the ignition susceptibility driven by exposure to external heat in an enriched oxygen environment. Testing performed on highly volatile liquids such as cleaning solvents has proven problematic due to inconsistent test results (non-ignitions). Non-ignition results can be misinterpreted as favorable oxygen compatibility, although they are more likely associated with inadequate fuel-to-oxidizer ratios. Forced evaporation during purging and inadequate sample size were identified as two potential causes for inadequate available sample material during testing. In an effort to maintain adequate fuel-to-oxidizer ratios within the reaction vessel during test, several parameters were considered, including sample size, pretest sample chilling, pretest purging, and test pressure. Tests on a variety of solvents exhibiting a range of volatilities are presented in this paper. A proposed improvement to the standard test protocol as a result of this evaluation is also presented. Execution of the final proposed improved test protocol outlines an incremental step method of determining optimal conditions using increased sample sizes while considering test system safety limits. The proposed improved test method increases confidence in results obtained by utilizing the ASTM G72 autogenous ignition temperature test method and can aid in the oxygen compatibility assessment of highly volatile liquids and other conditions that may lead to false non-ignition results.