Science.gov

Sample records for adh alcohol dehydrogenase

  1. Ethanol-Induced Alcohol Dehydrogenase E (AdhE) Potentiates Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E.; Pyo, Suhkneung

    2014-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. PMID:25312953

  2. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  3. A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme.

    PubMed Central

    Yasunami, M; Chen, C S; Yoshida, A

    1991-01-01

    The human alcohol dehydrogenase (ADH; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family consists of five known loci (ADH1-ADH5), which have been mapped close together on chromosome 4 (4q21-25). ADH isozymes encoded by these genes are grouped in three distinct classes in terms of their enzymological properties. A moderate structural similarity is observed between the members of different classes. We isolated an additional member of the ADH gene family by means of cross-hybridization with the ADH2 (class I) cDNA probe. cDNA clones corresponding to this gene were derived from PCR-amplified libraries as well. The coding sequence of a 368-amino-acid-long open reading frame was interrupted by introns into eight exons and spanned approximately 17 kilobases on the genome. The gene contains a glucocorticoid response element at the 5' region. The transcript was detected in the stomach and liver. The deduced amino acid sequence of the open reading frame showed about 60% positional identity with known human ADHs. This extent of homology is comparable to interclass similarity in the human ADH family. Thus, the newly identified gene, which is designated ADH6, governs the synthesis of an enzyme that belongs to another class of ADHs presumably with a distinct physiological role. Images PMID:1881901

  4. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    PubMed Central

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang; Bomble, Yannick J.; Himmel, Michael E.; Lo, Jonathan; Hon, Shuen; Shaw, A. Joe; van Dijken, Johannes P.

    2015-01-01

    ABSTRACT Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of

  5. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. PMID:26743658

  6. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE).

    PubMed

    Endo, Akihito; Tanaka, Naoto; Oikawa, Yo; Okada, Sanae; Dicks, Leon

    2014-04-01

    Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD(+)/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD(+), and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution. PMID:24352296

  7. Activity of Yeast Alcohol Dehydrogenases on Benzyl Alcohols and Benzaldehydes. Characterization of ADH1 from Saccharomyces carlsbergensis and Transition State Analysis

    PubMed Central

    Pal, Suresh; Park, Doo-Hong; Plapp, Bryce V.

    2009-01-01

    The substrate specificities of yeast alcohol dehydrogenases I and II from Saccharomyces cerevisiae (SceADH1 and SceADH2) and Saccharomyces carlsbergensis (ScbADH1) were studied. For this work, the gene for the S. carlsbergensis ADH1 was cloned, sequenced and expressed. The amino acid sequence of ScbADH1 differs at four positions as compared to SceADH1, including substitutions of two glutamine residues with glutamic acid residues, and has the same sequence as the commercial yeast enzyme, which apparently is prepared from S. carlsbergensis. The electrophoretic mobilities of ScbADH1, SceADH2 and commercial ADH are similar. The kinetics and specificities of ScbADH1 and SceADH1 acting on branched, long-chain and benzyl alcohols are very similar, but the catalytic efficiency of SceADH2 is about 10 to 100-fold higher on these substrates. A three dimensional structure of SceADH1 shows that the substrate binding pocket has Met-270, whereas SceADH2 has Leu-270, which allows larger substrates to bind. The reduction of a series of p-substituted benzaldehydes catalyzed by SceADH2 is significantly enhanced by electron-withdrawing groups, whereas the oxidation of p-substituted aromatic alcohols may be only slightly affected by the substituents. The substituent effects on catalysis generally reflect the effects on the equilibrium constant for the reaction, where electron-withdrawing substituents favor alcohol. The results are consistent with a transition state that is electronically similar to the alcohol, supporting previous results obtained with commercial yeast ADH. PMID:19022233

  8. Optical isopropanol biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH).

    PubMed

    Chien, Po-Jen; Ye, Ming; Suzuki, Takuma; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2016-10-01

    Isopropanol (IPA) is an important solvent used in industrial activity often found in hospitals as antiseptic alcohol rub. Also, IPA may have the potential to be a biomarker of diabetic ketoacidosis. In this study, an optical biosensor using NADH-dependent secondary alcohol dehydrogenase (S-ADH) for IPA measurement was constructed and evaluated. An ultraviolet light emitting diode (UV-LED, λ=340nm) was employed as the excitation light to excite nicotinamide adenine dinucleotide (NADH). A photomultiplier tube (PMT) was connected to a two-way branch optical fiber for measuring the fluorescence emitted from the NADH. S-ADH was immobilized on the membrane to catalyze IPA to acetone and reduce NAD(+) to be NADH. This IPA biosensor shows highly sensitivity and selectivity, the calibration range is from 500 nmol L(-1) to 1mmolL(-1). The optimization of buffer pH, temperature, and the enzyme-immobilized method were also evaluated. The detection of IPA in nail related cosmetic using our IPA biosensor was also carried out. The results showed that large amounts of IPA were used in these kinds of cosmetics. This IPA biosensor comes with the advantages of rapid reaction, good reproducibility, and wide dynamic range, and is also expected to use for clinical IPA detections in serum or other medical and health related applications. PMID:27474326

  9. Aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) polymorphisms exacerbate bladder cancer risk associated with alcohol drinking: gene-environment interaction.

    PubMed

    Masaoka, Hiroyuki; Ito, Hidemi; Soga, Norihito; Hosono, Satoyo; Oze, Isao; Watanabe, Miki; Tanaka, Hideo; Yokomizo, Akira; Hayashi, Norio; Eto, Masatoshi; Matsuo, Keitaro

    2016-06-01

    Although a range of chemical exposures (cigarette smoking and occupational exposure) are recognized risk factors for the development of bladder cancer (BCa), many epidemiological studies have demonstrated that alcohol drinking is not associated with BCa risk. Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms impact the accumulation of acetaldehyde, resulting in an increased risk of various cancers. To date, however, no studies evaluating the association between BCa risk and alcohol drinking have considered these polymorphisms. Here, we conducted a matched case-control study to investigate whether ALDH2 and ADH1B polymorphisms influence BCa risk associated with alcohol drinking. Cases were 74 BCa patients and controls were 740 first-visit outpatients without cancer at Aichi Cancer Center Hospital between January 2001 and December 2005. Odds ratio (OR), 95% confidence interval (CI) and gene-environment interaction were assessed by conditional logistic regression analysis with adjustment for potential confounders. Results showed that ALDH2 Glu/Lys was associated with a significantly increased risk of BCa compared with Glu/Glu (OR 2.03, 95% CI 1.14-3.62, P = 0.017). In contrast, ALDH2 Glu/Lys showed no increase in risk among the stratum of never drinkers compared with Glu/Glu, indicating a gene-environment interaction. ADH1B His/Arg had an OR of 1.98 (1.20-3.24, P = 0.007) compared with His/His. ADH1B Arg+ showed a similar OR and 95% CI. Individuals with ALDH2 Glu/Lys and ADH1B Arg+ had the highest risk of BCa compared with ALDH2 Glu/Glu and ADH1B His/His [OR 4.00 (1.81-8.87), P = 0.001]. PMID:26992901

  10. Selection variability for Arg48His in alcohol dehydrogenase ADH1B among Asian populations.

    PubMed

    Evsyukov, Alexey; Ivanov, Denis

    2013-08-01

    The variant His at codon 48 of the alcohol dehydrogenase gene (ADH1B) results in more efficient ethanol metabolism than with the "typical" codon 48Arg. In this study we introduced selection properties of Arg48His genotypes of ADH1B and estimated fitness in four ethnic-geographical clusters in Asia. Population genetics models were employed that derive observed gene frequencies from fitness relationships among genotypes, to infer the selection pattern of polymorphisms in an indirect manner. The data were analyzed using the model of "complete stationary distribution" by Wright that takes into account random genetic drift, pressure of migrations, mutations, and selection as influential factors of gene frequency. We found that the different population groups showed some variation in the types of selection for Arg48His. Han Chinese from eastern and southeastern China and the Japanese and Korean populations showed stabilizing selection, while the groups from Central Asian and Indochina showed divergent selection. However, all the groups demonstrated a strong positive selection for Arg48His. PMID:25019189

  11. Regulation of human alcohol dehydrogenase gene ADH7: importance of an AP-1 site.

    PubMed

    Kotagiri, S; Edenberg, H J

    1998-07-01

    The structure and function of the human alcohol dehydrogenase 7 (ADH7) promoter were analyzed. A promoter fragment extending to bp -232 functioned well in H4IIE-C3, CV-1, and HeLa cells, whereas the region extending further upstream to bp -799 had no significant effect on activity. We identified cis-acting elements in the proximal 232 bp and examined their effect on promoter activity. Mutation of site A, where c-Jun bound, caused a drastic decrease in the promoter activity in H4IIE-C3 and CV-1 cells, suggesting that AP-1 plays an important role in the regulation of ADH7. Mutation of site B also caused a large drop in promoter activity in both cell lines; C/EBPalpha can bind to this site, but because the site affects activity approximately equally in CV-1 cells that lack C/EBPalpha and in H4IIE-C3 cells that contain low levels, other proteins are likely to play the major roles in vivo. Mutation of site C, where C/EBP bound and c-Jun bound weakly, had different effects in the two cell lines: in H4IIE-C3 cells, the site C mutation did not significantly increase promoter activity, whereas in CV-1 cells, which lack C/EBPalpha, it led to a doubling of activity. Surprisingly, cotransfection of the wild-type promoter with C/EBPa or C/EBPbeta led to a decrease in promoter activity, which might in part explain the lack of activity of ADH7 in adult liver. PMID:9703017

  12. Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites.

    PubMed

    Leitsch, David; Williams, Catrin F; Lloyd, David; Duchêne, Michael

    2013-07-01

    Our previous observation that NADP-dependent secondary alcohol dehydrogenase (ADH-1) is down-regulated in metronidazole-resistant Trichomonas vaginalis isolates prompted us to further characterise the enzyme. In addition to its canonical enzyme activity as a secondary alcohol dehydrogenase, a pronounced, so far unknown, background NADPH-oxidising activity in absence of any added substrate was observed when the recombinant enzyme or T. vaginalis extract were used. This activity was strongly enhanced at low oxygen concentrations. Unexpectedly, all functions of ADH-1 were efficiently inhibited by coenzyme A which is a cofactor of a number of key enzymes in T. vaginalis metabolism, i.e. pyruvate:ferredoxin oxidoreductase (PFOR). These observations could be extended to Entamoeba histolytica and Tritrichomonas foetus, both of which have a homologue of ADH-1, but not to Giardia lamblia which lacks an NADP-dependent secondary alcohol dehydrogenase. Although we could not identify the substrate of the observed background activity, we propose that ADH-1 functions as a major sink for NADPH in microaerophilic parasites at low oxygen tension. PMID:23578856

  13. Alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis risk: a meta analysis

    PubMed Central

    He, Lei; Deng, Tao; Luo, He-Sheng

    2015-01-01

    The association between alcohol dehydrogenase 1C (ADH1C) gene polymorphism and alcoholic liver cirrhosis (ALC) has been analyzed in several studies, but results have been conflicting. In this study, a meta-analysis was performed to assess the associations between the ADH1C polymorphism and risk of ALC. Relevant studies were identified using PubMed, Web of Science, CNKI and Wanfang databases up to January 10, 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association using the fixed or random effect model. A total of 16 case-control studies, including 1375 cases and 1802 controls, were included. Overall, no significant association between the ADH1C polymorphism and ALC risk was found (dominant model: OR=0.87, 95% CI: 0.62-1.23; recessive model: OR=1.30, 95% CI: 0.84-1.99; *1/*2 vs. *1/*1: OR=0.87, 95% CI: 0.63-1.21; *2/*2 vs. *1/*1: OR=1.10, 95% CI: 0.71-1.70). In the subgroup analysis by ethnicity, we observed a significant association in Asian descent (*1/*2 vs. *1/*1: OR=1.63, 95% CI: 1.07-2.49), while a decreased risk was found among Caucasians (dominant model: OR=0.81, 95% CI: 0.66-0.99; *1/*2 vs. *1/*1: OR=0.76, 95% CI: 0.61-0.95). This meta-analysis demonstrated that the ADH1C polymorphism might increase the risk of ALC in Asians, while it may be a protective factor for ALC among Caucasians. PMID:26379912

  14. The role of aldehyde/alcohol dehydrogenase (AdhE) in ethanol production from glycerol by Klebsiella pneumoniae.

    PubMed

    Oh, Baek-Rock; Hong, Won-Kyung; Heo, Sun-Yeon; Joe, Min-ho; Seo, Jeong-Woo; Kim, Chul Ho

    2013-02-01

    Transcriptome analysis of a K. pneumoniae GEM167 mutant strain derived by irradiation with gamma rays, which exhibited high-level production of ethanol from glycerol, showed that the mutant expressed AdhE at a high level. Ethanol production decreased significantly, from 8.8 to 0.5 g l(-1), when an adhE-deficient derivative of that strain was grown on glycerol. Bacterial growth was also reduced under such conditions, showing that AdhE plays a critical role in maintenance of redox balance by catalyzing ethanol production. Overexpression of AdhE enhanced ethanol production, from pure or crude glycerol, to a maximal level of 31.9 g l(-1) under fed-batch fermentation conditions; this is the highest level of ethanol production from glycerol reported to date. PMID:23296976

  15. CHRONIC FEEDING ALCOHOL-CONTAINING DIETS VIA TOTAL ENTERAL NUTRITION INDUCES ALCOHOL DEHYDROGENASE (ADH) AND INSULIN RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Induction of Class 1 ADH occurs in rats fed alcohol chronically, and we have reported that C/EBPs and SREBP-1 are important signaling factors in this process. Chronic alcohol intake in humans can result in alcohol-induced diabetes. We have studied insulin signaling pathways in adult male Sprague-D...

  16. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development. PMID:12552151

  17. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus.

    PubMed

    Pfeiler, Edward; Reed, Laura K; Markow, Therese A

    2005-03-15

    High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele. PMID:15726639

  18. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  19. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii.

    PubMed

    Alsafadi, Diya; Paradisi, Francesca

    2013-01-01

    The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry. PMID:23179592

  20. Metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, in mouse liver by alcohol dehydrogenase Adh1 and aldehyde reductase AKR1A4

    SciTech Connect

    Short, Duncan M.; Lyon, Robert; Watson, David G.; Barski, Oleg A.; McGarvie, Gail; Ellis, Elizabeth M. . E-mail: Elizabeth.ellis@strath.ac.uk

    2006-01-15

    The reductive metabolism of trans, trans-muconaldehyde, a cytotoxic metabolite of benzene, was studied in mouse liver. Using an HPLC-based stopped assay, the primary reduced metabolite was identified as 6-hydroxy-trans, trans-2,4-hexadienal (OH/CHO) and the secondary metabolite as 1,6-dihydroxy-trans, trans-2,4-hexadiene (OH/OH). The main enzymes responsible for the highest levels of reductase activity towards trans, trans-muconaldehyde were purified from mouse liver soluble fraction first by Q-sepharose chromatography followed by either blue or red dye affinity chromatography. In mouse liver, trans, trans-muconaldehyde is predominantly reduced by an NADH-dependent enzyme, which was identified as alcohol dehydrogenase (Adh1). Kinetic constants obtained for trans, trans-muconaldehyde with the native Adh1 enzyme showed a V {sub max} of 2141 {+-} 500 nmol/min/mg and a K {sub m} of 11 {+-} 4 {mu}M. This enzyme was inhibited by pyrazole with a K {sub I} of 3.1 {+-} 0.57 {mu}M. Other fractions were found to contain muconaldehyde reductase activity independent of Adh1, and one enzyme was identified as the NADPH-dependent aldehyde reductase AKR1A4. This showed a V {sub max} of 115 nmol/min/mg and a K {sub m} of 15 {+-} 2 {mu}M and was not inhibited by pyrazole.

  1. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    SciTech Connect

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH.

  2. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis

    PubMed Central

    Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih

    2015-01-01

    No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population. PMID:26042511

  3. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    PubMed Central

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a spectrophotometric assay and an activity staining in a native gel of the dehydrogenase. New insights in the recently discovered organocatalytic Michael addition of water led to the conclusion that the previously performed experiments to identify MhyADH as a bi-functional enzyme and their results need to be reconsidered and the reliability of the methodology used needs to be critically evaluated. PMID:24949265

  4. Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family.

    PubMed

    Duester, G; Farrés, J; Felder, M R; Holmes, R S; Höög, J O; Parés, X; Plapp, B V; Yin, S J; Jörnvall, H

    1999-08-01

    The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies. PMID:10424757

  5. Mutant alcohol dehydrogenase (ADH III) presequences that affect both in vitro mitochondrial import and in vitro processing by the matrix protease.

    PubMed Central

    Mooney, D T; Pilgrim, D B; Young, E T

    1990-01-01

    Point mutations in the presequence of the mitochondrial alcohol dehydrogerase isoenzyme (ADH III) have been shown to affect either the import of the precursor protein into yeast mitochondria in vivo or its processing within the organelle. In the present work, the behavior of these mutants during in vitro import into isolated mitochondria was investigated. All point mutants tested were imported with a slower initial rate than that of the wild-type precursor. This defect was corrected when the precursors were treated with urea prior to import. Once imported, the extent of processing to the mature form of mutant precursors varied greatly and correlated well with the defects observed in vivo. This result was not affected by prior urea treatment. When matrix extracts enriched for the processing protease were used, this defect was shown to be due to failure of the protease to efficiently recognize or cleave the presequence, rather than to a lack of access to the precursor. The rate of import of two ADH III precursors bearing internal deletions in the leader sequence was similar to those of the point mutants, whereas a deletion leading to the removal of the 15 amino-terminal amino acids was poorly imported. The mature amino terminus of wild-type ADH III was determined to be Gln-25. Mutant m01 (Ser-26 to Phe), which reduced the efficiency of cleavage in vitro by 80%, was cleaved at the correct site. Images PMID:2188098

  6. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci

    PubMed Central

    Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.

    2013-01-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459

  7. Polymorphism of Alcohol Metabolizing Gene ADH3 Predisposes to Development of Alcoholic Pancreatitis in North Indian Population

    PubMed Central

    Singh, Divya; Negi, Tajwar S.; Upadhyay, Ghanshyam; Choudhuri, Gourdas

    2015-01-01

    Background and aim: Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (ACP). Studies revealed that alcohol could be metabolized by both ways, oxidative and non-oxidative. The main oxidative pathway includes alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and cytochrome P450 enzyme. We investigated the association of polymorphisms in these enzymes with the alcoholic pancreatitis in the north Indian population. Method: Patients with alcoholic pancreatitis (ACP; n = 72), tropical calcific pancreatitis (TCP; n = 75), alcoholic controls (AC; n = 40), and healthy controls (HC; n = 100) were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH3, ALDH2, and CYP2E1 was done by PCR-RFLP (polymerase chain reaction—restriction fragment length polymorphism). The products were analyzed by gel electrophoresis. Result: The frequency distribution of ADH3*1/*1 genotype was significantly higher in ACP group (59.7%) compared with TCP (38.7%), HC (42%), and AC (37.5%) and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2, and ADH3*2/*2 genotypes between TCP and HC or healthy alcoholics. ALDH2 gene was monomorphic in our population, and the frequencies for CYP2E1 intron 6 Dra I polymorphism were comparable in all the four groups. Conclusion: This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2. PMID:26734614

  8. N-acylethanolamines as novel alcohol dehydrogenase 3 substrates.

    PubMed

    Ivkovic, Milena; Dempsey, Daniel R; Handa, Sumit; Hilton, Joshua H; Lowe, Edward W; Merkler, David J

    2011-02-15

    N-acylethanolamines (NAEs) are members of the fatty acid amide family. The NAEs have been proposed to serve as metabolic precursors to N-acylglycines (NAGs). The sequential oxidation of the NAEs by an alcohol dehydrogenase and an aldehyde dehydrogenase would yield the N-acylglycinals and/or the NAGs. Alcohol dehydrogenase 3 (ADH3) is one enzyme that might catalyze this reaction. To define a potential role for ADH3 in NAE catabolism, we synthesized a set of NAEs and evaluated these as ADH3 substrates. NAEs were oxidized by ADH3, yielding the N-acylglycinals as the product. The (V/K)(app) values for the NAEs included here were low relative to cinnamyl alcohol. Our data show that the NAEs can serve as alcohol dehydrogenase substrates. PMID:21144815

  9. ADH and ALDH polymorphisms and alcohol dependence in Mexican and Native Americans

    PubMed Central

    Ehlers, Cindy L.; Liang, Tiebing; Gizer, Ian R.

    2012-01-01

    Background Ethanol is primarily metabolized in the liver by 2 rate-limiting reactions: conversion of ethanol to acetaldehyde by alcohol dehydrogenase (ADH) and subsequent conversion of acetaldehyde to acetate by aldehyde dehydrogenase (ALDH). ADH and ALDH exist in multiple isozymes that differ in their kinetic properties. Notably, polymorphisms within the genes that encode for these isozymes vary in their allele frequencies between ethnic groups, and thus, they have been considered as candidate genes that may differentially influence risk for the development of alcohol dependence across ethnic groups. Objectives and Methods Associations between alcohol dependence and polymorphisms in ADH1B, ADH1C, and ALDH2, were compared in a community sample of Native Americans living on reservations (n=791) and Mexican Americans (n=391) living within the same county. Results Two Mexican Americans and no Native Americans possessed one ALDH2*2 allele. Presence of at least one ADH1B*2 allele was found in 7% of the Native Americans and 13% of the Mexican Americans, but was only associated with protection against alcohol dependence in the Mexican Americans. Presence of at least one ADH1B*3 allele was found in 4% if the Native Americans and 2% of the Mexican Americans, but was associated with protection against alcohol dependence only in the Native Americans. No associations between alcohol dependence and polymorphisms in ADH1C were found. Conclusions and Scientific Significance Polymorphisms in ADH1B are protective against alcoholism in these two populations; however, these findings do not explain the high prevalence of alcoholism in these populations. PMID:22931071

  10. Influence of ADH1B polymorphism on alcohol use and its subjective effects in a Jewish population.

    PubMed

    Carr, Lucinda G; Foroud, Tatiana; Stewart, Trent; Castelluccio, Peter; Edenberg, Howard J; Li, Ting-Kai

    2002-10-01

    Class I alcohol dehydrogenases (ADHs) are the principal enzymes responsible for ethanol metabolism in humans. Genetic polymorphism at the ADH1B locus (old nomenclature ADH2) results in isozymes with quite different catalytic properties. The frequency of the ADH1B*2 allele varies among ethnic groups. ADH1B*2 is most often observed in Asian populations, and has been shown to be protective against alcoholism. The Jewish population has a higher frequency of the ADH1B*2 allele and lower rates of alcohol-related problems as compared to other Caucasian populations. Thus, it would be of interest to determine whether the ADH1B*2 allele is associated with alcohol consumption and its subjective effects in this group. Four groups of Jewish subjects (male and female college-age samples, and male and female general samples) were recruited from the same region of the United States. All subjects completed a questionnaire to delineate alcohol consumption and its subjective consequences. Genotype at the ADH1B locus was determined for each participant. ADH1B*2 allele frequencies were similar for the Jewish college-age and general population samples. Men in both the college-age and general population in the ADH1B*2 group reported more unpleasant reactions following alcohol consumption than men in the ADH1B*1 group. Men in the general population in the ADH1B*2 group drank alcohol less frequently than men who were homozygous ADH1B*1; there was a similar trend among the women. The ADH1B polymorphism is associated with unpleasant reactions after alcohol consumption, and frequency of alcohol consumption in these Jewish samples. PMID:12244546

  11. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    PubMed Central

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  12. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Tang, Yufan; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2016-01-01

    Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed. PMID:27242871

  13. Which alcohol use disorder criteria contribute to the association of ADH1B with alcohol dependence?

    PubMed

    Hart, Amy B; Lynch, Kevin G; Farrer, Lindsay; Gelernter, Joel; Kranzler, Henry R

    2016-07-01

    Although alcohol dependence (AD) is approximately 50% heritable, little is known about how specific genetic loci affect AD risk. In a genome-wide association study (GWAS), we identified highly significant associations between two population-specific functional variants in the alcohol dehydrogenase 1B gene (ADH1B) and AD in African-Americans (AAs; rs2066702) and European-Americans (EAs; rs1229984). In the current study, we determined which specific diagnostic criteria contributed to the observed associations of ADH1B SNPs with AD. Our analysis included both the DSM-IV and DSM-5 diagnostic systems. We also investigated the relationship of ADH1B variants to the maximum number of drinks consumed in a 24-hour period (MaxDrinks), a presumed intermediate phenotype of AD. We found that, although all criteria made strong individual contributions to the associations, the largest contributions came from those reflecting neuroadaptation: tolerance (rs2066702) and withdrawal (rs1229984). Overall, evidence for association with DSM-5 criteria was slightly stronger than for DSM-IV criteria. For rs2066702, results were similar for DSM-IV and DSM-5 criteria. However, the most significant DSM-5 criterion associated with rs1229984 was alcohol-related social/interpersonal problems. Both ADH1B variants were associated with MaxDrinks, a measure of innate tolerance, and MaxDrinks mediated the associations between ADH1B and alcohol outcomes. We replicated the findings for rs2066702 and tolerance in an independent sample of AAs. Taken together, these results suggest that variation in ADH1B affects the adaptation to heavy drinking, highlighting population-specific differences in genetic risk for AUD. They also suggest that the revisions reflected in DSM-5 AUD may enhance the utility of that diagnosis for gene finding. PMID:25828809

  14. Effect of amines as activators on the alcohol-oxidizing activity of pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenase.

    PubMed

    Takeda, Kouta; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2014-01-01

    Pyrroloquinoline quinone-dependent quinoprotein alcohol dehydrogenases (PQQ-ADH) require ammonia or primary amines as activators in in vitro assays with artificial electron acceptors. We found that PQQ-ADH from Pseudomonas putida KT2440 (PpADH) was activated by various primary amines, di-methylamine, and tri-methylamine. The alcohol oxidation activity of PpADH was strongly enhanced and the affinity for substrates was also improved by pentylamine as an activator. PMID:25229857

  15. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-05-01

    The yeast Yarrowia lipolytica can assimilate hydrophobic substrates, including n-alkanes and fatty alcohols. Here, eight alcohol dehydrogenase genes, ADH1-ADH7 and FADH, and a fatty alcohol oxidase gene, FAO1, were analyzed to determine their roles in the metabolism of hydrophobic substrates. A mutant deleted for all of these genes (ALCY02 strain) showed severely defective growth on fatty alcohols, and enhanced sensitivity to fatty alcohols in glucose-containing media. The ALCY02 strain grew normally on n-tetradecane or n-hexadecane, but exhibited slightly defective growth on n-decane or n-dodecane. It accumulated more 1-dodecanol and less dodecanoic acid than the wild-type strain when n-dodecane was fed. Expression of ADH1, ADH3 or FAO1, but not that of other ADH genes or FADH, in the ALCY02 strain restored its growth on fatty alcohols. In addition, a triple deletion mutant of ADH1, ADH3 and FAO1 showed similarly defective growth on fatty alcohols and on n-dodecane to the ALCY02 strain. Microscopic observation suggests that Adh1p and Adh3p are localized in the cytosol and Fao1p is in the peroxisome. These results suggest that Adh1p, Adh3p and Fao1p are responsible for the oxidation of exogenous fatty alcohols but play less prominent roles in the oxidation of fatty alcohols derived from n-alkanes. PMID:25805841

  16. Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos

    PubMed Central

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P.; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  17. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  18. Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols.

    PubMed

    Itoh, Nobuya

    2014-05-01

    The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP(+)/NADPH-dependent enzymes. Recently, we reported a novel NAD(+)/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones. PMID:24615386

  19. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    PubMed Central

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  20. Alcohol Consumption Mediates the Relationship Between ADH1B and DSM-IV Alcohol Use Disorder and Criteria

    PubMed Central

    Kilcoyne, Bari; Shmulewitz, Dvora; Meyers, Jacquelyn L; Aharonovich, Efrat; Greenstein, Eliana; Frisch, Amos; Weizman, Abraham; Spivak, Baruch; Edenberg, Howard J; Gelernter, Joel; Hasin, Deborah S

    2014-01-01

    Objective: A single nucleotide variation in the alcohol dehydrogenase 1B (ADH1B) gene, rs1229984, produces an ADH1B enzyme with faster acetaldehyde production. This protective variant is associated with lower alcohol consumption and lower risk for alcohol use disorders (AUDs). Based on the premise that faster ADH1B kinetics decreases alcohol consumption, we formally tested if the association between ADH1B variant rs1229984 and AUDs occurs through consumption. We also tested whether the association between rs1 229984 and each of the 11 Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), AUD criteria occurs through consumption. Method: A total of 1,130 lifetime drinkers from an Israeli household sample were assessed with a structured interview and genotyped for rs1229984 (protective allele frequency = 0.28). Logistic regression evaluated the association between rs1229984 and each phenotype (AUDs, 11 individual DSM-IV criteria). For phenotypes significantly related to rs1229984, the effect through consumption was tested with logistic regression and bootstrapping. Results: ADH1B rs1229984 was significantly associated with AUDs and six criteria, with odds ratios ranging from 1.32 to 1.96. The effect through consumption was significant for these relationships, explaining 23%–74% of the total ADH1B effect. Conclusions: This is the first study to show that ADH1B rs1229984 is related to 6 of the 11 DSM-IV AUD criteria and that alcohol consumption explained a significant proportion of these associations and the association of ADH1B with AUDs. Better understanding of the relationship between ADH1B and the DSM-IV AUD criteria, including effects through consumption, will enhance our understanding of the etiologic model through which AUDs can occur. PMID:24988262

  1. Drosophila alcohol dehydrogenase: developmental studies on cryptic variant lines.

    PubMed

    Miglani, G S; Ampy, F R

    1981-10-01

    Thirty-five cryptic variant lines were used to examine the mechanisms involved in genetic modulation of alcohol metabolism in Drosophila. Late third-instar larval, preemergence pupal, and adult stages cultured at 18 and 28 C were examined. Spectrophotometric analyses for native alcohol dehydrogenase (ADH) activity and residual ADH activity after treatment with guanidine hydrochloride and heat were performed. Differential response of cryptic variants to treatment with the denaturants during development suggested that this variation may have an adaptive significance. PMID:6800354

  2. Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489.

    PubMed

    Park, Yong-Cheol; San, Ka-Yiu; Bennett, George N

    2007-08-01

    Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD(+)-binding motif and showed 54-75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 +/- 9 mU/mg using ethanol and NAD(+) as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3-C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD(+) preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes. PMID:17516063

  3. The alcohol dehydrogenase isoenzyme alcohol dehydrogenase IV as a candidate marker of Helicobacter pylori infection

    PubMed Central

    Laniewska-Dunaj, Magdalena; Strumnik, Anna; Szmitkowski, Maciej

    2014-01-01

    Introduction Helicobacter pylori infection is associated with decreased alcohol dehydrogenase (ADH) activity in the gastric mucosa. The decrease in gastric ADH activity depends on the severity of inflammation and mucosal injury. This damage can be a reason of the release of enzyme from gastric mucosa and leads to the increase of the ADH activity in the sera of patients with H. pylori infection. Material and methods Serum samples were taken from 140 patients with H. pylori infection. Total ADH activity was measured by photometric method with p-nitrosodimethylaniline as a substrate and ALDH activity by the fluorometric method with 6-methoxy-2-naphtaldehyde. For the measurement of the activity of class I and II isoenzymes we employed the fluorometric methods, with class-specific fluorogenic substrates. The activity of class III ADH was measured by the photometric method with n-octanol and class IV with m-nitrobenzaldehyde as a substrate. Results The activity of ADH IV in the serum of patients with H. pylori infection increased about 42% (7.86 mU/l) in the comparison to the control level (4.52 mU/l). Total activity of ADH was 1105 mU/l in patients group and 682 mU/l in control. The diagnostic sensitivity for ADH IV was 88%, specificity 90%, positive and negative predictive values were 91% and 84% respectively. Area under ROC curve for ADH IV was 0.84. Conclusions Helicobacter pylori infection of gastric mucosa is reflected in the serum by significant increase of class IV and total ADH activity. The results suggest a potential role for ADH IV as a marker of H. pylori infection. PMID:25395946

  4. Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.

    PubMed

    Reimers, Mark J; Hahn, Mark E; Tanguay, Robert L

    2004-09-10

    Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have been named Adh8a and Adh8b by the nomenclature committee. Both genes were genetically mapped to chromosome 13. The 1450-bp Adh8a is 82, 73, 72, and 72% similar at the amino acid level to the Baltic cod ADH8 (previously named ADH1), the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. Also, the 1484-bp Adh8b is 77, 68, 67, and 66% similar at the amino acid level to the Baltic cod ADH8, the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. ADH8A and ADH8B share 86% amino acid similarity. To characterize the functional properties of ADH8A and ADH8B, recombinant proteins were purified from SF-9 insect cells. Kinetic studies demonstrate that ADH8A metabolizes ethanol, with a V(max) of 13.4 nmol/min/mg protein, whereas ADH8B does not metabolize ethanol. The ADH8A K(m) for ethanol as a substrate is 0.7 mm. 4-Methyl pyrazole, a classical competitive inhibitor of class I ADH, failed to inhibit ADH8A. ADH8B has the capacity to efficiently biotransform longer chain primary alcohols (>/=5 carbons) and S-hydroxymethlyglutathione, whereas ADH8A does not efficiently metabolize these substrates. Finally, mRNA expression studies indicate that both ADH8A and ADH8B mRNA are expressed during early development and in the adult brain, fin, gill, heart, kidney, muscle, and liver. Together these results indicate that class I-like ADH is conserved in zebrafish, albeit with mixed functional properties. PMID:15231826

  5. Baboon alcohol dehydrogenase isozymes: phenotypic changes in liver following chronic consumption of alcohol.

    PubMed

    Holmes, R S; VandeBerg, J L

    1987-01-01

    According to the nomenclature of Vallee and Bazzone [1983] for mammalian alcohol dehydrogenase (ADH) isozymes, baboon ADHs comprise three major classes of activity, which were distinguished according to the following properties: Class I ADHs. These isozymes exhibited low-Km characteristics with ethanol as substrate, high isoelectric points (8.5-9.3), and sensitivity to 5 mM 4-methyl pyrazole inhibition, and were the major liver (ADH-2) and kidney (ADH-1) isozymes in the baboon. Class II ADHs. These isozymes showed high-Km values for ethanol, neutral isoelectric points (7.7 for the liver ADH-4 [pi-ADH] and 7.2 for the major stomach ADH [ADH-3], respectively), and were insensitive to inhibition with 5 mM 4-methyl pyrazole. Class III ADH. This enzyme was characterized by its inactivity with ethanol as substrate (up to 0.5 M), insensitivity to 4-methyl pyrazole inhibition, preference for medium-chain-length alcohols as substrate (trans-2-hexen-1-ol was routinely used in this study), and an isoelectric point (6.5) similar to that of the human liver chi-ADH (pI 6.4). Major activity variation of the liver pi-ADH (ADH-4) isozyme was observed among the 114 liver samples examined, with 34 percent exhibiting a null (or low-activity) phenotype. An electrophoretic variant phenotype for the major class II stomach isozyme (ADH-3) was also found in the population studied. The baboon was used as a model for studying alcohol-induced changes in liver ADH phenotype following chronic alcohol consumption. Prepuberal male baboons were pair-fed nutritionally adequate liquid diets containing ethanol (50 percent of calories) or isocaloric carbohydrates, and liver ADH isozyme patterns from biopsy samples were monitored for 20 weeks. Dramatic decreases in class II liver ADH activity (ADH-4, or pi-ADH) were observed within 4 weeks after the start of alcohol feeding, and a shift in liver class I isozymes was found during the later stages of alcohol consumption. These changes during chronic

  6. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  7. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  8. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    PubMed Central

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases. PMID:24970175

  9. Regulation of human class I alcohol dehydrogenases by bile acids

    PubMed Central

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F.; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism. PMID:23772048

  10. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    PubMed Central

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders. PMID:24662364

  11. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample

    PubMed Central

    Peng, Qian; Gizer, Ian R.; Libiger, Ondrej; Bizon, Chris; Wilhelmsen, Kirk C.; Schork, Nicholas J.; Ehlers, Cindy L.

    2015-01-01

    Higher rates of alcohol use and other drug-dependence have been observed in some Native American populations relative to other ethnic groups in the U.S. Previous studies have shown that alcohol dehydrogenase (ADH) genes and aldehyde dehydrogenase (ALDH) genes may affect the risk of development of alcohol dependence, and that polymorphisms within these genes may differentially affect risk for the disorder depending on the ethnic group evaluated. We evaluated variations in the ADH and ALDH genes in a large study investigating risk factors for substance use in a Native American population. We assessed ancestry admixture and tested for associations between alcohol-related phenotypes in the genomic regions around the ADH1-7 and ALDH2 and ALDH1A1 genes. Seventy-two (72) ADH variants showed significant evidence of association with a severity level of alcohol drinking-related dependence symptoms phenotype. These significant variants spanned across the entire 7 ADH gene cluster regions. Two significant associations, one in ADH and one in ALDH2, were observed with alcohol dependence diagnosis. Seventeen (17) variants showed significant association with the largest number of alcohol drinks ingested during any 24-hour period. Variants in or near ADH7 were significantly negatively associated with alcohol-related phenotypes, suggesting a potential protective effect of this gene. In addition, our results suggested that a higher degree of Native American ancestry is associated with higher frequencies of potential risk variants and lower frequencies of potential protective variants for alcohol dependence phenotypes. PMID:25270064

  12. A model system for QTL analysis: Effects of alcohol dehydrogenase genotype on alcohol pharmacokinetics

    SciTech Connect

    Martin, N.G.; Nightingale, B.; Whitfield, J.B.

    1994-09-01

    There is much interest in the detection of quantitative trait loci (QTL) - major genes which affect quantitative phenotypes. The relationship of polymorphism at known alcohol metabolizing enzyme loci to alcohol pharmacokinetics is a good model system. The three class I alcohol dehydrogenase genes are clustered on chromosome 4 and protein electrophoresis has revealed polymorphisms at the ADH2 and ADH3 loci. While different activities of the isozymes have been demonstrated in vitro, little work has been done in trying to relate ADH polymorphism to variation in ethanol metabolism in vivo. We previously measured ethanol metabolism and psychomotor reactivity in 206 twin pairs and demonstrated that most of the repeatable variation was genetic. We have now recontacted the twins to obtain DNA samples and used PCR with allele specific primers to type the ADH2 and ADH3 polymorphisms in 337 individual twins. FISHER has been used to estimate fixed effects of typed polymorphisms simultaneously with remaining linked and unlinked genetic variance. The ADH2*1-2 genotypes metabolize ethanol faster and attain a lower peak blood alcohol concentration than the more common ADH2*1-1 genotypes, although less than 3% of the variance is accounted for. There is no effect of ADH3 genotype. However, sib-pair linkage analysis suggests that there is a linked polymorphism which has a much greater effect on alcohol metabolism that those typed here.

  13. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    SciTech Connect

    Singer, M.E.; Finnerty, W.R.

    1985-12-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.

  14. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins.

    PubMed

    Membrillo-Hernandez, J; Echave, P; Cabiscol, E; Tamarit, J; Ros, J; Lin, E C

    2000-10-27

    The multifunctional AdhE protein of Escherichia coli (encoded by the adhE gene) physiologically catalyzes the sequential reduction of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. The NH(2)-terminal region of the AdhE protein is highly homologous to aldehyde:NAD(+) oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe(2+)-dependent ethanol:NAD(+) oxidoreductases. This fusion protein also functions as a pyruvate formate lyase deactivase. E. coli cannot grow aerobically on ethanol as the sole carbon and energy source because of inadequate rate of adhE transcription and the vulnerability of the AdhE protein to metal-catalyzed oxidation. In this study, we characterized 16 independent two-step mutants with acquired and improved aerobic growth ability on ethanol. The AdhE proteins in these mutants catalyzed the sequential oxidation of ethanol to acetaldehyde and to acetyl-CoA. All first stage mutants grew on ethanol with a doubling time of about 240 min. Sequence analysis of a randomly chosen mutant revealed an Ala-267 --> Thr substitution in the acetaldehyde:NAD(+) oxidoreductase domain of AdhE. All second stage mutants grew on ethanol with a doubling time of about 90 min, and all of them produced an AdhE(A267T/E568K). Purified AdhE(A267T) and AdhE(A267T/E568K) showed highly elevated acetaldehyde dehydrogenase activities. It therefore appears that when AdhE catalyzes the two sequential reactions in the counter-physiological direction, acetaldehyde dehydrogenation is the rate-limiting step. Both mutant proteins were more thermosensitive than the wild-type protein, but AdhE(A267T/E568K) was more thermal stable than AdhE(A267T). Since both mutant enzymes exhibited similar kinetic properties, the second mutation probably conferred an increased growth rate on ethanol by stabilizing AdhE(A267T). PMID:10922373

  15. Alcohol and aldehyde dehydrogenase polymorphisms in Chinese and Indian populations.

    PubMed

    Tan, Ene-Choo; Lim, Leslie; Leong, Jern-Yi; Lim, Jing-Yan; Lee, Arthur; Yang, Jun; Tan, Chay-Hoon; Winslow, Munidasa

    2010-01-01

    The association between two functional polymorphisms in alcohol dehydrogenase (ADH2/ADH1B) and aldehyde dehydrogenase (ALDH2) genes and alcohol dependence was examined in 182 Chinese and Indian patients undergoing treatment for alcohol dependence and 184 screened control subjects from Singapore. All subjects were screened by the Alcohol Use Disorders Identification Test (AUDIT). Patients were also administered the Severity of Alcohol Dependence Questionnaire (SADQ). Polymorphisms were genotyped by allele-specific polymerase chain reaction and selected genotypes confirmed by DNA sequencing or restriction fragment length polymorphism. Our results showed that frequencies of ADH1B*2 and ALDH2*2 were higher in controls compared to alcohol-dependent subjects for both Chinese and Indians. Frequencies of these two alleles were also higher in the 104 Chinese controls compared to the 80 Indian controls. None of the eight Chinese who were homozygous for both protective alleles was alcohol dependent. The higher frequencies of the protective alleles could explain the lower rate of alcohol dependence in Chinese. PMID:20025435

  16. Alcohol dehydrogenase activity in Lactococcus chungangensis: application in cream cheese to moderate alcohol uptake.

    PubMed

    Konkit, Maytiya; Choi, Woo Jin; Kim, Wonyong

    2015-09-01

    Many human gastrointestinal facultative anaerobic and aerobic bacteria possess alcohol dehydrogenase (ADH) activity and are therefore capable of oxidizing ethanol to acetaldehyde. However, the ADH activity of Lactococcus spp., except Lactococcus lactis ssp. lactis, has not been widely determined, though they play an important role as the starter for most cheesemaking technologies. Cheese is a functional food recognized as an aid to digestion. In the current study, the ADH activity of Lactococcus chungangensis CAU 28(T) and 11 reference strains from the genus Lactococcus was determined. Only 5 strains, 3 of dairy origin, L. lactis ssp. lactis KCTC 3769(T), L. lactis ssp. cremoris KCCM 40699(T), and Lactococcus raffinolactis DSM 20443(T), and 2 of nondairy origin, Lactococcus fujiensis NJ317(T) and Lactococcus chungangensis CAU 28(T) KCTC 13185(T), showed ADH activity and possessed the ADH gene. All these strains were capable of making cheese, but the highest level of ADH activity was found in L. chungangensis, with 45.9nmol/min per gram in tryptic soy broth and 65.8nmol/min per gram in cream cheese. The extent that consumption of cheese, following imbibing alcohol, reduced alcohol uptake was observed by following the level of alcohol in the serum of mice. The results show a potential novel benefit of cheese as a dairy functional food. PMID:26142864

  17. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  18. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    PubMed

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  19. Alcohol Dehydrogenase from Methylobacterium organophilum

    PubMed Central

    Wolf, H. J.; Hanson, R. S.

    1978-01-01

    The alcohol dehydrogenase from Methylobacterium organophilum, a facultative methane-oxidizing bacterium, has been purified to homogeneity as indicated by sodium dodecyl sulfate-gel electrophoresis. It has several properties in common with the alcohol dehydrogenases from other methylotrophic bacteria. The active enzyme is a dimeric protein, both subunits having molecular weights of about 62,000. The enzyme exhibits broad substrate specificity for primary alcohols and catalyzes the two-step oxidation of methanol to formate. The apparent Michaelis constants of the enzyme are 2.9 × 10−5 M for methanol and 8.2 × 10−5 M for formaldehyde. Activity of the purified enzyme is dependent on phenazine methosulfate. Certain characteristics of this enzyme distinguish it from the other alcohol dehydrogenases of other methylotrophic bacteria. Ammonia is not required for, but stimulates the activity of newly purified enzyme. An absolute dependence on ammonia develops after storage of the purified enzyme. Activity is not inhibited by phosphate. The fluorescence spectrum of the enzyme indicates that it and the cofactor associated with it may be chemically different from the alcohol dehydrogenases from other methylotrophic bacteria. The alcohol dehydrogenases of Hyphomicrobium WC-65, Pseudomonas methanica, Methylosinus trichosporium, and several facultative methylotrophs are serologically related to the enzyme purified in this study. The enzymes of Rhodopseudomonas acidophila and of organisms of the Methylococcus group did not cross-react with the antiserum prepared against the alcohol dehydrogenase of M. organophilum. Images PMID:80974

  20. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.

    PubMed

    Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W

    2015-06-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  1. Regulated Expression of Three Alcohol Dehydrogenase Genes in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.; Zwar, John A.

    1984-01-01

    Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity. Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2. In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly. Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2. We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and

  2. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives. PMID:21167143

  3. Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites.

    PubMed

    Liu, Liangliang; Yu, Jingang; Chen, Xiaoqing

    2015-02-01

    Graphene oxide (GO) has a unique planar structure and contains many functional groups. As a functional material, it can be functionalized with biomolecules and nanomaterials for various applications. In this study, Magnetic GO (MGO) nanocomposites were synthesized according to covalent binding of amino Fe3O4 nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as supports for the immobilization of alcohol dehydrogenase (ADH). Compared with free ADH and Fe3O4 nanoparticles immobilized ADH (MNP-ADH), the MGO immobilized ADH (MGO-ADH) exhibited a wider pH stability range and a better thermal stability. Furthermore, the MGO-ADH exhibited better storage stability and reusability than MNP-ADH after recovered by magnetic separations. The MGO-ADH maintained 35.1% activity after 20 days storage and lost about 20.4% activity after ten times usage. The Michaelis constant (Km) of MGO-ADH was close to that of free ADH. The results showed the MGO nanocomposites were appropriate for the immobilization of enzyme. As a novel support, MGO nanocomposites effectively increased the stability of enzyme, allowed the reuse or continuous use of enzymes and therefore improved the potential use in practical. PMID:26353636

  4. Biochemical properties of alcohol dehydrogenase from Drosophila lebanonensis.

    PubMed Central

    Winberg, J O; Hovik, R; McKinley-McKee, J S; Juan, E; Gonzalez-Duarte, R

    1986-01-01

    Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 X 10(3) M-1 X cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not

  5. Isolation and characterization of full-length putative alcohol dehydrogenase genes from polygonum minus

    NASA Astrophysics Data System (ADS)

    Hamid, Nur Athirah Abd; Ismail, Ismanizan

    2013-11-01

    Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.

  6. Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.

    PubMed

    Ma, Menggen; Wang, Xu; Zhang, Xiaoping; Zhao, Xianxian

    2013-09-01

    Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. PMID:23912116

  7. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77.

    PubMed

    Tsuji, Kohsei; Yoon, Ki-Seok; Ogo, Seiji

    2016-03-01

    Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHES77). Interestingly, the ADHES77 was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH4)2SO4 without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration. PMID:26216639

  8. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  9. Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis.

    PubMed

    Sutak, Robert; Hrdy, Ivan; Dolezal, Pavel; Cabala, Radomir; Sedinová, Miroslava; Lewin, Joern; Harant, Karel; Müller, Miklos; Tachezy, Jan

    2012-08-01

    Secondary alcohols such as 2-propanol are readily produced by various anaerobic bacteria that possess secondary alcohol dehydrogenase (S-ADH), although production of 2-propanol is rare in eukaryotes. Specific bacterial-type S-ADH has been identified in a few unicellular eukaryotes, but its function is not known and the production of secondary alcohols has not been studied. We purified and characterized S-ADH from the human pathogen Trichomonas vaginalis. The kinetic properties and thermostability of T. vaginalis S-ADH were comparable with bacterial orthologues. The substantial activity of S-ADH in the parasite's cytosol was surprising, because only low amounts of ethanol and trace amounts of secondary alcohols were detected as metabolic end products. However, S-ADH provided the parasite with a high capacity to scavenge and reduce external acetone to 2-propanol. To maintain redox balance, the demand for reducing power to metabolize external acetone was compensated for by decreased cytosolic reduction of pyruvate to lactate and by hydrogenosomal metabolism of pyruvate. We speculate that hydrogen might be utilized to maintain cytosolic reducing power. The high activity of Tv-S-ADH together with the ability of T. vaginalis to modulate the metabolic fluxes indicate efficacious metabolic responsiveness that could be advantageous for rapid adaptation of the parasite to changes in the host environment. PMID:22686835

  10. Inhibition of human alcohol and aldehyde dehydrogenases by aspirin and salicylate: assessment of the effects on first-pass metabolism of ethanol.

    PubMed

    Lee, Shou-Lun; Lee, Yung-Pin; Wu, Min-Li; Chi, Yu-Chou; Liu, Chiu-Ming; Lai, Ching-Long; Yin, Shih-Jiun

    2015-05-01

    Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 μM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin. PMID:25772736

  11. Expression of Alcohol Dehydrogenase 3 in Tissue and Cultured Cells from Human Oral Mucosa

    PubMed Central

    Hedberg, Jesper J.; Höög, Jan-Olov; Nilsson, Jan A.; Xi, Zheng; Elfwing, Åsa; Grafström, Roland C.

    2000-01-01

    Because formaldehyde exposure has been shown to induce pathological changes in human oral mucosa, eg, micronuclei, the potential enzymatic defense by alcohol dehydrogenase 3 (ADH3)/glutathione-dependent formaldehyde dehydrogenase was characterized in oral tissue specimens and cell lines using RNA hybridization and immunological methods as well as enzyme activity measurements. ADH3 mRNA was expressed in basal and parabasal cell layers of oral epithelium, whereas the protein was detected throughout the cell layers. ADH3 mRNA and protein were further detected in homogenates of oral tissue and various oral cell cultures, including, normal, SV40T antigen-immortalized, and tumor keratinocyte lines. Inhibition of the growth of normal keratinocytes by maintenance at confluency significantly decreased the amount of ADH3 mRNA, a transcript with a determined half-life of 7 hours. In contrast, decay of ADH3 protein was not observed throughout a 4-day period in normal keratinocytes. In samples from both tissue and cells, the ADH3 protein content correlated to oxidizing activity for the ADH3-specific substrate S-hydroxymethylglutathione. The composite analyses associates ADH3 mRNA primarily to proliferative keratinocytes where it exhibits a comparatively short half-life. In contrast, the ADH3 protein is extremely stable, and consequently is retained during the keratinocyte life span in oral mucosa. Finally, substantial capacity for formaldehyde detoxification is shown from quantitative assessments of alcohol- and aldehyde-oxidizing activities including Km determinations, indicating that ADH3 is the major enzyme involved in formaldehyde oxidation in oral mucosa. PMID:11073833

  12. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu

    PubMed Central

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group.

  13. Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu.

    PubMed

    Wee, Ching Ching; Roslan, Hairul Azman

    2012-01-01

    Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group. PMID:27335670

  14. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect. PMID:27266256

  15. Alcohol dehydrogenase polymorphism in barrel cactus populations of Drosophila mojavensis.

    PubMed

    Cleland, S; Hocutt, G D; Breitmeyer, C M; Markow, T A; Pfeiler, E

    1996-07-01

    Starch gel electrophoresis revealed that the alcohol dehydrogenase (ADH-2) locus was polymorphic in two populations (from Agua Caliente, California and the Grand Canyon, Arizona) of cactophilic Drosophila mojavensis that utilize barrel cactus (Ferocactus acanthodes) as a host plant. Electromorphs representing products of a slow (S) and a fast (F) allele were found in adult flies. The frequency of the slow allele was 0.448 in flies from Agua Caliente and 0.659 in flies from the Grand Canyon. These frequencies were intermediate to those of the low (Baja California peninsula, Mexico) and high (Sonora, Mexico and southern Arizona) frequency Adh-2S populations of D. mojavensis that utilize different species of host cacti. PMID:8765684

  16. Physicochemical Characterization of a Thermostable Alcohol Dehydrogenase from Pyrobaculum aerophilum

    PubMed Central

    Vitale, Annalisa; Thorne, Natasha; Lovell, Scott; Battaile, Kevin P.; Hu, Xin; Shen, Min; D'Auria, Sabato; Auld, Douglas S.

    2013-01-01

    In this work we characterize an alcohol dehydrogenase (ADH) from the hyperthermophilic archaeon Pyrobaculum aerophilum (PyAeADHII). We have previously found that PyAeADHII has no activity when standard ADH substrates are used but is active when α-tetralone is used as substrate. Here, to gain insights into enzyme function, we screened several chemical libraries for enzymatic modulators using an assay employing α-tetralone. The results indicate that PyAeADHII activity in the presence of α-tetralone was inhibited by compounds such as flunarizine. We also examined metal coordination of the enzyme in solution by performing metal substitution of the enzyme-bound zinc (Zn2+) with cobalt. The solution-based absorption spectra for cobalt substituted PyAeADHII supports substitution at the structural Zn2+ site. To gain structural insight, we obtained the crystal structure of both wild-type and cobalt-substituted PyAeADHII at 1.75 Å and 2.20 Å resolution, respectively. The X-ray data confirmed one metal ion per monomer present only at the structural site with otherwise close conservation to other ADH enzymes. We next determined the co-crystal structure of the NADPH-bound form of the enzyme at 2.35 Å resolution to help define the active site region of the enzyme and this data shows close structural conservation with horse ADH, despite the lack of a catalytic Zn2+ ion in PyAeADHII. Modeling of α-tetralone into the NADPH bound structure suggests an arginine as a possible catalytic residue. The data presented here can yield a better understanding of alcohol dehydrogenases lacking the catalytic zinc as well as the structural features inherent to thermostable enzymes. PMID:23755111

  17. Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats

    PubMed Central

    Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.

    2015-01-01

    The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189

  18. Subjective Response to Alcohol and ADH Polymorphisms in a Select Sample of Young Adult Male East Indians and Africans in Trinidad and Tobago

    PubMed Central

    Montane Jaime, Lazara Karelia; Shafe, Samuel; Liang, Tiebing; Wills, Derek N; Berg, Greta I; Ehlers, Cindy L

    2014-01-01

    Objective: Level of response to alcohol has been associated with risk of alcohol dependence in a number of ethnic groups. In the present study, subjective and objective responses to alcohol were evaluated in Indo-Trinidadians (Indo-T) and Afro-Trinidadians (Afro-T). Associations of alcohol dehydrogenase polymorphisms with response to alcohol, using the Subjective High Assessment Scale (SHAS), and breath alcohol concentrations (BrAC) were tested. Method: Regular male drinkers without alcohol dependence (n = 112) ages 18–25 years participated in alcohol challenge sessions consisting of placebo and two doses of alcohol (target BrAC: 0 g/dl for placebo, .04 g/dl low dose, and .08 g/dl high dose) and genotyped for variants in ADH1B*3 and ADH1C*2. Results: Indo-T had significantly higher BrAC, pulse rates, and cortisol levels when compared with Afro-T but did not have significantly higher SHAS values. Higher responses on the SHAS items muddle/confused and nauseated were significantly associated with the presence of at least one ADH1B*3 allele following the high dose of alcohol in Afro-T. Indo-T with at least one ADH1C*2 allele displayed significantly different Drug × Time interactions for the SHAS item effects of alcohol at the low dose and for the SHAS items clumsy, muddle/confused, effects of alcohol, floating, drunk, and total at the high dose from Indo-T with two ADH1C*1 alleles. Conclusions: This is the first study that has investigated individual sensitivity to alcohol in a Caribbean population and in people of East Indian descent. Indo-T with at least one ADH1C*2 allele may be at higher risk for heavy drinking by feeling less of the effects of alcohol, including nausea. In Afro-T, having at least one ADH1B*3 allele appears to exert a protective effect by enhancing the unpleasant effects of alcohol, such as nausea and confusion. PMID:25208201

  19. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans.

    PubMed Central

    Laurie, C C; Heath, E M; Jacobson, J W; Thomson, M S

    1990-01-01

    Drosophila melanogaster and its sibling species, Drosophila simulans, differ in expression of the enzyme alcohol dehydrogenase (ADH). Adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and crossreacting material as simulans adults. There is no corresponding difference in ADH mRNA, however, so this difference in ADH protein level is evidently due to a difference in the rate of translation of the two RNAs and/or to a difference in protein stability. Here we report an interspecific gene-transfer experiment, using P-element transformation, to determine whether this expression difference is due to genetic background differences between the species (trans-acting modifiers) or to cis-acting factors within the Adh gene. When the Adh genes from D. melanogaster and D. simulans are put into the same genetic background, there is no detectable difference in their level of expression. The level is relatively high in the melanogaster background and relatively low in the simulans background. Therefore, the interspecific difference in Adh expression is due entirely to trans-acting modifiers, in spite of the many sequence differences between the Adh genes of the two species, which include two amino acid substitutions. PMID:2124699

  20. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  1. CARDIAC OVEREXPRESSION OF ALCOHOL DEHYDROGENASE EXACERBATES CARDIAC CONTRACTILE DYSFUNCTION, LIPID PEROXIDATION, AND PROTEIN DAMAGE AFTER CHRONIC ETHANOL INGESTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alcoholic cardiomyopathy is manifested as ventricular dysfunction although its specific toxic mechanism(s) remains obscure. This study was designed to examine the impact of enhanced acetaldehyde (ACA) exposure on cardiac function via cardiac-specific over-expression of alcohol dehydrogenase (ADH) fo...

  2. ETHANOL INDUCES AND INSULIN INHIBITS ALCOHOL DEHYDROGENASE CLASS 1 IN FGC-4 CELLS: BOTH APPEAR TO WORK THROUGH SREBP-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that chronic feeding of alcohol-containing diets (via intragastric infusion) to Sprague-Dawley rats induces hepatic alcohol dehydrogenase (ADH) Class 1 by interfering with signaling via the sterol regulatory element binding protein (SREBP-1). We have studied the effects ...

  3. Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Ottlik, Stephanie; Kövesi, Zsolt; Bauer, Benjamin; Matthäus, Falk; Barth, Gerold

    2016-10-01

    The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions. PMID:27486067

  4. Alcohol Dehydrogenase-1B (rs1229984) and Aldehyde Dehydrogenase-2 (rs671) Genotypes Are Strong Determinants of the Serum Triglyceride and Cholesterol Levels of Japanese Alcoholic Men

    PubMed Central

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2015-01-01

    Background Elevated serum triglyceride (TG) and high-density-lipoprotein cholesterol (HDL-C) levels are common in drinkers. The fast-metabolizing alcohol dehydrogenase-1B encoded by the ADH1B*2 allele (vs. ADH1B*1/*1 genotype) and inactive aldehyde dehydrogenase-2 encoded by the ALDH2*2 allele (vs. ALDH2*1/*1 genotype) modify ethanol metabolism and are prevalent (≈90% and ≈40%, respectively) in East Asians. We attempted to evaluate the associations between the ADH1B and ALDH2 genotypes and lipid levels in alcoholics. Methods The population consisted of 1806 Japanese alcoholic men (≥40 years) who had undergone ADH1B and ALDH2 genotyping and whose serum TG, total cholesterol, and HDL-C levels in the fasting state had been measured within 3 days after admission. Results High serum levels of TG (≥150 mg/dl), HDL-C (>80 mg/dl), and low-density-lipoprotein cholesterol (LDL-C calculated by the Friedewald formula ≥140 mg/dl) were observed in 24.3%, 16.8%, and 15.6%, respectively, of the subjects. Diabetes, cirrhosis, smoking, and body mass index (BMI) affected the serum lipid levels. Multivariate analysis revealed that the presence of the ADH1B*2 allele and the active ALDH2*1/*1 genotype increased the odds ratio (OR; 95% confidence interval) for a high TG level (2.22 [1.67–2.94] and 1.39 [0.99–1.96], respectively), and decreased the OR for a high HDL-C level (0.37 [0.28–0.49] and 0.51 [0.37–0.69], respectively). The presence of the ADH1B*2 allele decreased the OR for a high LDL-C level (0.60 [0.45–0.80]). The ADH1B*2 plus ALDH2*1/*1 combination yielded the highest ORs for high TG levels and lowest OR for a high HDL-C level. The genotype effects were more prominent in relation to the higher levels of TG (≥220 mg/dl) and HDL-C (≥100 mg/dl). Conclusions The fast-metabolizing ADH1B and active ALDH2, and especially a combination of the two were strongly associated with higher serum TG levels and lower serum HDL-C levels of alcoholics. The fast

  5. Meta-Analyses of ALDH2 and ADH1B with Alcohol Dependence in Asians

    ERIC Educational Resources Information Center

    Luczak, Susan E.; Glatt, Stephen J.; Wall, Tamara J.

    2006-01-01

    Meta-analyses were conducted to determine the magnitude of relationships between polymorphisms in 2 genes, ALDH2 and ADH1B, with alcohol dependence in Asians. For each gene, possession of 1 variant [asterisk]2 allele was protective against alcohol dependence, and possession of a 2nd [asterisk]2 allele did not offer significant additional…

  6. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging.

    PubMed

    Yin, Dongmei; Ni, Dian; Song, Lili; Zhang, Zhiguo

    2013-11-01

    A PCR strategy was used to isolate a full-length CgADH (alcohol dehydrogenase) cDNA from chrysanthemum. The gene putatively encodes a 378 residue polypeptides, which shares 95% homology with tomato alcohol dehydrogenase class III. Endogenous ethylene generated in waterlogged Chrysanthemum zawadskii was enhanced by exogenous ethylene but decreased by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action. In waterlogged roots, the transcription of the gene encoding alcohol dehydrogenase (ADH, EC 1.1.1.1) increased rapidly but transiently, peaking at 7.5 fold the non-waterlogged level after 2h of stress. Waterlogging elevated ADH activity after a prolonged episode of stress. The exogenous supply of 40μLL(-1) ethylene suppressed the production of ethanol, while that of 4μLL(-1) 1-MCP enhanced it. Ethylene appeared to suppress an acceleration of both CgADH expression and fermentation, and alleviates ethanolic fermentation probably through by as a signal to acceleration of waterlogging-induced aerenchyma formation. This supports the previously observed phenomenon that the expression level of ADH gene is regulated by the local level of physiologically active ethylene. The relevance of the CgADH gene in relation to chrysanthemum waterlogging was discussed as well. PMID:24094053

  7. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population

    PubMed Central

    Méndez, Claudia

    2015-01-01

    Objective: Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. Methods: ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Results: Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. Conclusions: This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism. PMID:26848198

  8. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae

    SciTech Connect

    Kapoun, A.M.; Geer, B.W.; Heinstra, P.W.H. ); Corbin, V. ); McKechnie, S.W. )

    1990-04-01

    The activity of alcohol dehydrogenase, the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh{sup n2} larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol.l An examination of P element transformant lines with specific deletions in the 5{prime} regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between {minus}660 and about {minus}5,000 of the distal transcript start site was important for the down-regulation of the induction response.

  9. Purification and Characterization of Cinnamyl Alcohol Dehydrogenase Isoforms from the Periderm of Eucalyptus gunnii Hook.

    PubMed Central

    Hawkins, S. W.; Boudet, A. M.

    1994-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) isoforms were purified from the periderm (containing both suberized and lignified cell layers) of Eucalyptus gunnii Hook stems. Two isoforms (CAD 1P and CAD 2P) were initially characterized, and the major form, CAD 2P, was resolved into three further isoforms by ion-exchange chromatography. Crude extracts contained two aliphatic alcohol dehydrogenases (ADH) and one aromatic ADH, which was later resolved into two further isoforms. Aliphatic ADHs did not use hydroxycinnamyl alcohols as substrates, whereas both aromatic ADH isoforms used coniferyl and sinapyl alcohol as substrates but with a much lower specific activity when compared with benzyl alcohol. The minor form, CAD 1P, was a monomer with a molecular weight of 34,000 that did not co-elute with either aromatic or aliphatic ADH activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis demonstrated that this protein was very similar to another CAD isoform purified from Eucalyptus xylem tissue. CAD 2P had a native molecular weight of approximately 84,000 and was a dimer consisting of two heterogenous subunits (with molecular weights of 42,000 and 44,000). These subunits were differentially combined to give the heterodimer and two homodimers. SDS-PAGE, western blots, and nondenaturing PAGE indicated that the CAD 2P heterodimer was very similar to the main CAD isoform previously purified in our laboratory from differentiating xylem tissue of E. gunnii (D. Goffner, I. Joffroy, J. Grima-Pettenati, C. Halpin, M.E. Knight, W. Schuch, A.M. Boudet [1992] Planta 188: 48-53). Kinetic data indicated that the different CAD 2P isoforms may be implicated in the preferential production of different monolignols used in the synthesis of lignin and/or suberin. PMID:12232063

  10. New inhibitors of alcohol dehydrogenase: studies in vivo and in vitro in the rat.

    PubMed

    Delmas, C; de Saint Blanquat, G; Freudenreich, C; Biellmann, J F

    1983-01-01

    Two compounds bearing an amide group, p-butoxyphenol acetamide (BPA) and N-(p-butoxybenzyl)formamide (BBF) were studied as inhibitors of alcohol dehydrogenase (ADH) and their action compared with that of 4-methyl-pyrazole (4-MP), a known inhibitor of this enzyme. In vitro studies on pure horse liver ADH showed that BPA and BBF were noncompetitive inhibitors with respect to ethanol and that their Ki values were 22 and 0.14 micrometer, respectively. The apparent Ki values of BPA and BBF for rat liver ADH were found to be 90 and 2.3 micrometers, respectively (noncompetitive inhibition). Several in vivo experiments were carried out in the rat. Administration intraperitoneally of the substance (460 mumol/kg) 1 hr before intraperitoneal injection of alcohol (2 g/kg body weight) led to a significant decrease in ethanol catabolism. Injection of the substances at 460 mumol/kg brought about a decrease in rat liver ADH activity, but the activity of mitochondrial aldehyde dehydrogenase was only decreased in animals treated with BBF. PMID:6353976

  11. Origin and evolution of medium chain alcohol dehydrogenases.

    PubMed

    Jörnvall, Hans; Hedlund, Joel; Bergman, Tomas; Kallberg, Yvonne; Cederlund, Ella; Persson, Bengt

    2013-02-25

    Different lines of alcohol dehydrogenases (ADHs) have separate superfamily origins, already recognized but now extended and re-evaluated by re-screening of the latest databank update. The short-chain form (SDR) is still the superfamily with most abundant occurrence, most multiple divergence, most prokaryotic emphasis, and most non-complicated architecture. This pattern is compatible with an early appearance at the time of the emergence of prokaryotic cellular life. The medium-chain form (MDR) is also old but second in terms of all the parameters above, and therefore compatible with a second emergence. However, this step appears seemingly earlier than previously considered, and may indicate sub-stages of early emergences at the increased resolution available from the now greater number of data entries. The Zn-MDR origin constitutes a third stage, possibly compatible with the transition to oxidative conditions on earth. Within all these three lines, repeated enzymogeneses gave the present divergence. MDR-ADH origin(s), at a fourth stage, may also be further resolved in multiple or extended modes, but the classical liver MDR-ADH of the liver type can still be traced to a gene duplication ~550 MYA (million years ago), at the early vertebrate radiation, compatible with the post-eon-shift, "Cambrian explosion". Classes and isozymes correspond to subsequent and recent duplicatory events, respectively. They illustrate a peculiar pattern with functional and emerging evolutionary distinctions between parent and emerging lines, suggesting a parallelism between duplicatory and mutational events, now also visible at separate sub-stages. Combined, all forms show distinctive patterns at different levels and illustrate correlations with global events. They further show that simple molecular observations on patterns, multiplicities and occurrence give much information, suggesting common divergence rules not much disturbed by horizontal gene transfers after the initial origins. PMID

  12. Action of shear on enzymes: studies with alcohol dehydrogenase.

    PubMed

    Thomas, C R; Nienow, A W; Dunnill, P

    1979-12-01

    Yeast alcohol dehydrogenase (ADH) solutions (approximately 1 mg/ml, pH 7) were sheared in a coaxial cylindrical viscometer. This was fitted with a lid sealing the contents from the atmosphere and preventing evaporation. At 30 degrees C after a total of 5 hr intermittent shearing at 683 sec-1 no losses of activity were observed. No losses were found after 5 hr continuous shearing and in a no-shear control. At 40 degrees C and 683 sec-1 there were only small activity losses in 5 hr. Shearing at 3440 sec-1 no measurable losses of activity were found with a 1.03 mg/ml solution in 5 hr at 30 degrees C, a 1.03 mg/ml solution in 8 hr at 5 degrees C, and with a 3.89 mg/ml solution in 3 hr at 5 degrees C. In all these cases, however, a white precipitate formed that was not observed in zero shear control experiments. The sheared 3.89 mg/ml solution was clarified by centrifugation. It was shown that there were no ADH aggregates in the supernatant and that the precipitate was less than 2% of the original protein. At 30 degrees C under adverse pH conditions (pH 8.8) there was no significant difference in activity losses of an approximately 1 mg/ml solution sheared at 65 and 744 sec-1. An approximately 0.5 mg/ml ADH solution, pH 7, was agitated in a small reactor with no free air-liquid interface. Peak shear rates near the impeller were estimated to be about 9000 sec-1. Only a small decrease in specific activity was observed until over 15 hr total running at 5 degrees C. PMID:42450

  13. Genetic Association and Gene-Gene Interaction Reveal Genetic Variations in ADH1B, GSTM1 and MnSOD Independently Confer Risk to Alcoholic Liver Diseases in India

    PubMed Central

    Mukhopadhyay, Indranil; Chatterjee, Ankita; Das, Kausik; Bhowmik, Pradip; Das, Soumyajit; Basu, Priyadarshi; Santra, Amal K.; Datta, Simanti; Dhali, Gopal Krishna; Chowdhury, Abhijit; Banerjee, Soma

    2016-01-01

    Genetic susceptibility is an important modifier of clinical outcome and natural history of progression in Alcoholic liver disease (ALD). While the significance of ethnicity in this evolution is very clear, subtle inter-individual genetic variant(s) might be important and thus we investigated those in an Indian population. Fourteen markers were genotyped within two alcohol metabolism genes [Alcohol dehydrogenase (ADH) gene clusters (ADH1B and ADH1C) and Aldehyde dehydrogenase (ALDH2)], one microsomal ethanol oxidizing enzyme cytochrome p450 (CYP2E1) and three oxidative stress response (OSR) genes (MnSOD, GSTT1 and GSTM1) among 490 Bengali individuals (322 ALD and 168 control) from Eastern and North-Eastern India and validation was performed in a new cohort of 150 Bengali patients including 100 ALD and 50 advanced non-alcoholic steatohepatitis (NASH). Out of 14 genetic variants, carriage of 5 genotypes (rs2066701CC in ADH1B, rs1693425TT in ADH1C, rs4880TT in MnSOD and GSTT1/GSTM1 null, p-value <0.05) were noted significantly higher among ALD patients while inter or intra group gene-gene interaction analysis revealed that addition of risk genotype of any OSR gene enhanced the possibility of ALD synergistically. Multiple logistic regression analysis showed independent association of rs2066701CC, rs4880TT and GSTM1 null genotype with ALD while lower frequencies of those genotypes in advanced NASH patients further confirmed their causal relation to ALD. Thus these findings suggest that the three variants of ADH1C, MnSOD and GSTM1 can be used to identify individuals who are at high risk to develop ALD and may be helpful in proper management of Indian alcoholics. PMID:26937962

  14. The alcohol dehydrogenase gene is nested in the outspread locus of Drosophila melanogaster

    SciTech Connect

    McNabb, S.; Greig, S.; Davis, T.

    1996-06-01

    This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh{sup r} are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5{prime} end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5{prime} extension verifies that Adh and Adh{sup r} are nested in osp and shows that osp has a transcription unit of {ge}74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature. 55 refs., 11 figs., 1 tab.

  15. An enzyme-amplified microtiter plate assay for ethanol: Its application to the detection of peanut ethanol and alcohol dehydrogenase

    SciTech Connect

    Chung, S.Y.; Vercellotti, J.R.; Sanders, T.H.

    1995-12-01

    A calorimetric microliter plate assay for ethanol amplified by aldehyde dehydrogenase (ALDH) was developed. In the assay ethanol from a sample took part in a chain-reaction catalyzed by alcohol dehydrogenase (ADH) and amplified by ALDH in the presence of NAD{sup +}, diaphorase, and p-ibdonitrotetrazolium-violet (INT-violet)(a precursor of red product). The resultant reaction gave a red color, the intensity of which was proportional to the amount of ethanol present. Using the technique, the content of activity from peanuts of differing maturity and curing stages were determined respectively. Data showed that immature peanuts had a higher level of ethanol and a lower ADH activity than mature peanuts, and that the level of ethanol and ADH activity decreased with the curing time. This indicates that peanut maturity and curing have an effect on ethanol. Also, this implies that other peanut volatiles could be affected in the same way as ethanol, a major volatile in peanuts.

  16. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).

    PubMed

    Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J

    2014-11-01

    A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. PMID:25280628

  17. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed

    Winberg, J O; McKinley-McKee, J S

    1998-02-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  18. Drosophila melanogaster alcohol dehydrogenase: mechanism of aldehyde oxidation and dismutation.

    PubMed Central

    Winberg, J O; McKinley-McKee, J S

    1998-01-01

    Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients phiB and phiAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (phi0d and phiAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the phi0d and phiAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain

  19. Biophysical and mutagenic analysis of Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase activity and specificity.

    PubMed Central

    Burdette, D S; Secundo, F; Phillips, R S; Dong, J; Scott, R A; Zeikus, J G

    1997-01-01

    The Thermoanaerobacter ethanolicus 39E adhB gene encoding the secondary-alcohol dehydrogenase (secondary ADH) was overexpressed in Escherichia coli at more than 10% of total protein. The recombinant enzyme was purified in high yield (67%) by heat-treatment at 85 degrees C and (NH4)2SO4 precipitation. Site-directed mutants (C37S, H59N, D150N, D150Eand D150C were analysed to test the peptide sequence comparison-based predictions of amino acids responsible for putative catalytic Zn binding. X-ray absorption spectroscopy confirmed the presence of a protein-bound Zn atom with ZnS1(imid)1(N,O)3 co-ordination sphere. Inductively coupled plasma atomic emission spectrometry measured 0.48 Zn atoms per wild-type secondary ADH subunit. The C37S, H59N and D150N mutant enzymes bound only 0.11, 0.13 and 0.33 Zn per subunit respectively,suggesting that these residues are involved in Zn liganding. The D150E and D150C mutants retained 0.47 and 1.2 Zn atoms per subunit, indicating that an anionic side-chain moiety at this position preserves the bound Zn. All five mutant enzymes had ADH requires a properly co-ordinated catalytic Zn atom. The His-59 and Asp-150 mutations also altered secondary ADH affinity for propan-2-ol over a 140-fold range, whereas the overall change in affinity for ethanol spanned a range of only 7-fold, supporting the importance of the metal in secondary ADH substrate binding. The lack of significant changes in cofactor affinity as a result of these catalytic Zn ligand mutations suggested that secondary ADH substrate-and cofactor-binding sites are structurally distinct. Altering Gly198 to Asp reduced the enzyme specific activity 2.7-fold, increased the Km(app) for NADP+ 225-fold, and decreased the Km(app) for NAD+ 3-fold, supporting the prediction that the enzyme binds nicotinamide cofactor in a Rossmann fold. Our data indicate therefore that, unlike the liver primary ADH

  20. Fundamental molecular differences between alcohol dehydrogenase classes.

    PubMed Central

    Danielsson, O; Atrian, S; Luque, T; Hjelmqvist, L; Gonzàlez-Duarte, R; Jörnvall, H

    1994-01-01

    Two types of alcohol dehydrogenase in separate protein families are the "medium-chain" zinc enzymes (including the classical liver and yeast forms) and the "short-chain" enzymes (including the insect form). Although the medium-chain family has been characterized in prokaryotes and many eukaryotes (fungi, plants, cephalopods, and vertebrates), insects have seemed to possess only the short-chain enzyme. We have now also characterized a medium-chain alcohol dehydrogenase in Drosophila. The enzyme is identical to insect octanol dehydrogenase. It is a typical class III alcohol dehydrogenase, similar to the corresponding human form (70% residue identity), with mostly the same residues involved in substrate and coenzyme interactions. Changes that do occur are conservative, but Phe-51 is of functional interest in relation to decreased coenzyme binding and increased overall activity. Extra residues versus the human enzyme near position 250 affect the coenzyme-binding domain. Enzymatic properties are similar--i.e., very low activity toward ethanol (Km beyond measurement) and high selectivity for formaldehyde/glutathione (S-hydroxymethylglutathione; kcat/Km = 160,000 min-1.mM-1). Between the present class III and the ethanol-active class I enzymes, however, patterns of variability differ greatly, highlighting fundamentally separate molecular properties of these two alcohol dehydrogenases, with class III resembling enzymes in general and class I showing high variation. The gene coding for the Drosophila class III enzyme produces an mRNA of about 1.36 kb that is present at all developmental stages of the fly, compatible with the constitutive nature of the vertebrate enzyme. Taken together, the results bridge a previously apparent gap in the distribution of medium-chain alcohol dehydrogenases and establish a strictly conserved class III enzyme, consistent with an important role for this enzyme in cellular metabolism. Images PMID:8197167

  1. Genic Heterogeneity at Two Alcohol Dehydrogenase Loci in DROSOPHILA PSEUDOOBSCURA and DROSOPHILA PERSIMILIS

    PubMed Central

    Coyne, Jerry A.; Felton, Alexander A.

    1977-01-01

    A sequential electrophoretic survey of the second chromosome loci, alcohol dehydrogenase-6 (Adh-6) and octanol dehydrogenase ( Odh), was performed on 147 isochromosomal lines of Drosophila pseudoobscura and 60 lines of its sibling species, D. persimilis. Gels run with a variety of acrylamide concentrations and buffer pH's revealed the presence of 18 alleles of Adh-6 in the two species, where only eight had been previously detected by conventional electrophoretic methods. Only two alleles were added with our techniques to the previous total of nine in both species at the largely monomorphic Odh locus. Both enzymes show a predominance of one allele, with the other variants being fairly rare. There was no evidence of increased genetic divergence between the two species, but we found a striking increase in differentiation of Adh-6 alleles between the main body of D. pseudoobscura populations and the conspecific isolate from Bogotá, Colombia. These results are compared with our previous surveys of xanthine dehydrogenase in these species and discussed in reference to theories of genic polymorphism. PMID:17248763

  2. The Adh1 gene of the fungus Metarhizium anisopliae is expressed during insect colonization and required for full virulence.

    PubMed

    Callejas-Negrete, Olga Alicia; Torres-Guzmán, Juan Carlos; Padilla-Guerrero, Israel Enrique; Esquivel-Naranjo, Ulises; Padilla-Ballesteros, Maria Fernanda; García-Tapia, Adriana; Schrank, Augusto; Salazar-Solís, Eduardo; Gutiérrez-Corona, Félix; González-Hernández, Gloria Angélica

    2015-03-01

    Zymography of alcohol dehydrogenase (ADH) activity in the entomopathogenic fungus Metarhizium anisopliae grown under various conditions revealed that micro-aerobic growth was associated with increased ADH activity. The major ADH protein, AdhIp, was purified to homogeneity by affinity chromatography and has an estimated molecular weight of 41kDa and an isoelectric point (pI) of 6.4. Peptide mass fingerprint analysis allowed the identification and cloning of the gene that encodes this protein, Adh1, as annotated in the M. anisopliae genome database. AdhIp is related to the medium-chain dehydrogenase/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family and contains conserved ADH sequence motifs, such as the zinc-containing ADH signature, the FAD/NAD binding domain and amino acid residues that are conserved in most microbial ADHs. Semi-quantitative RT-PCR analysis revealed that Adh1 gene expression occurs at low levels during early Plutella xylostella infection and that the Adh1 gene was primarily expressed at larval death and as mycelia emerge from the insect cuticle before conidiation. Antisense-RNA experiments indicated that NAD(+)-dependent ADH activity was diminished by 20-75% in the transformants, and the transformants that had lower ADH activity showed allyl alcohol resistance, which indicates that reduction in ADH activity also occurs in vivo. Bioassays performed using antisense adh1 transformants, which have lower ADH activity, showed that LC50 values were two to five times higher than the wild-type, indicating that AdhIp is required for full capability of the fungus to penetrate and/or colonize the insect. PMID:25534970

  3. Increasing Anaerobic Acetate Consumption and Ethanol Yields in Saccharomyces cerevisiae with NADPH-Specific Alcohol Dehydrogenase

    PubMed Central

    Henningsen, Brooks M.; Hon, Shuen; Covalla, Sean F.; Sonu, Carolina; Argyros, D. Aaron; Barrett, Trisha F.; Wiswall, Erin; Froehlich, Allan C.

    2015-01-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  4. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    PubMed

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. PMID:26386051

  5. Childhood adversity moderates the effect of ADH1B on risk for alcohol-related phenotypes in Jewish Israeli drinkers.

    PubMed

    Meyers, Jacquelyn L; Shmulewitz, Dvora; Wall, Melanie M; Keyes, Katherine M; Aharonovich, Efrat; Spivak, Baruch; Weizman, Abraham; Frisch, Amos; Edenberg, Howard J; Gelernter, Joel; Grant, Bridget F; Hasin, Deborah

    2015-01-01

    Childhood adversity and genetic variant ADH1B-rs1229984 have each been shown to influence heavy alcohol consumption and disorders. However, little is known about how these factors jointly influence these outcomes. We assessed the main and additive interactive effects of childhood adversity (abuse, neglect and parental divorce) and the ADH1B-rs1229984 on the quantitative phenotypes 'maximum drinks in a day' (Maxdrinks) and DSM-Alcohol Use Disorder (AUD) severity, adjusting for demographic variables, in an Israeli sample of adult household residents (n = 1143) evaluated between 2007 and 2009. Childhood adversity and absence of the protective ADH1B-rs1229984 A allele were associated with greater mean Maxdrinks (mean differences: 1.50; 1.13, respectively) and AUD severity (mean ratios: 0.71; 0.27, respectively). In addition, childhood adversity moderated the ADH1B-rs1229984 effect on Maxdrinks (P < 0.01) and AUD severity (P < 0.05), in that there was a stronger effect of ADH1B-rs1229984 genotype on Maxdrinks and AUD severity among those who had experienced childhood adversity compared with those who had not. ADH1B-rs1229984 impacts alcohol metabolism. Therefore, among those at risk for greater consumption, e.g. those who experienced childhood adversity, ADH1B-rs1229984 appears to have a stronger effect on alcohol consumption and consequently on risk for AUD symptom severity. Evidence for the interaction of genetic vulnerability and early life adversity on alcohol-related phenotypes provides further insight into the complex relationships between genetic and environmental risk factors. PMID:24164917

  6. Childhood adversity moderates the effect of ADH1B on risk for alcohol-related phenotypes in Jewish Israeli drinkers

    PubMed Central

    Meyers, Jacquelyn L.; Shmulewitz, Dvora; Wall, Melanie M.; Keyes, Katherine M.; Aharonovich, Efrat; Spivak, Baruch; Weizman, Abraham; Frisch, Amos; Edenberg, Howard J.; Gelernter, Joel; Grant, Bridget F.; Hasin, Deborah

    2013-01-01

    Childhood adversity and genetic variant ADH1B-rs1229984 have each been shown to influence heavy alcohol consumption and disorders. However, little is known about how these factors jointly influence these outcomes. We assessed the main and additive interactive effects of childhood adversity (abuse, neglect, parental divorce) and the ADH1B-rs1229984 on the quantitative phenotypes “maximum drinks in a day” (Maxdrinks) and DSM-Alcohol Use Disorder (AUD) severity, adjusting for demographic variables, in an Israeli sample of adult household residents (n=1,143) evaluated between 2007–2009. Childhood adversity and absence of the protective ADH1B-rs1229984 A allele were associated with greater mean Maxdrinks [Mean Differences: 1.50; 1.13 respectively] and AUD severity [Mean Ratios: 0.71; 0.27 respectively]). In addition, childhood adversity moderated the ADH1B-rs1229984 effect on Maxdrinks (p<0.01) and AUD severity (p<0.05), in that there was a stronger effect of ADH1B-rs1229984 genotype on Maxdrinks and AUD severity among those who had experienced childhood adversity compared to those who had not. ADH1B-rs1229984 impacts alcohol metabolism. Therefore, among those at risk for greater consumption, e.g., those who experienced childhood adversity, ADH1B-rs1229984 appears to have a stronger effect on alcohol consumption and consequently on risk for AUD symptom severity. Evidence for the interaction of genetic vulnerability and early life adversity on alcohol-related phenotypes provides further insight into the complex relationships between genetic and environmental risk factors. PMID:24164917

  7. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  8. Alcohol and Aldehyde Dehydrogenases Contribute to Sex-Related Differences in Clearance of Zolpidem in Rats

    PubMed Central

    Peer, Cody J.; Strope, Jonathan D.; Beedie, Shaunna; Ley, Ariel M.; Holly, Alesia; Calis, Karim; Farkas, Ronald; Parepally, Jagan; Men, Angela; Fadiran, Emmanuel O.; Scott, Pamela; Jenkins, Marjorie; Theodore, William H.; Sissung, Tristan M.

    2016-01-01

    Objectives: The recommended zolpidem starting dose was lowered in females (5 mg vs. 10 mg) since side effects were more frequent and severe than those of males; the mechanism underlying sex differences in pharmacokinetics (PK) is unknown. We hypothesized that such differences were caused by known sex-related variability in alcohol dehydrogenase (ADH) expression. Methods: Male, female, and castrated male rats were administered 2.6 mg/kg zolpidem, ± disulfiram (ADH/ALDH pathway inhibitor) to compare PK changes induced by sex and gonadal hormones. PK analyses were conducted in rat plasma and rat brain. Key findings: Sex differences in PK were evident: females had a higher CMAX (112.4 vs. 68.1 ug/L) and AUC (537.8 vs. 231.8 h∗ug/L) than uncastrated males. Castration induced an earlier TMAX (0.25 vs. 1 h), greater CMAX (109.1 vs. 68.1 ug/L), and a corresponding AUC increase (339.7 vs. 231.8 h∗ug/L). Administration of disulfiram caused more drastic CMAX and TMAX changes in male vs. female rats that mirrored the effects of castration on first-pass metabolism, suggesting that the observed PK differences may be caused by ADH/ALDH expression. Brain concentrations paralleled plasma concentrations. Conclusion: These findings indicate that sex differences in zolpidem PK are influenced by variation in the expression of ADH/ALDH due to gonadal androgens. PMID:27574509

  9. Measuring Selection Coefficients Affecting the Alcohol Dehydrogenase Polymorphism in DROSOPHILA MELANOGASTER

    PubMed Central

    Wilson, S. R.; Oakeshott, J. G.; Gibson, J. B.; Anderson, P. R.

    1982-01-01

    This paper describes a perturbation experiment on the frequency of the F and S Alcohol dehydrogenase (Adh) alleles of D. melanogaster. Fifty-four isofemale lines set up from three wild populations and with initial F frequencies of either 0.25, 0.50 or 0.75 were maintained on standard laboratory food medium at 22°. At generations 4, 12 and 20 the lines were again scored for Adh gene frequencies. Maximum likelihood procedures were used to estimate selection coefficients for the Adh genotypes. An analysis of deviance was used to compare the coefficients against expectations under the hypotheses of neutrality and of constant values for the three base populations, and for the three initial gene frequency classes. Highly-significant departures from neutrality were observed; over all 54 lines, the set of relative fitnesses for S/S:F/S:F/F was estimated as 1.00:1.08:1.08. In addition, there were significant differences between lines in the outcome of selection which were not attributable to differences between base populations or initial F frequencies. These residual between-line differences, as well as some between-generation, within-line differences are discussed in terms of linkage disequilibria with background genes and electrophoretically cryptic variation at the Adh locus. PMID:6807750

  10. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  11. Alcohol dehydrogenase activities and ethanol tolerance in Anastrepha (Diptera, Tephritidae) fruit-fly species and their hybrids

    PubMed Central

    2009-01-01

    The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits. PMID:21637665

  12. Characterization of a Zinc-Containing Alcohol Dehydrogenase with Stereoselectivity from the Hyperthermophilic Archaeon Thermococcus guaymasensis▿

    PubMed Central

    Ying, Xiangxian; Ma, Kesen

    2011-01-01

    An alcohol dehydrogenase (ADH) from hyperthermophilic archaeon Thermococcus guaymasensis was purified to homogeneity and was found to be a homotetramer with a subunit size of 40 ± 1 kDa. The gene encoding the enzyme was cloned and sequenced; this gene had 1,095 bp, corresponding to 365 amino acids, and showed high sequence homology to zinc-containing ADHs and l-threonine dehydrogenases with binding motifs of catalytic zinc and NADP+. Metal analyses revealed that this NADP+-dependent enzyme contained 0.9 ± 0.03 g-atoms of zinc per subunit. It was a primary-secondary ADH and exhibited a substrate preference for secondary alcohols and corresponding ketones. Particularly, the enzyme with unusual stereoselectivity catalyzed an anti-Prelog reduction of racemic (R/S)-acetoin to (2R,3R)-2,3-butanediol and meso-2,3-butanediol. The optimal pH values for the oxidation and formation of alcohols were 10.5 and 7.5, respectively. Besides being hyperthermostable, the enzyme activity increased as the temperature was elevated up to 95°C. The enzyme was active in the presence of methanol up to 40% (vol/vol) in the assay mixture. The reduction of ketones underwent high efficiency by coupling with excess isopropanol to regenerate NADPH. The kinetic parameters of the enzyme showed that the apparent Km values and catalytic efficiency for NADPH were 40 times lower and 5 times higher than those for NADP+, respectively. The physiological roles of the enzyme were proposed to be in the formation of alcohols such as ethanol or acetoin concomitant to the NADPH oxidation. PMID:21515780

  13. Alcohol dehydrogenases from olive (Olea europaea) fruit.

    PubMed

    Salas, J J; Sánchez, J

    1998-05-01

    Alcohol dehydrogenase activity was detected in extracts from the pericarp tissues of developing olive fruits using hexanal as the substrate. Total activity in the crude extract was 20-fold higher with NADPH than with NADH. Three discrete enzymes were resolved by means of a purification protocol involving ammonium sulfate fractionation followed by ion-exchange and affinity chromatography. One of the enzymes was NAD-dependent and displayed a high K(m) for hexanal (K(m) = 2.1 mM). Two NADP-dependent alcohol dehydrogenases were resolved, one showing a high K(m) for hexanal (K(m) = 1.9 mM) and the second with a lower K(m) for the same substrate (K(m) = 0.04 mM). The three enzymes have been partially purified and their kinetic parameters and specificities for various aldehydes determined. The involvement of these enzymes in the biogenesis of six carbon alcohols constituent of the aroma of olive oil is discussed. PMID:9621451

  14. Transcriptional control of ADH genes in the xylose-fermenting yeast Pichia stipitis

    SciTech Connect

    Cho, J.Y.; Jeffries, T.W. |

    1999-06-01

    The authors studied the expression of the genes encoding group 1 alcohol dehydrogenases (PsADH1 and PsADH2) in the xylose-fermenting yeast Pichia stipitis CBS 6054. The cells expressed PsADH1 approximately 10 times higher under oxygen-limited conditions than under fully aerobic conditions when cultivated on xylose. Transcripts of PsADH2 were not detectable under either aeration condition. The authors used a PsADH1::lacZ fusion to monitor PsADH1 expression and found that expression increased as oxygen decreased. The level of PsADH1 transcript was expressed about 10-fold in cells grown in the presence of heme under oxygen-limited conditions. Concomitantly with the induction of PsADH1, PsCYC1 expression was regressed. These results indicate that oxygen availability regulates PsADH1 expression and that regulation may be mediated by heme. The regulation of PsADH2 expression was also examined in other genetic backgrounds. Disruption of PsADH1 dramatically increased PsADH2 expression on nonfermentable carbon sources under fully aerobic conditions, indicating that the expression of PsADH2 is subject to feedback regulation under these conditions.

  15. Stability engineering of the Geobacillus stearothermophilus alcohol dehydrogenase and application for the synthesis of a polyamide 12 precursor.

    PubMed

    Kirmair, Ludwig; Seiler, Daniel Leonard; Skerra, Arne

    2015-12-01

    The thermostable NAD(+)-dependent alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH) was exploited with regard to the biocatalytic synthesis of ω-oxo lauric acid methyl ester (OLAMe), a key intermediate for biobased polyamide 12 production, from the corresponding long-chain alcohol. Recombinant BsADH was produced in Escherichia coli as a homogeneous tetrameric enzyme and showed high activity towards the industrially relevant substrate ω-hydroxy lauric acid methyl ester (HLAMe) with K M = 86 μM and 44 U mg(-1). The equilibrium constant for HLAMe oxidation to the aldehyde (OLAMe) with NAD(+) was determined as 2.16 × 10(-3) from the kinetic parameters of the BsADH-catalyzed forward and reverse reactions. Since BsADH displayed limited stability under oxidizing conditions, the predominant oxidation-prone residue Cys257 was mutated to Leu based on sequence homology with related enzymes and computational simulation. This substitution resulted in an improved BsADH variant exhibiting prolonged stability and an elevated inactivation temperature. Semi-preparative biocatalysis at 60 °C using the stabilized enzyme, employing butyraldehyde for in situ cofactor regeneration with only catalytic amounts of NAD(+), yielded up to 23 % conversion of HLAMe to OLAMe after 30 min. In contrast to other oxidoreductases, no overoxidation to the dodecanoic diacid monomethyl ester was detected. Thus, the mutated BsADH offers a promising biocatalyst for the selective oxidation of fatty alcohols to yield intermediates for industrial polymer production. PMID:26329849

  16. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Matthews, S. W.; Daugherty, C. J.; Musgrave, M. E.

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior.

  17. Spaceflight exposure effects on transcription, activity, and localization of alcohol dehydrogenase in the roots of Arabidopsis thaliana.

    PubMed Central

    Porterfield, D M; Matthews, S W; Daugherty, C J; Musgrave, M E

    1997-01-01

    Although considerable research and speculation have been directed toward understanding a plant's perception of gravity and the resulting gravitropic responses, little is known about the role of gravity-dependent physical processes in normal physiological function. These studies were conducted to determine whether the roots of plants exposed to spaceflight conditions may be experiencing hypoxia. Arabidopsis thaliana (L.) Heynh. plants were grown in agar medium during 6 or 11 d of spaceflight exposure on shuttle missions STS-54 (CHROMEX-03) and STS-68 (CHROMEX-05), respectively. The analysis included measurement of agar redox potential and root alcohol dehydrogenase (ADH) activity, localization, and expression. ADH activity increased by 89% as a result of spaceflight exposure for both CHROMEX-03 and -05 experiments, and ADH RNase protection assays revealed a 136% increase in ADH mRNA. The increase in ADH activity associated with the spaceflight roots was realized by a 28% decrease in oxygen availability in a ground-based study; however, no reduction in redox potential was observed in measurements of the spaceflight bulk agar. Spaceflight exposure appears to effect a hypoxic response in the roots of agar-grown plants that may be caused by changes in gravity-mediated fluid and/or gas behavior. PMID:9085569

  18. Tea triterpenoidal saponins from the roots of Camellia sinensis have inhibitory effects against alcohol dehydrogenase.

    PubMed

    Varughese, Titto; Manir, Md Maniruzzaman; Rahaman, Mozahidur; Kim, Jeong Kee; Lee, Byeong-Gon; Moon, Surk-Sik

    2011-12-01

    Ten new polyhydroxyolean-12-ene pentacyclic triterpenoidal saponins, named rogchaponins 1-10, were isolated from the methanolic extract of the roots of Camellia sinensis by a series of chromatographic methods (silica gel flash column and C18 MPLC followed by C18 HPLC). Their structures were established by 1D and 2D-NMR techniques along with IR and HR-TOF-MS. Rogchaponins R4 ( 4) and R5 (5) showed inhibitory activities against yeast alcohol dehydrogenase (ADH) with IC (50) values of 16.1 ± 3.2 and 15.4 ± 3.3 µM, respectively. A 4-methylpyrazole positive control exhibited an IC (50) of 2750 ± 50 µM. However, the saponins showed no inhibitory activity against yeast aldehyde dehydrogenase (ALDH). PMID:21786220

  19. The metabolic enzyme AdhE controls the virulence of Escherichia coli O157:H7

    PubMed Central

    Beckham, Katherine S H; Connolly, James P R; Ritchie, Jennifer M; Wang, Dai; Gawthorne, Jayde A; Tahoun, Amin; Gally, David L; Burgess, Karl; Burchmore, Richard J; Smith, Brian O; Beatson, Scott A; Byron, Olwyn; Wolfe, Alan J; Douce, Gillian R; Roe, Andrew J

    2014-01-01

    Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated. PMID:24846743

  20. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  1. Stability of immobilized yeast alcohol dehydrogenase

    SciTech Connect

    Ooshima, H.; Genko, Y.; Harano, Y.

    1981-12-01

    The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. 1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the labile E1 and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the latter is not. (Refs. 19).

  2. Species-specific differences in tissue-specific expression of alcohol dehydrogenase are under the control of complex cis-acting loci: Evidence from Drosophila hybrids

    SciTech Connect

    Ranganayakulu, G.; Reddy, A.R. ); Kirkpatrick, R.B.; Martin, P.F. )

    1991-12-01

    Differences in the expression of alcohol dehydrogenase in the hindgut and testis of adult Drosophila virilis, D. texana, D. novamexicana and D. borealis flies were observed. These heritable differences do not arise due to chromosomal rearrangements, since the polytene chromosome banding patterns did not reveal any such gross chromosomal rearrangements near the Adh locus in any of the tested species. Analysis of the interspecific hybrids revealed that these differences are controlled by complex cis-acting genetic loci. Further, the cis-acting locus controlling the expression of ADH in testis was found to be separable by crossing-over.

  3. Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase

    PubMed Central

    Köpke, Michael; Gerth, Monica L.; Maddock, Danielle J.; Mueller, Alexander P.; Liew, FungMin

    2014-01-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h−1 optical density unit−1), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  4. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

    PubMed

    Köpke, Michael; Gerth, Monica L; Maddock, Danielle J; Mueller, Alexander P; Liew, FungMin; Simpson, Séan D; Patrick, Wayne M

    2014-06-01

    Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production. PMID:24657865

  5. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling

    PubMed Central

    Pang, Jiaojiao; Fuller, Nathan D.; Hu, Nan; Barton, Linzi A.; Henion, Jeremy M.; Guo, Rui; Chen, Yuguo; Ren, Jun

    2016-01-01

    Background The endoplasmic reticulum (ER) plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs). Myocardial mechanical and intracellular Ca2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated. Results ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca2+ homeostasis), oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62), along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene. Conclusions Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy. PMID:26807981

  6. Mammalian class IV alcohol dehydrogenase (stomach alcohol dehydrogenase): structure, origin, and correlation with enzymology.

    PubMed Central

    Parés, X; Cederlund, E; Moreno, A; Hjelmqvist, L; Farrés, J; Jörnvall, H

    1994-01-01

    The structure of a mammalian class IV alcohol dehydrogenase has been determined by peptide analysis of the protein isolated from rat stomach. The structure indicates that the enzyme constitutes a separate alcohol dehydrogenase class, in agreement with the distinct enzymatic properties; the class IV enzyme is somewhat closer to class I (the "classical" liver alcohol dehydrogenase; approximately 68% residue identities) than to the other classes (II, III, and V; approximately 60% residue identities), suggesting that class IV might have originated through duplication of an early vertebrate class I gene. The activity of the class IV protein toward ethanol is even higher than that of the classical liver enzyme. Both Km and kcat values are high, the latter being the highest of any class characterized so far. Structurally, these properties are correlated with replacements at the active site, affecting both substrate and coenzyme binding. In particular, Ala-294 (instead of valine) results in increased space in the middle section of the substrate cleft, Gly-47 (instead of a basic residue) results in decreased charge interactions with the coenzyme pyrophosphate, and Tyr-363 (instead of a basic residue) may also affect coenzyme binding. In combination, these exchanges are compatible with a promotion of the off dissociation and an increased turnover rate. In contrast, residues at the inner part of the substrate cleft are bulky, accounting for low activity toward secondary alcohols and cyclohexanol. Exchanges at positions 259-261 involve minor shifts in glycine residues at a reverse turn in the coenzyme-binding fold. Clearly, class IV is distinct in structure, ethanol turnover, stomach expression, and possible emergence from class I. PMID:8127901

  7. Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase: effects on bioelectronic interface performance.

    PubMed

    Hassler, Brian L; Dennis, Megan; Laivenieks, Maris; Zeikus, J Gregory; Worden, Robert M

    2007-10-01

    Bioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2 degrees ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, beta-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than beta-nicotinamide adenine dinucleotide (NAD+). PCR-based, site-directed mutagenesis was performed on 2 degrees ADH in an attempt to adjust the cofactor specificity toward NAD+ by mutating Tyr218 to Phe (Y218F 2 degrees ADH). This mutation increased the Km(app) for NADP+ 200-fold while decreasing the Km(app) for NAD+ 2.5-fold. The mutant enzyme was incorporated into a bioelectronic interface that established electrical communication between the enzyme, the NAD+, the electron mediator toluidine blue O (TBO), and a gold electrode. Cyclic voltammetry, impedance spectroscopy, gas chromatography, mass spectrometry, constant potential amperometry, and chronoamperometry were used to characterize the mutant and wild-type enzyme incorporated in the bioelectronic interface. The Y218F 2 degrees ADH exhibited a fourfold increase in the turnover ratio compared to the wild type in the presence of NAD+. The electrochemical and kinetic measurements support the prediction that the Rossmann fold of the enzyme binds to the phosphate moiety of the cofactor. During the 45 min of continuous operation, NAD+ was electrically recycled 6.7 x 10(4) times, suggesting that the Y218F 2 degrees ADH-modified bioelectronic interface is stable. PMID:18025592

  8. The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms.

    PubMed

    Brogna, S; Ashburner, M

    1997-04-15

    Essentially all eukaryotic cellular mRNAs are monocistronic, and are usually transcribed individually. Two tandemly arranged Drosophila genes, alcohol dehydrogenase (Adh) and Adh-related (Adhr), are transcribed as a dicistronic transcript. From transcripts initiated from the Adh promoter, two classes of mRNA are accumulated, one is monocistronic and encodes Adh alone, the other is dicistronic and includes the open reading frames of both Adh and Adhr. The dicistronic transcript is found in polysomes and the Adhr protein product is detected by antibody staining. We present evidence that the accumulation of the dicistronic mRNA is controlled at the level of the 3' end processing. PMID:9155028

  9. Increased Variation in Adh Enzyme Activity in Drosophila Mutation-Accumulation Experiment Is Not Due to Transposable Elements at the Adh Structural Gene

    PubMed Central

    Aquadro, C. F.; Tachida, H.; Langley, C. H.; Harada, K.; Mukai, T.

    1990-01-01

    We present here a molecular analysis of the region surrounding the structural gene encoding alcohol dehydrogenase (Adh) in 47 lines of Drosophila melanogaster that have each accumulated mutations for 300 generations. While these lines show a significant increase in variation of alcohol dehydrogenase enzyme activity compared to control lines, we found no restriction map variation in a 13-kb region including the complete Adh structural gene and roughly 5 kb of both 5' and 3' sequences. Thus, the rapid accumulation of ADH activity variation after 28,200 allele generations does not appear to have been due to the mobilization of transposable elements into or out of the Adh structural gene region. PMID:1963870

  10. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme.

    PubMed

    Jensen, D E; Belka, G K; Du Bois, G C

    1998-04-15

    An enzyme isolated from rat liver cytosol (native molecular mass 78. 3 kDa; polypeptide molecular mass 42.5 kDa) is capable of catalysing the NADH/NADPH-dependent degradation of S-nitrosoglutathione (GSNO). The activity utilizes 1 mol of coenzyme per mol of GSNO processed. The isolated enzyme has, as well, several characteristics that are unique to alcohol dehydrogenase (ADH) class III isoenzyme: it is capable of catalysing the NAD+-dependent oxidations of octanol (insensitive to inhibition by 4-methylpyrazole), methylcrotyl alcohol (stimulated by added pentanoate) and 12-hydroxydodecanoic acid, and also the NADH/NADPH-dependent reduction of octanal. Methanol and ethanol oxidation activity is minimal. The enzyme has formaldehyde dehydrogenase activity in that it is capable of catalysing the NAD+/NADP+-dependent oxidation of S-hydroxymethylglutathione. Treatment with the arginine-specific reagent phenylglyoxal prevents the pentanoate stimulation of methylcrotyl alcohol oxidation and markedly diminishes the enzymic activity towards octanol, 12-hydroxydodecanoic acid and S-hydroxymethylglutathione; the capacity to catalyse GSNO degradation is also checked. Additionally, limited peptide sequencing indicates 100% correspondence with known ADH class III isoenzyme sequences. Kinetic studies demonstrate that GSNO is an exceptionally active substrate for this enzyme. S-Nitroso-N-acetylpenicillamine and S-nitrosated human serum albumin are not substrates; the activity towards S-nitrosated glutathione mono- and di-ethyl esters is minimal. Product analysis suggests that glutathione sulphinamide is the major stable product of enzymic GSNO processing, with minor yields of GSSG and NH3; GSH, hydroxylamine, nitrite, nitrate and nitric oxide accumulations are minimal. Inclusion of GSH in the reaction mix decreases the yield of the supposed glutathione sulphinamide in favor of GSSG and hydroxylamine. PMID:9531510

  11. MOLECULAR SYSTEMATICS OF THE GENUS NEOTOMA BASED ON DNA SEQUENCES FROM INTRON 2 OF THE ALCOHOL DEHYDROGENASE GENE

    PubMed Central

    Longhofer, Lisa K.; Bradley, Robert D.

    2009-01-01

    Phylogenetic relationships were evaluated among 13 species of Neotoma based on DNA sequences from intron 2 of the nuclear alcohol dehydrogenase gene 1 (Adh1-I2). Sequences were analyzed using parsimony, likelihood, and Bayesian methods. Three major clades (I–III) consistently were recovered and relationships among taxa within 2 of the clades remained unchanged between analyses; however, relationships within clade III were largely unresolved. Average genetic divergence values were 2.12% among species, 4% between subgenera (Teonoma and Neotoma), and 5.1% between genera (Hodomys and Neotoma). Adh1-I2 sequences were concatenated with mitochondrial cytochrome-b sequences generated from the same individuals. Examination of the combined data resulted in a phylogeny whose topology was similar to that based only on cytochrome-b sequences. PMID:19907669

  12. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed.

    PubMed

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  13. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    PubMed Central

    Shasmal, Manidip; Dey, Sandip; Shaikh, Tanvir R.; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome. PMID:26822933

  14. Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster.

    PubMed Central

    Laurie, C C; Stam, L F

    1988-01-01

    The alcohol dehydrogenase (ADH) locus (Adh) of Drosophila melanogaster in polymorphic on a world-wide basis for two allozymes, Fast and Slow. This study was undertaken to determine whether the well-established difference in ADH protein concentration between the allozymes is due to a difference in mRNA levels. RNA gel blot hybridization and an RNase protection assay were used to quantify ADH mRNA levels. Each method used an Adh null mutant as an internal standard. Several Slow and Fast allele pairs of different geographic origins were analyzed. The results provide strong evidence that the ADH protein concentration difference is not accounted for by RNA level. Images PMID:2455893

  15. Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases.

    PubMed

    Nagel, Zachary D; Cun, Shujian; Klinman, Judith P

    2013-05-17

    A tetrameric thermophilic alcohol dehydrogenase from Bacillus stearothermophilus (ht-ADH) has been mutated at an aromatic side chain in the active site (Trp-87). The ht-W87A mutation results in a loss of the Arrhenius break seen at 30 °C for the wild-type enzyme and an increase in cold lability that is attributed to destabilization of the active tetrameric form. Kinetic isotope effects (KIEs) are nearly temperature-independent over the experimental temperature range, and similar in magnitude to those measured above 30 °C for the wild-type enzyme. This suggests that the rigidification in the wild-type enzyme below 30 °C does not occur for ht-W87A. A mutation at the dimer-dimer interface in a thermolabile psychrophilic homologue of ht-ADH, ps-A25Y, leads to a more thermostable enzyme and a change in the rate-determining step at low temperature. The reciprocal mutation in ht-ADH, ht-Y25A, results in kinetic behavior similar to that of W87A. Collectively, the results indicate that flexibility at the active site is intimately connected to a subunit interaction 20 Å away. The convex Arrhenius curves previously reported for ht-ADH (Kohen, A., Cannio, R., Bartolucci, S., and Klinman, J. P. (1999) Nature 399, 496-499) are proposed to arise, at least in part, from a change in subunit interactions that rigidifies the substrate-binding domain below 30 °C, and impedes the ability of the enzyme to sample the catalytically relevant conformational landscape. These results implicate an evolutionarily conserved, long-range network of dynamical communication that controls C-H activation in the prokaryotic alcohol dehydrogenases. PMID:23525111

  16. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  17. Inhibition of gastric alcohol dehydrogenase activity by histamine H2-receptor antagonists has no influence on the pharmacokinetics of ethanol after a moderate dose.

    PubMed Central

    Mallat, A; Roudot-Thoraval, F; Bergmann, J F; Trout, H; Simonneau, G; Dutreuil, C; Blanc, L E; Dhumeaux, D; Delchier, J C

    1994-01-01

    Ethanol undergoes gastric first pass metabolism by alcohol dehydrogenase (ADH). We have shown that cimetidine and famotidine both cause competitive inhibition of human gastric ADH in vitro. However, in a randomized 4-way cross-over study in 12 healthy subjects a 7-day course of treatment with cimetidine (800 mg day-1), ranitidine (300 mg day-1) or famotidine (40 mg day-1), did not modify the pharmacokinetics of ethanol given as a post-prandial 0.3 g kg-1 dose. We conclude that gastric mucosal concentrations of histamine H2-receptor blockers achieved after oral dosing are probably too low to cause significant inhibition of gastric ADH in vivo. PMID:7910473

  18. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134

    PubMed Central

    Kang, ChulHee; Hayes, Robert; Sanchez, Emiliano J.; Webb, Brian N.; Li, Qunrui; Hooper, Travis; Nissen, Mark S.; Xun, Luying

    2012-01-01

    Summary FurX is a tetrameric Zn-dependent alcohol dehydrogenase (ADH) from Cupriavidus necator JMP134. The enzyme rapidly reduces furfural with NADH as the reducing power. For the first time among characterized ADHs, the high-resolution structures of all reaction steps were obtained in a time-resolved manner, thereby illustrating the complete catalytic events of NADH-dependent reduction of furfural and the dynamic Zn2+ coordination among Glu66, water, substrate and product. In the fully closed conformation of the NADH complex, the catalytic turnover proved faster than observed for the partially closed conformation due to an effective proton transfer network. The domain motion triggered by NAD(H) association/dissociation appeared to facilitate dynamic interchanges in Zn2+ coordination with substrate and product molecules, ultimately increasing the enzymatic turnover rate. NAD+ dissociation appeared to be a slow process, involving multiple steps in concert with a domain opening and reconfiguration of Glu66. This agrees with the report that the cofactor is not dissociated from FurX during ethanol-dependent reduction of furfural, in which ethanol reduces NAD+ to NADH that is subsequently used for furfural reduction. PMID:22081946

  19. Mechanisms of mutagenesis: Analysis through the use of alcohol dehydrogenase in Drosophila: Final report

    SciTech Connect

    Sofer, W.H.

    1986-12-01

    Our original objective was to understand the mechanism of mutagenesis of several important mutagens in higher organisms. Our approach was to try to deduce this mechanism by working backwards from its final effects. The strategy that we used in an effort to carry out our studies was to make mutations in the alcohol dehydrogenase gene of Drosophila melanogaster and sequence the modified genes. Most of our work was focused on an array of mutants that we had induced with formaldehyde, a potent mutagen in Drosophila, and with ethyl methane sulfonate. Over the course of the project period we cloned and sequenced the ADH gene from four formalde-induced mutants and from one EMS mutant. We showed that the four formaldehyde-induced mutants contained small deletions within the protein-coding region of their ADH genes ranging in size from between 6 and 34 bp. The one EMS-induced mutant was shown by DNA sequencing to bear an AT to GC sequence change at a tryptophan codon near the c-terminal coding portion of the gene. These results have significantly increased our understanding of the mechanism(s) of mutagenesis in higher organisms. 20 refs., 1 fig.

  20. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    PubMed

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. PMID:25988787

  1. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats.

    PubMed

    El-Bakary, Amal A; El-Dakrory, Sahar A; Attalla, Sohayla M; Hasanein, Nawal A; Malek, Hala A

    2010-02-01

    Methanol poisoning is a hazardous intoxication characterized by visual impairment and formic acidemia. The therapy for methanol poisoning is alcohol dehydrogenase (ADH) inhibitors to prevent formate accumulation. Ranitidine has been considered to be an inhibitor of both gastric alcohol and hepatic aldehyde dehydrogenase enzymes. This study aimed at testing ranitidine as an antidote for methanol acute toxicity and comparing it with ethanol and 4-methyl pyrazole (4-MP). This study was conducted on 48 Sprague-Dawley rats, divided into 6 groups, with 8 rats in each group (one negative control group [C1], two positive control groups [C2, C3] and three test groups [1, 2 and 3]). C2, C3 and all test groups were exposed to nitrous oxide by inhalation, then, C3 group was given methanol (3 g/kg orally). The three test groups 1, 2 and 3 were given ethanol (0.5 g/kg orally), 4-MP (15 mg/kg intraperitoneally) and ranitidine (30 mg/kg intraperitoneally), respectively, 4 hours after giving methanol. Rats were sacrificed and heparinized, cardiac blood samples were collected for blood pH and bicarbonate. Non-heparinized blood samples were collected for formate levels by high performance liquid chromatography. Eye balls were enucleated for histological examination of the retina. Ranitidine corrected metabolic acidosis (p = .025), decreased formate levels (p = .014) and improved the histological findings in the retina induced by acute methanol toxicity. PMID:20026516

  2. Human gastric alcohol dehydrogenase activity: effect of age, sex, and alcoholism.

    PubMed Central

    Seitz, H K; Egerer, G; Simanowski, U A; Waldherr, R; Eckey, R; Agarwal, D P; Goedde, H W; von Wartburg, J P

    1993-01-01

    As various isoenzymes of gastric alcohol dehydrogenase exist and as the effect of sex and age on these enzymes is unknown, this study measured the activity of gastric alcohol dehydrogenase at high and low ethanol concentrations in endoscopic biopsy specimens from a total of 290 patients of various ages and from 10 patients with chronic alcoholism. Gastric alcohol dehydrogenase was also detected by immunohistological tests in biopsy specimens from 40 patients by the use of a polyclonal rabbit antibody against class I alcohol dehydrogenase. A significant correlation was found between the immunohistological reaction assessed by the intensity of the colour reaction in the biopsy specimen and the activity of alcohol dehydrogenase measured at 580 mM ethanol. While alcohol dehydrogenase activity measured at 16 mM ethanol was not significantly affected by age and sex, both factors influenced alcohol dehydrogenase activity measured at 580 mM ethanol. Young women below 50 years of age had significantly lower alcohol dehydrogenase activities in the gastric corpus and antrum when compared with age matched controls (SEM) (6.4 (0.7) v 8.8 (0.6) nmol/min/mg protein; p < 0.001 and 6.0 (1.3) v 9.5 (1.3) nmol/min/mg protein; p < 0.001). Over 50 years of age this sex difference was no longer detectable, as high Km gastric alcohol dehydrogenase activity decreases with age only in men and not in women. In addition, extremely low alcohol dehydrogenase activities have been found in gastric biopsy specimens from young male alcoholics (2.2 (0.5) nmol/min/mg protein), which returned to normal after two to three weeks of abstinence. The activity of alcohol dehydrogenase in the human stomach measured at 580 mM ethanol is decreased in young women, in elderly men, and in the subject with alcoholism. This decrease in alcohol dehydrogenase activity may contribute to the reduced first pass metabolism of ethanol associated with raised ethanol blood concentrations seen in these people. Images Figure

  3. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.

    PubMed

    Posch, K C; Napoli, J L

    1992-05-28

    Retinoic acid syntheses from retinol by cytosol from testes of alcohol dehydrogenase negative or positive deermice were similar in specific activity and in their insensitivity to 1 M ethanol or 100 mM 4-methylpyrazole. Anion-exchange followed by size-exclusion chromatography revealed multiple and similarly migrating peaks in each cytosol that had both retinol and retinal dehydrogenase activities. Thus, the effects of ethanol on testes cannot be caused by direct inhibition of cytosolic retinoic acid synthesis because retinoid dehydrogenases distinct from mouse class A2 alcohol dehydrogenases, which corresponds to human class I, occurred in testes and they were not inhibited by ethanol. These data also demonstrate the occurrence of multiple cytosolic retinoic acid synthesis activities and indicate that the two reactions of cytosolic retinoic acid synthesis, retinol and retinal dehydrogenation, may be catalyzed by enzymes that occur as complexes. PMID:1599517

  4. Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

    PubMed Central

    Groen, B; Frank, J; Duine, J A

    1984-01-01

    Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificity intermediate between that of methanol dehydrogenases and ethanol dehydrogenases in this group. On the other hand, it also showed dissimilarities: the enzyme was found to be a monomer (Mr 101 000), to need only one molecule of the suicide substrate cyclopropanol to become fully inactivated, and to have a different aromatic amino acid composition. PMID:6439190

  5. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  6. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase. PMID:24509923

  7. Changes in soluble sugar, starch, and alcohol dehydrogenase in Arabidopsis thaliana exposed to N2 diluted atmospheres

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Crispi, M. L.; Musgrave, M. E.

    1997-01-01

    Proper exchange of atmospheric gases is important for normal root and shoot metabolism in plants. This study was conducted to determine how restricted air supply affects foliar carbohydrates, while using the marker enzyme alcohol dehydrogenase (ADH) to report on the oxygenation status of the rootzone. Fourteen-day-old Arabidopsis thaliana (L.) Heynh. plants grown singly in 7-ml tubes containing agarified nutrient medium were placed in coupled Magenta vessels and exposed for six days to either ambient air or one of six different air/nitrogen dilutions. Redox potential of the agar medium was measured immediately after harvesting and freezing leaf tissue, and then root systems were quickly extracted from the agar and frozen for subsequent analyses. Redox potential measurements indicated that this series of gas mixtures produced a transition from hypoxia to anoxia in the root zones. Root ADH activity increased at higher rates as the redox potential neared anoxic levels. In contrast, ADH mRNA expression quickly neared its maximum as the medium became hypoxic and showed little further increase as it became anoxic. Foliar carbohydrate levels increased 1.5- to 2-fold with decreased availability of metabolic gases, with starch increasing at higher concentrations of air than soluble carbohydrate. The results serve as a model for plant performance under microgravity conditions, where absence of convective air movement prevents replenishment of metabolic gases.

  8. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    PubMed

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  9. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress.

    PubMed

    Nguyen, Trinh T M; Iwaki, Aya; Izawa, Shingo

    2015-01-01

    Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repress the bulk translation activity in yeast cells. Therefore, in this study, we investigated expression patterns of the ADH6 and ADH7 genes in the presence of high concentrations of vanillin. We found that although both genes were transcriptionally upregulated by vanillin stress, they showed different protein expression patterns in response to vanillin. Expression of Adh6 was constitutive and gradually decreased under vanillin stress, whereas expression of Adh7 was inducible, and, importantly, occurred under severe vanillin stress. The null mutants of ADH6 or ADH7 genes were hypersensitive to vanillin and reduced vanillin less efficiently than the wild type, confirming the importance of Adh6 and Adh7 in vanillin detoxification. Additionally, we demonstrate that the ADH7 promoter is vanillin-inducible and enables effective protein synthesis even under severe vanillin stress, and it may be useful for the improvement of vanillin-tolerance and biofuel production efficiency via modification of yeast gene expression in the presence of high concentrations of vanillin. PMID:26696995

  10. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress

    PubMed Central

    Nguyen, Trinh T. M.; Iwaki, Aya; Izawa, Shingo

    2015-01-01

    Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repress the bulk translation activity in yeast cells. Therefore, in this study, we investigated expression patterns of the ADH6 and ADH7 genes in the presence of high concentrations of vanillin. We found that although both genes were transcriptionally upregulated by vanillin stress, they showed different protein expression patterns in response to vanillin. Expression of Adh6 was constitutive and gradually decreased under vanillin stress, whereas expression of Adh7 was inducible, and, importantly, occurred under severe vanillin stress. The null mutants of ADH6 or ADH7 genes were hypersensitive to vanillin and reduced vanillin less efficiently than the wild type, confirming the importance of Adh6 and Adh7 in vanillin detoxification. Additionally, we demonstrate that the ADH7 promoter is vanillin-inducible and enables effective protein synthesis even under severe vanillin stress, and it may be useful for the improvement of vanillin-tolerance and biofuel production efficiency via modification of yeast gene expression in the presence of high concentrations of vanillin. PMID:26696995

  11. ADH IB Expression, but Not ADH III, Is Decreased in Human Lung Cancer

    PubMed Central

    Mutka, Sarah C.; Green, Lucia H.; Verderber, Evie L.; Richards, Jane P.; Looker, Doug L.; Chlipala, Elizabeth A.; Rosenthal, Gary J.

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  12. ADH IB expression, but not ADH III, is decreased in human lung cancer.

    PubMed

    Mutka, Sarah C; Green, Lucia H; Verderber, Evie L; Richards, Jane P; Looker, Doug L; Chlipala, Elizabeth A; Rosenthal, Gary J

    2012-01-01

    Endogenous S-nitrosothiols, including S-nitrosoglutathione (GSNO), mediate nitric oxide (NO)-based signaling, inflammatory responses, and smooth muscle function. Reduced GSNO levels have been implicated in several respiratory diseases, and inhibition of GSNO reductase, (GSNOR) the primary enzyme that metabolizes GSNO, represents a novel approach to treating inflammatory lung diseases. Recently, an association between decreased GSNOR expression and human lung cancer risk was proposed in part based on immunohistochemical staining using a polyclonal GSNOR antibody. GSNOR is an isozyme of the alcohol dehydrogenase (ADH) family, and we demonstrate that the antibody used in those studies cross reacts substantially with other ADH proteins and may not be an appropriate reagent. We evaluated human lung cancer tissue arrays using monoclonal antibodies highly specific for human GSNOR with minimal cross reactivity to other ADH proteins. We verified the presence of GSNOR in ≥85% of specimens examined, and extensive analysis of these samples demonstrated no difference in GSNOR protein expression between cancerous and normal lung tissues. Additionally, GSNOR and other ADH mRNA levels were evaluated quantitatively in lung cancer cDNA arrays by qPCR. Consistent with our immunohistochemical findings, GSNOR mRNA levels were not changed in lung cancer tissues, however the expression levels of other ADH genes were decreased. ADH IB mRNA levels were reduced (>10-fold) in 65% of the lung cancer cDNA specimens. We conclude that the previously reported results showed an incorrect association of GSNOR and human lung cancer risk, and a decrease in ADH IB, rather than GSNOR, correlates with human lung cancer. PMID:23285246

  13. The Joint Effects of ADH1B Variants and Childhood Adversity on Alcohol-Related Phenotypes in African-American and European-American Women and Men

    PubMed Central

    Sartor, Carolyn E.; Wang, Zuoheng; Xu, Ke; Kranzler, Henry R.; Gelernter, Joel

    2015-01-01

    Background The ADH1B gene has consistently been implicated in problem drinking, but rarely incorporated into gene by environment investigations of alcohol phenotypes. This study examined the joint effects of variation in ADH1B and childhood adversity – a well-documented risk factor for alcohol problems and moderator of genetic liability to psychiatric outcomes – on maximum drinks consumed in a 24-hour period (maxdrinks) and alcohol use disorder (AUD) symptoms. Methods Data were drawn from 2,617 African-American (AA) and 1,436 European-American (EA) participants (42% female) in a multisite genetic study of substance dependence. We tested the most significant ADH1B SNPs for alcohol dependence from a genomewide association study with this sample, ADH1B-rs1229984 (Arg48His) and ADH1B-rs2066702 (Arg370Cys), in EA and AA subsamples, respectively. Results Ordinal regression analyses conducted separately by sex and population revealed significant main effects for childhood adversity both for alcohol phenotypes in AA women and men and for maxdrinks in EA women. A significant rs1229984 by childhood adversity interaction was observed for AUD symptoms in EA men. Unexposed His-allele carriers reported a mean of 3.6 AUD criteria, but adversity-exposed His-allele carriers endorsed approximately the same number (6.3) as those without the protective allele (6.3 and 7.0 for adversity-exposed and adversity-unexposed groups, respectively). Conclusions Results suggest that under conditions of childhood adversity, the His allele does not exert its protective effects in EA men (OR=0.57, CI:0.32–1.01; p=0.056). Findings highlight the robust risk effect conferred by childhood adversity and the importance of considering population and sex in genetically informative investigations of its association with alcohol outcomes. PMID:25410943

  14. Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.).

    PubMed

    Davik, Jahn; Koehler, Gage; From, Britta; Torp, Torfinn; Rohloff, Jens; Eidem, Petter; Wilson, Robert C; Sønsteby, Anita; Randall, Stephen K; Alsheikh, Muath

    2013-01-01

    The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT₅₀) ranged from -4.7 to -12.0 °C between the genotypes. Among the F. vesca genotypes, the LT₅₀ varied from -7.7 °C to -12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT₅₀) -7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT₅₀ estimates and the expression of ADH and total dehydrins were highly correlated (r(adh) = -0.87, r (dehyd) = -0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT₅₀ estimates early in the acclimation period, only galactinol proved to be a good LT₅₀ predictor after 28 days of acclimation (r(galact) = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry. PMID:23014928

  15. NAD-dependent aromatic alcohol dehydrogenase in wheats (Triticum L.) and goatgrasses (Aegilops L.): evolutionary genetics.

    PubMed

    Jaaska, V

    1984-04-01

    Evolutionary electrophoretic variation of a NAD-specific aromatic alcohol dehydrogenase, AADH-E, in wheat and goatgrass species is described and discussed in comparison with a NAD-specific alcohol dehydrogenase (ADH-A) and a NADP-dependent AADH-B studied previously. Cultivated tetraploid emmer wheats (T. turgidum s. l.) and hexaploid bread wheats (T. aestivum s. l.) are all fixed for a heterozygous triplet, E(0.58)/E(0.64). The slowest isoenzyme, E(0.58), is controlled by a homoeoallelic gene on the chromosome arm 6AL of T. aestivum cv. 'Chinese Spring' and is inherent in all diploid wheats, T. monococcum s. Str., T. boeoticum s. l. and T. urartu. The fastest isoenzyme, E(0.64), is presumably controlled by the B- and D-genome homoeoalleles of the bread wheat and is the commonest alloenzyme of diploid goat-grasses, including Ae. speltaides and Ae. tauschii. The tetraploid T. timopheevii s. str. has a particular heterozygous triplet E(0.56)/E(0.71), whereas the hexaploid T. zhukovskyi exhibited polymorphism with electromorphs characteristic of T. timopheevii and T. monococcum. Wild tetraploid wheats, T. dicoccoides and T. araraticum, showed partially homologous intraspecific variation of AADH-E with heterozygous triplets E(0.58)/E(0.64) (the commonest), E(0.58)/E(0.71), E(0.45)/E(0.58), E(0.48)/E(0.58) and E(0.56)/E(0.58) recorded. Polyploid goatgrasses of the D-genome group, excepting Ae. cylindrica, are fixed for the common triplet E(0.58)/E(0.64). Ae. cylindrica and polyploid goatgrasses of the C(u)-genome group, excepting Ae. kotschyi, are homozygous for E(0.64). Ae. kotschyi is exceptional, showing fixed heterozygosity for both AADH-E and ADH-A with unique triplets E(0.56)/E(0.64) and A(0.49)/A(0.56). PMID:24258843

  16. A functionally critical single nucleotide polymorphism in the gene encoding the membrane-bound alcohol dehydrogenase found in ethanol oxidation-deficient Gluconobacter thailandicus.

    PubMed

    Charoenyingcharoen, Piyanat; Matsutani, Minenosuke; Yakushi, Toshiharu; Theeragool, Gunjana; Yukphan, Pattaraporn; Matsushita, Kazunobu

    2015-08-10

    The Gluconobacter thailandicus strains NBRC3254, NBRC3255, NBRC3256, NBRC3257, and NBRC3258 are naturally deficient in the ethanol-oxidizing respiratory chain because they do not produce the cytochrome subunit of the membrane-bound alcohol dehydrogenase (ADH). Draft genomes of G. thailandicus strains NBRC3255 and NBRC3257 indicated that the adhB gene encoding the cytochrome subunit contains four base differences when compared to a closely related gene in the public database One of the nucleotide differences results in an Opal codon at the -19th tryptophan (Trp) in the signal sequence for translocation to the periplasmic space (here, the position of +1st residue is assigned to the N-terminal amino acid residue after signal peptide cleavage), while the other differences result in one missense and two silent amino acid alterations. All five of the G. thailandicus strains were shown to have the Trp(-19)Opal alteration. Ethanol oxidation and ADH activities in NBRC3255 were restored by transformation with a derivative of the endogenous adhB gene, of which the -19th Opal codon was altered to encode Trp. These results indicate that this sequence is a functionally critical single nucleotide polymorphism in the cytochrome subunit. Comparative genomic analyses between the draft genomes of NBRC3255 and NBRC3257 revealed that although the two genomes are closely related, they both have a significant number of unique open reading frames. We suggest that the closely related NBRC3255 and NBRC3257 diverged from a common ancestor having the mutation in the adhB gene, whereas no additional functionally critical mutation occurred in the adhB pseudogene over the course of evolution. PMID:25943635

  17. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases.

    PubMed

    Smilda, T; Kamminga, A H; Reinders, P; Baron, W; van Hylckama Vlieg, J E; Beintema, J J

    2001-05-01

    Enzymic and structural studies on Drosophila alcohol dehydrogenases and other short-chain dehydrogenases/reductases (SDRs) are presented. Like alcohol dehydrogenases from other Drosophila species, the enzyme from D. simulans is more active on secondary than on primary alcohols, although ethanol is its only known physiological substrate. Several secondary alcohols were used to determine the kinetic parameters kcat and Km. The results of these experiments indicate that the substrate-binding region of the enzyme allows optimal binding of a short ethyl side-chain in a small binding pocket, and of a propyl or butyl side-chain in large binding pocket, with stereospecificity for R(-) alcohols. At a high concentration of R(-) alcohols substrate activation occurs. The kcat and Km values determined under these conditions are about two-fold, and two orders of magnitude, respectively, higher than those at low substrate concentrations. Sequence alignment of several SDRs of known, and unknown three-dimensional structures, indicate the presence of several conserved residues in addition to those involved in the catalyzed reactions. Structural roles of these conserved residues could be derived from observations made on superpositioned structures of several SDRs with known structures. Several residues are conserved in tetrameric SDRs, but not in dimeric ones. Two halohydrin-halide-lyases show significant homology with SDRs in the catalytic domains of these enzymes, but they do not have the structural features required for binding NAD+. Probably these lyases descend from an SDR, which has lost the capability to bind NAD+, but the enzyme reaction mechanisms may still be similar. PMID:11443349

  18. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3' end processing of the corresponding pre-mRNA.

    PubMed Central

    Brogna, S

    1999-01-01

    From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572

  19. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    PubMed

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  20. Thiodiglycol, the hydrolysis product of sulfur mustard: Analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance

    SciTech Connect

    Brimfield, A.A.; Hodgson, Ernest

    2006-06-15

    Thiodiglycol (2,2'-bis-hydroxyethylsulfide, TDG), the hydrolysis product of the chemical warfare agent sulfur mustard, has been implicated in the toxicity of sulfur mustard through the inhibition of protein phosphatases in mouse liver cytosol. The absence of any inhibitory activity when TDG was present in assays of pure enzymes, however, led us to investigate the possibility for metabolic activation of TDG to inhibitory compound(s) by cytosolic enzymes. We have successfully shown that mammalian alcohol dehydrogenases (ADH) rapidly oxidize TDG in vitro, but the classic spectrophotometric techniques for following this reaction provided no information on the identity of TDG intermediates and products. The use of proton NMR to monitor the oxidative reaction with structural confirmation by independent synthesis allowed us to establish the ultimate product, 2-hydroxyethylthioacetic acid, and to identify an intermediate equilibrium mixture consisting of 2-hydroxyethylthioacetaldehyde, 2-hydroxyethylthioacetaldehyde hydrate and the cyclic 1,4-oxathian-2-ol. The intermediate nature of this mixture was determined spectrophotometrically when it was shown to drive the production of NADH when added to ADH and NAD.

  1. Estimates of Gene Flow in Drosophila Pseudoobscura Determined from Nucleotide Sequence Analysis of the Alcohol Dehydrogenase Region

    PubMed Central

    Schaeffer, S. W.; Miller, E. L.

    1992-01-01

    The genetic structure of Drosophila pseudoobscura populations was inferred from a nucleotide sequence analysis of a 3.4-kb segment of the alcohol dehydrogenase (Adh) region. A total of 99 isochromosomal strains collected from 13 populations in North and South America were used to determine if any population departed from a neutral model and to estimate levels of gene flow between populations. This study also included the nucleotide sequences from two sibling species, D. persimilis and D. miranda. We estimated the neutral mutation parameter, 4Nμ, in synonymous and noncoding sites for 17 subregions of Adh in each of nine populations with sample sizes greater than three. The nucleotide diversity data in the nine populations was tested for departures from an equilibrium neutral model with two statistical tests. The Tajima and the Hudson, Kreitman, Aguade tests showed that each population fails to reject a neutral model. Tests for genetic differentiation between populations fail to show any population substructure among the North American populations of D. pseudoobscura. The nucleotide diversity data is consistent with direct and indirect measures of gene flow that show extensive dispersal between populations of D. pseudoobscura. PMID:1427038

  2. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.

    PubMed

    Cetkauskaite, Anolda; Pessala, Piia; Södergren, Anders

    2004-08-01

    The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S(0)) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC(50) = 11.8 microg/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have --SH groups, metal ion cofactors, or heme, respectively, in their active centers. PMID:15269910

  3. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water

    PubMed Central

    Takahashi, Hirokazu; Greenway, Hank; Matsumura, Hideo; Tsutsumi, Nobuhiro; Nakazono, Mikio

    2014-01-01

    Background and Aims Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings. Methods Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared. Key results In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations. Conclusions These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo. PMID:24431339

  4. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    SciTech Connect

    Biehl, Ralf; Monkenbusch, Michael; Richter, Dieter; Hoffmann, Bernd; Merkel, Rudolf; Falus, Peter; Preost, Sylvain

    2008-09-26

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  5. Alcohol-induced insulin resistance in liver: Potential roles in regulation of ADH expression; ethanol clearance and alcohol liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using total enteral nutrition (TEN), we demonstrated that low carbohydrate, high alcohol-containing diets (10-12 g/kg/dO produced alcoholic liver disease (ALD) in adult male Sprague-Dawley rats (300 g). Intragastric infusion of this diet generates regular pulses of blood ethanol concentrations (BEC...

  6. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism.

    PubMed

    Frezza, M; di Padova, C; Pozzato, G; Terpin, M; Baraona, E; Lieber, C S

    1990-01-11

    After consuming comparable amounts of ethanol, women have higher blood ethanol concentrations than men, even with allowance for differences in size, and are more susceptible to alcoholic liver disease. Recently, we documented significant "first-pass metabolism" of ethanol due to its oxidation by gastric tissue. We report a study of the possible contribution of this metabolism to the sex-related difference in blood alcohol concentrations in 20 men and 23 women. Six in each group were alcoholics. The first-pass metabolism was determined on the basis of the difference in areas under the curves of blood alcohol concentrations after intravenous and oral administration of ethanol (0.3 g per kilogram of body weight). Alcohol dehydrogenase activity was also measured in endoscopic gastric biopsies. In nonalcoholic subjects, the first-pass metabolism and gastric alcohol dehydrogenase activity of the women were 23 and 59 percent, respectively, of those in the men, and there was a significant correlation (rs = 0.659) between first-pass metabolism and gastric mucosal alcohol dehydrogenase activity. In the alcoholic men, the first-pass metabolism and gastric alcohol dehydrogenase activity were about half those in the nonalcoholic men; in the alcoholic women, the gastric mucosal alcohol dehydrogenase activity was even lower than in the alcoholic men, and first-pass metabolism was virtually abolished. We conclude that the increased bioavailability of ethanol resulting from decreased gastric oxidation of ethanol may contribute to the enhanced vulnerability of women to acute and chronic complications of alcoholism. PMID:2248624

  7. Amphibian alcohol dehydrogenase, the major frog liver enzyme. Relationships to other forms and assessment of an early gene duplication separating vertebrate class I and class III alcohol dehydrogenases

    SciTech Connect

    Cederlund, E.; Joernvall, H. ); Peralba, J.M.; Pares, X. )

    1991-03-19

    Submammalian alcohol dehydrogenase structures can be used to evaluate the origins and functions of different types of the mammalian enzyme. Two avian forms were recently reported, and the authors now define the major amphibian alcohol dehydrogenase. The enzyme from the liver of the Green frog Rana perezi was purified, carboxymethylated, and submitted to amino acid sequence determination by peptide analysis of six different digest. The protein has a 375-residue subunit and is a class I alcohol dehydrogenase, bridging the gap toward the original separation of the classes that are observable in the human alcohol dehydrogenase system. In relation to the human class I enzyme, the amphibian protein has residue identities exactly halfway (68%) between those for the corresponding avian enzyme (74%) and the human class III enzyme (62%), suggesting an origin of the alcohol dehnydrogenase classes very early in or close to the evolution of the vertebrate line. This conclusion suggests that these enzyme classes are more universal among animals than previously realized and constitutes the first real assessment of the origin of the duplications leading to the alcohol dehydrogenase classes. In conclusion, the amphibian enzyme allows a rough positioning of the divergence of the alcohol dehydrogenase classes, shows that the class I type is widesprread in vertebrates, and functionally conforms with greater variations at the substrate-binding than the coenzyme-binding site.

  8. A novel electrochemiluminescence ethanol biosensor based on tris(2,2'-bipyridine) ruthenium (II) and alcohol dehydrogenase immobilized in graphene/bovine serum albumin composite film.

    PubMed

    Gao, Wenhua; Chen, Yunsheng; Xi, Jing; Lin, Shaoyu; Chen, Yaowen; Lin, Yuejuan; Chen, Zhanguang

    2013-03-15

    We developed a novel electrochemiluminescence (ECL) ethanol biosensor based on Ru(bpy)(3)(2+) and alcohol dehydrogenase (ADH) immobilized by graphene/bovine serum albumin composite film. The graphene film was directly formed on a glassy carbon electrode surface via an in situ reduction of graphene oxide (GO) and Ru(bpy)(3)(2+) was immobilized during its formation. The graphene film acted as both a decorating agent for immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize bovine serum albumin (BSA), meanwhile BSA not only acted as a reductant to reduce GO, but also provided a friendly environment for ADH immobilization. Furthermore, ADH was separated from Ru(bpy)(3)(2+) by the electron-conductive graphene/BSA composite film to retain its enzymatic activity. The experimental results indicated that the biosensor had excellent electrochemical activity, ECL response to ethanol and stability. Such a design of Ru(bpy)(3)(2+)-graphene/BSA film to modify electrode holds a great promise as a new biocompatible platform for the development of enzyme-based ECL biosensors. PMID:23122751

  9. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati.

    PubMed

    Yaacob, Norhayati; Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  10. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    PubMed Central

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  11. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  12. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae

    SciTech Connect

    Conway, T. ); Ingram, L.O. )

    1989-07-01

    The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5{prime} end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonas mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes.

  13. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  14. The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo).

    PubMed

    Chen, Hao; Cao, Songxiao; Jin, Yazhong; Tang, Yufan; Qi, Hongyan

    2016-01-01

    Alcohol dehydrogenase (ADH) plays an important role in aroma volatile compounds synthesis of plants. In this paper, we tried to explore the relationship between CmADHs and the volatile organic compounds (VOCs) in oriental melon. Three different aroma types of melon were used as materials. The principle component analysis of three types of melon fruit was conducted. We also measured the CmADHs expression level and enzymatic activities of ADH and alcohol acyl-transferase (AAT) on different stages of fruit ripening. An incubation experiment was carried out to investigate the effect of substrates and inhibitor (4-MP, 4-methylpyrazole) on CmADHs expression, ADH activity, and the main compounds of oriental melon. The results illustrated that ethyl acetate, hexyl acetate (E,Z)-3,6-nonadien-1-ol and 2-ethyl-2hexen-1-ol were the four principal volatile compounds of these three types of melon. AAT activity was increasing with fruit ripening, and the AAT activity in CH were the highest, whereas ADH activity peaked on 32 DAP, 2 days before maturation, and the ADH activity in CB and CG were higher than that in CH. The expression pattern of 11 CmADH genes from 24 to 36 day after pollination (DAP) was found to vary in three melon varieties. CmADH4 was only expressed in CG and the expression levels of CmADH3 and CmADH12 in CH and CB were much higher than that in CG, and they both peaked 2 days before fruit ripening. Ethanol and 4-MP decreased the reductase activity of ADH, the expression of most CmADHs and ethyl acetate or hexyl acetate contents of CB, except for 0.1 mM 4-MP, while aldehyde improved the two acetate ester contents. In addition, we found a positive correlation between the expression of CmADH3 and CmADH12 and the key volatile compound of CB. The relationship between CmADHs and VOCs synthesis of oriental melon was discussed. PMID:27445845

  15. The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo)

    PubMed Central

    Chen, Hao; Cao, Songxiao; Jin, Yazhong; Tang, Yufan; Qi, Hongyan

    2016-01-01

    Alcohol dehydrogenase (ADH) plays an important role in aroma volatile compounds synthesis of plants. In this paper, we tried to explore the relationship between CmADHs and the volatile organic compounds (VOCs) in oriental melon. Three different aroma types of melon were used as materials. The principle component analysis of three types of melon fruit was conducted. We also measured the CmADHs expression level and enzymatic activities of ADH and alcohol acyl-transferase (AAT) on different stages of fruit ripening. An incubation experiment was carried out to investigate the effect of substrates and inhibitor (4-MP, 4-methylpyrazole) on CmADHs expression, ADH activity, and the main compounds of oriental melon. The results illustrated that ethyl acetate, hexyl acetate (E,Z)-3,6-nonadien-1-ol and 2-ethyl-2hexen-1-ol were the four principal volatile compounds of these three types of melon. AAT activity was increasing with fruit ripening, and the AAT activity in CH were the highest, whereas ADH activity peaked on 32 DAP, 2 days before maturation, and the ADH activity in CB and CG were higher than that in CH. The expression pattern of 11 CmADH genes from 24 to 36 day after pollination (DAP) was found to vary in three melon varieties. CmADH4 was only expressed in CG and the expression levels of CmADH3 and CmADH12 in CH and CB were much higher than that in CG, and they both peaked 2 days before fruit ripening. Ethanol and 4-MP decreased the reductase activity of ADH, the expression of most CmADHs and ethyl acetate or hexyl acetate contents of CB, except for 0.1 mM 4-MP, while aldehyde improved the two acetate ester contents. In addition, we found a positive correlation between the expression of CmADH3 and CmADH12 and the key volatile compound of CB. The relationship between CmADHs and VOCs synthesis of oriental melon was discussed. PMID:27445845

  16. Exceptionally High Levels of Restriction Site Polymorphism in DNA near the Maize Adh1 Gene

    PubMed Central

    Johns, Mitrick A.; Strommer, Judith N.; Freeling, Michael

    1983-01-01

    Restriction maps have been prepared for the chromosomal region near seven biochemically and genetically distinct maize alcohol dehydrogenase-1 (Adh1) alleles using a small cDNA probe for Adh1. Five restriction sites spanning about 4 kb in and near the Adh1 transcription unit appear identical in all seven alleles. Outside this conserved region, variation in restriction site position is the rule. Six of the seven alleles are distinguishable, and the alleles appear to fall into four groups. The DNA flanking the 1S-type alleles seems to share no restriction site homology with the DNA near the 1F-type alleles. Several hypotheses are put forward to explain how such high levels of polymorphism could have arisen in a species that has been domesticated for only about 10,000 years. PMID:17246173

  17. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Hepatic Steatosis and Inflammation: Role of Autophagy

    PubMed Central

    Guo, Rui; Xu, Xihui; Babcock, Sara A.; Zhang, Yingmei; Ren, Jun

    2014-01-01

    Background & Aims Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Methods Wild-type friendly virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signaling were examined. The role of autophagy was evaluated in ADH1-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without autophagy inducer rapamycin and lysosomal inhibitors. Results Chronic alcohol intake led to elevated AST, ALT, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides, hepatic fat deposition as evidenced by H&E and oil Red O staining, associated with disturbed fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, the effects of which were attenuated or ablated by ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100, 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, the effects of which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. Conclusions In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. PMID:25457208

  18. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers.

    PubMed

    Zhang, Rongzhen; Xu, Yan; Xiao, Rong

    2015-12-01

    Alcohol dehydrogenases/reductases predominantly catalyze the asymmetric biosynthesis of optically pure stereoisomers because of their unique chiral constitutions. The enantioselectivities of alcohol dehydrogenases/reductases are substrate- and cofactor-dependent, and therefore they usually catalyze specific reactions with high enantioselectivity under physiological conditions; this may not be suitable for asymmetric biosynthesis with non-natural substrates or non-natural cofactors, and under nonphysiological conditions. It is therefore necessary to modify alcohol dehydrogenases/reductases using various redesigning tools such as directed evolution and rational design, and their combinations, as well as engineering enzyme modules for more efficient production of "non-natural" products. In this article, progress in these aspects of alcohol dehydrogenase/reductase design is reviewed, and future challenges are discussed. PMID:26320091

  19. Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell

    1992-01-01

    The alcohol dehydrogenase II gene from Zymomonas mobilis has been cloned and sequenced. This gene can be expressed at high levels in other organisms to produce acetaldehyde or to convert acetaldehyde to ethanol.

  20. Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.

    PubMed

    Plapp, Bryce V; Charlier, Henry A; Ramaswamy, S

    2016-02-01

    Yeast alcohol dehydrogenase I is a homotetramer of subunits with 347 amino acid residues, catalyzing the oxidation of alcohols using NAD(+) as coenzyme. A new X-ray structure was determined at 3.0 Å where both subunits of an asymmetric dimer bind coenzyme and trifluoroethanol. The tetramer is a pair of back-to-back dimers. Subunit A has a closed conformation and can represent a Michaelis complex with an appropriate geometry for hydride transfer between coenzyme and alcohol, with the oxygen of 2,2,2-trifluoroethanol ligated at 2.1 Å to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. Subunit B has an open conformation, and the coenzyme interacts with amino acid residues from the coenzyme binding domain, but not with residues from the catalytic domain. Coenzyme appears to bind to and dissociate from the open conformation. The catalytic zinc in subunit B has an alternative, inverted coordination with Cys-43, Cys-153, His-66 and the carboxylate of Glu-67, while the oxygen of trifluoroethanol is 3.5 Å from the zinc. Subunit B may represent an intermediate in the mechanism after coenzyme and alcohol bind and before the conformation changes to the closed form and the alcohol oxygen binds to the zinc and displaces Glu-67. PMID:26743849

  1. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions. PMID:26034298

  2. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity

    PubMed Central

    Maddock, Danielle J.; Patrick, Wayne M.; Gerth, Monica L.

    2015-01-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2′-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme–cofactor interactions. PMID:26034298

  3. NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their diploid relatives. On the origin and phylogeny of polyploid wheats.

    PubMed

    Jaaska, V

    1978-09-01

    The three major isoenzymes of the NADP-dependent aromatic alcohol dehydrogenase (ADH-B), distinguished in polyploid wheats by means of polyacrylamide gel electrophoresis, are shown to be coded by homoeoalleles of the locus Adh-2 on short arms of chromosomes of the fifth homoeologous group. Essentially codominant expression of the Adh-2 homoeolleles of composite genomes was observed in young seedlings of hexaploid wheats (T. aestivum s.l.) and tetraploid wheats of the emmer group (T. turgidum s.l.), whereas only the isoenzyme characteristic of the A genome is present in the seedlings of the timopheevii-group tetraploids (T. timopheevii s.str. and T. araraticum).The slowest-moving B(3) isoenzyme of polyploid wheats, coded by the homoeoallele of the B genome, is characteristic of the diploid species Aegilops speltoides S.l., including both its awned and awnless forms, but was not encountered in Ae. bicornis, Ae. sharonensis and Ae. longissima. The last two diploids, as well as Ae. tauschii, Ae. caudata, Triticum monococcum s.str., T. boeoticum s.l. (incl. T. thaoudar) and T. urartu all shared a common isoenzyme coinciding electrophoretically with the band B(2) controlled by the A and D genome homoeoalleles in polyploid wheats. Ae. bicomis is characterized by the slowest isoenzyme, B(4), not found in wheats and in the other diploid Aegilops species studied.Two electrophoretic variants of ADH-B, B(1) and B(2), considered to be alloenzymes of the A genome homoeoallele, were observed in T. dicoccoides, T. dicoccon, T. turgidum. s.str. and T. spelta, whereas B(2) was characteristic of T. timopheevii s.l. and only B(1) was found in the remaining taxa of polyploid wheats. The isoenzyme B(1), not encountered among diploid species, is considered to be a mutational derivative which arose on the tetraploid level from its more ancestral form B(2) characteristic of diploid wheats.The implication of the ADH-B isoenzyme data to the problems of wheat phylogeny and gene evolution is

  4. Development of an Alcohol Dehydrogenase Biosensor for Ethanol Determination with Toluidine Blue O Covalently Attached to a Cellulose Acetate Modified Electrode

    PubMed Central

    Alpat, Şenol; Telefoncu, Azmi

    2010-01-01

    In this work, a novel voltammetric ethanol biosensor was constructed using alcohol dehydrogenase (ADH). Firstly, alcohol dehydrogenase was immobilized on the surface of a glassy carbon electrode modified by cellulose acetate (CA) bonded to toluidine blue O (TBO). Secondly, the surface was covered by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new voltammetric sensor for the ethanol determination. In order to fabricate the biosensor, a new electrode matrix containing insoluble Toluidine Blue O (TBO) was obtained from the process, and enzyme/coenzyme was combined on the biosensor surface. The influence of various experimental conditions was examined for the characterization of the optimum analytical performance. The developed biosensor exhibited sensitive and selective determination of ethanol and showed a linear response between 1 × 10−5 M and 4 × 10−4 M ethanol. A detection limit calculated as three times the signal-to-noise ratio was 5.0 × 10−6 M. At the end of the 20th day, the biosensor still retained 50% of its initial activity. PMID:22315566

  5. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    SciTech Connect

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.; Shanmugam, K.T.; Ingram, L.O. )

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).

  6. Isolation and Identification of Genes Activating Uas2-Dependent Adh2 Expression in Saccharomyces Cerevisiae

    PubMed Central

    Donoviel, M. S.; Young, E. T.

    1996-01-01

    Two cis-acting elements have been identified that act synergistically to regulate expression of the glucose-repressed alcohol dehydrogenase 2 (ADH2) gene. UAS1 is bound by the trans-activator Adr1p. UAS2 is thought to be the binding site for an unidentified regulatory protein. A genetic selection based on a UAS2-dependent ADH2 reporter was devised to isolate genes capable of activating UAS2-dependent transcription. One set of UAS2-dependent genes contained SPT6/CRE2/SSN20. Multicopy SPT6 caused improper expression of chromosomal ADH2. A second set of UAS2-dependent clones contained a previously uncharacterized open reading frame designated MEU1 (Multicopy Enhancer of UAS2). A frame shift mutation in MEU1 abolished its ability to activate UAS2-dependent gene expression. Multicopy MEU1 expression suppressed the constitutive ADH2 expression caused by cre2-1. Disruption of MEU1 reduced endogenous ADH2 expression about twofold but had no effect on cell viability or growth. No homologues of MEU1 were identified by low-stringency Southern hybridization of yeast genomic DNA, and no significant homologues were found in the sequence data bases. A MEU1/β-gal fusion protein was not localized to a particular region of the cell. MEU1 is linked to PPR1 on chromosome XII. PMID:8807288

  7. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry. PMID:26178068

  8. Crystal structure of cod liver class I alcohol dehydrogenase: substrate pocket and structurally variable segments.

    PubMed Central

    Ramaswamy, S.; el Ahmad, M.; Danielsson, O.; Jörnvall, H.; Eklund, H.

    1996-01-01

    The structural framework of cod liver alcohol dehydrogenase is similar to that of horse and human alcohol dehydrogenases. In contrast, the substrate pocket differs significantly, and main differences are located in three loops. Nevertheless, the substrate pocket is hydrophobic like that of the mammalian class I enzymes and has a similar topography in spite of many main-chain and side-chain differences. The structural framework of alcohol dehydrogenase is also present in a number of related enzymes like glucose dehydrogenase and quinone oxidoreductase. These enzymes have completely different substrate specificity, but also for these enzymes, the corresponding loops of the substrate pocket have significantly different structures. The domains of the two subunits in the crystals of the cod enzyme further differ by a rotation of the catalytic domains by about 6 degrees. In one subunit, they close around the coenzyme similarly as in coenzyme complexes of the horse enzyme, but form a more open cleft in the other subunit, similar to the situation in coenzyme-free structures of the horse enzyme. The proton relay system differs from the mammalian class I alcohol dehydrogenases. His 51, which has been implicated in mammalian enzymes to be important for proton transfer from the buried active site to the surface is not present in the cod enzyme. A tyrosine in the corresponding position is turned into the substrate pocket and a water molecule occupies the same position in space as the His side chain, forming a shorter proton relay system. PMID:8845755

  9. Dehydrogenation of 3-phenoxybenzyl alcohol in isolated perfused rabbit skin, skin homogenate and purified dehydrogenases.

    PubMed

    Bast, G E; Kampffmeyer, H G

    1998-01-01

    The formation of 3-phenoxybenzoic acid from 3-phenoxybenzyl alcohol was determined in (a) rabbit ears, single-pass perfused with a protein-free buffer, pH 7.4; (b) the microsomal fraction and its supernatant from homogenized rabbit skin; and (c) purified alcohol dehydrogenase from horse liver and baker's yeast. The inhibition of product formation in (a) was about 60% by various 4-methylpyrazole concentrations, but metyrapone had no effect. Following ultracentrifugation, only the supernatant of homogenized skin showed product formation (apparent Vmay: 32 pmol/min per cm2 skin; apparent Km: 64 microM). 3-Phenoxybenzyl alcohol and ethanol dehydrogenation was similar by alcohol dehydrogenase from horse liver (apparent Km: 0.7 vs. 0.4 mM; apparent Vmax: 0.3 vs. 0.2 U/ microg protein). In baker's yeast, the apparent Km of 3-phenoxybenzoic acid formation was several times larger than that for ethanol dehydrogenation. The KI of 4-methylpyrazole for alcohol dehydrogenase from horse liver was 0.6 (3-phenoxybenzyl alcohol) vs. 0.04 microM (ethanol). The KI for ethanol in baker's yeast was 470 microM. In conclusion dehydrogenation is an important metabolic pathway in the skin for xenobiotics with an aliphatic alcohol at a side chain. PMID:9885409

  10. Structural aspects of the dye-linked alcohol dehydrogenase of Rhodopseudomonas acidophila.

    PubMed Central

    Bamforth, C W; Quayle, J R

    1979-01-01

    1. A dye-linked alcohol dehydrogenase was purified 60-fold from extracts of Rhodopseudomonas acidophila 10050 grown aerobically on ethanol. 2. The properties of this enzyme were identical with those of the alcohol dehydrogenase synthesized by this organism during growth on methanol anaerobically in the light, and they are judged to be the same enzyme. 3. The enzyme gave a single protein band, coincident with alcohol dehydrogenase activity, during electrophoresis on polyacrylamide gel. 4. The amino acid composition, ioselectric point, u.v. and visible absorption spectra of the enzyme were determined and compared with those of other similar enzymes. 5. The presence of 0.7--1.0 g-atom of non-haem, acidlabile iron/mol of enzyme was shown by atomic absorption spectrophotometry and colorimetric assay. The iron could not be dissociated from the enzyme by dialysis against chelating agents. 6. E.p.r. spectroscopy of the enzyme did not indicate any redox function for the iron during alcohol dehydrogenation, but showed a signal at g = 2.00 consistent with the presence of a protein-bound organic free radical. 8. Antisera were raised against alcohol (methanol) dehydrogenases purified from Rhodopseudomonas acidophila, Paracoccus denitrificans and Methylophilus methylotrophus. 9. The antiserum to the Rhodopseudomonas acidophila enzyme cross-reacted with neither of the two other antisera, nor with crude extracts of methanol-grown Hyphomicrobium X and Pseudomonas AM1, thus emphasizing its singular biochemical properties. PMID:229820

  11. Direct Electrochemical Addressing of Immobilized Alcohol Dehydrogenase for the Heterogeneous Bioelectrocatalytic Reduction of Butyraldehyde to Butanol

    PubMed Central

    Schlager, S; Neugebauer, H; Haberbauer, M; Hinterberger, G; Sariciftci, N S

    2015-01-01

    Modified electrodes using immobilized alcohol dehydrogenase enzymes for the efficient electroreduction of butyraldehyde to butanol are presented as an important step for the utilization of CO2-reduction products. Alcohol dehydrogenase was immobilized, embedded in an alginate–silicate hybrid gel, on a carbon felt (CF) electrode. The application of this enzyme to the reduction of an aldehyde to an alcohol with the aid of the coenzyme nicotinamide adenine dinucleotide (NADH), in analogy to the final step in the natural reduction cascade of CO2 to alcohol, has been already reported. However, the use of such enzymatic reductions is limited because of the necessity of providing expensive NADH as a sacrificial electron and proton donor. Immobilization of such dehydrogenase enzymes on electrodes and direct pumping of electrons into the biocatalysts offers an easy and efficient way for the biochemical recycling of CO2 to valuable chemicals or alternative synthetic fuels. We report the direct electrochemical addressing of immobilized alcohol dehydrogenase for the reduction of butyraldehyde to butanol without consumption of NADH. The selective reduction of butyraldehyde to butanol occurs at room temperature, ambient pressure and neutral pH. Production of butanol was detected by using liquid-injection gas chromatography and was estimated to occur with Faradaic efficiencies of around 40 %. PMID:26113881

  12. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignin is a significant recalcitrant in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired...

  13. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  14. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  15. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  16. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector.

    PubMed

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2 (+) As2.4). LC-MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2 (+) As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2 (+) As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  17. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector

    PubMed Central

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2+ As2.4). LC–MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2+ As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2+ As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  18. What's My Substrate? Computational Function Assignment of Candida parapsilosis ADH5 by Genome Database Search, Virtual Screening, and QM/MM Calculations.

    PubMed

    Dhoke, Gaurao V; Ensari, Yunus; Davari, Mehdi D; Ruff, Anna Joëlle; Schwaneberg, Ulrich; Bocola, Marco

    2016-07-25

    Zinc-dependent medium chain reductase from Candida parapsilosis can be used in the reduction of carbonyl compounds to pharmacologically important chiral secondary alcohols. To date, the nomenclature of cpADH5 is differing (CPCR2/RCR/SADH) in the literature, and its natural substrate is not known. In this study, we utilized a substrate docking based virtual screening method combined with KEGG, MetaCyc pathway, and Candida genome databases search for the discovery of natural substrates of cpADH5. The virtual screening of 7834 carbonyl compounds from the ZINC database provided 94 aldehydes or methyl/ethyl ketones as putative carbonyl substrates. Out of which, 52 carbonyl substrates of cpADH5 with catalytically active docking pose were identified by employing mechanism based substrate docking protocol. Comparison of the virtual screening results with KEGG, MetaCyc database search, and Candida genome pathway analysis suggest that cpADH5 might be involved in the Ehrlich pathway (reduction of fusel aldehydes in leucine, isoleucine, and valine degradation). Our QM/MM calculations and experimental activity measurements affirmed that butyraldehyde substrates are the potential natural substrates of cpADH5, suggesting a carbonyl reductase role for this enzyme in butyraldehyde reduction in aliphatic amino acid degradation pathways. Phylogenetic tree analysis of known ADHs from Candida albicans shows that cpADH5 is close to caADH5. We therefore propose, according to the experimental substrate identification and sequence similarity, the common name butyraldehyde dehydrogenase cpADH5 for Candida parapsilosis CPCR2/RCR/SADH. PMID:27387009

  19. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    SciTech Connect

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  20. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    PubMed

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired. PMID:20739429

  1. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.

    PubMed

    Martinez-Rojas, Enriqueta; Kurt, Tutku; Schmidt, Udo; Meyer, Vera; Garbe, Leif-Alexander

    2014-11-01

    Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme. PMID:24846734

  2. [Possible ways of regulating detoxifying processes in the alcohol dehydrogenase reaction with pantothenic acid derivatives].

    PubMed

    Chernikevich, I P; Dorofeev, B F; Moĭseenok, A G

    1993-01-01

    Oxidation of derivatives and precursors of pantothenic acid was studied in alcohol dehydrogenase reactions. Despite the presence of free hydroxymethyl groups in a number of pantothenic acid derivatives only panthenol with Km = 8 x 10(-3) M was shown to serve as a substrate for alcohol dehydrogenase from horse liver tissue (EC 1.1.1.1) Pantethine, sodium phosphopantothenate, CoA and acetyl-CoA decreased the rate of ethanol oxidation, where pantethine and sodium phosphopantothenate were competitive inhibitors, while CoA and acetyl-CoA inhibited the enzyme noncompetitively Ki = 1.2 x 10(-2) M, 2.1 x 10(-2) M, 4.4 x 10(-4) M and 5.1 x 10(-4) M, respectively. Metabolic precursors, which were different from pantothenic acid in their structure, were not involved in the alcohol dehydrogenase reaction. Possible regulation of alcohol intoxication using derivatives and precursors of vitamin B3 is discussed. PMID:8511887

  3. The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide.

    PubMed

    Sugimoto, M; Tanabe, M; Hataya, M; Enokibara, S; Duine, J A; Kawai, F

    2001-11-01

    Several Sphingomonas spp. utilize polyethylene glycols (PEGs) as a sole carbon and energy source, oxidative PEG degradation being initiated by a dye-linked dehydrogenase (PEG-DH) that oxidizes the terminal alcohol groups of the polymer chain. Purification and characterization of PEG-DH from Sphingomonas terrae revealed that the enzyme is membrane bound. The gene encoding this enzyme (pegA) was cloned, sequenced, and expressed in Escherichia coli. The purified recombinant enzyme was vulnerable to aggregation and inactivation, but this could be prevented by addition of detergent. It is as a homodimeric protein with a subunit molecular mass of 58.8 kDa, each subunit containing 1 noncovalently bound flavin adenine dinucleotide but not Fe or Zn. PEG-DH recognizes a broad variety of primary aliphatic and aromatic alcohols as substrates. Comparison with known sequences revealed that PEG-DH belongs to the group of glucose-methanol-choline (GMC) flavoprotein oxidoreductases and that it is a novel type of flavoprotein alcohol dehydrogenase related (percent identical amino acids) to other, so far uncharacterized bacterial, membrane-bound, dye-linked dehydrogenases: alcohol dehydrogenase from Pseudomonas oleovorans (46%); choline dehydrogenase from E. coli (40%); L-sorbose dehydrogenase from Gluconobacter oxydans (38%); and 4-nitrobenzyl alcohol dehydrogenase from a Pseudomonas species (35%). PMID:11673442

  4. Haplotype-Based Study of the Association of Alcohol Metabolizing Genes with Alcohol Dependence in Four Independent Populations

    PubMed Central

    Liu, Jixia; Zhou, Zhifeng; Hodgkinson, Colin A.; Yuan, Qiaoping; Shen, Pei-Hong; Mulligan, Connie J.; Wang, Alex; Gray, Rebecca R.; Roy, Alec; Virkkunen, Matti; Goldman, David; Enoch, Mary-Anne

    2010-01-01

    Background Ethanol is metabolized by two rate limiting reactions: alcohol dehydrogenases (ADH) convert ethanol to acetaldehyde, subsequently metabolized to acetate by aldehyde dehydrogenases (ALDH). Approximately 50% of East Asians have genetic variants that significantly impair this pathway and influence alcohol dependence (AD) vulnerability. We investigated whether variation in alcohol metabolism genes might alter the AD risk in four non-East Asian populations by performing systematic haplotype association analyses in order to maximize the chances of capturing functional variation. Methods Haplotype-tagging SNPs were genotyped using the Illumina GoldenGate platform. Genotypes were available for 40 SNPs across the ADH genes cluster and 24 SNPs across the two ALDH genes in four diverse samples that included cases (lifetime AD) and controls (no Axis 1 disorders). The case, control sample sizes were: Finnish Caucasians: 232, 194; African Americans: 267, 422; Plains American Indians: 226, 110; Southwestern American (SW) Indians: 317, 72. Results In all four populations, as well as HapMap populations, five haplotype blocks were identified across the ADH gene cluster: (1) ADH5-ADH4; (2) ADH6-ADH1A-ADH1B; (3) ADH1C; (4) intergenic; (5) ADH7. The ALDH1A1 gene was defined by four blocks and ALDH2 by one block. No haplotype or SNP association results were significant after correction for multiple comparisons; however several results, particularly for ALDH1A1 and ADH4, replicated earlier findings. There was an ALDH1A1 block 1 and 2 (extending from intron 5 to the 3′ UTR) yin yang haplotype (haplotypes that have opposite allelic configuration) association with AD in the Finns driven by SNPs rs3764435 and rs2303317 respectively, and an ALDH1A1 block 3 (including the promoter region) yin yang haplotype association in SW Indians driven by 5 SNPs, all in allelic identity. The ADH4 SNP rs3762894 was associated with AD in Plains Indians. Conclusions The systematic evaluation of

  5. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

    PubMed

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power. PMID:21526390

  6. Geometric specificity of alcohol dehydrogenases and its potential for separation of trans and cis isomers of unsaturated aldehydes.

    PubMed Central

    Klibanov, A M; Giannousis, P P

    1982-01-01

    The geometric specificity of three different alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) (from yeast, from horse liver, and from Leuconostoc mesenteroides) in the reduction of trans- and cis-cinnamaldehydes has been investigated. All three enzymes display a remarkable trans specificity: they react with the trans isomer 7 to 647 times faster than with its cis counterpart. Experiments with the enzymatic reduction of 3-phenylpropionaldehyde, a saturated analog of cinnamaldehyde, have revealed that whereas trans-cinnamaldehyde possesses the "right" configuration for the active centers of the alcohol dehydrogenases, the cis isomer apparently does not fit the active centers well. All three alcohol dehydrogenases studied also exhibit a marked trans specificity in the reaction with alpha-methylcinnamaldehyde. The geometric specificity of alcohol dehydrogenases can be used for the production of otherwise hard to synthesize cis isomers of unsaturated aldehydes from their readily available trans counterparts: trans-cinnamaldehyde was irradiated with ultraviolet light (which converted it to a mixture of trans and cis isomers) then treated with NADH and yeast alcohol dehydrogenase (which selectively reduces only trans aldehyde into the alcohol), and finally the mixture of cis-cinnamaldehyde and trans-cinnamyl alcohol was separated easily by preparative column chromatography. PMID:7048306

  7. Human liver alcohol dehydrogenase. 1. The primary structure of the beta 1 beta 1 isoenzyme.

    PubMed

    Hempel, J; Bühler, R; Kaiser, R; Holmquist, B; de Zalenski, C; von Wartburg, J P; Vallee, B; Jörnvall, H

    1984-12-17

    Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges. PMID:6391920

  8. In vivo relationship between monoamine oxidase type B and alcohol dehydrogenase: effects of ethanol and phenylethylamine

    SciTech Connect

    Aliyu, S.U.; Upahi, L.

    1988-01-01

    The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effects described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.

  9. Catalytic and Molecular Properties of the Quinohemoprotein Tetrahydrofurfuryl Alcohol Dehydrogenase from Ralstonia eutropha Strain Bo

    PubMed Central

    Zarnt, Grit; Schräder, Thomas; Andreesen, Jan R.

    2001-01-01

    The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent kcat/Km and Ki values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a kcat/Km value of 788 × 104 M−1 s−1. The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases. PMID:11222593

  10. A highly efficient ADH-coupled NADH-recycling system for the asymmetric bioreduction of carbon-carbon double bonds using enoate reductases.

    PubMed

    Tauber, Katharina; Hall, Melanie; Kroutil, Wolfgang; Fabian, Walter M F; Faber, Kurt; Glueck, Silvia M

    2011-06-01

    The asymmetric bioreduction of activated alkenes catalyzed by flavin-dependent enoate reductases from the OYE-family represents a powerful method for the production of optically active compounds. For its preparative-scale application, efficient and economic NADH-recycling is crucial. A novel enzyme-coupled NADH-recycling system is proposed based on the concurrent oxidation of a sacrificial sec-alcohol catalyzed by an alcohol dehydrogenase (ADH-A). Due to the highly favorable position of the equilibrium of ene-reduction versus alcohol-oxidation, the cosubstrate is only required in slight excess. PMID:21328323

  11. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse

    PubMed Central

    Sanna, P P; Kawamura, T; Chen, J; Koob, G F; Roberts, A J; Vendruscolo, L F; Repunte-Canonigo, V

    2016-01-01

    The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment. PMID:26978742

  12. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid.

    PubMed

    Jiang, Xiao-Ping; Lu, Ting-Ting; Liu, Cai-Hong; Ling, Xiao-Ming; Zhuang, Meng-Yao; Zhang, Jiu-Xun; Zhang, Ye-Wang

    2016-07-01

    Epoxy functionalized magnetic Fe3O4@SiO2 nanoparticles were successfully prepared and characterized by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The prepared nanoparticles were used for immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae by covalent attachment. The optimal immobilization conditions were obtained as follows: enzyme/support 4.49mg/g, pH 8.0, buffer concentration 0.05M, time 12h and temperature 30°C. Under these conditions, a high immobilization yield and efficiency of above 92% were obtained after the optimization. Broad pH tolerance and high thermostability were achieved by the immobilization. The immobilized ADH retained about 84% initial activity after five cycles. Kinetic parameters Vmax and Km of free and immobilized ADH were determined as 56.72μM/min, 44.27μM/min and 11.54mM, 31.32mM, respectively. (R)-mandelic acid synthesis with the immobilized ADH was carried out, and the yield of (R)-mandelic acid was as high as 64%. These results indicate that the ADH immobilized onto epoxy-functionalized nanoparticles is an efficient and simple way for preparation of stable ADH, and the immobilized ADH has potential applications in the production of (R)-mandelic acid. PMID:26995611

  13. Ectopic ADH secretion

    MedlinePlus

    ... ADH. Often, there are no symptoms from a low sodium level. When symptoms do occur, they may include ... Lab tests that can confirm and help diagnose low sodium include: Comprehensive metabolic panel (includes blood sodium) Osmolality ...

  14. ADH (Antidiuretic Hormone) Test

    MedlinePlus

    ... Also known as: Vasopressin; AVP Formal name: Antidiuretic Hormone; Arginine Vasopressin Related tests: Osmolality , BUN , Creatinine , Sodium , ... should know? How is it used? The antidiuretic hormone (ADH) test is used to help detect, diagnose, ...

  15. Syringyl Lignin Is Unaltered by Severe Sinapyl Alcohol Dehydrogenase Suppression in Tobacco[W

    PubMed Central

    Barakate, Abdellah; Stephens, Jennifer; Goldie, Alison; Hunter, William N.; Marshall, David; Hancock, Robert D.; Lapierre, Catherine; Morreel, Kris; Boerjan, Wout; Halpin, Claire

    2011-01-01

    The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference–inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem. PMID:22158465

  16. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1.

    PubMed

    Jayakody, Lahiru N; Horie, Kenta; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2012-04-01

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 ± 1.9% when the control strain is used; this ratio increases to 77 ± 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 ± 0.85% when the control strain is used but increases to 72 ± 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde. PMID:22311646

  17. A novel zinc-binding alcohol dehydrogenase 2 from Arachis diogoi, expressed in resistance responses against late leaf spot pathogen, induces cell death when transexpressed in tobacco.

    PubMed

    Kumar, Dilip; Rampuria, Sakshi; Singh, Naveen Kumar; Kirti, Pulugurtha B

    2016-03-01

    A novel zinc-binding alcohol dehydrogenase 2 (AdZADH2) was significantly upregulated in a wild peanut, Arachis diogoi treated with conidia of late leaf spot (LLS) pathogen, Phaeoisariopsis personata. This upregulation was not observed in a comparative analysis of cultivated peanut, which is highly susceptible to LLS. This zinc-binding alcohol dehydrogenase possessed a Rossmann fold containing NADB domain in addition to the MDR domain present in all previously characterized plant ADH genes/proteins. Transient over-expression of AdZADH2 under an estradiol inducible promoter (XVE) resulted in hypersensitive response (HR)-like cell death in tobacco leaf. However, the same level of cell death was not observed when the domains were transiently expressed individually. Cell death observed in tobacco was associated with overexpression of cell death related proteins, antioxidative enzymes such as SOD, CAT and APX and pathogenesis-related (PR) proteins. In A. diogoi, AdZADH2 expression was significantly upregulated in response to the plant signaling hormones salicylic acid, methyl jasmonate, and sodium nitroprusside. PMID:27047748

  18. Human liver alcohol dehydrogenase. 2. The primary structure of the gamma 1 protein chain.

    PubMed

    Bühler, R; Hempel, J; Kaiser, R; de Zalenski, C; von Wartburg, J P; Jörnvall, H

    1984-12-17

    The primary structure of the gamma 1 subunit of human liver alcohol dehydrogenase isoenzyme gamma 1 gamma 1 was deduced by characterization of 36 tryptic and 2 CNBr peptides. The polypeptide chain is composed of 373 amino acid residues. gamma 1 differs from the beta 1 subunit of human liver alcohol dehydrogenase at 21 positions, and from the E subunit of horse liver alcohol dehydrogenase at 43 positions including a gap at position 128 as in the beta 1 subunit. All zinc-liganding residues from the E subunit of the horse protein and the beta 1 subunit of the human enzyme are conserved, but like beta 1, gamma 1 also has an additional cysteine residue at position 286 (in the positional numbering system of the horse enzyme) due to a Tyr----Cys exchange. Most amino acid exchanges preserve the properties of the residues affected and are largely located on the surface of the molecules, away from the active site and the coenzyme binding region. However, eight positions with charge differences in relation to the E subunit of the horse enzyme are noticed. These result in a net positive charge increase of one in gamma 1 versus E, explaining the electrophoretic mobilities on starch gels. Of functional significance is the conservation of Ser-48 in gamma 1 relative to E. The residue is close to the active site but different (Thr-48) in the beta 1 subunit of the human enzyme. Thus, the closer structural relationship between human gamma 1 and horse E enzyme subunit than between beta 1 and E is also reflected in functionally important residues, explaining a greater similarity between gamma 1 gamma 1 and EE than between beta 1 beta 1 and EE. PMID:6391921

  19. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis

    PubMed Central

    Kim, Sung-Jin; Kim, Mi-Ran; Bedgar, Diana L.; Moinuddin, Syed G. A.; Cardenas, Claudia L.; Davin, Laurence B.; Kang, ChulHee; Lewis, Norman G.

    2004-01-01

    Of 17 genes annotated in the Arabidopsis genome database as cinnamyl alcohol dehydrogenase (CAD) homologues, an in silico analysis revealed that 8 genes were misannotated. Of the remaining nine, six were catalytically competent for NADPH-dependent reduction of p-coumaryl, caffeyl, coniferyl, 5-hydroxyconiferyl, and sinapyl aldehydes, whereas three displayed very low activity and only at very high substrate concentrations. Of the nine putative CADs, two (AtCAD5 and AtCAD4) had the highest activity and homology (≈83% similarity) relative to bona fide CADs from other species. AtCAD5 used all five substrates effectively, whereas AtCAD4 (of lower overall catalytic capacity) poorly used sinapyl aldehyde; the corresponding 270-fold decrease in kenz resulted from higher Km and lower kcat values, respectively. No CAD homologue displayed a specific requirement for sinapyl aldehyde, which was in direct contrast with unfounded claims for a so-called sinapyl alcohol dehydrogenase in angiosperms. AtCAD2, 3, as well as AtCAD7 and 8 (highest homology to sinapyl alcohol dehydrogenase) were catalytically less active overall by at least an order of magnitude, due to increased Km and lower kcat values. Accordingly, alternative and/or bifunctional metabolic roles of these proteins in plant defense cannot be ruled out. Comprehensive analyses of lignified tissues of various Arabidopsis knockout mutants (for AtCAD5, 6, and 9) at different stages of growth/development indicated the presence of functionally redundant CAD metabolic networks. Moreover, disruption of AtCAD5 expression had only a small effect on either overall lignin amounts deposited, or on syringyl-guaiacyl compositions, despite being the most catalytically active form in vitro. PMID:14745009

  20. Temperature-Jump Fluorescence Provides Evidence for Fully Reversible Microsecond Dynamics in a Thermophilic Alcohol Dehydrogenase

    PubMed Central

    2015-01-01

    Protein dynamics on the microsecond (μs) time scale were investigated by temperature-jump fluorescence spectroscopy as a function of temperature in two variants of a thermophilic alcohol dehydrogenase: W87F and W87F:H43A. Both mutants exhibit a fast, temperature-independent μs decrease in fluorescence followed by a slower full recovery of the initial fluorescence. The results, which rule out an ionizing histidine as the origin of the fluorescence quenching, are discussed in the context of a Trp49-containing dimer interface that acts as a conduit for thermally activated structural change within the protein interior. PMID:26223665

  1. Molecular analysis of UAS(E), a cis element containing stress response elements responsible for ethanol induction of the KlADH4 gene of Kluyveromyces lactis.

    PubMed

    Mazzoni, C; Santori, F; Saliola, M; Falcone, C

    2000-01-01

    KlADH4 is a gene of Kluyveromyces lactis encoding a mitochondrial alcohol dehydrogenase activity, which is specifically induced by ethanol and insensitive to glucose repression. In this work, we report the molecular analysis of UAS(E), an element of the KlADH4 promoter which is essential for the induction of KlADH4 in the presence of ethanol. UAS(E) contains five stress response elements (STREs), which have been found in many genes of Saccharomyces cerevisiae involved in the response of cells to conditions of stress. Whereas KlADH4 is not responsive to stress conditions, the STREs present in UAS(E) seem to play a key role in the induction of the gene by ethanol, a situation that has not been observed in the related yeast S. cerevisiae. Gel retardation experiments showed that STREs in the KlADH4 promoter can bind factor(s) under non-inducing conditions. Moreover, we observed that the RAP1 binding site present in UAS(E) binds KlRap1p. PMID:10724480

  2. Cyclic ethanol metabolism in hypophysectomized rats continuously infused alcohol-containing diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) intake induces hepatic alcohol dehydrogenase (ADH) expression via disruption of insulin signaling in liver (JBC 2006; 281:1126-34). Total enteral nutrition (TEN) is a method of slow and continuous (approx. 23/day) feeding patients through an intragastric tube. Rats fed EtOH-co...

  3. Application of nicotin amide-adenine dinucleotide analogs for clinical enzymology: alcohol dehydrogenase activity in liver injury.

    PubMed

    Fujisawa, K; Kimura, A; Minato, S; Tamaoki, H; Mizushima, H

    1976-06-01

    The activities of alcohol dehydrogease(ADH) in serum and in the subcellular fractions of rat liver were determined with n-amyl alcohol or ethanol as substrate and thionicotinamide-adenine dinucleotide as coenzyme. It was found that the enzyme's activity ratio on the amyl alcohol and ethanol(A/E value) of serum and on the particulate fractions of the liver were different, but the A/E value of the soluble fraction was similar to that of serum. The A/E value of the particulate fractions were higher than that of the soluble fraction. From the results of experimental liver damage in the rat, it seems that estimation of the A/E value of ADH activity in serum is a useful parameter for the diagnosis of active liver injury. Since the A/E values of patients' sera differed from those of the normal subjects, the estimation of the A/E value of serum may give diagnostic information on liver injury, especially in chronic liver injury. PMID:179739

  4. NAD(P)-Dependent Aldehyde Dehydrogenases Induced during Growth of Ralstonia eutropha Strain Bo on Tetrahydrofurfuryl Alcohol

    PubMed Central

    Schräder, Thomas; Zarnt, Grit; Andreesen, Jan R.

    2001-01-01

    Different aldehyde dehydrogenases (AlDHs) were formed during growth of Ralstonia eutropha Bo on tetrahydrofurfuryl alcohol (THFA). One of these enzymes, AlDH 4, was purified and characterized as a homodimer containing no prosthetic groups, showing a strong substrate inhibition, and having an N-terminal sequence similar to those of various NAD(P)-dependent AlDHs. The conversion rate of THFA by the quinohemoprotein THFA dehydrogenase was increased by AlDH 4. PMID:11717302

  5. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase

    PubMed Central

    Bae, Sang-Jeong; Kim, Sujin; Hahn, Ji-Sook

    2016-01-01

    Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). To improve acetoin production, acetoin biosynthetic genes from Bacillus subtilis encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) were overexpressed, and BDH1 encoding butanediol dehydrogenase, which converts acetoin to 2,3-butanediol, was deleted. Furthermore, by NAD+ regeneration through overexpression of water-forming NADH oxidase (NoxE) from Lactococcus lactis, the cofactor imbalance generated during the acetoin production from glucose was successfully relieved. As a result, in fed-batch fermentation, the engineered strain JHY617-SDN produced 100.1 g/L acetoin with a yield of 0.44 g/g glucose. PMID:27279026

  6. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase.

    PubMed

    Bae, Sang-Jeong; Kim, Sujin; Hahn, Ji-Sook

    2016-01-01

    Acetoin is widely used in food and cosmetic industry as taste and fragrance enhancer. For acetoin production in this study, Saccharomyces cerevisiae JHY605 was used as a host strain, where the production of ethanol and glycerol was largely eliminated by deleting five alcohol dehydrogenase genes (ADH1, ADH2, ADH3, ADH4, and ADH5) and two glycerol 3-phosphate dehydrogenase genes (GPD1 and GPD2). To improve acetoin production, acetoin biosynthetic genes from Bacillus subtilis encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) were overexpressed, and BDH1 encoding butanediol dehydrogenase, which converts acetoin to 2,3-butanediol, was deleted. Furthermore, by NAD(+) regeneration through overexpression of water-forming NADH oxidase (NoxE) from Lactococcus lactis, the cofactor imbalance generated during the acetoin production from glucose was successfully relieved. As a result, in fed-batch fermentation, the engineered strain JHY617-SDN produced 100.1 g/L acetoin with a yield of 0.44 g/g glucose. PMID:27279026

  7. Alcohol oxidase is a novel pathogenicity factor for Cladosporium fulvum, but aldehyde dehydrogenase is dispensable.

    PubMed

    Segers, G; Bradshaw, N; Archer, D; Blissett, K; Oliver, R P

    2001-03-01

    Cladosporiumfulvum is a mitosporic ascomycete pathogen of tomato. A study of fungal genes expressed during carbon starvation in vitro identified several genes that were up regulated during growth in planta. These included genes predicted to encode acetaldehyde dehydrogenase (Aldh1) and alcohol oxidase (Aox1). An Aldh1 deletion mutant was constructed. This mutant lacked all detectable ALDH activity, had lost the ability to grow with ethanol as a carbon source, but was unaffected in pathogenicity. Aox1 expression was induced by carbon starvation and during the later stages of infection. The alcohol oxidase enzyme activity has broadly similar properties (Km values, substrate specificity, pH, and heat stability) to yeast enzymes. Antibodies raised to Hansenula polymorpha alcohol oxidase (AOX) detected antigens in Western blots of starved C. fulvum mycelium and infected plant material. Antigen reacting with the antibodies was localized to organelles resembling peroxisomes in starved mycelium and infected plants. Disruption mutants of Aox1 lacked detectable AOX activity and had markedly reduced pathogenicity as assayed by two different measures of fungal growth. These results identify alcohol oxidase as a novel pathogenicity factor and are discussed in relation to peroxisomal metabolism of fungal pathogens during growth in planta. PMID:11277434

  8. (Regulation of alcohol fermentation by Escherichia coli). Progress report

    SciTech Connect

    Clark, D.P.

    1985-01-01

    Constitutive adhC mutants were used as a starting point for the isolation of further mutants, some of which are defective in alcohol dehydrogenase (ADH) and/or acetaldehyde dehydrogenase (ACDH) activities and some of which are regulatory and express elevated enzyme levels. The structural mutants map close to the adhC gene, suggesting the existence of an anaerobically controlled operon responsible for the conversion of acetyl-CoA to ethanol. Purification of the two enzyme activities indicates that both copurify as a complex of approximately 200,000 daltons. Although confirmation is required, both enzyme activities appear to be functions of a single polypeptide of MW 100,000 daltons. This interpretation is consistent with genetic data which show that most mutants selected directly for loss of either enzyme have also lost the other activity. Temperature sensitive mutants in which both enzymes are thermolabile also support the idea of a single polypeptide for the two activities. Regulatory mutants located away from the adhC locus have been isolated, and result in two to tenfold elevation of both ADH and ACDH. These mutants are in process of further characterization. Study of adh regulation by means of gene fusions has been slowed by technical problems, however we have devised a direct method for the selection of mutants unable to excrete acidic fermentation products and have accumulated a variety of anaerobically regulated gene fusions which have allowed us to estimate that anaerobiosis in E. coli requires the induction of around 50 genes.

  9. Mechanisms of mutagenesis: analysis through the use of alcohol dehydrogenase in Drosophila. Progress report, February 1984-January 1985

    SciTech Connect

    Sofer, W.H.

    1985-01-01

    A technique was developed for somatic transformation, making it possible to inject embryos with ADH genes in a variety of forms. A selection procedure was developed to chemically select strains of flies that are lacking beta - galactosidase activity. Two strains of Adh-negative flies whose lesions were generated with formaldehyde were characterized with respect to the ADH protein they manufacture, the rate at which they synthesize ADH, and the nature of the ADH mNRNA they make. (ACR)

  10. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.

    PubMed

    Bukh, Christian; Nord-Larsen, Pia Haugaard; Rasmussen, Søren K

    2012-10-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step of the monolignol biosynthesis, the conversion of cinnamyl aldehydes to alcohols, using NADPH as a cofactor. Seven members of the CAD gene family were identified in the genome of Brachypodium distachyon and five of these were isolated and cloned from genomic DNA. Semi-quantitative reverse-transcription PCR revealed differential expression of the cloned genes, with BdCAD5 being expressed in all tissues and highest in root and stem while BdCAD3 was only expressed in stem and spikes. A phylogenetic analysis of CAD-like proteins placed BdCAD5 on the same branch as bona fide CAD proteins from maize (ZmCAD2), rice (OsCAD2), sorghum (SbCAD2) and Arabidopsis (AtCAD4, 5). The predicted three-dimensional structures of both BdCAD3 and BdCAD5 resemble that of AtCAD5. However, the amino-acid residues in the substrate-binding domains of BdCAD3 and BdCAD5 are distributed symmetrically and BdCAD3 is similar to that of poplar sinapyl alcohol dehydrogenase (PotSAD). BdCAD3 and BdCAD5 expressed and purified from Escherichia coli both showed a temperature optimum of about 50 °C and molar weight of 49 kDa. The optimal pH for the reduction of coniferyl aldehyde were pH 5.2 and 6.2 and the pH for the oxidation of coniferyl alcohol were pH 8 and 9.5, for BdCAD3 and BdCAD5 respectively. Kinetic parameters for conversion of coniferyl aldehyde and coniferyl alcohol showed that BdCAD5 was clearly the most efficient enzyme of the two. These data suggest that BdCAD5 is the main CAD enzyme for lignin biosynthesis and that BdCAD3 has a different role in Brachypodium. All CAD enzymes are cytosolic except for BdCAD4, which has a putative chloroplast signal peptide adding to the diversity of CAD functions. PMID:23028019

  11. From Alcohol Dehydrogenase to a “One-way” Carbonyl Reductase by Active-site Redesign

    PubMed Central

    Klimacek, Mario; Nidetzky, Bernd

    2010-01-01

    Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol (Kint) was altered dramatically (104- to 105-fold) from being balanced in the wild-type enzyme (Kint ≈ 3) to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. The change in Kint reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn → Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD+-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn→Asp substitutions behaved as a slow “fructose reductase” at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8–10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively “one-way” reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis. PMID:20639204

  12. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  13. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction.

    PubMed

    Eckstein, Marrit; Villela Filho, Murillo; Liese, Andreas; Kragl, Udo

    2004-05-01

    Due to favourable partition coefficients the highly enantioselective reduction of 2-octanone, catalysed by an alcohol dehydrogenase from Lactobacillus brevis, is faster in a biphasic system containing buffer and the ionic liquid [BMIM][(CF(3)SO(2))(2)N] compared to the reduction in a biphasic system containing buffer and methyl tert-butyl ether. PMID:15116196

  14. DOWNREGULATION OF CINNAMYL-ALCOHOL DEHYDROGENASE IN SWITCHGRASS BY RNA SILENCING RESULTS IN ENHANCED GLUCOSE RELEASE AFTER CELLULASE TREATMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cinnamyl alcohol dehydrogenase (CAD), catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switch...

  15. Azotobacter vinelandii Aldehyde Dehydrogenase Regulated by ς54: Role in Alcohol Catabolism and Encystment

    PubMed Central

    Gama-Castro, Socorro; Núñez, Cinthia; Segura, Daniel; Moreno, Soledad; Guzmán, Josefina; Espín, Guadalupe

    2001-01-01

    Encystment in Azotobacter vinelandii is induced by n-butanol or β-hydroxybutyrate (BHB). We identified a gene, encoding an aldehyde dehydrogenase, that was named aldA. An aldA mutation impaired bacterial growth on n-butanol, ethanol, or hexanol as the sole carbon source. Expression of aldA increased in cells shifted from sucrose to n-butanol and was shown to be dependent on the alternative ς54 factor. A mutation in rpoN encoding the ς54 factor also impaired growth on alcohols. Encystment on n-butanol, but not on BHB, was impaired in aldA or rpoN mutants, indicating that n-butanol is not an inducer of encystment by itself but must be catabolized in order to induce encystment. PMID:11591659

  16. Cinnamyl Alcohol Dehydrogenase: Identification of New Sites of Promoter Activity in Transgenic Poplar.

    PubMed Central

    Hawkins, S.; Samaj, J.; Lauvergeat, V.; Boudet, A.; Grima-Pettenati, J.

    1997-01-01

    Stem sections from poplar that were stably transformed with a eucalypt cinnamyl alcohol dehydrogenase promoter-[beta]-glucuronidase construct were prepared by using either a technique routinely used in herbaceous species or a technique designed to take into account the particular anatomy of woody plants. Although both preparation techniques confirmed the pattern of expression previously observed (C. Feuillet, V. Lauvergeat, C. Deswarte, G. Pilate, A. Boudet and J. Grima-Pettenati [1995] Plant Mol Biol 27: 651-657), the latter technique also allowed the detection of other sites of promoter activity not revealed by the first technique. In situ hybridization confirmed the expression pattern obtained with the second sample preparation technique. PMID:12223610

  17. Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily

    PubMed Central

    Baker, Patrick J.; Britton, K. Linda; Fisher, Martin; Esclapez, Julia; Pire, Carmen; Bonete, Maria Jose; Ferrer, Juan; Rice, David W.

    2009-01-01

    Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events. PMID:19131516

  18. Picosecond-resolved fluorescence studies of substrate and cofactor-binding domain mutants in a thermophilic alcohol dehydrogenase uncover an extended network of communication.

    PubMed

    Meadows, Corey W; Tsang, Jonathan E; Klinman, Judith P

    2014-10-22

    Time-resolved fluorescence dynamics are investigated in two mutants of a thermophilic alcohol dehydrogenase (ht-ADH): Y25A (at the dimer interface) and V260A (at the cofactor-binding domain). These residues, ca. 32 Å apart, are shown to exhibit opposing low-temperature effects on the hydride tunneling step. Using single-tryptophan constructs at the active site (Trp87) and a remote, surface-exposed site (Trp167), time-dependent Stokes shifts and collisional quenching data allow an analysis of intra-protein dynamical communication. A double mutant, Y25A:V260A, was also inserted into each single-Trp construct and analyzed accordingly. None of the mutations affect fluorescence lifetimes, Stokes shift relaxation rates, and quenching data for the surface-exposed Trp167 to an appreciable extent. By contrast, fluorescent probes of the active-site tryptophan 87 reveal distinctive forms of dynamical communication. Stokes shifts show that the distal Y25A increases active-site flexibility, V260A introduces a temperature-dependent equilibration process not previously reported by such measurements, and the double mutant (Y25A:V260A) eliminates the temperature-dependent transition sensed by the active-site tryptophan in the presence of V260A. Collisional quenching data at Trp87 further show a structural change in the active-site environment/solvation for V260A. In the aggregate, the temperature dependencies of the fluorescence data are distinct from the breaks in behavior previously reported for catalysis and hydrogen/deuterium exchange, attributed to time scales for the interconversion of protein conformational substates that are slower and more global than the local motions monitored within. An extended network of dynamical communication between the protein dimer surface and substrate- and cofactor-binding domains emerges from the flourescent data. PMID:25314615

  19. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol.

    PubMed Central

    Keat, M J; Hopper, D J

    1978-01-01

    Whole cells of Pseudomonas putida N.C.I.B 9869, when grown on either 3,5-xylenol or p-cresol, oxidized both m- and p-hydroxybenzyl alcohols. Two distinct NAD+-dependent m-hydroxybenzyl alcohol dehydrogenases were purified from cells grown on 3,5-xylenol. Each is active with a range of aromatic alcohols, including both m- and p-hydroxybenzyl alcohol, but differ in their relative rates with the various substrates. An NAD+-dependent alcohol dehydrogenase was also partially purified from p-cresol grown cells. This too was active with m- and p-hydroxybenzyl alcohol and other aromatic alcohols, but was not identical with either of the other two dehydrogenases. All three enzymes were unstable, but were stabilized by dithiothreitol and all were inhibited with p-chloromercuribenzoate. All were specific for NAD+ and each was shown to catalyse conversion of alcohol into aldehyde. PMID:743216

  20. Interaction of vitamin A supplementation level with ADH1C genotype on intramuscular fat in beef steers.

    PubMed

    Krone, K G; Ward, A K; Madder, K M; Hendrick, S; McKinnon, J J; Buchanan, F C

    2016-03-01

    Previously, the single nucleotide polymorphism in alcohol dehydrogenase (ADH1C c.-64T>C) was shown to have an association with intramuscular fat (IMF) in the longissimus thoracis (LT) muscle when vitamin A was limited in finishing rations of beef steers. The purpose of this study was to determine the optimum vitamin A supplementation level, in combination with ADH1C genotype, to increase IMF of the LT muscle. In total, 45 TT genotype, 45 CT and 27 CC Black Angus crossbred steers were backgrounded on a commercial ration containing 3360 IU vitamin A/kg dry matter (DM). During finishing, the steers were randomly assigned to one of three vitamin A treatments at 25%, 50% and 75% of the National Research Council recommendation of 2200 IU/kg DM. Treatments were administered via an oral bolus. Carcass quality was evaluated and a sample from the LT muscle was collected for analysis of IMF. A treatment×genotype interaction (P=0.04) was observed for IMF; TT steers on the 75% treatment had higher IMF relative to CT and CC steers on the same treatment. Western blot analysis showed that TT steers had higher (P=0.02) ADH1C protein expression in hepatic tissue. Previously, TT steers exhibited increased IMF when fed limited vitamin A. In the current study, the lack of variation in IMF between treatments and genotypes at the lower vitamin A treatment levels was likely due to the majority of the steers grading Canada AAA (USDA Choice). However, the western blot data supports that TT steers are expected to have higher IMF deposition, due to an increased production of ADH1C. The interaction between ADH1C genotype and vitamin A supplementation level has the potential for use in marker-assisted management programs to target niche markets based on increased marbling. PMID:26511067

  1. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1986-03-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. Focus is on the two final steps in alcohol synthesis, which are catalyzed by alcohol dehydrogenase and acetaldehyde CoA dehydrogenase. We have isolated a series of mutations affecting the expression of these enzymes. Some of these mutations are in the structural genes for these enzymes; others affect the regulation of the adh operon. We have recently cloned the genes coding for these enzymes and are now studying the effect of multiple copies of the adh gene on fermentative growth and its regulation. A recently invented technique, proton suicide has allowed the selection of a variety of novel mutants affecting fermentation which are presently being characterized. We have isolated a comprehensive collection of operon fusions in which the lacZ structural gene is fused to promoters that are inactive aerobically but active anaerobically. Although these genes (like adh) are only expressed under anaerobic conditions, the level of induction varies from two-fold to nearly 100-fold. The nitrogen source, medium pH, nature of the buffer, presence of alternative electron acceptors (e.g., nitrate), and other factors exert a great effect on the expression of many of these genes. In the near future we will investigate control mechanisms common to the adh operon and other anaerobically regulated genes.

  2. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders.

    PubMed

    Chauhan, Ved; Chauhan, Abha

    2016-06-01

    Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. PMID:27151262

  3. Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases

    PubMed Central

    Gani, Osman A. B. S. M.; Adekoya, Olayiwola A.; Giurato, Laura; Spyrakis, Francesca; Cozzini, Pietro; Guccione, Salvatore; Winberg, Jan-Olof; Sylte, Ingebrigt

    2008-01-01

    Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD+ complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors. PMID:17981907

  4. Dissociation and rate constants of some human liver alcohol dehydrogenase isoenzymes.

    PubMed

    Pietruszko, R; de Zalenski, C; Theorell, H

    1976-01-01

    ADH from human liver forms binary complexes with NADH, associated with a blue shift of the peak of the fluorescence emission of NADH. The wavelength shift is the same for all isoenzymes but the accompanying intensification of the fluorescence is different. The fluorescence is further increased by the formation of the very tight ternary enzyme-NADH-isobutyramide complexes. These properties are similar to those for the horse liver ADH, as well as the molecular weight of E=40 000 per active site of the dimer molecule (EE). "Stopped-flow" determined velocity constants (ER in equilibrium E+R) were found to be in good agreement with ethanol activity constants previously determined by activity measurement, confirming the validity of the ordered ternary complex mechanism also for the human ADH. No single isoenzyme activity as high as that reported by Mourad and Woronick or Drum has been found. PMID:184631

  5. Probes of hydrogen tunneling with horse liver alcohol dehydrogenase at subzero temperatures.

    PubMed

    Tsai, S; Klinman, J P

    2001-02-20

    The temperature dependence of steady-state kinetics has been studied with horse liver alcohol dehydrogenase (HLADH) using protonated and deuterated benzyl alcohol as substrates in methanol/water mixtures between +3 and -50 degrees C. Additionally, the competitive isotope effects, k(H)/k(T) and k(D)/k(T), were measured. The studies indicate increasing kinetic complexity for wild-type HLADH at subzero temperatures. Consistent with earlier findings at 25 degrees C [Bahnson et al. (1993) Biochemistry 31, 5503], the F93W mutant shows much less kinetic complexity than the wild-type enzyme between 3 and -35 degrees C. An analysis of noncompetitive deuterium isotope effects and competitive tritium isotope effects leads to the conclusion that the reaction of F93W involves substantial hydrogen tunneling down to -35 degrees C. The effect of methanol on kinetic properties for the F93W mutant was analyzed, showing a dependence of competitive KIEs on the NAD(+) concentration. This indicates a more random bi--bi kinetic mechanism, in comparison to an ordered bi-bi kinetic mechanism in water. Although MeOH also affects the magnitude of the reaction rates and, to some extent, the observed KIEs, the ratio of ln k(H)/k(T) to ln k(D)/k(T) for primary isotope effects has not changed in methanol, and we conclude little or no change in kinetic complexity. Importantly, the degree of tunneling, as shown from the relationship between the secondary k(H)/k(T) and k(D)/k(T) values, is the same in water and MeOH/water mixtures, implicating similar trajectories for H transfer in both solvents. In a recent study of a thermophilic alcohol dehydrogenase [Kohen et al. (1999) Nature 399, 496], it was shown that decreases in temperatures below a transition temperature lead to decreased tunneling. This arises because of a change in protein dynamics below a break point in enzyme activity [Kohen et al. (2000) J. Am. Chem. Soc. 122, 10738-10739]. For the mesophilic HLADH described herein, an opposite

  6. Low Km aldehyde dehydrogenase (ALDH2) polymorphism, alcohol-drinking behavior, and chromosome alterations in peripheral lymphocytes.

    PubMed Central

    Morimoto, K; Takeshita, T

    1996-01-01

    Excessive drinking of alcohol is now widely known to be one of the major lifestyle choices that ca effect health. Among the various effects of alcohol drinking, cytogenetic and other genotoxic effects are of major concern from the viewpoint of prevention of alcohol-related diseases. Alcohol is first metabolized to acetaldehyde, which directly causes various types of chromosomal DNA lesions and alcohol-related diseases, and is then further detoxified to the much less toxic metabolite acetate. About 50% of Oriental people are deficient in the aldehyde-dehydrogenase 2 isozyme (ALDH2) that can most efficiently detoxify acetaldehyde. We have performed a series of experiments to investigate how the genetic deficiency in ALDH2 affects the behavioral pattern for alcohol drinking and the sensitivity of peripheral lymphocytes to the induction of chromosome alterations by exposure to alcohol and alcohol-related chemicals. We found great effects of the ALDH2 genotypes on alcohol sensitivity and alcohol-drinking behavior. We also show that lymphocytes from habitual drinkers with the deficient ALDH2 enzyme had significantly higher frequencies of sister chromatid exchanges than those from ALDH2-proficient individuals. PMID:8781384

  7. Microbial production of methylketones: properties of purified yeast secondary alcohol dehydrogenase

    SciTech Connect

    Patel, R.N.; Hou, C.T.; Laskin, A.I.; Derelanko, P.

    1981-06-01

    Secondary alcohol dehydrogenase (SADH) was purified from extracts of a methanol-grown yeast, Pichia sp. The purified enzyme was homogeneous as judged by ultracentrifugation and by polyacrylamide gel electrophoresis. The purified SADH has a molecular weight of 98,000 as determined by gel filtration and 102,000 as determined by sedimentation equilibrium analysis. The sedimentation constant s/sub 20,w/ was 6.0. The subunit size of the SADH was 48,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it consists of two subunits. The purified SADH contained two atoms of zinc per mole of enzyme protein. SADH catalyzed the oxidation of secondary alcohols. Primary alcohols (C/sub 1/ to C/sub 8/ tested) were not oxidized. The purified SADH and extracts of various yeasts and bacteria also catalyzed the reduction of methylketones to the corresponding secondary alcohols in the presence of reduced NAD/sup +/ as an electron donor. Both reactions (oxidation of secondary alcohols in the presence of NAD/sup +/ and reduction of methylketones in the presence of reduced NAD/sup +/) catalyzed by the purified SADH were inhibited by metal-chelating agents, thio reagent, and by antisera prepared against the purified enzyme. The apparent K/sub m/ values for NAD/sup +/, reduced NAD/sup +/, reduced NAD/sup +/, 2-butanol, and 2-butanone are 0.05, 0.1, 0.4, and 1 mM, respectively. The purified enzyme preferentially oxidized (-)-2-butanol and (-)-2-octanol, the rate of oxidation of (+)-2-butanol and (+)-2-octanol was 36% and 13% of that of 100% with (-)-2-butanol and (-)-2-octanol, respectively. The K/sub m/ values for (-)-2-butanol and (+)-2-butanol were 3.0 and 0.75 mM, respectively. Antisera prepared against purified Pichia SADH cross-reacted with the SADH derived from bacteria. This suggests difference in immunological properties between yeast and bacterial SADH.

  8. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics.

    PubMed

    Du, Yinming; Jiang, Wenyan; Yu, Mingrui; Tang, I-Ching; Yang, Shang-Tian

    2015-04-01

    Butanol biosynthesis through aldehyde/alcohol dehydrogenase (adhE2) is usually limited by NADH availability, resulting in low butanol titer, yield, and productivity. To alleviate this limitation and improve n-butanol production by Clostridium tyrobutyricum Δack-adhE2 overexpressing adhE2, the NADH availability was increased by using methyl viologen (MV) as an artificial electron carrier to divert electrons from ferredoxin normally used for H2 production. In the batch fermentation with the addition of 500 μM MV, H2 , acetate, and butyrate production was reduced by more than 80-90%, while butanol production increased more than 40% to 14.5 g/L. Metabolic flux analysis revealed that butanol production increased in the fermentation with MV because of increased NADH availability as a result of reduced H2 production. Furthermore, continuous butanol production of ∼55 g/L with a high yield of ∼0.33 g/g glucose and extremely low ethanol, acetate, and butyrate production was obtained in fed-batch fermentation with gas stripping for in situ butanol recovery. This study demonstrated a stable and reliable process for high-yield and high-titer n-butanol production by metabolically engineered C. tyrobutyricum by applying MV as an electron carrier to increase butanol biosynthesis. PMID:25363722

  9. Metabolic basis of ethylene glycol monobutyl ether (2-butoxyethanol) toxicity: role of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Ghanayem, B.I.; Burka, L.T.; Matthews, H.B.

    1987-07-01

    2-Butoxyethanol (BE) is a massively produced glycol ether of which more than 230 million pounds was produced in the United States in 1983. It is extensively used in aerosols and cleaning agents intended for household use. This creates a high potential for human exposure during its manufacturing and use. A single exposure of rats to BE causes severe hemolytic anemia accompanied by secondary hemoglobinuria as well as liver and kidney damage. Butoxyacetic acid (BAA) was earlier identified as a urinary metabolite of BE. In addition, we have recently identified two additional urinary metabolites of BE, namely, BE-glucuronide and BE-sulfate conjugates. The current studies were undertaken to investigate the metabolic basis of BE-induced hematotoxicity in male F344 rats. Treatment of rats with pyrazole (alcohol dehydrogenase inhibitor) protected rats against BE-induced hematotoxicity and inhibited BE metabolism to BAA. Pyrazole inhibition of BE metabolism to BAA was accompanied by increased BE metabolism to BE-glucuronide and BE-sulfate as determined by quantitative high-performance liquid chromatography analysis of BE metabolites in urine. There was approximately a 10-fold decrease in the ratio of BAA to BE-glucuronide + BE-sulfate in the urine of rats treated with pyrazole + BE compared to rats treated with BE alone. Pretreatment of rats with cyanamide (aldehyde dehydrogenase inhibitor) also significantly protected rats against BE-induced hematotoxicity and modified BE metabolism in a manner similar to that caused by pyrazole. Administration of equimolar doses of BE, the metabolic intermediate butoxyacetaldehyde, or the ultimate metabolite BAA caused similar hematotoxic effects. Cyanamide also protected rats against butoxyacetaldehyde-induced hematotoxicity.

  10. Picosecond-resolved fluorescent probes at functionally distinct tryptophans within a thermophilic alcohol dehydrogenase: relationship of temperature-dependent changes in fluorescence to catalysis.

    PubMed

    Meadows, Corey W; Ou, Ryan; Klinman, Judith P

    2014-06-12

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature 1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn(2+) and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan's dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context

  11. Picosecond-Resolved Fluorescent Probes at Functionally Distinct Tryptophans within a Thermophilic Alcohol Dehydrogenase: Relationship of Temperature-Dependent Changes in Fluorescence to Catalysis

    PubMed Central

    2015-01-01

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context

  12. Optimization of enzyme assisted extraction of Fructus Mori polysaccharides and its activities on antioxidant and alcohol dehydrogenase.

    PubMed

    Deng, Qingfang; Zhou, Xin; Chen, Huaguo

    2014-10-13

    In the present study, enzyme assisted extraction of Fructus Mori polysaccharides (FMPS) from F. mori using four kinds of enzymes and three compound enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of the extraction yields of FMPS, antioxidant and activate alcohol dehydrogenase activities. The glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude FMPS. The results showed that optimized extraction conditions were ratio of enzyme amount 0.40%, enzyme treated time 38 min, treated temperature 58 °C and liquid-solid radio 11.0. Under these conditions, the mean experimental value of extraction yield (16.16 ± 0.14%) corresponded well with the predicted values and increased 160% than none enzyme treated ones. Pharmacological verification tests showed that F. mori crude polysaccharides had good antioxidant and activate alcohol dehydrogenase activities in vitro. PMID:25037415

  13. Complete amino acid sequence and characterization of the reaction mechanism of a glucosamine-induced novel alcohol dehydrogenase from Agrobacterium radiobacter (tumefaciens).

    PubMed

    Iwamoto, Ryoko; Kubota, Humie; Hosoki, Tomoko; Ikehara, Kenji; Tanaka, Mieko

    2002-02-15

    A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex. PMID:11831851

  14. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  15. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    PubMed

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. PMID:24998764

  16. Determination of Kinetic Isotope Effects in Yeast Alcohol Dehydrogenase Using Transition Path Sampling

    NASA Astrophysics Data System (ADS)

    Varga, Matthew; Schwartz, Steven

    2015-03-01

    The experimental determination of kinetic isotope effects in enzymatic systems can be a difficult, time-consuming, and expensive process. In this study, we use the Chandler-Bolhius method for the determination of reaction rates within transition path sampling (rTPS) to determine the primary kinetic isotope effect in yeast alcohol dehydrogenase (YADH). In this study, normal mode centroid molecular dynamics (CMD) was applied to the transferring hydride/deuteride in order to correctly incorporate quantum effects into the molecular simulations. Though previous studies have used rTPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. Due to the fact that particle transfer is not wholly indicative of the chemical step, this method cannot be used to determine reaction rate constants in YADH. However, it is possible to determine the transition rate constant of the particle transfer, and the kinetic isotope effect of that step. This method provides a set of tools to determine kinetic isotope effects with the atomistic detail of molecular simulations.

  17. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    PubMed Central

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-01-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry. PMID:12226459

  18. Monoterpene alcohol metabolism: identification, purification, and characterization of two geraniol dehydrogenase isoenzymes from Polygonum minus leaves.

    PubMed

    Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro

    2012-01-01

    NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+). PMID:22878188

  19. Computational optimization of AG18051 inhibitor for amyloid-beta binding alcohol dehydrogenase enzyme

    NASA Astrophysics Data System (ADS)

    Marques, Alexandra T.; Antunes, Agostinho; Fernandes, Pedro A.; Ramos, Maria J.

    Amyloid-beta (Abeta) binding alcohol dehydrogenase (ABAD) is a multifunctional enzyme involved in maintaining the homeostasis. The enzyme can also mediate some diseases, including genetic diseases, Alzheimer's disease, and possibly some prostate cancers. Potent inhibitors of ABAD might facilitate a better clarification of the functions of the enzyme under normal and pathogenic conditions and might also be used for therapeutic intervention in disease conditions mediated by the enzyme. The AG18051 is the only presently available inhibitor of ABAD. It binds in the active-site cavity of the enzyme and reacts with the NAD+ cofactor to form a covalent adduct. In this work, we use computational methods to perform a rational optimization of the AG18051 inhibitor, through the introduction of chemical substitutions directed to improve the affinity of the inhibitor to the enzyme. The molecular mechanics-Poisson-Boltzmann surface area methodology was used to predict the relative free binding energy of the different modified inhibitor-NAD-enzyme complexes. We show that it is possible to increase significantly the affinity of the inhibitor to the enzyme with small modifications, without changing the overall structure and ADME (absorption, distribution, metabolism, and excretion) properties of the original inhibitor.

  20. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support.

    PubMed

    Shakir, Mohammad; Nasir, Zeba; Khan, Mohd Shoeb; Lutfullah; Alam, Md Fazle; Younus, Hina; Al-Resayes, Saud Ibrahim

    2015-01-01

    The covalent binding of yeast alcohol dehydrogenase (YADH) enzyme complex in a series of magnetic crystalline Ni-Co nanoferrites, synthesized via sol-gel auto combustion technique was investigated. The structural analysis, morphology and magnetic properties of Ni-Co nanoferrites were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The comparative analysis of the HRTEM micrographs of bare magnetic nanoferrite particles and particles immobilized with enzyme revealed an uniform distribution of the particles in both the cases without undergoing change in the size which was found to be in the range 20-30 nm. The binding of YADH to Ni-Co nanoferrites and the possible binding mechanism have been suggested by comparing the FTIR results. The binding properties of the immobilized YADH enzyme were also studied by kinetic parameters, optimum operational pH, temperature, thermal stability and reusability. The immobilized YADH exhibits enhanced thermal stability as compared to the free enzyme over a wide range of temperature and pH, and showed good durability after recovery by magnetic separation for repeated use. PMID:25450541

  1. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. PMID:21517848

  2. Stereoselective hydroxylation by CYP2C19 and oxidation by ADH4 in the in vitro metabolism of tivantinib.

    PubMed

    Nishiya, Yumi; Nakai, Daisuke; Urasaki, Yoko; Takakusa, Hideo; Ohsuki, Satoru; Iwano, Yuji; Yasukochi, Takanori; Takayama, Tomoko; Bazyo, Shohei; Oza, Chikahiro; Kurihara, Atsushi; Savage, Ronald E; Izumi, Takashi

    2016-11-01

    1. In prior studies, it has been shown that tivantinib is extensively metabolized in humans to many oxidative metabolites and glucuronides. In order to identify the responsible enzymes, we investigated the in vitro metabolism of tivantinib and its four major circulating metabolites. 2. The primary isoforms involved in the elimination of tivantinib were CYP2C19 and CYP3A4/5. CYP2C19 showed catalytic activity for the formation of M5 (hydroxylated metabolite), but not for M4 (a stereoisomer of M5), whereas CYP3A4/5 catalyzed the formation of both metabolites. For the elimination of M4, M5 and M8 (keto-metabolite), CYP3A4/5 was the major cytochrome P450 isoform and UGT1A9 was mainly involved in the glucuronidation of M4 and M5. 3. ADH4 was identified as one of the major alcohol dehydrogenase isoforms contributing to the formation of M6 (sequential keto-metabolite of M4 and M5) and M8. The substrate preference of ADH for M4, and not M5, was observed in the formation of M6. 4. In conclusion, CYP2C19, CYP3A4/5, UGT1A9 and ADH4 were the primary drug metabolizing enzymes involved in the in vitro metabolism of tivantinib and its metabolites. The stereoselective hydroxylation by CYP2C19 and substrate stereoselectivity of ADH4-catalyzed oxidation in the in vitro metabolism of tivantinib was discovered. PMID:26899628

  3. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes

    PubMed Central

    Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.

    2015-01-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677

  4. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    PubMed

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization. PMID:26595095

  5. Classical Raman spectroscopic studies of NADH and NAD+ bound to liver alcohol dehydrogenase by difference techniques

    SciTech Connect

    Chen, D.; Yue, K.T.; Martin, C.; Rhee, K.W.; Sloan, D.; Callender, R.

    1987-07-28

    We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a ''small'' molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.

  6. Characterization of transposable element-associated mutations that alter yeast alcohol dehydrogenase II expression.

    PubMed Central

    Williamson, V M; Cox, D; Young, E T; Russell, D W; Smith, M

    1983-01-01

    Seven cis-dominant, constitutively expressed mutations of the normally glucose-repressible isozyme of alcohol dehydrogenase (ADHII) from the yeast Saccharomyces cerevisiae are caused by insertion of transposable elements from the Ty1 family in front of the ADHII structural gene (ADR2) (V. M. Williamson, E. T. Young, and M. Ciriacy, Cell 23:605-614, 1981). We cloned ADR2 with its associated Ty1 element from five S. cerevisiae strains carrying these mutations. Comparison of the Ty1 elements by heteroduplex studies and restriction enzyme analyses indicated that four were very similar; the fifth, although the same size as the others (about 5.6 kilobases), differed by the presence of two large substitutions of approximately 1 and 2 kilobases. The DNA sequences of the terminal direct repeats (deltas) were very homologous but not identical and were similar to previously reported Ty1 element direct repeats. We determined the 5'-flanking sequences of the ADR2 gene isolated from a wild-type strain and from five Ty1-associated mutations. The 5-base pair target sequence at the site of Ty1 insertion was present at both ends of each Ty1 element. The sites of insertion of the elements were all different and occurred from 125 to 210 base pairs in front of the coding region of ADR2. The 5' end of the major transcript as determined by S1 mapping was the same in wild-type cells and in Ty1-associated constitutive mutants and was approximately 54 base pairs upstream from the coding region. ADR2 transcripts were not detected when a solo delta sequence was present in the 5'-flanking region of this gene. Images PMID:6298605

  7. Some properties of an alcohol dehydrogenase partially purified from baker's yeast grown without added zinc.

    PubMed Central

    Dickenson, C J; Dickinson, F M

    1976-01-01

    Alcohol dehydrogenase was partially purified from yeast (Saccharomyces cerevisiae) grown in the presence of 20 muM-MnSO4 without added Zn2+ and from yeast grown in the presence of 1.8 muM-MnSO4. The enzyme from yeast grown with added Zn2+ has the same properties as the crystalline enzyme from commercial supplies of baker's yeast. The enzyme from yeast grown without added An2+ has quite different properties. It has a mol.wt. in the region of 72000 and an S 20 w of 5.8S. The values can be compared with a mol.wt. of 141000 and an S 20 w of 7.6S for the crystalline enzyme. ADP-ribose, a common impurity in commercial samples of NAD+, is a potent competitive inhibitor of the new enzyme (K1 = 0.5 muM), but is not so for the crystalline enzyme. The observed maximum rate of ethanol oxidation at pH 7.05 and 25 degrees C was decreased 12-fold by the presence of 0.06 mol of inhibitor/mol of NAD+ when using the enzyme from Zn2+-deficient yeast, but with crystalline enzyme the maximum rate was essentially unchanged by this concentration of inhibitor. The kinetic characteristics for the two enzymes with ethanol, butan-1-ol, acetaldehyde and butyraldehyde as substrates are markedly different. These kinetic differences are discussed in relation to the mechanism of catalysis for the enzyme from Zn2+-deficient yeast. PMID:179534

  8. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2009-08-11

    Notwithstanding the relevance of their biological function, slow motions in proteins, beyond the microsecond range, are still poorly understood and often elusive. We propose that acrylamide quenching of Trp phosphorescence of deeply buried residues, when extended over the entire accessible range of lifetime measurements (tau > 10 micros), may help to unveil low-frequency protein motions that allow penetration of solute into the protein interior. The work examines in some detail acrylamide quenching of Trp phosphorescence in a model protein (liver alcohol dehydrogenase) over an extended submillimolar to molar acrylamide concentration range. The results, which encompass a >10(4)-fold variation in the quenching rate, provide the first evidence of a downward-curving lifetime Stern-Volmer plot, indicative of a nonlinear dependence of the quenching rate on the quencher concentration. From an analysis of saturation effects in terms of a protein-gated acrylamide diffusion mechanism, we infer two main routes for acrylamide to penetrate the globular fold and come into the proximity of internal W314: a low-frequency gate [36 s(-1) (at 25 degrees C)] tentatively assigned to partial opening of the dimer interface and a higher-frequency one (11800 s(-1)) tentatively assigned to a channel blocked by the side chains of V276 and L307. These motions are sharply inhibited in the rigid protein complexes formed with the coenzyme NAD(+) and the coenzyme analogue adenine diphosphate ribose, as well as by the frictional drag of the solvent in viscous glycerol solutions, evidence that rules out an alternative quenching mechanism involving acrylamide binding to the protein. PMID:19594170

  9. The Protective Effects of Buzui on Acute Alcoholism in Mice

    PubMed Central

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  10. Physiological Studies of Methane- and Methanol-Oxidizing Bacteria: Comparison of a Primary Alcohol Dehydrogenase from Methylococcus capsulatus (Texas Strain) and Pseudomonas Species M27

    PubMed Central

    Patel, R. N.; Bose, H. R.; Mandy, W. J.; Hoare, D. S.

    1972-01-01

    A primary alcohol dehydrogenase has been purified from Methylococcus capsulatus (Texas strain). The purified enzyme catalyzes the oxidation of methanol and formaldehyde to formate; other primary alcohols are oxidized to their corresponding aldehydes. Ammonium ions are required for enzyme activity. The enzyme has a molecular weight of 120,000 daltons and consists of two 62,000 molecular-weight subunits which dissociate at acidic pH. The enzyme is similar to an alcohol dehydrogenase enzyme isolated from Pseudomonas sp. M27. Images PMID:5022170

  11. Strong Protective Effect of The Aldehyde Dehydrogenase Gene (ALDH2) 504lys (*2) Allele Against Alcoholism And Alcohol-Induced Medical Diseases in Asians

    PubMed Central

    Li, Dawei; Zhao, Hongyu; Gelernter, Joel

    2013-01-01

    Alcohol is oxidized to acetaldehyde, which in turn is oxidized to acetate. The aldehyde dehydrogenase 2 gene (ALDH2) is the most important gene responsible for acetaldehyde metabolism. Individuals heterozygous or homozygous for the lys (A or *2) allele at the single nucleotide polymorphism (SNP) glu504lys (rs671) of ALDH2 have greatly reduced ability to metabolize acetaldehyde, which greatly decreases their risk for alcohol dependence (AD). Case-control studies have shown association between this SNP and alcohol dependence as well as alcohol-induced liver disease. However, some studies have produced insignificant results. Using cumulative data from the past 20 years predominately from Asian populations (from both English and Chinese publications), this meta-analysis sought to examine and update whether the aggregate data provide new evidence of statistical significance for the proposed association. Our results (9,678 cases and 7,331 controls from 53 studies) support a strong association of alcohol abuse and dependence, with allelic P value of 3×10−56 and OR of 0.23 (0.2, 0.28) under the random effects model. The dominant model (lys-lys + lys-glu vs. glu-glu) also showed strong association with P value of 1×10−44 and OR of 0.22 (0.18, 0.27). When stricter criteria and various sub-group analyses were applied, the association remained strong (for example, OR = 0.23 (0.18, 0.3) and P = 2×10−28 for the alcoholic patients with alcoholic liver disease, cirrhosis, or pancreatitis). These findings provide confirmation of the involvement of the human ALDH2 gene in the pathogenesis of AD as well as alcohol-induced medical illnesses in East-Asians. PMID:22102315

  12. The Cinnamyl Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2014-01-01

    Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme in lignin biosynthesis. However, little was known about CADs in melon. Five CAD-like genes were identified in the genome of melons, namely CmCAD1 to CmCAD5. The signal peptides analysis and CAD proteins prediction showed no typical signal peptides were found in all CmCADs and CmCAD proteins may locate in the cytoplasm. Multiple alignments implied that some motifs may be responsible for the high specificity of these CAD proteins, and may be one of the key residues in the catalytic mechanism. The phylogenetic tree revealed seven groups of CAD and melon CAD genes fell into four main groups. CmCAD1 and CmCAD2 belonged to the bona fide CAD group, in which these CAD genes, as representative from angiosperms, were involved in lignin synthesis. Other CmCADs were distributed in group II, V and VII, respectively. Semi-quantitative PCR and real time qPCR revealed differential expression of CmCADs, and CmCAD5 was expressed in different vegetative tissues except mature leaves, with the highest expression in flower, while CmCAD2 and CmCAD5 were strongly expressed in flesh during development. Promoter analysis revealed several motifs of CAD genes involved in the gene expression modulated by various hormones. Treatment of abscisic acid (ABA) elevated the expression of CmCADs in flesh, whereas the transcript levels of CmCAD1 and CmCAD5 were induced by auxin (IAA); Ethylene induced the expression of CmCADs, while 1-MCP repressed the effect, apart from CmCAD4. Taken together, these data suggested that CmCAD4 may be a pseudogene and that all other CmCADs may be involved in the lignin biosynthesis induced by both abiotic and biotic stresses and in tissue-specific developmental lignification through a CAD genes family network, and CmCAD2 may be the main CAD enzymes for lignification of melon flesh and CmCAD5 may also function in flower development. PMID:25019207

  13. Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and properties

    PubMed Central

    2014-01-01

    Background In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production). Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. Results Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the “bona-fide” CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber’s tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants’ development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. Conclusion The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and

  14. Hydroperoxidic inhibitor of horse liver alcohol dehydrogenase activity, tightly bound to the enzyme-NAD+ complex, characteristically degrades the coenzyme.

    PubMed

    Skurský, L; Rezác, M; Khan, A N; Zídek, L; Rocek, J

    1992-01-01

    The strong inhibition of horse liver alcohol dehydrogenase (HLAD) by p-methylbenzyl hydroperoxide (XyHP) is only transient, XyHP behaves also as a pseudo-substrate of the enzyme and in the presence of NAD+, is degraded by HLAD to (as yet unidentified) non-inhibiting products while the NAD+ is converted to a derivative similar to the "NADX", originally observed in an analogous reaction of HLAD with hydrogen peroxide. The apparent KM for XyHP is approximately 10(4) times smaller than that for H2O2. The catalytic constant kcat for HLAD degradation of XyHP is two orders of magnitude less than that for ethanol dehydrogenation. XyHP inhibits both directions of the alcohol-aldehyde interconversion with equal potency. The first step of the inhibition mechanism is a tight binding of XyHP to the binary HLAD-NAD+ complex. PMID:1284958

  15. Cloning and Overexpression of the als, pflA, and adhB Genes in Streptococcus thermophilus and Their Effects on Metabolite Formation.

    PubMed

    Akyol, Ismail; Ozcelik, Fatma Gul; Karakas-Sen, Asuman; Ozkose, Emin; Gezginc, Yekta; Ekinci, M Sait

    2015-10-01

    Streptococcus thermophilus is a lactic acid bacterium and used as starter culture in the dairy industry, mainly in the manufacture of yoghurt, with Lactobacillus delbrueckii subsp. bulgaricus. It produces lactic acid as a major fermentation end product and some carbonyl compounds through sugar metabolism. The level of metabolites could be improved using molecular biotechnology. The genes of als, encoding α-acetolactate synthase (Als), the pflA, encoding pyruvate-formate lyase activating enzyme (PflA), and the adhB which encodes alcohol dehydrogenase (AdhB) of S. thermophilus NCFB2393 strain were amplified by polymerase chain reaction and separately cloned into the overexpression vector pNZ276 under the control of the lacA promoter. The strains were transformed individually with the constructed plasmids. Their abilities to generate important metabolites such as pyruvate, lactate, formate, acetaldehyde, acetoin, ethanol, and 2,3-butanediol in LM17 medium were analyzed using high-performance liquid chromatography. High level of 2,3-butanediol was obtained by overexpressing the als gene. The level of formate increased slightly by overexpressing the pflA gene. The overexpression of the adhB gene, on the other hand, resulted in a significant increase in the ethanol level. PMID:26280324

  16. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  17. Reexamination of alcohol dehydrogenase structural mutants in Drosophila using protein blotting

    SciTech Connect

    Hollocher, H.; Place, A.R.

    1987-06-01

    Using protein blotting and an immuno-overlay procedure, the authors have reexamined the cross-reacting material produced by ADH null-activity mutants generated with ethyl methanesulfonate (EMS). Of the 13 mutants, 11 have an immunodetectable polypeptide of wild-type size. The native and urea denatured isoelectric points (pI) establish that 7 of 13 of the mutations have no effect on protein charge. The electrophoretic mobilities of each variant on increasing percent acrylamide gels (Ferguson analysis), reveal that 9 of the 11 immunodetectable mutations have retained the ability form dimers under native conditions. None of the inactive mutant proteins has the ability to form the adduct-bound isozyme. The authors have found no correlation between protein pI and i vivo stability. The observed frequencies of specific charge class alterations do not dispute the propensity of G:A transitions previously found for EMS mutagenesis.

  18. Sjögren-Larsson syndrome. Deficient activity of the fatty aldehyde dehydrogenase component of fatty alcohol:NAD+ oxidoreductase in cultured fibroblasts.

    PubMed Central

    Rizzo, W B; Craft, D A

    1991-01-01

    Sjögren-Larsson syndrome (SLS) is an inherited disorder associated with impaired fatty alcohol oxidation due to deficient activity of fatty alcohol:NAD+ oxidoreductase (FAO). FAO is a complex enzyme which consists of two separate proteins that sequentially catalyze the oxidation of fatty alcohol to fatty aldehyde and fatty acid. To determine which enzymatic component of FAO was deficient in SLS, we assayed fatty aldehyde dehydrogenase (FALDH) and fatty alcohol dehydrogenase in cultured fibroblasts from seven unrelated SLS patients. All SLS cells were selectively deficient in the FALDH component of FAO, and had normal activity of fatty alcohol dehydrogenase. The extent of FALDH deficiency in SLS cells depended on the aliphatic aldehyde used as substrate, ranging from 62% of mean normal activity using propionaldehyde as substrate to 8% of mean normal activity with octadecanal. FALDH activity in obligate SLS heterozygotes was partially decreased to 49 +/- 7% of mean normal activity using octadecanal as substrate. Differential centrifugation studies in fibroblasts indicated that this FALDH enzyme was largely particulate; soluble FALDH activity was normal in SLS cells. Intact SLS fibroblasts oxidized octadecanol to fatty acid at less than 10% of the normal rate, but oxidized free octadecanal normally, suggesting that the FALDH affected in SLS is chiefly involved in the oxidation of fatty alcohol to fatty acid. These results show that the primary enzymatic defect in SLS is the FALDH component of the FAO complex, which leads to deficient oxidation of fatty aldehyde derived from fatty alcohol. PMID:1939650

  19. Alcohol metabolizing genes and alcohol phenotypes in an Israeli household sample

    PubMed Central

    Meyers, Jacquelyn L.; Shmulewitz, Dvora; Aharonovich, Efrat; Waxman, Rachel; Frisch, Amos; Weizman, Abraham; Spivak, Baruch; Edenberg, Howard J.; Gelernter, Joel; Hasin, Deborah

    2013-01-01

    Background ADH1B and ADH1C variants have been robustly associated with alcohol phenotypes in East Asian populations but less so in non-Asian populations where prevalence of the most protective ADH1B allele is low (generally <5%). Further, the joint effects of ADH1B and ADH1C on alcohol phenotypes have been unclear. Therefore, we tested the independent and joint effects of ADH1B and ADH1C on alcohol phenotypes in an Israeli sample, with higher prevalence of the most protective ADH1B allele than other non-Asian populations. Methods A structured interview assessed lifetime drinking and alcohol use disorders (AUDs) in adult Israeli household residents. Four single nucleotide polymorphisms (SNPs) were genotyped: ADH1B (rs1229984, rs1229982, rs1159918) and ADH1C (rs698). Regression analysis examined the association between alcohol phenotypes and each SNP (absence vs. presence of the protective allele) as well as rs698/rs1229984 diplotypes (also indicating absence or presence of protective alleles) in lifetime drinkers (N=1,129). Results Lack of the ADH1B rs1229984 protective allele was significantly associated with consumption- and AUD-related phenotypes (OR=1.77 for AUD; OR=1.83 for risk drinking), while lack of the ADH1C rs698 protective allele was significantly associated with AUD-related phenotypes (OR=2.32 for AUD). Diplotype analysis indicated that jointly, ADH1B and ADH1C significantly influenced AUD-related phenotypes. For example, among those without protective alleles for ADH1B or ADH1C, OR for AUD was 1.87 as compared to those without the protective allele for ADH1B only and 3.16 as compared to those with protective alleles at both ADH1B and ADH1C. Conclusions This study adds support for the relationship of ADH1B and ADH1C to alcohol phenotypes in non-Asians. Further, these findings help clarify the mixed results from previous studies by showing that ADH1B and ADH1C jointly effect AUDs, but not consumption. Studies of the association of alcohol phenotypes and

  20. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese.

    PubMed

    Matsuo, Keitaro; Rossi, Marta; Negri, Eva; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Tanaka, Hideo; Tajima, Kazuo; La Vecchia, Carlo

    2012-03-01

    Folate consumption is inversely associated with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P<0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population. PMID:21946912

  1. Activity and electrophoretic profiles of liver aldehyde dehydrogenases from mice of inbred strains with different alcohol preference.

    PubMed

    Yamazaki, H; Nishiguchi, K; Miyamoto, R; Ogita, Z I; Nakanishi, S

    1983-01-01

    1. The activity of low Km-aldehyde dehydrogenase (ALDH) in the liver mitochondrial fraction (MT-fraction) from male C57BL/6J strain mice (alcohol preferring) was significantly higher than that from DBA/2 mice (alcohol avoiding). The F1 hybrids (C57BL/6J X DBA/2) did not exhibit the intermediate activity to these two strains. 2. Strain differences in liver mitochondrial ALDH isozymes were observed by isoelectric focusing. C57BL/6J strain had two isozymes at pH 7.1 while DBA/2 had no band at this pH. F1 hybrid mice had similar two bands with lower density to those of C57BL/6J at pH 7.1. There was no difference in zymograms of the soluble fraction between C57BL/6J and DBA/2 strains. 3. The present results suggest that the difference in alcohol preference of mice may depend on some restricted ALDH isozymes with different pl or electric mobility rather than the enzymatic activity in the liver MT-fraction. PMID:6822317

  2. DNA-histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter.

    PubMed Central

    Jackson, J R; Benyajati, C

    1993-01-01

    The alcohol dehydrogenase gene (Adh) of Drosophila melanogaster is transcribed from two tandem promoters in distinct developmental and tissue-specific patterns. Both promoters are regulated by separate upstream enhancer regions. In its wild-type context the adult enhancer specifically stimulates only the distal promoter, approximately 400 bp downstream, and not the proximal promoter, which is approximately 700 bp further downstream. Genomic footprinting and micrococcal nuclease analyses have revealed a specifically positioned nucleosome between the distal promoter and adult enhancer. In vitro reconstitution of this nucleosome demonstrated that DNA-core histone interactions alone are sufficient to position the nucleosome. Based on this observation and sequence periodicities in the underlying DNA, the mechanism of positioning appears to involve specific DNA structural features (ie flexibility or curvature). We have observed this nucleosome positioned early during development, before tissue differentiation, and before non-histone protein-DNA interactions are established at the distal promoter or adult enhancer. This nucleosome positioning element in the Adh regulatory region could be involved in establishing a specific tertiary nucleoprotein structure that facilitates specific cis-element accessibility and/or distal promoter-adult enhancer interactions. Images PMID:8451195

  3. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola's blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection.

    PubMed

    Hua, Erhui; Wang, Li; Jing, Xiaoying; Chen, Changtao; Xie, Guoming

    2013-07-15

    A novel strategy to simplify the dehydrogenase-based electrochemical biosensor fabrication through one-step drop-coating nanobiocomposite on a screen printed electrode (SPE) was developed. The nanobiocomposite was prepared by successively adding graphitized mesoporous carbons (GMCs), meldola's blue (MDB), alcohol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD(+)) in chitosan (CS) solution. MDB/GMCs/CS film was prepared. Cyclic voltammetry measurements demonstrated that MDB was strongly adsorbed on GMCs. After optimizing the concentration of MDB and the working potential, the MDB/GMCs/CS film presented a fast amperometric response (5s), excellent sensitivity (10.36 nA μM(-1)), wide linear range (10-410 μM) toward NADH and without any other interference signals (such as AA, UA, DA, H2O2 and metal ions). Furthermore, concentrations of ADH and NAD(+) in nanobiocomposite and the detection conditions (temperature and pH) were also optimized. The constructed disposable ethanol biosensor showed an excellent linear response ranged from 0.5 to 15 mM with high sensitivity (67.28 nA mM(-1)) and a low limit of detection (80 μM) and a remarkable long-term stability (40 days). The intra-batch and inter-batch variation coefficients were both less than 5% (n=5). The ethanol recovery test demonstrated that the proposed biosensor offered a remarkable and accurate method for ethanol detection in the real blood samples. PMID:23622540

  4. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells.

    PubMed

    Pennacchio, Angela; Rossi, Mosè; Raia, Carlo A

    2013-07-01

    The synthesis of the aroma chemical cinnamyl alcohol (CMO) by means of enzymatic reduction of cinnamaldehyde (CMA) was investigated using NADH-dependent alcohol dehydrogenase from Bacillus stearothermophilus both as an isolated enzyme, and in recombinant Escherichia coli whole cells. The influence of parameters such as reaction time and cofactor, substrate, co-substrate 2-propanol and biocatalyst concentrations on the bioreduction reaction was investigated and an efficient and sustainable one-phase system developed. The reduction of CMA (0.5 g/L, 3.8 mmol/L) by the isolated enzyme occurred in 3 h at 50 °C with 97% conversion, and yielded high purity CMO (≥98%) with a yield of 88% and a productivity of 50 g/genzyme. The reduction of 12.5 g/L (94 mmol/L) CMA by whole cells in 6 h, at 37 °C and no requirement of external cofactor occurred with 97% conversion, 82% yield of 98% pure alcohol and a productivity of 34 mg/gwet cell weight. The results demonstrate the microbial system as a practical and efficient method for larger-scale synthesis of CMO. PMID:23686507

  5. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    PubMed

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase. PMID:19807673

  6. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones.

    PubMed

    Rodríguez, Cristina; Borzęcka, Wioleta; Sattler, Johann H; Kroutil, Wolfgang; Lavandera, Iván; Gotor, Vicente

    2014-01-28

    Lactobacillus brevis ADH (LBADH) is an alcohol dehydrogenase that is commonly employed to reduce alkyl or aryl ketones usually bearing a methyl, an ethyl or a chloromethyl as a small ketone substituent to the corresponding (R)-alcohols. Herein we have tested a series of 24 acetophenone derivatives differing in their size and electronic properties for their reduction employing LBADH. After plotting the relative activity against the measured substrate volumes we observed that apart from the substrate size other effects must be responsible for the activity obtained. Compared to acetophenone (100% relative activity), other small substrates such as propiophenone, α,α,α-trifluoroacetophenone, α-hydroxyacetophenone, and benzoylacetonitrile had relative activities lower than 30%, while medium-sized ketones such as α-bromo-, α,α-dichloro-, and α,α-dibromoacetophenone presented relative activities between 70% and 550%. Moreover, the comparison between the enzymatic activity and the obtained final conversions using an excess or just 2.5 equiv. of the hydrogen donor 2-propanol, denoted again deviations between them. These data supported that these hydrogen transfer (HT) transformations are mainly thermodynamically controlled. For instance, bulky α-halogenated derivatives could be quantitatively reduced by LBADH even employing 2.5 equiv. of 2-propanol independently of their kinetic values. Finally, we found good correlations between the IR absorption band of the carbonyl groups and the degrees of conversion obtained in these HT processes, making this simple method a convenient tool to predict the success of these transformations. PMID:24302226

  7. Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD[superscript +] and Fluoroalcohols Define Strained Michaelis Complexes

    SciTech Connect

    Plapp, Bryce V.; Ramaswamy, S.

    2013-01-16

    Structures of horse liver alcohol dehydrogenase complexed with NAD{sup +} and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 {angstrom} resolution, providing estimates of atomic positions with overall errors of 0.02 {angstrom}, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 and Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 {angstrom}. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 {angstrom}) and participate in a low-barrier hydrogen bond (2.52 {angstrom}) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9{sup o} for C4N and 4.8{sup o} for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P){sup +}. It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.

  8. Characterization of a transient intermediate formed in the liver alcohol dehydrogenase catalyzed reduction of 3-hydroxy-4-nitrobenzaldehyde

    SciTech Connect

    MacGibbon, A.K.H.; Koerber, S.C.; Pease, K.; Dunn, M.F.

    1987-06-02

    The compounds 3-hydroxy-4-nitrobenzaldehyde and 3-hydroxy-4-nitrobenzyl alcohol are introduced as new chromophoric substrates for probing the catalytic mechanism of horse liver alcohol dehydrogenase (LADH). Ionization of the phenolic hydroxyl group shifts the spectrum of the aldehyde from 360 to 433 nm (pK/sub a/ = 6.0), whereas the spectrum of the alcohol shifts from 350 to 417 nm (pK/sub a/ = 6.9). Rapid-scanning, stopped-flow (RSSF) studies at alkaline pH show that the LADH-catalyzed interconversion of these compounds occurs via the formation of an enzyme-bound intermediate with a blue-shifted spectrum. When reaction is limited to a single turnover of enzyme sites, the formation and decay of the intermediate when aldehyde reacts with enzyme-bound reduced nicotinamide adenine dinucleotide E(NADH) are characterized by two relaxations. Detailed stopped-flow kinetic studies were carried out to investigate the disappearance of aldehyde and NADH, the formation and decay of the intermediate, the displacement of Auramine O by substrate, and /sup 2/H kinetic isotope effects. It was found that (1) NADH oxidation takes place at the rate of the slower relaxation (2) when NADD is substituted for NADH, lambda/sub s/ is subject to a small primary isotope effect; and (3) the events that occur in lambda/sub s/ precede lambda/sub f/. These findings identify the intermediate as a ternary complex containing bound oxidized nicotinamide adenine dinucleotide (NAD/sup +/) and some form of 3-hydroxy-4-nitrobenzyl alcohol. The authors conclude that the LADH substrate site can be divided into two subsites: a highly polar, electropositive subsite in the vicinity of the active-site zinc and, just a few angstroms away, a rather nonpolar region.

  9. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol.

    PubMed

    Meng, Fantao; Xu, Yan

    2010-04-01

    An anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol was purified by 26-fold to homogeneity. The enzyme had a homodimeric structure consisting of 49 kDa subunits, required NADPH, but not NADH, as a cofactor and was a Zn-independent short-chain dehydrogenase. Aliphatic methyl ketones (chain length > or =6 carbon atoms) and aromatic methyl ketones were the preferred substrates for the enzyme, the best being 2-octanone. Maximum enzyme activity with 2-octanone was at 45 degrees C and at pH 8.0. PMID:20035369

  10. Effects of Cavities at the Nicotinamide Binding Site of Liver Alcohol Dehydrogenase on Structure, Dynamics and Catalysis

    PubMed Central

    2015-01-01

    A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with “protein-promoting vibrations” (PPV). We find that the V207A substitution has small effects on steady-state kinetic constants and the rate of hydrogen transfer; the introduced cavity is empty and is tolerated with minimal effects on structure (determined at 1.2 Å for the complex with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to support a role for Val-207 in the dynamics of catalysis. The protein structures and ligand geometries (including donor–acceptor distances) in the V203A enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined at 1.1 Å) are very similar to those for the wild-type enzyme, except that the introduced cavity accommodates a new water molecule that contacts the nicotinamide ring. The structures of the V203A enzyme complexes suggest, in contrast to previous studies, that the diminished tunneling and decreased rate of hydride transfer (16-fold, relative to that of the wild-type enzyme) are not due to differences in ground-state ligand geometries. The V203A substitution may alter the PPV and the reorganization energy for hydrogen transfer, but the protein scaffold and equilibrium thermal motions within the Michaelis complex may be more significant for enzyme catalysis. PMID:24437493

  11. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity. PMID:18726959

  12. Conversion of alcohols to enantiopure amines through dual enzyme hydrogen-borrowing cascades

    PubMed Central

    Mutti, Francesco G.; Knaus, Tanja; Scrutton, Nigel S.; Breuer, Michael; Turner, Nicholas J.

    2016-01-01

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds on industrial scale. Here we present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on the combination of an alcohol dehydrogenase (ADHs from Aromatoleum sp., Lactobacillus sp. and Bacillus sp.) enzyme operating in tandem with an amine dehydrogenase (AmDHs engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols (up to 96% conversion and 99% enantiomeric excess). Furthermore, primary alcohols are aminated with high conversion (up to 99%). This redox self-sufficient network possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. PMID:26404833

  13. Cloning and expression of a putative alcohol dehydrogenase gene of Entamoeba histolytica and its application to immunological examination.

    PubMed Central

    Kimura, A; Hara, Y; Kimoto, T; Okuno, Y; Minekawa, Y; Nakabayashi, T

    1996-01-01

    To clone and express the genes encoding major antigens of Entamoeba histolytica, we constructed a lambda gt11 cDNA library for E. histolytica HM1:IMSS and screened it with pooled sera from patients with amoebiasis. A 1,223-bp cDNA was cloned (clone 1223), and its nucleotide sequence was determined. The amino acid sequence predicted to be encoded by the open reading frame of clone 1223 consisted of 396 residues and showed 32.5 and 32.3% homology to the NADH-dependent butanol dehydrogenases I and II (bdhA and bdhB) of Clostridium acetobutylicum, respectively. In addition, 29 of the 34 consensus positions of bdhA and bdhB were also well conserved in clone 1223. The recombinant protein expressed from clone 1223 had an estimated molecular mass of 43.5 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The antigenicity and specificity of the recombinant protein were evaluated by an enzyme-linked immunosorbent assay using sera obtained from two clinical groups of patients with amoebiasis and a group of healthy controls. The recombinant protein had potent and specific antigenicity. In all, 53 serum samples (88.3%) from 60 patients with amoebiasis were positive for immunoglobulin G antibody against the recombinant protein, with a mean optical density value of 0.42. In contrast, 53 of 54 healthy control serum samples were negative, with only 1 positive serum sample showing the lower optical density value. These results suggested that clone 1223 is promising in terms of providing a useful antigen for the accurate serodiagnosis of amoebiasis and that the gene encodes a putative alcohol dehydrogenase of E. histolytica. PMID:8705667

  14. Lysophosphatidylethanolamine Is a Substrate for the Short-Chain Alcohol Dehydrogenase SocA from Myxococcus xanthus▿ †

    PubMed Central

    Avadhani, Madhavi; Geyer, Roland; White, David C.; Shimkets, Lawrence J.

    2006-01-01

    Short-chain alcohol dehydrogenases (SCADHs) synthesize a variety of intercellular signals and other chemically diverse products. It is difficult to predict the substrate of a SCADH on the basis of amino acid sequence homology, as the substrates are not known for most SCADHs. In Myxococcus xanthus, the SCADH CsgA is responsible for C signaling during fruiting body development, although the mechanism is unclear. Overexpression of the SCADH SocA compensates for the lack of CsgA and restores development and C signaling in csgA mutants. The potential of SocA in generating the C signal enzymatically was explored by developing a dehydrogenase assay-based screen to purify the SocA substrate(s). A SocA substrate was extracted from M. xanthus cells with acidified ethyl acetate and sequentially purified by solid-phase extraction on silica gel and by reverse-phase high-performance liquid chromatography. The fraction with the highest SocA dehydrogenase activity contained the lysophospholipid 1-acyl 2-hydroxy-sn-glycerophosphoethanolamine (lyso-PE) as indicated by the fragment ions and a phosphatidylethanolamine-specific neutral loss scan following liquid chromatography coupled to mass spectrometry. The abundant lysophospholipid with the mass m/z 450 (molecular ion [M-H]−) had a monounsaturated acyl chain with 16 carbons. SocA oxidizes lyso-PE containing either saturated or unsaturated fatty acids but exhibits poor activity on l-α-glycerophosphorylethanolamine, suggesting that an acyl chain is important for activity. Of the five different head groups, only ethanolamine showed appreciable activity. The apparent Km and Vmax for lyso-PE 18:1 were 116 μM and 875 μmol min−1 mg−1, respectively. The catalytic efficiency (kcat/Km) was 1 × 108 M−1 s−1. The proposed product, 1-acyloxy-3-(2-aminoethylphosphatyl) acetone was unstable, and the fragmented products were unable to rescue csgA mutant development. The active fraction from thin-layer chromatography also contained an

  15. Protective effect of cordycepin-enriched Cordyceps militaris on alcoholic hepatotoxicity in Sprague-Dawley rats.

    PubMed

    Cha, Jae-Young; Ahn, Hee-Young; Cho, Young-Su; Je, Jae-Young

    2013-10-01

    This study was to investigate the protective effect of cordycepin-enriched Cordyceps militaris against alcohol-induced hepatotoxicity in Sprague-Dawley rats. Alcohol-feeding rats were fed diets with Paecilomyces japonica as CPJ group, C. militaris as CCM group, cordycepin-enriched C. militaris as CCMα group at the 3% (w/w) level and silymarin at the 0.1% (w/w) level for 4 weeks. Alcohol administration resulted in a significant increase in the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GTP), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) and the levels of blood alcohol and acetaldehyde in serum. However, CCMα group markedly prevented from alcohol-induced elevation of these parameters in serum. CCMα group showed the increased both hepatic activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). Unlike the action of alcohol treatment on alcoholic fatty liver, CCMα group was also attenuated lipid droplet accumulation in the hepatocytes. Present study was also confirmed the beneficial roles of silymarin (hepatoprotective agent) against alcohol-induced liver injury in rats. Therefore, cordycepin-enriched C. militaris can be a promising candidate to prevent from alcohol-induced hepatotoxicity. PMID:23876821

  16. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans

    PubMed Central

    Lemar, Katey M.; Passa, Ourania; Aon, Miguel A.; Cortassa, Sonia; Müller, Carsten T.; Plummer, Sue; O’Rourke, Brian; Lloyd, David

    2009-01-01

    Both the growth and respiration of Candida albicans are sensitive to extracts of Allium sativum and investigations into the anticandidal activities are now focussing on the purified constituents to determine the targets of inhibition. Of particular interest is allyl alcohol (AA), a metabolic product that accumulates after trituration of garlic cloves. Putative targets for AA were investigated by monitoring changes in intracellular responses after exposure of C. albicans cells to AA or a commercially available garlic extract. Two-photon laser scanning microscopy and other techniques were used. Changes typical of oxidative stress – NADH oxidation and glutathione depletion, and increased reactive oxygen species – were observed microscopically and by flow cytometry. Known targets for AA are alcohol dehydrogenases Adh1 and 2 (in the cytosol) and Adh3 (mitochondrial), although the significant decrease in NAD(P)H after addition of AA is indicative of another mechanism of action. PMID:16207909

  17. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.

    PubMed

    González-Guzmán, Miguel; Apostolova, Nadezda; Bellés, José M; Barrero, José M; Piqueras, Pedro; Ponce, María R; Micol, José L; Serrano, Ramón; Rodríguez, Pedro L

    2002-08-01

    Mutants able to germinate and perform early growth in medium containing a high NaCl concentration were identified during the course of two independent screenings and named salt resistant (sre) and salobreño (sañ). The sre and sañ mutants also were able to germinate in high-osmoticum medium, indicating that they are osmotolerant in a germination assay. Complementation analyses revealed that sre1-1, sre1-2, sañ3-1, and sañ3-2 were alleles of the abscisic acid (ABA) biosynthesis ABA2 gene. A map-based cloning strategy allowed the identification of the ABA2 gene and molecular characterization of four new aba2 alleles. The ABA2 gene product belongs to the family of short-chain dehydrogenases/reductases, which are known to be NAD- or NADP-dependent oxidoreductases. Recombinant ABA2 protein produced in Escherichia coli exhibits a K(m) value for xanthoxin of 19 micro M and catalyzes in a NAD-dependent manner the conversion of xanthoxin to abscisic aldehyde, as determined by HPLC-mass spectrometry. The ABA2 mRNA is expressed constitutively in all plant organs examined and is not upregulated in response to osmotic stress. The results of this work are discussed in the context of previous genetic and biochemical evidence regarding ABA biosynthesis, confirming the xanthoxin-->abscisic aldehyde-->ABA transition as the last steps of the major ABA biosynthetic pathway. PMID:12172025

  18. A genetic analysis of Adh1 regulation

    SciTech Connect

    Freeling, M.

    1992-01-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  19. Physiological Studies of Methane- and Methanol-Oxidizing Bacteria: Immunological Comparison of a Primary Alcohol Dehydrogenase from Methylococcus capsulatus and Pseudomonas sp. M27

    PubMed Central

    Patel, R. N.; Mandy, W. J.; Hoare, D. S.

    1973-01-01

    A primary alcohol dehydrogenase was purified from cell extracts of two apparently unrelated microorganisms, namely, Pseudomonas sp. M27 and Methylococcus capsulatus. Rabbit antiserum prepared against the purified enzyme from M. capsulatus revealed distinctive antigenic determinants by quantitative and gel precipitin reactions. Rabbit antiserum to M27 enzyme detected both distinctive and shared antigenic determinants. Certain methane- and methanol-oxidizing bacteria were grouped on the basis of serological cross-reacting enzyme specificities. Images PMID:4120569

  20. Aldehyde Dehydrogenase 2 (ALDH2) Polymorphism and the Risk of Alcoholic Liver Cirrhosis among East Asians: A Meta-Analysis

    PubMed Central

    He, Lei; Luo, Hesheng

    2016-01-01

    Purpose The aldehyde dehydrogenase 2 (ALDH2) gene has been implicated in the development of alcoholic liver cirrhosis (ALC) in East Asians. However, the results are inconsistent. In this study, a meta-analysis was performed to assess the associations between the ALDH2 polymorphism and the risk of ALC. Materials and Methods Relevant studies were retrieved by searching PubMed, Web of Science, CNKI, Wanfang and Veipu databases up to January 10, 2015. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using either the fixed- or random effects model. Results A total of twelve case-control studies included 1003 cases and 2011 controls were included. Overall, the ALDH2 polymorphism was associated with a decreased risk of ALC (*1/*2 vs. *1/*1: OR=0.78, 95% CI: 0.61–0.99). However, in stratification analysis by country, we failed to detect any association among Chinese, Korean or Japanese populations. Conclusion The pooled evidence suggests that ALDH2 polymorphism may be an important protective factor for ALC in East Asians. PMID:27189280

  1. Slowed Diffusion and Excluded Volume Both Contribute to the Effects of Macromolecular Crowding on Alcohol Dehydrogenase Steady-State Kinetics.

    PubMed

    Schneider, Samuel H; Lockwood, Schuyler P; Hargreaves, Dominique I; Slade, David J; LoConte, Micaela A; Logan, Bridget E; McLaughlin, Erin E; Conroy, Michael J; Slade, Kristin M

    2015-09-29

    To understand the consequences of macromolecular crowding, studies have largely employed in vitro experiments with synthetic polymers assumed to be both pure and "inert". These polymers alter enzyme kinetics by excluding volume that would otherwise be available to the enzymes, substrates, and products. Presented here is evidence that other factors, in addition to excluded volume, must be considered in the interpretation of crowding studies with synthetic polymers. Dextran has a weaker effect on the Michaelis-Menten kinetic parameters of yeast alcohol dehydrogenase (YADH) than its small molecule counterpart, glucose. For glucose, the decreased Vmax values directly correlate with slower translational diffusion and the decreased Km values likely result from enhanced substrate binding due to YADH stabilization. Because dextran is unable to stabilize YADH to the same extent as glucose, this polymer's ability to decrease Km is potentially due to the nonideality of the solution, a crowding-induced conformational change, or both. Chronoamperometry reveals that glucose and dextran have surprisingly similar ferricyanide diffusion coefficients. Thus, the reduction in Vmax values for glucose is partially offset by an additional macromolecular crowding effect with dextran. Finally, this is the first report that supplier-dependent impurities in dextran affect the kinetic parameters of YADH. Taken together, our results reveal that caution should be used when interpreting results obtained with inert synthetic polymeric agents, as additional effects from the underlying monomer need to be considered. PMID:26333028

  2. Identification and characterization of a mycobacterial NAD⁺-dependent alcohol dehydrogenase with superior reduction of diacetyl to (S)-acetoin.

    PubMed

    Takeda, Minoru; Anamizu, Shiori; Motomatsu, Shigekazu; Chen, Xue; Thapa Chhetri, Rajan

    2014-01-01

    An enzyme capable of reducing acetoin in the presence of NADH was purified from Mycobacterium sp. B-009, a non-clinical bacterial strain of soil origin. The enzyme is a homotetramer and can be classified as a medium-chain alcohol dehydrogenase/reductase based on the molecular weight of the monomer. Identification of the structural gene revealed a limited distribution of homologous genes only among actinomycetes. In addition to its activity as a reductase specific for (S)-acetoin (EC 1.1.1.76), the enzyme showed both diacetyl reductase (EC 1.1.1.304) and NAD(+)-dependent alcohol dehydrogenase (EC 1.1.1.1) activities. (S)-Acetoin and diacetyl reductases belong to a group of short-chain alcohol dehydrogenase/reductases but do not have superior abilities to dehydrogenate monoalcohols. Thus, the purified enzyme can be readily distinguished from other enzymes. We used the dual functionality of the enzyme to effectively reduce diacetyl to (S)-acetoin, coupled with the oxidation of 1-butanol. PMID:25082080

  3. Protective effect of heat-treated cucumber (Cucumis sativus L.) juice on alcohol detoxification in experimental rats.

    PubMed

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Ji-Eun; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    In this study, heat-treated cucumber juice was assessed for its protective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats. Initially, during detoxification of alcohol, all groups were orally dosed to 22% alcohol (6ml/kg body weight) along with different concentrations of heat-treated cucumber juice (10, 100 and 500mg/kg) and commercial goods for hangover-removal on sale (2ml/kg). Cucumber juice was dosed before 30 min, and simultaneously after 30min of alcohol administration, and its hepatoprotective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats was evaluated. As a result, after 7h, remarkable reduction was found in the blood alcohol levels for all concentrations of cucumber juice treatment. Treatment with cucumber juice resulted in increasing dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzymatic activities in rat liver at 9h after alcohol administration thereby stimulated blood alcohol metabolism as compared with control group. The effect of heat-treated cucumber juice on alcohol detoxification was observed only in the rats treated before 30min from alcohol administration. These findings indicate that heat-treated cucumber juice has significant protective effect on alcohol detoxification in experimental rats, suggesting its usefulness in the treatment of liver injury caused by alcohol consumption. PMID:27383492

  4. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts.

    PubMed

    Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury. PMID:27005619

  5. Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts

    PubMed Central

    Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin

    2016-01-01

    Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury. PMID:27005619

  6. Effects of the cofactor binding sites on the activities of secondary alcohol dehydrogenase (SADH).

    PubMed

    Wang, Tao; Chen, Xiangjun; Han, Jun; Ma, Sichun; Wang, Jianmei; Li, Xufeng; Zhang, Hui; Liu, Zhibin; Yang, Yi

    2016-07-01

    SADHs from Thermoanaerobacter ethanolicus are enzymes that, together with various cofactors, catalyze the reversible reduction of carbonyl compounds to their corresponding alcohols. To explore how cofactors bind to SADH, TeSADH was cloned in this study, and Ser(199) and Arg(200) were replaced by Tyr and Asp, respectively. Both sites were expected to be inside or adjacent to the cofactor-binding domain according to computational a prediction. Analysis of TeSADH activities revealed that the enzymatic efficiency (kcat/Km) of the S199Y mutant was noticeably enhanced using by NADH, NADPH as cofactors, and similar with that of wild-type using by NADP(+), NAD(+). Conversely, the activity of the R200D mutant significantly decreased with all cofactors. Furthermore, in yeast, the S199Y mutant substantially elevated the ethanol concentration compared with the wild type. Molecular dynamics simulation results indicated the H-bonding network between TeSADH and the cofactors was stronger for the S199Y mutant and the binding energy was simultaneously increased. Moreover, the fluorescence results indicated the S199Y mutant exhibited an increased preference for NAD(P)H, binding with NAD(P)H more compactly compared with wild type. PMID:27016086

  7. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH.

    PubMed Central

    Raya, R R; Kleeman, E G; Luchansky, J B; Klaenhammer, T R

    1989-01-01

    Lactobacillus acidophilus ADH is lysogenic and harbors an inducible prophage, phi adh. Bacteriophage were detected in cell lysates induced by treatment with mitomycin C or UV light. Electron microscopy of lysates revealed phage particles with a hexagonal head (62 nm) and a long, noncontractile, flexible tail (398 nm) ending in at last five short fibers. Phage phi adh was classified within Bradley's B1 phage group and the Siphoviridae family. The phi adh genome is a linear double-stranded DNA molecule of 41.7 kilobase pairs with cohesive ends: a physical map of the phi adh genome was constructed. A prophage-cured derivative of strain ADH, designated NCK102, was isolated from cells that survived UV exposure. NCK102 did not exhibit mitomycin C-induced lysis, but broth cultures lysed upon addition of phage. Phage phi adh produced clear plaques on NCK102 in media containing 10 mM CaCl2 at pH values between 5.2 and 5.5. A relysogenized derivative (NCK103) of NCK102 was isolated that exhibited mitomycin C-induced lysis and superinfection immunity to phage phi adh. Hybridization experiments showed that the phi adh genome was present in the ADH and NCK103 chromosomes, but absent in NCK102. These results demonstrated classic lytic and lysogenic cycles of replication for the temperate phage phi adh induced from L. acidophilus ADH. Phage phi adh also mediates transduction of plasmid DNA. Transductants of strain ADH containing pC194, pGK12, pGB354, and pVA797 were detected at frequencies in the range of 3.6 x 10(-8) to 8.3 x 10(-10) per PFU. Rearrangements or deletions were not detected in these plasmids as a consequence of transduction. This is the first description of plasmid transduction in the genus Lactobacillus. Images PMID:2508554

  8. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis.

    PubMed

    Sibout, Richard; Eudes, Aymerick; Mouille, Gregory; Pollet, Brigitte; Lapierre, Catherine; Jouanin, Lise; Séguin, Armand

    2005-07-01

    During lignin biosynthesis in angiosperms, coniferyl and sinapyl aldehydes are believed to be converted into their corresponding alcohols by cinnamyl alcohol dehydrogenase (CAD) and by sinapyl alcohol dehydrogenase (SAD), respectively. This work clearly shows that CAD-C and CAD-D act as the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by supplying both coniferyl and sinapyl alcohols. An Arabidopsis CAD double mutant (cad-c cad-d) resulted in a phenotype with a limp floral stem at maturity as well as modifications in the pattern of lignin staining. Lignin content of the mutant stem was reduced by 40%, with a 94% reduction, relative to the wild type, in conventional beta-O-4-linked guaiacyl and syringyl units and incorportion of coniferyl and sinapyl aldehydes. Fourier transform infrared spectroscopy demonstrated that both xylem vessels and fibers were affected. GeneChip data and real-time PCR analysis revealed that transcription of CAD homologs and other genes mainly involved in cell wall integrity were also altered in the double mutant. In addition, molecular complementation of the double mutant by tissue-specific expression of CAD derived from various species suggests different abilities of these genes/proteins to produce syringyl-lignin moieties but does not indicate a requirement for any specific SAD gene. PMID:15937231

  9. An enantioselective NADP(+)-dependent alcohol dehydrogenase responsible for cooxidative production of (3S)-5-hydroxy-3-methyl-pentanoic acid.

    PubMed

    Takeda, Minoru; Matsumura, Aline Tiemi; Kurosaki, Kaishi; Chhetri, Rajan Thapa; Motomatsu, Shigekazu; Suzuki, Ichiro; Sahabi, Danladi Mahuta

    2016-06-01

    A soil bacterium, Mycobacterium sp. B-009, is able to grow on racemic 1,2-propanediol (PD). The strain was revealed to oxidize 3-methyl-1,5-pentanediol (MPD) to 5-hydroxy-3-methyl-pentanoic acid (HMPA) during growth on PD. MPD was converted into an almost equimolar amount of the S-form of HMPA (S-HMPA) at 72%ee, suggesting the presence of an enantioselective MPD dehydrogenase (MPD-DH). As expected, an NADP(+)-dependent alcohol dehydrogenase, which catalyzes the initial step of MPD oxidation, was detected and purified from the cell-free extract. This enzyme was suggested to be a homodimeric medium-chain alcohol dehydrogenase/reductase (MDR). The catalytic and kinetic parameters indicated that MPD is the most suitable substrate for the enzyme. The enzyme was encoded by a 1047-bp gene (mpd1) and several mycobacterial strains were found to have putative MDR genes similar to mpd1. In a phylogenetic tree, MPD-DH formed an independent clade together with the putative MDR of Mycobacterium neoaurum, which produces opportunistic infections. PMID:26923741

  10. Genetic and Environmental Predictors of Alcohol Use in Asian American Young Adults

    PubMed Central

    Bujarski, Spencer; Lau, Anna S.; Lee, Steve S.; Ray, Lara A.

    2015-01-01

    Objective: Among Asian American young adults, variations in alcohol-metabolizing genes (i.e., aldehyde dehydrogenase [ALDH2] and alcohol dehydrogenase [ADH1B]) are protective, whereas Korean ethnicity, family history of alcohol problems (FH), and acculturation represent risk factors for alcohol misuse. This study aims to integrate these genetic and environmental factors in a sample of Asian Americans expressing a wide range of alcohol use behaviors and problems. Method: Participants were 97 Asian American young adults (42% female) recruited as heavy and light drinkers (n = 49 and 48, respectively). Participants completed the Alcohol Use Disorders Identification Test, Timeline Followback, Vancouver Acculturation Index, and Family Tree Questionnaire. All participants provided buccal cell samples for DNA analysis. Results: Family history–positive (FH+) subjects reported greater alcohol use than family history–negative (FH–) subjects. A FH × ALDH2 interaction was observed such that FH– subjects demonstrated no ALDH2 effect, yet in FH+ subjects, the ALDH2*2 genotype was associated with increased alcohol use. A significant main effect of acculturation was also moderated by FH such that the positive association between acculturation and alcohol use was greater among FH+ subjects and, in particular, among FH+ men. Conclusions: Although preliminary, these results suggest that the potential protective effects conferred by ALDH2 and ADH1B are moderated by FH, such that a positive FH appeared to abolish the protective effect of these genes. Further, acculturation was associated with greater alcohol use in FH+ subjects only. If replicated in larger samples, these data suggest that alcohol-metabolism genes may not be protective in the context of high environmental risk. PMID:26402349

  11. Separation of dehydrogenases on polyaminomethylstyrene.

    PubMed

    Schöpp, W; Meinert, S; Thyfronitou, J; Aurich, H

    1975-01-29

    The binding of dehydrogenases, especially alcohol dehydrogenase, and other proteins to several ion exchangers and hydrophobic polymers was investigated. Quantitative parameters for the stability of the polymer-protein complexes (obtained form double reciprocal plots) indicate a high but different affinity of many proteins for polyaminomethylstyrene. The chromatography of a mixture of five dehydrogenases and human serum albumin on polyaminomethylstyrene is described. PMID:237012

  12. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica.

    PubMed

    Gatter, Michael; Förster, André; Bär, Kati; Winter, Miriam; Otto, Christina; Petzsch, Patrick; Ježková, Michaela; Bahr, Katrin; Pfeiffer, Melanie; Matthäus, Falk; Barth, Gerold

    2014-09-01

    Nine potential (fatty) alcohol dehydrogenase genes and one alcohol oxidase gene were identified in Yarrowia lipolytica by comparative sequence analysis. All relevant genes were deleted in Y. lipolytica H222ΔP which is lacking β-oxidation. Resulting transformants were tested for their ability to accumulate ω-hydroxy fatty acids and dicarboxylic acids in the culture medium. The deletion of eight alcohol dehydrogenase genes (FADH, ADH1-7), which may be involved in ω-oxidation, led only to a slightly increased accumulation of ω-hydroxy fatty acids, whereas the deletion of the fatty alcohol oxidase gene (FAO1), which has not been described yet in Y. lipolytica, exhibited a considerably higher effect. The combined deletion of the eight (fatty) alcohol dehydrogenase genes and the alcohol oxidase gene further reduced the formation of dicarboxylic acids. These results indicate that both (fatty) alcohol dehydrogenases and an alcohol oxidase are involved in ω-oxidation of long-chain fatty acids whereby latter plays the major role. This insight marks the first step toward the biotechnological production of long-chain ω-hydroxy fatty acids with the help of the nonconventional yeast Y. lipolytica. The overexpression of FAO1 can be further used to improve existing strains for the production of dicarboxylic acids. PMID:24931727

  13. In vivo ethanol elimination in man, monkey and rat: A lack of relationship between the ethanol metabolism and the hepatic activities of alcohol and aldehyde dehydrogenases

    SciTech Connect

    Zorzano, A. ); Herrera, E. )

    1990-01-01

    The in vivo ethanol elimination in human subjects, monkeys and rats was investigated after an oral ethanol dosage. After 0.4 g. ethanol/kg of body weight, ethanol elimination was much slower in human subjects than in monkeys. In order to detect a rise in monkey plasma ethanol concentrations as early as observed in human subjects, ethanol had to be administered at a dose of 3 g/kg body weight. Ethanol metabolism in rats was also much faster than in human subjects. However, human liver showed higher alcohol dehydrogenase activity and higher low Km aldehyde dehydrogenase activity than rat liver. Thus, our data suggest a lack of relationship between hepatic ethanol-metabolizing activities and the in vivo ethanol elimination rate.

  14. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice

    PubMed Central

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-01-01

    Aim: To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Methods: Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1–3, respectively, and 18% in week 4–7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Results: Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Conclusion: Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system. PMID:24998256

  15. Alcohol discrimination and preferences in two species of nectar-feeding primate

    PubMed Central

    Brown, Michael B.; Dominy, Nathaniel J.

    2016-01-01

    Recent reports suggest that dietary ethanol, or alcohol, is a supplemental source of calories for some primates. For example, slow lorises (Nycticebus coucang) consume fermented nectars with a mean alcohol concentration of 0.6% (range: 0.0–3.8%). A similar behaviour is hypothesized for aye-ayes (Daubentonia madagascariensis) based on a single point mutation (A294V) in the gene that encodes alcohol dehydrogenase class IV (ADH4), the first enzyme to catabolize alcohol during digestion. The mutation increases catalytic efficiency 40-fold and may confer a selective advantage to aye-ayes that consume the nectar of Ravenala madagascariensis. It is uncertain, however, whether alcohol exists in this nectar or whether alcohol is preferred or merely tolerated by nectarivorous primates. Here, we report the results of a multiple-choice food preference experiment with two aye-ayes and a slow loris. We conducted observer-blind trials with randomized, serial dilutions of ethanol (0–5%) in a standard array of nectar-simulating sucrose solutions. We found that both species can discriminate varying concentrations of alcohol; and further, that both species prefer the highest available concentrations. These results bolster the hypothesized adaptive function of the A294V mutation in ADH4, and a connection with fermented foods, both in aye-ayes and the last common ancestor of African apes and humans. PMID:27493777

  16. In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer–Villiger monooxygenase

    PubMed Central

    Oberleitner, Nikolin; Peters, Christin; Rudroff, Florian; Bornscheuer, Uwe T.; Mihovilovic, Marko D.

    2014-01-01

    An artificial enzyme cascade composed of an alcohol dehydrogenase, an enoate reductase and a Baeyer–Villiger monooxygenase was investigated in vitro to gain deeper mechanistic insights and understand the assets and drawbacks of this multi-step biocatalysis. Several substrates composed of different structural motifs were examined and provided access to functionalized chiral compounds in high yields (up to >99%) and optical purities (up to >99%). Hence, the applicability of the presented enzymatic cascade was exploited for the synthesis of biorenewable polyesters. PMID:24746588

  17. Tryptophan in Alcoholism Treatment II:  Inhibition of the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevation of Blood Acetaldehyde Concentration and Induction of Aversion to Alcohol by Combined Administration of Tryptophan and Benserazide

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of the amino acid L-tryptophan (Trp) combined with the kynureninase inhibitor benserazide (BSZ) to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo and to induce aversion to alcohol. Methods: Trp, BSZ or both were administered to male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring acetaldehyde accumulation in blood after ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: Combined administration of Trp + BSZ, but neither compound alone, produced a strong inhibition of ALDH activity and an increase in blood acetaldehyde concentration after ethanol, and induced aversion to alcohol in rats and decreased preference in mice. Another kynureninase inhibitor, carbidopa, induced aversion to alcohol by itself, which was reversed by Trp co-administration. Conclusions: The present results establish a prior art for the use of a combination of Trp plus BSZ in the treatment of alcoholism by aversion, which merits rapid clinical development. PMID:21896551

  18. Sulfur-rich zinc chemistry: new tris(thioimidazolyl)hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase.

    PubMed

    Tesmer, M; Shu, M; Vahrenkamp, H

    2001-07-30

    The 1-substituted tris(2-thioimidazolyl)hydroborate ligands Tt(R) were prepared as the potassium salts from KBH(4) and the corresponding 1-R-2-thioimidazole for R = t-Bu and C(6)H(4)-p-CH(CH(3))(2) (Cum). Their reactions with zinc salts yielded the tetrahedral complexes Tt(R)Zn-X with X = F, Cl, ONO(2) and (Tt(t)()(-)(Bu))(2)Zn. With zinc perchlorate the labile perchlorate complexes Tt(R)Zn-OClO(3) were obtained. They served as starting materials for the incorporation of substrates which are relevant for the chemistry of horse liver alcohol dehydrogenase: Ethanol led to [Tt(t)()(-Bu)Zn.EtOH] ClO(4).EtOH, p-nitrophenol (NitOH) yielded Tt(Cum)Zn-ONit. Pyridine-2-carbaldehyde and salicylic aldehyde were incorporated as N(pyridine) and O(phenolate) coligands with possible additional O(aldehyde) coordination. Substituted pyridyl methanols (R-PyCH(2)OH) yielded the trinuclear complexes [(Tt(t)()(-Bu))(2)Zn(3)(R-PyCH(2)O)(2)] (ClO(4))(2) with bridging Tt and pyridylmethoxide ligands. Preliminary experiments on the functional modeling of alcohol dehydrogenase have shown that TtZn complexes promote both the dehydrogenation of 2-propanol and the hydrogenation of pentafluorobenzaldehyde. PMID:11466063

  19. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data

    PubMed Central

    Holmes, Michael V; Dale, Caroline E; Zuccolo, Luisa; Silverwood, Richard J; Guo, Yiran; Ye, Zheng; Prieto-Merino, David; Dehghan, Abbas; Trompet, Stella; Wong, Andrew; Cavadino, Alana; Drogan, Dagmar; Padmanabhan, Sandosh; Yesupriya, Ajay; Leusink, Maarten; Sundstrom, Johan; Hubacek, Jaroslav A; Pikhart, Hynek; Swerdlow, Daniel I; Panayiotou, Andrie G; Borinskaya, Svetlana A; Finan, Chris; Shah, Sonia; Kuchenbaecker, Karoline B; Shah, Tina; Engmann, Jorgen; Folkersen, Lasse; Eriksson, Per; Ricceri, Fulvio; Melander, Olle; Sacerdote, Carlotta; Gamble, Dale M; Rayaprolu, Sruti; Ross, Owen A; McLachlan, Stela; Vikhireva, Olga; Sluijs, Ivonne; Scott, Robert A; Adamkova, Vera; Flicker, Leon; van Bockxmeer, Frank M; Power, Christine; Marques-Vidal, Pedro; Meade, Tom; Marmot, Michael G; Ferro, Jose M; Paulos-Pinheiro, Sofia; Humphries, Steve E; Talmud, Philippa J; Leach, Irene Mateo; Verweij, Niek; Linneberg, Allan; Skaaby, Tea; Doevendans, Pieter A; Cramer, Maarten J; van der Harst, Pim; Klungel, Olaf H; Dowling, Nicole F; Dominiczak, Anna F; Kumari, Meena; Nicolaides, Andrew N; Weikert, Cornelia; Boeing, Heiner; Ebrahim, Shah; Gaunt, Tom R; Price, Jackie F; Lannfelt, Lars; Peasey, Anne; Kubinova, Ruzena; Pajak, Andrzej; Malyutina, Sofia; Voevoda, Mikhail I; Tamosiunas, Abdonas; Maitland-van der Zee, Anke H; Norman, Paul E; Hankey, Graeme J; Bergmann, Manuela M; Hofman, Albert; Franco, Oscar H; Cooper, Jackie; Palmen, Jutta; Spiering, Wilko; de Jong, Pim A; Kuh, Diana; Hardy, Rebecca; Uitterlinden, Andre G; Ikram, M Arfan; Ford, Ian; Hyppönen, Elina; Almeida, Osvaldo P; Wareham, Nicholas J; Khaw, Kay-Tee; Hamsten, Anders; Husemoen, Lise Lotte N; Tjønneland, Anne; Tolstrup, Janne S; Rimm, Eric; Beulens, Joline W J; Verschuren, W M Monique; Onland-Moret, N Charlotte; Hofker, Marten H; Wannamethee, S Goya; Whincup, Peter H; Morris, Richard; Vicente, Astrid M; Watkins, Hugh; Farrall, Martin; Jukema, J Wouter; Meschia, James; Cupples, L Adrienne; Sharp, Stephen J; Fornage, Myriam; Kooperberg, Charles; LaCroix, Andrea Z; Dai, James Y; Lanktree, Matthew B; Siscovick, David S; Jorgenson, Eric; Spring, Bonnie; Coresh, Josef; Buxbaum, Sarah G; Schreiner, Pamela J; Ellison, R Curtis; Tsai, Michael Y; Patel, Sanjay R; Redline, Susan; Johnson, Andrew D; Hoogeveen, Ron C; Hakonarson, Hakon; Rotter, Jerome I; Boerwinkle, Eric; de Bakker, Paul I W; Kivimaki, Mika; Asselbergs, Folkert W; Sattar, Naveed; Lawlor, Debbie A; Whittaker, John; Davey Smith, George; Mukamal, Kenneth; Psaty, Bruce M; Wilson, James G; Lange, Leslie A; Hamidovic, Ajna; Hingorani, Aroon D; Nordestgaard, Børge G; Bobak, Martin; Leon, David A; Langenberg, Claudia; Palmer, Tom M; Reiner, Alex P; Keating, Brendan J; Dudbridge, Frank

    2014-01-01

    Objective To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. Design Mendelian randomisation meta-analysis of 56 epidemiological studies. Participants 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. Main outcome measures Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. Results Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (−0.88 (−1.19 to −0.56) mm Hg), interleukin-6 levels (−5.2% (−7.8 to −2.4%)), waist circumference (−0.3 (−0.6 to −0.1) cm), and body mass index (−0.17 (−0.24 to −0.10) kg/m2). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). Conclusions Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for

  20. Differential phosphorylation of translation initiation regulators 4EBP1, S6k1, and Erk 1/2 following inhibition of alcohol metabolism in mouse heart.

    PubMed

    Vary, Thomas C; Lang, Charles H

    2008-03-01

    Acute alcohol intoxication leads to an inhibition of protein synthesis in heart that results in part through altered phosphorylation of protein factors controlling mRNA translation initiation. The purpose of the present set of experiments was designed to examine the effects of inhibitors of ethanol metabolism on the phosphorylation of 4E-binding protein (4EBP1) and S6k1(Thr(389)), two factors regulating mRNA translation initiation. Phosphorylation of 4E-BP1, S6k1(Thr(389)), and Erk 1/2 was reduced 2 h following IP injection of alcohol. Pretreatment with 4-methylpyrazole (4-MP), an inhibitor of alcohol dehydrogenase (ADH), did not attenuate the ethanol-induced decrease in phosphorylation of 4EBP1 and S6k1(Thr(389)). In contrast, 4-MP prevented the decrease in Erk 1/2 phosphorylation observed with acute ethanol intoxication. Pretreatment with cyanamide, an inhibitor of aldehyde dehydrogenase, did not attenuate the ethanol-induced decrease in phosphorylation S6k1(Thr(389)), but partially prevented the ethanol-induced lowering of 4EBP1 phosphorylation. The studies indicate that modulation of ethanol metabolism through inhibition of ADH or aldehyde dehydrogenase leads to preferential modulation of the phosphorylation of distinct myocardial signaling systems involved in regulating protein synthesis. PMID:18317950

  1. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Bihar, Eloїse; Deng, Yingxin; Miyake, Takeo; Saadaoui, Mohamed; Malliaras, George G.; Rolandi, Marco

    2016-06-01

    Breathalyzers estimate Blood Alcohol Content (BAC) from the concentration of ethanol in the breath. Breathalyzers are easy to use but are limited either by their high price and by environmental concerns, or by a short lifetime and the need for continuous recalibration. Here, we demonstrate a proof-of-concept disposable breathalyzer using an organic electrochemical transistor (OECT) modified with alcohol dehydrogenase (ADH) as the sensor. The OECT is made with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and is printed on paper. ADH and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized onto the OECT with an electrolyte gel. When the OECT-breathalyzer is exposed to ethanol vapor, the enzymatic reaction of ADH and ethanol transforms NAD+ into NADH, which causes a decrease in the OECT source drain current. In this fashion, the OECT-breathalyzer easily detects ethanol in the breath equivalent to BAC from 0.01% to 0.2%. The use of a printed OECT may contribute to the development of breathalyzers that are disposable, ecofriendly, and integrated with wearable devices for real-time BAC monitoring.

  2. A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor

    PubMed Central

    Bihar, Eloїse; Deng, Yingxin; Miyake, Takeo; Saadaoui, Mohamed; Malliaras, George G.; Rolandi, Marco

    2016-01-01

    Breathalyzers estimate Blood Alcohol Content (BAC) from the concentration of ethanol in the breath. Breathalyzers are easy to use but are limited either by their high price and by environmental concerns, or by a short lifetime and the need for continuous recalibration. Here, we demonstrate a proof-of-concept disposable breathalyzer using an organic electrochemical transistor (OECT) modified with alcohol dehydrogenase (ADH) as the sensor. The OECT is made with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and is printed on paper. ADH and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized onto the OECT with an electrolyte gel. When the OECT-breathalyzer is exposed to ethanol vapor, the enzymatic reaction of ADH and ethanol transforms NAD+ into NADH, which causes a decrease in the OECT source drain current. In this fashion, the OECT-breathalyzer easily detects ethanol in the breath equivalent to BAC from 0.01% to 0.2%. The use of a printed OECT may contribute to the development of breathalyzers that are disposable, ecofriendly, and integrated with wearable devices for real-time BAC monitoring. PMID:27291059

  3. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  4. Studies with cDNA probes on the in vivo effect of ethanol on expression of the genes of alcohol metabolism.

    PubMed

    Bond, S L; Singh, S M

    1990-01-01

    Mice (Mus musculus) from three genetic strains with variable responses to ethanol challenge (BALB/c, C57BL/6J and 129/ReJ) were used to evaluate the effect of ethanol feeding on hepatic mRNA specific to the two primary enzymes of ethanol metabolism; alcohol dehydrogenase (ADH; E.C. 1.1.1.1) and aldehyde dehydrogenase (ALDH; E.C. 1.2.1.3). Adh-1 (ADH) and Ahd-2 (ALDH) specific mRNA were evaluated on the livers of ethanol-fed mice and from their age, sex and genotype matched controls (using an isocaloric liquid diet). C57BL/6J (alcohol resistant) mice show a significant (approx. 200%) increase in ADH-1 mRNA levels after ethanol treatment, compared to their matched controls. BALB/c (alcohol sensitive) mice have approximately a 20% increase with ethanol treatment while 129/ReJ (alcohol sensitive) mice show a slight reduction in the ADH-1 specific mRNA following ethanol feeding. A strain-specific pattern is also apparent in the AHD-2 mRNA as a result of ethanol feeding in the experimental animals. C57BL/6J mice have an increase and BALB/c mice show no apparent change in the AHD-2 mRNA. 129/ReJ mice fed an ethanol diet, on the other hand, appear to have a decrease in the level of AHD-2 hepatic mRNA as compared to their matched controls. The relative mRNA levels of the two genes correlate well with the respective enzyme activity levels, but for mice on the control diet only. Ethanol feeding, which causes an apparent reduction in hepatic ADH enzyme activity in BALB/c and 129/ReJ and an apparent increase in ALDH activity in C57BL/6J (under the experimental protocols used) also alters the mRNA levels specific to the two genes. However, changes in the mRNA levels after ethanol feeding cannot be directly related to the changes seen in enzyme activity. The observed steady state level of AHD-2 mRNA and the increase in ALDH activity after ethanol feeding, which is unique to C57BL/6J mice, is expected to offer a faster clearance (metabolism) of acetaldehyde, the toxic metabolite

  5. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    PubMed Central

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  6. Toxicity of benzyl alcohol in adult and neonatal mice

    SciTech Connect

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD/sub 50/ was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. /sup 14/C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity.

  7. Alcohol

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Alcohol KidsHealth > For Teens > Alcohol Print A A A ... you can make an educated choice. What Is Alcohol? Alcohol is created when grains, fruits, or vegetables ...

  8. Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies1[C][W][OA

    PubMed Central

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T.

    2012-01-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. PMID:22645069

  9. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Winnier, Deidre A.; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A.; Hu, Shirley L.; Farook, Vidya S.; Coletta, Dawn K.; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D.; Arya, Rector; Carless, Melanie; Lehman, Donna M.; Curran, Joanne E.; Cromack, Douglas T.; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H. H.; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  10. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).

    PubMed

    Winnier, Deidre A; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A; Hu, Shirley L; Farook, Vidya S; Coletta, Dawn K; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D; Arya, Rector; Carless, Melanie; Lehman, Donna M; Curran, Joanne E; Cromack, Douglas T; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H H; DeFronzo, Ralph A; Jenkinson, Christopher P

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4)) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10(-60)) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9)), BMI (5.4 x 10(-6)), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  11. Establishment of the Tree Shrew as an Alcohol-Induced Fatty Liver Model for the Study of Alcoholic Liver Diseases

    PubMed Central

    Xing, Huijie; Jia, Kun; He, Jun; Shi, Changzheng; Fang, Meixia; Song, Linliang; Zhang, Pu; Zhao, Yue; Fu, Jiangnan; Li, Shoujun

    2015-01-01

    Currently, the pathogenesis of alcoholic liver diseases (ALDs) is not clear. As a result, there is no effective treatment for ALDs. One limitation is the lack of a suitable animal model for use in studying ALDs. The tree shrew is a lower primate animal, characterized by a high-alcohol diet. This work aimed to establish a fatty liver model using tree shrews and to assess the animals’ suitability for the study of ALDs. Tree shrews were treated with alcohol solutions (10% and 20%) for two weeks. Hemophysiology, blood alcohol concentrations (BACs), oxidative stress factors, alcohol metabolic enzymes and hepatic pathology were checked and assayed with an automatic biochemical analyzer, enzyme-linked immunosorbent assay (ELISA), western blot, hematoxylin-eosin (HE) staining and oil red O staining, and magnetic resonance imaging (MRI). Compared with the normal group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGT), total cholesterol (TC), triglyceride (TG), reactive oxygen species (ROS), and malondialdehyde (MDA) were significantly enhanced in alcohol-treated tree shrews. However, the activity of reduced glutathione hormone (GSH) and superoxide dismutase (SOD) declined. Notable changes in alcohol dehydrogenase(ADH1), aldehyde dehydrogenase(ALDH2), CYP2E1, UDP-glucuronosyl transferase 1A1 (UGT1A1) and nuclear factor erythroid-related factor 2 (Nrf2) were observed. HE and oil red O staining showed that hepatocyte swelling, hydropic degeneration, and adipohepatic syndrome occurred in the tree shrews. Alcohol can induce fatty liver-like pathological changes and result in alterations in liver function, oxidative stress factors, alcohol metabolism enzymes and Nrf2. Therefore, the established fatty liver model of tree shrews induced by alcohol should be a promising tool for the study of ALDs. PMID:26030870

  12. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.

    PubMed

    Nealon, Christopher M; Welsh, Travis P; Kim, Chang Sup; Phillips, Robert S

    2016-09-15

    Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (SADH) reduces aliphatic ketones according to Prelog's Rule, with binding pockets for small and large substituents. It was shown previously that the I86A mutant SADH reduces acetophenone, which is not a substrate of wild-type SADH, to give the anti-Prelog R-product (Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S. ChemCatChem2009, 1, 89-93.). However, I86A SADH did not reduce aryl ketones with substituents larger than fluorine. We have now expanded the small pocket of the active site of I86A SADH by mutation of Cys-295 to alanine to allow reaction of substituted acetophenones. As predicted, the double mutant I86A/C295A SADH has broadened substrate specificity for meta-substituted, but not para-substituted, acetophenones. However, the increase of the substrate specificity of I86A/C295A SADH is accompanied by a decrease in the kcat/Km values of acetophenones, possibly due to the substrates fitting loosely inside the more open active site. Nevertheless, I86A/C295A SADH gives high conversions and very high enantiomeric excess of the anti-Prelog R-alcohols from the tested substrates. PMID:27495738

  13. Reliability of a flushing questionnaire and the ethanol patch test in screening for inactive aldehyde dehydrogenase-2 and alcohol-related cancer risk.

    PubMed

    Yokoyama, A; Muramatsu, T; Ohmori, T; Kumagai, Y; Higuchi, S; Ishii, H

    1997-12-01

    Molecular epidemiology of esophageal and upper aerodigestive tract cancers revealed that alcohol is more carcinogenic in persons with inactive aldehyde dehydrogenase-2 (ALDH2) than in those with active ALDH2. A simple questionnaire has been developed to screen for the facial flushing that occurs in persons with inactive ALDH2 when they drink even a single glass of beer. In this study, 266 of 284 consecutive male Japanese clinic patients (age > or = 50 years) completed the flushing questionnaire, and 239 underwent the ethanol patch test (a cutaneous model for the flushing response). Blinded genotyping showed inactive ALDH2 for 94.4% (102 of 108) of subjects who reported always flushing (early in their drinking history or currently) and for 47.7% (21 of 44) of those who reported sometimes flushing, whereas 95.6% (109 of 114) of subjects reporting that they never exhibited facial flushing had active ALDH2. When all three categories of flushing (current always, former always, and sometimes) were collapsed into one, the questionnaire's sensitivity and specificity for identifying inactive ALDH2 were 96.1 and 79.0%, respectively, compared with 72.4 and 71.4% for the ethanol patch test. The results suggest the utility of this simple flushing questionnaire in daily practice, as well as large-scale studies to assess cancer risks associated with drinking and ALDH2 and for activities aimed at preventing alcohol-related cancer. PMID:9419411

  14. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.

    PubMed

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A

    2013-08-13

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  15. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula

    PubMed Central

    Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.

    2013-01-01

    There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113

  16. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08

    PubMed Central

    Wang, Yan; Zhai, A’guan; Zhang, Yanqi; Qiu, Kai; Wang, Jianhua; Li, Qinfan

    2016-01-01

    Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP)-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria. PMID:27196926

  17. Alcohol

    MedlinePlus

    ... Text Size: A A A Listen En Español Alcohol Wondering if alcohol is off limits with diabetes? Most people with diabetes can have a moderate amount of alcohol. Research has shown that there can be some ...

  18. Alcohol

    MedlinePlus

    If you are like many Americans, you drink alcohol at least occasionally. For many people, moderate drinking ... risky. Heavy drinking can lead to alcoholism and alcohol abuse, as well as injuries, liver disease, heart ...

  19. Alcoholic Lung Injury: Metabolic, Biochemical and Immunological Aspects

    PubMed Central

    Kaphalia, Lata; Calhoun, William J.

    2013-01-01

    Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway. Alcohol can also be metabolized by cytochrome P450 2E1 (CYP2E1), particularly during chronic alcohol abuse. Both the oxidative pathways, however, are associated with oxidative stress due to the formation of acetaldehyde and/or reactive oxygen species (ROS). Alcohol ingestion is also known to cause endoplasmic reticulum (ER) stress, which can be mediated by oxidative and/or non-oxidative metabolites of ethanol. An acute as well as chronic alcohol ingestions impair protective antioxidants, oxidize reduced glutathione (GSH, cellular antioxidant against ROS and oxidative stress), and suppress innate and adaptive immunity in the lungs. Oxidative stress and suppressed immunity in the lungs of chronic alcohol abusers collectively are considered to be major risk factors for infection and development of pneumonia, and such diseases as ARDS and COPD. Prior human and experimental studies attempted to identify common mechanisms by which alcohol abuse directly causes toxicity to alveolar epithelium and respiratory tract, particularly lungs. In this review, the metabolic basis of lung injury, oxidative and ER stress and immunosuppression in experimental models and alcoholic patients, as well as potential immunomodulatory therapeutic strategies for improving host defenses against alcohol-induced pulmonary infections are discussed. PMID:23892124

  20. Alcohol

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Alcohol KidsHealth > For Kids > Alcohol Print A A A Text Size What's in ... What Is Alcoholism? Say No en español El alcohol Getting the Right Message "Hey, who wants a ...

  1. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production. PMID:26350079

  2. Locus Adh of Drosophila melanogaster under selection for delayed senescence

    SciTech Connect

    Khaustova, N.D.

    1995-05-01

    Dynamics of the Adh activity and frequencies of alleles Adh{sup F} and Adh{sup S} were analyzed under selection for delayed senescence. The experiments were performed on Drosophila melanogaster. Lines Adh{sup S}cn and Adh{sup F}vg and experimental populations cn` and vg`, selected for an increased duration of reproductive period (late oviposition) were used. Analysis of fertility, longevity, viability and resistance to starvation showed that selection for late oviposition resulted in delayed senescence of flies of the experimental populations. Genetic structure of population vg` changed considerably with regard to the Adh locus. This was confirmed by parameters of activity, thermostability, and electrophoretic mobility of the enzyme isolated from flies after 30 generations of selection. Analysis of frequencies of the Adh alleles showed that in both selected populations, which initially had different genetic composition, accumulated allele Adh{sup S}, which encodes the isozyme that is less active but more resistant to inactivation. Genetic mechanism of delayed senescence in Drosophila is assumed to involve selection at vitally important enzyme loci, including Adh. 18 refs., 2 tabs., 4 figs.

  3. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.

    PubMed

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone--MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuteri), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  4. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure.

    PubMed

    Anderson, Nickolas A; Tobimatsu, Yuki; Ciesielski, Peter N; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S; Ladisch, Michael; Chapple, Clint

    2015-08-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. PMID:26265762

  5. Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates.

    PubMed

    Magomedova, Zalina; Grecu, Andreea; Sensen, Christoph W; Schwab, Helmut; Heidinger, Petra

    2016-03-10

    Biocatalysis has significant advantages over organic synthesis in the field of chiral molecule production and several types of stereoselective enzymes are already in use in industrial biotechnology. However, there is still a high demand for new enzymes capable of transforming bulky molecules with sufficient operability. In order to reveal novel high-potential biocatalysts, the complete genome of the β-proteobacterium Ralstonia eutropha H16 was screened for potential short-chain dehydrogenases/reductases (SDRs). We were able to identify two (S)-enantioselective SDRs named A5 and B3. These showed clear preference towards long-chain and aromatic secondary alcohols, aldehydes and ketones, with diaryl diketone benzil as one of the best substrates. In addition the phylogenetic analysis of all enzyme types, which are known to facilitate benzil reduction, revealed at least two separate evolutionary clusters. Our results indicate the biotechnological potential of SDRs A5 and B3 for the production of chiral compounds with potential commercial value. PMID:26812656

  6. 2-Butanol and Butanone Production in Saccharomyces cerevisiae through Combination of a B12 Dependent Dehydratase and a Secondary Alcohol Dehydrogenase Using a TEV-Based Expression System

    PubMed Central

    Ghiaci, Payam; Norbeck, Joakim; Larsson, Christer

    2014-01-01

    2-Butanol and its chemical precursor butanone (methyl ethyl ketone – MEK) are chemicals with potential uses as biofuels and biocommodity chemicals. In order to produce 2-butanol, we have demonstrated the utility of using a TEV-protease based expression system to achieve equimolar expression of the individual subunits of the two protein complexes involved in the B12-dependent dehydratase step (from the pdu-operon of Lactobacillus reuterii), which catalyze the conversion of meso-2,3-butanediol to butanone. We have furthermore identified a NADH dependent secondary alcohol dehydrogenase (Sadh from Gordonia sp.) able to catalyze the subsequent conversion of butanone to 2-butanol. A final concentration of 4±0.2 mg/L 2-butanol and 2±0.1 mg/L of butanone was found. A key factor for the production of 2-butanol was the availability of NADH, which was achieved by growing cells lacking the GPD1 and GPD2 isogenes under anaerobic conditions. PMID:25054226

  7. The intrinsic topological information of the wild-type and of up-promoter mutations of the Saccharomyces cerevisiae alcohol dehydrogenase II regulatory region.

    PubMed

    Della Seta, F; Camilloni, G; Venditti, S; Di Mauro, E

    1988-11-01

    A 569-base pair fragment encompassing the upstream regulatory region, the RNA initiation sites, and the initial part of the coding region of the Saccharomyces cerevisiae alcohol dehydrogenase II gene has been analyzed for the presence of sites which undergo conformational modification under torsional stress. Fine mapping of P1 and S1 endonuclease-sensitive sites was obtained on single topoisomers produced by in vitro ligation. It was shown that the upstream activator sequence, the TATA sequence, a region directly upstream to the RNA initiation sites, and several positions in the first segment of the transcribed region change conformation as a function of the applied torsional stress in a precisely coordinate fashion. The superhelical density optima for this coordinate modifications have been determined. Analysis of the conformational changes of the promoter sequence in several naturally occurring (Young, E. T., Williamson, V. M., Taguchi, A., Smith, M., Sledziewski, L., Russel, D., Osterman, J., Denis, C., Cox, D., and Beier, D., (1982) in Genetic Engineering of Microorganisms for Chemicals (Hollander, A., De Moss, R. D., Kaplan, S., Konisky, J., Savage, D., and Wolle, R. S., eds) pp. 335-361, Plenum Publishing Corp., New York) up-promoter constitutive mutants was performed. This analysis has shown that the conformation of functionally relevant sites changes as a function of sequence mutations that have taken place elsewhere; this shows that the conformational behavior of the whole promoter region is linked and suggests transmission in cis of topological effects in RNA polymerase II promoters. PMID:3053683

  8. Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure

    PubMed Central

    Anderson, Nickolas A.; Tobimatsu, Yuki; Ciesielski, Peter N.; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S.; Ladisch, Michael; Chapple, Clint

    2015-01-01

    Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. PMID:26265762

  9. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    SciTech Connect

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important component in making biofuels production from lignocellulosic biomass feasible.

  10. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification

    DOE PAGESBeta

    Chung, Daehwan; Verbeke, Tobin J.; Cross, Karissa L.; Westpheling, Janet; Elkins, James G.

    2015-07-22

    Compounds such as furfural and 5-hydroxymethylfurfural (5-HMF) are generated through the dehydration of xylose and glucose, respectively, during dilute-acid pretreatment of lignocellulosic biomass and are also potent microbial growth and fermentation inhibitors. The enzymatic reduction of these furan aldehydes to their corresponding, and less toxic, alcohols is an engineering approach that has been successfully implemented in both Saccharomyces cerevisiae and ethanologenicEscherichia coli, but has not yet been investigated in thermophiles relevant to biofuel production through consolidated bioprocessing (CBP). Developing CBP-relevant biocatalysts that are either naturally resistant to such inhibitors, or are amenable to engineered resistance, is therefore, an important componentmore » in making biofuels production from lignocellulosic biomass feasible.« less

  11. Mechanisms for dominance: Adh heterodimer formation in heterozygotes between ENU or x-ray induced null alleles and normal alleles in drosophila melanogaster

    SciTech Connect

    Jiang, J.C.; Lee, W.R.; Chang, S.H.; Silverman, H. )

    1992-01-01

    To study mechanisms for dominance of phenotype, eight ENU- and four x-ray-induced mutations at the alcohol dehydrogenase (Adh) locus were analyzed for partial dominance in their interaction with normal alleles. All ENU and one of the x-ray mutations were single base substitutions; the other three x-ray mutations were 9-21 base deletions. All but one of the 12 mutant alleles were selected for this study because they produced detectable mutant polypeptides, but seven of the 11 producing a peptide could not form dimers with the normal peptide and the enzyme activity of heterozygotes was about half that of normal homozygotes. Four mutations formed dimers with a decreased catalytic efficiency and two of these were near the limit of detectability; these two also inhibited the formation of normal homodimers. The mutant alleles therefore show multiple mechanisms leading to partial enzyme expression in heterozygotes and a wide range of dominance ranging from almost complete recessive to nearly dominant. All amino acid changes in mutant peptides that form dimers are located between amino acids 182 and 194, so this region is not critical for dimerization. It may, however, be an important surface domain for catalyzation. 34 refs., 8 figs., 2 tabs.

  12. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    PubMed

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27256876

  13. Impact of Dyrk1A level on alcohol metabolism.

    PubMed

    Renon, Marjorie; Legrand, Béatrice; Blanc, Etienne; Daubigney, Fabrice; Bokobza, Cindy; Mortreux, Marie; Paul, Jean-Louis; Delabar, Jean-Maurice; Rouach, Hélène; Andreau, Karine; Janel, Nathalie

    2016-09-01

    Alcoholic liver diseases arise from complex phenotypes involving many genetic factors. It is quite common to find hyperhomocysteinemia in chronic alcoholic liver diseases, mainly due to deregulation of hepatic homocysteine metabolism. Dyrk1A, involved in homocysteine metabolism at different crossroads, is decreased in liver of hyperhomocysteinemic mice. Here, we hypothesized that Dyrk1A contributes to alcohol-induced hepatic impairment in mice. Control, hyperhomocysteinemic and mice overexpressing Dyrk1A were fed using a Lieber-DeCarli liquid diet with or without ethanol (5% v/v ethanol) for one month, and liver histological examination and liver biochemical function tests were performed. Plasma alanine aminotransferase and homocysteine levels were significantly decreased in mice overexpressing Dyrk1A compared to control mice with or without alcohol administration. On the contrary, the mean plasma alanine aminotransferase and homocysteine levels were significantly higher in hyperhomocysteinemic mice than that of control mice after alcohol administration. Paraoxonase 1 and CYP2E1, two phase I xenobiotic metabolizing enzymes, were found increased in the three groups of mice after alcohol administration. However, NQO1, a phase II enzyme, was only found increased in hyperhomocysteinemic mice after alcohol exposure, suggesting a greater effect of alcohol in liver of hyperhomocysteinemic mice. We observed positive correlations between hepatic alcohol dehydrogenase activity, Dyrk1A and ADH4 protein levels. Importantly, a deleterious effect of alcohol consumption on hepatic Dyrk1A protein level was found. Our study reveals on the one hand a role of Dyrk1A in ethanol metabolism and on the other hand a deleterious effect of alcohol administration on hepatic Dyrk1A level. PMID:27216978

  14. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    PubMed

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2 displayed a

  15. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry

    PubMed Central

    Idewaki, Yasuhiro; Iwase, Masanori; Fujii, Hiroki; Ohkuma, Toshiaki; Ide, Hitoshi; Kaizu, Shinako; Jodai, Tamaki; Kikuchi, Yohei; Hirano, Atsushi; Nakamura, Udai; Kubo, Michiaki; Kitazono, Takanari

    2015-01-01

    Aldehyde dehydrogenase 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671) was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity) and drinking habits (lifetime abstainers vs. former or current drinkers) was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2). The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI)]: *1/*1 abstainers as the referent, 0.94 [0.76–1.16] in abstainers with *2, 1.00 [0.80–1.26] in *1/*1 drinkers, 0.71 [0.54–0.93] in drinkers with *2). Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28–6.13] in abstainers with *2, 1.89 [0.89–4.51] in *1/*1 drinkers, 2.35 [1.06–5.79] in drinkers with *2). In summary, patients with type 2 diabetes and ALDH2 *2

  16. [Classification of alcohol metabolizing enzymes and polymorphisms--specificity in Japanese].

    PubMed

    Harada, S

    2001-04-01

    Multiple forms and gene loci of human alcohol dehydrogenase (ADH EC: 1.2.1.3) and aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) in the major pathway of alcohol metabolism have been found and characterized in the last two decades. With the coenzyme NAD, these enzymes catalyze the reversible conversion of organic alcohols to ketones or aldehydes, and aldehyde to acetic acid. The ADH genes are mapped to chromosome 4p21-25, but the ALDH genes are localized at different chromosomes. The cytochrome P450 2E1 (CYP2E1) gene, which is mapped to chromosome 10q24.3-qter contributes also the conversion of ethanol to acetaldehyde. Genetic polymorphisms have been reported in these alcohol metabolizing enzymes. The metabolisms of alcohol and acetaldehyde in liver and blood after drinking alcohol are thought to be influenced by the interactive action of these enzymes. Amongst the five major classes of the ADH subunits (alpha, beta, gamma, pi, chi, sigma), beta and gamma subunits show genetic polymorphisms. Recently a new nomenclature for ALDH genes has been recommend based on divergent evolution and chromosomal mapping. Two major isoforms designated as cytosolic ALDH1 and mitochondrial ALDH2 can be distinguished by their electrophoretic and kinetic properties as well as by their subcellular localization. Mitochondrial ALDH2 is a major enzyme in the oxidation of acetaldehyde derived from ethanol metabolism. The catalytic deficiency of ALDH2 isozyme is responsible for flushing and other vasomotor symptoms caused by higher acetaldehyde levels after alcohol intake. So far, frequencies of the two alleles of ALDH2 in Mongoloid have been reported in the different population groups. The catalytic deficiency of ALDH2 is caused by a structural point mutation at amino acid position 487, where a substitution of Glu to Lys resulting from a transition of G (C) to A (T) at 1510 nucleotide from the initiation codon has occurred. Individuals deficient in ALDH2 activity refrain from excessive drinking

  17. Alcohol

    MedlinePlus

    ... as well as injuries, liver disease, heart disease, cancer, and other health problems. It can also cause problems at home, at work, and with friends. NIH: National Institute on Alcohol Abuse and Alcoholism

  18. Alcoholism.

    ERIC Educational Resources Information Center

    Caliguri, Joseph P., Ed.

    This extensive annotated bibliography provides a compilation of documents retreived from a computerized search of the ERIC, Social Science Citation Index, and Med-Line databases on the topic of alcoholism. The materials address the following areas of concern: (1) attitudes toward alcohol users and abusers; (2) characteristics of alcoholics and…

  19. Causal Role of Alcohol Consumption in an Improved Lipid Profile: The Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Vu, Khanh N.; Ballantyne, Christie M.; Hoogeveen, Ron C.; Nambi, Vijay; Volcik, Kelly A.; Boerwinkle, Eric; Morrison, Alanna C.

    2016-01-01

    Introduction Health benefits of low-to-moderate alcohol consumption may operate through an improved lipid profile. A Mendelian randomization (MR) approach was used to examine whether alcohol consumption causally affects lipid levels. Methods This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acetaldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, residing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B (apoB), and lipoprotein (a) (Lp(a)) levels were analyzed. Results Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed. Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower level of TG (p < 0.001), a 7.71 mg/dL lower level of total cholesterol (p = 0.007), a 10.3% higher level of HDL2-c (p = 0.007), a 6.87 mg/dL lower level of LDL-c (p = 0.012), a 7.4% lower level of sdLDL-c (p = 0.037), and a 3.5% lower level of apoB (p = 0.058, poverall = 0.022). Conclusions This study supports the causal role of regular low-to-moderate alcohol consumption in increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among EA. However, given the nonlinearity of the effect of alcohol consumption, even within the range of low-to-moderate drinking, increased consumption does not always result in a larger benefit. PMID:26849558

  20. Effects of endogenous antidiuretic hormone (ADH) on macrophage phagocytosis

    SciTech Connect

    Fernandez-Repollet, E.; Opava-Stitzer, S.; Tiffany, S.; Schwartz, A.

    1983-07-01

    Although several studies have indicated that antidiuretic hormone (ADH) enhances the phagocytic function of the reticuloendothelial system (RES) in shock syndromes, it remains unknown what influence ADH exerts upon the individual phagocytic components of this system. The present investigation was designed to evaluate the effects of endogenous ADH on the phagocytic activity of peritoneal macrophage cells. As a phagocytic stimuli, fluorescent methacrylate microbeads were injected intraperitoneally into Brattleboro (ADH deficient) and normal Long Evans rats in the presence and absence of exogenous ADH. Peritoneal cells were harvested 19-22 hr after the administration of the microbeads and the percent phagocytosis was determined in macrophage cells using a fluorescence-activated cell sorter (FACS II). Our results indicate that the percentage of peritoneal macrophages ingesting the fluorescent methacrylate microbeads was significantly reduced in the absence of ADH (Brattleboro rats: 5.4 +/- 0.6% versus Long Evans rats: 16.8 +/- 2.3%; p less than 0.001). In addition, our data demonstrate that exogenous administration of ADH significantly enhanced macrophage phagocytosis in Brattleboro (14.7 +/- 2.2%) and normal Long Evans (49.6 +/- 4.5%) rats. These data suggest, for the first time, that endogenous ADH might play a modulatory role in the phagocytic activity of a specific component of the RES, namely, the macrophage cell.

  1. High diversity and no significant selection signal of human ADH1B gene in Tibet

    PubMed Central

    2012-01-01

    Background ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia. Results The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed

  2. Structural of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the. pi. subunit

    SciTech Connect

    Hoeoeg, J.O.; von Bahr-Lindstroem, H.; Heden, L.O.; Holmquist, B.; Larsson, K.; Hempel, J.; Vallee, B.L.; Joernvall, H.

    1987-04-07

    The class II enzyme of human liver alcohol dehydrogenase was isolated, carboxymethylated, and cleaved with CNBr and proteolytic enzymes. Sequence analysis of peptides established structures corresponding to the ..pi.. subunit. Two segments from the C-terminal region unique to ..pi.. were selected for synthesis of oligodeoxyribonucleotide probes to screen a human liver cDNA library constructed in plasmid pT4. Sequence analysis of two identical hybridization-positive clones with cDNA inserts of about 2000 nucleotides gave the entire coding region of the ..pi.. subunit, a 61-nucleotide 5' noncoding region and a 741-nucleotide 3' noncoding region containing four possible polyadenylation sites. Translation of the coding region yields a 391-residue polypeptide, which in all regions except the C-terminal segment corresponds to the protein structure as determined directly by peptide analysis. With the class I numbering system, the exception concerns a residue exchange at position 368, the actual C-terminus which is Phe-374 by peptide data but a 12 residue extension by cDNA data, and possibly two further residue exchanges at positions 303 and 312. The size difference might indicate the existence of posttranslational modifications of the mature protein or, in combination with the residue exchanges, the existence of polymorphism at the locus for class II subunits. The ..pi.. subunit analyzed directly results in a 379-residue polypeptide and is the only class II size thus far known to occur in the mature protein. Comparison of the ..pi.. structure with those of the class I subunits (..cap alpha.., ..beta.., and ..gamma..) reveals a homology with extensive differences. Large variations in segments affecting relationships at the active site and the area of subunit interactions account for the significant alterations of enzymatic specificities and other properties that differentiate class II from class I enzymes.

  3. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels.

    PubMed

    Gabotti, Damiano; Negrini, Noemi; Morgutti, Silvia; Nocito, Fabio F; Cocucci, Maurizio

    2015-07-01

    Development of fruit flesh texture quality traits may involve the metabolism of phenolic compounds. This study presents molecular and biochemical results on the possible role played by cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) during ripening [S3, S4 I (pre-climacteric) and S4 III (climacteric) stages] of peach [Prunus persica (L.) Batsch] fruit with different flesh firmness [non-melting flesh (NMF) 'Oro A'/melting flesh (MF) 'Springcrest' and 'Sanguinella'] and color (blood-flesh Sanguinella). A total of 24 putative full-length PRUPE_CAD genes were identified (in silico analysis) in the peach genome. The most abundant CAD isoforms, encoded by genes located on scaffolds 8 and 6, were probed by specifically developed anti-PRUPE_CAD sc8 and by anti-FaCAD (PRUPE_CAD sc6) polyclonal antibodies, respectively. PRUPE_CAD sc8 proteins (SDS-PAGE and native-PAGE/western blot) appeared responsible for the CAD activity (in vitro/in-gel assays) that increased with ripening (parallel to PRUPE_ACO1 transcripts accumulation and ethylene evolution) only in the mesocarp of Oro A and blood-flesh Sanguinella. Accumulation of PRUPE_CAD sc8 transcripts (semi-quantitative RT-PCR) occurred in all three cultivars, but in Oro A and Springcrest it was not always accompanied by that of the related proteins, suggesting possible post-transcriptional regulation. Flesh firmness, as well as levels of lignin, total phenolics and, where present (Sanguinella), anthocyanins, declined with ripening, suggesting that, at least in the studied peach cultivars, CAD activity is related to neither lignification nor differences in flesh firmness (NMF/MF). Further studies are necessary to clarify whether the high levels of CAD activity/expression in Sanguinella play a role in determining the characteristics of this blood-flesh fruit. PMID:25534876

  4. A Nonsense Mutation in a Cinnamyl Alcohol Dehydrogenase Gene Is Responsible for the Sorghum brown midrib6 Phenotype1[W][OA

    PubMed Central

    Sattler, Scott E.; Saathoff, Aaron J.; Haas, Eric J.; Palmer, Nathan A.; Funnell-Harris, Deanna L.; Sarath, Gautam; Pedersen, Jeffrey F.

    2009-01-01

    brown midrib6 (bmr6) affects phenylpropanoid metabolism, resulting in reduced lignin concentrations and altered lignin composition in sorghum (Sorghum bicolor). Recently, bmr6 plants were shown to have limited cinnamyl alcohol dehydrogenase activity (CAD; EC 1.1.1.195), the enzyme that catalyzes the conversion of hydroxycinnamoyl aldehydes (monolignals) to monolignols. A candidate gene approach was taken to identify Bmr6. Two CAD genes (Sb02g024190 and Sb04g005950) were identified in the sorghum genome based on similarity to known CAD genes and through DNA sequencing a nonsense mutation was discovered in Sb04g005950 that results in a truncated protein lacking the NADPH-binding and C-terminal catalytic domains. Immunoblotting confirmed that the Bmr6 protein was absent in protein extracts from bmr6 plants. Phylogenetic analysis indicated that Bmr6 is a member of an evolutionarily conserved group of CAD proteins, which function in lignin biosynthesis. In addition, Bmr6 is distinct from the other CAD-like proteins in sorghum, including SbCAD4 (Sb02g024190). Although both Bmr6 and SbCAD4 are expressed in sorghum internodes, an examination of enzymatic activity of recombinant Bmr6 and SbCAD4 showed that Bmr6 had 1 to 2 orders of magnitude greater activity for monolignol substrates. Modeling of Bmr6 and SbCAD4 protein structures showed differences in the amino acid composition of the active site that could explain the difference in enzyme activity. These differences include His-57, which is unique to Bmr6 and other grass CADs. In summary, Bmr6 encodes the major CAD protein involved in lignin synthesis in sorghum, and the bmr6 mutant is a null allele. PMID:19363091

  5. Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha

    PubMed Central

    Dmytruk, Olena V; Dmytruk, Kostyantyn V; Abbas, Charles A; Voronovsky, Andriy Y; Sibirny, Andriy A

    2008-01-01

    Background The thermotolerant methylotrophic yeast Hansenula polymorpha is capable of alcoholic fermentation of xylose at elevated temperatures (45 – 48°C). Such property of this yeast defines it as a good candidate for the development of an efficient process for simultaneous saccharification and fermentation. However, to be economically viable, the main characteristics of xylose fermentation of H. polymorpha have to be improved. Results Site-specific mutagenesis of H. polymorpha XYL1 gene encoding xylose reductase was carried out to decrease affinity of this enzyme toward NADPH. The modified version of XYL1 gene under control of the strong constitutive HpGAP promoter was overexpressed on a Δxyl1 background. This resulted in significant increase in the KM for NADPH in the mutated xylose reductase (K341 → R N343 → D), while KM for NADH remained nearly unchanged. The recombinant H. polymorpha strain overexpressing the mutated enzyme together with native xylitol dehydrogenase and xylulokinase on Δxyl1 background was constructed. Xylose consumption, ethanol and xylitol production by the constructed strain were determined for high-temperature xylose fermentation at 48°C. A significant increase in ethanol productivity (up to 7.3 times) was shown in this recombinant strain as compared with the wild type strain. Moreover, the xylitol production by the recombinant strain was reduced considerably to 0.9 mg × (L × h)-1 as compared to 4.2 mg × (L × h)-1 for the wild type strain. Conclusion Recombinant strains of H. polymorpha engineered for improved xylose utilization are described in the present work. These strains show a significant increase in ethanol productivity with simultaneous reduction in the production of xylitol during high-temperature xylose fermentation. PMID:18651968

  6. Cloning and overexpression of an NADH-dependent alcohol dehydrogenase gene from Candida maris involved in (R)-selective reduction of 5-acetylfuro[2,3-c]pyridine.

    PubMed

    Kawano, Shigeru; Yano, Miho; Hasegawa, Junzo; Yasohara, Yoshihiko

    2011-01-01

    5-((R)-1-Hydroxyethyl)-furo[2,3-c]pyridine ((R)-FPH) is a useful chiral building block in the synthesis of pharmaceuticals. An NADH-dependent alcohol dehydrogenase (AFPDH) isolated from Candida maris catalyzed the reduction of 5-acetylfuro[2,3-c]pyridine (AFP) to (R)-FPH with 100% enantiomeric excess. The gene encoding AFPDH was cloned and sequenced. The AFPDH gene comprises 762 bp and encodes a polypeptide of 27,230 Da. The deduced amino acid sequence showed a high degree of similarity to those of other members of the short-chain alcohol dehydrogenase superfamily. The AFPDH gene was overexpressed in Escherichia coli under the control of the lac promoter. One L of the cultured broth of an E. coli transformant coexpressing AFPDH and the glucose dehydrogenase (GDH) gene reduced 250 g of AFP to (R)-FPH in an organic solvent two-phase system. Under coupling with NADH regeneration using 2-propanol, 1 L of the cultured broth of an E. coli transformant expressing the AFPDH gene reduced 150 g of AFP to (R)-FPH. The optical purity of the (R)-FPH formed was 100% enantiomeric excess under both reaction conditions. PMID:22056439

  7. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed. PMID:25267448

  8. Alcohol, genetics and risk of breast cancer in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.

    PubMed

    McCarty, Catherine A; Reding, Douglas J; Commins, John; Williams, Craig; Yeager, Meredith; Burmester, James K; Schairer, Catherine; Ziegler, Regina G

    2012-06-01

    We tested the hypothesis that genes involved in the alcohol oxidation pathway modify the association between alcohol intake and breast cancer. Subjects were women aged 55-74 at baseline from the screening arm of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Incident breast cancers were identified through annual health surveys. Controls were frequency matched to cases by age and year of entry into the trial. A self-administered food frequency questionnaire queried frequency and usual serving size of beer, wine or wine coolers, and liquor. Three SNPs in genes in the alcohol metabolism pathway were genotyped: alcohol dehydrogenase 2, alcohol dehydrogenase 3, and CYP2E1. The study included 1,041 incident breast cancer cases and 1,070 controls. In comparison to non-drinkers, the intake of any alcohol significantly increased the risk of breast cancer, and this risk increased with each category of daily alcohol intake (OR 2.01, 95% CI 1.14, 3.53) for women who drank three or more standard drinks per day. Stratification by genotype revealed significant gene/environment interactions. For the ADH1B gene, there were statistically significant associations between all levels of alcohol intake and risk of breast cancer (all OR > 1.34 and all lower CI > 1.01), while for women with the GA or AA genotype, there were no significant associations between alcohol intake and risk of breast cancer. Alcohol intake, genes involved in alcohol metabolism and their interaction increase the risk of breast cancer in post-menopausal women. This information could be useful for primary care providers to personalize information about breast cancer risk reduction. PMID:22331481

  9. Effects and action mechanisms of Korean pear (Pyrus pyrifolia cv. Shingo) on alcohol detoxification.

    PubMed

    Lee, Ho-Sun; Isse, Toyoshi; Kawamoto, Toshihiro; Woo, Hyun-Su; Kim, An Keun; Park, Jong Y; Yang, Mihi

    2012-11-01

    Korean pear (Pyrus pyrifolia cv. Shingo) has been used as a traditional medicine for alleviating alcohol hangover. However, scientific evidence for its effectiveness or mechanism is not clearly established. To investigate its mechanism of alcohol detoxification, both in vitro and in vivo studies were performed with an aldehyde dehydrogenase 2 (ALDH2) alternated animal model. The pear extract (10 mL/kg bw) was administered to Aldh2 normal (C57BL/6) and deficient (Aldh2 -/-) male mice. After 30 min, ethanol (1 g or 2 g/kg bw) was administered to the mice via gavage. Levels of alcohol and acetaldehyde in blood were quantified by GC/MS. First, it was observed that the pears stimulated both alcohol dehydrogenase (ADH) and ALDH activities by 2∼3-  and 1.3-fold in in vitro studies, respectively. Second, mouse PK data (AUC(∞) and C(max) ) showed that the pear extract decreased the alcohol level in blood regardless of ALDH2 genotype. Third, the pear increased the acetaldehyde level in blood in Aldh2 deficient mice but not in Aldh2 normal mice. Therefore, the consistent in vitro and in vivo data suggest that Korean pears stimulate the two key alcohol-metabolizing enzymes. These stimulations could be the main mechanism of the Korean pear for alcohol detoxification. Finally, the results suggest that polymorphisms of human ALDH2 could bring out individual variations in the effects of Korean pear on alcohol detoxification. PMID:22451246

  10. Alcohol.

    ERIC Educational Resources Information Center

    Schibeci, Renato

    1996-01-01

    Describes the manufacturing of ethanol, the effects of ethanol on the body, the composition of alcoholic drinks, and some properties of ethanol. Presents some classroom experiments using ethanol. (JRH)

  11. Isozyme multiplicity with anomalous dimer patterns in a class III alcohol dehydrogenase. Effects on the activity and quaternary structure of residue exchanges at "nonfunctional" sites in a native protein.

    PubMed

    Danielsson, O; Shafqat, J; Estonius, M; el-Ahmad, M; Jörnvall, H

    1996-11-19

    The isozymes of class III alcohol dehydrogenase/glutathione-dependent formaldehyde dehydrogenase from cod were characterized. They exhibited three unexpected properties of general interest. First, these dimeric isozymes, derived from two types of subunit (h and l, for high- and low-activity forms), were recovered from liver preparations in only the homodimeric ll and heterodimeric hl combinations. Dissociation and reassociation of the isolated hl form in vitro also resulted in lower yields of the hh than the ll homodimer, although class III subunits are usually freely associable over wide borders of divergence (human and Drosophila). The h and l primary structures show that both chain types are characteristic of class III enzymes, without large amino acid replacements at positions of known subunit interactions. Hence, the hh dimer partial restriction indicates nontraditional alterations at h-subunit interfaces. The structure provides a possible explanation, in the form of h-chain modifications that may influence the anchoring of a loop at positions of two potentially deamidative beta-aspartyl shifts at distant Asn-Gly structures. Second the ll and hl forms differ in enzymatic properties, having 5-fold different K(m) values for NAD+ at pH 8, different K(m) values for S-(hydroxymethyl)glutathione (10 versus 150 microM), and different specific activities (4.5 versus 41 units/mg), with ll resembling and hl deviating from human and other class III alcohol dehydrogenases. However, functional residues lining substrate and coenzyme pockets in the known conformations of homologous forms are largely identical in the two isozymes [only minor conservative exchanges of Val/Leu116, Val/Leu203, Ile/Val224, and Ile/Val269 (numbering system of the human class I enzyme)], again indicating effects from distantly positioned h-chain replacements. Third, the two isozymes differ a surprising amount in amino acid sequence (18%, the same as the piscine/ human difference), reflecting a

  12. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  13. False-positive breath-alcohol test after a ketogenic diet.

    PubMed

    Jones, A W; Rössner, S

    2007-03-01

    A 59-year-old man undergoing weight loss with very low calorie diets (VLCD) attempted to drive a car, which was fitted with an alcohol ignition interlock device, but the vehicle failed to start. Because the man was a teetotaller, he was surprised and upset by this result. VLCD treatment leads to ketonemia with high concentrations of acetone, acetoacetate and beta-hydroxybutyrate in the blood. The interlock device determines alcohol (ethanol) in breath by electrochemical oxidation, but acetone does not undergo oxidation with this detector. However, under certain circumstances acetone is reduced in the body to isopropanol by hepatic alcohol dehydrogenase (ADH). The ignition interlock device responds to other alcohols (e.g. methanol, n-propanol and isopropanol), which therefore explains the false-positive result. This 'side effect' of ketogenic diets needs further discussion by authorities when people engaged in safety-sensitive work (e.g. bus drivers and airline pilots) submit to random breath-alcohol tests. PMID:16894360

  14. Disruption of Circulation by Ethanol Promotes Fetal Alcohol Spectrum Disorder (FASD) in Medaka (Oryzias latipes) Embryogenesis

    PubMed Central

    Hu, Yuhui; Khan, Ikhlas A.; Dasmahapatra, Asok K.

    2008-01-01

    Japanese medaka (Oryzias latipes) embryos exposed to ethanol have developed craniofacial, cardiovascular and skeletal defects which can be compared with the phenotypic features of fetal alcohol spectrum disorder (FASD) observed in human. The present experiment was designed to show that the disruption in circulation by ethanol during embryogenesis is a potential cause of FASD. Fertilized eggs were exposed to ethanol (0, 100 and/or 400 mM) for 24 or 48 h at various developmental stages (Iwamatsu stages 4–30) and were analyzed at 6 day post fertilization (dpf). It was observed that controls and the embryos exposed to 100 mM ethanol were in circulating state; however, a significant number of embryos of stages 4–24 exposed to 400 mM ethanol had disrupted circulation. Compared to controls, protein and RNA contents were significantly reduced in non-circulating embryos. Lipid peroxidation (LPO) analysis was made at 3, 6, 24, 48, 96 and 144 hour post fertilization (hpf). LPO was increased with the advancement of morphogenesis; however, ethanol or the circulation status had no effect. We further analyzed alcohol dehydrogenase (Adh 5 and adh8) and aldehyde dehydrogenase (Aldh9A and Aldh1A2) enzyme mRNAs in the embryos exposed to 400 mM ethanol for 24h. A developmental stage specific reduction in these enzyme mRNAs by ethanol was observed. We conclude that ethanol-induced disruption in circulation during embryogenesis is a potential cause of the development of FASD features in medaka. PMID:18621148

  15. Exclusion of linkage between alcoholism and the MNS blood group region on chromosome 4q in multiplex families

    SciTech Connect

    Neiswanger, K.; Kaplan, B.; Hill, S.Y.

    1995-02-27

    Polymorphic DNA markers on the long arm of chromosome 4 were used to examine linkage to alcoholism in 20 multiplex pedigrees. Fifteen loci were determined for 124 individuals. Lod scores were calculated assuming both dominant and recessive disease modes of inheritance, utilizing incidence data by age and gender that allow for correction for variable age of onset and frequency of the disorder by gender. Under the assumption that alcoholism is homogeneous in this set of pedigrees, and that a recessive mode with age and gender correction is the most appropriate, the total lod scores for all families combined were uniformly lower than -2.0. This suggests an absence of linkage between the putative alcoholism susceptibility gene and markers in the region of the MNS blood group (4q28-31), a region for which we had previously found suggestive evidence of linkage to alcoholism. The 100 cM span of chromosome 4 studied includes the class I alcohol dehydrogenase (ADH) loci. Using the recessive mode, no evidence for linkage to alcoholism was found for the markers tested, which spanned almost the entire long arm of chromosome 4. Under the dominant mode, no evidence for linkage could be found for several of the markers. 36 refs., 1 fig., 3 tabs.

  16. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  17. Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH.

    PubMed

    Wallwey, Christiane; Matuschek, Marco; Li, Shu-Ming

    2010-02-01

    Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1). PMID:20039019

  18. Alcohol consumption and cognitive impairment in older men

    PubMed Central

    Hankey, Graeme J.; Yeap, Bu B.; Golledge, Jonathan; Flicker, Leon

    2014-01-01

    Objective: To determine whether alcohol consumption is causally associated with cognitive impairment in older men as predicted by mendelian randomization. Methods: Retrospective analysis of a cohort study of 3,542 community-dwelling men aged 65 to 83 years followed for 6 years. Cognitive impairment was established by a Mini-Mental State Examination score of 23 or less. Participants provided detailed information about their use of alcohol during the preceding year and were classified as abstainers, occasional drinkers, and regular drinkers: mild (<15 drinks/wk), moderate (15–27 drinks/wk), heavy (28–34 drinks/wk), and abusers (≥35 drinks/wk). We genotyped the rs1229984 G→A variant of the alcohol dehydrogenase 1B (ADH1B) gene, which is associated with lower prevalence of alcohol abuse and dependence. Other measures included age, education, marital status, smoking and physical activity, body mass index, diabetes, hypertension, and cardiovascular diseases. Results: At study entry, rs1229984 G→A polymorphism was associated with lower prevalence of regular use of alcohol and decreased consumption among regular users. Six years later, 502 men (14.2%) showed evidence of cognitive impairment. Abstainers and irregular drinkers had higher odds of cognitive impairment than regular drinkers (odds ratio [OR] = 1.23, 95% confidence interval [CI] = 1.00–1.51, after adjustment for other measured factors). The rs1229984 G→A polymorphism did not decrease the odds of cognitive impairment (AA/GG OR = 1.35, 95% CI = 0.29–6.27; GA/GG OR = 1.05, 95% CI = 0.71–1.55). Conclusions: Alcohol consumption, including heavy regular drinking and abuse, is not a direct cause of cognitive impairment in later life. Our results are consistent with the possibility, but do not prove, that regular moderate drinking decreases the risk of cognitive impairment in older men. PMID:24553426

  19. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.

    PubMed

    Verdone, L; Camilloni, G; Di Mauro, E; Caserta, M

    1996-05-01

    We have analyzed at both low and high resolution the distribution of nucleosomes over the Saccharomyces cerevisiae ADH2 promoter region in its chromosomal location, both under repressing (high-glucose) conditions and during derepression. Enzymatic treatments (micrococcal nuclease and restriction endonucleases) were used to probe the in vivo chromatin structure during ADH2 gene activation. Under glucose-repressed conditions, the ADH2 promoter was bound by a precise array of nucleosomes, the principal ones positioned at the RNA initiation sites (nucleosome +1), at the TATA box (nucleosome -1), and upstream of the ADR1-binding site (UAS1) (nucleosome -2). The UAS1 sequence and the adjacent UAS2 sequence constituted a nucleosome-free region. Nucleosomes -1 and +1 were destabilized soon after depletion of glucose and had become so before the appearance of ADH2 mRNA. When the transcription rate was high, nucleosomes -2 and +2 also underwent rearrangement. When spheroplasts were prepared from cells grown in minimal medium, detection of this chromatin remodeling required the addition of a small amount of glucose. Cells lacking the ADR1 protein did not display any of these chromatin modifications upon glucose depletion. Since the UAS1 sequence to which Adr1p binds is located immediately upstream of nucleosome -1, Adr1p is presumably required for destabilization of this nucleosome and for aiding the TATA-box accessibility to the transcription machinery. PMID:8628264

  20. Excess polymorphism at the Adh locus in Drosophila melanogaster.

    PubMed

    Kreitman, M E; Aguadé, M

    1986-09-01

    The evolutionary history of a region of DNA encompassing the Adh locus is studied by comparing patterns of variation in Drosophila melanogaster and its sibling species, D. simulans. An unexpectedly high level of silent polymorphism in the Adh coding region relative to the 5' and 3' flanking regions in D. melanogaster is revealed by a populational survey of restriction polymorphism using a four-cutter filter hybridization technique as well as by direct sequence comparisons. In both of these studies, a region of the Adh gene encompassing the three coding exons exhibits a frequency of polymorphism equal to that of a 4-kb 5' flanking region. In contrast, an interspecific sequence comparison shows a two-fold higher level of divergence in the 5' flanking sequence compared to the structural locus. Analysis of the patterns of variation suggest an excess of polymorphism within the D. melanogaster Adh locus, rather than lack of polymorphism in the 5' flanking region. An approach is outlined for testing neutral theory predictions about patterns of variation within and between species. This approach indicates that the observed patterns of variation are incompatible with an infinite site neutral model. PMID:3021568

  1. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  2. Susceptibility to alcohol-related liver injury.

    PubMed

    Lieber, C S

    1994-01-01

    Alcohol affects the liver through metabolic disturbances associated with its oxidation. Redox changes produced by the hepatic alcohol dehydrogenase pathway affect lipid, carbohydrate and protein metabolism. Ethanol is also oxidized in liver microsomes by the ethanol-inducible cytochrome P4502E1, resulting in ethanol tolerance and selective hepatic perivenular damage. Furthermore, P4502E1 activates various xenobiotics, explaining the increased susceptibility of the heavy drinker to the toxicity of anesthetics, commonly used medications (i.e. isoniazid), analgesics (i.e. acetaminophen), and chemical carcinogens. Induction of microsomal enzymes also contributes to vitamin A depletion, enhances its hepatotoxicity and results in increased acetaldehyde generation from ethanol, with formation of protein adducts, glutathione depletion, free-radical-mediated toxicity, and lipid peroxidation. Chronic ethanol consumption strikingly enhances the number of hepatic collagen-producing activated lipocytes. Both in vivo (in our baboon model of alcoholic cirrhosis) and in vitro (in cultured myofibroblasts and activated lipocytes) ethanol and/or its metabolite acetaldehyde increase collagen accumulation and mRNA for collagen. Gender differences are related, in part, to lower gastric ADH activity (with consequent reduction of first pass ethanol metabolism) in young women, decreased hepatic fatty acid binding protein and increased free-fatty acid levels as well as lesser omega-hydroxylation, all of which result in increased vulnerability to ethanol. Elucidation of the biochemical effects of ethanol are now resulting in improved therapy: in baboons, S-adenosyl-L-methionine attenuates the ethanol-induced glutathione depletion and associated mitochondrial lesions, and polyenylphosphatidylcholine opposes the ethanol-induced hepatic phospholipid depletion, the decrease in phosphatidylethanolamine methyltransferase activity and the activation of hepatic lipocytes, with full prevention of

  3. Functional Replacement of the Escherichia coli d-(−)-Lactate Dehydrogenase Gene (ldhA) with the l-(+)-Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici†

    PubMed Central

    Zhou, Shengde; Shanmugam, K. T.; Ingram, L. O.

    2003-01-01

    The microbial production of l-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of l-(+) and d-(−) isomers. For most uses of PLA, the l-(+) isomer is more abundant. As an approach to reduce costs associated with biocatalysis (complex nutrients, antibiotics, aeration, product purification, and waste disposal), a recombinant derivative of Escherichia coli W3110 was developed that contains five chromosomal deletions (focA-pflB frdBC adhE ackA ldhA). This strain was constructed from a d-(−)-lactic acid-producing strain, SZ63 (focA-pflB frdBC adhE ackA), by replacing part of the chromosomal ldhA coding region with Pediococcus acidilactici ldhL encoding an l-lactate dehydrogenase. Although the initial strain (SZ79) grew and fermented poorly, a mutant (SZ85) was readily isolated by selecting for improved growth. SZ85 exhibited a 30-fold increase in l-lactate dehydrogenase activity in comparison to SZ79, functionally replacing the native d-lactate dehydrogenase activity. Sequencing revealed mutations in the upstream, coding, and terminator regions of ldhL in SZ85, which are presumed to be responsible for increased l-lactate dehydrogenase activity. SZ85 produced l-lactic acid in M9 mineral salts medium containing glucose or xylose with a yield of 93 to 95%, a purity of 98% (based on total fermentation products), and an optical purity greater than 99%. Unlike other recombinant biocatalysts for l-lactic acid, SZ85 remained prototrophic and is devoid of plasmids and antibiotic resistance genes. PMID:12676706

  4. Liver proteomics in progressive alcoholic steatosis

    SciTech Connect

    Fernando, Harshica; Wiktorowicz, John E.; Soman, Kizhake V.; Kaphalia, Bhupendra S.; Khan, M. Firoze; Shakeel Ansari, G.A.

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  5. BETAINE FEEDING PREVENTS THE BLOOD ALCOHOL CYCLE IN RATS FED ALCOHOL CONTINUOUSLY FOR 1 MONTH USING THE RAT INTRAGASTRIC TUBE FEEDING MODEL

    PubMed Central

    Li, J; Li, XM; Caudill, M; Malysheva, O; Bardag-Gorce, F; Oliva, J; French, BA; Gorce, E; Morgan, K; Kathirvel, E; Morgan, T; French, SW

    2011-01-01

    Background Blood alcohol levels (BAL) cycle up and down over a 7–8 day period when ethanol is fed continuously for one month in the intragastric tube feeding rat model (ITFRM) of alcoholic liver disease. The cycling phenomenon is due to an alternating increase and decrease in the metabolic rate. Recently, we found that S-adenosyl-methionine (SAMe) fed with alcohol prevented the BAL cycle. Method Using the ITFRM we fed rats betaine (2 g/kg/day) with ethanol for 1 month and recorded the daily 24 h urine ethanol level (UAL) to measure the BAL cycle. UAL is equivalent to BAL because of the constant ethanol infusion. Liver histology, steatosis and BAL were measured terminally after 1 month of treatment. Microarray analysis was done on the mRNA extracted from the liver to determine the effects of betaine and alcohol on changes in gene expression. Results Betaine fed with ethanol completely prevented the BAL cycle similar to SAMe. Betaine also significantly reduced the BAL compared to ethanol fed rats without betaine. This was also observed when SAMe was fed with ethanol. The mechanism involved in both cases is that SAMe is required for the conversion of epinephrine from norepinephrine by phenylethanolamine methyltransferase (PNMT). Epinephrine is 5 to 10 fold more potent than norepinephrine in increasing the metabolic rate. The increase in the metabolic rate generates NAD, permitting ADH to increase the oxidation of alcohol. NAD is the rate limiting factor in oxidation of alcohol by alcohol dehydrogenase (ADH). This explains how SAMe and betaine prevented the cycle. Microarray analysis showed that betaine feeding prevented the up regulation of a large number of genes including TLR2/4, Il-1b, Jax3, Sirt3, Fas, Ifngr1, Tgfgr2, Tnfrsf21, Lbp and Stat 3 which could explain how betaine prevented fatty liver. Conclusion Betaine feeding lowers the BAL and prevents the BAL cycle by increasing the metabolic rate. This increases the rate of ethanol elimination by generating NAD

  6. ADH-PGE2 interactions in cortical collecting tubule. II. inhibition of Ca and P reabsorption.

    PubMed

    Holt, W F; Lechene, C

    1981-10-01

    In the absence of ADH, microperfused cortical collecting tubules of rabbits reabsorb calcium and phosphorus. Antidiuretic hormone (ADH) (200 microunits/ml Pitressin or synthetic arginine vasopressin) inhibits the reabsorption and may promote the secretion of calcium and phosphorus. At 5 min after incubation with ADH, there was a transitory increase in the potential difference and the reabsorption of sodium. The fluxes of calcium and phosphorus, however, showed no significant change from the control values. At 30-50 min after treatment with ADH, the reabsorption of calcium and phosphorus was inhibited and in some tubules calcium and phosphorus were secreted. The removal of vasopressin from the bath or the addition of 10(-5) M meclofenamate in vitro prevented ADH from inhibiting the reabsorption of calcium and phosphorus. Treatment of tubules with 10(-5) M prostaglandin E2 (PGE2) subsequent to incubation in a medium containing ADH and meclofenamate inhibited the reabsorption or even promoted the secretin of calcium and phosphorus, as did the prolonged incubation with ADH alone. We conclude that cortical collecting tubules reabsorb calcium and phosphorus in the absence of vasopressin and that ADH inhibits calcium and phosphorus reabsorption. Endogenous synthesis of PGE2 may mediate the inhibitory action of ADH, since meclofenamate (an inhibitor of the synthesis of prostaglandins) opposes and exogenous PGE2 mimics ADH. PMID:6947697

  7. Responses of reindeer to water loading, water restriction and ADH.

    PubMed

    Valtonen, M; Eriksson, L

    1977-07-01

    Two female reindeer were hydrated by administration of (10% of b.wt.) water into the rumen. The diuretic response was very fast and strong but the urea and electrolyte excretion were little affected. Dehydration was carried out by not giving the reindeer water for 48 h. This water deprivation caused a loss of up to 20% of their body weight. The urine osmolality did not exceed 840 mosm/kg H2O, although the plasma osmolality rose from 300 to 346 and 368 mosm/kg H2O respectively. The plasma and urine urea concentrations were elevated during dehydration, while the urine urea excretion did not increase. Urine sodium concentration did not increase. When the urine flow rate, after two days of water deprivation, decreased to half of the original, the urine Na+ concentrations, instead of increasing, went down to half of the original. So did the potassium excretion. When ADH was injected intravenously into hydrated animals a dose of 30 mU of ADH was needed to induce antidiuresis or increased excretion of potassium. The resistance to ADH and the low relative thickness of the medulla confirm the limited capacity of reindeer kidney to concentrate urine or to excrete a solute load. On the other hand, reindeer is able rapidly to excrete surplus water without affecting the electrolyte or nitrogen balance. PMID:920204

  8. Maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of recurrent pregnancy loss.

    PubMed

    Sata, F; Yamada, H; Kishi, R; Minakami, H

    2012-10-01

    Epidemiological studies have suggested that the condition of recurrent pregnancy loss (RPL) may be multifactorial, with both genetic predisposition and environmental factors potentially involved in its pathogenesis. The aim of this study is to elucidate the associations between maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of RPL. This case-control study, which involved 116 cases with two or more instances of RPL and 306 fertile controls, was performed in the city of Sapporo, Japan. The associations between eight single nucleotide polymorphisms of folate, alcohol and energy metabolism-related genes [methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), alcohol dehydrogenase 1B (ADH1B), aldehyde dehydrogenase 2 (ALDH2), beta-3-adrenergic receptor (ADRB3) and peroxisome proliferator-activated receptor gamma (PPARG)], and RPL were assessed. Without consideration of cigarette smoking or alcohol use, the risk of RPL significantly decreased in women with the MTHFR rs1801133 TT, MTR rs1805087 AG or ALDH2 rs671 AA genotype (P < 0.05). The risk of RPL associated with cigarette smoking and alcohol use decreased significantly in women carrying the MTHFR rs1801133 T allele [odds ratio (OR), 0.51; 95% confidence interval (CI), 0.27-0.95]. Similarly, the risk of RPL significantly decreased in women carrying the MTR rs1805087 G allele (OR, 0.44; 95% CI, 0.23-0.85). Our findings suggest that maternal gene polymorphisms related to folate metabolism may decrease the risk of RPL. Molecular epidemiological studies are needed to unequivocally elucidate the multifactorial effects of both genetic and environmental factors on human fecundity. PMID:25102261

  9. Induction of CYP2E1 in non-alcoholic fatty liver diseases.

    PubMed

    Aljomah, Ghanim; Baker, Susan S; Liu, Wensheng; Kozielski, Rafal; Oluwole, Janet; Lupu, Benita; Baker, Robert D; Zhu, Lixin

    2015-12-01

    Mounting evidence supports a contribution of endogenous alcohol metabolism in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is not known whether the expression of alcohol metabolism genes is altered in the livers of simple steatosis. There is also a current debate on whether fatty acids induce CYP2E1 in fatty livers. In this study, expression of alcohol metabolizing genes in the liver biopsies of simple steatosis patients was examined by quantitative real-time PCR (qRT-PCR), in comparison to biopsies of NASH livers and normal controls. Induction of alcohol metabolizing genes was also examined in cultured HepG2 cells treated with ethanol or oleic acid, by qRT-PCR and Western blots. We found that the mRNA expression of alcohol metabolizing genes including ADH1C, ADH4, ADH6, catalase and CYP2E1 was elevated in the livers of simple steatosis, to similar levels found in NASH livers. In cultured HepG2 cells, ethanol induced the expression of CYP2E1 mRNA and protein, but not ADH4 or ADH6; oleic acid did not induce any of these genes. These results suggest that elevated alcohol metabolism may contribute to the pathogenesis of NAFLD at the stage of simple steatosis as well as more severe stages. Our in vitro data support that CYP2E1 is induced by endogenous alcohol but not by fatty acids. PMID:26551085

  10. Delineation of Cis-Acting Sequences Required for Expression of Drosophila Mojavensis Adh-1

    PubMed Central

    Bayer, C. A.; Curtiss, S. W.; Weaver, J. A.; Sullivan, D. T.

    1992-01-01

    The control of expression of the Adh-1 gene of Drosophila mojavensis has been analyzed by transforming ADH null Drosophila melanogaster hosts with P element constructs which contain D. mojavensis Adh-1 having deletions of different extent in the 5' and 3' ends. Adh-1 expression in the D. melanogaster hosts is qualitatively similar to expression in D. mojavensis, although expression is quantitatively lower in transformants. Deletions of the 5' end indicate that information required for normal temporal and tissue expression in larvae is contained within 70 bp of the transcription start site. However, deletion constructs to -70 are deficient in ovarian nurse cell expression, whereas the additional upstream sequences present in constructs containing deletions to -257 do support expression in the ovary. Comparison of the nucleotide sequence in the -257 to -70 region of Adh-1 of four species: D. mojavensis and Drosophila arizona, which express Adh-1 in the ovary, and Drosophila mulleri and Drosophila navojoa, which do not, has led to the identification of regions of sequence similarity that correlate with ovary expression. One of these bears a striking similarity to a conserved sequence located upstream of the three heat shock genes that have constitutive ovarian expression and may be an ovarian control element. We have identified an aberrant aspect of Adh-1 expression. In transformants which carry an Adh-1 gene without a functional upstream Adh-2 gene Adh-1 expression continues into the adult stage instead of ceasing at the onset of metamorphosis. In transformants with a functional Adh-2 gene, Adh-1 expression ceases in the third larval instar stage and aberrant expression in the adult stage does not occur. PMID:1317314

  11. A genetic analysis of Adh1 regulation. Progress report, June 1991--February 1992

    SciTech Connect

    Freeling, M.

    1992-03-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  12. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  13. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene.

    PubMed

    Trcek, Janja

    2005-10-01

    Acetic acid bacteria (AAB) are well known for oxidizing different ethanol-containing substrates into various types of vinegar. They are also used for production of some biotechnologically important products, such as sorbose and gluconic acids. However, their presence is not always appreciated since certain species also spoil wine, juice, beer and fruits. To be able to follow AAB in all these processes, the species involved must be identified accurately and quickly. Because of inaccuracy and very time-consuming phenotypic analysis of AAB, the application of molecular methods is necessary. Since the pairwise comparison among the 16S rRNA gene sequences of AAB shows very high similarity (up to 99.9%) other DNA-targets should be used. Our previous studies showed that the restriction analysis of 16S-23S rDNA internal transcribed spacer region is a suitable approach for quick affiliation of an acetic acid bacterium to a distinct group of restriction types and also for quick identification of a potentially novel species of acetic acid bacterium (Trcek & Teuber 2002; Trcek 2002). However, with the exception of two conserved genes, encoding tRNAIle and tRNAAla, the sequences of 16S-23S rDNA are highly divergent among AAB species. For this reason we analyzed in this study a gene encoding PQQ-dependent ADH as a possible DNA-target. First we confirmed the expression of subunit I of PQQ-dependent ADH (AdhA) also in Asaia, the only genus of AAB which exhibits little or no ADH-activity. Further we analyzed the partial sequences of adhA among some representative species of the genera Acetobacter, Gluconobacter and Gluconacetobacter. The conserved and variable regions in these sequences made possible the construction of A. acetispecific oligonucleotide the specificity of which was confirmed in PCR-reaction using 45 well-defined strains of AAB as DNA-templates. The primer was also successfully used in direct identification of A. aceti from home made cider vinegar as well as for

  14. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase: evidence for a very divergent long-chain dehydrogenase family.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2003-02-01

    Mannitol 2-dehydrogenase from Pseudomonas fluorescens (pfMDH) is a secondary alcohol dehydrogenase that catalyzes the reversible NAD(P)-dependent oxidation of D-mannitol to D-fructose, D-arabinitol to D-xylulose, and D-sorbitol to L-sorbose. It is a member of the mostly prokaryotic family of long-chain mannitol dehydrogenases that so far includes 66 members. Unlike other alcohol and polyol dehydrogenases that utilize metal cofactors or a conserved active-site tyrosine for catalysis, an invariant lysine is the general base. The crystal structure of pfMDH in a binary complex with NAD(H) and a ternary complex with NAD(H) and D-mannitol have been determined to 1.7 and 1.8 A resolution respectively. Comparison of secondary structure assignment to sequence alignments suggest the shortest members of this family, mannitol-1-phosphate 5-dehydrogenases, retain core elements but lack secondary structural components found on the surface of pfMDH. The elements predicted to be absent are distributed throughout the primary sequence, implying that a simple truncation or fusion did not occur. The closest structural neighbors are 6-phosphogluconate dehydrogenase, UDP-glucose dehydrogenase, N-(1-D-carboxyethyl)-L-norvaline dehydrogenase, and glycerol-3-phosphate dehydrogenase. Although sequence identity is only a barely recognizable 7-10%, conservation of secondary structural elements as well as homologous residues that are contributed to the active site indicates they may be related by divergent evolution. PMID:12604241

  15. Mineral exploration, Mahd adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Worl, Ronald G.

    1978-01-01

    Mahd adh Dhahab is the largest of numerous ancient gold mines scattered through the Precambrian shield of Saudi Arabia and the only one with recent production. During the period 1939-54, 765,768 fine ounces of gold and 1,002,029 ounces of silver were produced from the mines by the Saudi Arabian Mining Syndicate. Ore minerals at Mahd adh Dhahab include free gold and silver, tellurides, sphalerite, and chalcopyrite in and associated with a system of north-trending quartz veins and quartz veinlet stockworks. Pyrite is a common sulfide gangue mineral. Country rocks are a north dipping sequence of pyroclastic and transported pyroclastic rocks of the Hulayfah Group that are locally highly silicified and potassium-feldspathized. The prime target for this exploration program was a north-trending zone of quartz veins and breccias, faults, alteration, and metalization approximately 400 m wide and 1000 m long. The ancient and recent mine workings are located in the northern part of this zone. Although the quartz veins and alteration cut all lithologies, the major metalization is confined to the intersection of veins and agglomerate. Ten holes were diamond drilled to explore geochemical, geological, and geophysical targets in the area. A significant new zone of metalization was discovered 700 m south of the ancient and recent mine workings and within the same major zone of quartz veins, alteration, and faults. Metalization in this southern mineralized zone is at the intersection of the quartz veins and a distinctive and highly altered agglomerate. The total zone of vein and agglomerate intercept is potentially metalized and comprises a block of ground 40 m thick and 400 m wide along the strike of the agglomerate and projected downdip 250 m. Tonnage of this block is 17.2 million tons. The explored zone, approximately 25 percent of the potentially metalized rock, has a potential resource of 1.1 million tons containing 27 g/t gold and 73 g/t silver.

  16. Alcohol Exposure In Utero and Child Academic Achievement*

    PubMed Central

    von Hinke Kessler Scholder, Stephanie; Wehby, George L; Lewis, Sarah; Zuccolo, Luisa

    2014-01-01

    We examine the effect of prenatal alcohol exposure on child academic achievement. We use a genetic variant in the maternal alcohol-metabolism gene ADH1B to instrument for alcohol exposure, whilst controlling for the child's genotype on the same variant. We show that the instrument is unrelated to an extensive range of parental characteristics and behaviour. OLS regressions suggest an ambiguous association between alcohol exposure and attainment but there is a strong social gradient in drinking, with mothers in higher socio-economic groups more likely to drink. In contrast to the OLS, the IV estimates show clear negative effects of prenatal alcohol exposure. PMID:25431500

  17. Alcohol depletes coenzyme-Q(10) associated with increased TNF-alpha secretion to induce cytotoxicity in HepG2 cells.

    PubMed

    Vidyashankar, Satyakumar; Nandakumar, Krishna S; Patki, Pralhad S

    2012-12-01

    Alcohol consumption has been implicated to cause severe hepatic steatosis which is mediated by alcohol dehydrogenase (ADH) activity and CYP(450) 2E1 expression. In this context, the effect of ethanol was studied for its influence on lipogenesis in HepG2 cell which is deficient of ADH and does not express CYP(450) 2E1. The results showed that ethanol at 100mM concentration caused 40% cytotoxicity at 72h as determined by MTT assay. The incorporation of labeled [2-(14)C] acetate into triacylglycerol and phospholipid was increased by 40% and 26% respectively upon 24h incubation, whereas incorporation of labeled [2-(14)C] acetate into cholesterol was not significantly increased. Further, ethanol inhibited HMG-CoA reductase which is a rate-limiting enzyme in the cholesterol biosynthesis. It was observed that, HMG-CoA reductase inhibition was brought about by ethanol as a consequence of decreased cell viability, since incubation of HepG2 cells with mevalonate could not increase the cholesterol content and increase the cell viability. Addition of ethanol significantly increased TNF-alpha secretion and depleted mitochondrial coenzyme-Q(10) which is detrimental for cell viability. But vitamin E (10mM) could partially restore coenzyme-Q(10) and glutathione content with decreased TNF-alpha secretion in ethanol treated cells. Further, lipid peroxidation, glutathione peroxidase and superoxide dismutase enzyme activities remained unaffected. Ethanol decreased glutathione content while, GSH/GSSG ratio was significantly higher compared to other groups showing cellular pro-oxidant and antioxidant balance remained intact. Alanine amino transferase activity was increased by 4.85 folds in cells treated with ethanol confirming hepatocyte damage. Hence, it is inferred that ethanol induced cytotoxicity in HepG2 cells due to coenzyme-Q(10) depletion and increased TNF-alpha secretion. PMID:22841563

  18. [Changes in antidiuretic hormone (ADH) in liver cirrhosis with resistant ascites].

    PubMed

    Marenco, G; Giudici Cipriani, A; Folco, U; Colombo, P; Menardo, G; Cattana, A; Barbetti, V; Rembado, R

    1989-09-01

    The pathogenetic role of ADH in determining hyponatremia in patients with liver cirrhosis is still much debated. Osmotic stimuli are not able to inhibit secretion of ADH in refractory ascites and under such conditions the reduction in effective plasma volume has been put forward as the main cause. Twenty patients with liver cirrhosis and refractory ascites were studied before and during extraction-concentration-reinfusion (ECR) of ascitic fluid by means of Rhodiascit. ADH, renin, aldosterone, blood and urine osmolarity, plasma and urinary concentration of sodium, potassium, chlorine, and the clearance of free water were evaluated. All patients presented high renin values (15.4 +/- 11.7 ng/ml), aldosterone (341 +/- 172 ng/ml), ADH (6.3 +/- 5.2 pg/ml). During ECR, a significant drop was observed in renin (p less than 0.001), aldosterone (p less than 0.001) urinary osmolarity (p less than 0.001) and an equality significant increase in diuresis (p less than 0.001), natriuria (p less than 0.005), kaliuria (p less than 0.001) while ADH presented an irregular course: in 11 cases it remained unchanged, in 3 it fell and in 6 it presented a constant increase. To conclude, data suggest that the diminished filtrate reaching the distal tubule constitutes the greatest cause of the inability to dilute urine in many patients with cirrhosis and that ADH is a permissive rather than a primary factor. PMID:2682381

  19. Effect of ADH on rubidium transport in isolated perfused rat cortical collecting tubules

    SciTech Connect

    Schafer, J.A.; Troutman, S.L.

    1986-06-01

    Unidirectional fluxes of 86Rb+ were measured as an indicator of potassium transport in isolated rat cortical collecting tubules perfused and bathed at 38 degrees C with isotonic solutions in which Rb+ replaced K+. Under control conditions the lumen-to-bath flux (Jl----b) was significantly less than the bath-to-lumen flux (Jb----l), indicating net Rb+ secretion. Net secretion increased approximately 180% after addition of 100 microU/ml of arginine vasopressin (ADH) to the bathing solution, due to a rapid and reversible increase in Jb----l from 4.6 +/- 0.8 to 9.0 +/- 1.9 pmol X min-1 X mm-1 with no significant change in Jl----b. The ADH effect was completely inhibited by 2 mM luminal Ba2+. The average transepithelial voltage (Ve) was not significantly different from zero in the control period but became lumen negative (-5 to -10 mV) after ADH. With 10(-5) M amiloride in the lumen Ve was lumen positive (+2 to +4 mV) and was unaltered by ADH or Ba2+, yet ADH produced a significant but attentuated increase in Jb----l with no change in Jl----b. The results indicate that ADH augments net K+ secretion either by an increase in the Ba2+-sensitive conductance of the apical membrane or by an increase in the electrochemical potential driving force for net Rb+ secretion through this pathway.

  20. Dynamic structures of horse liver alcohol dehydrogenase (HLADH): results of molecular dynamics simulations of HLADH-NAD(+)-PhCH(2)OH, HLADH-NAD(+)-PhCH(2)O(-), and HLADH-NADH-PhCHO.

    PubMed

    Luo, J; Bruice, T C

    2001-12-01

    Molecular dynamics simulations of the oxidation of benzyl alcohol by horse liver alcohol dehydrogenase (HLADH) have been carried out. The following three states have been studied: HLADH.PhCH(2)OH.NAD(+) (MD1), HLADH.PhCH(2)O(-).NAD(+) (MD2), and HLADH.PhCHO.NADH (MD3). MD1, MD2, and MD3 simulations were carried out on one of the subunits of the dimeric enzyme covered in a 32-A-radius sphere of TIP3P water centered on the active site. The proton produced on ionization of the alcohol when HLADH.PhCH(2)OH.NAD(+) --> HLADH.PhCH(2)O(-).NAD(+) is transferred from the active site to solvent water via a hydrogen bonding network consisting of serine48 hydroxyl, ribose 2'- and 3'-hydroxyl groups, and Hist51. Hydrogen bonding of the 3'OH of ribose to Ile269 carbonyl maintains this proton in position to be transferred to water. Molecular dynamic simulations have been employed to track water1287 from the TIP3 water pool to the active site, thus exhibiting the mode of entrance of water to the active site. With time the water1287 accumulates in two different positions in order to accept the proton from the ribose 3'-OH and from His51. There can be identified two structural substates for proton passage. In the first substate the imidazole Ne2 of His51 is adjacent to the nicotinamide ribose C2'-OH and hydrogen bonding distances for proton transfer through the hydrogen bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...His51...OH(2) (path 1) average 2.0, 2.0, and 2.1 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A. The structure for path 1 is present 20% of the time span. And in the second substate, there are two possible proton passages: path 1 as before and path 2. Path 2 involves the hydrogen-bonded relay series PhCH(2)OH...Ser48-OH...Ribose2'-OH...Ribose3'-OH...His51.OH(2) with the average bonding distances being 2.0, 2.0, 2.1, and 2.0 A and (for His51...OH(2)) minimal distances less or equal to 2.5 A (20% probability of the time span), respectively

  1. Plant Formate Dehydrogenase

    SciTech Connect

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  2. Alcoholism and Alcohol Abuse

    MedlinePlus

    ... This means that their drinking causes distress and harm. It includes alcoholism and alcohol abuse. Alcoholism, or ... brain, and other organs. Drinking during pregnancy can harm your baby. Alcohol also increases the risk of ...

  3. ADH1A variation predisposes to personality traits and substance dependence

    PubMed Central

    Zuo, Lingjun; Gelernter, Joel; Kranzler, Henry R.; Stein, Murray B.; Zhang, Huiping; Wei, Feng; Sen, Srijan; Poling, James; Luo, Xingguang

    2010-01-01

    Background Human personality traits are strong predictors or characteristics of many psychiatric disorders including substance dependence (SD). Recently, significant associations between ADH1A and SD have been reported, which led us to investigate the impact of ADH1A variation on personality traits and risk of SD. Methods Five hundred fifty-eight subjects with SD [398 European-Americans (EAs) and 160 African-Americans (AAs)], 517 college students (384 EAs and 133 European-origin Hispanics) and 448 healthy subjects (385 EAs, 48 AAs and 15 European-origin Hispanics) participated. Personality traits were assessed in 247 subjects with SD (179 EAs and 68 AAs), all 517 college students, and 332 healthy subjects (285 EAs, 40 AAs and 7 European-origin Hispanics). The relationships between ADH1A and personality traits were comprehensively examined using stepwise multivariate analysis of covariance (MANCOVA), and then decomposed by stepwise analysis of covariance (ANCOVA). The relationship between ADH1A and SD was examined using stepwise logistic regression analysis. Admixture effects on analyses were considered. Results Overall, Agreeableness and Conscientiousness were associated with the diplotypes, haplotypes, genotypes and/or alleles of ADH1A in three of four phenotype groups including European-American SD subjects, healthy subjects, and African-American SD subjects (1.7×10-4≤p≤0.055), but not college students. Neuroticism was associated with diplotype, haplotypes and genotypes in African-American SD subjects (0.001≤p≤0.031). In addition, SD was associated with diplotypes, haplotypes, genotypes and/or alleles of ADH1A (0.008≤p≤0.060). Conclusions The present study demonstrates that the ADH1A variation may contribute to the genetic component of variation in personality traits and SD. PMID:19526455

  4. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh.

    PubMed

    Henrich, B; Binishofer, B; Bläsi, U

    1995-02-01

    The lysis genes of the Lactobacillus gasseri bacteriophage phi adh were isolated by complementation of a lambda Sam mutation in Escherichia coli. Nucleotide sequencing of a 1,735-bp DNA fragment revealed two adjacent coding regions of 342 bp (hol) and 951 bp (lys) in the same reading frame which appear to belong to a common transcriptional unit. Proteins corresponding to the predicted gene products, holin (12.9 kDa) and lysin (34.7 kDa), were identified by in vitro and in vivo expression of the cloned genes. The phi adh holin is a membrane-bound protein with structural similarity to lysis proteins of other phage, known to be required for the transit of murein hydrolases through the cytoplasmic membrane. The phi adh lysin shows homology with mureinolytic enzymes encoded by the Lactobacillus bulgaricus phage mv4, the Streptococcus pneumoniae phage Cp-1, Cp-7, and Cp-9, and the Lactococcus lactis phage phi LC3. Significant homology with the N termini of known muramidases suggests that phi adh lysin acts by a similar catalytic mechanism. In E. coli, the phi adh lysin seems to be associated with the total membrane fraction, from which it can be extracted with lauryl sarcosinate. Either one of the phi adh lysis proteins provoked lysis of E. coli when expressed along with holins or lysins of phage lambda or Bacillus subtilis phage phi 29. Concomitant expression of the combined holin and lysin functions of phi adh in E. coli, however, did not result in efficient cell lysis. PMID:7836307

  5. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    PubMed Central

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  6. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell.

    PubMed

    Yin, Hua; Hou, Xiaolin; Tao, Tingrui; Lv, Xiaoman; Zhang, Luyong; Duan, Weigang

    2015-05-01

    Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real-time RT-PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up-regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down-regulation of cell cycle pathways, especially rno04110. PMID:25571866

  7. EhADH112 Is a Bro1 Domain-Containing Protein Involved in the Entamoeba histolytica Multivesicular Bodies Pathway

    PubMed Central

    Bañuelos, Cecilia; García-Rivera, Guillermina; López-Reyes, Israel; Mendoza, Leobardo; González-Robles, Arturo; Herranz, Silvia; Vincent, Olivier; Orozco, Esther

    2012-01-01

    EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis. PMID:22500103

  8. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.

    PubMed

    Popescu, G; Napoli, J L

    2000-01-01

    We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties. PMID:10606766

  9. Ethanol and 4-methylpyrazole increase DNA adduct formation of furfuryl alcohol in FVB/N wild-type mice and in mice expressing human sulfotransferases 1A1/1A2.

    PubMed

    Sachse, Benjamin; Meinl, Walter; Glatt, Hansruedi; Monien, Bernhard H

    2016-03-01

    Furfuryl alcohol (FFA) is a carcinogenic food contaminant, which is formed by acid- and heat-catalyzed degradation of fructose and glucose. The activation by sulfotransferases (SULTs) yields a DNA reactive and mutagenic sulfate ester. The most prominent DNA adduct, N(2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N(2)-MF-dG), was detected in FFA-treated mice and also in human tissue samples. The dominant pathway of FFA detoxification is the oxidation via alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The activity of these enzymes may be greatly altered in the presence of inhibitors or competitive substrates. Here, we investigated the impact of ethanol and the ADH inhibitor 4-methylpyrazole (4MP) on the DNA adduct formation by FFA in wild-type and in humanized mice that were transgenic for human SULT1A1/1A2 and deficient in the mouse (m) Sult1a1 and Sult1d1 genes (h1A1/1A2/1a1(-)/1d1(-)). The administration of FFA alone led to hepatic adduct levels of 4.5 N(2)-MF-dG/10(8) nucleosides and 33.6 N(2)-MF-dG/10(8) nucleosides in male and female wild-type mice, respectively, and of 19.6 N(2)-MF-dG/10(8) nucleosides and 95.4 N(2)-MF-dG/10(8) nucleosides in male and female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 1.6g ethanol/kg body weight increased N(2)-MF-dG levels by 2.3-fold in male and by 1.7-fold in female wild-type mice and by 2.5-fold in male and by 1.5-fold in female h1A1/1A2/1a1(-)/1d1(-) mice. The coadministration of 100mg 4MP/kg body weight had a similar effect on the adduct levels. These findings indicate that modulators of the oxidative metabolism, e.g. the drug 4MP or consumption of alcoholic beverages, may increase the genotoxic effects of FFA also in humans. PMID:26775039

  10. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia.

    PubMed

    Galinsky, Kevin J; Bhatia, Gaurav; Loh, Po-Ru; Georgiev, Stoyan; Mukherjee, Sayan; Patterson, Nick J; Price, Alkes L

    2016-03-01

    Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984(∗)T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease. PMID:26924531

  11. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia

    PubMed Central

    Galinsky, Kevin J.; Bhatia, Gaurav; Loh, Po-Ru; Georgiev, Stoyan; Mukherjee, Sayan; Patterson, Nick J.; Price, Alkes L.

    2016-01-01

    Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984∗T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease. PMID:26924531

  12. Case of inappropriate ADH syndrome: hyponatremia due to polyethylene glycol bowel preparation.

    PubMed

    Ko, Sun-Hye; Lim, Chul-Hyun; Kim, Jae-Young; Kang, Seung Hun; Baeg, Myong Ki; Oh, Hyun Jin

    2014-09-14

    Colonoscopic screening has been reported to reduce deaths from colorectal cancer. Adequate bowel preparation is essential for this and safety is an important issue in choosing the methods. Polyethylene glycol (PEG) is regarded as a safe method for cleansing, especially compared with oral sodium phosphate. Here, we present a case of hyponatremia caused by the syndrome of inappropriate antidiuretic hormone (ADH) syndrome after PEG precolonoscopic cleansing resulting in generalized tonic-clonic seizures. A 62-year-old women had ingested PEG for precolonoscopic bowel cleansing. While waiting for the colonoscopy, she developed a stuporous mentality and generalized tonic-clonic seizures, which did not correlate with brain magnetic resonance imaging. Her serum sodium level was 113 mEq per liter and laboratory analyses were consistent with inappropriate ADH syndrome. Her thyroid and adrenal functions were normal. There were no malignancies, infections, respiratory disorders or central nervous disorders and she had no history of taking either diuretics or other medications, which might have caused inappropriate ADH syndrome. She was treated with 3% hypertonic saline and showed a complete neurological recovery as her sodium levels recovered. Follow-up visits showed the patient to have a normal sodium level without neurologic deficits. This case shows that inappropriate ADH syndrome can be caused by PEG preparation, which implies that physicians have to be aware of the possible side effects of this colonic cleansing approach and mindful of the possible ensuing symptoms. PMID:25232272

  13. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  14. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.

    PubMed

    Lee, K Michael; DaSilva, Nancy A

    2005-04-30

    The Saccharomyces cerevisiae ADH2 promoter (P(ADH2)) is repressed several hundred-fold in the presence of glucose; transcription is initiated once the glucose in the medium is exhausted. The promoter can thus be utilized for effective regulation of recombinant gene expression in S. cerevisiae without the addition of an inducer. To evaluate this promoter in the absence of plasmid copy number and stability variations, the P(ADH2)-lacZ cassette was integrated into the yeast chromosomes. The effects of medium composition, glucose concentration and cultivation time on promoter derepression and expression level were investigated. Maximum protein activity was obtained after 48 h of growth in complex YPD medium containing 1% glucose. The widely used S. cerevisiae GAL1 and CUP1 promoters both require the addition of an inducer [galactose and copper(II) ion, respectively] before regulated genes will be expressed. The strengths of these three different promoters were compared for cells containing one copy of an integrated lacZ gene under their control. The ADH2 promoter was superior for all induction strategies investigated. PMID:15849781

  15. Effects of ADH on the apical and basolateral membranes of toad urinary bladder epithelial cells.

    PubMed

    Donaldson, P J; Leader, J P

    1993-11-01

    Short-circuited urinary bladders from Bufo marinus were supported on their apical surface by an agar mounting method and impaled with microelectrodes via their basolateral membrane. This arrangement provided stable and long-lasting impalements of epithelial cells and yielded reliable membrane potentials and voltage divider ratios (Ra/Rb), where Ra and Rb are apical and basolateral membrane resistances respectively. The membrane potential under short-circuit conditions (Vsc) was -51.4 +/- 2.2 mV (n = 59), while under open-circuit conditions apical membrane potential (Va) and basolateral membrane potential (Vb) were -31.0 +/- 2.4 and 59.5 +/- 2.4 mV, respectively. This yields a "well-shaped" potential profile across the toad urinary bladder, where Va is inversely related to the rate of transport, Isc. Antidiuretic hormone (ADH) produced a hyperpolarisation of Vsc and Vb but had no significant effect on Va. In addition, Ra/Rb was significantly increased by ADH (4.6 +/- 0.5 to 10.2 +/- 3.6). Calculation of individual membrane resistances following the addition of amiloride showed that ADH produced a parallel decrease in Ra and Rb membrane resistance, with the observed increase in Ra/Rb being due to a greater percentage decrease in Rb than in Ra. The ability of ADH to effect parallel changes in apical and basolateral membrane conductance helps to maintain a constant cellular volume despite an increase in transepithelial transport. PMID:8309781

  16. Interactions between ADH and prostaglandins in isolated erythrocyte-perfused rat kidney

    SciTech Connect

    Lieberthal, W.; Vasilevsky, M.L.; Valeri, C.R.; Levinsky, N.G.

    1987-02-01

    Interactions between antidiuretic hormone (ADH) and renal prostaglandins in the regulation of sodium reabsorption and urinary concentrating ability were studied in isolated erythrocyte-perfused rat kidneys (IEPK). In this model, hemodynamic characteristics are comparable to those found in vivo, and tubular morphology is preserved throughout the period of perfusion. (Deamino)-D-arginine vasopressin (dDAVP) markedly reduced fractional sodium excretion (FE/sub Na/) in the IEPK. After indomethacin, FE/sub Na/ fell still further. In the absence of dDAVP indomethacin had no effect on sodium excretion. dDAVP increased urine osmolality in the IEPK. When prostaglandin synthesis was blocked with indomethacin, urinary osmolality increased further. In isolated kidneys perfused without erythrocytes (IPK), dDAVP decreased FE/sub Na/ from 14.5 +/- 1.8% to 9.6 +/- 1.2%. dDAVP increased urine osmolality only modestly in the IPK and indomethacin did not increase concentrating ability further. Thus the IEPK (unlike the IPK) can excrete markedly hypertonic urine in response to ADH. ADH also enhances tubular reabsorption of sodium in the IEPK. Prostaglandins inhibit both these actions of ADH but do not directly affect sodium excretion in the absence of the hormone. Prostaglandius were measured by radioimmunoassay.

  17. Suppression of ADH during water immersion in normal man. [antidiuretic hormone

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Miller, M.

    1975-01-01

    A study was undertaken to ascertain whether diuresis induced by immersion is medicated by an inhibition of ADH. Immersion resulted in a progressive decrease in ADH excretion from 80.1 + or - 7 (SEM) to 37.3 + or - 6.3 microU/min (P less than 0.025). Cessation of immersion was associated with a marked increase in ADH from 37.3 + or - 6.3 microU/min to 176.6 + or - 72.6 microU/min during the recovery hour (P less than 0.05). Concomitant with these changes, urine osmolality decreased significantly beginning as early as the initial hour of immersion from 1044 + or - 36 to 542 + or - 66 mosmol/kg H2O during the final hour of immersion (P less than 0.001). These findings are consistent with the earlier suggestion that suppression of ADH release contributes to enhanced free water clearance in hydrated subjects undergoing immersion.

  18. The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites.

    PubMed

    Martínez-López, Carolina; Orozco, Esther; Sánchez, Tomás; García-Pérez, Rosa María; Hernández-Hernández, Fidel; Rodríguez, Mario A

    2004-04-01

    The Entamoeba histolytica EhCPADH complex, formed by a cysteine proteinase (EhCP112) and an adhesin (EhADH112), is involved in adherence, phagocytosis and cytolysis. This makes this complex an attractive candidate as a vaccine against amoebiasis. Here, we produced the recombinant polypeptide EhADH243, which includes the adherence epitope detected by a monoclonal antibody against the EhCPADH complex. EhADH243 was purified, and the effect of the polypeptide on in vitro and in vivo virulence was studied. Antibodies against EhADH243 reacted with the EhCPADH complex and with the recombinant polypeptide. EhADH243 and antibodies against this polypeptide inhibited adherence, phagocytosis and destruction of cell monolayers by live trophozoites, but had little effect on cell monolayer destruction by trophozoite extracts. EhADH243 recognized a 97 kDa protein in the MDCK membrane fraction that could be a putative receptor for E. histolytica trophozoites. Hamsters immunized with EhADH243 developed humoral response against EhCPADH, and animals were partially protected from amoebic liver abscess. PMID:15009028

  19. STRUCTURE TOXICITY IN RELATIONSHIPS FOR A,B-UNSATURATED ALCOHOLS IN FISH

    EPA Science Inventory

    Previous toxicity testing with fathead minnows (Pimephales promelas) indicated that some unsaturated acetylenic and allylic alcohols can be metabolically activated, via alcohol dehydrogenase, to highly toxic a,B-unsaturated aldehydes and ketones or allene derivatives. lthough sev...

  20. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men

    PubMed Central

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-01-01

    ABSTRACT Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35–69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (Ptrend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (Ptrend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (Ptrend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  1. Alcohol Alert

    MedlinePlus

    ... main content National Institute on Alcohol Abuse and Alcoholism (NIAAA) Main Menu Search Search form Search Alcohol & ... on a single aspect of alcohol abuse and alcoholism. Please click on the desired publication for full ...

  2. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  3. Alcoholism, Alcohol, and Drugs

    ERIC Educational Resources Information Center

    Rubin, Emanuel; Lieber, Charles S.

    1971-01-01

    Describes research on synergistic effects of alcohol and other drugs, particularly barbiturates. Proposes biochemical mechanisms to explain alcoholics' tolerance of other drugs when sober, and increased sensitivity when drunk. (AL)

  4. Substrate specificity of sheep liver sorbitol dehydrogenase.

    PubMed Central

    Lindstad, R I; Köll, P; McKinley-McKee, J S

    1998-01-01

    The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of

  5. DRYAD and ADH: Further comments on explaining age-related differences in memory.

    PubMed

    Naveh-Benjamin, Moshe; Smyth, Andrea C

    2016-02-01

    Recently, Smyth and Naveh-Benjamin (2016) questioned some of the main assumptions/hypotheses of DRYAD (or density of representations yields age-related deficits), a global-deficit model of aging and memory judgments (Benjamin, 2010; Benjamin et al., 2012). Smyth and Naveh-Benjamin (2016) provided empirical evidence that seems incompatible with DRYAD, but that fits the associative deficit hypothesis (ADH; Naveh-Benjamin, 2000), 1 specific-deficit theoretical view. In response, Aaron Benjamin (2016) offered a discussion of the complementary strengths and weaknesses of the DRYAD and the ADH, and the potential ways they might work together. We agree with many of his comments, but are not convinced that DRYAD is able to explain basic replicable empirical evidence of the type mentioned in Smyth and Naveh-Benjamin (2016). We discuss the reasons why we are not fully convinced by the demonstration of DRYAD's simulation of results presented in Benjamin (2016) and then present an implementation of ADH in a computationally based age-related impaired neuromodulation approach that was shown to simulate the basic empirical results of age-related associative memory deficits. We also discuss the issues of parsimony of theories and the appropriate type of representation, in the context of global versus specific deficits theoretical views. Finally, we show that the ADH's take on the distinction between items and associations has been adopted by some global computational models of memory. We believe that considerations of the above issues and others raised by Benjamin (2016) can lead to fruitful discussions that will benefit both theory development and existing knowledge of aging and memory. PMID:26866588

  6. A guide to 17beta-hydroxysteroid dehydrogenases.

    PubMed

    Adamski, J; Jakob, F J

    2001-01-22

    17beta-Hydroxysteroid dehydrogenases (17beta-HSD) are pivotal in controlling the biological potency of steroid hormones by catalyzing oxidation or reduction at position 17. Several 17beta-HSDs may as well metabolize further substrates including alcohols, bile acids, fatty acids and retinols. This review summarizes recent progress in the field of 17beta-HSD research provides an update of nomenclature. PMID:11165003

  7. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  8. Joining Astrobiology to Medicine, Resurrecting Ancient Alcohol Metabolism

    NASA Astrophysics Data System (ADS)

    Carrigan, M. A.; Uryasev, O.; Davis, R. W.; Chamberlin, S. G.; Benner, S. A.

    2010-04-01

    We apply an astrobiological approach to understand how primates responded to the emergence of ethanol in their environment by resurrecting two enzymes involved in the degradation of ethanol, alcohol dehydrogenase and aldehyde dehydrgenase.

  9. [Clinical and biological specificities of female alcoholism].

    PubMed

    Limosin, F

    2002-01-01

    Even though the number of alcohol-dependent women is only about 1/3 of the number of alcoholic men, the alcoholism in women, by its clinical features and its course, is the source of therapeutic and economic stakes, particularly in young women among whom an increase of alcohol consumption related problems is reported. Another specificity of the female alcoholism is the lack of care seeking, whereas women have tendency globally to solicit more often care structures than men. Women represent only 1/4 of the overall treated alcoholic patients. The main explanation for this phenomenon is the pejorative social and moral connotation of the female alcoholism, with frequent feelings of shame and deep guilt, that also account for the frequency of hidden and lonely alcohol intakes. The female alcoholism is essentially characterized by an increased vulnerability to the toxic effects of the alcohol, whereas the pathological consumption starts later and with smaller daily amounts. Most studies have revealed a higher vulnerability in women to somatic complications directly attributable to the alcohol organs toxicity, such as hepatic cirrhosis and cardiovascular complications (high blood pressure, non obstructive cardiomyopathy). The reported brain morphological abnormalities could also occur more precociously in alcoholic women than in men. A decreased corpus callosum size among alcoholic women, but not in alcoholic men, was thus found in a recent study, compared with healthy controls. Among the different hypothesis proposed to explain this increased alcohol toxicity, the most incriminated is higher alcohol blood rates for the same ingested amount, mainly of the fact of a lower size with a weaker proportion of the bodily total water, but also of weaker concentrations of gastro-intestinal tract ADH, or of a longer metabolism during some menstrual phases. Indeed, some experimental studies on animal showed that the alcohol toxic effects may occur only from a threshold of alcohol

  10. Alcohol Alert

    MedlinePlus

    ... Us You are here Home » Alcohol Alert Alcohol Alert The NIAAA Alcohol Alert is a quarterly bulletin that disseminates important research ... text. To order single copies of select Alcohol Alerts, see ordering Information . To view publications in PDF ...

  11. Alcoholism - resources

    MedlinePlus

    Resources - alcoholism ... The following organizations are good resources for information on alcoholism : Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- www.al-anon.org/home National Institute on Alcohol ...

  12. Alcoholic ketoacidosis

    MedlinePlus

    Ketoacidosis - alcoholic ... Alcoholic ketoacidosis is caused by very heavy alcohol use. It most often occurs in a malnourished person ... Symptoms of alcoholic ketoacidosis include: Nausea and vomiting ... Changed level of alertness, which may lead to coma Confusion ...

  13. Alcohol Facts

    MedlinePlus

    ... raquo Alcohol Facts Alcohol Facts Listen Drinks like beer, malt liquor, wine, and hard liquor contain alcohol. Alcohol is the ingredient that gets you drunk. Hard liquor—such as whiskey, rum, or gin—has more ...

  14. Alcoholic neuropathy

    MedlinePlus

    Neuropathy - alcoholic; Alcoholic polyneuropathy ... The exact cause of alcoholic neuropathy is unknown. It likely includes both a direct poisoning of the nerve by the alcohol and the effect of poor nutrition ...

  15. Alcohol Alert: Genetics of Alcoholism

    MedlinePlus

    ... and Reports » Alcohol Alert » Alcohol Alert Number 84 Alcohol Alert Number 84 Print Version The Genetics of ... immune defense system. Genes Encoding Enzymes Involved in Alcohol Breakdown Some of the first genes linked to ...

  16. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli

    SciTech Connect

    Martinez, A.; York, S.W.; Yomano, L.P.; Pineda, V.L.; Davis, F.C.; Shelton, J.C.; Ingram, L.O.

    1999-10-01

    Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopy plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.

  17. Role of cardiac volume receptors in the control of ADH release during acute simulated weightlessness in man

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Benjamin, B. A.; Keil, L. C.; Sandler, H.

    1984-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes, designed to induce central blood volume shifts in ten cardiac and one heart-lung transplant recipients, to assess the contribution of cardiac volume receptors in the control of ADH release during the initial acute phase of exposure to weightlessness. Each subject underwent 15 min of a sitting-control period (C) followed by 30 min of 6 deg headdown tilt (T) and 30 min of resumed sitting (S). Venous blood samples and cardiac dimensions were taken at 0 and 15 min of C; 5, 15, and 30 min of T; and 5, 15, and 30 min of S. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Heart rate and blood pressure were recorded every two min. Plasma osmolality was not altered by posture changes. Mean left ventricular end-diastolic volume increased (P less than 0.05) from 90 ml in C to 106 ml in T and returned to 87 ml in S. Plasma ADH was reduced by 20 percent (P less than 0.05) with T, and returned to control levels with S. These responses were similar in six normal cardiac-innervated control subjects. These data may suggest that cardiac volume receptors are not the primary mechanism for the control of ADH release during acute central volume shifts in man.

  18. Lactate dehydrogenase-elevating virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  19. Genome-wide association discoveries of alcohol dependence

    PubMed Central

    Zuo, Lingjun; Lu, Lingeng; Tan, Yunlong; Pan, Xinghua; Cai, Yiqiang; Wang, Xiaoping; Hong, Jiang; Zhong, Chunlong; Wang, Fei; Zhang, Xiang-yang; Vanderlinden, Lauren A.; Tabakoff, Boris; Luo, Xingguang

    2014-01-01

    Objective To report the genome-wide significant and/or replicable risk variants for alcohol dependence and explore their potential biological functions. Methods We searched in PubMed for all genome-wide association studies (GWASs) of alcohol dependence. The following three types of the results were extracted: (1) genome-wide significant associations in an individual sample, the combined samples, or the meta-analysis (p<5×10−8); (2) top-ranked associations in an individual sample (p<10−5) that were nominally replicated in other samples (p<0.05); and (3) nominally replicable associations across at least three independent GWAS samples (p<0.05). These results were meta-analyzed. cis-eQTLs in human, RNA expression in rat and mouse brain and bioinformatics properties of all of these risk variants were analyzed. Results The variants located within ADH cluster were significantly associated with alcohol dependence at genome-wide level (p<5×10−8) in at least one sample. Some associations with the ADH cluster were replicable across six independent GWAS samples. The variants located within or near SERINC2, KIAA0040, MREG-PECR or PKNOX2 were significantly associated with alcohol dependence at genome-wide level (p<5×10−8) in meta-analysis or combined samples, and these associations were replicable across at least one sample. The associations with the variants within NRD1, GPD1L-CMTM8 or MAP3K9-PCNX were suggestive (5×10−8ADH cluster, SERINC2, KIAA0040, NRD1 and HTR7 had potential biological functions. Conclusion The most robust risk locus was the ADH cluster. SERINC2, KIAA0040, NRD1 and HTR7 were also likely to play important roles in alcohol dependence. PKNOX2, MREG, PECR, GPD1L, CMTM8, MAP3K9, PCNX and OPA3 might play less

  20. Effect of acetaldehyde generated from ethanol by ADH-transfected CHO cells on their membrane fatty acid profiles.

    PubMed

    Meskar, A; Holownia, A; Bardou, L G; Menez, J F

    1996-01-01

    Ethanol has been previously shown to reduce the unsaturated fatty acid content of cell membranes. It is not known, however, if the observed deleterious effects are due to ethanol itself or its metabolite, acetaldehyde. The present study was undertaken to assess the effect of acetaldehyde produced from ethanol by alcohol-deyhdrogenase-transfected Chinese hamster ovary Cells on the membrane lipids and the lipid peroxidation measured by free and bound malondialdehyde (MDA). The effects of ethanol alone was assessed in the presence of 4-methylpyrazole (4-MP), an inhibitor of alcohol dehydrogenase. After 8 days of incubation, total cellular lipids were extracted, subjected to TLC, and analyzed by gas chromatography. MDA concentration were determined by thiobarbituric acid reaction followed by HPLC detection. The level of acetaldehyde in the culture medium increased with concentration of ethanol from 5 to 20 mM as did the lipid peroxidation. Total cholesterol, phospholipids, and triglycerids all increased with increasing concentration of acetaldehyde. These effects were due to acetaldehyde as they were blocked by 4-MP. Some changes in fatty acid profiles were observed by effect of ethanol itself. PMID:8949957

  1. Functional Analysis of a Mosquito Short Chain Dehydrogenase Cluster

    PubMed Central

    Mayoral, Jaime G.; Leonard, Kate T.; Defelipe, Lucas A.; Turjansksi, Adrian G.; Nouzova, Marcela; Noriegal, Fernando G.

    2013-01-01

    The short chain dehydrogenases (SDR) constitute one the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity towards the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes. PMID:23238893

  2. Data on docking and dynamics simulation of Entamoeba histolytica EhADH (an ALIX protein) and lysobisphosphatidic acid.

    PubMed

    Castellanos-Castro, Silvia; Montaño, Sarita; Orozco, Esther

    2016-06-01

    Entamoeba histolytica is the protozoan agent responsible for human amoebiasis. Trophozoites are highly phagocytic cells and the lysobisphosphatidic acid (LBPA) is involved in endocytosis. LBPA interacts with EhADH protein (an ALIX family member) also participating in phagocytosis, as it is referred in the research article Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: an active molecule in endocytosis (Castellanos-Castro et al., 2016) [1]. To unveil the interaction site between EhADH and LBPA, here we performed molecular modeling, dynamics simulation and docking. Molecular modeling and docking predictions revealed that EhADH interacts with LBPA through the Bro1 domain, located at the N-terminus of the protein and through the adherence domain at the C-terminus. In silico mutation abolished these interactions, supporting the data obtained in molecular dynamic and docking in silico assays. PMID:27014730

  3. Data on docking and dynamics simulation of Entamoeba histolytica EhADH (an ALIX protein) and lysobisphosphatidic acid

    PubMed Central

    Castellanos-Castro, Silvia; Montaño, Sarita; Orozco, Esther

    2016-01-01

    Entamoeba histolytica is the protozoan agent responsible for human amoebiasis. Trophozoites are highly phagocytic cells and the lysobisphosphatidic acid (LBPA) is involved in endocytosis. LBPA interacts with EhADH protein (an ALIX family member) also participating in phagocytosis, as it is referred in the research article Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: an active molecule in endocytosis (Castellanos-Castro et al., 2016) [1]. To unveil the interaction site between EhADH and LBPA, here we performed molecular modeling, dynamics simulation and docking. Molecular modeling and docking predictions revealed that EhADH interacts with LBPA through the Bro1 domain, located at the N-terminus of the protein and through the adherence domain at the C-terminus. In silico mutation abolished these interactions, supporting the data obtained in molecular dynamic and docking in silico assays. PMID:27014730

  4. Educating women about the hidden dangers of alcohol.

    PubMed

    Cook, Linda J

    2004-06-01

    1. There is mounting research evidence that alcohol use and abuse affects women much differently than men. 2. Research indicates that women absorb and metabolize alcohol differently than men, partly due to body composition differences and the production of less gastric alcohol dehydrogenase by women. 3. Women of child-bearing age who engage in binge drinking are at increased risk of bearing children with fetal alcohol syndrome or alcohol-related neurological deficits. 4. Psychiatric nurses are often in the position to provide education and counseling to women regarding the hidden dangers of alcohol use and abuse. PMID:15237789

  5. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  6. Analysis and in situ mapping of the Adh locus in species of the willistoni group of Drosophila.

    PubMed

    Rohde, C; Abdelhay, E; Pinto Júnior, H; Schrank, A; Valente, V L

    1995-01-01

    The Adh locus was mapped by in situ hybridization with the heterologous biotinylated probe SAC-PAT to the salivary chromosomes of seven species of the willistoni group of Drosophila. Hybridization signals were obtained mainly at a single site to the right arm of chromosome II in six species, but in Drosophila nebulosa two sites hybridized with the same consistency. Southern blot analysis Eco RI-digested genomic DNA of the seven species revealed high molecular weight bands shared by three species, plus the appropriately sized fragment expected, suggesting the presence of Adh pseudogenes in those species. PMID:7671636

  7. Alcoholic ketoacidosis

    MedlinePlus

    ... attention improves the overall outlook. How severe the alcoholism is, and the presence of liver disease or ... A.M. Editorial team. Related MedlinePlus Health Topics Alcoholism and Alcohol Abuse Browse the Encyclopedia A.D. ...

  8. Alcohol withdrawal

    MedlinePlus

    ... counseling to discuss the long-term issue of alcoholism Testing and treatment for other medical problems linked ... following organizations are good resources for information on alcoholism: Alcoholics Anonymous -- www.aa.org Al-Anon/Alateen -- ...

  9. Alcoholic neuropathy

    MedlinePlus

    ... objects in the shoes Guarding the extremities to prevent injury from pressure Alcohol must be stopped to prevent the damage from ... The only way to prevent alcoholic neuropathy is not to drink excessive amounts of alcohol.

  10. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-11-01

    Long-chain mannitol dehydrogenases are secondary alcohol dehydrogenases that are of wide interest because of their involvement in metabolism and potential applications in agriculture, medicine, and industry. They differ from other alcohol and polyol dehydrogenases because they do not contain a conserved tyrosine and are not dependent on Zn(2+) or other metal cofactors. The structures of the long-chain mannitol 2-dehydrogenase (54 kDa) from Pseudomonas fluorescens in a binary complex with NAD(+) and ternary complex with NAD(+) and d-mannitol have been determined to resolutions of 1.7 and 1.8 A and R-factors of 0.171 and 0.176, respectively. These results show an N-terminal domain that includes a typical Rossmann fold. The C-terminal domain is primarily alpha-helical and mediates mannitol binding. The electron lone pair of Lys-295 is steered by hydrogen-bonding interactions with the amide oxygen of Asn-300 and the main-chain carbonyl oxygen of Val-229 to act as the general base. Asn-191 and Asn-300 are involved in a web of hydrogen bonding, which precisely orients the mannitol O2 proton for abstraction. These residues also aid in stabilizing a negative charge in the intermediate state and in preventing the formation of nonproductive complexes with the substrate. The catalytic lysine may be returned to its unprotonated state using a rectifying proton tunnel driven by Glu-292 oscillating among different environments. Despite low sequence homology, the closest structural neighbors are glycerol-3-phosphate dehydrogenase, N-(1-d-carboxylethyl)-l-norvaline dehydrogenase, UDP-glucose dehydrogenase, and 6-phosphogluconate dehydrogenase, indicating a possible evolutionary relationship among these enzymes. PMID:12196534

  11. Biology, Genetics, and Environment

    PubMed Central

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  12. Effects of Antrodia camphorata on alcohol clearance and antifibrosis in livers of rats continuously fed alcohol.

    PubMed

    Wu, Min-Tze; Tzang, Bor-Show; Chang, Yuan-Yen; Chiu, Chih-Hsien; Kang, Wen-Yu; Huang, Chia-Hsin; Chen, Yi-Chen

    2011-04-27

    Alcoholic fatty liver disease (AFLD) is the result of an excessive or chronic consumption of alcohol. Nine male Wistar rats per group were randomly assigned to one of the following drinking treatments: a 20% (w/w) alcohol solution (ALC); a 20% (w/w) alcohol solution cotreated with 0.25 g silymarin/kg BW/day; or a 20% (w/w) alcohol solution cotreated with 0.025 g Niuchangchih ( Antrodia camphorata )/kg BW/day for 4 weeks. Rats with cotreatments of silymarin or Niuchangchih had smaller (p < 0.05) relative liver size, less (p < 0.05) liver lipid accumulation, and lower (p < 0.05) liver damage indices [aspartate aminotransferase (AST) and alkaline phosphatase (ALP) values]. In the regulation of alcohol metabolism, the lower serum alcohol level was observed only in alcohol-fed rats supplemented with Niuchangchih. Meanwhile, cotreatment of silymarin or Niuchangchih increased (p < 0.05) CAT and ALDH activities but did not (p > 0.05) affect ADH and CYP2E1 expressions, which accelerate alcohol metabolism in the body. Additionally, neither silymarin nor Niuchangchih (p > 0.05) influenced serum/hepatic MMP-2 activities and NF-κB, AP1, and α-SMA gene expressions, but serum/hepatic MMP-9 activities and TNF-α, KLF-6, and TGF-β1 gene expressions of alcohol-fed rats were down-regulated (p < 0.05) by silymarin or Niuchangchih, which also could explain the lower liver damage observed in rats chronically fed alcohol. PMID:21401100

  13. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  14. d-Xylose Metabolism in Hypocrea jecorina: Loss of the Xylitol Dehydrogenase Step Can Be Partially Compensated for by lad1-Encoded l-Arabinitol-4-Dehydrogenase

    PubMed Central

    Seiboth, Bernhard; Hartl, Lukas; Pail, Manuela; Kubicek, Christian P.

    2003-01-01

    With the goal of the genetic characterization of the d-xylose pathway in Hypocrea jecorina (anamorph: Trichoderma reesei), we cloned the xdh1 gene, encoding NAD-xylitol dehydrogenase, which catalyzes the second step of fungal d-xylose catabolism. This gene encodes a 363-amino-acid protein which has a mass of 38 kDa, belongs to the zinc-containing alcohol dehydrogenase family, exhibits high sequence identity to the published sequences of xylitol dehydrogenases from yeast origins, but contains a second, additional binding site for Zn2+. The enzyme catalyzed the NAD-dependent oxidation of xylitol and d-sorbitol and the NADH-dependent reduction of d-xylulose and d-fructose. No activity was observed with NADP, l-arabinose, or l-arabinitol. A single 1.4-kb transcript was formed during growth on xylan, d-xylose, l-arabinose, l-arabinitol and, at a lower abundance, xylitol, d-galactose, galactitol, and lactose but not on d-glucose and glycerol. xdh1 deletion mutants exhibited 50% reduced growth rates on d-xylose, whereas growth rates on xylitol remained unaltered. These mutants contained 30% of the xylitol dehydrogenase activity of the parent strain, indicating the presence of a second xylitol dehydrogenase. This activity was shown to be due to lad1-encoded l-arabinitol-4-dehydrogenase, because H. jecorina xdh1 lad1 double-deletion strains failed to grow on d-xylose or xylitol. In contrast, lad1 deletion strains of H. jecorina grew normally on these carbon sources. These results show that H. jecorina contains a single xylitol dehydrogenase which is encoded by xdh1 and is involved in the metabolism of d-xylose and that lad1-encoded l-arabinitol-4-dehydrogenase can compensate for it partially in mutants with a loss of xdh1 function. PMID:14555469

  15. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  16. ALDH2 polymorphism is associated with fasting blood glucose through alcohol consumption in Japanese men.

    PubMed

    Yin, Guang; Naito, Mariko; Wakai, Kenji; Morita, Emi; Kawai, Sayo; Hamajima, Nobuyuki; Suzuki, Sadao; Kita, Yoshikuni; Takezaki, Toshiro; Tanaka, Keitaro; Morita, Makiko; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2016-05-01

    Associations between alcohol consumption and type 2 diabetes risk are inconsistent in epidemiologic studies. This study investigated the associations of ADH1B and ALDH2 polymorphisms with fasting blood glucose levels, and the impact of the associations of alcohol consumption with fasting blood glucose levels in Japanese individuals. This cross-sectional study included 907 men and 912 women, aged 35-69 years. The subjects were selected from among the Japan Multi-institutional Collaborative Cohort study across six areas of Japan. The ADH1B and ALDH2 polymorphisms were genotyped by Invader Assays. The ALDH2 Glu504Lys genotypes were associated with different levels of fasting blood glucose in men (P = 0.04). Mean fasting glucose level was positively associated with alcohol consumption in men with the ALDH2 504 Lys allele (P trend = 0.02), but not in men with the ALDH2 504Glu/Glu genotype (P trend = 0.45), resulting in no statistically significant interaction (P = 0.38). Alcohol consumption was associated with elevated fasting blood glucose levels compared with non-consumers in men (P trend = 0.002). The ADH1B Arg48His polymorphism was not associated with FBG levels overall or after stratification for alcohol consumption. These findings suggest that the ALDH2 polymorphism is associated with different levels of fasting blood glucose through alcohol consumption in Japanese men. The interaction of ALDH2 polymorphisms in the association between alcohol consumption and fasting blood glucose warrants further investigation. PMID:27303105

  17. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems