Science.gov

Sample records for adh gene cluster

  1. Replication Study of ESCC Susceptibility Genetic Polymorphisms Locating in the ADH1B-ADH1C-ADH7 Cluster Identified by GWAS

    PubMed Central

    Xu, Xiaoling; Pan, Wenting; Ge, Yunxia; Zhou, Changchun; Liu, Chao; Gao, Jia; Yang, Ming; Mao, Weimin

    2014-01-01

    China was one of the countries with highest esophageal squamous cell carcinoma (ESCC) incidence and mortality worldwide. Alcohol drinking has been identified as a major environmental risk-factor related to ESCC. The alcohol dehydrogenase (ADH) family are major enzymes involved in the alcohol-metabolizing pathways, including alcohol dehydrogenase 1B (ADH1B) and ADH1C. Interestingly, ADH1B and ADH1C genes locate tandemly with ADH7 in a genomic segment as a gene cluster, and are all polymorphic. Several ESCC susceptibility single nucleotide polymorphisms (SNPs) of the ADH1B-ADH1C-ADH7 cluster have been identified previously through a genome-wide association study (GWAS). In the study, we examined the association between five ADH1B-ADH1C-ADH7 cluster SNPs (rs1042026, rs17033, rs1614972, rs1789903 and rs17028973) and risk of developing ESCC. Genotypes were determined in two independent case-control sets from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Our data demonstrated that these ADH1B-ADH1C-ADH7 cluster SNPs confer susceptibility to ESCC in these two case-control sets, which were consistent to results of the previous GWAS. PMID:24722735

  2. Replication study of ESCC susceptibility genetic polymorphisms locating in the ADH1B-ADH1C-ADH7 cluster identified by GWAS.

    PubMed

    Wang, Jiwen; Wei, Jinyu; Xu, Xiaoling; Pan, Wenting; Ge, Yunxia; Zhou, Changchun; Liu, Chao; Gao, Jia; Yang, Ming; Mao, Weimin

    2014-01-01

    China was one of the countries with highest esophageal squamous cell carcinoma (ESCC) incidence and mortality worldwide. Alcohol drinking has been identified as a major environmental risk-factor related to ESCC. The alcohol dehydrogenase (ADH) family are major enzymes involved in the alcohol-metabolizing pathways, including alcohol dehydrogenase 1B (ADH1B) and ADH1C. Interestingly, ADH1B and ADH1C genes locate tandemly with ADH7 in a genomic segment as a gene cluster, and are all polymorphic. Several ESCC susceptibility single nucleotide polymorphisms (SNPs) of the ADH1B-ADH1C-ADH7 cluster have been identified previously through a genome-wide association study (GWAS). In the study, we examined the association between five ADH1B-ADH1C-ADH7 cluster SNPs (rs1042026, rs17033, rs1614972, rs1789903 and rs17028973) and risk of developing ESCC. Genotypes were determined in two independent case-control sets from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Our data demonstrated that these ADH1B-ADH1C-ADH7 cluster SNPs confer susceptibility to ESCC in these two case-control sets, which were consistent to results of the previous GWAS.

  3. Opossum alcohol dehydrogenases: Sequences, structures, phylogeny and evolution: evidence for the tandem location of ADH genes on opossum chromosome 5.

    PubMed

    Holmes, Roger S

    2009-03-16

    BLAT (BLAST-Like Alignment Tool) analyses and interrogations of the recently published opossum genome were undertaken using previously reported rat ADH amino acid sequences. Evidence is presented for six opossum ADH genes localized on chromosome 5 and organized in a comparable ADH gene cluster to that reported for human and rat ADH genes. The predicted amino acid sequences and secondary structures for the opossum ADH subunits and the intron-exon boundaries for opossum ADH genes showed a high degree of similarity with other mammalian ADHs, and four opossum ADH classes were identified, namely ADH1, ADH3, ADH6 and ADH4 (for which three genes were observed: ADH4A, ADH4B and ADH4C). Previous biochemical analyses of opossum ADHs have reported the tissue distribution and properties for these enzymes: ADH1, the major liver enzyme; ADH3, widely distributed in opossum tissues with similar kinetic properties to mammalian class 3 ADHs; and ADH4, for which several forms were localized in extrahepatic tissues, especially in the digestive system and in the eye. These ADHs are likely to perform similar functions to those reported for other mammalian ADHs in the metabolism of ingested and endogenous alcohols and aldehydes. Phylogenetic analyses examined opossum, human, rat, chicken and cod ADHs, and supported the proposed designation of opossum ADHs as class I (ADH1), class III (ADH3), class IV (ADH4A, ADH4B and ADH4C) and class VI (ADH6). Percentage substitution rates were examined for ADHs during vertebrate evolution which indicated that ADH3 is evolving at a much slower rate to that of the other ADH classes.

  4. Regulation of nitrogen metabolism, starch utilisation and the beta-hbd-adh1 gene cluster in Clostridium acetobutylicum.

    PubMed

    Woods, D R; Reid, S J

    1995-10-01

    The successful genetic manipulation of Clostridium acetobutylicum for the increased production of solvents will depend on an understanding of gene structure and regulation in the bacterium. The glutamine synthetase (glnA) gene is regulated by antisense RNA, transcribed from a downstream promoter, in the opposite direction to the glnA gene. An open reading frame (ORF) was detected downstream of the glnA gene, which has sequence homology to response regulators with anti-termination activity and may be involved in sensing nitrogen conditions. The expression of the linked beta-hbd, adh1 and fixB genes was investigated throughout the bacterial growth cycle by RNA hybridisation techniques. The adh1 gene was independently expressed as a 2.4-kb transcript which peaked at 12 h, immediately prior to the solventogenic phase. The beta-hbd and fixB genes were transcribed throughout the acidogenic and solventogenic phases. A regulator gene, regA, which complements a Bacillus subtilis ccpA mutant, has been identified and sequenced from C. acetobutylicum P262. The regA gene repressed the degradation of starch by an uncharacterised C. acetobutylicum gene, and may therefore play a role in the utilisation of carbohydrate substrates in this organism.

  5. Cloning and functional analysis of adhS gene encoding quinoprotein alcohol dehydrogenase subunit III from Acetobacter pasteurianus SKU1108.

    PubMed

    Masud, Uraiwan; Matsushita, Kazunobu; Theeragool, Gunjana

    2010-03-31

    The adhS gene which encodes the smallest subunit, subunit III, of quinoprotein alcohol dehydrogenase (PQQ-ADH) from Acetobacter pasteurianus SKU1108 has been cloned and characterized. The role of this subunit on the function of PQQ-ADH was investigated by construction of adhS gene disruptant and mutants. The adhS gene disruptant completely lost its PQQ-ADH activity and acetate-producing ability but retained acetic acid toleration. In contrast, this disruptant grew well, even better than the wild type, in the ethanol containing medium even though its PQQ-ADH activity and ethanol oxidizing ability was completely lost, while NAD(+)-dependent ADH (NAD(+)-ADH) was induced. Heme staining and immunoblot analysis of both membrane and soluble fractions with anti-ADH subunit III suggested that ethanol did not affect the adhS gene expression but induced PQQ-ADH activity. Over-expressed adhS did not enhance acetic acid production in both the wild type and the adhS disruptant. In addition, deletion analysis of upstream region of adhS gene suggested that its tentative promoter(s) might be located at around 118-268 bp upstream from an initiation codon. Random mutagenesis of adhS gene revealed that complete loss of PQQ-ADH activity and ethanol oxidizing ability were observed in the mutants' lack of the 140 and 73 amino acid residues at the C-terminal, whereas the lack of 22 amino acid residues at the C-terminal affected neither the PQQ-ADH activity nor ethanol oxidizing ability. In addition, some amino acid substitutions such as Leu18Gln, Ala26Val, Val36Ile, Val54Ile, Gly55Asp, Val70Ala and Val107Ala did not show any affect on PQQ-ADH activity and ethanol oxidizing ability. Interestingly, alteration of Thr104Lys led to a complete loss of ethanol oxidizing ability. However, point mutation at the possible promoter region also exhibited low PQQ-ADH activity and ethanol oxidizing ability. This result suggests that 104Thr might be involved in molecular coupling with subunit I in order

  6. Isolation and DNA sequence of ADH3, a nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae.

    PubMed Central

    Young, E T; Pilgrim, D

    1985-01-01

    The Saccharomyces cerevisiae nuclear gene, ADH3, that encodes the mitochondrial alcohol dehydrogenase isozyme ADH III was cloned by virtue of its nucleotide homology to ADH1 and ADH2. Both chromosomal and plasmid-encoded ADH III isozymes were repressed by glucose and migrated heterogeneously on nondenaturing gels. Nucleotide sequence analysis indicated 73 and 74% identity for ADH3 with ADH1 and ADH2, respectively. The amino acid identity between the predicted ADH III polypeptide and ADH I and ADH II was 79 and 80%, respectively. The open reading frame encoding ADH III has a highly basic 27-amino-acid amino-terminal extension relative to ADH I and ADH II. The nucleotide sequence of the presumed leader peptide has a high degree of identity with the untranslated leader regions of ADH1 and ADH2 mRNAs. A strain containing a null allele of ADH3 did not have a detectably altered phenotype. The cloned gene integrated at the ADH3 locus, indicating that this is the structural gene for ADH III. Images PMID:2943982

  7. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration.

    PubMed

    Cirilli, Marco; Bellincontro, Andrea; De Santis, Diana; Botondi, Rinaldo; Colao, Maria Chiara; Muleo, Rosario; Mencarelli, Fabio

    2012-05-01

    Clusters of Aleatico wine grape were picked at 18°Brix and placed at 10, 20, or 30°C, 45% relative humidity (RH) and 1.5m/s of air flow to dehydrate the berries up to 40% of loss of initial fresh weight. Sampling was done at 0%, 10%, 20%, 30%, and 40% weight loss (wl). ADH (alcohol dehydrogenase) gene expression, enzyme activity, and related metabolites were analysed. At 10°C, acetaldehyde increased rapidly and then declined, while ethanol continued to rise. At 20°C, acetaldehyde and ethanol increased significantly with the same pattern and declined at 40%wl. At 30°C, acetaldehyde did not increase but ethanol increased rapidly already at 10%wl. At the latter temperature, a significant increase in acetic acid and ethyl acetate occurred, while at 10°C their values were low. At 30°C, the ADH activity (ethanol to acetaldehyde direction), increased rapidly but acetaldehyde did not rise because of its oxidation to acetic acid, which increased together with ethyl acetate. At 10°C, the ADH activity increased at 20%wl and continued to rise even at 40%wl, meaning that ethanol oxidation was delayed. At 20°C, the behaviour was intermediate to the other temperatures. The relative expression of the VvAdh2 gene was the highest at 10°C already at 10%wl in a synchrony with the ADH activity, indicating a rapid response likely due to low temperature. The expression subsequently declined. At 20 and 30°C, the expression was lower and increased slightly during dehydration in combination with the ADH activity. This imbalance between gene expression and ADH activity at 10°C, as well as the unexpected expression of the carotenoid cleavage dioxygenase 1 (CCD1) gene, opens the discussion on the stress sensitivity and transcription event during postharvest dehydration, and the importance of carefully monitoring temperature during dehydration.

  8. Structure, Expression, Chromosomal Location and Product of the Gene Encoding Adh2 in Petunia

    PubMed Central

    Gregerson, R. G.; Cameron, L.; McLean, M.; Dennis, P.; Strommer, J.

    1993-01-01

    In most higher plants the genes encoding alcohol dehydrogenase comprise a small gene family, usually with two members. The Adh1 gene of Petunia has been cloned and analyzed, but a second identifiable gene was not recovered from any of three genomic libraries. We have therefore employed the polymerase chain reaction to obtain the major portion of a second Adh gene. From sequence, mapping and northern data we conclude this gene encodes ADH2, the major anaerobically inducible Adh gene of Petunia. The availability of both Adh1 and Adh2 from Petunia has permitted us to compare their structures and patterns of expression to those of the well-studied Adh genes of maize, of which one is highly expressed developmentally, while both are induced in response to hypoxia. Despite their evolutionary distance, evidenced by deduced amino acid sequence as well as taxonomic classification, the pairs of genes are regulated in strikingly similar ways in maize and Petunia. Our findings suggest a significant biological basis for the regulatory strategy employed by these distant species for differential expression of multiple Adh genes. PMID:8096485

  9. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  10. Effects of glucose, ethanol and acetic acid on regulation of ADH2 gene from Lachancea fermentati

    PubMed Central

    Yaacob, Norhayati; Salleh, Abu Bakar; Abdul Rahman, Nor Aini

    2016-01-01

    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2

  11. Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824

    PubMed Central

    Fontaine, Lisa; Meynial-Salles, Isabelle; Girbal, Laurence; Yang, Xinghong; Croux, Christian; Soucaille, Philippe

    2002-01-01

    The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824. PMID:11790753

  12. Increased Variation in Adh Enzyme Activity in Drosophila Mutation-Accumulation Experiment Is Not Due to Transposable Elements at the Adh Structural Gene

    PubMed Central

    Aquadro, C. F.; Tachida, H.; Langley, C. H.; Harada, K.; Mukai, T.

    1990-01-01

    We present here a molecular analysis of the region surrounding the structural gene encoding alcohol dehydrogenase (Adh) in 47 lines of Drosophila melanogaster that have each accumulated mutations for 300 generations. While these lines show a significant increase in variation of alcohol dehydrogenase enzyme activity compared to control lines, we found no restriction map variation in a 13-kb region including the complete Adh structural gene and roughly 5 kb of both 5' and 3' sequences. Thus, the rapid accumulation of ADH activity variation after 28,200 allele generations does not appear to have been due to the mobilization of transposable elements into or out of the Adh structural gene region. PMID:1963870

  13. Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH.

    PubMed

    Passoth, V; Schäfer, B; Liebel, B; Weierstall, T; Klinner, U

    1998-10-01

    Two Pichia stipitis ADH genes (PsADH1 and PsADH2) were isolated by complementation of a Saccharomyces cerevisiae Adh(-)-mutant. The genes enabled the transformants to grow in the presence of antimycin A on glucose, to use ethanol as sole carbon source and made them sensitive to allylalcohol. The sequences of the genes showed similarities of 70-77% to sequences of ADH genes of Candida albicans, Kluyveromyces lactis, K. marxianus, and S. cerevisiae and about 60% homology to those of Schizosaccharomyces pombe and Aspergillus flavus. Southern hybridization experiments suggested that P. stipitis has only these two ADH genes. Both genes are located on the largest chromosome of P. stipitis. PsADH2 encodes for the ADH activity that is responsible for ethanol formation at oxygen limitation. The gene is regulated at the transcriptional level. Moreover, also in cells grown on ethanol, only PsADH2 transcript was found. PsADH1 transcript was detected under aerobic conditions on fermentable carbon sources.

  14. Rare ADH Variant Constellations are Specific for Alcohol Dependence

    PubMed Central

    Zuo, Lingjun; Zhang, Heping; Malison, Robert T.; Li, Chiang-Shan R.; Zhang, Xiang-Yang; Wang, Fei; Lu, Lingeng; Lu, Lin; Wang, Xiaoping; Krystal, John H.; Zhang, Fengyu; Deng, Hong-Wen; Luo, Xingguang

    2013-01-01

    Aims: Some of the well-known functional alcohol dehydrogenase (ADH) gene variants (e.g. ADH1B*2, ADH1B*3 and ADH1C*2) that significantly affect the risk of alcohol dependence are rare variants in most populations. In the present study, we comprehensively examined the associations between rare ADH variants [minor allele frequency (MAF) <0.05] and alcohol dependence, with several other neuropsychiatric and neurological disorders as reference. Methods: A total of 49,358 subjects in 22 independent cohorts with 11 different neuropsychiatric and neurological disorders were analyzed, including 3 cohorts with alcohol dependence. The entire ADH gene cluster (ADH7–ADH1C–ADH1B–ADH1A–ADH6–ADH4–ADH5 at Chr4) was imputed in all samples using the same reference panels that included whole-genome sequencing data. We stringently cleaned the phenotype and genotype data to obtain a total of 870 single nucleotide polymorphisms with 0< MAF <0.05 for association analysis. Results: We found that a rare variant constellation across the entire ADH gene cluster was significantly associated with alcohol dependence in European-Americans (Fp1: simulated global P = 0.045), European-Australians (Fp5: global P = 0.027; collapsing: P = 0.038) and African-Americans (Fp5: global P = 0.050; collapsing: P = 0.038), but not with any other neuropsychiatric disease. Association signals in this region came principally from ADH6, ADH7, ADH1B and ADH1C. In particular, a rare ADH6 variant constellation showed a replicable association with alcohol dependence across these three independent cohorts. No individual rare variants were statistically significantly associated with any disease examined after group- and region-wide correction for multiple comparisons. Conclusion: We conclude that rare ADH variants are specific for alcohol dependence. The ADH gene cluster may harbor a causal variant(s) for alcohol dependence. PMID:23019235

  15. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population

    PubMed Central

    Méndez, Claudia

    2015-01-01

    Objective: Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. Methods: ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Results: Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. Conclusions: This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism. PMID:26848198

  16. The ADH1B and DRD2 gene polymorphism may modify the protective effect of the ALDH2 gene against heroin dependence.

    PubMed

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Yeh, Pin-Hsi; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2013-06-03

    Understanding the influences of genes involved in dopamine and serotonin metabolism, such as the aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) genes, is critical for understanding addictive behavior. In addition, dopamine D2 receptor (DRD2) gene may also interact with the dopamine metabolizing genes and link to addiction. Therefore, we investigated the association between the ALDH2, ADH1B and DRD2 polymorphisms and heroin dependence. Heroin-dependent Han Chinese patients (n=304) and healthy controls (n=335) were recruited. Genotypes of ALDH2, ADH1B and DRD2 polymorphisms were analyzed using a polymerase chain reaction with restriction fragment length polymorphism. The frequency of the ALDH2*1/*1 genotype was significantly lower in heroin-dependent patients than in controls, but the frequency of ADH1B and DRD2 genotypes was not significantly different. Further stratification of the ALDH2 gene with the ADH1B gene showed that the protective effect of ALDH2*1/*1 existed only in patients who also carried the ADH1B*1/*1 and ADH1B*1/*2 genotype. Logistic regression analysis showed a significant interaction between ALDH2 and ADH1B (P=0.022) and DRD2, ALDH2 and ADH1B in patients (P=0.037). The ALDH2*1/*1, ADH1B*1/*1, and ADH1B*1/*2 genotypes may interact and protect their carriers against heroin dependence and the protective effect may be varied by the DRD2 gene polymorphism. We conclude that the protective effect of the ALDH2 polymorphism against heroin dependence may be modified by the ADH1B and DRD2 polymorphism.

  17. Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analyses of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships.

    PubMed

    Roalson, Eric H; Friar, Elizabeth A

    2004-12-01

    We analyzed sequence variation for the alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) to reconstruct Adh gene trees for Acrocystis species and to characterize the structure of the Adh gene family in Carex. Two Adh loci were included with ITS and ETS sequences in a combined Bayesian inference analysis of Carex section Acrocystis to gain a better understanding of species relationships in the section. In addition, we comment on how the results presented here contribute to our knowledge of the birth-death process of the Adh gene family in angiosperms. It appears that the structure of the Adh gene family in Carex is complex with possibly six loci present in the gene family. Additionally, variation among Acrocystis species within loci is quite low, and there is little phylogenetic resolution in the individual datasets. Bayesian inference analysis of the combined ITS, ETS, Adh1, and Adh2 datasets resulted in a moderately well-supported phylogenetic hypothesis of relationships in the section which is discussed in relation to previous hypotheses of relationships.

  18. Polymorphisms in Alcohol Metabolism Genes ADH1B and ALDH2, Alcohol Consumption and Colorectal Cancer

    PubMed Central

    Crous-Bou, Marta; Rennert, Gad; Cuadras, Daniel; Salazar, Ramon; Cordero, David; Saltz Rennert, Hedy; Lejbkowicz, Flavio; Kopelovich, Levy; Monroe Lipkin, Steven; Bernard Gruber, Stephen; Moreno, Victor

    2013-01-01

    Background Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population. Methodology/Principal Findings SNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption. Conclusions/Significance Genetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants. PMID:24282520

  19. High diversity and no significant selection signal of human ADH1B gene in Tibet

    PubMed Central

    2012-01-01

    Background ADH1B is one of the most studied human genes with many polymorphic sites. One of the single nucleotide polymorphism (SNP), rs1229984, coding for the Arg48His substitution, have been associated with many serious diseases including alcoholism and cancers of the digestive system. The derived allele, ADH1B*48His, reaches high frequency only in East Asia and Southwest Asia, and is highly associated with agriculture. Micro-evolutionary study has defined seven haplogroups for ADH1B based on seven SNPs encompassing the gene. Three of those haplogroups, H5, H6, and H7, contain the ADH1B*48His allele. H5 occurs in Southwest Asia and the other two are found in East Asia. H7 is derived from H6 by the derived allele of rs3811801. The H7 haplotype has been shown to have undergone significant positive selection in Han Chinese, Hmong, Koreans, Japanese, Khazak, Mongols, and so on. Methods In the present study, we tested whether Tibetans also showed evidence for selection by typing 23 SNPs in the region covering the ADH1B gene in 1,175 individuals from 12 Tibetan populations representing all districts of the Tibet Autonomous Region. Multiple statistics were estimated to examine the gene diversities and positive selection signals among the Tibetans and other populations in East Asia. Results The larger Tibetan populations (Qamdo, Lhasa, Nagqu, Nyingchi, Shannan, and Shigatse) comprised mostly farmers, have around 12% of H7, and 2% of H6. The smaller populations, living on hunting or recently switched to farming, have lower H7 frequencies (Tingri 9%, Gongbo 8%, Monba and Sherpa 6%). Luoba (2%) and Deng (0%) have even lower frequencies. Long-range haplotype analyses revealed very weak signals of positive selection for H7 among Tibetans. Interestingly, the haplotype diversity of H7 is higher in Tibetans than in any other populations studied, indicating a longer diversification history for that haplogroup in Tibetans. Network analysis on the long-range haplotypes revealed

  20. A phylogenetic analysis of the genus Fragaria (strawberry) using intron-containing sequence from the ADH-1 gene.

    PubMed

    DiMeglio, Laura M; Staudt, Günter; Yu, Hongrun; Davis, Thomas M

    2014-01-01

    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae.

  1. A Phylogenetic Analysis of the Genus Fragaria (Strawberry) Using Intron-Containing Sequence from the ADH-1 Gene

    PubMed Central

    DiMeglio, Laura M.; Yu, Hongrun; Davis, Thomas M.

    2014-01-01

    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae. PMID:25078607

  2. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene.

    PubMed Central

    Dolferus, R; Jacobs, M; Peacock, W J; Dennis, E S

    1994-01-01

    The Adh (alcohol dehydrogenase, EC 1.1.1.1.) gene from Arabidopsis thaliana (L.) Heynh. can be induced by dehydration and cold, as well as by hypoxia. A 1-kb promoter fragment (CADH: -964 to +53) is sufficient to confer the stress induction and tissue-specific developmental expression characteristics of the Adh gene to a beta-glucuronidase reporter gene. Deletion mapping of the 5' end and site-specific mutagenesis identified four regions of the promoter essential for expression under the three stress conditions. Some sequence elements are important for response to all three stress treatments, whereas others are stress specific. The most critical region essential for expression of the Arabidopsis Adh promoter under all three environmental stresses (region IV: -172 to -141) contains sequences homologous to the GT motif (-160 to -152) and the GC motif (-147 to -144) of the maize Adh1 anaerobic responsive element. Region III (-235 to -172) contains two regions shown by R.J. Ferl and B.H. Laughner ([1989] Plant Mol Biol 12: 357-366) to bind regulatory proteins; mutation of the G-box-1 region (5'-CCACGTGG-3', -216 to -209) does not affect expression under uninduced or hypoxic conditions, but significantly reduces induction by cold stress and, to a lesser extent, by dehydration stress. Mutation of the other G-box-like sequence (G-box-2: 5'-CCAAGTGG-3', -193 to -182) does not change hypoxic response and affects cold and dehydration stress only slightly. G-box-2 mutations also promote high levels of expression under uninduced conditions. Deletion of region I (-964 to -510) results in increased expression under uninduced and all stress conditions, suggesting that this region contains a repressor binding site. Region II (-510 to -384) contains a positive regulatory element and is necessary for high expression levels under all treatments. PMID:7972489

  3. The Analysis of Polymorphism of Alcohol Dehydrogenase 3 (ADH3) Gene and Influence of Liver Function Status in Indonesia.

    PubMed

    Suhartini; Mustofa; Nurhantari, Yudha; Rianto, Bambang Udji Djoko

    2017-01-31

    Indonesian culture actually has no historical record of behaviors in consuming alcohol, but there are many recent reports of alcohol abuse among Asian people involving their traditional drink. In genotype studies, the damage of the liver caused by consuming alcohol is influenced by the presence of the polymorphism enzyme gene. The lack of study regarding such topic is a signal to further investigate ADH3 gene distribution and its effect on liver function status. The total of 197 research subjects of Javanese descent received alcohol dehydrogenase 3 (ADH3) genetic polymorphism and liver status tests in the city of Yogyakarta, Indonesian. An analytical study with a cross-sectional design was then conducted on the subjects, with the resulting isolated DNAs amplified through polymerase chain reaction (PCR). The genotype of ADH3 was determined by means of restriction fragment length polymorphism (RFLP) using Ssp1 restricting enzyme. Liver function status was assessed by measuring serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvate transaminase (SGPT) and gamma glutamyl transferase (GGT) using a photometric system. Gene types of ADH3*1 (2.1%), ADH3*2 (82.7%) and ADH3*1/3*2 (15.2%) on the subjects were concluded, finding that there is no difference between the gender. In conclusion most of the ADH3 gene polymorphism of the subjects were ADH3*2 (82.7%). The influence of genetic polymorphisms on the status of liver function in the subjects showed significant difference according to GGT measurement, but the same cannot be said on the other two values measuring SGOT and SGPT.

  4. The Arabidopsis Adh gene exhibits diverse nucleosome arrangements within a small DNase I-sensitive domain.

    PubMed Central

    Vega-Palas, M A; Ferl, R J

    1995-01-01

    The alcohol dehydrogenase (Adh) gene from Arabidopsis shows enhanced sensitivity to DNase I in cells that express the gene. This generalized sensitivity to DNase I is demarcated by position -500 on the 5' side and the end of the mRNA on the 3' side. Thus, the gene defined as the promoter and mRNA coding region corresponds very closely in size with the gene defined as a nuclease-sensitive domain. This is a remarkably close correspondence between a sensitive domain and a eukaryotic transcriptional unit, because previously reported DNase I-sensitive domains include large regions of DNA that are not transcribed. Nucleosomes are present in the coding region of the Adh gene when it is expressed, indicating that the transcriptional elongation process causes nucleosome disruption rather than release of nucleosomes from the coding region. In addition, the regulatory region contains a loosely positioned nucleosome that is separated from adjacent nucleosomes by internucleosomic DNA segments longer than the average linker DNA in bulk chromatin. This specific array of nucleosomes coexists with bound transcription factors that could contribute to the organization of the nucleosome arrangement. These results enhance our understanding of the complex interactions among DNA, nucleosomes, and transcription factors during gene expression in plants. PMID:8535143

  5. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    PubMed Central

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  6. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

    PubMed

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam; Joerck-Ramberg, Dorte; Ling, Zhihao; Zhou, Nerve; Blevins, James E; Sibirny, Andriy A; Piškur, Jure; Ishchuk, Olena P

    2016-04-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.

  7. A distinct type of alcohol dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient strain of Schizosaccharomyces pombe.

    PubMed

    Sakurai, Masao; Tohda, Hideki; Kumagai, Hiromichi; Giga-Hama, Yuko

    2004-03-01

    In the fission yeast Schizosaccharomyces pombe, only one alcohol dehydrogenase gene, adh1(+), has been identified. To elucidate the influence of adh1(+) on ethanol fermentation, we constructed the adh1 null strain (delta adh1). The delta adh1 cells still produced ethanol and grew fermentatively as the wild-type cells. Both DNA microarray and RT-PCR analysis demonstrated that this ethanol production is caused by the enhanced expression of a Saccharomyces cerevisiae ADH4-like gene product (SPAC5H10.06C named adh4(+)). Since the strain lacking both adh1 and adh4 genes (delta adh1 delta adh4) showed non-fermentative retarded growth, only these two ADHs produce ethanol for fermentative growth. This is the first observation that a S. cerevisiae ADH4-like alcohol dehydrogenase functions in yeast ethanol fermentation.

  8. SPINK1, ADH2, and ALDH2 gene variants and alcoholic chronic pancreatitis in Japan.

    PubMed

    Shimosegawa, Tooru; Kume, Kiyoshi; Masamune, Atsushi

    2008-03-01

    The serine protease inhibitor Kazal type 1 (SPINK1) is a potent antiprotease and an important inactivation factor of intrapancreatic trypsin activity. Loss of function by the SPINK1 mutations leads to decreased inhibitory capacity. The significance of SPINK1 mutations in alcoholic chronic pancreatitis (CP) in Japan and its functional role remain unclear. The aim of the present study was to clarify the incidence of SPINK1, alcohol dehydrogenase 2 (ADH2) and aldehyde dehydrogenase 2 (ALDH2) variants in CP patients in Japan. One hundred and 86 patients with CP, and 527 healthy volunteers were enrolled. Mutational analyses were performed by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Serum pancreatic secretory trypsin inhibitor (PSTI) level was measured by radioimmunoassay. The frequencies of N34S and IVS3 + 2T > C in the SPINK1 gene were significantly higher in patients with non-alcoholic CP (12.9% and 8.6%, respectively) than in normal subjects (0.37% and 0%). In total, 18 of 93 (19.4%) patients with non-alcoholic CP had at least one SPINK1 mutation. Concerning alcoholic CP, we found IVS3 + 2T > C in a small number of patients (3.9%). Serum PSTI concentration was decreased in patients with the IVS3 + 2T > C mutation. The frequency of the ADH2*2 allele in the alcoholic CP group was significantly higher than that in alcoholics without pancreatitis. The frequency of the ALDH2*2 allele was significantly low in patients with alcoholic CP compared with healthy controls. In conclusion, SPINK1 mutations were associated with non-alcoholic CP. Furthermore, we revealed the amount of wild-type PSTI was decreased in patients with IVS3 + 2T > C mutation. Variants of alcohol-metabolizing enzymes appeared in the relation to alcoholic CP.

  9. Genetic variants in or near ADH1B and ADH1C affect susceptibility to alcohol dependence in a British and Irish population.

    PubMed

    Way, Michael; McQuillin, Andrew; Saini, Jit; Ruparelia, Kush; Lydall, Gregory J; Guerrini, Irene; Ball, David; Smith, Iain; Quadri, Giorgia; Thomson, Allan D; Kasiakogia-Worlley, Katherine; Cherian, Raquin; Gunwardena, Priyanthi; Rao, Harish; Kottalgi, Girija; Patel, Shamir; Hillman, Audrey; Douglas, Ewen; Qureshi, Sherhzad Y; Reynolds, Gerry; Jauhar, Sameer; O'Kane, Aideen; Dedman, Alex; Sharp, Sally; Kandaswamy, Radhika; Dar, Karim; Curtis, David; Morgan, Marsha Y; Gurling, Hugh M D

    2015-05-01

    Certain single nucleotide polymorphisms (SNPs) in genes encoding alcohol dehydrogenase (ADH) enzymes confer a significant protective effect against alcohol dependence syndrome (ADS) in East Asian populations. Recently, attention has focused on the role of these SNPs in determining ADS risk in European populations. To further elucidate these associations, SNPs of interest in ADH1B, ADH1C and the ADH1B/1C intergenic region were genotyped in a British and Irish population (ADS cases n = 1076: controls n = 1027) to assess their relative contribution to ADS risk. A highly significant, protective association was observed between the minor allele of rs1229984 in ADH1B and ADS risk [allelic P = 8.4 × 10(-6) , odds ratio (OR) = 0.26, 95 percent confidence interval, 0.14, 0.49]. Significant associations were also observed between ADS risk and the ADH1B/1C intergenic variant, rs1789891 [allelic P = 7.2 × 10(-5) , OR = 1.4 (1.2, 1.6)] and three non-synonymous SNPs rs698, rs1693482 and rs283413 in ADH1C. However, these associations were not completely independent; thus, while the ADH1B rs1229984 minor allele association was independent of those of the intergenic variant rs1789891 and the three ADH1C variants, the three ADH1C variants were not individually independent. In conclusion, the rare ADH1B rs1229984 mutation provides significant protection against ADS in this British and Irish population; other variants in the ADH gene cluster also alter ADS risk, although the strong linkage disequilibrium between SNPs at this location precluded clear identification of the variant(s) driving the associations.

  10. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.

    PubMed

    Gutiérrez-Lomelí, Melesio; Torres-Guzmán, Juan Carlos; González-Hernández, Gloria Angélica; Cira-Chávez, Luis Alberto; Pelayo-Ortiz, Carlos; Ramírez-Córdova, Jose de Jesús

    2008-05-01

    This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.

  11. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    PubMed Central

    Piriya, P. Sobana; Vasan, P. Thirumalai; Padma, V. S.; Vidhyadevi, U.; Archana, K.; Vennison, S. John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production. PMID:22919503

  12. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen.

    PubMed Central

    Hoeren, F U; Dolferus, R; Wu, Y; Peacock, W J; Dennis, E S

    1998-01-01

    The transcription factor AtMYB2 binds to two sequence motifs in the promoter of the Arabidopsis ADH1 gene. The binding to the GT-motif (5'-TGGTTT-3') is essential for induction of ADH1 by low oxygen, while binding to the second motif, MBS-2, is not essential for induction. We show that AtMYB2 is induced by hypoxia with kinetics compatible with a role in the regulation of ADH1. Like ADH1, AtMYB2 has root-limited expression. When driven by a constitutive promoter, AtMYB2 is able to transactivate ADH1 expression in transient assays in both Arabidopsis and Nicotiana plumbaginifolia protoplasts, and in particle bombardment of Pisum sativum leaves. Mutation of the GT-motif abolished binding of AtMYB2 and caused loss of activity of the ADH1 promoter in both transient assays and transgenic Arabidopsis plants. These results are consistent with AtMYB2 being a key regulatory factor in the induction of the ADH1 promoter by low oxygen. PMID:9611167

  13. Promoter elements required for developmental expression of the maize Adh1 gene in transgenic rice.

    PubMed Central

    Kyozuka, J; Olive, M; Peacock, W J; Dennis, E S; Shimamoto, K

    1994-01-01

    To define the regions of the maize alcohol dehydrogenase 1 (Adh1) promoter that confer tissue-specific expression, a series of 5' promoter deletions and substitution mutations were linked to the Escherichia coli beta-glucuronidase A (uidA) reporter gene and introduced into rice plants. A region between -140 and -99 not only conferred anaerobically inducible expression in the roots of transgenic plants but was also required for expression in the root cap, embryo, and in endosperm under aerobic conditions. GC-rich (GC-1, GC-2, and GC-3) or GT-rich (GT-1 and GT-2) sequence motifs in this region were necessary for expression in these tissues, as they were in anaerobic expression. Expression in the root cap under aerobic conditions required all the GC- and GT-rich motifs. The GT-1, GC-1, GC-2, and GC-3 motifs, and to a lesser extent the GT-2 motif, were also required for anaerobic responsiveness in rice roots. All elements except the GC-3 motif were needed for endosperm-specific expression. The GC-2 motif and perhaps the GT-1 motif appeared to be the only elements required for high-level expression in the embryos of rice seeds. Promoter regions important for shoot-, embryo-, and pollen-specific expression were proximal to -99, and nucleotides required for shoot-specific expression occurred between positions -72 and -43. Pollen-specific expression required a sequence element outside the promoter region, between +54 and +106 of the untranslated leader, as well as a silencer element in the promoter between -72 and -43. PMID:8061518

  14. The Genetics of a Small Autosomal Region of DROSOPHILA MELANOGASTER Containing the Structural Gene for Alcohol Dehydrogenase. I. Characterization of Deficiencies and Mapping of ADH and Visible Mutations

    PubMed Central

    Woodruff, R. C.; Ashburner, M.

    1979-01-01

    The position of the structural gene coding for alcohol dehydrogenase (ADH) in Drosophila melanogaster has been shown to be within polytene chromosome bands 35B1 and 35B3, most probably within 35B2. The genetic and cytological properties of twelve deficiencies in polytene chromosome region 34–35 have been characterized, eleven of which include Adh. Also mapped cytogenetically are seven other recessive visible mutant loci. Flies heterozygous for overlapping deficiencies that include both the Adh locus and that for the outspread mutant (osp: a recessive wing phenotype) are homozygous viable and show a complete ADH negative phenotype and strong osp phenotype. These deficiencies probably include two polytene chromosome bands, 35B2 and 35B3. PMID:115743

  15. A single nucleotide polymorphism (SNP839) in the adh1 reference gene affects the quantitation of genetically modified maize (Zea mays L.).

    PubMed

    Broothaerts, Wim; Corbisier, Philippe; Schimmel, Heinz; Trapmann, Stefanie; Vincent, Sandra; Emons, Hendrik

    2008-10-08

    The real-time PCR methods recommended in the European Union for the quantitation of genetically modified (GM) maize events NK603, GA21, and MON 863 measure the number of copies of the GM event in relation to those of the maize-specific adh1 reference gene. The study reported here revealed that the targeted 70 base pair adh1 region exhibits a single nucleotide polymorphism (SNP839) that hampers the binding of the reverse primer used in the adh1 detection method. Partial fragments of the adh1-A and adh1-F allele were cloned. By allele-specific real-time PCR, it was shown that SNP839 corresponds to a common allelic polymorphism in maize. As a result, the quantitation of the GM maize events mentioned is positively or negatively biased, depending on the adh1 genotype of sample and calibrant. Therefore, it is proposed to revise the quantitative detection methods for NK603, GA21, and MON 863 maize.

  16. Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer.

    PubMed

    Chiang, Chien-Ping; Jao, Shu-Wen; Lee, Shiao-Pieng; Chen, Pei-Chi; Chung, Chia-Chi; Lee, Shou-Lun; Nieh, Shin; Yin, Shih-Jiun

    2012-02-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol. Functional polymorphisms of ADH1B, ADH1C, and ALDH2 genes occur among racial populations. The goal of this study was to systematically determine the functional expressions and cellular localization of ADHs and ALDHs in human rectal mucosa, the lesions of adenocarcinoma and hemorrhoid, and the genetic association of allelic variations of ADH and ALDH with large bowel disorders. Twenty-one surgical specimens of rectal adenocarcinoma and the adjacent normal mucosa, including 16 paired tissues of rectal tumor, normal mucosae of rectum and sigmoid colon from the same individuals, and 18 surgical mixed hemorrhoid specimens and leukocyte DNA samples from 103 colorectal cancer patients, 67 hemorrhoid patients, and 545 control subjects recruited in previous study, were investigated. The isozyme/allozyme expression patterns of ADH and ALDH were identified by isoelectric focusing and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting using the corresponding purified class-specific antibodies; the cellular activity and protein localizations were detected by immunohistochemistry and histochemistry, respectively. Genotypes of ADH1B, ADH1C, and ALDH2 were determined by polymerase chain reaction-restriction fragment length polymorphisms. At 33mM ethanol, pH 7.5, the activity of ADH1C*1/1 phenotypes exhibited 87% higher than that of the ADH1C*1/*2 phenotypes in normal rectal mucosa. The activity of ALDH2-active phenotypes of rectal mucosa was 33% greater than ALDH2-inactive phenotypes at 200μM acetaldehyde. The protein contents in normal rectal mucosa were in the following order: ADH1>ALDH2>ADH3≈ALDH1A1, whereas those of ADH2, ADH4, and ALDH3A1 were fairly low. Both activity and content of ADH1 were significantly decreased in rectal tumors, whereas the ALDH activity remained

  17. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase.

    PubMed

    Saliola, Michele; Getuli, Claudia; Mazzoni, Cristina; Fantozzi, Ivana; Falcone, Claudio

    2007-08-01

    KlADH3 is a Kluyveromyces lactis alcohol dehydrogenase gene induced in the presence of all respiratory carbon sources except ethanol, which specifically represses this gene. Deletion analysis of the KlADH3 promoter revealed the presence of both positive and negative elements. However, by site-directed mutagenesis and gel retardation experiments, we identified a 15-bp element responsible for the transcriptional repression of this gene by ethanol. In particular, this element showed putative sites required for the sequential binding of ethanol-induced factors responsible for the repressed conditions, and the binding of additional factors relieved repression. In addition, we showed that the ethanol element was required for in vivo repression of KlAdh3 activity.

  18. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance.

    PubMed

    Petersson, Anneli; Almeida, João R M; Modig, Tobias; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F; Lidén, Gunnar

    2006-04-30

    The fermentation of lignocellulose hydrolysates by Saccharomyces cerevisiae for fuel ethanol production is inhibited by 5-hydroxymethyl furfural (HMF), a furan derivative which is formed during the hydrolysis of lignocellulosic materials. The inhibition can be avoided if the yeast strain used in the fermentation has the ability to reduce HMF to 5-hydroxymethylfurfuryl alcohol. To enable the identification of enzyme(s) responsible for HMF conversion in S. cerevisiae, microarray analyses of two strains with different abilities to convert HMF were performed. Based on the expression data, a subset of 15 reductase genes was chosen to be further examined using an overexpression strain collection. Three candidate genes were cloned from two different strains, TMB3000 and the laboratory strain CEN.PK 113-5D, and overexpressed using a strong promoter in the strain CEN.PK 113-5D. Strains overexpressing ADH6 had increased HMF conversion activity in cell-free crude extracts with both NADPH and NADH as co-factors. In vitro activities were recorded of 8 mU/mg with NADH as co-factor and as high as 1200 mU/mg for the NADPH-coupled reduction. Yeast strains overexpressing ADH6 also had a substantially higher in vivo conversion rate of HMF in both aerobic and anaerobic cultures, showing that the overexpression indeed conveyed the desired increased reduction capacity.

  19. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.

    PubMed Central

    Larroy, Carol; Fernández, M Rosario; González, Eva; Parés, Xavier; Biosca, Josep A

    2002-01-01

    YMR318C represents an open reading frame from Saccharomyces cerevisiae with unknown function. It possesses a conserved sequence motif, the zinc-containing alcohol dehydrogenase (ADH) signature, specific to the medium-chain zinc-containing ADHs. In the present study, the YMR318C gene product has been purified to homogeneity from overexpressing yeast cells, and found to be a homodimeric ADH, composed of 40 kDa subunits and with a pI of 5.0-5.4. The enzyme was strictly specific for NADPH and was active with a wide variety of substrates, including aliphatic (linear and branched-chain) and aromatic primary alcohols and aldehydes. Aldehydes were processed with a 50-fold higher catalytic efficiency than that for the corresponding alcohols. The highest k(cat)/K(m) values were found with pentanal>veratraldehyde > hexanal > 3-methylbutanal >cinnamaldehyde. Taking into consideration the substrate specificity and sequence characteristics of the YMR318C gene product, we have proposed this gene to be called ADH6. The disruption of ADH6 was not lethal for the yeast under laboratory conditions. Although S. cerevisiae is considered a non lignin-degrading organism, the catalytic activity of ADHVI can direct veratraldehyde and anisaldehyde, arising from the oxidation of lignocellulose by fungal lignin peroxidases, to the lignin biodegradation pathway. ADHVI is the only S. cerevisiae enzyme able to significantly reduce veratraldehyde in vivo, and its overexpression allowed yeast to grow under toxic concentrations of this aldehyde. The enzyme may also be involved in the synthesis of fusel alcohols. To our knowledge this is the first NADPH-dependent medium-chain ADH to be characterized in S. cerevisiae. PMID:11742541

  20. ADH5 — EDRN Public Portal

    Cancer.gov

    ADH5 is a member of the alcohol dehydrogenase family. This protein forms a homodimer. ADH5 is ineffective in oxidizing ethanol, but exhibits high activity for oxidation of long-chain primary alcohols and for oxidation of S-hydroxymethyl-glutathione, a spontaneous adduct between formaldehyde and glutathione. There are several non-transcribed pseuodogenes related to this gene.

  1. ADH (Antidiuretic Hormone) Test

    MedlinePlus

    ... stored in the posterior pituitary gland at the base of the brain. ADH helps regulate water balance ... of ADH (vasopressin). Several blood and urine osmolality measurements are performed at timed intervals before and after ...

  2. Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson's disease.

    PubMed

    Anvret, Anna; Ran, Caroline; Westerlund, Marie; Gellhaar, Sandra; Lindqvist, Eva; Pernold, Karin; Lundströmer, Karin; Duester, Gregg; Felder, Michael R; Galter, Dagmar; Belin, Andrea Carmine

    2012-02-01

    Alcohol dehydrogenases (ADH) catalyze the reversible metabolism of many types of alcohols and aldehydes to prevent the possible toxic accumulation of these compounds. ADHs are of interest in Parkinson's disease (PD) since these compounds can be harmful to dopamine (DA) neurons. Genetic variants in ADH1C and ADH4 have been found to associate with PD and lack of Adh4 gene activity in a mouse model has recently been reported to induce changes in the DA system. Adh1 knockout (Adh1-/-) and Adh1/4 double knockout (Adh1/4-/-) mice were investigated for possible changes in DA system related activity, biochemical parameters and olfactory function compared to wild-type (WT) mice. Locomotor activity was tested at ∼7 (adult) and >15 months of age to mimic the late onset of PD. Adh1-/- and Adh1/4-/- mice displayed a significantly higher spontaneous locomotor activity than WT littermates. Both apomorphine and d-amphetamine increased total distance activity in Adh1-/- mice at both age intervals and in Adh1/4-/- mice at 7 months of age compared to WT mice. No significant changes were found regarding olfactory function, however biochemical data showed decreased 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in the olfactory bulb and decreased homovanillic acid (HVA)/DA ratios in the olfactory bulb, frontal cortex and striatum of Adh1/4-/- mice compared to WT mice. Our results suggest that lack of Adh1 alone or Adh1 and Adh4 together lead to changes in DA system related behavior, and that these knockout mice might be possible rodent models to study presymptomatic PD.

  3. Molecular Variation of Adh and P6 Genes in an African Population of Drosophila Melanogaster and Its Relation to Chromosomal Inversions

    PubMed Central

    Benassi, V.; Aulard, S.; Mazeau, S.; Veuille, M.

    1993-01-01

    Four-cutter molecular polymorphism of Adh and P6, and chromosome inversion polymorphism of chromosome II were investigated in 95 isogenic lines of an Ivory Coast population of Drosophila melanogaster, a species assumed to have recently spread throughout the world from a West African origin. The P6 gene showed little linkage disequilibrium with the In(2L)t inversion, although it is located within this inversion. This suggests that the inversion and the P6 locus have extensively exchanged genetic information through either double crossover or gene conversion. Allozymic variation in ADH was in linkage disequilibrium with In(2L)t and In(2R)NS inversions. Evidence suggests either that inversion linkage with the Fast allele is selectively maintained, or that this allele only recently appeared. Molecular polymorphism at the Adh locus in the Ivory Coast is not higher than in North American populations. New haplotypes specific to the African population were found, some of them connect the ``Wa(s)-like'' haplotypes found at high frequencies in the United States to the other slow haplotypes. Their relation with In(2L)t supports the hypothesis that Wa(s) recently recombined away from an In(2L)t chromosome which may be the cause of its divergence from the other haplotypes. PMID:8349110

  4. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter.

    PubMed

    Bahieldin, Ahmed; Gadalla, Nour O; Al-Garni, Saleh M; Almehdar, Hussein; Noor, Samah; Hassan, Sabah M; Shokry, Ahmed M; Sabir, Jamal S M; Murata, Norio

    2014-03-01

    Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.

  5. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  6. Clustering cancer gene expression data by projective clustering ensemble

    PubMed Central

    Yu, Xianxue; Yu, Guoxian

    2017-01-01

    Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920

  7. The influence of genetic polymorphisms in XRCC3 and ADH5 genes on the frequency of genotoxicity biomarkers in workers exposed to formaldehyde.

    PubMed

    Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel

    2013-04-01

    The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is "sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans". Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053-14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673-18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.

  8. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo

    PubMed Central

    Birley, Andrew J.; James, Michael R.; Dickson, Peter A.; Montgomery, Grant W.; Heath, Andrew C.; Martin, Nicholas G.; Whitfield, John B.

    2009-01-01

    We have previously found that variation in alcohol metabolism in Europeans is linked to the chromosome 4q region containing the ADH gene family. We have now typed 103 single nucleotide polymorphisms (SNPs) across this region to test for allelic associations with variation in blood and breath alcohol concentrations after an alcohol challenge. In vivo alcohol metabolism was modelled with three parameters that identified the absorption and rise of alcohol concentration following ingestion, and the rate of elimination. Alleles of ADH7 SNPs were associated with the early stages of alcohol metabolism, with additional effects in the ADH1A, ADH1B and ADH4 regions. Rate of elimination was associated with SNPs in the intragenic region between ADH7 and ADH1C, and across ADH1C and ADH1B. SNPs affecting alcohol metabolism did not correspond to those reported to affect alcohol dependence or alcohol-related disease. The combined SNP associations with early- and late-stage metabolism only account for approximately 20% of the total genetic variance linked to the ADH region, and most of the variance for in vivo alcohol metabolism linked to this region is yet to be explained. PMID:19193628

  9. DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression

    PubMed Central

    Guan, Changfei; Du, Xiaoyun; Zhang, Qinglin; Ma, Fengwang; Luo, Zhengrong; Yang, Yong

    2017-01-01

    The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C

  10. Molecular basis of the size polymorphism of the first intron of the Adh-1 gene of the mediterranean fruit fly, Ceratitis capitata.

    PubMed

    Gomulski, Ludvik M; Brogna, Saverio; Babaratsas, Alekos; Gasperi, Giuliano; Zacharopoulou, Antigoni; Savakis, Charalambos; Bourtzis, Kostas

    2004-06-01

    The first intron of the gene encoding one of the alcohol dehydrogenase isoenzymes (ADH-1) in Ceratitis capitata is highly polymorphic in size. Five size variants of this intron were isolated from different strains and populations and characterized. Restriction map and sequence analysis showed that the intron size polymorphism is due to the presence or absence of (a) a copy of a defective mariner-like element, postdoc; (b) an approximately 550-bp 3' indel which exhibits no similarity to any known sequence; and (c) a central duplication of 704 bp consisting of part of the 3' end of the postdoc element, the region between postdoc and the 3' indel, and the first 20 bp of the 3' indel. The homologous Adh-1 intron was amplified from the congeneric species, Ceratitis rosa, in order to obtain an outgroup for comparative and phylogenetic analyses. The C. rosa introns were polymorphic in size, ranging from about 1100 to 2000 bp, the major difference between them being the presence or absence of a mariner-like element Crmar2, unrelated to the postdoc element. Phylogenetic analysis suggests that the shorter intron variants in C. capitata may represent the ancestral form of the intron, the longest variants apparently being the most recent.

  11. Ectopic ADH secretion

    MedlinePlus

    ... ADH. Often, there are no symptoms from a low sodium level. When symptoms do occur, they may include ... Lab tests that can confirm and help diagnose low sodium include: Comprehensive metabolic panel (includes blood sodium) Osmolality ...

  12. The metabolic enzyme AdhE controls the virulence of Escherichia coli O157:H7

    PubMed Central

    Beckham, Katherine S H; Connolly, James P R; Ritchie, Jennifer M; Wang, Dai; Gawthorne, Jayde A; Tahoun, Amin; Gally, David L; Burgess, Karl; Burchmore, Richard J; Smith, Brian O; Beatson, Scott A; Byron, Olwyn; Wolfe, Alan J; Douce, Gillian R; Roe, Andrew J

    2014-01-01

    Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated. PMID:24846743

  13. Finding approximate gene clusters with Gecko 3

    PubMed Central

    Winter, Sascha; Jahn, Katharina; Wehner, Stefanie; Kuchenbecker, Leon; Marz, Manja; Stoye, Jens; Böcker, Sebastian

    2016-01-01

    Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min. PMID:27679480

  14. Genetic polymorphisms of ADH1B, ADH1C and ALDH2 in Turkish alcoholics: lack of association with alcoholism and alcoholic cirrhosis.

    PubMed

    Vatansever, Sezgin; Tekin, Fatih; Salman, Esin; Altintoprak, Ender; Coskunol, Hakan; Akarca, Ulus Salih

    2015-05-17

    No data exists regarding the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) gene polymorphisms in Turkish alcoholic cirrhotics. We studied the polymorphisms of ADH1B, ADH1C and ALDH2 genes in alcoholic cirrhotics and compared the results with non-cirrhotic alcoholics and healthy volunteers. Overall, 237 subjects were included for the study: 156 alcoholic patients (78 cirrhotics, 78 non-cirrhotic alcoholics) and 81 healthy volunteers. Three different single-nucleotide-polymorphism genotyping methods were used. ADH1C genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism method. The identified ADH1C genotypes were named according to the presence or absence of the enzyme restriction sites. ADH1B (Arg47Hys) genotyping was performed using the allele specific primer extension method, and ALDH2 (Glu487Lys) genotyping was performed by a multiplex polymerase chain reaction using two allele-specific primer pairs. For ADH1B, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 97.4%, 94.9% and 99.4%, respectively. For ADH1C, the frequency of allele *1 in the cirrhotics, non-cirrhotic alcoholics and healthy volunteers was 47%, 36.3% and 45%, respectively. There was no statistical difference between the groups for ADH1B and ADH1C (p>0.05). All alcoholic and non-alcoholic subjects (100%) had the allele *1 for ALDH2. The obtained results for ADH1B, ADH1C, and ALDH gene polymorphisms in the present study are similar to the results of Caucasian studies. ADH1B and ADH1C genetic variations are not related to the development of alcoholism or susceptibility to alcoholic cirrhosis. ALDH2 gene has no genetic variation in the Turkish population.

  15. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  16. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).

    PubMed

    Winnier, Deidre A; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A; Hu, Shirley L; Farook, Vidya S; Coletta, Dawn K; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D; Arya, Rector; Carless, Melanie; Lehman, Donna M; Curran, Joanne E; Cromack, Douglas T; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H H; DeFronzo, Ralph A; Jenkinson, Christopher P

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4)) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10(-60)) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9)), BMI (5.4 x 10(-6)), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

  17. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Winnier, Deidre A.; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A.; Hu, Shirley L.; Farook, Vidya S.; Coletta, Dawn K.; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D.; Arya, Rector; Carless, Melanie; Lehman, Donna M.; Curran, Joanne E.; Cromack, Douglas T.; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H. H.; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  18. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  19. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process.

  20. Modeling Parkinson's disease genetics: altered function of the dopamine system in Adh4 knockout mice.

    PubMed

    Belin, Andrea Carmine; Westerlund, Marie; Anvret, Anna; Lindqvist, Eva; Pernold, Karin; Ogren, Sven Ove; Duester, Gregg; Galter, Dagmar

    2011-03-01

    Class IV alcohol dehydrogenase (ADH4) efficiently reduces aldehydes produced during lipid peroxidation, and may thus serve to protect from toxic effects of aldehydes e.g. on neurons. We hypothesized that ADH4 dysfunction may increase risk for Parkinson's disease (PD) and previously reported association of an ADH4 allele with PD. We found that a promoter polymorphism in this allele induced a 25-30% reduction of transcriptional activity. Based on these findings, we have now investigated whether Adh4 homo- (Adh4-/-) or heterozygous (Adh4+/-) knockout mice display any dopamine system-related changes in behavior, biochemical parameters or olfaction compared to wild-type mice. The spontaneous locomotor activity was found to be similar in the three groups, whereas administration of d-amphetamine or apomorphine induced a significant increase in horizontal activity in the Adh4-/- mice compared to wild-type mice. We measured levels of monoamines and their metabolites in striatum, frontal cortex and substantia nigra and found increased levels of dopamine and DOPAC in substantia nigra of Adh4-/- mice. Investigation of olfactory function revealed a reduced sense of smell in Adh4-/- mice accompanied by alterations in dopamine metabolite levels in the olfactory bulb. Taken together, our results suggest that lack of Adh4 gene activity induces changes in the function of the dopamine system, findings which are compatible with a role of loss-of-function mutations in ADH4 as possible risk factors for PD.

  1. Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact?

    PubMed Central

    Hoegg, Simone; Meyer, Axel

    2007-01-01

    Background Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained. Results We obtained KCNA coding sequences from basal ray-finned fishes (sturgeon, gar, bowfin) and confirmed that the duplication of these genes is specific to teleosts and therefore consistent with the fish-specific genome duplication (FSGD). Phylogenetic analyses of the genes suggest a basal position of the only intron containing KCNA gene in vertebrates (KCNA7). Sistergroup relationships of KCNA1/2 and KCNA3/6 support that a large-scale duplication gave rise to the two clusters found in the genome of tetrapods. We analyzed the intergenic regions of KCNA clusters in vertebrates and found that there are only a few conserved sequences shared between tetrapods and teleosts or between paralogous clusters. The orthologous teleost clusters, however, show sequence conservation in these regions. Conclusion The lack of overall conserved sequences in intergenic regions

  2. Genetic Variation in the Expression of ADH in DROSOPHILA MELANOGASTER

    PubMed Central

    Maroni, G.; Laurie-Ahlberg, C. C.; Adams, D. A.; Wilton, A. N.

    1982-01-01

    Several chromosomes derived from natural populations have been identified that affect the expression of alcohol dehydrogenase (ADH). Second chromosomes, which also carry the structural gene Adh, show a great deal of polymorphism of genetic elements that determine how much enzyme protein accumulates. The level of enzyme was measured in third instar larvae, 6-to-8-day-old males and in larval fat bodies and alimentary canals. In general, activities in the different organs and stages are highly correlated with one another. One line was found, however, in which the ADH level in the fat body is more than twice the level one would expect on the basis of the activity in alimentary canal. We have also found evidence of third-chromosome elements that affect the level of ADH. PMID:6816669

  3. Sequence variation of alcohol dehydrogenase (Adh) paralogs in cactophilic Drosophila.

    PubMed Central

    Matzkin, Luciano M; Eanes, Walter F

    2003-01-01

    This study focuses on the population genetics of alcohol dehydrogenase (Adh) in cactophilic Drosophila. Drosophila mojavensis and D. arizonae utilize cactus hosts, and each host contains a characteristic mixture of alcohol compounds. In these Drosophila species there are two functional Adh loci, an adult form (Adh-2) and a larval and ovarian form (Adh-1). Overall, the greater level of variation segregating in D. arizonae than in D. mojavensis suggests a larger population size for D. arizonae. There are markedly different patterns of variation between the paralogs across both species. A 16-bp intron haplotype segregates in both species at Adh-2, apparently the product of an ancient gene conversion event between the paralogs, which suggests that there is selection for the maintenance of the intron structure possibly for the maintenance of pre-mRNA structure. We observe a pattern of variation consistent with adaptive protein evolution in the D. mojavensis lineage at Adh-1, suggesting that the cactus host shift that occurred in the divergence of D. mojavensis from D. arizonae had an effect on the evolution of the larval expressed paralog. Contrary to previous work we estimate a recent time for both the divergence of D. mojavensis and D. arizonae (2.4 +/- 0.7 MY) and the age of the gene duplication (3.95 +/- 0.45 MY). PMID:12586706

  4. Clustering Genes of Common Evolutionary History.

    PubMed

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl).

  5. Genetic and Cytogenetic Analysis of the ADH Region in DROSOPHILA MELANOGASTER

    PubMed Central

    O'Donnell, Janis; Mandel, Howard C.; Krauss, Marc; Sofer, William

    1977-01-01

    Eighteen Adh-negative mutations were selected with 1-pentyn-3-ol after feeding of formaldehyde. Twelve of the 18 were shown by cytological and genetic analysis to be deletions. Cytological examination of the deletions allowed us to localize the Adh gene to a region including bands 35B3–5 on the left arm of chromosome 2. The deletions were also used to order known visible loci located near Adh.—The vital loci near Adh were also investigated. A total of 109 lethal mutations were generated with EMS and 33 of these, localized within a region defined by the overlap of two of the deletions, were found to belong to 13 complementation groups. If one includes three other loci known to belong there (el, Adh and Sco), a total of 16 complementation groups have been identified in the region close to Adh. PMID:408228

  6. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  7. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence.

  8. Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis.

    PubMed

    Heipieper, H J; Isken, S; Saliola, M

    2000-11-01

    The effects of ethanol and 1-octanol on growth and fatty acid composition of different strains of Kluyveromyces lactis containing a mutation in the four different alcohol dehydrogenase (KlADH) genes were investigated. In the presence of ethanol and 1-octanol K. lactis reduced the fluidity of its lipids by decreasing the unsaturation index (UI) of its membrane fatty acids. In this way, a direct correlation between nonlethal ethanol concentrations and the decrease in the UI could be observed. At concentrations which totally inhibited cell growth no reaction occurred. These adaptive modifications of the fatty acid pattern of K. lactis to ethanol contrasted with those reported for Saccharomyces cerevisiae and Schizosaccharomyces pombe. Whereas these two yeasts increased the fluidity of their membrane lipids in the presence of ethanol, K. lactis reduced the fluidity (UI) of its lipids. Among the different isogenic adh negative strains tested, the strain containing no ADH (adh0) and that containing only KlADH1 were the most alcohol-sensitive. The strain with only KlADH2 showed nearly the same tolerance as reference strain CBS 2359/152 containing all four ADH genes. This suggests that the KlADH2 product could play an important role in the adaptation/detoxification reactions of K. lactis to high ethanol concentrations.

  9. Evolution of Hox gene clusters in deuterostomes

    PubMed Central

    2013-01-01

    Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages. PMID:23819519

  10. Penicillium roqueforti PR toxin gene cluster characterization.

    PubMed

    Hidalgo, Pedro I; Poirier, Elisabeth; Ullán, Ricardo V; Piqueras, Justine; Meslet-Cladière, Laurence; Coton, Emmanuel; Coton, Monika

    2017-03-01

    PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.

  11. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae.

    PubMed Central

    Drewke, C; Thielen, J; Ciriacy, M

    1990-01-01

    A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane. Images PMID:2193925

  12. The ADH7 Promoter of Saccharomyces cerevisiae is Vanillin-Inducible and Enables mRNA Translation Under Severe Vanillin Stress.

    PubMed

    Nguyen, Trinh T M; Iwaki, Aya; Izawa, Shingo

    2015-01-01

    Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However, there is little information available regarding the regulation of their gene expression upon severe vanillin stress, which has been shown to repress the bulk translation activity in yeast cells. Therefore, in this study, we investigated expression patterns of the ADH6 and ADH7 genes in the presence of high concentrations of vanillin. We found that although both genes were transcriptionally upregulated by vanillin stress, they showed different protein expression patterns in response to vanillin. Expression of Adh6 was constitutive and gradually decreased under vanillin stress, whereas expression of Adh7 was inducible, and, importantly, occurred under severe vanillin stress. The null mutants of ADH6 or ADH7 genes were hypersensitive to vanillin and reduced vanillin less efficiently than the wild type, confirming the importance of Adh6 and Adh7 in vanillin detoxification. Additionally, we demonstrate that the ADH7 promoter is vanillin-inducible and enables effective protein synthesis even under severe vanillin stress, and it may be useful for the improvement of vanillin-tolerance and biofuel production efficiency via modification of yeast gene expression in the presence of high concentrations of vanillin.

  13. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns

    PubMed Central

    Jin, Yazhong; Zhang, Chong; Liu, Wei; Tang, Yufan; Qi, Hongyan; Chen, Hao; Cao, Songxiao

    2016-01-01

    Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed. PMID:27242871

  14. Inferring the Recent Duplication History of a Gene Cluster

    NASA Astrophysics Data System (ADS)

    Song, Giltae; Zhang, Louxin; Vinař, Tomáš; Miller, Webb

    Much important evolutionary activity occurs in gene clusters, where a copy of a gene may be free to evolve new functions. Computational methods to extract evolutionary information from sequence data for such clusters are currently imperfect, in part because accurate sequence data are often lacking in these genomic regions, making the existing methods difficult to apply. We describe a new method for reconstructing the recent evolutionary history of gene clusters. The method’s performance is evaluated on simulated data and on actual human gene clusters.

  15. Computing gene expression data with a knowledge-based gene clustering approach.

    PubMed

    Rosa, Bruce A; Oh, Sookyung; Montgomery, Beronda L; Chen, Jin; Qin, Wensheng

    2010-01-01

    Computational analysis methods for gene expression data gathered in microarray experiments can be used to identify the functions of previously unstudied genes. While obtaining the expression data is not a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, a knowledge-based approach which identifies and saves important functional genes before filtering based on variability and fold change differences was utilized to study light regulation. Two clustering methods were used to cluster the filtered datasets, and clusters containing a key light regulatory gene were located. The common genes to both of these clusters were identified, and the genes in the common cluster were ranked based on their coexpression to the key gene. This process was repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two individual clustering methods. In addition, the filtering method increased the proportion of light responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 18.4%. The relatively short length of these common cluster lists compared to gene groups generated through typical clustering methods or coexpression networks narrows the search for novel functional genes while increasing the likelihood that they are biologically relevant.

  16. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  17. Efficient Computation of Approximate Gene Clusters Based on Reference Occurrences

    NASA Astrophysics Data System (ADS)

    Jahn, Katharina

    Whole genome comparison based on the analysis of gene cluster conservation has become a popular approach in comparative genomics. While gene order and gene content as a whole randomize over time, it is observed that certain groups of genes which are often functionally related remain co-located across species. However, the conservation is usually not perfect which turns the identification of these structures, often referred to as approximate gene clusters, into a challenging task. In this paper, we present a polynomial time algorithm that computes approximate gene clusters based on reference occurrences. We show that our approach yields highly comparable results to a more general approach and allows for approximate gene cluster detection in parameter ranges currently not feasible for non-reference based approaches.

  18. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  19. A genetic analysis of Adh1 regulation

    SciTech Connect

    Freeling, M.

    1992-01-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  20. Aspergillus nidulans mutants defective in stc gene cluster regulation.

    PubMed Central

    Butchko, R A; Adams, T H; Keller, N P

    1999-01-01

    The genes involved in the biosynthesis of sterigmatocystin (ST), a toxic secondary metabolite produced by Aspergillus nidulans and an aflatoxin (AF) precursor in other Aspergillus spp., are clustered on chromosome IV of A. nidulans. The sterigmatocystin gene cluster (stc gene cluster) is regulated by the pathway-specific transcription factor aflR. The function of aflR appears to be conserved between ST- and AF-producing aspergilli, as are most of the other genes in the cluster. We describe a novel screen for detecting mutants defective in stc gene cluster activity by use of a genetic block early in the ST biosynthetic pathway that results in the accumulation of the first stable intermediate, norsolorinic acid (NOR), an orange-colored compound visible with the unaided eye. We have mutagenized this NOR-accumulating strain and have isolated 176 Nor(-) mutants, 83 of which appear to be wild type in growth and development. Sixty of these 83 mutations are linked to the stc gene cluster and are likely defects in aflR or known stc biosynthetic genes. Of the 23 mutations not linked to the stc gene cluster, 3 prevent accumulation of NOR due to the loss of aflR expression. PMID:10511551

  1. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters.

    PubMed

    Adamek, Martina; Spohn, Marius; Stegmann, Evi; Ziemert, Nadine

    2017-01-01

    With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.

  2. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis

    PubMed Central

    Noar, Roslyn D.; Daub, Margaret E.

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  3. The Complete Sequence of 340 kb of DNA around the Rice Adh1–Adh2 Region Reveals Interrupted Colinearity with Maize Chromosome 4

    PubMed Central

    Tarchini, Renato; Biddle, Phyllis; Wineland, Robin; Tingey, Scott; Rafalski, Antoni

    2000-01-01

    A 2.3-centimorgan (cM) segment of rice chromosome 11 consisting of 340 kb of DNA sequence around the alcohol dehydrogenase Adh1 and Adh2 loci was completely sequenced, revealing the presence of 33 putative genes, including several apparently involved in disease resistance. Fourteen of the genes were confirmed by identifying the corresponding transcripts. Five genes, spanning 1.9 cM of the region, cross-hybridized with maize genomic DNA and were genetically mapped in maize, revealing a stretch of colinearity with maize chromosome 4. The Adh1 gene marked one significant interruption. This gene mapped to maize chromosome 1, indicating a possible translocation of Adh1 after the evolutionary divergence leading to maize and sorghum. Several other genes, most notably genes similar to known disease resistance genes, showed no cross-hybridization with maize genomic DNA, suggesting sequence divergence or absence of these sequences in maize, which is in contrast to several other well-conserved genes, including Adh1 and Adh2. These findings indicate that the use of rice as the model system for other cereals may sometimes be complicated by the presence of rapidly evolving gene families and microtranslocations. Seven retrotransposons and eight transposons were identified in this rice segment, including a Tc1/Mariner–like element, which is new to rice. In contrast to maize, retroelements are less frequent in rice. Only 14.4% of this genome segment consist of retroelements. Miniature inverted repeat transposable elements were found to be the most frequently occurring class of repetitive elements, accounting for 18.8% of the total repetitive DNA. PMID:10715324

  4. Nonlinear model-based method for clustering periodically expressed genes.

    PubMed

    Tian, Li-Ping; Liu, Li-Zhi; Zhang, Qian-Wei; Wu, Fang-Xiang

    2011-01-01

    Clustering periodically expressed genes from their time-course expression data could help understand the molecular mechanism of those biological processes. In this paper, we propose a nonlinear model-based clustering method for periodically expressed gene profiles. As periodically expressed genes are associated with periodic biological processes, the proposed method naturally assumes that a periodically expressed gene dataset is generated by a number of periodical processes. Each periodical process is modelled by a linear combination of trigonometric sine and cosine functions in time plus a Gaussian noise term. A two stage method is proposed to estimate the model parameter, and a relocation-iteration algorithm is employed to assign each gene to an appropriate cluster. A bootstrapping method and an average adjusted Rand index (AARI) are employed to measure the quality of clustering. One synthetic dataset and two biological datasets were employed to evaluate the performance of the proposed method. The results show that our method allows the better quality clustering than other clustering methods (e.g., k-means) for periodically expressed gene data, and thus it is an effective cluster analysis method for periodically expressed gene data.

  5. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus

    PubMed Central

    Chai, Hangzhen; Yin, Ru; Liu, Yongfeng; Meng, Huiying; Zhou, Xianqiang; Zhou, Guolin; Bi, Xupeng; Yang, Xue; Zhu, Tonghan; Zhu, Weiming; Deng, Zixin; Hong, Kui

    2016-01-01

    Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis. PMID:27273151

  6. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  7. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH.

    PubMed

    Raya, R R; Kleeman, E G; Luchansky, J B; Klaenhammer, T R

    1989-09-01

    Lactobacillus acidophilus ADH is lysogenic and harbors an inducible prophage, phi adh. Bacteriophage were detected in cell lysates induced by treatment with mitomycin C or UV light. Electron microscopy of lysates revealed phage particles with a hexagonal head (62 nm) and a long, noncontractile, flexible tail (398 nm) ending in at last five short fibers. Phage phi adh was classified within Bradley's B1 phage group and the Siphoviridae family. The phi adh genome is a linear double-stranded DNA molecule of 41.7 kilobase pairs with cohesive ends: a physical map of the phi adh genome was constructed. A prophage-cured derivative of strain ADH, designated NCK102, was isolated from cells that survived UV exposure. NCK102 did not exhibit mitomycin C-induced lysis, but broth cultures lysed upon addition of phage. Phage phi adh produced clear plaques on NCK102 in media containing 10 mM CaCl2 at pH values between 5.2 and 5.5. A relysogenized derivative (NCK103) of NCK102 was isolated that exhibited mitomycin C-induced lysis and superinfection immunity to phage phi adh. Hybridization experiments showed that the phi adh genome was present in the ADH and NCK103 chromosomes, but absent in NCK102. These results demonstrated classic lytic and lysogenic cycles of replication for the temperate phage phi adh induced from L. acidophilus ADH. Phage phi adh also mediates transduction of plasmid DNA. Transductants of strain ADH containing pC194, pGK12, pGB354, and pVA797 were detected at frequencies in the range of 3.6 x 10(-8) to 8.3 x 10(-10) per PFU. Rearrangements or deletions were not detected in these plasmids as a consequence of transduction. This is the first description of plasmid transduction in the genus Lactobacillus.

  8. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca.

    PubMed

    Temme, Karsten; Zhao, Dehua; Voigt, Christopher A

    2012-05-01

    Bacterial genes associated with a single trait are often grouped in a contiguous unit of the genome known as a gene cluster. It is difficult to genetically manipulate many gene clusters because of complex, redundant, and integrated host regulation. We have developed a systematic approach to completely specify the genetics of a gene cluster by rebuilding it from the bottom up using only synthetic, well-characterized parts. This process removes all native regulation, including that which is undiscovered. First, all noncoding DNA, regulatory proteins, and nonessential genes are removed. The codons of essential genes are changed to create a DNA sequence as divergent as possible from the wild-type (WT) gene. Recoded genes are computationally scanned to eliminate internal regulation. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits regulates the conditions and dynamics of gene expression. We applied this approach to an agriculturally relevant gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N(2) to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. We constructed a "refactored" gene cluster that shares little DNA sequence identity with WT and for which the function of every genetic part is defined. This work demonstrates the potential for synthetic biology tools to rewrite the genetics encoding complex biological functions to facilitate access, engineering, and transferability.

  9. Clustering Algorithms: Their Application to Gene Expression Data

    PubMed Central

    Oyelade, Jelili; Isewon, Itunuoluwa; Oladipupo, Funke; Aromolaran, Olufemi; Uwoghiren, Efosa; Ameh, Faridah; Achas, Moses; Adebiyi, Ezekiel

    2016-01-01

    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure. PMID:27932867

  10. Entropy-based cluster validation and estimation of the number of clusters in gene expression data.

    PubMed

    Novoselova, Natalia; Tom, Igor

    2012-10-01

    Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selection procedure to determine the suitable number of clusters. The validity measure is based on the estimation of the "clearness" of the consensus matrix, which is the result of a resampling clustering scheme or consensus clustering. According to the proposed selection procedure the stable clustering result is determined with the reference to the validity measure for the null hypothesis encoding for the absence of clusters. The final number of clusters is selected by analyzing the distance between the validity plots for initial and permutated data sets. We applied the selection procedure to estimate the clustering results on several datasets. As a result the proposed procedure produced an accurate and robust estimate of the number of clusters, which are in agreement with the biological knowledge and gold standards of cluster quality.

  11. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  12. The human RHOX gene cluster: target genes and functional analysis of gene variants in infertile men.

    PubMed

    Borgmann, Jennifer; Tüttelmann, Frank; Dworniczak, Bernd; Röpke, Albrecht; Song, Hye-Won; Kliesch, Sabine; Wilkinson, Miles F; Laurentino, Sandra; Gromoll, Jörg

    2016-09-15

    The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.

  13. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus.

    PubMed Central

    Xu, H W; Wall, J D

    1991-01-01

    Three cosmids previously shown to contain information necessary for the expression of uptake of hydrogenase in Rhodobacter capsulatus were found to be present in a cluster on the chromosome. Earlier genetic experiments suggested the presence of at least six genes essential for hydrogenase activity that are now shown to be in a region of approximately 18 kb that includes the structural genes for the enzyme. A potential response regulator gene was sequenced as a part of the hup gene region. PMID:2007559

  14. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.

    PubMed

    Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa

    2003-02-04

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.

  15. 3D visualization of gene clusters and networks

    NASA Astrophysics Data System (ADS)

    Zhang, Leishi; Sheng, Weiguo; Liu, Xiaohui

    2005-03-01

    In this paper, we try to provide a global view of DNA microarray gene expression data analysis and modeling process by combining novel and effective visualization techniques with data mining algorithms. An integrated framework has been proposed to model and visualize short, high-dimensional gene expression data. The framework reduces the dimensionality of variables before applying appropriate temporal modeling method. Prototype has been built using Java3D to visualize the framework. The prototype takes gene expression data as input, clusters the genes, displays the clustering results using a novel graph layout algorithm, models individual gene clusters using Dynamic Bayesian Network and then visualizes the modeling results using simple but effective visualization techniques.

  16. SMART: Unique Splitting-While-Merging Framework for Gene Clustering

    PubMed Central

    Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2014-01-01

    Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms. PMID:24714159

  17. Identifying a gene expression signature of cluster headache in blood

    PubMed Central

    Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859

  18. Gene Cluster Encoding Cholate Catabolism in Rhodococcus spp.

    PubMed Central

    Wilbrink, Maarten H.; Casabon, Israël; Stewart, Gordon R.; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D.

    2012-01-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism. PMID:23024343

  19. Minimum spanning trees for gene expression data clustering.

    PubMed

    Xu, Y; Olman, V; Xu, D

    2001-01-01

    This paper describes a new framework for microarray gene-expression data clustering. The foundation of this framework is a minimum spanning tree (MST) representation of a set of multi-dimensional gene expression data. A key property of this representation is that each cluster of the expression data corresponds to one subtree of the MST, which rigorously converts a multi-dimensional clustering problem to a tree partitioning problem. We have demonstrated that though the inter-data relationship is greatly simplified in the MST representation, no essential information is lost for the purpose of clustering. Two key advantages in representing a set of multi-dimensional data as an MST are: (1) the simple structure of a tree facilitates efficient implementations of rigorous clustering algorithms, which otherwise are highly computationally challenging; and (2) as an MST-based clustering does not depend on detailed geometric shape of a cluster, it can overcome many of the problems faced by classical clustering algorithms. Based on the MST representation, we have developed a number of rigorous and efficient clustering algorithms, including two with guaranteed global optimality. We have implemented these algorithms as a computer software EXCAVATOR. To demonstrate its effectiveness, we have tested it on two data sets, i.e., expression data from yeast Saccharomyces cerevisiae, and Arabidopsis expression data in response to chitin elicitation.

  20. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation.

    PubMed

    Osbourn, Anne

    2010-10-01

    Microbes and plants produce a huge array of secondary metabolites that have important ecological functions. These molecules have long been exploited in medicine as antibiotics, anticancer and anti-infective agents and for a wide range of other applications. Gene clusters for secondary metabolic pathways are common in bacteria and filamentous fungi, and examples have now been discovered in plants. Here, current knowledge of gene clusters across the kingdoms is evaluated with the aim of trying to understand the rules behind cluster existence and evolution. Such knowledge will be crucial in learning how to activate the enormous number of 'silent' gene clusters being revealed by whole-genome sequencing and hence in making available a wealth of novel compounds for evaluation as drug leads and other bioactives. It could also facilitate the development of crop plants with enhanced pest or disease resistance, improved nutritional qualities and/or elevated levels of high-value products.

  1. Clustering gene expression data using a diffraction‐inspired framework

    PubMed Central

    2012-01-01

    Background The recent developments in microarray technology has allowed for the simultaneous measurement of gene expression levels. The large amount of captured data challenges conventional statistical tools for analysing and finding inherent correlations between genes and samples. The unsupervised clustering approach is often used, resulting in the development of a wide variety of algorithms. Typical clustering algorithms require selecting certain parameters to operate, for instance the number of expected clusters, as well as defining a similarity measure to quantify the distance between data points. The diffraction‐based clustering algorithm however is designed to overcome this necessity for user‐defined parameters, as it is able to automatically search the data for any underlying structure. Methods The diffraction‐based clustering algorithm presented in this paper is tested using five well‐known expression datasets pertaining to cancerous tissue samples. The clustering results are then compared to those results obtained from conventional algorithms such as the k‐means, fuzzy c‐means, self‐organising map, hierarchical clustering algorithm, Gaussian mixture model and density‐based spatial clustering of applications with noise (DBSCAN). The performance of each algorithm is measured using an average external criterion and an average validity index. Results The diffraction‐based clustering algorithm is shown to be independent of the number of clusters as the algorithm searches the feature space and requires no form of parameter selection. The results show that the diffraction‐based clustering algorithm performs significantly better on the real biological datasets compared to the other existing algorithms. Conclusion The results of the diffraction‐based clustering algorithm presented in this paper suggest that the method can provide researchers with a new tool for successfully analysing microarray data. PMID:23164195

  2. Heterologous Expression of Novobiocin and Clorobiocin Biosynthetic Gene Clusters

    PubMed Central

    Eustáquio, Alessandra S.; Gust, Bertolt; Galm, Ute; Li, Shu-Ming; Chater, Keith F.; Heide, Lutz

    2005-01-01

    A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. λ-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integrase of phage φC31 were employed for the integration of these clusters into the heterologous hosts. This method was used to express the gene clusters of the aminocoumarin antibiotics novobiocin and clorobiocin in the well-studied strains Streptomyces coelicolor and Streptomyces lividans, which, in contrast to the natural producers, can be easily genetically manipulated. S. coelicolor M512 derivatives produced the respective antibiotic in yields comparable to those of natural producer strains, whereas S. lividans TK24 derivatives were at least five times less productive. This method could also be used to carry out functional investigations. Shortening of the cosmids' inserts showed which genes are essential for antibiotic production. PMID:15870333

  3. Characterization of the Largest Effector Gene Cluster of Ustilago maydis

    PubMed Central

    Vincon, Volker; Kahmann, Regine

    2014-01-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function. PMID:24992561

  4. Characterization of alcohol dehydrogenase (ADH12) from Haloarcula marismortui, an extreme halophile from the Dead Sea.

    PubMed

    Timpson, Leanne M; Alsafadi, Diya; Mac Donnchadha, Cillín; Liddell, Susan; Sharkey, Michael A; Paradisi, Francesca

    2012-01-01

    Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively. Overexpressed His-tagged recombinant HmADH12 was purified by immobilized metal-affinity chromatography (IMAC). The His-tagged protein was visualized by SDS-PAGE, with a subunit molecular mass of 41.6 kDa, and its identity was confirmed by mass spectrometry. Purified HmADH12 catalyzed the interconversion between alcohols and aldehydes and ketones, being optimally active in the presence of 2 M KCl. It was thermoactive, with maximum activity registered at 60°C. The NADP(H) dependent enzyme was haloalkaliphilic for the oxidative reaction with optimum activity at pH 10.0. It favored a slightly acidic pH of 6.0 for catalysis of the reductive reaction. HmADH12 was significantly more tolerant than mesophilic ADHs to selected organic solvents, making it a much more suitable biocatalyst for industrial application.

  5. Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Best, Aaron A.; Broussard, Gregory W.; Connerly, Pamela L.; Dedrick, Rebekah M.; Kremer, Timothy A.; Offner, Susan; Ogiefo, Amenawon H.; Pizzorno, Marie C.; Rockenbach, Kate; Russell, Daniel A.; Stowe, Emily L.; Stukey, Joseph; Thibault, Sarah A.; Conway, James F.; Hendrix, Roger W.; Hatfull, Graham F.

    2013-01-01

    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. PMID:23874930

  6. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  7. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  8. Clustered Genes Involved in Cyclopiazonic Acid Production are Next to the Aflatoxin Biosynthesis Gene Cluster in Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA), an indole-tetramic acid toxin, is produced by many species of Aspergillus and Penicillium. In addition to CPA Aspergillus flavus produces polyketide-derived carcinogenic aflatoxins (AFs). AF biosynthesis genes form a gene cluster in a subtelomeric region. Isolates of A. fla...

  9. Genomic analyses of bacterial porin-cytochrome gene clusters

    SciTech Connect

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular

  10. Transcriptional regulation of the novobiocin biosynthetic gene cluster.

    PubMed

    Dangel, Volker; Härle, Johannes; Goerke, Christiane; Wolz, Christiane; Gust, Bertolt; Pernodet, Jean-Luc; Heide, Lutz

    2009-12-01

    The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrB(R), encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrB(R) is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.

  11. An Agent-Based Clustering Approach for Gene Selection in Gene Expression Microarray.

    PubMed

    Ramos, Juan; Castellanos-Garzón, José A; González-Briones, Alfonso; de Paz, Juan F; Corchado, Juan M

    2017-03-09

    Gene selection is a major research area in microarray analysis, which seeks to discover differentially expressed genes for a particular target annotation. Such genes also often called informative genes are able to differentiate tissue samples belonging to different classes of the studied disease. Despite the fact that there is a wide number of proposals, the complexity imposed by this problem remains a challenge today. This research proposes a gene selection approach by means of a clustering-based multi-agent system. This proposal manages different filter methods and gene clustering through coordinated agents to discover informative gene subsets. To assess the reliability of our approach, we have used four important and public gene expression datasets, two Lung cancer datasets, Colon and Leukemia cancer dataset. The achieved results have been validated through cluster validity measures, visual analytics, a classifier and compared with other gene selection methods, proving the reliability of our proposal.

  12. Functional relevance of human adh polymorphism.

    PubMed

    Eriksson, C J; Fukunaga, T; Sarkola, T; Chen, W J; Chen, C C; Ju, J M; Cheng, A T; Yamamoto, H; Kohlenberg-Müller, K; Kimura, M; Murayama, M; Matsushita, S; Kashima, H; Higuchi, S; Carr, L; Viljoen, D; Brooke, L; Stewart, T; Foroud, T; Su, J; Li, T K; Whitfield, J B

    2001-05-01

    This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were C. J. Peter Eriksson and Tatsushige Fukunaga. The presentations were (1) 4-Methylpyrazole as a tool in the investigation of the role of ADH in the actions of alcohol in humans, by Taisto Sarkola and C. J. Peter Eriksson; (2) ADH2 polymorphism and flushing in Asian populations, by Wei J. Chen, C. C. Chen, J. M. Ju, and Andrew T. A. Cheng; (3) Role of ADH3 genotypes in the acute effects of alcohol in a Finnish population, by Hidetaka Yamamoto, Kathrin Kohlenberg-Müller, and C. J. Peter Eriksson; (4) Clinical characteristics and disease course of alcoholics with different ADH2 genotypes, by Mitsuru Kimura, Masanobu Murayama, Sachio Matsushita, Haruo Kashima, and Susumu Higuchi; (5) ADH2 polymorphism, alcohol drinking, and birth defects, by Lucinda Carr, D. Viljoen, L. Brooke, T. Stewart, T. Foroud, J. Su, and Ting-Kai Li; and (6) ADH genotypes and alcohol use in Europeans, by John B. Whitfield.

  13. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters.

    PubMed

    Santini, Simona; Boore, Jeffrey L; Meyer, Axel

    2003-06-01

    Comparisons of DNA sequences among evolutionarily distantly related genomes permit identification of conserved functional regions in noncoding DNA. Hox genes are highly conserved in vertebrates, occur in clusters, and are uninterrupted by other genes. We aligned (PipMaker) the nucleotide sequences of the HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human, and mouse, which are separated by approximately 500 million years of evolution. In support of our approach, several identified putative regulatory elements known to regulate the expression of Hox genes were recovered. The majority of the newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac database). The regulatory intergenic regions located between the genes that are expressed most anteriorly in the embryo are longer and apparently more evolutionarily conserved than those at the other end of Hox clusters. Different presumed regulatory sequences are retained in either the Aalpha or Abeta duplicated Hox clusters in the fish lineages. This suggests that the conserved elements are involved in different gene regulatory networks and supports the duplication-deletion-complementation model of functional divergence of duplicated genes.

  14. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.

    PubMed

    Tran, Robert K; Henikoff, Jorja G; Zilberman, Daniel; Ditt, Renata F; Jacobsen, Steven E; Henikoff, Steven

    2005-01-26

    Cytosine DNA methylation in vertebrates is widespread, but methylation in plants is found almost exclusively at transposable elements and repetitive DNA. Within regions of methylation, methylcytosines are typically found in CG, CNG, and asymmetric contexts. CG sites are maintained by a plant homolog of mammalian Dnmt1 acting on hemi-methylated DNA after replication. Methylation of CNG and asymmetric sites appears to be maintained at each cell cycle by other mechanisms. We report a new type of DNA methylation in Arabidopsis, dense CG methylation clusters found at scattered sites throughout the genome. These clusters lack non-CG methylation and are preferentially found in genes, although they are relatively deficient toward the 5' end. CG methylation clusters are present in lines derived from different accessions and in mutants that eliminate de novo methylation, indicating that CG methylation clusters are stably maintained at specific sites. Because 5-methylcytosine is mutagenic, the appearance of CG methylation clusters over evolutionary time predicts a genome-wide deficiency of CG dinucleotides and an excess of C(A/T)G trinucleotides within transcribed regions. This is exactly what we find, implying that CG methylation clusters have contributed profoundly to plant gene evolution. We suggest that CG methylation clusters silence cryptic promoters that arise sporadically within transcription units.

  15. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  16. Meta-Analyses of ALDH2 and ADH1B with Alcohol Dependence in Asians

    ERIC Educational Resources Information Center

    Luczak, Susan E.; Glatt, Stephen J.; Wall, Tamara J.

    2006-01-01

    Meta-analyses were conducted to determine the magnitude of relationships between polymorphisms in 2 genes, ALDH2 and ADH1B, with alcohol dependence in Asians. For each gene, possession of 1 variant [asterisk]2 allele was protective against alcohol dependence, and possession of a 2nd [asterisk]2 allele did not offer significant additional…

  17. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  18. Structure and transcription of the Drosophila mulleri alcohol dehydrogenase genes.

    PubMed

    Fischer, J A; Maniatis, T

    1985-10-11

    The D. melanogaster Adh gene is transcribed from two different promoters; a proximal (larval) promoter is active during late embryonic and larval stages, and a distal (adult) promoter is active primarily in third instar larvae and in adult flies (1). Genetic analyses suggest that several species of the mulleri subgroup (distant relatives of D. melanogaster) have two closely-linked Adh genes, Adh-1 and Adh-2, each of which expresses a different ADH protein (2). The temporal pattern of expression of Adh-1 and Adh-2 is similar to the expression of D. melanogaster Adh from the proximal and distal promoters (2,3,4). We are interested in the molecular basis for the pattern of Adh expression in the mulleri subgroup species and in the mechanism of the switch in Adh promoter utilization. For these reasons, we have studied the structure and transcription of the Adh locus of D. mulleri, a species of the mulleri subgroup. We show that the ADH-1 and ADH-2 proteins are expressed from two distinct genes separated by 2 kilobase pairs, and that Adh-1 and Adh-2 are transcribed in the expected temporal pattern. In addition, we find a pseudogene 1.2 kb upstream from Adh-2, which is transcribed in a temporal pattern similar to Adh-2.

  19. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering

    PubMed Central

    Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample. PMID:27764138

  20. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering.

    PubMed

    Wu, Lingxiang; Chen, Xiujie; Zhang, Denan; Zhang, Wubing; Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample.

  1. The Relationship between CmADHs and the Diversity of Volatile Organic Compounds of Three Aroma Types of Melon (Cucumis melo)

    PubMed Central

    Chen, Hao; Cao, Songxiao; Jin, Yazhong; Tang, Yufan; Qi, Hongyan

    2016-01-01

    Alcohol dehydrogenase (ADH) plays an important role in aroma volatile compounds synthesis of plants. In this paper, we tried to explore the relationship between CmADHs and the volatile organic compounds (VOCs) in oriental melon. Three different aroma types of melon were used as materials. The principle component analysis of three types of melon fruit was conducted. We also measured the CmADHs expression level and enzymatic activities of ADH and alcohol acyl-transferase (AAT) on different stages of fruit ripening. An incubation experiment was carried out to investigate the effect of substrates and inhibitor (4-MP, 4-methylpyrazole) on CmADHs expression, ADH activity, and the main compounds of oriental melon. The results illustrated that ethyl acetate, hexyl acetate (E,Z)-3,6-nonadien-1-ol and 2-ethyl-2hexen-1-ol were the four principal volatile compounds of these three types of melon. AAT activity was increasing with fruit ripening, and the AAT activity in CH were the highest, whereas ADH activity peaked on 32 DAP, 2 days before maturation, and the ADH activity in CB and CG were higher than that in CH. The expression pattern of 11 CmADH genes from 24 to 36 day after pollination (DAP) was found to vary in three melon varieties. CmADH4 was only expressed in CG and the expression levels of CmADH3 and CmADH12 in CH and CB were much higher than that in CG, and they both peaked 2 days before fruit ripening. Ethanol and 4-MP decreased the reductase activity of ADH, the expression of most CmADHs and ethyl acetate or hexyl acetate contents of CB, except for 0.1 mM 4-MP, while aldehyde improved the two acetate ester contents. In addition, we found a positive correlation between the expression of CmADH3 and CmADH12 and the key volatile compound of CB. The relationship between CmADHs and VOCs synthesis of oriental melon was discussed. PMID:27445845

  2. Evolutionary ecology of beta-lactam gene clusters in animals.

    PubMed

    Suring, Wouter; Meusemann, Karen; Blanke, Alexander; Mariën, Janine; Schol, Tim; Agamennone, Valeria; Faddeeva-Vakhrusheva, Anna; Berg, Matty P; Brouwer, Bram; van Straalen, Nico M; Roelofs, Dick

    2017-03-18

    Beta-lactam biosynthesis was thought to occur only in fungi and bacteria, but we recently reported the presence of isopenicillin N synthase in a soil-dwelling animal, Folsomia candida. However, it has remained unclear whether this gene is part of a larger beta-lactam biosynthesis pathway and how widespread the occurrence of penicillin biosynthesis is among animals. Here, we analyzed the distribution of beta-lactam biosynthesis genes throughout the animal kingdom and identified a beta-lactam gene cluster in the genome of F. candida (Collembola), consisting of isopenicillin N synthase (IPNS), δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS), and two cephamycin C genes (cmcI and cmcJ) on a genomic scaffold of 0.76 Mb. All genes are transcriptionally active and are inducible by stress (heat shock). A beta-lactam compound was detected in vivo using an ELISA beta-lactam assay. The gene cluster also contains an ABC transporter which is co-regulated with IPNS and ACVS after heat shock. Furthermore, we show that different combinations of beta-lactam biosynthesis genes are present in over 60% of springtail families but they are absent from genome- and transcript libraries of other animals including close relatives of springtails (Protura, Diplura, and insects). The presence of beta-lactam genes is strongly correlated with an eudaphic (soil-living) lifestyle. Beta-lactam genes IPNS and ACVS each form a phylogenetic clade in between bacteria and fungi, while cmcI and cmcJ genes cluster within bacteria. This suggests a single horizontal gene transfer event most probably from a bacterial host, followed by differential loss in more recently evolving species. This article is protected by copyright. All rights reserved.

  3. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  4. Generalized gene adjacencies, graph bandwidth, and clusters in yeast evolution.

    PubMed

    Zhu, Qian; Adam, Zaky; Choi, Vicky; Sankoff, David

    2009-01-01

    We present a parameterized definition of gene clusters that allows us to control the emphasis placed on conserved order within a cluster. Though motivated by biological rather than mathematical considerations, this parameter turns out to be closely related to the bandwidth parameter of a graph. Our focus will be on how this parameter affects the characteristics of clusters: how numerous they are, how large they are, how rearranged they are, and to what extent they are preserved from ancestor to descendant in a phylogenetic tree. We infer the latter property by dynamic programming optimization of the presence of individual edges at the ancestral nodes of the phylogeny. We apply our analysis to a set of genomes drawn from the Yeast Gene Order Browser.

  5. PEACE: Parallel Environment for Assembly and Clustering of Gene Expression.

    PubMed

    Rao, D M; Moler, J C; Ozden, M; Zhang, Y; Liang, C; Karro, J E

    2010-07-01

    We present PEACE, a stand-alone tool for high-throughput ab initio clustering of transcript fragment sequences produced by Next Generation or Sanger Sequencing technologies. It is freely available from www.peace-tools.org. Installed and managed through a downloadable user-friendly graphical user interface (GUI), PEACE can process large data sets of transcript fragments of length 50 bases or greater, grouping the fragments by gene associations with a sensitivity comparable to leading clustering tools. Once clustered, the user can employ the GUI's analysis functions, facilitating the easy collection of statistics and allowing them to single out specific clusters for more comprehensive study or assembly. Using a novel minimum spanning tree-based clustering method, PEACE is the equal of leading tools in the literature, with an interface making it accessible to any user. It produces results of quality virtually identical to those of the WCD tool when applied to Sanger sequences, significantly improved results over WCD and TGICL when applied to the products of Next Generation Sequencing Technology and significantly improved results over Cap3 in both cases. In short, PEACE provides an intuitive GUI and a feature-rich, parallel clustering engine that proves to be a valuable addition to the leading cDNA clustering tools.

  6. ADH1A variation predisposes to personality traits and substance dependence.

    PubMed

    Zuo, Lingjun; Gelernter, Joel; Kranzler, Henry R; Stein, Murray B; Zhang, Huiping; Wei, Feng; Sen, Srijan; Poling, James; Luo, Xingguang

    2010-03-05

    Human personality traits are strong predictors or characteristics of many psychiatric disorders including substance dependence (SD). Recently, significant associations between alcohol dehydrogenase type 1A gene (ADH1A) and SD have been reported, which led us to investigate the impact of ADH1A variation on personality traits and risk of SD. Five hundred fifty-eight subjects with SD [398 European-Americans (EAs) and 160 African-Americans (AAs)], 517 college students (384 EAs and 133 European-origin Hispanics), and 448 healthy subjects (385 EAs, 48 AAs, and 15 European-origin Hispanics) participated. Personality traits were assessed in 247 subjects with SD (179 EAs and 68 AAs), all 517 college students, and 332 healthy subjects (285 EAs, 40 AAs, and 7 European-origin Hispanics). The relationships between ADH1A and personality traits were comprehensively examined using stepwise multivariate analysis of covariance (MANCOVA), and then decomposed by stepwise analysis of covariance (ANCOVA). The relationship between ADH1A and SD was examined using stepwise logistic regression analysis. Admixture effects on analyses were considered. Overall, Agreeableness and Conscientiousness were associated with the diplotypes, haplotypes, genotypes, and/or alleles of ADH1A in three of four phenotype groups including EA SD subjects, healthy subjects, and AA SD subjects (1.7 x 10(-4) ADH1A (0.008 ADH1A variation may contribute to the genetic component of variation in personality traits and SD.

  7. An alanine tRNA gene cluster from Nephila clavipes.

    PubMed

    Luciano, E; Candelas, G C

    1996-06-01

    We report the sequence of a 2.3-kb genomic DNA fragment from the orb-web spider, Nephila clavipes (Nc). The fragment contains four regions of high homology to tRNA(Ala). The members of this irregularly spaced cluster of genes are oriented in the same direction and have the same anticodon (GCA), but their sequence differs at several positions. Initiation and termination signals, as well as consensus intragenic promoter sequences characteristic of tRNA genes, have been identified in all genes. tRNA(Ala) are involved in the regulation of the fibroin synthesis in the large ampullate Nc glands.

  8. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    SciTech Connect

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  9. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  10. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  11. Expression profile based gene clusters for ischemic stroke detection Whole blood gene clusters for ischemic stroke detection

    PubMed Central

    Adamski, Mateusz G; Li, Yan; Wagner, Erin; Yu, Hua; Seales-Bailey, Chloe; Soper, Steven A; Murphy, Michael; Baird, Alison E

    2014-01-01

    In microarray studies alterations in gene expression in circulating leukocytes have shown utility for ischemic stroke diagnosis. We studied forty candidate markers identified in three gene expression profiles to (1) quantitate individual transcript expression, (2) identify transcript clusters and (3) assess the clinical diagnostic utility of the clusters identified for ischemic stroke detection. Using high throughput next generation qPCR 16 of the 40 transcripts were significantly up-regulated in stroke patients relative to control subjects (p<0.05). Six clusters of between 5 and 7 transcripts discriminated between stroke and control (p values between 1.01e-9 and 0.03). A 7 transcript cluster containing PLBD1, PYGL, BST1, DUSP1, FOS, VCAN and FCGR1A showed high accuracy for stroke classification (AUC=0.854). These results validate and improve upon the diagnostic value of transcripts identified in microarray studies for ischemic stroke. The clusters identified show promise for acute ischemic stroke detection. PMID:25135788

  12. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  13. Identification of genes and gene clusters involved in mycotoxin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  14. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  15. Reconstructing Histories of Complex Gene Clusters on a Phylogeny

    NASA Astrophysics Data System (ADS)

    Vinař, Tomáš; Brejová, Broňa; Song, Giltae; Siepel, Adam

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. These clusters are one of the major sources of evolutionary innovation, and they are linked to multiple diseases, including HIV and a variety of cancers. Understanding their evolutionary histories is a key to the application of comparative genomics methods in these regions of the genome. We propose a probabilistic model of gene cluster evolution on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate use of our methods in their analysis. Supplementary materials are located at http://compbio.fmph.uniba.sk/suppl/09recombcg/

  16. Cyclopiazonic acid biosynthesis gene cluster gene cpaM is required for speradine A biosynthesis.

    PubMed

    Tokuoka, Masafumi; Kikuchi, Tomoki; Shinohara, Yasutomo; Koyama, Akifumi; Iio, Shin-Ichiro; Kubota, Takaaki; Kobayashi, Jun'ichi; Koyama, Yasuji; Totsuka, Akira; Shindo, Hitoshi; Sato, Kazuo

    2015-01-01

    Speradine A is a derivative of cyclopiazonic acid (CPA) found in culture of an Aspergillus tamarii isolate. Heterologous expression of a predicted methyltransferase gene, cpaM, in the cpa biosynthesis gene cluster of A. tamarii resulted in the speradine A production in a 2-oxoCPA producing A. oryzae strain, indicating cpaM is involved in the speradine A biosynthesis.

  17. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome.

  18. Comparative genomic analysis of sixty mycobacteriophage genomes: Genome clustering, gene acquisition and gene size

    PubMed Central

    Hatfull, Graham F.; Jacobs-Sera, Deborah; Lawrence, Jeffrey G.; Pope, Welkin H.; Russell, Daniel A.; Ko, Ching-Chung; Weber, Rebecca J.; Patel, Manisha C.; Germane, Katherine L.; Edgar, Robert H.; Hoyte, Natasha N.; Bowman, Charles A.; Tantoco, Anthony T.; Paladin, Elizabeth C.; Myers, Marlana S.; Smith, Alexis L.; Grace, Molly S.; Pham, Thuy T.; O'Brien, Matthew B.; Vogelsberger, Amy M.; Hryckowian, Andrew J.; Wynalek, Jessica L.; Donis-Keller, Helen; Bogel, Matt W.; Peebles, Craig L.; Cresawn, Steve G.; Hendrix, Roger W.

    2010-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of sixty – all infecting a common bacterial host – provides further insight into their diversity and evolution. Of the sixty phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, five of which can be further divided into subclusters; five genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the six genomes in cluster D share more than 97.5% average nucleotide similarity with each other. In contrast, similarity between the two genomes in Cluster I is barely detectable by diagonal plot analysis. The total of 6,858 predicted ORFs have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit smaller average size than genes of their host (205 residues compared to 315), phage genes in higher flux average only ∼100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains. PMID:20064525

  19. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.

    PubMed

    Lee, K Michael; DaSilva, Nancy A

    2005-04-30

    The Saccharomyces cerevisiae ADH2 promoter (P(ADH2)) is repressed several hundred-fold in the presence of glucose; transcription is initiated once the glucose in the medium is exhausted. The promoter can thus be utilized for effective regulation of recombinant gene expression in S. cerevisiae without the addition of an inducer. To evaluate this promoter in the absence of plasmid copy number and stability variations, the P(ADH2)-lacZ cassette was integrated into the yeast chromosomes. The effects of medium composition, glucose concentration and cultivation time on promoter derepression and expression level were investigated. Maximum protein activity was obtained after 48 h of growth in complex YPD medium containing 1% glucose. The widely used S. cerevisiae GAL1 and CUP1 promoters both require the addition of an inducer [galactose and copper(II) ion, respectively] before regulated genes will be expressed. The strengths of these three different promoters were compared for cells containing one copy of an integrated lacZ gene under their control. The ADH2 promoter was superior for all induction strategies investigated.

  20. Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR).

    PubMed

    Nguyen, Thi Thu Huyen; Eiamphungporn, Warawan; Mäder, Ulrike; Liebeke, Manuel; Lalk, Michael; Hecker, Michael; Helmann, John D; Antelmann, Haike

    2009-02-01

    Quinones and alpha,beta-unsaturated carbonyls are naturally occurring electrophiles that target cysteine residues via thiol-(S)-alkylation. We analysed the global expression profile of Bacillus subtilis to the toxic carbonyls methylglyoxal (MG) and formaldehyde (FA). Both carbonyl compounds cause a stress response characteristic for thiol-reactive electrophiles as revealed by the induction of the Spx, CtsR, CymR, PerR, ArsR, CzrA, CsoR and SigmaD regulons. MG and FA triggered also a SOS response which indicates DNA damage. Protection against FA is mediated by both the hxlAB operon, encoding the ribulose monophosphate pathway for FA fixation, and a thiol-dependent formaldehyde dehydrogenase (AdhA) and DJ-1/PfpI-family cysteine proteinase (YraA). The adhA-yraA operon and the yraC gene, encoding a gamma-carboxymuconolactone decarboxylase, are positively regulated by the MerR-family regulator, YraB(AdhR). AdhR binds specifically to its target promoters which contain a 7-4-7 inverted repeat (CTTAAAG-N4-CTTTAAG) between the -35 and -10 elements. Activation of adhA-yraA transcription by AdhR requires the conserved Cys52 residue in vivo. We speculate that AdhR is redox-regulated via thiol-(S)-alkylation by aldehydes and that AdhA and YraA are specifically involved in reduction of aldehydes and degradation or repair of damaged thiol-containing proteins respectively.

  1. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.

    PubMed

    Slot, Jason C; Rokas, Antonis

    2011-01-25

    Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK:

  2. Transcriptional Analysis of Essential Genes of the Escherichia coli Fatty Acid Biosynthesis Gene Cluster by Functional Replacement with the Analogous Salmonella typhimurium Gene Cluster

    PubMed Central

    Zhang, Yan; Cronan, John E.

    1998-01-01

    The genes encoding several key fatty acid biosynthetic enzymes (called the fab cluster) are clustered in the order plsX-fabH-fabD-fabG-acpP-fabF at min 24 of the Escherichia coli chromosome. A difficulty in analysis of the fab cluster by the polar allele duplication approach (Y. Zhang and J. E. Cronan, Jr., J. Bacteriol. 178:3614–3620, 1996) is that several of these genes are essential for the growth of E. coli. We overcame this complication by use of the fab gene cluster of Salmonella typhimurium, a close relative of E. coli, to provide functions necessary for growth. The S. typhimurium fab cluster was isolated by complementation of an E. coli fabD mutant and was found to encode proteins with >94% homology to those of E. coli. However, the S. typhimurium sequences cannot recombine with the E. coli sequences required to direct polar allele duplication via homologous recombination. Using this approach, we found that although approximately 60% of the plsX transcripts initiate at promoters located far upstream and include the upstream rpmF ribosomal protein gene, a promoter located upstream of the plsX coding sequence (probably within the upstream gene, rpmF) is sufficient for normal growth. We have also found that the fabG gene is obligatorily cotranscribed with upstream genes. Insertion of a transcription terminator cassette (Ω-Cm cassette) between the fabD and fabG genes of the E. coli chromosome abolished fabG transcription and blocked cell growth, thus providing the first indication that fabG is an essential gene. Insertion of the Ω-Cm cassette between fabH and fabD caused greatly decreased transcription of the fabD and fabG genes and slower cellular growth, indicating that fabD has only a weak promoter(s). PMID:9642179

  3. T-shaped trichome-specific expression of monoterpene synthase ADH2 using promoter-β-GUS fusion in transgenic Artemisia annua L.

    PubMed

    Fu, Xueqing; Shi, Pu; Shen, Qian; Jiang, Weimin; Tang, Yueli; Lv, Zongyou; Yan, Tingxiang; Li, Ling; Wang, Guofeng; Sun, Xiaofen; Tang, Kexuan

    2016-11-01

    Artemisinin, a sesquiterpene lactone isolated from Artemisia annua L. (sweet wormwood), is extensively used in the treatment of malaria. In order to better understand the metabolism of terpenes in A. annua and the influence of terpene synthases on artemisinin yield, the expression pattern of a monoterpene alcohol dehydrogenase (ADH2) has been studied using transgenic plants expressing promoter-β-glucuronidase (GUS) fusion. ADH2 played a major role in monoterpenoid biosynthesis including carveol, borneol, and artemisia ketone through in vitro biochemical analysis. In this study, the ADH2 promoter was cloned by the genome walking method. A number of putative cis-acting elements were predicted in promoter region, suggesting that the ADH2 is driven by a complex regulation mechanism. ADH2 gene was highly expressed in old leaves, whereas the artemisinin biosynthetic genes were mainly expressed in bud and young leaves. The expression of ADH2 gene increased quickly during leaf development, revealed by qRT-PCR. GUS expression analysis in different tissues of transgenic A. annua demonstrates that ADH2 expression is exclusively located to T-shaped trichome, not glandular secretory trichome.

  4. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations.

    PubMed

    Scolari, Vittore F; Bassetti, Bruno; Sclavi, Bianca; Lagomarsino, Marco Cosentino

    2011-03-01

    Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating several independent experimental and bioinformatic data sources, we investigate the links between chromosomal spatial organization and global transcriptional regulation. By means of a novel multi-scale spatial aggregation analysis, we uncover the existence of contiguous clusters of nucleoid-perturbation sensitive genes along the genome, whose expression is affected by a combination of topological DNA state and nucleoid-shaping protein occupancy. The clusters correlate well with the macrodomain structure of the genome. The most significant of them lay symmetrically at the edges of the Ter macrodomain and involve all of the flagellar and chemotaxis machinery, in addition to key regulators of biofilm formation, suggesting that the regulation of the physical state of the chromosome by the nucleoid proteins plays an important role in coordinating the transcriptional response leading to the switch between a motile and a biofilm lifestyle.

  5. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  6. EasyCluster: a fast and efficient gene-oriented clustering tool for large-scale transcriptome data

    PubMed Central

    Picardi, Ernesto; Mignone, Flavio; Pesole, Graziano

    2009-01-01

    Background ESTs and full-length cDNAs represent an invaluable source of evidence for inferring reliable gene structures and discovering potential alternative splicing events. In newly sequenced genomes, these tasks may not be practicable owing to the lack of appropriate training sets. However, when expression data are available, they can be used to build EST clusters related to specific genomic transcribed loci. Common strategies recently employed to this end are based on sequence similarity between transcripts and can lead, in specific conditions, to inconsistent and erroneous clustering. In order to improve the cluster building and facilitate all downstream annotation analyses, we developed a simple genome-based methodology to generate gene-oriented clusters of ESTs when a genomic sequence and a pool of related expressed sequences are provided. Our procedure has been implemented in the software EasyCluster and takes into account the spliced nature of ESTs after an ad hoc genomic mapping. Methods EasyCluster uses the well-known GMAP program in order to perform a very quick EST-to-genome mapping in addition to the detection of reliable splice sites. Given a genomic sequence and a pool of ESTs/FL-cDNAs, EasyCluster starts building genomic and EST local databases and runs GMAP. Subsequently, it parses results creating an initial collection of pseudo-clusters by grouping ESTs according to the overlap of their genomic coordinates on the same strand. In the final step, EasyCluster refines the clustering by again running GMAP on each pseudo-cluster and groups together ESTs sharing at least one splice site. Results The higher accuracy of EasyCluster with respect to other clustering tools has been verified by means of a manually cured benchmark of human EST clusters. Additional datasets including the Unigene cluster Hs.122986 and ESTs related to the human HOXA gene family have also been used to demonstrate the better clustering capability of EasyCluster over current genome

  7. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants.

    PubMed

    Chu, Hoi Yee; Wegel, Eva; Osbourn, Anne

    2011-04-01

    Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.

  8. Toward Awakening Cryptic Secondary Metabolite Gene Clusters in Filamentous Fungi

    PubMed Central

    Lim, Fang Yun; Sanchez, James F.; Wang, Clay C.C.; Keller, Nancy P.

    2013-01-01

    Mining for novel natural compounds is of eminent importance owing to the continuous need for new pharmaceuticals. Filamentous fungi are historically known to harbor the genetic capacity for an arsenal of natural compounds, both beneficial and detrimental to humans. The majority of these metabolites are still cryptic or silent under standard laboratory culture conditions. Mining for these cryptic natural products can be an excellent source for identifying new compound classes. Capitalizing on the current knowledge on how secondary metabolite gene clusters are regulated has allowed the research community to unlock many hidden fungal treasures, as described in this chapter. PMID:23084945

  9. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  10. Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi.

    PubMed

    Martín, Juan F; Liras, Paloma

    2016-02-01

    The biosynthesis of secondary metabolites in fungi is catalyzed by enzymes encoded by genes linked in clusters that are frequently co-regulated at the transcriptional level. Formation of gene clusters may take place by de novo assembly of genes recruited from other cellular functions, but also novel gene clusters are formed by reorganization of progenitor clusters and are distributed by horizontal gene transfer. This article reviews (i) the published information on the roquefortine/meleagrin/neoxaline gene clusters of Penicillium chrysogenum (Penicillium rubens) and the short roquefortine cluster of Penicillium roqueforti, and (ii) the correlation of the genes present in those clusters with the enzymes and metabolites derived from these pathways. The P. chrysogenum roq/mel cluster consists of seven genes and includes a gene (roqT) encoding a 12-TMS transporter protein of the MFS family. Interestingly, the orthologous P. roquefortine gene cluster has only four genes and the roqT gene is present as a residual pseudogene that encodes only small peptides. Two of the genes present in the central region of the P. chrysogenum roq/mel cluster have been lost during the evolutionary formation of the short cluster and the order of the structural genes in the cluster has been rearranged. The two lost genes encode a N1 atom hydroxylase (nox) and a roquefortine scaffold-reorganizing oxygenase (sro). As a consequence P. roqueforti has lost the ability to convert the roquefortine-type carbon skeleton to the glandicoline/meleagrin-type scaffold and is unable to produce glandicoline B, meleagrin and neoxaline. The loss of this genetic information is not recent and occurred probably millions of years ago when a progenitor Penicillium strain got adapted to life in a few rich habitats such as cheese, fermented cereal grains or silage. P. roqueforti may be considered as a "domesticated" variant of a progenitor common to contemporary P. chrysogenum and related Penicillia.

  11. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes

    PubMed Central

    Azevedo, Analice C.; Bento, Cláudia B. P.; Ruiz, Jeronimo C.; Queiroz, Marisa V.

    2015-01-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. PMID:26253660

  12. Gene prioritization and clustering by multi-view text mining

    PubMed Central

    2010-01-01

    Background Text mining has become a useful tool for biologists trying to understand the genetics of diseases. In particular, it can help identify the most interesting candidate genes for a disease for further experimental analysis. Many text mining approaches have been introduced, but the effect of disease-gene identification varies in different text mining models. Thus, the idea of incorporating more text mining models may be beneficial to obtain more refined and accurate knowledge. However, how to effectively combine these models still remains a challenging question in machine learning. In particular, it is a non-trivial issue to guarantee that the integrated model performs better than the best individual model. Results We present a multi-view approach to retrieve biomedical knowledge using different controlled vocabularies. These controlled vocabularies are selected on the basis of nine well-known bio-ontologies and are applied to index the vast amounts of gene-based free-text information available in the MEDLINE repository. The text mining result specified by a vocabulary is considered as a view and the obtained multiple views are integrated by multi-source learning algorithms. We investigate the effect of integration in two fundamental computational disease gene identification tasks: gene prioritization and gene clustering. The performance of the proposed approach is systematically evaluated and compared on real benchmark data sets. In both tasks, the multi-view approach demonstrates significantly better performance than other comparing methods. Conclusions In practical research, the relevance of specific vocabulary pertaining to the task is usually unknown. In such case, multi-view text mining is a superior and promising strategy for text-based disease gene identification. PMID:20074336

  13. Gravitation field algorithm and its application in gene cluster

    PubMed Central

    2010-01-01

    Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA) which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA. PMID:20854683

  14. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  15. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    PubMed

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  16. Locus Adh of Drosophila melanogaster under selection for delayed senescence

    SciTech Connect

    Khaustova, N.D.

    1995-05-01

    Dynamics of the Adh activity and frequencies of alleles Adh{sup F} and Adh{sup S} were analyzed under selection for delayed senescence. The experiments were performed on Drosophila melanogaster. Lines Adh{sup S}cn and Adh{sup F}vg and experimental populations cn` and vg`, selected for an increased duration of reproductive period (late oviposition) were used. Analysis of fertility, longevity, viability and resistance to starvation showed that selection for late oviposition resulted in delayed senescence of flies of the experimental populations. Genetic structure of population vg` changed considerably with regard to the Adh locus. This was confirmed by parameters of activity, thermostability, and electrophoretic mobility of the enzyme isolated from flies after 30 generations of selection. Analysis of frequencies of the Adh alleles showed that in both selected populations, which initially had different genetic composition, accumulated allele Adh{sup S}, which encodes the isozyme that is less active but more resistant to inactivation. Genetic mechanism of delayed senescence in Drosophila is assumed to involve selection at vitally important enzyme loci, including Adh. 18 refs., 2 tabs., 4 figs.

  17. Parallel evolutionary events in the haptoglobin gene clusters of rhesus monkey and human

    SciTech Connect

    Erickson, L.M.; Maeda, N.

    1994-08-01

    Parallel occurrences of evolutionary events in the haptoglobin gene clusters of rhesus monkeys and humans were studied. We found six different haplotypes among 11 individuals from two rhesus monkey families. The six haplotypes include two types of haptoglobin gene clusters: one type with a single gene and the other with two genes. DNA sequence analysis indicates that the one-gene and the two-gene clusters were both formed by unequal homologous crossovers between two genes of an ancestral three-gene cluster, near exon 5, the longest exon of the gene. This exon is also the location where a separate unequal homologous crossover occured in the human lineage, forming the human two-gene haptoglobin gene cluster from an ancestral three-gene cluster. The occurrence of independent homologous unequal crossovers in rhesus monkey and in human within the same region of DNA suggests that the evolutionary history of the haptoglobin gene cluster in primates is the consequence of frequent homologous pairings facilitated by the longest and most conserved exon of the gene. 27 refs., 7 figs., 1 tab.

  18. Identification of the cluster control region for the protocadherin-beta genes located beyond the protocadherin-gamma cluster.

    PubMed

    Yokota, Shinnichi; Hirayama, Teruyoshi; Hirano, Keizo; Kaneko, Ryosuke; Toyoda, Shunsuke; Kawamura, Yoshimi; Hirabayashi, Masumi; Hirabayashi, Takahiro; Yagi, Takeshi

    2011-09-09

    The clustered protocadherins (Pcdhs), Pcdh-α, -β, and -γ, are transmembrane proteins constituting a subgroup of the cadherin superfamily. Each Pcdh cluster is arranged in tandem on the same chromosome. Each of the three Pcdh clusters shows stochastic and combinatorial expression in individual neurons, thus generating a hugely diverse set of possible cell surface molecules. Therefore, the clustered Pcdhs are candidates for determining neuronal molecular diversity. Here, we showed that the targeted deletion of DNase I hypersensitive (HS) site HS5-1, previously identified as a Pcdh-α regulatory element in vitro, affects especially the expression of specific Pcdh-α isoforms in vivo. We also identified a Pcdh-β cluster control region (CCR) containing six HS sites (HS16, 17, 17', 18, 19, and 20) downstream of the Pcdh-γ cluster. This CCR comprehensively activates the expression of the Pcdh-β gene cluster in cis, and its deletion dramatically decreases their expression levels. Deleting the CCR nonuniformly down-regulates some Pcdh-γ isoforms and does not affect Pcdh-α expression. Thus, the CCR effect extends beyond the 320-kb region containing the Pcdh-γ cluster to activate the upstream Pcdh-β genes. Thus, we concluded that the CCR is a highly specific regulatory unit for Pcdh-β expression on the clustered Pcdh genomic locus. These findings suggest that each Pcdh cluster is controlled by distinct regulatory elements that activate their expression and that the stochastic gene regulation of the clustered Pcdhs is controlled by the complex chromatin architecture of the clustered Pcdh locus.

  19. Nucleotide polymorphism in colicin E2 gene clusters: evidence for nonneutral evolution.

    PubMed

    Tan, Y; Riley, M A

    1997-06-01

    To explore the molecular mechanisms behind the diversification of colicin gene clusters, we examined DNA sequence polymorphism for the colicin gene clusters of 14 colicin E2 (ColE2) plasmids obtained from natural isolates of Escherichia coli. Two types of ColE2 plasmids are revealed, with type II gene clusters generated by recombination between type I ColE2 and ColE7 gene clusters. The levels and patterns of DNA polymorphism are different between the two types. Type I polymorphism is distributed evenly along the gene cluster, while type II accumulates polymorphism at an elevated rate in the 5' end of the colicin gene. These differences may be explained by recombinational origins of type II gene clusters. The pattern of divergence between the ColE2 gene cluster and its close relative ColE9 is not correlated with the pattern of polymorphism within ColE2, suggesting that this gene cluster is not evolving in a neutral fashion. A statistical test confirms significant departures from the predictions of neutrality. These data lend further support to the hypothesis that colicin gene clusters may evolve under the influence of nonneutral forces.

  20. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching.

    PubMed

    Dejong, Chris A; Chen, Gregory M; Li, Haoxin; Johnston, Chad W; Edwards, Mclean R; Rees, Philip N; Skinnider, Michael A; Webster, Andrew L H; Magarvey, Nathan A

    2016-12-01

    Polyketides (PKs) and nonribosomal peptides (NRPs) are profoundly important natural products, forming the foundations of many therapeutic regimes. Decades of research have revealed over 11,000 PK and NRP structures, and genome sequencing is uncovering new PK and NRP gene clusters at an unprecedented rate. However, only ∼10% of PK and NRPs are currently associated with gene clusters, and it is unclear how many of these orphan gene clusters encode previously isolated molecules. Therefore, to efficiently guide the discovery of new molecules, we must first systematically de-orphan emergent gene clusters from genomes. Here we provide to our knowledge the first comprehensive retro-biosynthetic program, generalized retro-biosynthetic assembly prediction engine (GRAPE), for PK and NRP families and introduce a computational pipeline, global alignment for natural products cheminformatics (GARLIC), to uncover how observed biosynthetic gene clusters relate to known molecules, leading to the identification of gene clusters that encode new molecules.

  1. The Xenopus alcohol dehydrogenase gene family: characterization and comparative analysis incorporating amphibian and reptilian genomes

    PubMed Central

    2014-01-01

    Background The alcohol dehydrogenase (ADH) gene family uniquely illustrates the concept of enzymogenesis. In vertebrates, tandem duplications gave rise to a multiplicity of forms that have been classified in eight enzyme classes, according to primary structure and function. Some of these classes appear to be exclusive of particular organisms, such as the frog ADH8, a unique NADP+-dependent ADH enzyme. This work describes the ADH system of Xenopus, as a model organism, and explores the first amphibian and reptilian genomes released in order to contribute towards a better knowledge of the vertebrate ADH gene family. Results Xenopus cDNA and genomic sequences along with expressed sequence tags (ESTs) were used in phylogenetic analyses and structure-function correlations of amphibian ADHs. Novel ADH sequences identified in the genomes of Anolis carolinensis (anole lizard) and Pelodiscus sinensis (turtle) were also included in these studies. Tissue and stage-specific libraries provided expression data, which has been supported by mRNA detection in Xenopus laevis tissues and regulatory elements in promoter regions. Exon-intron boundaries, position and orientation of ADH genes were deduced from the amphibian and reptilian genome assemblies, thus revealing syntenic regions and gene rearrangements with respect to the human genome. Our results reveal the high complexity of the ADH system in amphibians, with eleven genes, coding for seven enzyme classes in Xenopus tropicalis. Frogs possess the amphibian-specific ADH8 and the novel ADH1-derived forms ADH9 and ADH10. In addition, they exhibit ADH1, ADH2, ADH3 and ADH7, also present in reptiles and birds. Class-specific signatures have been assigned to ADH7, and ancestral ADH2 is predicted to be a mixed-class as the ostrich enzyme, structurally close to mammalian ADH2 but with class-I kinetic properties. Remarkably, many ADH1 and ADH7 forms are observed in the lizard, probably due to lineage-specific duplications. ADH4 is not

  2. A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3.

    PubMed

    Radosavljevic, Mirjana; Cuillerier, Benoît; Wilson, Michael J; Clément, Oliver; Wicker, Sophie; Gilfillan, Susan; Beck, Stephan; Trowsdale, John; Bahram, Seiamak

    2002-01-01

    We have identified a novel family of human major histocompatibility complex (MHC) class I genes. This MHC class I related gene family is defined by 10 members, among which 6 encode potentially functional glycoproteins. The 180-kb cluster containing them has been generated by serial duplication and minimal diversification of an ancestral prototype. They are not located within the MHC on 6p21.3, but near the tip of its long arm at q24.2-q25.3, close to the human equivalent of the mouse H2-linked t-complex, a subchromosomal region syntenic to a segment of mouse chromosome 10 harboring the orthologous MHC class I related retinoic acid early transcript loci, Raet1a-d. Hence we have named the identified loci RAET1E-N. Human RAET1 products are all devoid of the membrane-proximal immunoglobulin-like alpha3 domain and most, but not all, are predicted to remain membrane-anchored via glycosylphosphatidylinositol linkage and are shown to display an atypical pattern of polymorphism. RAET1 transcripts are absent from hematopoietic tissues, but largely expressed in tumors. The involvement of orthologous mouse RAET1A-D/H60 in natural killer and T-cell activation through NKG2D engagement augurs a similar function for the human RAET1 proteins.

  3. Genetic polymorphisms of ADH1B, ADH1C and ALDH2, alcohol consumption, and the risk of gastric cancer: the Japan Public Health Center-based prospective study.

    PubMed

    Hidaka, Akihisa; Sasazuki, Shizuka; Matsuo, Keitaro; Ito, Hidemi; Sawada, Norie; Shimazu, Taichi; Yamaji, Taiki; Iwasaki, Motoki; Inoue, Manami; Tsugane, Shoichiro

    2015-02-01

    The association between alcohol consumption, genetic polymorphisms of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) and gastric cancer risk is not completely understood. We investigated the association between ADH1B (rs1229984), ADH1C (rs698) and ALDH2 (rs671) polymorphisms, alcohol consumption and the risk of gastric cancer among Japanese subjects in a population-based, nested, case-control study (1990-2004). Among 36 745 subjects who answered the baseline questionnaire and provided blood samples, 457 new gastric cancer cases matched to 457 controls were used in the analysis. The odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated using logistic regression models. No association was observed between alcohol consumption, ADH1B (rs1229984), ADH1C (rs698) and ALDH2 (rs671) polymorphisms and gastric cancer risk. However, considering gene-environmental interaction, ADH1C G allele carriers who drink ≥150 g/week of ethanol had a 2.5-fold increased risk of gastric cancer (OR = 2.54, 95% CI = 1.05-6.17) relative to AA genotype carriers who drink 0 to <150 g/week (P for interaction = 0.02). ALDH2 A allele carriers who drink ≥150 g/week also had an increased risk (OR = 2.08, 95% CI = 1.05-4.12) relative to GG genotype carriers who drink 0 to < 150 g/week (P for interaction = 0.08). To find the relation between alcohol consumption and gastric cancer risk, it is important to consider both alcohol consumption level and ADH1C and ALDH2 polymorphisms.

  4. Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family.

    PubMed

    Ikeda, Daisuke; Ono, Yosuke; Hirano, Shigeki; Kan-no, Nobuhiro; Watabe, Shugo

    2013-01-01

    Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5'-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.

  5. Combination of ADH1B*2/ALDH2*2 polymorphisms alters acetaldehyde-derived DNA damage in the blood of Japanese alcoholics.

    PubMed

    Yukawa, Yoshiyuki; Muto, Manabu; Hori, Kimiko; Nagayoshi, Haruna; Yokoyama, Akira; Chiba, Tsutomu; Matsuda, Tomonari

    2012-09-01

    The acetaldehyde associated with alcoholic beverages is an evident carcinogen for the esophagus. Genetic polymorphisms of the alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes are associated with the risk of esophageal cancer. However, the exact mechanism via which these genetic polymorphisms affect esophageal carcinogenesis has not been elucidated. ADH1B*2 is involved in overproduction of acetaldehyde due to increased ethanol metabolism into acetaldehyde, and ALDH2*2 is involved in accumulation of acetaldehyde due to the deficiency of acetaldehyde metabolism. Acetaldehyde can interact with DNA and form DNA adducts, resulting in DNA damage. N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) is the most abundant DNA adduct derived from acetaldehyde. Therefore, we quantified N(2)-ethylidene-dG levels in blood samples from 66 Japanese alcoholic patients using liquid chromatography/electrospray tandem mass spectrometry, and investigated the relationship between N(2)-ethylidene-dG levels and ADH1B and ALDH2 genotypes. The median N(2)-ethylidene-dG levels (25th percentile, 75th percentile) in patients with ADH1B*1/*1 plus ALDH2*1/*1, ADH1B*2 carrier plus ALDH2*1/*1, ADH1B*1/*1 plus ALDH2*1/*2, and ADH1B*2 carrier plus ALDH2*1/*2 were 2.14 (0.97, 2.37)/10(7) bases, 2.38 (1.18, 2.98)/10(7) bases, 5.38 (3.19, 6.52)/10(7) bases, and 21.04 (12.75, 34.80)/10(7) bases, respectively. In the ALDH2*1/*2 group, N(2)-ethylidene-dG levels were significantly higher in ADH1B*2 carriers than in the ADH1B*1/*1 group (P < 0.01). N(2)-ethylidene-dG levels were significantly higher in the ALDH2*1/*2 group than in the ALDH2*1/*1 group, regardless of ADH1B genotype (ADH1B*1/*1, P < 0.05; ADH1B*2 carriers, P < 0.01) N(2)-ethylidene-dG levels in blood DNA of the alcoholics was remarkably higher in individuals with a combination of the ADH1B*2 and ALDH2*2 alleles. These results provide a new perspective on the carcinogenicity of the acetaldehyde associated with

  6. Identification of lethal cluster of genes in the yeast transcription network

    NASA Astrophysics Data System (ADS)

    Rho, K.; Jeong, H.; Kahng, B.

    2006-05-01

    Identification of essential or lethal genes would be one of the ultimate goals in drug designs. Here we introduce an in silico method to select the cluster with a high population of lethal genes, called lethal cluster, through microarray assay. We construct a gene transcription network based on the microarray expression level. Links are added one by one in the descending order of the Pearson correlation coefficients between two genes. As the link density p increases, two meaningful link densities pm and ps are observed. At pm, which is smaller than the percolation threshold, the number of disconnected clusters is maximum, and the lethal genes are highly concentrated in a certain cluster that needs to be identified. Thus the deletion of all genes in that cluster could efficiently lead to a lethal inviable mutant. This lethal cluster can be identified by an in silico method. As p increases further beyond the percolation threshold, the power law behavior in the degree distribution of a giant cluster appears at ps. We measure the degree of each gene at ps. With the information pertaining to the degrees of each gene at ps, we return to the point pm and calculate the mean degree of genes of each cluster. We find that the lethal cluster has the largest mean degree.

  7. Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum.

    PubMed

    Dineen, Sean S; Bradshaw, Marite; Karasek, Charles E; Johnson, Eric A

    2004-06-01

    The nucleotide sequences of the upstream regions of the botulinum neurotoxin type A1 (BoNT/A1) cluster of Clostridium botulinum strain NCTC 2916 and the BoNT/A2 cluster of strain Kyoto-F were determined. A novel gene, designated orfx3, was identified following the orfx2 gene in both clusters. ORF-X2 and ORF-X3 exhibit similarity to the BoNT cluster associated P-47 protein. The BoNT/A1 and BoNT/A2 clusters share a similar gene arrangement, but exhibit differences in the spacing between certain genes. Sequences with similarity to transposases were identified in these intergenic regions, suggesting that these differences arose from an ancestral insertion event. Transcriptional analysis of the BoNT/A2 cluster revealed that the genes of the cluster are primarily synthesized as three polycistronic transcripts. Two divergent polycistronic transcripts, one encoding the orfx1, orfx2, and orfx3 genes, the second encoding the p47, ntnh, and bont/a2 genes, are transcribed from conserved BoNT cluster promoters. The third polycistronic transcript, expressed at low levels, encodes the positive regulatory botR gene and the orfx genes. This is the first complete analysis of a botulinum toxin A2 cluster.

  8. Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster ▿§

    PubMed Central

    Chavadi, Sivagami Sundaram; Stirrett, Karen L.; Edupuganti, Uthamaphani R.; Vergnolle, Olivia; Sadhanandan, Gigani; Marchiano, Emily; Martin, Che; Qiu, Wei-Gang; Soll, Clifford E.; Quadri, Luis E. N.

    2011-01-01

    The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence. PMID:21873494

  9. A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease

    PubMed Central

    Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.

    2010-01-01

    Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478

  10. Translating biosynthetic gene clusters into fungal armor and weaponry

    PubMed Central

    Keller, Nancy P

    2015-01-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs. PMID:26284674

  11. Enzymology of aminoglycoside biosynthesis-deduction from gene clusters.

    PubMed

    Wehmeier, Udo F; Piepersberg, Wolfgang

    2009-01-01

    The classical aminoglycosides are, with very few exceptions, typically actinobacterial secondary metabolites with antimicrobial activities all mediated by inhibiting translation on the 30S subunit of the bacterial ribosome. Some chemically related natural products inhibit glucosidases by mimicking oligo-alpha-1,4-glucosides. The biochemistry of the aminoglycoside biosynthetic pathways is still a developing field since none of the pathways has been analyzed to completeness as yet. In this chapter we treat the enzymology of aminoglycoside biosyntheses as far as it becomes apparent from recent investigations based on the availability of DNA sequence data of biosynthetic gene clusters for all major structural classes of these bacterial metabolites. We give a more general overview of the field, including descriptions of some key enzymes in various aminoglycoside pathways, whereas in Chapter 20 provides a detailed account of the better-studied enzymology thus far known for the neomycin and butirosin pathways.

  12. Clustered Genes Encoding the Methyltransferases of Methanogenesis from Monomethylamine

    PubMed Central

    Burke, Stephen A.; Lo, Sam L.; Krzycki, Joseph A.

    1998-01-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen. PMID:9642198

  13. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine.

    PubMed

    Burke, S A; Lo, S L; Krzycki, J A

    1998-07-01

    Coenzyme M (CoM) is methylated during methanogenesis from monomethyamine in a reaction catalyzed by three proteins. Using monomethylamine, a 52-kDa polypeptide termed monomethylamine methyltransferase (MMAMT) methylates the corrinoid cofactor bound to a second polypeptide, monomethylamine corrinoid protein (MMCP). Methylated MMCP then serves as a substrate for MT2-A, which methylates CoM. The genes for these proteins are clustered on 6.8 kb of DNA in Methanosarcina barkeri MS. The gene encoding MMCP (mtmC) is located directly upstream of the gene encoding MMAMT (mtmB). The gene encoding MT2-A (mtbA) was found 1.1 kb upstream of mtmC, but no obvious open reading frame was found in the intergenic region between mtbA and mtmC. A single monocistronic transcript was found for mtbA that initiated 76 bp from the translational start. Separate transcripts of 2.4 and 4.7 kb were detected, both of which carried mtmCB. The larger transcript also encoded mtmP, which is homologous to the APC family of cationic amine permeases and may therefore encode a methylamine permease. A single transcriptional start site was found 447 bp upstream of the translational start of mtmC. MtmC possesses the corrinoid binding motif found in corrinoid proteins involved in dimethylsulfide- and methanol-dependent methanogenesis, as well as in methionine synthase. The open reading frame of mtmB was interrupted by a single in-frame, midframe, UAG codon which was also found in mtmB from M. barkeri NIH. A mechanism that circumvents UAG-directed termination of translation must operate during expression of mtmB in this methanogen.

  14. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer.

    PubMed

    Jogler, Christian; Kube, Michael; Schübbe, Sabrina; Ullrich, Susanne; Teeling, Hanno; Bazylinski, Dennis A; Reinhardt, Richard; Schüler, Dirk

    2009-05-01

    The organization of magnetosome genes was analysed in all available complete or partial genomic sequences of magnetotactic bacteria (MTB), including the magnetosome island (MAI) of the magnetotactic marine vibrio strain MV-1 determined in this study. The MAI was found to differ in gene content and organization between Magnetospirillum species and strains MV-1 or MC-1. Although a similar organization of magnetosome genes was found in all MTB, distinct variations in gene order and sequence similarity were uncovered that may account for the observed diversity of biomineralization, cell biology and magnetotaxis found in various MTB. While several magnetosome genes were present in all MTB, others were confined to Magnetospirillum species, indicating that the minimal set of genes required for magnetosome biomineralization might be smaller than previously suggested. A number of novel candidate genes were implicated in magnetosome formation by gene cluster comparison. Based on phylogenetic and compositional evidence we present a model for the evolution of magnetotaxis within the Alphaproteobacteria, which suggests the independent horizontal transfer of magnetosome genes from an unknown ancestor of magnetospirilla into strains MC-1 and MV-1.

  15. Characterization and expression analysis of the exopolysaccharide gene cluster in Lactobacillus fermentum TDS030603.

    PubMed

    Dan, Tong; Fukuda, Kenji; Sugai-Bannai, Michiko; Takakuwa, Naoya; Motoshima, Hidemasa; Urashima, Tadasu

    2009-12-01

    Part of the exopolysaccharide gene cluster of Lactobacillus fermentum TDS030603 was characterized. It consists of 11,890 base pairs and is located in the chromosomal DNA, 13 open reading frames of which were encoded. Out of the 13 open reading frames, six were found to be involved in exopolysaccharide synthesis; however, five were similar to transposase genes of other lactobacilli, and two were functionally unrelated. Expression analysis revealed that the exopolysaccharide synthesis-related genes were expressed during cultivation. Southern analysis using specific primers for the exopolysaccharide genes indicated that duplication of the gene cluster did not occur. The plasmid-cured strain maintained its capacity for exopolysaccharide production, confirming that the exopolysaccharide gene cluster of this strain is located in the chromosomal DNA, similarly to thermophilic lactic acid bacteria. Our results indicate that this exopolysaccharide gene cluster is likely to be functional, although extensive gene rearrangement occurs.

  16. Effects of endogenous antidiuretic hormone (ADH) on macrophage phagocytosis

    SciTech Connect

    Fernandez-Repollet, E.; Opava-Stitzer, S.; Tiffany, S.; Schwartz, A.

    1983-07-01

    Although several studies have indicated that antidiuretic hormone (ADH) enhances the phagocytic function of the reticuloendothelial system (RES) in shock syndromes, it remains unknown what influence ADH exerts upon the individual phagocytic components of this system. The present investigation was designed to evaluate the effects of endogenous ADH on the phagocytic activity of peritoneal macrophage cells. As a phagocytic stimuli, fluorescent methacrylate microbeads were injected intraperitoneally into Brattleboro (ADH deficient) and normal Long Evans rats in the presence and absence of exogenous ADH. Peritoneal cells were harvested 19-22 hr after the administration of the microbeads and the percent phagocytosis was determined in macrophage cells using a fluorescence-activated cell sorter (FACS II). Our results indicate that the percentage of peritoneal macrophages ingesting the fluorescent methacrylate microbeads was significantly reduced in the absence of ADH (Brattleboro rats: 5.4 +/- 0.6% versus Long Evans rats: 16.8 +/- 2.3%; p less than 0.001). In addition, our data demonstrate that exogenous administration of ADH significantly enhanced macrophage phagocytosis in Brattleboro (14.7 +/- 2.2%) and normal Long Evans (49.6 +/- 4.5%) rats. These data suggest, for the first time, that endogenous ADH might play a modulatory role in the phagocytic activity of a specific component of the RES, namely, the macrophage cell.

  17. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1).

  18. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility.

    PubMed

    Richardson, Marcy E; Bleiziffer, Andreas; Tüttelmann, Frank; Gromoll, Jörg; Wilkinson, Miles F

    2014-01-01

    The X-linked RHOX cluster encodes a set of homeobox genes that are selectively expressed in the reproductive tract. Members of the RHOX cluster regulate target genes important for spermatogenesis promote male fertility in mice. Studies show that demethylating agents strongly upregulate the expression of mouse Rhox genes, suggesting that they are regulated by DNA methylation. However, whether this extends to human RHOX genes, whether DNA methylation directly regulates RHOX gene transcription and how this relates to human male infertility are unknown. To address these issues, we first defined the promoter regions of human RHOX genes and performed gain- and loss-of-function experiments to determine whether human RHOX gene transcription is regulated by DNA methylation. Our results indicated that DNA methylation is necessary and sufficient to silence human RHOX gene expression. To determine whether RHOX cluster methylation associates with male infertility, we evaluated the methylation status of RHOX genes in sperm from a large cohort of infertility patients. Linear regression analysis revealed a strong association between RHOX gene cluster hypermethylation and three independent types of semen abnormalities. Hypermethylation was restricted specifically to the RHOX cluster; we did not observe it in genes immediately adjacent to it on the X chromosome. Our results strongly suggest that human RHOX homeobox genes are under an epigenetic control mechanism that is aberrantly regulated in infertility patients. We propose that hypermethylation of the RHOX gene cluster serves as a marker for idiopathic infertility and that it is a candidate to exert a causal role in male infertility.

  19. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  20. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.

    PubMed

    Chen, Sui-Pi; Huang, Guan-Hua

    2014-06-01

    This paper uses a Bayesian formulation of a clustering procedure to identify gene-gene interactions under case-control studies, called the Algorithm via Bayesian Clustering to Detect Epistasis (ABCDE). The ABCDE uses Dirichlet process mixtures to model SNP marker partitions, and uses the Gibbs weighted Chinese restaurant sampling to simulate posterior distributions of these partitions. Unlike the representative Bayesian epistasis detection algorithm BEAM, which partitions markers into three groups, the ABCDE can be evaluated at any given partition, regardless of the number of groups. This study also develops permutation tests to validate the disease association for SNP subsets identified by the ABCDE, which can yield results that are more robust to model specification and prior assumptions. This study examines the performance of the ABCDE and compares it with the BEAM using various simulated data and a schizophrenia SNP dataset.

  1. Unusual mutation clusters provide insight into class I gene conversion mechanisms.

    PubMed Central

    Pease, L R; Horton, R M; Pullen, J K; Yun, T J

    1993-01-01

    Genetic diversity among the K and D alleles of the mouse major histocompatibility complex is generated by gene conversion among members of the class I multigene family. The majority of known class I mutants contain clusters of nucleotide changes that can be traced to linked family members. However, the details of the gene conversion mechanism are not known. The bm3 and bm23 mutations represent exceptions to the usual pattern and provide insight into intermediates generated during the gene conversion process. Both of these variants contain clusters of five nucleotide substitutions, but they differ from the classic conversion mutants in the important respect that no donor gene for either mutation could be identified in the parental genome. Nevertheless, both mutation clusters are composed of individual mutations that do exist within the parent. Therefore, they are not random and appear to be templated. Significantly, the bm3 and bm23 mutation clusters are divided into overlapping regions that match class I genes which have functioned as donor genes in other characterized gene conversion events. The unusual structure of the mutation clusters indicates an underlying gene conversion mechanism that can generate mutation clusters as a result of the interaction of three genes in a single genetic event. The unusual mutation clusters are consistent with a hypothetical gene conversion model involving extrachromosomal intermediates. Images PMID:8321237

  2. Effects of ADH2 overexpression in Saccharomyces bayanus during alcoholic fermentation.

    PubMed

    Maestre, Oscar; García-Martínez, Teresa; Peinado, Rafael A; Mauricio, Juan C

    2008-02-01

    The effect of overexpression of the gene ADH2 on metabolic and biological activity in Saccharomyces bayanus V5 during alcoholic fermentation has been evaluated. This gene is known to encode alcohol dehydrogenase II (ADH II). During the biological aging of sherry wines, where yeasts have to grow on ethanol owing to the absence of glucose, this isoenzyme plays a prominent role by converting the ethanol into acetaldehyde and producing NADH in the process. Overexpression of the gene ADH2 during alcoholic fermentation has no effect on the proteomic profile or the net production of some metabolites associated with glycolysis and alcoholic fermentation such as ethanol, acetaldehyde, and glycerol. However, it affects indirectly glucose and ammonium uptakes, cell growth, and intracellular redox potential, which lead to an altered metabolome. The increased contents in acetoin, acetic acid, and L-proline present in the fermentation medium under these conditions can be ascribed to detoxification by removal of excess acetaldehyde and the need to restore and maintain the intracellular redox potential balance.

  3. A hypothesis to explain how laeA specifically regulates certain secondary metabolite biosynthesis gene clusters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosynthesis of mycotoxins involves transcriptional co-regulation of sets of clustered genes. We hypothesize that specific control of transcription of genes in these clusters by LaeA, a global regulator of secondary metabolite production and development in aspergilli and other filamentous fungi, re...

  4. Fragmentation of an aflatoxin-like gene cluster in a forest pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolic pathway genes are typically clustered in fungi. An exception to this paradigm is seen for genes required for the production of dothistromin, an aflatoxin-like virulence factor produced by the pine needle pathogen Dothistroma septosporum. In contrast to the tight clustering of gen...

  5. Rough-fuzzy clustering for grouping functionally similar genes from microarray data.

    PubMed

    Maji, Pradipta; Paul, Sushmita

    2013-01-01

    Gene expression data clustering is one of the important tasks of functional genomics as it provides a powerful tool for studying functional relationships of genes in a biological process. Identifying coexpressed groups of genes represents the basic challenge in gene clustering problem. In this regard, a gene clustering algorithm, termed as robust rough-fuzzy c-means, is proposed judiciously integrating the merits of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in cluster definition, the integration of probabilistic and possibilistic memberships of fuzzy sets enables efficient handling of overlapping partitions in noisy environment. The concept of possibilistic lower bound and probabilistic boundary of a cluster, introduced in robust rough-fuzzy c-means, enables efficient selection of gene clusters. An efficient method is proposed to select initial prototypes of different gene clusters, which enables the proposed c-means algorithm to converge to an optimum or near optimum solutions and helps to discover coexpressed gene clusters. The effectiveness of the algorithm, along with a comparison with other algorithms, is demonstrated both qualitatively and quantitatively on 14 yeast microarray data sets.

  6. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants1[OPEN

    PubMed Central

    Zhang, Peifen; Kim, Taehyong; Banf, Michael; Chavali, Arvind K.; Nilo-Poyanco, Ricardo; Bernard, Thomas

    2017-01-01

    Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters. PMID:28228535

  7. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    SciTech Connect

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  8. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species.

    SciTech Connect

    Li, J.; Romine, Margaret F.; Ward, M.

    2007-08-01

    A conserved cluster of chemotaxis genes was identified from the genome sequences of fifteen Shewanella species. An in-frame deletion of the cheA-3 gene, which is located in this cluster, was created in S. oneidensis MR-1 and the gene shown to be essential for chemotactic responses to anaerobic electron acceptors. The CheA-3 protein showed strong similarity to Vibrio cholerae CheA-2 and P. aeruginosa CheA-1, two proteins that are also essential for chemotaxis. The genes encoding these proteins were shown to be located in chemotaxis gene clusters closely related to the cheA-3-containing cluster in Shewanella species. The results of this study suggest that a combination of gene neighborhood and homology analyses may be used to predict which cheA genes are essential for chemotaxis in groups of closely related microorganisms.

  9. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination

    PubMed Central

    Reynolds, David L.; Hofmeister, Brigitte T.; Cliffe, Laura; Siegel, T. Nicolai; Anderson, Britta A.; Beverley, Stephen M.; Schmitz, Robert J.; Sabatini, Robert

    2016-01-01

    Summary The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription. PMID:27125778

  10. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms.

    PubMed

    Chiang, Yi-Ming; Chang, Shu-Lin; Oakley, Berl R; Wang, Clay C C

    2011-02-01

    Secondary metabolites from microorganisms have a broad spectrum of applications, particularly in therapeutics. The growing number of sequenced microbial genomes has revealed a remarkably large number of natural product biosynthetic clusters for which the products are still unknown. These cryptic clusters are potentially a treasure house of medically useful compounds. The recent development of new methodologies has made it possible to begin unlock this treasure house, to discover new natural products and to determine their biosynthesis pathways. This review will highlight some of the most recent strategies to activate silent biosynthetic gene clusters and to elucidate their corresponding products and pathways.

  11. Horizontal Transfer and Death of a Fungal Secondary Metabolic Gene Cluster

    PubMed Central

    Campbell, Matthew A.; Rokas, Antonis; Slot, Jason C.

    2012-01-01

    A cluster composed of four structural and two regulatory genes found in several species of the fungal genus Fusarium (class Sordariomycetes) is responsible for the production of the red pigment bikaverin. We discovered that the unrelated fungus Botrytis cinerea (class Leotiomycetes) contains a cluster of five genes that is highly similar in sequence and gene order to the Fusarium bikaverin cluster. Synteny conservation, nucleotide composition, and phylogenetic analyses of the cluster genes indicate that the B. cinerea cluster was acquired via horizontal transfer from a Fusarium donor. Upon or subsequent to the transfer, the B. cinerea gene cluster became inactivated; one of the four structural genes is missing, two others are pseudogenes, and the fourth structural gene shows an accelerated rate of nonsynonymous substitutions along the B. cinerea lineage, consistent with relaxation of selective constraints. Interestingly, the bik4 regulatory gene is still intact and presumably functional, whereas bik5, which is a pathway-specific regulator, also shows a mild but significant acceleration of evolutionary rate along the B. cinerea lineage. This selective preservation of the bik4 regulator suggests that its conservation is due to its likely involvement in other non–bikaverin-related biological processes in B. cinerea. Thus, in addition to novel metabolism, horizontal transfer of wholesale metabolic gene clusters might also be contributing novel regulation. PMID:22294497

  12. A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus.

    PubMed

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.

  13. A Modified Recombineering Protocol for the Genetic Manipulation of Gene Clusters in Aspergillus fumigatus

    PubMed Central

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F.; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge. PMID:25372385

  14. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum.

    PubMed

    Nijland, Jeroen G; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Rémon; Bovenberg, Roel A L; Driessen, Arnold J M

    2010-11-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the β-lactam biosynthetic pathway. We have analyzed the gene cluster dose effect on penicillin production using the high-yielding P. chrysogenum strain DS17690 that was cured from its native clusters. The amount of penicillin V produced increased with the penicillin biosynthetic gene cluster number but was saturated at high copy numbers. Likewise, transcript levels of the biosynthetic genes pcbAB [δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase], pcbC (isopenicillin N synthase), and penDE (acyltransferase) correlated with the cluster copy number. Remarkably, the protein level of acyltransferase, which localizes to peroxisomes, was saturated already at low cluster copy numbers. At higher copy numbers, intracellular levels of isopenicillin N increased, suggesting that the acyltransferase reaction presents a limiting step at a high gene dose. Since the number and appearance of the peroxisomes did not change significantly with the gene cluster copy number, we conclude that the acyltransferase activity is limiting for penicillin biosynthesis at high biosynthetic gene cluster copy numbers. These results suggest that at a high penicillin production level, productivity is limited by the peroxisomal acyltransferase import activity and/or the availability of coenzyme A (CoA)-activated side chains.

  15. Improving the computational efficiency of recursive cluster elimination for gene selection.

    PubMed

    Luo, Lin-Kai; Huang, Deng-Feng; Ye, Ling-Jun; Zhou, Qi-Feng; Shao, Gui-Fang; Peng, Hong

    2011-01-01

    The gene expression data are usually provided with a large number of genes and a relatively small number of samples, which brings a lot of new challenges. Selecting those informative genes becomes the main issue in microarray data analysis. Recursive cluster elimination based on support vector machine (SVM-RCE) has shown the better classification accuracy on some microarray data sets than recursive feature elimination based on support vector machine (SVM-RFE). However, SVM-RCE is extremely time-consuming. In this paper, we propose an improved method of SVM-RCE called ISVM-RCE. ISVM-RCE first trains a SVM model with all clusters, then applies the infinite norm of weight coefficient vector in each cluster to score the cluster, finally eliminates the gene clusters with the lowest score. In addition, ISVM-RCE eliminates genes within the clusters instead of removing a cluster of genes when the number of clusters is small. We have tested ISVM-RCE on six gene expression data sets and compared their performances with SVM-RCE and linear-discriminant-analysis-based RFE (LDA-RFE). The experiment results on these data sets show that ISVM-RCE greatly reduces the time cost of SVM-RCE, meanwhile obtains comparable classification performance as SVM-RCE, while LDA-RFE is not stable.

  16. Genes for iron-sulphur cluster assembly are targets of abiotic stress in rice, Oryza sativa.

    PubMed

    Liang, Xuejiao; Qin, Lu; Liu, Peiwei; Wang, Meihuan; Ye, Hong

    2014-03-01

    Iron-sulphur (Fe-S) cluster assembly occurs in chloroplasts, mitochondria and cytosol, involving dozens of genes in higher plants. In this study, we have identified 41 putative Fe-S cluster assembly genes in rice (Oryza sativa) genome, and the expression of all genes was verified. To investigate the role of Fe-S cluster assembly as a metabolic pathway, we applied abiotic stresses to rice seedlings and analysed Fe-S cluster assembly gene expression by qRT-PCR. Our data showed that genes for Fe-S cluster assembly in chloroplasts of leaves are particularly sensitive to heavy metal treatments, and that Fe-S cluster assembly genes in roots were up-regulated in response to iron toxicity, oxidative stress and some heavy metal assault. The effect of each stress treatment on the Fe-S cluster assembly machinery demonstrated an unexpected tissue or organelle specificity, suggesting that the physiological relevance of the Fe-S cluster assembly is more complex than thought. Furthermore, our results may reveal potential candidate genes for molecular breeding of rice.

  17. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGES

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; ...

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  18. Using Multi-Instance Hierarchical Clustering Learning System to Predict Yeast Gene Function

    PubMed Central

    Liao, Bo; Li, Yun; Jiang, Yan; Cai, Lijun

    2014-01-01

    Time-course gene expression datasets, which record continuous biological processes of genes, have recently been used to predict gene function. However, only few positive genes can be obtained from annotation databases, such as gene ontology (GO). To obtain more useful information and effectively predict gene function, gene annotations are clustered together to form a learnable and effective learning system. In this paper, we propose a novel multi-instance hierarchical clustering (MIHC) method to establish a learning system by clustering GO and compare this method with other learning system establishment methods. Multi-label support vector machine classifier and multi-label K-nearest neighbor classifier are used to verify these methods in four yeast time-course gene expression datasets. The MIHC method shows good performance, which serves as a guide to annotators or refines the annotation in detail. PMID:24621610

  19. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    PubMed

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  20. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters

    PubMed Central

    Seyedsayamdost, Mohammad R.

    2014-01-01

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as “cryptic” or “silent” to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria. PMID:24808135

  1. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  2. [Effects of H2-blockers on alcohol dehydrogenase (ADH) activity].

    PubMed

    Jelski, Wojciech; Orywal, Karolina; Szmitkowski, Maciej

    2008-12-01

    First-pass metabolism (FPM) of alcohol is demonstrated by lower blood alcohol concentrations after oral than intravenous administration of the same dose. FPM occurs predominantly in the stomach and has been attributed to class IV of alcohol dehydrogenase (ADH) isoenzyme localizated in the gastric mucosa. A number of factors that influence on gastric ADH activity and thereby modulate FPM have been identified. These include age, sex, ethnicity, concentrations and amounts of alcohol consumed and drugs. Several H2-receptor antagonists, including cimetidine and ranitidine, inhibit gastric ADH activity and reduce FPM, resulting in higher blood alcohol concentrations after H2-blockers administration.

  3. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites

    PubMed Central

    KOMATSU, MAMORU; KOMATSU, KYOKO; KOIWAI, HANAE; YAMADA, YUUKI; KOZONE, IKUKO; IZUMIKAWA, MIHO; HASHIMOTO, JUNKO; TAKAGI, MOTOKI; OMURA, SATOSHI; SHIN-YA, KAZUO; CANE, DAVID E.; IKEDA, HARUO

    2014-01-01

    An industrial microorganism Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host. PMID:23654282

  4. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters.

    PubMed

    Du, Deyao; Zhu, Yu; Wei, Junhong; Tian, Yuqing; Niu, Guoqing; Tan, Huarong

    2013-07-01

    Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.

  5. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  6. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes.

    PubMed

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2016-04-01

    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH.

  7. The B-type lamin is required for somatic repression of testis-specific gene clusters

    PubMed Central

    Shevelyov, Y. Y.; Lavrov, S. A.; Mikhaylova, L. M.; Nurminsky, I. D.; Kulathinal, R. J.; Egorova, K. S.; Rozovsky, Y. M.; Nurminsky, D. I.

    2009-01-01

    Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins. PMID:19218438

  8. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

    PubMed Central

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  9. Improved efficiency in amplification of Escherichia coli o-antigen gene clusters using genome-wide sequence comparison

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In many bacteria including E. coli, genes encoding O-antigens are clustered in the chromosome, with a 39-bp JUMPstart sequence and gnd gene located upstream and downstream of the cluster, respectively. For determining the DNA sequence of the E. coli O-antigen gene cluster, one set of P...

  10. Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release.

    PubMed

    Wang, Lei; Qin, Wanhai; Zhang, Jing; Bao, Chuntong; Zhang, Hu; Che, Yanyi; Sun, Changjiang; Gu, Jingmin; Feng, Xin; Du, Chongtao; Han, Wenyu; Richard, Paul Langford; Lei, Liancheng

    2016-04-05

    Members of the Trimeric Autotransporter Adhesin (TAA) family play a crucial role in the adhesion of Gram-negative pathogens to host cells, but the immunopathogenesis of TAAs remains unknown. Our previous studies demonstrated that Adh from Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is required for full bacterial pathogenicity. Alveolar macrophages are the first line of defense against respiratory infections. This study compared the interactions between porcine alveolar macrophages (PAMs) and wild-type A. pleuropneumoniae (5b WT) or an Adh-deletion strain (5b ΔAdh) via gene microarray, immunoprecipitation and other technologies. We found that Adh was shown to interact with the PAMs membrane protein OR5M11, an olfactory receptor, resulting in the high-level secretion of IL-8 by activation of p38 MAPK signaling pathway. Subsequently, PAMs apoptosis via the activation of the Fax and Bax signaling pathways was observed, followed by activation of caspases 8, 9, and 3. The immunological pathogenic roles of Adh were also confirmed in both murine and piglets infectious models in vivo. These results identify a novel immunological strategy for TAAs to boost the pathogenicity of A. pleuropneumoniae. Together, these datas reveal the high versatility of the Adh protein as a virulence factor and provide novel insight into the immunological pathogenic role of TAAs.

  11. Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

    PubMed Central

    Nesper, Jutta; Kraiß, Anita; Schild, Stefan; Blaβ, Julia; Klose, Karl E.; Bockemühl, Jochen; Reidl, Joachim

    2002-01-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence. PMID:11953379

  12. Isolation and Characterization of the Gibberellin Biosynthetic Gene Cluster in Sphaceloma manihoticola▿ †

    PubMed Central

    Bömke, Christiane; Rojas, Maria Cecilia; Gong, Fan; Hedden, Peter; Tudzynski, Bettina

    2008-01-01

    Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA4 desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi. PMID:18567680

  13. A rough set based rational clustering framework for determining correlated genes.

    PubMed

    Jeyaswamidoss, Jeba Emilyn; Thangaraj, Kesavan; Ramar, Kadarkarai; Chitra, Muthusamy

    2016-06-01

    Cluster analysis plays a foremost role in identifying groups of genes that show similar behavior under a set of experimental conditions. Several clustering algorithms have been proposed for identifying gene behaviors and to understand their significance. The principal aim of this work is to develop an intelligent rough clustering technique, which will efficiently remove the irrelevant dimensions in a high-dimensional space and obtain appropriate meaningful clusters. This paper proposes a novel biclustering technique that is based on rough set theory. The proposed algorithm uses correlation coefficient as a similarity measure to simultaneously cluster both the rows and columns of a gene expression data matrix and mean squared residue to generate the initial biclusters. Furthermore, the biclusters are refined to form the lower and upper boundaries by determining the membership of the genes in the clusters using mean squared residue. The algorithm is illustrated with yeast gene expression data and the experiment proves the effectiveness of the method. The main advantage is that it overcomes the problem of selection of initial clusters and also the restriction of one object belonging to only one cluster by allowing overlapping of biclusters.

  14. Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures.

    PubMed

    Rasmussen, Carl Edward; de la Cruz, Bernard J; Ghahramani, Zoubin; Wild, David L

    2009-01-01

    Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data, little attention has been paid to uncertainty in the results obtained. Dirichlet process mixture (DPM) models provide a nonparametric Bayesian alternative to the bootstrap approach to modeling uncertainty in gene expression clustering. Most previously published applications of Bayesian model-based clustering methods have been to short time series data. In this paper, we present a case study of the application of nonparametric Bayesian clustering methods to the clustering of high-dimensional nontime series gene expression data using full Gaussian covariances. We use the probability that two genes belong to the same cluster in a DPM model as a measure of the similarity of these gene expression profiles. Conversely, this probability can be used to define a dissimilarity measure, which, for the purposes of visualization, can be input to one of the standard linkage algorithms used for hierarchical clustering. Biologically plausible results are obtained from the Rosetta compendium of expression profiles which extend previously published cluster analyses of this data.

  15. Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....

  16. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency.

    PubMed

    Min, Ting; Yin, Xue-ren; Shi, Yan-na; Luo, Zheng-rong; Yao, Yun-cong; Grierson, Donald; Ferguson, Ian B; Chen, Kun-song

    2012-11-01

    The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO(2) and ethylene treatments efficiently removed the astringency from 'Mopan' persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF-DkADH/DkPDC cascade is involved in regulating persimmon de-astringency.

  17. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    PubMed

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary

  18. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    PubMed Central

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  19. Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea.

    PubMed

    Larsson, John; Celepli, Narin; Ininbergs, Karolina; Dupont, Christopher L; Yooseph, Shibu; Bergman, Bigitta; Ekman, Martin

    2014-09-01

    Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here.

  20. High or low correlation between co-occuring gene clusters and 16S rRNA gene phylogeny.

    PubMed

    Rudi, Knut; Sekelja, Monika

    2013-02-01

    Ribosomal RNA (rRNA) genes are universal for all living organisms. Yet, the correspondence between genome composition and rRNA phylogeny remains poorly known. The aim of this study was to use the information from genome sequence databases to address the correlation between rRNA gene phylogeny and total gene composition in bacteria. This was done by analysing 327 genomes with TIGRFAM functional gene annotations. Our approach consisted of two steps. First, we searched for discriminatory clusters of co-occurring genes. Using a multivariate statistical approach, we identified 11 such clusters which contain genes that were co-occurring only in a subset of genomes and contributed to explain the gene content differences between genome subsets. Second, we mapped the discovered clusters to 16S rRNA-based phylogeny and calculated the correlation between co-occuring genes and phylogeny. Six of the 11 clusters exhibited significant correlation with 16S rRNA gene phylogeny. The most distinct phylogenetic finding was a high correlation between iron-sulfur oxidoreductases in combination with carbon nitrogen ligases and Chlorobium. The other correlations identified covered relatively large phylogroups: Actinobacteria were positively associated with kinases, while Gammaproteobacteria were positively associated with methylases and acyltransferases. The suggested functional differences between higher phylogroups, however, need experimental verification.

  1. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition

    PubMed Central

    Fu, Jun; Wenzel, Silke C.; Perlova, Olena; Wang, Junping; Gross, Frank; Tang, Zhiru; Yin, Yulong; Stewart, A. Francis; Zhang, Youming

    2008-01-01

    Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes. PMID:18701643

  2. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    PubMed Central

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2011-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structure of nocobactin NA. Disruptions of the nbtA and nbtE genes, respectively, reduced and abolished the productivity of nocobactin NA. The heterologous expression of the nbtS gene revealed that this gene encoded a salicylate synthase. These results indicate that the nbt clusters are responsible for the biosynthesis of nocobactin NA. We also found putative IdeR-binding sequences upstream of the nbtA, -G, -H, -S, and -T genes, whose expression was more than 10-fold higher in the low-iron condition than in the high-iron condition. These results suggest that nbt genes are regulated coordinately by IdeR protein in an iron-dependent manner. The ΔnbtE mutant was found to be impaired in cytotoxicity against J774A.1 cells, suggesting that nocobactin NA production is required for virulence of N. farcinica. PMID:21097631

  3. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  4. Comparative genomic analysis of secondary metabolite biosynthetic gene clusters in 207 isolates of Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are known for their ability to produce secondary metabolites (SMs), including plant hormones, pigments, mycotoxins, and other compounds with potential agricultural, pharmaceutical, and biotechnological impact. Understanding the distribution of SM biosynthetic gene clusters across th...

  5. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE PAGES

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; ...

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance

  6. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    SciTech Connect

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong -Guan; Tiedje, James M.

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of

  7. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  8. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    PubMed

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  9. A stationary wavelet entropy-based clustering approach accurately predicts gene expression.

    PubMed

    Nguyen, Nha; Vo, An; Choi, Inchan; Won, Kyoung-Jae

    2015-03-01

    Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation.

  10. Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33.

    PubMed

    Achour-Rokbani, Asma; Cordi, Audrey; Poupin, Pascal; Bauda, Pascale; Billard, Patrick

    2010-02-01

    The arsenic resistance gene cluster of Microbacterium sp. A33 contains a novel pair of genes (arsTX) encoding a thioredoxin system that are cotranscribed with an unusual arsRC2 fusion gene, ACR3, and arsC1 in an operon divergent from arsC3. The whole ars gene cluster is required to complement an Escherichia coli ars mutant. ArsRC2 negatively regulates the expression of the pentacistronic operon. ArsC1 and ArsC3 are related to thioredoxin-dependent arsenate reductases; however, ArsC3 lacks the two distal catalytic cysteine residues of this class of enzymes.

  11. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  12. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a ...

  13. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties.

    PubMed

    Schiemann, Sabrina M; Martín-Durán, José M; Børve, Aina; Vellutini, Bruno C; Passamaneck, Yale J; Hejnol, Andreas

    2017-02-22

    Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomalaT. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks.

  14. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties

    PubMed Central

    Schiemann, Sabrina M.; Martín-Durán, José M.; Børve, Aina; Passamaneck, Yale J.

    2017-01-01

    Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomala. T. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks. PMID:28228521

  15. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    SciTech Connect

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  16. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    SciTech Connect

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  17. United we stand: big roles for small RNA gene clusters.

    PubMed

    Felden, Brice; Paillard, Luc

    2017-02-01

    Prokaryotes and eukaryotes evolved relatively similar RNA-based molecular mechanisms to fight potentially deleterious nucleic acids coming from phages, transposons, or viruses. Short RNAs guide effector complexes toward their targets to be silenced or eliminated. These short immunity RNAs are transcribed from clustered loci. Unexpectedly and strikingly, bacterial and eukaryotic immunity RNA clusters share substantial functional and mechanistic resemblances in fighting nucleic acid intruders.

  18. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    PubMed

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters.

  19. An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region.

    PubMed Central

    Ashburner, M; Misra, S; Roote, J; Lewis, S E; Blazej, R; Davis, T; Doyle, C; Galle, R; George, R; Harris, N; Hartzell, G; Harvey, D; Hong, L; Houston, K; Hoskins, R; Johnson, G; Martin, C; Moshrefi, A; Palazzolo, M; Reese, M G; Spradling, A; Tsang, G; Wan, K; Whitelaw, K; Celniker, S

    1999-01-01

    A contiguous sequence of nearly 3 Mb from the genome of Drosophila melanogaster has been sequenced from a series of overlapping P1 and BAC clones. This region covers 69 chromosome polytene bands on chromosome arm 2L, including the genetically well-characterized "Adh region." A computational analysis of the sequence predicts 218 protein-coding genes, 11 tRNAs, and 17 transposable element sequences. At least 38 of the protein-coding genes are arranged in clusters of from 2 to 6 closely related genes, suggesting extensive tandem duplication. The gene density is one protein-coding gene every 13 kb; the transposable element density is one element every 171 kb. Of 73 genes in this region identified by genetic analysis, 49 have been located on the sequence; P-element insertions have been mapped to 43 genes. Ninety-five (44%) of the known and predicted genes match a Drosophila EST, and 144 (66%) have clear similarities to proteins in other organisms. Genes known to have mutant phenotypes are more likely to be represented in cDNA libraries, and far more likely to have products similar to proteins of other organisms, than are genes with no known mutant phenotype. Over 650 chromosome aberration breakpoints map to this chromosome region, and their nonrandom distribution on the genetic map reflects variation in gene spacing on the DNA. This is the first large-scale analysis of the genome of D. melanogaster at the sequence level. In addition to the direct results obtained, this analysis has allowed us to develop and test methods that will be needed to interpret the complete sequence of the genome of this species.Before beginning a Hunt, it is wise to ask someone what you are looking for before you begin looking for it. Milne 1926 PMID:10471707

  20. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters

    PubMed Central

    Gomez‐Escribano, Juan Pablo; Bibb, Mervyn J.

    2011-01-01

    Summary We have constructed derivatives of Streptomyces coelicolor M145 as hosts for the heterologous expression of secondary metabolite gene clusters. To remove potentially competitive sinks of carbon and nitrogen, and to provide a host devoid of antibiotic activity, we deleted four endogenous secondary metabolite gene clusters from S. coelicolor M145 – those for actinorhodin, prodiginine, CPK and CDA biosynthesis. We then introduced point mutations into rpoB and rpsL to pleiotropically increase the level of secondary metabolite production. Introduction of the native actinorhodin gene cluster and of gene clusters for the heterologous production of chloramphenicol and congocidine revealed dramatic increases in antibiotic production compared with the parental strain. In addition to lacking antibacterial activity, the engineered strains possess relatively simple extracellular metabolite profiles. When combined with liquid chromatography and mass spectrometry, we believe that these genetically engineered strains will markedly facilitate the discovery of new compounds by heterologous expression of cloned gene clusters, particularly the numerous cryptic secondary metabolic gene clusters that are prevalent within actinomycete genome sequences. PMID:21342466

  1. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni

    PubMed Central

    Hoegg, Simone; Boore, Jeffrey L; Kuehl, Jennifer V; Meyer, Axel

    2007-01-01

    Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost

  2. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  3. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

  4. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae.

    PubMed

    Chen, Huiqin; Lee, Miin-Huey; Daub, Margret E; Chung, Kuang-Ren

    2007-05-01

    We describe a core gene cluster, comprised of eight genes (designated CTB1-8), and associated with cercosporin toxin production in Cercospora nicotianae. Sequence analysis identified 10 putative open reading frames (ORFs) flanking the previously characterized CTB1 and CTB3 genes that encode, respectively, the polyketide synthase and a dual methyltransferase/monooxygenase required for cercosporin production. Expression of eight of the genes was co-ordinately induced under cercosporin-producing conditions and was regulated by the Zn(II)Cys(6) transcriptional activator, CTB8. Expression of the genes, affected by nitrogen and carbon sources and pH, was also controlled by another transcription activator, CRG1, previously shown to regulate cercosporin production and resistance. Disruption of the CTB2 gene encoding a methyltransferase or the CTB8 gene yielded mutants that were completely defective in cercosporin production and inhibitory expression of the other CTB cluster genes. Similar 'feedback' transcriptional inhibition was observed when the CTB1, or CTB3 but not CTB4 gene was inactivated. Expression of four ORFs located on the two distal ends of the cluster did not correlate with cercosporin biosynthesis and did not show regulation by CTB8, suggesting that the biosynthetic cluster was limited to CTB1-8. A biosynthetic pathway and a regulatory network leading to cercosporin formation are proposed.

  5. ADH1B and CDH1 polymorphisms predict prognosis in male patients with non-metastatic laryngeal cancer

    PubMed Central

    Jin, Tianbo; He, Na; Ren, Le; Zhang, Zhe; Zhang, Qingna; Xu, Ran; Tao, Hong; Zeng, Guang; Gao, Jing

    2016-01-01

    In this study, we assessed the association between single nucleotide polymorphisms (SNPs) in candidate genes and the prognosis of laryngeal cancer (LC) patients. Thirty-seven SNPs in 26 genes were genotyped in 170 male Han Chinese patients with LC. The effects of the candidate genes on the prognosis of LC patients were evaluated using Kaplan-Meier curves and Cox proportional hazards regression models. The GA genotype of rs1229984 (hazard ratio [HR], 0.537; 95% confidence interval [CI], 0.340–0.848; p = 0.008) in alcohol dehydrogenase 1B (ADH1B), and the AA genotype of rs9929218 (HR, 6.074; 95% CI, 1.426–25.870; p = 0.015) in CDH1 were associated with overall survival. Our data suggest that polymorphisms in ADH1B and CDH1 may be prognostic indicators in LC. PMID:27689323

  6. β-globin gene cluster haplotypes in ethnic minority populations of southwest China

    PubMed Central

    Sun, Hao; Liu, Hongxian; Huang, Kai; Lin, Keqin; Huang, Xiaoqin; Chu, Jiayou; Ma, Shaohui; Yang, Zhaoqing

    2017-01-01

    The genetic diversity and relationships among ethnic minority populations of southwest China were investigated using seven polymorphic restriction enzyme sites in the β-globin gene cluster. The haplotypes of 1392 chromosomes from ten ethnic populations living in southwest China were determined. Linkage equilibrium and recombination hotspot were found between the 5′ sites and 3′ sites of the β-globin gene cluster. 5′ haplotypes 2 (+−−−), 6 (−++−+), 9 (−++++) and 3′ haplotype FW3 (−+) were the predominant haplotypes. Notably, haplotype 9 frequency was significantly high in the southwest populations, indicating their difference with other Chinese. The interpopulation differentiation of southwest Chinese minority populations is less than those in populations of northern China and other continents. Phylogenetic analysis shows that populations sharing same ethnic origin or language clustered to each other, indicating current β-globin cluster diversity in the Chinese populations reflects their ethnic origin and linguistic affiliations to a great extent. This study characterizes β-globin gene cluster haplotypes in southwest Chinese minorities for the first time, and reveals the genetic variability and affinity of these populations using β-globin cluster haplotype frequencies. The results suggest that ethnic origin plays an important role in shaping variations of the β-globin gene cluster in the southwestern ethnic populations of China. PMID:28205625

  7. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    PubMed Central

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  8. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  9. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    PubMed Central

    Cimermancic, Peter; Medema, Marnix H.; Claesen, Jan; Kurita, Kenji; Wieland Brown, Laura C.; Mavrommatis, Konstantinos; Pati, Amrita; Godfrey, Paul A.; Koehrsen, Michael; Clardy, Jon; Birren, Bruce W.; Takano, Eriko; Sali, Andrej; Linington, Roger G.; Fischbach, Michael A.

    2014-01-01

    Summary Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. PMID:25036635

  10. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005

    PubMed Central

    Widdick, D. A.; Dodd, H. M.; Barraille, P.; White, J.; Stein, T. H.; Chater, K. F.; Gasson, M. J.; Bibb, M. J.

    2003-01-01

    Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. The cin cluster contains many genes not found in lantibiotic clusters from low G+C Gram-positive bacteria, including a Streptomyces antibiotic regulatory protein regulatory gene, and lacks others found in such clusters, such as a LanT-type transporter and a LanP-type protease. Transfer of the cin cluster to Streptomyces lividans resulted in heterologous production of cinnamycin. Furthermore, modification of the cinnamycin structural gene (cinA) led to production of two naturally occurring lantibiotics, duramycin and duramycin B, closely resembling cinnamycin, whereas attempts to make a more widely diverged derivative, duramycin C, failed to generate biologically active material. These results provide a basis for future attempts to construct extensive libraries of cinnamycin variants. PMID:12642677

  11. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts.

    PubMed

    Guo, Baocheng; Gan, Xiaoni; He, Shunping

    2010-03-15

    Compared with other diploid teleosts (2n=48), anguilloid fish have a specialized karyotype (2n=38) and remarkable morphological variation, and represent one basal group species of teleosts. To investigate the Hox gene/cluster inventory in basal teleosts, a PCR-based survey of Hox genes in the Japanese eel (Anguilla japonica) was conducted with both gene-specific and homeobox-targeted degenerate primers. Our data provide evidence that at least 34 distinct Hox genes exist in the Japanese eel genome and that they represent eight Hox clusters. Duplication of Hox genes in the Japanese eel appears to be the result of the fish-specific genome duplication (FSGD) event. The Japanese eel shared the FSGD event with other teleosts such as zebrafish and pufferfish. A member of Hox paralog group one (HoxA1b) was preserved in the Japanese eel but was lost in other teleosts. Available Hox data revealed that the Hox cluster evolved distinctly in different teleost lineages. All duplicated Hox clusters were retained after the FSGD event in basal teleosts like in the Japanese eel, whereas crown teleosts lost one cluster (HoxCb or HoxDb). Based on current teleostean phylogeny, the HoxDb cluster was lost independently in the teleost lineages Otocephala and Euteleostei.

  12. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times

  13. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

    PubMed

    Hasunuma, Tomohisa; Ismail, Ku Syahidah Ku; Nambu, Yumiko; Kondo, Akihiko

    2014-02-01

    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production.

  14. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis

    PubMed Central

    2013-01-01

    Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303

  15. Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations.

    PubMed

    Wu, Xiaobing; Li, Qianyi; Dieudonne, Mutangana; Cong, Yibo; Zhou, Juan; Long, Minnan

    2010-12-01

    Sequential dark-photo fermentations (SDPF) was used for hydrogen production from bagasse, an acetaldehyde dehydrogenase (adhE) gene inactivated Klebsiella oxytoca HP1 (DeltaadhE HP1) mutant was used to reduce the alcohol content in dark fermentation (DF) broths and to further enhance the hydrogen yield during the photo fermentation (PF) stage. Compared with that of the wild strain, the ethanol concentration in DF broths of DeltaadhE HP1 decreased 69.4%, which resulted in a hydrogen yield in the PF stage and the total hydrogen yield over the two steps increased by 54.7% and 23.5%, respectively. The culture conditions for hydrogen production from acid pretreated bagasse by SDPF were optimized as culture temperature 37.5 degrees C, initial pH 7.0, and cellulase loading 20 FPA/g in the DF stage, with initial pH 6.5, temperature 30 degrees C and photo intensity 5,000 lux in the PF stage. Under optimum conditions, by using DeltaadhE HP1 and wild type strain, the H(2) yields were 107.8+/-5.3 mL H(2)/g-bagasse, 96.2+/-4.4 mL H(2)/g-bagasse in DF and 54.3+/-2.2 mL H(2)/g-bagasse, 35.1+/-2.0 mL H(2)/g-bagasse in PF, respectively. The special hydrogen production rate (SHPR) were 5.51+/-0.34 mL H(2)/g-bagasseh, 4.95+/-0.22 mL H(2)/g-bagasseh in DF and 0.93+/-0.12 mL H(2)/g-bagasseh, 0.59+/-0.07 mL H(2)/g-bagasseh in PF, respectively. The total hydrogen yield from bagasse over two steps was 162.1+/-7.5 mL H(2)/g-bagasse by using DeltaadhE HP1, which was 50.4% higher than that from dark fermentation only. These results indicate that reducing ethanol content during dark fermentation by using an adhE inactivated strain can significantly enhance hydrogen production from bagasse in the SDPF system. This work also proved that SDPF was an effective way to improve hydrogen production from bagasse.

  16. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859.

    PubMed

    Cho, Hee-Jung; Park, Young-Jin; Noh, Tae-Hwan; Kim, Yeong-Tae; Kim, Jeong-Gu; Song, Eun-Sung; Lee, Dong-Hee; Lee, Byoung-Moo

    2008-06-01

    Xanthomonas oryzae pathovar oryzae is the causal agent of rice bacterial blight. The plant pathogenic bacterium X. oryzae pv. oryzae expresses a type III secretion system that is necessary for both the pathogenicity in susceptible hosts and the induction of the hypersensitive response in resistant plants. This specialized protein transport system is encoded by a 32.18kb hrp (hypersensitive response and pathogenicity) gene cluster. The hrp gene cluster is composed of nine hrp, nine hrc (hrp conserved) and eight hpa (hrp-associated) genes and is controlled by HrpG and HrpX, which are known as regulators of the hrp gene cluster. Before mutational analysis of these hrp genes, the transcriptional linkages of the core region of the hrp gene cluster from hpaB to hrcC of the X. oryzae pv. oryzae KACC10859 was determined and the non-polarity of EZTn5 insertional mutagenesis was demonstrated by reverse transcription polymerase chain reaction. Pathogenicity assays of these non-polar hrp mutants were carried out on the susceptible rice cultivar, Milyang-23. According to the results of these assays, all hrp-hrc, except hrpF, and hpaB mutants lost their pathogenicity, which indicates that most hrp-hrc genes encode essential pathogenicity factors. On the other hand, most hpa mutants showed decreased virulence in a different pattern, i.e., hpa genes are not essential but are important for pathogenicity.

  17. A block mixture model to map eQTLs for gene clustering and networking.

    PubMed

    Wang, Ningtao; Gosik, Kirk; Li, Runze; Lindsay, Bruce; Wu, Rongling

    2016-02-19

    To study how genes function in a cellular and physiological process, a general procedure is to classify gene expression profiles into categories based on their similarity and reconstruct a regulatory network for functional elements. However, this procedure has not been implemented with the genetic mechanisms that underlie the organization of gene clusters and networks, despite much effort made to map expression quantitative trait loci (eQTLs) that affect the expression of individual genes. Here we address this issue by developing a computational approach that integrates gene clustering and network reconstruction with genetic mapping into a unifying framework. The approach can not only identify specific eQTLs that control how genes are clustered and organized toward biological functions, but also enable the investigation of the biological mechanisms that individual eQTLs perturb in a signaling pathway. We applied the new approach to characterize the effects of eQTLs on the structure and organization of gene clusters in Caenorhabditis elegans. This study provides the first characterization, to our knowledge, of the effects of genetic variants on the regulatory network of gene expression. The approach developed can also facilitate the genetic dissection of other dynamic processes, including development, physiology and disease progression in any organisms.

  18. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  19. Clustering change patterns using Fourier transformation with time-course gene expression data.

    PubMed

    Kim, Jaehee

    2011-01-01

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.

  20. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates.

    PubMed

    Chang, Perng-Kuang; Horn, Bruce W; Dorner, Joe W

    2005-11-01

    Aspergillus flavus populations are genetically diverse. Isolates that produce either, neither, or both aflatoxins and cyclopiazonic acid (CPA) are present in the field. We investigated defects in the aflatoxin gene cluster in 38 nonaflatoxigenic A. flavus isolates collected from southern United States. PCR assays using aflatoxin-gene-specific primers grouped these isolates into eight (A-H) deletion patterns. Patterns C, E, G, and H, which contain 40 kb deletions, were examined for their sequence breakpoints. Pattern C has one breakpoint in the cypA 3' untranslated region (UTR) and another in the verA coding region. Pattern E has a breakpoint in the amdA coding region and another in the ver1 5'UTR. Pattern G contains a deletion identical to the one found in pattern C and has another deletion that extends from the cypA coding region to one end of the chromosome as suggested by the presence of telomeric sequence repeats, CCCTAATGTTGA. Pattern H has a deletion of the entire aflatoxin gene cluster from the hexA coding region in the sugar utilization gene cluster to the telomeric region. Thus, deletions in the aflatoxin gene cluster among A. flavus isolates are not rare, and the patterns appear to be diverse. Genetic drift may be a driving force that is responsible for the loss of the entire aflatoxin gene cluster in nonaflatoxigenic A. flavus isolates when aflatoxins have lost their adaptive value in nature.

  1. Fine mapping of disease genes via haplotype clustering.

    PubMed

    Waldron, E R B; Whittaker, J C; Balding, D J

    2006-02-01

    We propose an algorithm for analysing SNP-based population association studies, which is a development of that introduced by Molitor et al. [2003: Am J Hum Genet 73:1368-1384]. It uses clustering of haplotypes to overcome the major limitations of many current haplotype-based approaches. We define a between-haplotype score that is simple, yet appears to capture much of the information about evolutionary relatedness of the haplotypes in the vicinity of a (unobserved) putative causal locus. Haplotype clusters can then be defined via a putative ancestral haplotype and a cut-off distance. The number of an individual's two haplotypes that lie within the cluster predicts the individual's genotype at the causal locus. This predicted genotype can then be investigated for association with the phenotype of interest. We implement our approach within a Markov-chain Monte Carlo algorithm that, in effect, searches over locations and ancestral haplotypes to identify large, case-rich clusters. The algorithm successfully fine-maps a causal mutation in a test analysis using real data, and achieves almost 98% accuracy in predicting the genotype at the causal locus. A simulation study indicates that the new algorithm is substantially superior to alternative approaches, and it also allows us to identify situations in which multi-point approaches can substantially improve over single-SNP analyses. Our algorithm runs quickly and there is scope for extension to a wide range of disease models and genomic scales.

  2. Crystal structure of the vertebrate NADP(H)-dependent alcohol dehydrogenase (ADH8).

    PubMed

    Rosell, Albert; Valencia, Eva; Parés, Xavier; Fita, Ignacio; Farrés, Jaume; Ochoa, Wendy F

    2003-06-27

    The amphibian enzyme ADH8, previously named class IV-like, is the only known vertebrate alcohol dehydrogenase (ADH) with specificity towards NADP(H). The three-dimensional structures of ADH8 and of the binary complex ADH8-NADP(+) have been now determined and refined to resolutions of 2.2A and 1.8A, respectively. The coenzyme and substrate specificity of ADH8, that has 50-65% sequence identity with vertebrate NAD(H)-dependent ADHs, suggest a role in aldehyde reduction probably as a retinal reductase. The large volume of the substrate-binding pocket can explain both the high catalytic efficiency of ADH8 with retinoids and the high K(m) value for ethanol. Preference of NADP(H) appears to be achieved by the presence in ADH8 of the triad Gly223-Thr224-His225 and the recruitment of conserved Lys228, which define a binding pocket for the terminal phosphate group of the cofactor. NADP(H) binds to ADH8 in an extended conformation that superimposes well with the NAD(H) molecules found in NAD(H)-dependent ADH complexes. No additional reshaping of the dinucleotide-binding site is observed which explains why NAD(H) can also be used as a cofactor by ADH8. The structural features support the classification of ADH8 as an independent ADH class.

  3. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  4. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  5. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    PubMed

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.

  6. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  7. Paradigm of Tunable Clustering Using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery

    PubMed Central

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2013-01-01

    Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies. PMID:23409186

  8. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis.

    PubMed

    Hidese, Ryota; Mihara, Hisaaki; Kurihara, Tatsuo; Esaki, Nobuyoshi

    2014-03-01

    Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.

  9. Trajectory Clustering: a Non-Parametric Method for Grouping Gene Expression Time Courses, with Applications to Mammary Development

    PubMed Central

    Phang, T.L.; Neville, M.C.; Rudolph, M.; Hunter, L.

    2008-01-01

    Trajectory clustering is a novel and statistically well-founded method for clustering time series data from gene expression arrays. Trajectory clustering uses non-parametric statistics and is hence not sensitive to the particular distributions underlying gene expression data. Each cluster is clearly defined in terms of direction of change of expression for successive time points (its ‘trajectory’), and therefore has easily appreciated biological meaning. Applying the method to a dataset from mouse mammary gland development, we demonstrate that it produces different clusters than Hierarchical, K-means, and Jackknife clustering methods, even when those methods are applied to differences between successive time points. Compared to all of the other methods, trajectory clustering was better able to match a manual clustering by a domain expert, and was better able to cluster groups of genes with known related functions. PMID:12603041

  10. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

    PubMed Central

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan

    2016-01-01

    ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098

  11. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    PubMed

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.

  12. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster

    PubMed Central

    Thanapipatsiri, Anyarat; Gomez‐Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J.; Al‐Bassam, Mahmoud; Chandra, Govind

    2016-01-01

    Abstract Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one—vemR—that encodes a transcriptional activator of the large ATP‐binding LuxR‐like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co‐expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin‐producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. PMID:27605017

  13. Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

    PubMed Central

    Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2014-01-01

    Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders. PMID:25166029

  14. MS/MS networking guided analysis of molecule and gene cluster families.

    PubMed

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J; Lamsa, Anne; Medema, Marnix H; Zhao, Xiling; Gavilan, Ronnie G; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D; Phelan, Vanessa V; van de Wiel, Corine; Kersten, Roland D; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M; Moore, Bradley S; Bandeira, Nuno; Palsson, Bernhard Ø; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C

    2013-07-09

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779(T). The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family-gene cluster families of hundreds or more diverse organisms in one single MS/MS network.

  15. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria.

    PubMed

    Wang, Hao; Fewer, David P; Sivonen, Kaarina

    2011-01-01

    Cyanobacteria are a rich source of natural products with interesting biological activities. Many of these are peptides and the end products of a non-ribosomal pathway. However, several cyanobacterial peptide classes were recently shown to be produced through the proteolytic cleavage and post-translational modification of short precursor peptides. A new class of bacteriocins produced through the proteolytic cleavage and heterocyclization of precursor proteins was recently identified from marine cyanobacteria. Here we show the widespread occurrence of bacteriocin gene clusters in cyanobacteria through comparative analysis of 58 cyanobacterial genomes. A total of 145 bacteriocin gene clusters were discovered through genome mining. These clusters encoded 290 putative bacteriocin precursors. They ranged in length from 28 to 164 amino acids with very little sequence conservation of the core peptide. The gene clusters could be classified into seven groups according to their gene organization and domain composition. This classification is supported by phylogenetic analysis, which further indicated independent evolutionary trajectories of gene clusters in different groups. Our data suggests that cyanobacteria are a prolific source of low-molecular weight post-translationally modified peptides.

  16. Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules

    PubMed Central

    Matilla, Miguel A.; Stöckmann, Henning; Leeper, Finian J.; Salmond, George P. C.

    2012-01-01

    Haterumalides are halogenated macrolides with strong antitumor properties, making them attractive targets for chemical synthesis. Unfortunately, current synthetic routes to these molecules are inefficient. The potent haterumalide, oocydin A, was previously identified from two plant-associated bacteria through its high bioactivity against plant pathogenic fungi and oomycetes. In this study, we describe oocydin A (ooc) biosynthetic gene clusters identified by genome sequencing, comparative genomics, and chemical analysis in four plant-associated enterobacteria of the Serratia and Dickeya genera. Disruption of the ooc gene cluster abolished oocydin A production and bioactivity against fungi and oomycetes. The ooc gene clusters span between 77 and 80 kb and encode five multimodular polyketide synthase (PKS) proteins, a hydroxymethylglutaryl-CoA synthase cassette and three flavin-dependent tailoring enzymes. The presence of two free-standing acyltransferase proteins classifies the oocydin A gene cluster within the growing family of trans-AT PKSs. The amino acid sequences and organization of the PKS domains are consistent with the chemical predictions and functional peculiarities associated with trans-acyltransferase PKS. Based on extensive in silico analysis of the gene cluster, we propose a biosynthetic model for the production of oocydin A and, by extension, for other members of the haterumalide family of halogenated macrolides exhibiting anti-cancer, anti-fungal, and other interesting biological properties. PMID:23012376

  17. A candidate gene association study of alcohol consumption in young women

    PubMed Central

    Agrawal, Arpana; Lynskey, Michael T.; Todorov, Alexandre A.; Schrage, Andrew J.; Littlefield, Andrew K.; Grant, Julia D.; Zhu, Qin; Nelson, Elliot C.; Madden, Pamela A.F.; Bucholz, Kathleen K.; Sher, Kenneth J.; Heath, Andrew C.

    2011-01-01

    Background Excessive alcohol consumption contributes to significant morbidity and mortality. Heritable influences contribute to 50% of the variation in alcohol consumption, suggesting the important role of genes. We used data on a previously defined alcohol consumption factor score in a sample of 827 young women to investigate association with 1014 single nucleotide polymorphisms in genes related to addiction. Methods Data were drawn from the Missouri Adolescent Female Twin Study (MOAFTS) with replication in the College Drinking Sample (CDS). Genotypic and phenotypic data were available on 827 MOAFTS and 100 CDS women of European- American ancestry. Data on 1014 SNPs across 130 genes related to addiction were utilized. Association was conducted in QTDT, which allows for identity-by-descent information to account accurately for twin status in the analysis. The total association variance components model was used, with specification of variance components for relatedness in MOAFTS. Results The top signals included clusters of SNPs in TPH2 (e.g. rs1386496, p=0.0003) and DDC (e.g. rs3779084, p=0.0008), genes that encode proteins responsible for serotonin synthesis. Additional polymorphisms in ADH1B, ADH1C, ADH7 and ADH1A1 were also associated at p < 0.05. The FDR for the top signal (p=0.0003) was 0.15 suggesting nominal significance only. Replication was limited and noted for 2 SNPs in ADH1C. Conclusions While no results survive the burden of multiple testing, nominal findings in TPH2 and DDC suggest the potential role of the serotonin synthesis pathway in alcohol consumption. PMID:21143251

  18. Operon and non-operon gene clusters in the C. elegans genome.

    PubMed

    Blumenthal, Thomas; Davis, Paul; Garrido-Lecca, Alfonso

    2015-04-28

    Nearly 15% of the ~20,000 C. elegans genes are contained in operons, multigene clusters controlled by a single promoter. The vast majority of these are of a type where the genes in the cluster are ~100 bp apart and the pre-mRNA is processed by 3' end formation accompanied by trans-splicing. A spliced leader, SL2, is specialized for operon processing. Here we summarize current knowledge on several variations on this theme including: (1) hybrid operons, which have additional promoters between genes; (2) operons with exceptionally long (> 1 kb) intercistronic regions; (3) operons with a second 3' end formation site close to the trans-splice site; (4) alternative operons, in which the exons are sometimes spliced as a single gene and sometimes as two genes; (5) SL1-type operons, which use SL1 instead of SL2 to trans-splice and in which there is no intercistronic space; (6) operons that make dicistronic mRNAs; and (7) non-operon gene clusters, in which either two genes use a single exon as the 3' end of one and the 5' end of the next, or the 3' UTR of one gene serves as the outron of the next. Each of these variations is relatively infrequent, but together they show a remarkable variety of tight-linkage gene arrangements in the C. elegans genome.

  19. Coexpression of Lactobacillus brevis ADH with GDH or G6PDH in Arxula adeninivorans for the synthesis of 1-(R)-phenylethanol.

    PubMed

    Rauter, Marion; Prokoph, Alexandra; Kasprzak, Jakub; Becker, Karin; Baronian, Keith; Bode, Rüdiger; Kunze, Gotthard; Vorbrodt, H- Matthias

    2015-06-01

    The yeast Arxula adeninivorans was used for the overexpression of an ADH gene of Lactobacillus brevis coding for (R)-specific alcohol dehydrogenase (LbADH) to synthesise enantiomerically pure 1-(R)-phenylethanol. Glucose dehydrogenase gene from Bacillus megaterium (BmGDH) or glucose 6-phosphate dehydrogenase of Bacillus pumilus (BpG6PDH) were coexpressed in Arxula to regenerate the cofactor NADPH by oxidising glucose or glucose 6-phosphate. The yeast strain expressing LbADH and BpG6PDH produced 5200 U l(-1) ADH and 370 U l(-1) G6PDH activity, whereas the strain expressing LbADH and BmGDH produced 2700 U l(-1) ADH and 170 U l(-1) GDH activity. However, the crude extract of both strains reduced 40 mM acetophenone to pure 1-(R)-phenylethanol with an enantiomeric excess (ee) of >99 % in 60 min without detectable by-products. An increase in yield was achieved using immobilised crude extracts (IEs), Triton X-100 permeabilised cells (PCs) and permeabilised immobilised cells (PICs) with PICs being most stable with GDH regeneration over 52 cycles. Even though the activity and synthesis rate of 1-(R)-phenylethanol with the BpG6PDH and LbADH coexpressing strain was higher, the BmGDH-LbADH strain was more stable over successive reaction cycles. This, combined with its higher total turnover number (TTN) of 391 mol product per mole NADP(+), makes it the preferred strain for continuous reaction systems. The initial non-optimised semi-continuous reaction produced 9.74 g l(-1) day(-1) or 406 g kg(-1) dry cell weight (dcw) day(-1) isolated 1-(R)-phenylethanol with an ee of 100 % and a TTN of 206 mol product per mole NADP(+). In conclusion, A. adeninivorans is a promising host for LbADH and BpG6PDH or BmGDH production and offers a simple method for the production of enantiomerically pure alcohols.

  20. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.

    PubMed

    Balakrishnan, Bijinu; Karki, Suman; Chiu, Shih-Hau; Kim, Hyun-Ju; Suh, Jae-Won; Nam, Bora; Yoon, Yeo-Min; Chen, Chien-Chi; Kwon, Hyung-Jin

    2013-07-01

    Monascus spp. produce several well-known polyketides such as monacolin K, citrinin, and azaphilone pigments. In this study, the azaphilone pigment biosynthetic gene cluster was identified through T-DNA random mutagenesis in Monascus purpureus. The albino mutant W13 bears a T-DNA insertion upstream of a transcriptional regulator gene (mppR1). The transcription of mppR1 and the nearby polyketide synthase gene (MpPKS5) was significantly repressed in the W13 mutant. Targeted inactivation of MpPKS5 also gave rise to an albino mutant, confirming that mppR1 and MpPKS5 belong to an azaphilone pigment biosynthetic gene cluster. This M. purpureus sequence was used to identify the whole biosynthetic gene cluster in the Monascus pilosus genome. MpPKS5 contains SAT/KS/AT/PT/ACP/MT/R domains, and this domain organization is preserved in other azaphilone polyketide synthases. This biosynthetic gene cluster also encodes fatty acid synthase (FAS), which is predicted to assist the synthesis of 3-oxooactanoyl-CoA and 3-oxodecanoyl-CoA. These 3-oxoacyl compounds are proposed to be incorporated into the azaphilone backbone to complete the pigment biosynthesis. A monooxygenase gene (an azaH and tropB homolog) that is located far downstream of the FAS gene is proposed to be involved in pyrone ring formation. A homology search on other fungal genome sequences suggests that this azaphilone pigment gene cluster also exists in the Penicillium marneffei and Talaromyces stipitatus genomes.

  1. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes

    PubMed Central

    Wang, Yang; Chen, Ying; Shen, Qirong; Yin, Xihou

    2011-01-01

    The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912 bp of S. viridochromogenes genomic sequence revealed the putative las cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins. PMID:21640802

  2. Identification of a Cellobiose Utilization Gene Cluster with Cryptic β-Galactosidase Activity in Vibrio fischeri▿

    PubMed Central

    Adin, Dawn M.; Visick, Karen L.; Stabb, Eric V.

    2008-01-01

    Cellobiose utilization is a variable trait that is often used to differentiate members of the family Vibrionaceae. We investigated how Vibrio fischeri ES114 utilizes cellobiose and found a cluster of genes required for growth on this β-1,4-linked glucose disaccharide. This cluster includes genes annotated as a phosphotransferase system II (celA, celB, and celC), a glucokinase (celK), and a glucosidase (celG). Directly downstream of celCBGKA is celI, which encodes a LacI family regulator that represses cel transcription in the absence of cellobiose. When the celCBGKAI gene cluster was transferred to cellobiose-negative strains of Vibrio and Photobacterium, the cluster conferred the ability to utilize cellobiose. Genomic analyses of naturally cellobiose-positive Vibrio species revealed that V. salmonicida has a homolog of the celCBGKAI cluster, but V. vulnificus does not. Moreover, bioinformatic analyses revealed that CelG and CelK share the greatest homology with glucosidases and glucokinases in the phylum Firmicutes. These observations suggest that distinct genes for cellobiose utilization have been acquired by different lineages within the family Vibrionaceae. In addition, the loss of the celI regulator, but not the structural genes, attenuated the ability of V. fischeri to compete for colonization of its natural host, Euprymna scolopes, suggesting that repression of the cel gene cluster is important in this symbiosis. Finally, we show that the V. fischeri cellobioase (CelG) preferentially cleaves β-d-glucose linkages but also cleaves β-d-galactose-linked substrates such as 5-bromo-4-chloro-3-indolyl-β-d-galactoside (X-gal), a finding that has important implications for the use of lacZ as a marker or reporter gene in V. fischeri. PMID:18487409

  3. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots

    PubMed Central

    Christie, Nanette; Tobias, Peri A.; Naidoo, Sanushka; Külheim, Carsten

    2016-01-01

    Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience. PMID:26793216

  4. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    SciTech Connect

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  5. Epigenetic Characterization of the Growth Hormone Gene Identifies SmcHD1 as a Regulator of Autosomal Gene Clusters

    PubMed Central

    Massah, Shabnam; Hollebakken, Robert; Labrecque, Mark P.; Kolybaba, Addie M.; Beischlag, Timothy V.; Prefontaine, Gratien G.

    2014-01-01

    Regulatory elements for the mouse growth hormone (GH) gene are located distally in a putative locus control region (LCR) in addition to key elements in the promoter proximal region. The role of promoter DNA methylation for GH gene regulation is not well understood. Pit-1 is a POU transcription factor required for normal pituitary development and obligatory for GH gene expression. In mammals, Pit-1 mutations eliminate GH production resulting in a dwarf phenotype. In this study, dwarf mice illustrated that Pit-1 function was obligatory for GH promoter hypomethylation. By monitoring promoter methylation levels during developmental GH expression we found that the GH promoter became hypomethylated coincident with gene expression. We identified a promoter differentially methylated region (DMR) that was used to characterize a methylation-dependent DNA binding activity. Upon DNA affinity purification using the DMR and nuclear extracts, we identified structural maintenance of chromosomes hinge domain containing -1 (SmcHD1). To better understand the role of SmcHD1 in genome-wide gene expression, we performed microarray analysis and compared changes in gene expression upon reduced levels of SmcHD1 in human cells. Knock-down of SmcHD1 in human embryonic kidney (HEK293) cells revealed a disproportionate number of up-regulated genes were located on the X-chromosome, but also suggested regulation of genes on non-sex chromosomes. Among those, we identified several genes located in the protocadherin β cluster. In addition, we found that imprinted genes in the H19/Igf2 cluster associated with Beckwith-Wiedemann and Silver-Russell syndromes (BWS & SRS) were dysregulated. For the first time using human cells, we showed that SmcHD1 is an important regulator of imprinted and clustered genes. PMID:24818964

  6. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    PubMed

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  7. Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes.

    PubMed Central

    Morbidoni, H R; de Mendoza, D; Cronan, J E

    1996-01-01

    A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome. PMID:8759840

  8. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  9. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  10. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria

    PubMed Central

    Nakazawa, Hidekazu; Arakaki, Atsushi; Narita-Yamada, Sachiko; Yashiro, Isao; Jinno, Koji; Aoki, Natsuko; Tsuruyama, Ai; Okamura, Yoshiko; Tanikawa, Satoshi; Fujita, Nobuyuki; Takeyama, Haruko; Matsunaga, Tadashi

    2009-01-01

    Magnetotactic bacteria are ubiquitous microorganisms that synthesize intracellular magnetite particles (magnetosomes) by accumulating Fe ions from aquatic environments. Recent molecular studies, including comprehensive proteomic, transcriptomic, and genomic analyses, have considerably improved our hypotheses of the magnetosome-formation mechanism. However, most of these studies have been conducted using pure-cultured bacterial strains of α-proteobacteria. Here, we report the whole-genome sequence of Desulfovibrio magneticus strain RS-1, the only isolate of magnetotactic microorganisms classified under δ-proteobacteria. Comparative genomics of the RS-1 and four α-proteobacterial strains revealed the presence of three separate gene regions (nuo and mamAB-like gene clusters, and gene region of a cryptic plasmid) conserved in all magnetotactic bacteria. The nuo gene cluster, encoding NADH dehydrogenase (complex I), was also common to the genomes of three iron-reducing bacteria exhibiting uncontrolled extracellular and/or intracellular magnetite synthesis. A cryptic plasmid, pDMC1, encodes three homologous genes that exhibit high similarities with those of other magnetotactic bacterial strains. In addition, the mamAB-like gene cluster, encoding the key components for magnetosome formation such as iron transport and magnetosome alignment, was conserved only in the genomes of magnetotactic bacteria as a similar genomic island-like structure. Our findings suggest the presence of core genetic components for magnetosome biosynthesis; these genes may have been acquired into the magnetotactic bacterial genomes by multiple gene-transfer events during proteobacterial evolution. PMID:19675025

  11. Organization, expression and evolution of a disease resistance gene cluster in soybean.

    PubMed Central

    Graham, Michelle A; Marek, Laura Fredrick; Shoemaker, Randy C

    2002-01-01

    PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process. PMID:12524363

  12. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette.

    PubMed

    Wang, Zhao-Yue; Wang, Jin-Jing; Liu, Xi-Feng; He, Xiu-Ping; Zhang, Bo-Run

    2009-06-01

    A self-cloning module for gene knock-out and knock-in in industrial brewing yeast strain was constructed that contains copper resistance and gamma-glutamylcysteine synthetase gene cassette, flanked by alcohol dehydrogenase II gene (ADH2) of Saccharomyces cerevisiae. The module was used to obtain recombined strains RY1 and RY2 by targeting the ADH2 locus of host Y1. RY1 and RY2 were genetically stable. PCR and enzyme activity analysis of RY1 and RY2 cells showed that one copy of ADH2 was deleted by GSH1+CUP1 insertion, and an additional copy of wild type was still present. The fermentation ability of the recombinants was not changed after genetic modification, and a high level of glutathione (GSH) was secreted, resulting from GSH1 overexpression, which codes for gamma-glutamylcysteine synthetase. A pilot-scale brewing test for RY1 and RY2 indicated that acetaldehyde content in fermenting liquor decreased by 21-22%, GSH content increased by 20-22% compared with the host, the antioxidizability of the recombinants was improved, and the sensorial evaluation was also better than that of the host. No heterologous DNA was harbored in the recombinants; therefore, they could be applied in the beer industry in terms of their biosafety.

  13. Delineation of metabolic gene clusters in plant genomes by chromatin signatures

    PubMed Central

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne

    2016-01-01

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889

  14. Gene microarray data analysis using parallel point-symmetry-based clustering.

    PubMed

    Sarkar, Anasua; Maulik, Ujjwal

    2015-01-01

    Identification of co-expressed genes is the central goal in microarray gene expression analysis. Point-symmetry-based clustering is an important unsupervised learning technique for recognising symmetrical convex- or non-convex-shaped clusters. To enable fast clustering of large microarray data, we propose a distributed time-efficient scalable approach for point-symmetry-based K-Means algorithm. A natural basis for analysing gene expression data using symmetry-based algorithm is to group together genes with similar symmetrical expression patterns. This new parallel implementation also satisfies linear speedup in timing without sacrificing the quality of clustering solution on large microarray data sets. The parallel point-symmetry-based K-Means algorithm is compared with another new parallel symmetry-based K-Means and existing parallel K-Means over eight artificial and benchmark microarray data sets, to demonstrate its superiority, in both timing and validity. The statistical analysis is also performed to establish the significance of this message-passing-interface based point-symmetry K-Means implementation. We also analysed the biological relevance of clustering solutions.

  15. Regulated Expression of Three Alcohol Dehydrogenase Genes in Barley Aleurone Layers 1

    PubMed Central

    Hanson, Andrew D.; Jacobsen, John V.; Zwar, John A.

    1984-01-01

    Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity. Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2. In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly. Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2. We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and

  16. In vitro expression of Candida albicans alcohol dehydrogenase genes involved in acetaldehyde metabolism.

    PubMed

    Bakri, M M; Rich, A M; Cannon, R D; Holmes, A R

    2015-02-01

    Alcohol consumption is a risk factor for oral cancer, possibly via its conversion to acetaldehyde, a known carcinogen. The oral commensal yeast Candida albicans may be one of the agents responsible for this conversion intra-orally. The alcohol dehydrogenase (Adh) family of enzymes are involved in acetaldehyde metabolism in yeast but, for C. albicans it is not known which family member is responsible for the conversion of ethanol to acetaldehyde. In this study we determined the expression of mRNAs from three C. albicans Adh genes (CaADH1, CaADH2 and CaCDH3) for cells grown in different culture media at different growth phases by Northern blot analysis and quantitative reverse transcription polymerase chain reaction. CaADH1 was constitutively expressed under all growth conditions but there was differential expression of CaADH2. CaADH3 expression was not detected. To investigate whether CaAdh1p or CaAdh2p can contribute to alcohol catabolism in C. albicans, each gene from the reference strain C. albicans SC5314 was expressed in Saccharomyces cerevisiae. Cell extracts from an CaAdh1p-expressing S. cerevisiae recombinant, but not an CaAdh2p-expressing recombinant, or an empty vector control strain, possessed ethanol-utilizing Adh activity above endogenous S. cerevisiae activity. Furthermore, expression of C. albicans Adh1p in a recombinant S. cerevisiae strain in which the endogenous ScADH2 gene (known to convert ethanol to acetaldehyde in this yeast) had been deleted, conferred an NAD-dependent ethanol-utilizing, and so acetaldehyde-producing, Adh activity. We conclude that CaAdh1p is the enzyme responsible for ethanol use under in vitro growth conditions, and may contribute to the intra-oral production of acetaldehyde.

  17. Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance.

    PubMed

    Vinatzer, B A; Patocchi, A; Gianfranceschi, L; Tartarini, S; Zhang, H B; Gessler, C; Sansavini, S

    2001-04-01

    Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source. Because breeding a high-quality cultivar in perennial fruit trees takes dozens of years, cloning disease resistance genes and using them in the transformation of high-quality apple varieties would be advantageous. We report the identification of a cluster of receptor-like genes with homology to the Cladosporium fulvum (Cf) resistance gene family of tomato on bacterial artificial chromosome clones derived from the Vf scab resistance locus. Three members of the cluster were sequenced completely. Similar to the Cf gene family of tomato, the deduced amino acid sequences coded by these genes contain an extracellular leucine-rich repeat domain and a transmembrane domain. The transcription of three members of the cluster was determined by reverse transcriptionpolymerase chain reaction to be constitutive, and the transcription and translation start of one member was verified by 5' rapid amplification of cDNA ends. We discuss the parallels between Cf resistance of tomato and Vf resistance of apple and the possibility that one of the members of the gene cluster is the Vf gene. Cf homologs from other regions of the apple genome also were identified and are likely to present other scab resistance genes.

  18. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication.

    PubMed

    Kuraku, Shigehiro; Meyer, Axel

    2009-01-01

    Hox genes are known to specify spatial identities along the anterior-posterior axis during embryogenesis. In vertebrates and most other deuterostomes, they are arranged in sets of uninterrupted clusters on chromosomes, and are in most cases expressed in a "colinear" fashion, in which genes closer to the 3-end of the Hox clusters are expressed earlier and more anteriorly and genes close to the 5-end of the clusters later and more posteriorly. In this review, we summarize the current understanding of how Hox gene clusters have been modified from basal lineages of deuterostomes to diverse taxa of vertebrates. Our parsimony reconstruction of Hox cluster architecture at various stages of vertebrate evolution highlights that the variation in Hox cluster structures among jawed vertebrates is mostly due to secondary lineage-specific gene losses and an additional genome duplication that occurred in the actinopterygian stem lineage, the teleost-specific genome duplication (TSGD).

  19. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum.

    PubMed

    Tannous, Joanna; El Khoury, Rhoda; Snini, Selma P; Lippi, Yannick; El Khoury, André; Atoui, Ali; Lteif, Roger; Oswald, Isabelle P; Puel, Olivier

    2014-10-17

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60-70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of the mechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products.

  20. Organization of the human keratin type II gene cluster at 12q13

    SciTech Connect

    Yoon, S.J.; LeBlanc-Straceski, J.; Krauter, K.

    1994-12-01

    Keratin proteins constitute intermediate filaments and are the major differentiation products of mammalian epithelial cells. The epithelial keratins are classified into two groups, type I and type II, and one member of each group is expressed in a given epithelial cell differentiation stage. Mutations in type I and type II keratin genes have now been implicated in three different human genetic disorders, epidermolysis bullosa simplex, epidermolytic hyperkeratosis, and epidermolytic palmoplantar keratoderma. Members of the type I keratins are mapped to human chromosome 17, and the type II keratin genes are mapped to chromosome 12. To understand the organization of the type II keratin genes on chromosome 12, we isolated several yeast artificial chromosomes carrying these keratin genes and examined them in detail. We show that eight already known type II keratin genes are located in a cluster at 12q13, and their relative organization reflects their evolutionary relationship. We also determined that a type I keratin gene, KRT8, is located next to its partner, KRT18, in this cluster. Careful examination of the cluster also revealed that there may be a number of additional keratin genes at this locus that have not been described previously. 41 refs., 3 figs., 1 tab.

  1. Intact cluster and chordate-like expression of ParaHox genes in a sea star

    PubMed Central

    2013-01-01

    Background The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. Results We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. Conclusions The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star

  2. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean1[W

    PubMed Central

    David, Perrine; Chen, Nicolas W.G.; Pedrosa-Harand, Andrea; Thareau, Vincent; Sévignac, Mireille; Cannon, Steven B.; Debouck, Daniel; Langin, Thierry; Geffroy, Valérie

    2009-01-01

    The B4 resistance (R) gene cluster is one of the largest clusters known in common bean (Phaseolus vulgaris [Pv]). It is located in a peculiar genomic environment in the subtelomeric region of the short arm of chromosome 4, adjacent to two heterochromatic blocks (knobs). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-Coil-Nucleotide-Binding-Site-Leucine-Rich-Repeat (CNL). Conserved microsynteny was observed between the Pv B4 locus and corresponding regions of Medicago truncatula and Lotus japonicus in chromosomes Mt6 and Lj2, respectively. The notable exception was the CNL sequences, which were completely absent in these regions. The origin of the Pv B4-CNL sequences was investigated through phylogenetic analysis, which reveals that, in the Pv genome, paralogous CNL genes are shared among nonhomologous chromosomes (4 and 11). Together, our results suggest that Pv B4-CNL was derived from CNL sequences from another cluster, the Co-2 cluster, through an ectopic recombination event. Integration of the soybean (Glycine max) genome data enables us to date more precisely this event and also to infer that a single CNL moved from the Co-2 to the B4 cluster. Moreover, we identified a new 528-bp satellite repeat, referred to as khipu, specific to the Phaseolus genus, present both between B4-CNL sequences and in the two knobs identified at the B4 R gene cluster. The khipu repeat is present on most chromosomal termini, indicating the existence of frequent ectopic recombination events in Pv subtelomeric regions. Our results highlight the importance of ectopic recombination in R gene evolution. PMID:19776165

  3. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  4. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids.

    PubMed

    Krubasik, P; Sandmann, G

    2000-04-01

    The carotenogenic (crt) gene cluster from Brevibacterium linens, a member of the commercially important group of coryneform bacteria, was cloned and identified. An expression library of B. linens genes was constructed and a fragment of the crt cluster was obtained by functional complementation of a colourless B. flavum mutant, screening transformed cells for production of a yellow pigment. Subsequent screening of a cosmid library resulted in the cloning of the whole crt cluster from B. linens. All genes necessary for the synthesis of the aromatic carotenoid isorenieratene were identified on the basis of sequence homologies. In addition a novel type of lycopene cyclase was identified by complementation of a lycopene-accumulating B. flavum mutant. Two genes, named crt Yc and crt Yd, which code for polypeptides of 125 and 107 amino acids, respectively, are necessary to convert lycopene to beta-carotene. The amino acid sequences of these polypeptides show no similarity to any of the known lycopene cyclases. This is the first example of a carotenoid biosynthetic conversion in which two different gene products are involved, probably forming a heterodimer.

  5. Isolation of Hox Cluster Genes from Insects Reveals an Accelerated Sequence Evolution Rate

    PubMed Central

    Hadrys, Heike; Simon, Sabrina; Kaune, Barbara; Schmitt, Oliver; Schöner, Anja; Jakob, Wolfgang; Schierwater, Bernd

    2012-01-01

    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution. PMID:22685537

  6. Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae.

    PubMed

    Zheng, Jian-Ting; Wang, Sheng-Lan; Yang, Ke-Qian

    2007-09-01

    Streptomyces venezuelae ISP5230 produces a group of jadomycin congeners with cytotoxic activities. To improve jadomycin fermentation process, a genetic engineering strategy was designed to replace a 3.4-kb regulatory region of jad gene cluster that contains four regulatory genes (3' end 272 bp of jadW2, jadW3, jadR2, and jadR1) and the native promoter upstream of jadJ (P(J)) with the ermEp* promoter sequence so that ermEp* drives the expression of the jadomycin biosynthetic genes from jadJ in the engineered strain. As expected, the mutant strain produced jadomycin B without ethanol treatment, and the yield increased to about twofold that of the stressed wild-type. These results indicated that manipulation of the regulation of a biosynthetic gene cluster is an effective strategy to increase product yield.

  7. Identification of a gene cluster associated with triclosan catabolism.

    PubMed

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  8. Genetic and Transcriptional Analyses of the Flagellar Gene Cluster in Actinoplanes missouriensis

    PubMed Central

    Jang, Moon-Sun; Mouri, Yoshihiro; Uchida, Kaoru; Aizawa, Shin-Ichi; Hayakawa, Masayuki; Fujita, Nobuyuki; Tezuka, Takeaki

    2016-01-01

    ABSTRACT Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA. Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5′ ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15–17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs

  9. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens.

    PubMed

    Karray, Fatma; Darbon, Emmanuelle; Oestreicher, Nathalie; Dominguez, Hélène; Tuphile, Karine; Gagnat, Josette; Blondelet-Rouault, Marie-Hélène; Gerbaud, Claude; Pernodet, Jean-Luc

    2007-12-01

    Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.

  10. A novel harmony search-K means hybrid algorithm for clustering gene expression data.

    PubMed

    Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.

  11. A gene cluster for the synthesis of serotype g-specific polysaccharide antigen in Aggregatibacter actinomycetemcomitans.

    PubMed

    Tsuzukibashi, Osamu; Saito, Masanori; Kobayashi, Taira; Umezawa, Koji; Nagahama, Fumio; Hiroi, Takachika; Hirasawa, Masatomo; Takada, Kazuko

    2014-04-01

    Aggregatibacter actinomycetemcomitans is an important pathogen related to aggressively progressive periodontal breakdown in adolescents and adults. The species can be divided into six serotypes (a-f) according to their surface carbohydrate antigens. Recently, a new serotype g of A. actinomycetemcomitans was proposed. The aim of the present study was to sequence the gene cluster associated with the biosynthesis of the serotype g-specific polysaccharide antigen and develop serotype-specific primers for PCR assay to identify serotype g strains of A. actinomycetemcomitans. The serotype-specific polysaccharide (SSPS) gene cluster of the NUM-Aa 4039 strain contained 21 genes in 21,842-bp nucleotides. The similarity of the SSPS gene cluster sequence was 96.7 % compared with that of the serotype e strain. Seventeen serotype g genes showed more than 90 % homology both in nucleotide and amino acids to the serotype e strain. Three additional genes with 1,579 bp in NUM-Aa 4039 were inserted into the corresponding ORF13 of the serotype e strain. The serotype g-specific primers were designed from the insertion region of NUM-Aa 4039. Serotypes of the a-f strains were not amplified by serotype-specific g primers; only NUM-Aa 4039 showed an amplicon band. The NUM-Aa 4039 strain was three genes in the SSPS gene cluster different from those of serotype e strain. The specific primers derived from these different regions are useful for identification and distribution of serotype g strain among A. actinomycetemcomitans from clinical samples.

  12. Detection of a Gene Cluster That Is Dispensable for Human Herpesvirus 6 Replication and Latency

    PubMed Central

    Kondo, Kazuhiro; Nozaki, Hideo; Shimada, Kazuya; Yamanishi, Koichi

    2003-01-01

    The U3-U7 gene cluster of human herpesvirus 6 (HHV-6) was replaced with an enhanced green fluorescent protein-puromycin gene cassette containing the cytomegalovirus major immediate-early promoter. Neither viral replication in T cells nor latency and reactivation in macrophages was impaired. During HHV-6 latency, the cytomegalovirus promoter used the transcription start sites employed in cytomegalovirus latency. PMID:12970461

  13. Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster.

    PubMed

    Di Gregorio, A; Spagnuolo, A; Ristoratore, F; Pischetola, M; Aniello, F; Branno, M; Cariello, L; Di Lauro, R

    1995-04-24

    In order to isolate genes important in controlling embryonic development in Tunicates, a genomic library from the ascidian Ciona intestinalis was screened with a degenerate oligodeoxyribonucleotide encoding the third helix of Antennapedia-type homeoboxes. Fourteen C. intestinalis homeobox genes, corresponding to several classes of homeodomains, have been identified. Five of the isolated homeoboxes show their highest homology to members of the Vertebrate HOX clusters. mRNAs for two of the isolated homeoboxes are present in unfertilized C. intestinalis eggs.

  14. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  15. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  16. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum.

    PubMed

    Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi

    2010-05-28

    Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed that two nonreducing PKSs (NRPKSs), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, because deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways.

  17. Isolation of Sorangium cellulosum carrying epothilone gene clusters.

    PubMed

    Hyun, Hyesook; Chung, Jinwoo; Kim, Jihoon; Lee, Jong Suk; Kwon, Byoung-Mog; Son, Kwang-Hee; Cho, Kyungyun

    2008-08-01

    Epothilone and its analogs are a potent new class of anticancer compounds produced by myxobacteria. Thus, in an effort to identify new myxobacterial strains producing epothilone and its analogs, cellulose-degrading myxobacteria were isolated from Korean soils, and 13 strains carrying epothilone biosynthetic gene homologs were screened using a polymerase chain reaction. A migration assay revealed that Sorangium cellulosum KYC3013, 3016, 3017, and 3018 all produced microtubule-stabilizing compounds, and an LCMS/ MS analysis showed that S. cellulosum KYC3013 synthesized epothilone A.

  18. GenClust: A genetic algorithm for clustering gene expression data

    PubMed Central

    Di Gesú, Vito; Giancarlo, Raffaele; Lo Bosco, Giosué; Raimondi, Alessandra; Scaturro, Davide

    2005-01-01

    Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, compact and easy to update; (b) it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology. PMID:16336639

  19. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria.

    PubMed

    Zhang, Qi; Doroghazi, James R; Zhao, Xiling; Walker, Mark C; van der Donk, Wilfred A

    2015-07-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.

  20. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  1. Characterization of the Tunicamycin Gene Cluster Unveiling Unique Steps Involved in its Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an aß-1,1-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamy...

  2. Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...

  3. Identification and Characterization of a Gene Cluster Mediating Enteroaggregative Escherichia Coli Aggregative Adherence Fimbria I Biogenesis

    DTIC Science & Technology

    1994-08-01

    adherent E. coli ( DAEC ). respectively. The LA ties to other known fimbrial biogenesis systems of pathogenic pattern is typified by the formation of...agg gene cluster is configured similarly to 60 to 80% of DAEC strains share relatedness with F1845 the determinants of members of the Dr adhesin

  4. Alcohol Dehydrogenase in the Diploid Plant STEPHANOMERIA EXIGUA (Compositae): Gene Duplication, Mode of Inheritance and Linkage

    PubMed Central

    Roose, M. L.; Gottlieb, L. D.

    1980-01-01

    Study of the biochemical genetics of alcohol dehydrogenase (ADH) in the annual plant Stephanomeria exigua (Compositae) revealed that the isozymes are specified by a small family of tightly linked structural genes. One set of ADH isozymes (ADH-1) was induced in roots by flooding, and was also expressed in thickened unflooded tap roots, stems, ovaries and seeds. As in other plants, the enzymes are dimeric and form homo- and heterodimers. An electrophoretic survey of ADH-1 phenotypes in two natural populations revealed seven different ADH-1 homodimers in various phenotypes having one to eight enzyme bands. Genetic analysis of segregations from crosses involving 59 plants showed that the ADH-1 isozymes are inherited as a single Mendelian unit, Adh1. Adh1 is polymorphic for forms that specify one, two, or three different ADH-1 subunits (which combine to form homo- and heterodimers), and are expressed co-dominantly in all genotypic combinations. Staining intensity of enzymes extracted from various homozygous and heterozygous plants indicated that the different subunit types specified by Adh1 are produced in approximately equal amounts. These observations suggest that Adh1 is a compound locus consisting of one to several tightly linked (0 recombinants among 579 testcross progeny), coordinately expressed structural genes. The genes in the two triplications also occur in various duplicate complexes and thus could have originated via unequal crossing over. The ADH-2 isozyme found in pollen and seeds is apparently specified by a different gene, Adh2. Adh1 and Adh2 are tightly linked (0 recombinants among 81 testcross progeny). PMID:17249032

  5. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    PubMed

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  6. Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers

    PubMed Central

    Pang, Tin Yau; Lercher, Martin J.

    2017-01-01

    Adaptation of bacteria occurs predominantly via horizontal gene transfer (HGT). While it is widely recognized that horizontal acquisitions frequently encompass multiple genes, it is unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 1790 gene family pairs that were consistently co-gained on the same branches across a phylogeny of 53 E. coli strains. We estimated a lower limit of their genomic distances at the time they were transferred to their host genomes; this distribution shows a sharp upper bound at 30 kb. The same gene-pairs can have larger distances (up to 70 kb) in other genomes. These more distant pairs likely represent recent acquisitions via transduction that involve the co-transfer of excised prophage genes, as they are almost always associated with intervening phage-associated genes. The observed distribution of genomic distances of co-transferred genes is much broader than expected from a model based on the co-transfer of genes within operons; instead, this distribution is highly consistent with the size distribution of supra-operonic clusters (SOCs), groups of co-occurring and co-functioning genes that extend beyond operons. Thus, we propose that SOCs form a basic unit of horizontal gene transfer. PMID:28067311

  7. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  8. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    PubMed

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  9. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  10. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 55 secondary metabolite biosynthesis gene clusters are predicted to be present in the Aspergillus flavus genome. In spite of this the biosynthesis of only a few metabolites, such as the aflatoxin, cyclopiazonic acid and aflatrem, has been correlated with a particular gene cluster. Using RN...

  11. A hybrid NRPS-PKS gene cluster related to the bleomycin family of antitumor antibiotics in Alteromonas macleodii strains.

    PubMed

    Mizuno, Carolina Megumi; Kimes, Nikole E; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes.

  12. Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis.

    PubMed Central

    Wyckoff, E E; Stoebner, J A; Reed, K E; Payne, S M

    1997-01-01

    Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis. PMID:9371453

  13. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined. Images PMID:7961494

  14. Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum.

    PubMed

    Kallscheuer, Nicolai; Vogt, Michael; Kappelmann, Jannick; Krumbach, Karin; Noack, Stephan; Bott, Michael; Marienhagen, Jan

    2016-02-01

    Phenylpropanoids as abundant, lignin-derived compounds represent sustainable feedstocks for biotechnological production processes. We found that the biotechnologically important soil bacterium Corynebacterium glutamicum is able to grow on phenylpropanoids such as p-coumaric acid, ferulic acid, caffeic acid, and 3-(4-hydroxyphenyl)propionic acid as sole carbon and energy sources. Global gene expression analyses identified a gene cluster (cg0340-cg0341 and cg0344-cg0347), which showed increased transcription levels in response to phenylpropanoids. The gene cg0340 (designated phdT) encodes for a putative transporter protein, whereas cg0341 and cg0344-cg0347 (phdA-E) encode enzymes involved in the β-oxidation of phenylpropanoids. The phd gene cluster is transcriptionally controlled by a MarR-type repressor encoded by cg0343 (phdR). Cultivation experiments conducted with C. glutamicum strains carrying single-gene deletions showed that loss of phdA, phdB, phdC, or phdE abolished growth of C. glutamicum with all phenylpropanoid substrates tested. The deletion of phdD (encoding for putative acyl-CoA dehydrogenase) additionally abolished growth with the α,β-saturated phenylpropanoid 3-(4-hydroxyphenyl)propionic acid. However, the observed growth defect of all constructed single-gene deletion strains could be abolished through plasmid-borne expression of the respective genes. These results and the intracellular accumulation of pathway intermediates determined via LC-ESI-MS/MS in single-gene deletion mutants showed that the phd gene cluster encodes for a CoA-dependent, β-oxidative deacetylation pathway, which is essential for the utilization of phenylpropanoids in C. glutamicum.

  15. Evolutionary dynamics of rRNA gene clusters in cichlid fish

    PubMed Central

    2012-01-01

    Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for

  16. Classification and Clustering on Microarray Data for Gene Functional Prediction Using R.

    PubMed

    López-Kleine, Liliana; Kleine, Liliana López; Montaño, Rosa; Torres-Avilés, Francisco

    2016-01-01

    Gene expression data (microarrays and RNA-sequencing data) as well as other kinds of genomic data can be extracted from publicly available genomic data. Here, we explain how to apply multivariate cluster and classification methods on gene expression data. These methods have become very popular and are implemented in freely available software in order to predict the participation of gene products in a specific functional category of interest. Taking into account the availability of data and of these methods, every biological study should apply them in order to obtain knowledge on the organism studied and functional category of interest. A special emphasis is made on the nonlinear kernel classification methods.

  17. Phenotype-Dependent Coexpression Gene Clusters: Application to Normal and Premature Ageing.

    PubMed

    Wang, Kun; Das, Avinash; Xiong, Zheng-Mei; Cao, Kan; Hannenhalli, Sridhar

    2015-01-01

    Hutchinson Gilford progeria syndrome (HGPS) is a rare genetic disease with symptoms of aging at a very early age. Its molecular basis is not entirely clear, although profound gene expression changes have been reported, and there are some known and other presumed overlaps with normal aging process. Identification of genes with agingor HGPS-associated expression changes is thus an important problem. However, standard regression approaches are currently unsuitable for this task due to limited sample sizes, thus motivating development of alternative approaches. Here, we report a novel iterative multiple regression approach that leverages co-expressed gene clusters to identify gene clusters whose expression co-varies with age and/or HGPS. We have applied our approach to novel RNA-seq profiles in fibroblast cell cultures at three different cellular ages, both from HGPS patients and normal samples. After establishing the robustness of our approach, we perform a comparative investigation of biological processes underlying normal aging and HGPS. Our results recapitulate previously known processes underlying aging as well as suggest numerous unique processes underlying aging and HGPS. The approach could also be useful in detecting phenotype-dependent co-expression gene clusters in other contexts with limited sample sizes.

  18. Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster.

    PubMed

    Seip, Britta; Galinski, Erwin A; Kurz, Matthias

    2011-02-01

    We report on the presence of a functional hydroxyectoine biosynthesis gene cluster, ectABCD-ask, in Pseudomonas stutzeri DSM5190(T) and evaluate the suitability of P. stutzeri DSM5190(T) for hydroxyectoine production. Furthermore, we present information on heterologous de novo production of the compatible solute hydroxyectoine in Escherichia coli. In this host, the P. stutzeri gene cluster remained under the control of its salt-induced native promoters. We also noted the absence of trehalose when hydroxyectoine genes were expressed, as well as a remarkable inhibitory effect of externally applied betaine on hydroxyectoine synthesis. The specific heterologous production rate in E. coli under the conditions employed exceeded that of the natural producer Pseudomonas stutzeri and, for the first time, enabled effective hydroxyectoine production at low salinity (2%), with the added advantage of simple product processing due to the absence of other cosolutes.

  19. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  20. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    PubMed Central

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work. PMID:25642215

  1. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    PubMed Central

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showed high similarities with typical type I PKS genes. However, the starting module of PKS gene was confirmed to be specific for isobutyrate by sequence comparison of an acyltransferase domain. In downstream of PKS region, the genes for methoxymalonate biosynthesis were located, among which a gene for FkbH-like protein was assumed to play an important role in the production of methoxymalonyl-CoA from glyceryl-CoA. Further the genes encoding flavensomycinyl-ACP biosynthesis for the post-PKS tailoring were also found in the upstream of PKS region. By gene disruption experiments of a dehydratase domain of module 12 and an FkbH-like protein, this gene cluster was confirmed to be involved in the biosynthesis of bafilomycin. PMID:23663353

  2. DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions.

    PubMed

    El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A

    2007-01-01

    We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.

  3. Interrogating the function of metazoan histones using engineered gene clusters

    PubMed Central

    McKay, Daniel J.; Klusza, Stephen; Penke, Taylor J.R.; Meers, Michael P.; Curry, Kaitlin P.; McDaniel, Stephen L.; Malek, Pamela Y.; Cooper, Stephen W.; Tatomer, Deirdre C.; Lieb, Jason D.; Strahl, Brian D.; Duronio, Robert J.; Matera, A. Gregory

    2015-01-01

    SUMMARY Histones and their post-translational modifications influence the regulation of many DNA-dependent processes. Although an essential role for histone-modifying enzymes in these processes is well established, defining the specific contribution of individual histone residues remains a challenge because many histone-modifying enzymes have non-histone targets. This challenge is exacerbated by the paucity of suitable approaches to genetically engineer histone genes in metazoans. Here, we describe a facile platform in Drosophila for generating and analyzing any desired histone genotype, and we use it to test the in vivo function of three histone residues. We demonstrate that H4K20 is neither essential for DNA replication nor for completion of development, unlike conclusions drawn from analyses of H4K20 methyltransferases. We also show that H3K36 is required for viability and H3K27 is essential for maintenance of cellular identity during development. These findings highlight the power of engineering histones to interrogate genome structure and function in animals. PMID:25669886

  4. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum

    PubMed Central

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina

    2016-01-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum. Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu2+ challenge but not under sodium arsenite, Cd2+, or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  5. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.

    PubMed

    Ladero, Victor; Rattray, Fergal P; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2011-09-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.

  6. A Comparison of Fuzzy Clustering Approaches for Quantification of Microarray Gene Expression

    PubMed Central

    WANG, YU-PING; GUNAMPALLY, MAHESWAR; CHEN, JIE; BITTEL, DOUGLAS; BUTLER, MERLIN G.; CAI, WEI-WEN

    2016-01-01

    Despite the widespread application of microarray imaging for biomedical imaging research, barriers still exist regarding its reliability for clinical use. A critical major problem lies in accurate spot segmentation and the quantification of gene expression level (mRNA) from the microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches. Clustering approaches such as k-means and mixture models were introduced to overcome this difficulty, which use the hard labeling of each pixel. In this paper, we apply fuzzy clustering approaches for spot segmentation, which provides soft labeling of the pixel. We compare several fuzzy clustering approaches for microarray analysis and provide a comprehensive study of these approaches for spot segmentation. We show that possiblistic c-means clustering (PCM) provides the best performance in terms of stability criterion when testing on both a variety of simulated and real microarray images. In addition, we compared three statistical criteria in measuring gene expression levels and show that a new asymptotically unbiased statistic is able to quantify the gene expression level more accurately. PMID:28163819

  7. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles.

    PubMed

    Piel, Jörn

    2002-10-29

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were cloned from total DNA of Paederus fuscipes beetles, which use this compound for chemical defense. Sequence analysis of the gene cluster and adjacent regions revealed the presence of ORFs with typical bacterial architecture and homologies. The ped cluster, which is present only in beetle specimens with high pederin content, is located on a 54-kb region bordered by transposase pseudogenes and encodes a mixed modular polyketide synthase/nonribosomal peptide synthetase. Notably, none of the modules contains regions with homology to acyltransferase domains, but two copies of isolated monodomain acyltransferase genes were found at the upstream end of the cluster. In line with an involvement in pederin biosynthesis, the upstream cluster region perfectly mirrors pederin structure. The unexpected presence of additional polyketide synthase/nonribosomal peptide synthetase modules reveals surprising insights into the evolutionary relationship between pederin-type pathways in beetles and sponges.

  8. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product.

    PubMed

    Singh, Mangal; Chaudhary, Sandeep; Sareen, Dipti

    2017-03-01

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.

  9. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species

    PubMed Central

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy

    2017-01-01

    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  10. A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide.

    PubMed

    Frangipani, Emanuela; Pérez-Martínez, Isabel; Williams, Huw D; Cherbuin, Gaëtan; Haas, Dieter

    2014-02-01

    Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P. aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100 μM KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.

  11. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.

    PubMed

    Winzer, Thilo; Gazda, Valeria; He, Zhesi; Kaminski, Filip; Kern, Marcelo; Larson, Tony R; Li, Yi; Meade, Fergus; Teodor, Roxana; Vaistij, Fabián E; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2012-06-29

    Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.

  12. Localization of the {alpha}7 integrin gene (ITGA7) on human chromosome 12q13: Clustering of integrin and Hox genes implies parallel evolution of these gene families

    SciTech Connect

    Wang, W.; Wu, W.; Kaufman, S.J.

    1995-04-10

    Expression of the {alpha}7 integrin gene (ITGA7) is developmentally regulated during the formation of skeletal muscle. Increased levels of expression and production of isoforms containing different cytoplasmic and extracellular domains accompany myogenesis. To determine whether a single or multiple {alpha}7 gene(s) underlie the structural diversity in this alpha chain that accompanies development, we have examined the rat and human genomes by Southern blotting and in situ hybridization. Our results demonstrate that there is only one {alpha}7 gene in both the rat and the human genomes. In the human, ITGA7 is present on chromosome 12q13. Phylogenetic analysis of the integrin alpha chain sequences suggests that the early integrin genes evolved in two pathways to form the I-integrins and the non-I-integrins. The I-integrin alpha chains contain an additional sequence of approximately 180 amino acids and arose as a result of an early insertion into the non-I-gene. The I-chain subfamily further evolved by duplications within the same chromosome. The non-I-integrin alpha chain genes are localized in clusters on chromosomes 2, 12, and 17, and this closely coincides with the localization of the human homeobox gene clusters. Non-I-integrin alpha chain genes appear to have evolved in parallel and in proximity to the Hox clusters. Thus, the Hox genes that underlie the design of body structure and the Integrin genes that underlie informed cell-cell and cell-matrix interactions appear to have evolved in parallel and coordinate fashions. 52 refs., 5 figs., 2 tabs.

  13. MeSH key terms for validation and annotation of gene expression clusters

    SciTech Connect

    Rechtsteiner, A.; Rocha, L. M.

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  14. Molecular cloning and characterization of the human beta-like globin gene cluster.

    PubMed

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  15. Comparative human-horse sequence analysis of the CYP3A subfamily gene cluster.

    PubMed

    Schmitz, A; Demmel, S; Peters, L M; Leeb, T; Mevissen, M; Haase, B

    2010-12-01

    Cytochrome P450 enzymes (CYP450s) represent a superfamily of haem-thiolate proteins. CYP450s are most abundant in the liver, a major site of drug metabolism, and play key roles in the metabolism of a variety of substrates, including drugs and environmental contaminants. Interaction of two or more different drugs with the same enzyme can account for adverse effects and failure of therapy. Human CYP3A4 metabolizes about 50% of all known drugs, but little is known about the orthologous CYP450s in horses. We report here the genomic organization of the equine CYP3A gene cluster as well as a comparative analysis with the human CYP3A gene cluster. The equine CYP450 genes of the 3A family are located on ECA 13 between 6.97-7.53 Mb, in a region syntenic to HSA 7 99.05-99.35 Mb. Seven potential, closely linked equine CYP3A genes were found, in contrast to only four genes in the human genome. RNA was isolated from an equine liver sample, and the approximately 1.5-kb coding sequence of six CYP3A genes could be amplified by RT-PCR. Sequencing of the RT-PCR products revealed numerous hitherto unknown single nucleotide polymorphisms (SNPs) in these six CYP3A genes, and one 6-bp deletion compared to the reference sequence (EquCab2.0). The presence of the variants was confirmed in a sample of genomic DNA from the same horse. In conclusion, orthologous genes for the CYP3A family exist in horses, but their number differs from those of the human CYP3A gene family. CYP450 genes of the same family show high homology within and between mammalian species, but can be highly polymorphic.

  16. Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters

    PubMed Central

    Murphy, Kiera; O'Sullivan, Orla; Rea, Mary C.; Cotter, Paul D.; Ross, R. Paul; Hill, Colin

    2011-01-01

    Thuricin CD is a two-component bacteriocin produced by Bacillus thuringiensis that kills a wide range of clinically significant Clostridium difficile. This bacteriocin has recently been characterized and consists of two distinct peptides, Trnβ and Trnα, which both possess 3 intrapeptide sulphur to α-carbon bridges and act synergistically. Indeed, thuricin CD and subtilosin A are the only antimicrobials known to possess these unusual structures and are known as the sactibiotics (sulplur to alpha carbon-containing antibiotics). Analysis of the thuricin CD-associated gene cluster revealed the presence of genes encoding two highly unusual SAM proteins (TrnC and TrnD) which are proposed to be responsible for these unusual post-translational modifications. On the basis of the frequently high conservation among enzymes responsible for the post-translational modification of specific antimicrobials, we performed an in silico screen for novel thuricin CD–like gene clusters using the TrnC and TrnD radical SAM proteins as driver sequences to perform an initial homology search against the complete non-redundant database. Fifteen novel thuricin CD–like gene clusters were identified, based on the presence of TrnC and TrnD homologues in the context of neighbouring genes encoding potential bacteriocin structural peptides. Moreover, metagenomic analysis revealed that TrnC or TrnD homologs are present in a variety of metagenomic environments, suggesting a widespread distribution of thuricin-like operons in a variety of environments. In-silico analysis of radical SAM proteins is sufficient to identify novel putative sactibiotic clusters. PMID:21760885

  17. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    PubMed Central

    Saleh, Orwah; Flinspach, Katrin; Westrich, Lucia; Kulik, Andreas; Gust, Bertolt; Fiedler, Hans-Peter

    2012-01-01

    Summary The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces. PMID:22509222

  18. Gene replacement and elimination using λRed- and FLP-based tool to re-direct carbon flux in acetogen biocatalyst during continuous CO₂/H₂ blend fermentation.

    PubMed

    Tyurin, Michael

    2013-07-01

    A time- and cost-efficient two-step gene elimination procedure was used for acetogen Clostridium sp. MT1834 capable of fermenting CO₂/H₂ blend to 245 mM acetate (p < 0.005). The first step rendered the targeted gene replacement without affecting the total genome size. We replaced the acetate pta-ack cluster with synthetic bi-functional acetaldehyde-alcohol dehydrogenase (al-adh). Replacement of pta-ack with al-adh rendered initiation of 243 mM ethanol accumulation at the expense of acetate production during CO₂/H₂ blend continuous fermentation (p < 0.005). At the second step, al-adh was eliminated to reduce the genome size. Resulting recombinants accumulated 25 mM mevalonate in fermentation broth (p < 0.005). Cell duplication time for recombinants with reduced genome size decreased by 9.5 % compared to Clostridium sp. MT1834 strain under the same fermentation conditions suggesting better cell energy pool management in the absence of the ack-pta gene cluster in the engineered biocatalyst. If the first gene elimination step was used alone for spo0A gene replacement with two copies of synthetic formate dehydrogenase in recombinants with a shortened genome, mevalonate production was replaced with 76.5 mM formate production in a single step continuous CO₂/H₂ blend fermentation (p < 0.005) with cell duplication time almost nearing that of the wild strain.

  19. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  20. Analysis of the human [alpha]-globin gene cluster in transgenic mice

    SciTech Connect

    Sharpe, J.A.; Vyas, P.; Higgs, D.R.; Wood, W.G. ); Wells, D.J. ); Whitelaw, E. )

    1993-11-15

    A 350-bp segment of DNA associated with an erythroid-specific DNase I-hypersensitive site (HS -40), upstream of the [alpha]-globin gene cluster, has been identified as the major tissue-specific regulator of the [alpha]-globin genes. However, this element does not direct copy number-dependent or developmentally stable expression of the human genes in transgenic mice. To determine whether additional upstream hypersensitive sites could provide more complete regulation of [alpha] gene expression, the authors have studied 17 lines of transgenic mice bearing various DNA fragments containing HSs -33, -10, -8, and -4, in addition to HS -40. Position-independent, high-level expression of the human [zeta]- and [alpha]-globin genes was consistently observed in embryonic erythroid cells. However, the additional HSs did not confer copy-number dependence, alter the level of expression, or prevent the variable down-regulation of expression in adults. These results suggest that the region upstream of the human [alpha]-globin genes is not equivalent to that upstream of the [beta] locus and that although the two clusters are coordinately expressed, there may be differences in their regulation.

  1. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  2. Onto-CC: a web server for identifying Gene Ontology conceptual clusters

    PubMed Central

    Romero-Zaliz, R.; del Val, C.; Cobb, J. P.; Zwir, I.

    2008-01-01

    The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of

  3. Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters

    PubMed Central

    Georgianna, D. Ryan; Fedorova, Natalie D.; Burroughs, James L.; Dolezal, Andrea L.; Bok, J.; Horowitz-Brown, S.; Woloshuk, Charles P.; Yu, Jiujiang; Keller, Nancy P.; Payne, Gary A.

    2014-01-01

    SUMMARY Species of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis predicts that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in A. flavus, however, only three metabolic pathways - aflatoxin, cyclopiazonic acid (CPA), and aflatrem - have been assigned to these clusters. To gain insight into the regulation of, and infer ecological significance for the 55 secondary metabolite gene clusters predicted in A. flavus, we examined their expression over 28 diverse conditions. Variables included culture media and temperature, fungal development, colonization of developing maize seeds, and misexpression of laeA, a global regulator of secondary metabolism. Hierarchical clustering analysis of expression profiles allowed us to categorize the gene clusters into four distinct clades. Gene clusters for the production of aflatoxins, CPA, and seven other unknown compound(s) were identified as belonging to one clade. To further explore the relationships found by gene expression analysis, aflatoxin and CPA production were quantified under five different cell culture environments known to be conducive or non-conducive for aflatoxin biosynthesis and during colonization of developing maize seeds. Results from these studies showed that secondary metabolism gene clusters have distinctive gene expression profiles. Aflatoxin and CPA were found to have unique regulation but are similar enough that they would be expected to co-occur in substrates colonized with A. flavus. PMID:20447271

  4. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  5. A highly divergent gene cluster in honey bees encodes a novel silk family.

    PubMed

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  6. Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in Staphylococcus aureus.

    PubMed

    Sau, S; Lee, C Y

    1996-04-01

    Eleven serotypes of capsular polysaccharide from Staphylococcus aureus have been reported. We have previously cloned a cluster of type 1 capsule (cap1) genes responsible for type 1 capsular polysaccharide biosynthesis in S. aureus M. To clone the type 8 capsule (cap8) genes, a plasmid library of type 8 strain Becker was screened with a labelled DNA fragment containing the cap1 genes under low-stringency conditions. One recombinant plasmid containing a 14-kb insert was chosen for further study and found to complement 14 of the 18 type 8 capsule-negative (Cap8-) mutants used in the study. Additional library screening, subcloning, and complementation experiments showed that all of the 18 Cap8- mutants were complemented by DNA fragments derived from a 20.5-kb contiguous region of the Becker chromosome. The mutants were mapped into six complementation groups, indicating that the cap8 genes are clustered. By Southern hybridization analyses under high-stringency conditions, we found that DNA fragments containing the cap8 gene cluster show extensive homology with all 17 strains tested, including type 1 strains. By further Southern analyses and cloning of the cap8-related homolog from strain M, we show that strain M carries an additional capsule gene cluster different from the cap1 gene cluster. In addition, by using DNA fragments containing different regions of the cap8 gene cluster as probes to hybridize DNA from different strains, we found that the central region of the cap8 gene cluster hybridizes only to DNAs from certain strains tested whereas the flanking regions hybridize to DNAs of all strains tested. Thus, the cap8 gene clusters and its closely related homologs are likely to have organizations similar to those of the encapsulation genes of other bacterial systems.

  7. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  8. Gene regulatory network clustering for graph layout based on microarray gene expression data.

    PubMed

    Kojima, Kaname; Imoto, Seiya; Nagasaki, Masao; Miyano, Satoru

    2010-01-01

    We propose a statistical model realizing simultaneous estimation of gene regulatory network and gene module identification from time series gene expression data from microarray experiments. Under the assumption that genes in the same module are densely connected, the proposed method detects gene modules based on the variational Bayesian technique. The model can also incorporate existing biological prior knowledge such as protein subcellular localization. We apply the proposed model to the time series data from a synthetically generated network and verified the effectiveness of the proposed model. The proposed model is also applied the time series microarray data from HeLa cell. Detected gene module information gives the great help on drawing the estimated gene network.

  9. Structure and gene cluster of the O-antigen of Enterobacter cloacae G3421.

    PubMed

    Perepelov, Andrei V; Filatov, Andrei V; Wang, Min; Shashkov, Alexander S; Wang, Lei; Knirel, Yuriy A

    2016-06-02

    The O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of Enterobacter cloacae G3421 and studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. In addition, partial solvolysis with anhydrous trifluoroacetic acid was applied, which cleaved selectively the α-l-rhamnopyranosidic linkages. The following structure of the branched hexasaccharide repeating unit was established. The O-polysaccharide studied shares the β-l-Rhap-(1→4)-α-l-Rhap-(1→2)-α-l-Rhap trisaccharide fragment with the O-polysaccharide of Shigella boydii type 18. The O-antigen gene cluster of E. cloacae G3421 was sequenced. Functions of genes in the cluster, including those for glycosyltransferases, were tentatively assigned by a comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure.

  10. CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons.

    PubMed

    Hirayama, Teruyoshi; Tarusawa, Etsuko; Yoshimura, Yumiko; Galjart, Niels; Yagi, Takeshi

    2012-08-30

    The CCCTC-binding factor (CTCF) is a key molecule for chromatin conformational changes that promote cellular diversity, but nothing is known about its role in neurons. Here, we produced mice with a conditional knockout (cKO) of CTCF in postmitotic projection neurons, mostly in the dorsal telencephalon. The CTCF-cKO mice exhibited postnatal growth retardation and abnormal behavior and had defects in functional somatosensory mapping in the brain. In terms of gene expression, 390 transcripts were expressed at significantly different levels between CTCF-deficient and control cortex and hippocampus. In particular, the levels of 53 isoforms of the clustered protocadherin (Pcdh) genes, which are stochastically expressed in each neuron, declined markedly. Each CTCF-deficient neuron showed defects in dendritic arborization and spine density during brain development. Their excitatory postsynaptic currents showed normal amplitude but occurred with low frequency. Our results indicate that CTCF regulates functional neural development and neuronal diversity by controlling clustered Pcdh expression.

  11. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD

    PubMed Central

    Martínez-Flores, Irma; Pérez-Morales, Deyanira; Sánchez-Pérez, Mishael; Paredes, Claudia C.; Collado-Vides, Julio; Salgado, Heladia; Bustamante, Víctor H.

    2016-01-01

    A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes. PMID:27886269

  12. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    PubMed Central

    Laurie, Andrew D.; Lloyd-Jones, Gareth

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein α and β subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the ς54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve

  13. PROCESS FLOW FOR CLASSIFICATION AND CLUSTERING OF FRUIT FLY GENE EXPRESSION PATTERNS

    PubMed Central

    Heffel, Andreas; Stadler, Peter F.; Prohaska, Sonja J.; Kauer, Gerhard; Kuska, Jens-Peer

    2009-01-01

    The rapidly growing collection of fruit fly embryo images makes automated Image Segmentation and classification an indispensable requirement for a large-scale analysis of in situ hybridization (ISH) – gene expression patterns (GEP). We present here such an automated process flow for Segmenting, Classification, and Clustering large-scale sets of Drosophila melanogaster GEP that is capable of dealing with most of the complications implicated in the images. PMID:20046820

  14. Evolution of a Bitter Taste Receptor Gene Cluster in a New World Sparrow

    PubMed Central

    Davis, Jamie K.; Lowman, Josh J.; Thomas, Pamela J.; ten Hallers, Boudewijn F. H.; Koriabine, Maxim; Huynh, Lynn Y.; Maney, Donna L.; de Jong, Pieter J.; Martin, Christa L.; Thomas, James W.

    2010-01-01

    Bitter taste perception likely evolved as a protective mechanism against the ingestion of harmful compounds in food. The evolution of the taste receptor type 2 (TAS2R) gene family, which encodes the chemoreceptors that are directly responsible for the detection of bitter compounds, has therefore been of considerable interest. Though TAS2R repertoires have been characterized for a number of species, to date the complement of TAS2Rs from just one bird, the chicken, which had a notably small number of TAS2Rs, has been established. Here, we used targeted mapping and genomic sequencing in the white-throated sparrow (Zonotrichia albicollis) and sample sequencing in other closely related birds to reconstruct the history of a TAS2R gene cluster physically linked to the break points of an evolutionary chromosomal rearrangement. In the white-throated sparrow, this TAS2R cluster encodes up to 18 functional bitter taste receptors and likely underwent a large expansion that predates and/or coincides with the radiation of the Emberizinae subfamily into the New World. In addition to signatures of gene birth-and-death evolution within this cluster, estimates of Ka/Ks for the songbird TAS2Rs were similar to those previously observed in mammals, including humans. Finally, comparison of the complete genomic sequence of the cluster from two common haplotypes in the white-throated sparrow revealed a number of nonsynonymous variants and differences in functional gene content within this species. These results suggest that interspecies and intraspecies genetic variability does exist in avian TAS2Rs and that these differences could contribute to variation in bitter taste perception in birds. PMID:20624740

  15. Characterization of a cytochrome c gene located at the gene cluster for chlorate respiration in Ideonella dechloratans.

    PubMed

    Bohlin, Jan; Bäcklund, Anna Smedja; Gustavsson, Niklas; Wahlberg, Sara; Nilsson, Thomas

    2010-08-20

    Anaerobic chlorate respiration requires electron transport from the bacterial inner membrane to the soluble periplasmic chlorate reductase. We have recently demonstrated that soluble c cytochromes function as electron carriers for chlorate reduction in Ideonella dechloratans (Smedja Bäcklund et al. 2009). In the present work, we describe a gene encoding soluble c-type cytochrome [cyt; GenBank ID: EU768872] located close to the gene cluster for chlorate reduction in I. dechloratans. The predicted amino acid sequence does not match any of the peptide masses or partial sequences obtained earlier from periplasmic c cytochromes. The gene, without the predicted signal sequence, was expressed heterologously in E. coli and the recombinant protein was purified, refolded and reconstituted with heme. The reconstituted protein shows spectral properties characteristic for c cytochromes, with an absorption maximum at 553 nm for the alpha band in the reduced state. Pyridine hemochrome analysis demonstrates the formation of covalently bound heme.

  16. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7.

    PubMed

    Shannon, M; Ashworth, L K; Mucenski, M L; Lamerdin, J E; Branscomb, E; Stubbs, L

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes.

  17. Structure and gene cluster of the O-antigen of Escherichia coli O133.

    PubMed

    Shashkov, Alexander S; Zhang, Yuanyuan; Sun, Qiangzheng; Guo, Xi; Senchenkova, Sof'ya N; Perepelov, Andrei V; Knirel, Yuriy A

    2016-07-22

    The O-specific polysaccharide (O-antigen) of Escherichia coli O133 was obtained by mild acid hydrolysis of the lipopolysaccharide of E. coli O133. The structure of the hexasaccharide repeating unit of the polysaccharide was elucidated by (1)H and (13)C NMR spectroscopy, including a two-dimensional (1)H-(1)H ROESY experiment: Functions of genes in the O-antigen gene cluster were putatively identified by comparison with sequences in the available databases and, particularly, an encoded predicted multifunctional glycosyltransferase was assigned to three α-l-rhamnosidic linkages.

  18. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009

    PubMed Central

    Li, Rongfeng; Lloyd, Evan P.; Moshos, Kristos A.

    2014-01-01

    Nearly 50 naturally-occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. While the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by S. argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22/23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems. PMID:24420617

  19. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.

    PubMed

    Pernodet, J L; Boccard, F; Alegre, M T; Gagnat, J; Guérineau, M

    1989-06-30

    The Streptomyces ambofaciens genome contains four rRNA gene clusters. These copies are called rrnA, B, C and D. The complete nucleotide (nt) sequence of rrnD has been determined. These genes possess striking similarity with other eubacterial rRNA genes. Comparison with other rRNA sequences allowed the putative localization of the sequences encoding mature rRNAs. The structural genes are arranged in the order 16S-23S-5S and are tightly linked. The mature rRNAs are predicted to contain 1528, 3120 and 120 nt, for the 16S, 23S and 5S rRNAs, respectively. The 23S rRNA is, to our knowledge, the longest of all sequenced prokaryotic 23S rRNAs. When compared to other large rRNAs it shows insertions at positions where they are also present in archaebacterial and in eukaryotic large rRNAs. Secondary structure models of S. ambofaciens rRNAs are proposed, based upon those existing for other bacterial rRNAs. Positions of putative transcription start points and of a termination signal are suggested. The corresponding putative primary transcript, containing the 16S, 23S and 5S rRNAs plus flanking regions, was folded into a secondary structure, and sequences possibly involved in rRNA maturation are described. The G + C content of the rRNA gene cluster is low (57%) compared with the overall G + C content of Streptomyces DNA (73%).

  20. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.

    PubMed

    Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P

    2015-01-01

    The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.

  1. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin.

    PubMed

    Felnagle, Elizabeth A; Rondon, Michelle R; Berti, Andrew D; Crosby, Heidi A; Thomas, Michael G

    2007-07-01

    Capreomycin (CMN) belongs to the tuberactinomycin family of nonribosomal peptide antibiotics that are essential components of the drug arsenal for the treatment of multidrug-resistant tuberculosis. Members of this antibiotic family target the ribosomes of sensitive bacteria and disrupt the function of both subunits of the ribosome. Resistance to these antibiotics in Mycobacterium species arises due to mutations in the genes coding for the 16S or 23S rRNA but can also arise due to mutations in a gene coding for an rRNA-modifying enzyme, TlyA. While Mycobacterium species develop resistance due to alterations in the drug target, it has been proposed that the CMN-producing bacterium, Saccharothrix mutabilis subsp. capreolus, uses CMN modification as a mechanism for resistance rather than ribosome modification. To better understand CMN biosynthesis and resistance in S. mutabilis subsp. capreolus, we focused on the identification of the CMN biosynthetic gene cluster in this bacterium. Here, we describe the cloning and sequence analysis of the CMN biosynthetic gene cluster from S. mutabilis subsp. capreolus ATCC 23892. We provide evidence for the heterologous production of CMN in the genetically tractable bacterium Streptomyces lividans 1326. Finally, we present data supporting the existence of an additional CMN resistance gene. Initial work suggests that this resistance gene codes for an rRNA-modifying enzyme that results in the formation of CMN-resistant ribosomes that are also resistant to the aminoglycoside antibiotic kanamycin. Thus, S. mutabilis subsp. capreolus may also use ribosome modification as a mechanism for CMN resistance.

  2. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes.

    PubMed

    Hill, Karen K; Smith, Theresa J

    2013-01-01

    Clostridium botulinum is a species of spore-forming anaerobic bacteria defined by the expression of any one or two of seven serologically distinct botulinum neurotoxins (BoNTs) designated BoNT/A-G. This Gram-positive bacterium was first identified in 1897 and since then the paralyzing and lethal effects of its toxin have resulted in the recognition of different forms of the intoxication known as food-borne, infant, or wound botulism. Early microbiological and biochemical characterization of C. botulinum isolates revealed that the bacteria within the species had different characteristics and expressed different toxin types. To organize the variable bacterial traits within the species, Group I-IV designations were created. Interestingly, it was observed that isolates within different Groups could express the same toxin type and conversely a single Group could express different toxin types. This discordant phylogeny between the toxin and the host bacteria indicated that horizontal gene transfer of the toxin was responsible for the variation observed within the species. The recent availability of multiple C. botulinum genomic sequences has offered the ability to bioinformatically analyze the locations of the bont genes, the composition of their toxin gene clusters, and the genes flanking these regions to understand their variation. Comparison of the genomic sequences representing multiple serotypes indicates that the bont genes are not in random locations. Instead the analyses revealed specific regions where the toxin genes occur within the genomes representing serotype A, B, C, E, and F C. botulinum strains and C. butyricum type E strains. The genomic analyses have provided evidence of horizontal gene transfer, site-specific insertion, and recombination events. These events have contributed to the variation observed among the neurotoxins, the toxin gene clusters and the bacteria that contain them, and has supported the historical microbiological, and biochemical

  3. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  4. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  5. A genetic analysis of Adh1 regulation. Progress report, June 1991--February 1992

    SciTech Connect

    Freeling, M.

    1992-03-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  6. ADH and ALDH polymorphisms among Alaska Natives entering treatment for alcoholism.

    PubMed

    Segal, B

    1999-01-01

    The alcohol dehydrogenase (ADHs) and aldehyde dehydrogenases (ALDHs) involved in alcohol metabolism are polymorphic. Different alleles encode subunits of the enzymes that are related to differences in alcohol metabolism with different ethnic groups. This study examined the allele frequencies at the ADH1, ADH2, ADH3 and ALDH2 loci in Alaska Natives entering treatment for alcoholism to determine if allele frequencies at these loci differ among five distinct Alaska Native groups: Yupik and Inupiat Eskimos, Athabascan, Tlingit and Aleut. It was found that all persons were homozygous for the ADH1*1, ADH2*1 and ALDH2*1 alleles. Variations, however, were found for the allele distribution of the ADH3 genotype. Comparison with a general population sample found no differences in allele distributions for ADHs and ALDH2*1, but differences were found when comparisons were made with four Asian Groups. The study's findings suggest that the Alaska Natives are not protected from the risk of alcoholism in the same way that Asians who possess the ALDH2*2 genotype are considered to have a negative risk factor. Nor, does there appear to be any generalized differences between Alaska Native alcoholics and members of the general population with respect to the ALDH and ADH polymorphisms studied herein.

  7. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  8. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.

    PubMed

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas; Rohrer, Sabrina; Niedermeyer, Timo Horst Johannes; Stegmann, Evi; Weber, Tilmann; Wohlleben, Wolfgang

    2016-03-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.

  9. Clustering of Two Genes Putatively Involved in Cyanate Detoxification Evolved Recently and Independently in Multiple Fungal Lineages

    PubMed Central

    Elmore, M. Holly; McGary, Kriston L.; Wisecaver, Jennifer H.; Slot, Jason C.; Geiser, David M.; Sink, Stacy; O’Donnell, Kerry; Rokas, Antonis

    2015-01-01

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC’s closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture. PMID:25663439

  10. Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17

    PubMed Central

    Spohn, Marius; Kirchner, Norbert; Kulik, Andreas; Jochim, Angelika; Wolf, Felix; Muenzer, Patrick; Borst, Oliver; Gross, Harald; Wohlleben, Wolfgang

    2014-01-01

    The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A. PMID:25114137

  11. Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    PubMed Central

    Van Sluys, Marie-Anne; White, Frank F.; Ryan, Robert P.; Dow, J. Maxwell; Rabinowicz, Pablo; Salzberg, Steven L.; Leach, Jan E.; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J.

    2008-01-01

    Background Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. Methodology/Principal Findings To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Conclusions/Significance Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale

  12. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255.

    PubMed

    van den Berg, Marco A; Westerlaken, Ilja; Leeflang, Chris; Kerkman, Richard; Bovenberg, Roel A L

    2007-09-01

    Industrial strain improvement via classical mutagenesis is a black box approach. In an attempt to learn from and understand the mutations introduced, we cloned and characterized the amplified region of industrial penicillin production strains. Upon amplification of this region Penicillium chrysogenum is capable of producing an increased amount of antibiotics, as was previously reported [Barredo, J.L., Diez, B., Alvarez, E., Martín, J.F., 1989a. Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high yielding strains of Penicillium chrysogenum. Curr. Genet. 16, 453-459; Newbert, R.W., Barton, B., Greaves, P., Harper, J., Turner, G., 1997. Analysis of a commercially improved Penicillium chrysogenum strain series, involvement of recombinogenic regions in amplification and deletion of the penicillin gene cluster. J. Ind. Microbiol. 19, 18-27]. Bioinformatic analysis of the central 56.9kb, present as six direct repeats in the strains analyzed in this study, predicted 15 Open Reading Frames (ORFs). Besides the three penicillin biosynthetic genes (pcbAB, pcbC and penDE) only one ORF has an orthologue of known function in the database: the Saccharomyces cerevisiae gene ERG25. Surprisingly, many genes known to encode direct or indirect steps beta-lactam biosynthesis like phenyl acetic acid CoA ligase and transporters are not present. Detailed analyses reveal a detectable transcript for most of the predicted ORFs under the conditions tested. We have studied the role of these in relation to penicillin production and amplification of the biosynthetic gene cluster. In contrast to what was expected, the genes encoding the three penicillin biosynthetic enzymes alone are sufficient to restore full beta-lactam synthesis in a mutant lacking the complete region. Therefore, the role of the other 12 ORFs in this region seems irrelevant for penicillin biosynthesis.

  13. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)

    PubMed Central

    2013-01-01

    Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245

  14. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome

    PubMed Central

    Shin, Jessica; Monti, Stefano; Aires, Daniel J.; Duvic, Madeleine; Golub, Todd

    2007-01-01

    Cutaneous T-cell lymphoma (CTCL) is defined by infiltration of activated and malignant T cells in the skin. The clinical manifestations and prognosis in CTCL are highly variable. In this study, we hypothesized that gene expression analysis in lesional skin biopsies can improve understanding of the disease and its management. Based on 63 skin samples, we performed consensus clustering, revealing 3 patient clusters. Of these, 2 clusters tended to differentiate limited CTCL (stages IA and IB) from more extensive CTCL (stages IB and III). Stage IB patients appeared in both clusters, but those in the limited CTCL cluster were more responsive to treatment than those in the more extensive CTCL cluster. The third cluster was enriched in lymphocyte activation genes and was associated with a high proportion of tumor (stage IIB) lesions. Survival analysis revealed significant differences in event-free survival between clusters, with poorest survival seen in the activated lymphocyte cluster. Using supervised analysis, we further characterized genes significantly associated with lower-stage/treatment-responsive CTCL versus higher-stage/treatment-resistant CTCL. We conclude that transcriptional profiling of CTCL skin lesions reveals clinically relevant signatures, correlating with differences in survival and response to treatment. Additional prospective long-term studies to validate and refine these findings appear warranted. PMID:17638852

  15. Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211.

    PubMed

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing; Bai, Linquan

    2012-02-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.

  16. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti.

    PubMed

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F; García-Rico, Ramón O; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.

  17. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti

    PubMed Central

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F.; García-Rico, Ramón O.; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  18. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    SciTech Connect

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.

  19. Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database

    PubMed Central

    Gemma, Akihiko; Li, Cai; Sugiyama, Yuka; Matsuda, Kuniko; Seike, Yoko; Kosaihira, Seiji; Minegishi, Yuji; Noro, Rintaro; Nara, Michiya; Seike, Masahiro; Yoshimura, Akinobu; Shionoya, Aki; Kawakami, Akiko; Ogawa, Naoki; Uesaka, Haruka; Kudoh, Shoji

    2006-01-01

    background The effect of current therapies in improving the survival of lung cancer patients remains far from satisfactory. It is consequently desirable to find more appropriate therapeutic opportunities based on informed insights. A molecular pharmacological analysis was undertaken to design an improved chemotherapeutic strategy for advanced lung cancer. Methods We related the cytotoxic activity of each of commonly used anti-cancer agents (docetaxel, paclitaxel, gemcitabine, vinorelbine, 5-FU, SN38, cisplatin (CDDP), and carboplatin (CBDCA)) to corresponding expression pattern in each of the cell lines using a modified NCI program. Results We performed gene expression analysis in lung cancer cell lines using cDNA filter and high-density oligonucleotide arrays. We also examined the sensitivity of these cell lines to these drugs via MTT assay. To obtain our reproducible gene-drug sensitivity correlation data, we separately analyzed two sets of lung cancer cell lines, namely 10 and 19. In our gene-drug correlation analyses, gemcitabine consistently belonged to an isolated cluster in a reproducible fashion. On the other hand, docetaxel, paclitaxel, 5-FU, SN-38, CBDCA and CDDP were gathered together into one large cluster. Conclusion These results suggest that chemotherapy regimens including gemcitabine should be evaluated in second-line chemotherapy in cases where the first-line chemotherapy did not include this drug. Gene expression-drug sensitivity correlations, as provided by the NCI program, may yield improved therapeutic options for treatment of specific tumor types. PMID:16813650

  20. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans.

    PubMed

    Böer, Erik; Schröter, Anja; Bode, Rüdiger; Piontek, Michael; Kunze, Gotthard

    2009-02-01

    In Arxula adeninivorans nitrate assimilation is mediated by the combined actions of a nitrate transporter, a nitrate reductase and a nitrite reductase. Single-copy genes for these activities (AYNT1, AYNR1, AYNI1, respectively) form a 9103 bp gene cluster localized on chromosome 2. The 3210 bp AYNI1 ORF codes for a protein of 1070 amino acids, which exhibits a high degree of identity to nitrite reductases from the yeasts Pichia anomala (58%), Hansenula polymorpha (58%) and Dekkera bruxellensis (54%). The second ORF (AYNR1, 2535 bp) encodes a nitrate reductase of 845 residues that shows significant (51%) identity to nitrate reductases of P. anomala and H. polymorpha. The third ORF in the cluster (AYNT1, 1518 bp) specifies a nitrate transporter with 506 amino acids, which is 46% identical to that of H. polymorpha. The three genes are independently expressed upon induction with NaNO(3). We quantitatively analysed the promoter activities by qRT-PCR and after fusing individual promoter fragments to the phytase (phyK) gene from Klebsiella sp. ASR1. The AYNI1 promoter was found to exhibit the highest activity, followed by the AYNT1 and AYNR1 elements. Direct measurements of nitrate and nitrite reductase activities performed after induction with NaNO(3) are compatible with these results. Both enzymes show optimal activity at around 42 degrees C and near-neutral pH, and require FAD as a co-factor and NADPH as electron donor.

  1. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Couprie, Nicole; Francina, Alain

    2009-01-01

    Despite the fact that mutations in the human beta-globin gene cluster are essentially point mutations, a significant number of large deletions have also been described. We present here four new large deletions in the beta-globin gene cluster that have been identified on patients displaying an atypical hemoglobin phenotype (high HbF) at routine analysis. The first deletion, which spreads over 2.0 kb, removes the entire beta-globin gene, including its promoter, and is associated with a typical beta-thal minor phenotype. The three other deletions are larger (19.7 to 23.9 kb) and remove both the delta and beta-globin genes. Phenotypically, they look like an HPFH-deletion as they are associated with normal hematological parameters. The precise localization of their 5' and 3' breakpoints gives new insights about the differences between HPFH and (deltabeta)(0)-thalassemia at the molecular level. The importance of detection of these deletions in prenatal diagnosis and newborn screening of hemoglobinopathies is also discussed.

  2. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    PubMed

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  3. Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium

    PubMed Central

    Lohße, Anna; Kolinko, Isabel; Raschdorf, Oliver; Uebe, René; Borg, Sarah; Brachmann, Andreas; Plitzko, Jürgen M.; Müller, Rolf; Zhang, Youming

    2016-01-01

    ABSTRACT Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of

  4. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    PubMed

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  5. The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6

    PubMed Central

    Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval

    1999-01-01

    A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143

  6. A Hybrid NRPS-PKS Gene Cluster Related to the Bleomycin Family of Antitumor Antibiotics in Alteromonas macleodii Strains

    PubMed Central

    Mizuno, Carolina Megumi; Kimes, Nikole E.; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes. PMID:24069455

  7. Characterization of Clustered MHC-Linked Olfactory Receptor Genes in Human and Mouse

    PubMed Central

    Younger, Ruth M.; Amadou, Claire; Bethel, Graeme; Ehlers, Anke; Lindahl, Kirsten Fischer; Forbes, Simon; Horton, Roger; Milne, Sarah; Mungall, Andrew J.; Trowsdale, John; Volz, Armin; Ziegler, Andreas; Beck, Stephan

    2001-01-01

    Olfactory receptor (OR) loci frequently cluster and are present on most human chromosomes. They are members of the seven transmembrane receptor (7-TM) superfamily and, as such, are part of one of the largest mammalian multigene families, with an estimated copy number of up to 1000 ORs per haploid genome. As their name implies, ORs are known to be involved in the perception of odors and possibly also in other, nonolfaction-related, functions. Here, we report the characterization of ORs that are part of the MHC-linked OR clusters in human and mouse (partial sequence only). These clusters are of particular interest because of their possible involvement in olfaction-driven mate selection. In total, we describe 50 novel OR loci (36 human, 14 murine), making the human MHC-linked cluster the largest sequenced OR cluster in any organism so far. Comparative and phylogenetic analyses confirm the cluster to be MHC-linked but divergent in both species and allow the identification of at least one ortholog that will be useful for future regulatory and functional studies. Quantitative feature analysis shows clear evidence of duplications of blocks of OR genes and reveals the entire cluster to have a genomic environment that is very different from its neighboring regions. Based on in silico transcript analysis, we also present evidence of extensive long-distance splicing in the 5′-untranslated regions and, for the first time, of alternative splicing within the single coding exon of ORs. Taken together with our previous finding that ORs are also polymorphic, the presented data indicate that the expression, function, and evolution of these interesting genes might be more complex than previously thought. [The sequence data described in this paper have been submitted to the EMBL nucleotide data library under accession nos. Z84475, Z98744, Z98745, AL021807, AL021808, AL022723, AL022727, AL031893, AL035402, AL035542, AL050328, AL050339, AL078630, AL096770, AL121944, AL133160, and AL

  8. Distribution of Suicin Gene Clusters in Streptococcus suis Serotype 2 Belonging to Sequence Types 25 and 28

    PubMed Central

    Athey, Taryn B. T.; Vaillancourt, Katy; Frenette, Michel; Gottschalk, Marcelo

    2016-01-01

    Recently, we reported the purification and characterization of three distinct lantibiotics (named suicin 90-1330, suicin 3908, and suicin 65) produced by Streptococcus suis. In this study, we investigated the distribution of the three suicin lantibiotic gene clusters among serotype 2 S. suis strains belonging to sequence type (ST) 25 and ST28, the two dominant STs identified in North America. The genomes of 102 strains were interrogated for the presence of suicin gene clusters encoding suicins 90-1330, 3908, and 65. The gene cluster encoding suicin 65 was the most prevalent and mainly found among ST25 strains. In contrast, none of the genes related to suicin 90-1330 production were identified in 51 ST25 strains nor in 35/51 ST28 strains. However, the complete suicin 90-1330 gene cluster was found in ten ST28 strains, although some genes in the cluster were truncated in three of these isolates. The vast majority (101/102) of S. suis strains did not possess any of the genes encoding suicin 3908. In conclusion, this study indicates heterogeneous distribution of suicin genes in S. suis. PMID:28078298

  9. Characterization of the ars Gene Cluster from Extremely Arsenic-Resistant Microbacterium sp. Strain A33▿ †

    PubMed Central

    Achour-Rokbani, Asma; Cordi, Audrey; Poupin, Pascal; Bauda, Pascale; Billard, Patrick

    2010-01-01

    The arsenic resistance gene cluster of Microbacterium sp. A33 contains a novel pair of genes (arsTX) encoding a thioredoxin system that are cotranscribed with an unusual arsRC2 fusion gene, ACR3, and arsC1 in an operon divergent from arsC3. The whole ars gene cluster is required to complement an Escherichia coli ars mutant. ArsRC2 negatively regulates the expression of the pentacistronic operon. ArsC1 and ArsC3 are related to thioredoxin-dependent arsenate reductases; however, ArsC3 lacks the two distal catalytic cysteine residues of this class of enzymes. PMID:19966021

  10. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003.

    PubMed

    Thapa, Laxmi Prasad; Oh, Tae-Jin; Lee, Hei Chan; Liou, Kwangkyoung; Park, Je Won; Yoon, Yeo Joon; Sohng, Jae Kyung

    2007-10-01

    The pSKC2 cosmid, which has 32 kb and 28 open-reading frames, was isolated from Streptomyces kanamyceticus ATCC12853 as the gene cluster of kanamycin. This gene cluster includes the minimal biosynthetic genes of kanamycin with the resistance and regulatory genes. It was heterologously expressed in Streptomyces venezuelae YJ003, which has the advantage of fast growth, good efficiency of the transformation host, and rapid production of the aminoglycosides antibiotic. The isolated compound was analyzed by electrospray ionization-mass spectrometry, liquid chromatography-mass spectrometry, high-performance liquid chromatography, and tandem mass spectrometry and shows a molecular weight of 485 as kanamycin A.

  11. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer.

    PubMed

    Zhang, Ruifu; Cui, Zhongli; Zhang, Xiaozhou; Jiang, Jiandong; Gu, Ji-Dong; Li, Shunpeng

    2006-10-01

    Seven organophosphorus pesticide-degrading bacteria harboring the methyl parathion degrading (mpd) gene were isolated from a methyl parathion contaminated site. In this study, the 4.7 kb mpd gene cluster, conserved in all seven bacteria capable of degrading methyl parathion, was cloned and further analysis revealed that this cluster contained five ORFs and the mpd gene was associated with a mobile element, IS6100. In addition to mpd gene ORF and tnpA ORF, three other ORFs showed high homology to the permease component of ABC-type transport system, the general secretion pathway protein B, and the RNA polymerase sigma 70 factor, respectively. The mpd genes of these 7 strains were subcloned and expressed in E. coli, SDS-PAGE and zymogram analysis showed that two expression products of mpd genes in E. coli were found, but the one without signal peptide showed the hydrolytic activities. Our evidences collectively suggest that mpd gene cluster may be disseminated through horizontal gene transfer based on phylogenetic analysis of the cluster and their host bacterial strains, and comparisons of GC content of the cluster and respective host's chromosome.

  12. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    PubMed

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  13. Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha.

    PubMed Central

    Takemura, M; Oda, K; Yamato, K; Ohta, E; Nakamura, Y; Nozato, N; Akashi, K; Ohyama, K

    1992-01-01

    We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast. PMID:1620617

  14. The albonoursin gene Cluster of S noursei biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases.

    PubMed

    Lautru, Sylvie; Gondry, Muriel; Genet, Roger; Pernodet, Jean Luc

    2002-12-01

    Albonoursin [cyclo(deltaPhe-DeltaLeu)], an antibacterial peptide produced by Streptomyces noursei, is one of the simplest representatives of the large diketopiperazine (DKP) family. Formation of alpha,beta unsaturations was previously shown to occur on cyclo(L-Phe-L-Leu), catalyzed by the cyclic dipeptide oxidase (CDO). We used CDO peptide sequence information to isolate a 3.8 kb S. noursei DNA fragment that directs albonoursin biosynthesis in Streptomyces lividans. This fragment encompasses four complete genes: albA and albB, necessary for CDO activity; albC, sufficient for cyclic dipeptide precursor formation, although displaying no similarity to non ribosomal peptide synthetase (NRPS) genes; and albD, encoding a putative membrane protein. This first isolated DKP biosynthetic gene cluster should help to elucidate the mechanism of DKP formation, totally independent of NRPS, and to characterize novel DKP biosynthetic pathways that could be engineered to increase the molecular diversity of DKP derivatives.

  15. Loci of Mycobacterium avium ser2 gene cluster and their functions.

    PubMed Central

    Mills, J A; McNeil, M R; Belisle, J T; Jacobs, W R; Brennan, P J

    1994-01-01

    The highly antigenic glycopeptidolipids present on the surface of members of the Mycobacterium avium complex serve to distinguish these bacteria from all others and to define the various serovars that compose this complex. Previously, the genes responsible for the biosynthesis of the disaccharide hapten [2,3-di-O-methyl-alpha-L-fucopyranosyl-(1-->3)-alpha-L-rhamnopyranose] of serovar 2 of the M. avium complex were isolated, localized to a contiguous 22- to 27-kb fragment of the M. avium genome, and designated the ser2 gene cluster (J. T. Belisle, L. Pascopella, J. M. Inamine, P. J. Brennan, and W. R. Jacobs, Jr., J. Bacteriol. 173:6991-6997, 1991). In the present study, transposon saturation mutagenesis was used to map the specific genetic loci within the ser2 gene cluster required for expression of this disaccharide. Four essential loci, termed ser2A, -B, -C, and -D, constituting a total of 5.7 kb within the ser2 gene cluster, were defined. The ser2B and ser2D loci encode the methyltransferases required to methylate the fucose at the 3 and 2 positions, respectively. The rhamnosyltransferase was encoded by ser2A, whereas either ser2C or ser2D encoded the fucosyltransferase. The ser2C and ser2D loci are also apparently involved in the de novo synthesis of fucose. Isolation of the truncated versions of the hapten induced by the transposon insertions provides genetic evidence that the glycopeptidolipids of M. avium serovar 2 are synthesized by an initial transfer of the rhamnose unit to the peptide core followed by fucose and finally O methylation of the fucosyl unit. PMID:8050992

  16. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis

    PubMed Central

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2017-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: −6°C for 2 h with prior 4°C for 7 d, cold shock group: −6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  17. Metabolite Profiling of adh1 Mutant Response to Cold Stress in Arabidopsis.

    PubMed

    Song, Yuan; Liu, Lijun; Wei, Yunzhu; Li, Gaopeng; Yue, Xiule; An, Lizhe

    2016-01-01

    As a result of global warming, vegetation suffers from repeated freeze-thaw cycles caused by more frequent short-term low temperatures induced by hail, snow, or night frost. Therefore, short-term freezing stress of plants should be investigated particularly in light of the current climatic conditions. Alcohol dehydrogenase (ADH) plays a central role in the metabolism of alcohols and aldehydes and it is a key enzyme in anaerobic fermentation. ADH1 responds to plant growth and environmental stress; however, the function of ADH1 in the response to short-term freezing stress remains unknown. Using real-time quantitative fluorescence PCR, the expression level of ADH1 was analyzed at low temperature (4°C). The lethal temperature was calculated based on the electrolyte leakage tests for both ADH1 deletion mutants (adh1) and wild type (WT) plants. To further investigate the relationship between ADH1 and cold tolerance in plants, low-Mr polar metabolite analyses of Arabidopsis adh1 and WT were performed at cold temperatures using gas chromatography-mass spectrometry. This investigation focused on freezing treatments (cold acclimation group: -6°C for 2 h with prior 4°C for 7 d, cold shock group: -6°C for 2 h without cold acclimation) and recovery (23°C for 24 h) with respect to seedling growth at optimum temperature. The experimental results revealed a significant increase in ADH1 expression during low temperature treatment (4°C) and at a higher lethal temperature in adh1 compared to that in the WT. Retention time indices and specific mass fragments were used to monitor 263 variables and annotate 78 identified metabolites. From these analyses, differences in the degree of metabolite accumulation between adh1 and WT were detected, including soluble sugars (e.g., sucrose) and amino acids (e.g., asparagine). In addition, the correlation-based network analysis highlighted some metabolites, e.g., melibiose, fumaric acid, succinic acid, glycolic acid, and xylose, which

  18. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  19. Use of a modified alcohol dehydrogenase, ADH1, promoter in construction of diacetyl non-producing brewer's yeast.

    PubMed

    Onnela, M L; Suihko, M L; Penttilä, M; Keränen, S

    1996-08-20

    The bacterial gene, encoding alpha-acetolactate decarboxylase (alpha-ALDC), was expressed in a bottom-fermenting brewer's yeast under the control of a modified Saccharomyces cerevisiae alcohol dehydrogenase (ADH1) promoter which lacks the upstream regions from -800 bp to -1500 bp. In pilot scale brewing conditions, the level of alpha-ALDC produced was high enough to reduce the concentration of diacetyl so that lagering was not required. alpha-ALDC active brewer's yeast strains were also shown to be suitable for high gravity brewing.

  20. Novel tryptophan metabolism by a potential gene cluster that is widely distributed among actinomycetes.

    PubMed

    Ozaki, Taro; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2013-04-05

    The characterization of potential gene clusters is a promising strategy for the identification of novel natural products and the expansion of structural diversity. However, there are often difficulties in identifying potential metabolites because their biosynthetic genes are either silenced or expressed only at a low level. Here, we report the identification of a novel metabolite that is synthesized by a potential gene cluster containing an indole prenyltransferase gene (SCO7467) and a flavin-dependent monooxygenase (FMO) gene (SCO7468), which were mined from the genome of Streptomyces coelicolor A3(2). We introduced these two genes into the closely related Streptomyces lividans TK23 and analyzed the culture broths of the transformants. This process allowed us to identify a novel metabolite, 5-dimethylallylindole-3-acetonitrile (5-DMAIAN) that was overproduced in the transformant. Biochemical characterization of the recombinant SCO7467 and SCO7468 demonstrated the novel L-tryptophan metabolism leading to 5-DMAIAN. SCO7467 catalyzes the prenylation of L-tryptophan to form 5-dimethylallyl-L-tryptophan (5-DMAT). This enzyme is the first actinomycetes prenyltransferase known to catalyze the addition of a dimethylallyl group to the C-5 of tryptophan. SCO7468 then catalyzes the conversion of 5-DMAT into 5-dimethylallylindole-3-acetaldoxime (5-DMAIAOx). An aldoxime-forming reaction catalyzed by the FMO enzyme was also identified for the first time in this study. Finally, dehydration of 5-DMAIAOx presumably occurs to yield 5-DMAIAN. This study provides insight into the biosynthesis of prenylated indoles that have been purified from actinomycetes.

  1. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  2. Hard Selective Sweep and Ectopic Gene Conversion in a Gene Cluster Affording Environmental Adaptation

    PubMed Central

    Trampczynska, Aleksandra; Bernal, María; Motte, Patrick; Clemens, Stephan; Krämer, Ute

    2013-01-01

    Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4) encoding a PIB-type ATPase that pumps Zn2+ and Cd2+ out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced gene product dosage

  3. Characterization of Streptomyces venezuelae ATCC 10595 rRNA gene clusters and cloning of rrnA.

    PubMed Central

    La Farina, M; Stira, S; Mancuso, R; Grisanti, C

    1996-01-01

    Streptomyces venezuelae ATCC 10595 harbors seven rRNA gene clusters which can be distinguished by BglII digestion. The three rRNA genes present in each set are closely linked with the general structure 16S-23S-5S. We cloned rrnA and sequenced the 16S-23S spacer region and the region downstream of the 5S rRNA gene. No tRNA gene was found in these regions. PMID:8631730

  4. The Impact of ADH1B Alleles and Educational Status on Levels and Modes of Alcohol Consumption in Russian Male Individuals.

    PubMed

    Borinskaya, S A; Kim, A A; Rubanovich, A V; Yankovsky, N K

    2013-07-01

    Alcohol abuse is one of the main reasons behind the low life span in Russia. Both social and genetic factors affect the alcohol consumption level. The genetic factors are alleles of the alcohol dehydrogenase ADH1B and aldehyde dehydrogenaseALDH2 genes. We have typed and found frequencies for the alleles in a cohort of 642 men, ethnic Russians. The individuals of the cohort were asked to complete a questionnaire in the framework of the Izhevsk Family Study (Leon et al., 2007, 2009) regarding the amount of alcohol consumed and on the type of hazardous alcohol consumption (nonbeverage alcohol consumption and the so-called "zapoï" which is a Russian term for a heavy drinking bout lasting for at least 2 days, when an individual is withdrawn from the normal social life). The ADH1B*48His allele was found among heterozygous individuals only (N=68, 10.6% of the cohort). The ALDH2*504Lys allele was also found among heterozygous individuals only (N=2, 0.3%) The effect of ADH1B alleles and the influence of the education level on the amount and type of alcohol consumed had not previously been studied in Russians. We have found that the amount of consumed alcohol is 21.6% lower (1733 g of ethanol per year) for ADH1B*48His allele carriers in the cohort of Russian men. The amount of consumed alcohol was found to be 9.8% lower (793 g of ethanol per year) in the case when individuals had a higher education as compared to those who had a secondary- or elementary school education level in the same cohort. Hence, the protective effect of the genetic factor (ADH1B*48His allele carriage) has proven to be more pronounced than the influence of the social factor (education level) at the individual level in the cohort of Russian men. Both factors have also proven to have a protective effect against hazardous types of alcohol consumption. Zapoï was not scored among individuals of the cohort with ADH1B*48His allele carriage (OR=12.6, P=0.006), as compared to 8.4% of "zapoï" individuals who

  5. [Cloning and analysis of geldanamycin partial biosynthetic gene cluster of Streptomyces hygroscopicus 17997].

    PubMed

    He, Wei-Qing; Wang, Yi-Guang

    2006-11-01

    A geldanamycin (GDM) producing strain, Streptomyces hygroscopicus 17997, was isolated from Yunnan China soil by our institute researchers. GDM is an ansamycin antibiotic, which has the ability to bind with Hsp90 (Heat Shock Protein 90) and alter its function. Hsp90 is a chaperone protein involved in the regulation of the cell cycle, cell growth, cell survival, apoptosis, and oncogenesis. So it plays a key role in regulating the physiology of cells exposed to environmental stress and in maintaining the malignant phenotype of tumor cells. As an inhibitor of Hsp90, GDM possesses potent antitumor and antivirus bioactivity, but the hypato-toxicity and poor solubility in water limits its clinical use. Two GDM derivatives, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), both showing lesser hepato-toxicity, are now in Phase II and Phase I clinic trials. In order to accomplish the structure modification of GDM by genetic means, an attempt to obtain the biosynthetic gene cluster of GDM from S. hygroscopicus 17997 was made. In this study, a pair of primers was designed according to a conserved sequence of one of possible post-PKS (polyketides synthase) modification genes, the carbamoyltransferase (CT) gene (gdmN) in GDM biosynthesis. The 732 bp PCR product was obtained from the S. hygroscopicus 17997 genomic DNA. Through the colony-PCR Binary Search Method, using the CT gene primers, six positive cosmid clones, CT1-6, were identified from the S. hygroscopicus 17997 cosmid genomic library. The CT gene containing fragments were verified and localized by Southern blot. The CT-4 positive cosmid was then sub-cloned and sequenced. Approximately 28.356kb of foreign gene sequence from CT-4 cosmid and by further PCR extension reaction was obtained. Based on BLAST analysis, this sequence contains 13 possible ORFs and their deduced functions are believed to be involved in GDM production. The ORF1 encoding products

  6. The interplay between alcohol consumption, oral hygiene, ALDH2 and