Sample records for adherence cell morphology

  1. Biocompatibility of orthodontic bands following exposure to dental plaque.

    PubMed

    Hornikel, Sandra; Erbe, Christina; Schmidtmann, Irene; Wehrbein, Heiner

    2011-03-01

    The aim of this study was to assess the biocompatibility of orthodontic bands following exposure to the human oral environment. Cell adherence and cell morphology of gingival fibroblasts grown on 32 orthodontic bands were tested. The bands were in place intraorally for 6 to 37 months. We observed cell adherence in 76% of the previously plaque-free surfaces. Cell morphology was 50% spherical and 50% elongated. The surfaces that had had plaque attached demonstrated cell adherence in 84% of the given areas; those cells were spherical in 42% and elongated in 58%. We conclude that individual oral hygiene habits during orthodontic treatment seem to have no effect on the biocompatibility of orthodontic bands, as we failed to discern a difference in either cell adherence or cell morphology in areas with and without prior plaque attachment.

  2. Evaluation of biocompatibility of sodium perborate and 30% hydrogen peroxide using the analysis of the adherence capacity and morphology of macrophages.

    PubMed

    Asfora, Kattyenne Kabbaz; Santos, Maria do Carmo Moreira da Silva; Montes, Marcos Antonio Japiassú Resende; de Castro, Célia Maria Machado Barbosa

    2005-02-01

    The purpose of this study was to evaluate the biocompatibility of the most used bleaching materials for pulpless teeth, sodium perborate and 30% hydrogen peroxide, in an experimental model of macrophages, through analysis of the adherence index and the cellular morphology. Inflammatory macrophages were obtained from peritoneal washed of Wistar rats. The evaluation of the adherence capacity of these cells to the plastic surface was conducted in Eppendorf tubes containing RPMI, after treatment with the bleaching agents diluted in 1:10, 1:100 and 1:1000 for 15 and 30 min, and incubation at 37 degrees C and humidified atmosphere of 5% CO(2) in air. The cellular morphology was verified after incubation of the cells treated with the bleaching agents in culture plaques and compared with normal cells in culture medium. Results showed that sodium perborate neither increased the adherence index, nor altered the cellular morphology when compared to the control group. The distribution, cellular morphology, cytoplasmatic and nuclear characteristics, reproduced the aspects observed in normal macrophages. However, the treatment with 30% hydrogen peroxide presented an increase in adherence index when compared to the control group (RPMI), in all dilutions, according to Mann-Whitney test (n=08 and p=0.001 for dilutions 1:10 and 1:100, and n=08 and p=0.004 for dilution 1:1000). The morphology of the cells treated with this product presented structural alterations proportionally greater, depending on the dilution of this bleaching agent, and even in the highest dilution (1:1000) the cells presented very evident alterations. This irreversible cellular damage as well as the elevation of the adherence index, characterizes the aggressive potential of 30% hydrogen peroxide, regardless of its dilution. Sodium perborate, on the other hand, showed biocompatibitity, since, no morphological nor functional alteration was observed in macrophages.

  3. Noninvasive measurement of three-dimensional morphology of adhered animal cells employing phase-shifting laser microscope.

    PubMed

    Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio

    2007-01-01

    Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.

  4. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  5. Freezing behavior of adherent neuron-like cells and morphological change and viability of post-thaw cells.

    PubMed

    Uemura, Makoto; Ishiguro, Hiroshi

    2015-04-01

    Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  7. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  8. Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells.

    PubMed Central

    Bryant, A E; Stevens, D L

    1996-01-01

    Clostridium perfringens phospholipase C (PLC) and perfringolysin O (PFO) differentially induced human umbilical vein endothelial cell expression and synthesis of endothelial cell-leukocyte adherence molecule-1 (ELAM-1), intracellular leukocyte adherence molecule-1 (ICAM-1), and interleukin-8 (IL-8). PLC strongly induced expression of ELAM-1, ICAM-1, and IL-8, while PFO stimulated early ICAM-1 expression but did not promote ELAM-1 expression or IL-8 synthesis. PLC caused human umbilical vein endothelial cells to assume a fibroblastoid morphology, whereas PFO, in high concentrations or after prolonged low-dose toxin exposure, caused cell death. The toxin-induced expression of proadhesive and activational proteins and direct cytopathic effects may contribute to the leukostasis, vascular compromise, and capillary leak characteristics of C. perfringens gas gangrene. PMID:8557365

  9. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    PubMed

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  10. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  11. The effect of Taurolidine on adherent and floating subpopulations of melanoma cells.

    PubMed

    Shrayer, D P; Lukoff, H; King, T; Calabresi, P

    2003-04-01

    The annual incidence of malignant melanoma is estimated at 10-12 per 100000 inhabitants in countries of Central Europe and the US, with more recent estimates showing a dramatic upward trend. Taurolidine (Carter/Wallace, Cranberry, NJ) is a novel, potentially effective, antitumor chemotherapeutic agent. We hypothesized that Taurolidine could inhibit the growth, induce apoptosis, affect the cell cycle and change morphology of melanoma cells. We expected this process to be different in adherent and floating subpopulations that may be reflective of solid tumors and their metastases. Analysis of MNT-1 human and B16F10 murine melanoma cells showed that at 72 h the IC(50) of Taurolidine was 25.4+/-3.3 microM for MNT-1 human melanoma cells and 30.9+/-3.6 microM for B16F10 murine melanoma cells. Taurolidine induced DNA fragmentation of melanoma cells in a dose-dependent manner. Taurolidine (75 and 100 microM) induced 52-97% Annexin-V binding (apoptosis), respectively. Evaluation of cell cycle after 72 h exposure to Taurolidine (0-100 microM) revealed that the percentage of melanoma cells in S phase increased from 27 to 40% in the adherent subpopulation and from 33 to 49% in the floating subpopulation. Phase contrast microscopy revealed a marked swelling of melanoma cells and decreasing cell numbers in adherent subpopulation starting at 24 h with 25 microM Taurolidine. Shrinkage of cells dominated at 75-100 microM Taurolidine. Using Cytospin assay in the floating population, we observed swelling of melanoma cells induced by 25-100 micro Taurolidine and appearance of giant (multinuclear) forms resulting from exposure to 75-100 micro Taurolidine. Some floating cells with normal morphology were observed with low concentrations of Taurolidine (0-25 microM). These data show that effects of Taurolidine may be different in adherent and floating subpopulations of melanoma cells. More importantly, floating subpopulations that may contain some viable melanoma cells, may be reflective of potential metastasis after treatment of solid tumors in vivo.

  12. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    NASA Astrophysics Data System (ADS)

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-12-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only 22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  13. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips.

    PubMed

    Moussa, Hassan I; Logan, Megan; Siow, Geoffrey C; Phann, Darron L; Rao, Zheng; Aucoin, Marc G; Tsui, Ting Y

    2017-01-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  14. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    PubMed Central

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-01-01

    Abstract Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability. PMID:29152017

  15. In vitro activity of farnesol against vaginal Lactobacillus spp.

    PubMed

    Wang, Fengjuan; Liu, Zhaohui; Zhang, Dai; Niu, Xiaoxi

    2017-05-01

    Farnesol, a quorum-sensing molecule in Candida albicans, can affect the growth of certain microorganisms. The objective of this study was to evaluate the in vitro activity of farnesol against vaginal Lactobacillus spp., which play a crucial role in the maintenance of vaginal health. Growth and metabolic viability of vaginal Lactobacillus spp. incubated with different concentrations of farnesol were determined by measuring the optical density of the cultures and with the MTT assay. Morphology of the farnesol-treated cells was evaluated using a scanning electron microscope. In vitro adherence of vaginal Lactobacillus cells treated with farnesol was determined by co-incubating with vaginal epithelial cells (VECs). The minimum inhibitory concentration (MIC) of farnesol for vaginal Lactobacillus spp. was 1500μM. No morphological changes were observed when the farnesol-treated Lactobacillus cells were compared with farnesol-free cells, and 100μM farnesol would reduce the adherence of vaginal Lactobacillus to VECs. Farnesol acted as a potential antimicrobial agent, had little impact on the growth, metabolism, and cytomorphology of the vaginal Lactobacillus spp.; however, it affected their adhering capacity to VECs. The safety of farnesol as an adjuvant for antimicrobial agents during the treatment of vaginitis needs to be studied further. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation.

    PubMed

    Rosso, Francesco; Marino, Gerardo; Muscariello, Livio; Cafiero, Gennaro; Favia, Pietro; D'Aloia, Erica; d'Agostino, Riccardo; Barbarisi, Alfonso

    2006-06-01

    We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones. Copyright 2006 Wiley-Liss, Inc.

  17. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  18. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features.

    PubMed

    Modrzewska, Barbara; Kurnatowski, Piotr

    2015-01-01

    The ability of Candida sp. cells to adhere to the mucosal surfaces of various host organs as well as synthetic materials is an important pathogenicity feature of those fungi which contributes to the development of infection. This property varies depending on the species of the fungus and is the greatest for C. albicans. The process of adhesion depends on plenty of factors related to the fungal and host cells as well as environmental conditions. The main adhesins present on the fungal cell wall are: Als, Epa, Hwp1, but also Eap1, Sun41, Csh1 and probably Hyr1; for adhesion significant are also secreted aspartyl proteases Sap. Various researchers specify a range of genes which contribute to adhesion, such as: CZF1, EFG1, TUP1, TPK1, TPK2, HGC1, RAS1, RIM101, VPS11, ECM1, CKA2, BCR1, BUD2, RSR1, IRS4, CHS2, SCS7, UBI4, UME6, TEC1 and GAT2. Influence for adherence have also heat shock proteins Hsp70, Mediator Middle domain subunit Med31 and morphological transition. Among factors affecting adhesion related to host cells it is necessary to mention fibronectins and integrins (receptors for Candida sp. adhesins), type of epithelial cells, their morphology and differentiation phase. To a lesser degree influence on adhesion have non-specific factors and environmental conditions.

  19. Comparative studies on the internal defense system of schistosome-resistant and -susceptible amphibious snail Oncomelania nosophora 1. Comparative morphological and functional studies on hemocytes from both snails.

    PubMed

    Sasaki, Yuri; Furuta, Emiko; Kirinoki, Masashi; Seo, Naomi; Matsuda, Hajime

    2003-10-01

    Two morphologically distinct blood cell types (hemocytes), Type I and Type II were found coexisting in hemolymph from two kinds of snails, Oncomelania nosophora strain, viz. from the Nirasaki strain (schistosome-resistant snail) and the Kisarazu strain (schistosome-susceptible snail). Ten min after inoculation of SRBC, the majority of Type I cells from Nirasaki strain flattened and spread over the surface of the glass plate by extending pseudopodia. In the Kisarazu strain, Type I cells adhered to the surface of substrate with spike-like filopodia, but did not form spreading lamellipodia. Type I cell from the Nirasaki strain phagocytosed SRBC but that from the Kisarazu strain did not. The starting time of recognition of foreign materials was slightly different in the Type I hemocytes from the two strains. Type II cells from both strains were round and lymphocyte-like. Ten or sixty min after incubation, Type II cells from neither strain adhered to the surface of substrate or SRBC, and did not phagocytose SRBC. Type II cells from the Nirasaki strain were quite similar to those from the Kisarazu strain. We concluded that Type I cells from the schistosome-resistant snail, Nirasaki strain, possessed higher phagocytic activity than those from the susceptible snail, Kisarazu strain, despite the morphological similarities of the hemocytes from both strains.

  20. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Sengstock, Christina; Lopian, Michael; Motemani, Yahya; Borgmann, Anna; Khare, Chinmay; Buenconsejo, Pio John S.; Schildhauer, Thomas A.; Ludwig, Alfred; Köller, Manfred

    2014-05-01

    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography.

  1. Menstruum induces changes in mesothelial cell morphology.

    PubMed

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal lining. Therefore, by local destruction of the mesothelial layer, menstrual endometrium is able to create sites for adhesion. Copyright 2000 S. Karger AG, Basel

  2. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    PubMed

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.

  3. Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity.

    PubMed

    Miladi, Hanene; Ammar, Emna; Ben Slama, Rihab; Sakly, Nawfel; Bakhrouf, Amina

    2013-11-01

    The morphological changes and adhesive property of three Listeria monocytogenes strains submitted to freezing stress (-20 °C) were studied. The atomic force micrographs showed a reduction in the cell size and an evolution to coccoid shape. The phenotypic slime production of L. monocytogenes and the expression of the adhesive gene were investigated before and after 10 months of incubation in salmon at -20°. Our results showed that after ten months, stressed stains become more adherent and able to produce slime. In addition, we noted that this pathogen presents same physiological changes to adapt to starvation conditions. The cellular fatty acids composition of adhered and floating cells of three L. monocytogenes strains was taken into consideration. The stressed strains presented different chain lengths and therefore an increase in the hydrophobicity level. Moreover, we noted that the adhesive property of L. monocytogenes strains affects the Benzalkonium chloride bacterial sensitivity which increased after biofilm formation.

  4. Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro.

    PubMed

    Young, T H; Lin, D T; Chen, L Y

    2000-06-15

    This study evaluated the effects of crystalline polyamide (Nylon-66), poly(ethylene-co-vinyl alcohol) (PEVA), and poly(vinylidene fluoride) (PVDF) polymers with nonporous and porous morphologies on the ability of monocytes to adhere and subsequently activate to produce IL-1beta, IL-6, and tumor necrosis factor alpha. The results indicated monocyte adhesion and activation on a material might differ to a great extent, depending on the surface morphology and wettability. As the polymer wettability increases, the ability of monocytes to adhere increases but the ability to produce cytokines decreases. Similarly, these polymers, when prepared with porous surfaces, enhance monocyte adhesion but suppress monocyte release of cytokines. Therefore, the hydrophobic PVDF with a nonporous surface stimulates the most activity in adherent monocytes but shows the greatest inhibition of monocyte adhesion when compared with all of the other membranes. In contrast, the hydrophilic Nylon-66, which has a porous surface, is a relatively better substrate for this work. Therefore, monocyte behavior on a biomaterial may be influenced by a specific surface property. Based on this result, we propose that monocyte adhesion is regulated by a different mechanism than monocyte activation. Consequently, the generation of cytokines by monocytes is not proportional to the number of cells adherent to the surface. Copyright 2000 John Wiley & Sons, Inc.

  5. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    PubMed

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the bacterial protein interferes with keratinocyte migration and proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    PubMed

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  7. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    PubMed Central

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  8. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    PubMed

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  9. Toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells.

    PubMed

    Li, Juntao; Chen, Sifan; Li, Wenxue; Yang, Guangyu; Zhu, Wei

    2015-04-01

    To evaluate the toxicity of extracts from disposable chopsticks, toothpicks, and paper cups on L-929 cells. We followed national standards to prepare the extracts from disposable chopsticks, toothpicks, and paper cups used for the cell culture media, and the morphology of L-929 cells was observed with an optical microscope. The loss rate for adherent cells was evaluated with the trypan blue exclusion method, and cell proliferation was determined using the WST-1 assay. Compared with the control group, the cells cultured in media containing the extracts showed signs of apoptosis and necrosis after culturing for 4 or 7 days, and the loss rate for adherent cells was significantly increased (P < 0.05). An obvious decrease in cell viability was also observed (P < 0.05). The extracts from disposable chopsticks, toothpicks, and paper cups can affect the growth and proliferation of L-929 cells and are potentially toxic to humans.

  10. Adhesion and invasion of Clostridium perfringens type A into epithelial cells.

    PubMed

    Llanco, Luis A; Nakano, Viviane; Moraes, Claudia T P de; Piazza, Roxane M F; Avila-Campos, Mario J

    Clostridium perfringens is the causative agent for necrotic enteritis. It secretes the major virulence factors, and α- and NetB-toxins that are responsible for intestinal lesions. The TpeL toxin affects cell morphology by producing myonecrosis, but its role in the pathogenesis of necrotic enteritis is unclear. In this study, the presence of netB and tpeL genes in C. perfringens type A strains isolated from chickens with necrotic enteritis, their cytotoxic effects and role in adhesion and invasion of epithelial cells were evaluated. Six (27.3%) of the 22 C. perfringens type A strains were harboring the tpeL gene and produced morphological alterations in Vero cells after 6h of incubation. Strains tpeL (-) induced strong cell rounding after 6h of incubation and produced cell enlargement. None of the 22 strains harbored netB gene. All the six tpeL (+) gene strains were able to adhere to HEp-2 cells; however, only four of them (66.6%) were invasive. Thus, these results suggest that the presence of tpeL gene or TpeL toxin might be required for the adherence of bacteria to HEp-2 cells; however, it could not have any role in the invasion process. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    PubMed

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  12. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  13. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  14. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Centrifugation assay for measuring adhesion of serially passaged bovine chondrocytes to polystyrene surfaces.

    PubMed

    Kaplan, David S; Hitchins, Victoria M; Vegella, Thomas J; Malinauskas, Richard A; Ferlin, Kimberly M; Fisher, John P; Frondoza, Carmelita G

    2012-07-01

    A major obstacle in chondrocyte-based therapy for cartilage repair is the limited availability of cells that maintain their original phenotype. Propagation of chondrocytes as monolayer cultures on polystyrene surfaces is used extensively for amplifying cell numbers. However, chondrocytes undergo a phenotypic shift when propagated in this manner and display characteristics of more adherent fibroblastic cells. Little information is available about the effect of this phenotypic shift on cellular adhesion properties. We evaluated changes in adhesion property as bovine chondrocytes were serially propagated up to five passages in monolayer culture using a centrifugation cell adhesion assay, which was based on counting of cells before and after being exposed to centrifugal dislodgement forces of 120 and 350 g. Chondrocytes proliferated well in a monolayer culture with doubling times of 2-3 days, but they appeared more fibroblastic and exhibited elongated cell morphology with continued passage. The centrifugation cell adhesion assay showed that chondrocytes became more adhesive with passage as the percentage of adherent cells after centrifugation increased and was not statistically different from the adhesion of the fibroblast cell line, L929, starting at passage 3. This increased adhesiveness correlated with a shift to a fibroblastic morphology and increased collagen I mRNA expression starting at passage 2. Our findings indicate that the centrifugation cell adhesion assay may serve as a reproducible tool to track alterations in chondrocyte phenotype during their extended propagation in culture.

  16. Increased Chain Length Promotes Pneumococcal Adherence and Colonization

    PubMed Central

    Rodriguez, Jesse L.; Dalia, Ankur B.

    2012-01-01

    Streptococcus pneumoniae is a mucosal pathogen that grows in chains of variable lengths. Short-chain forms are less likely to activate complement, and as a consequence they evade opsonophagocytic clearance more effectively during invasive disease. When grown in human nasal airway surface fluid, pneumococci exhibited both short- and long-chain forms. Here, we determined whether longer chains provide an advantage during colonization when the organism is attached to the epithelial surface. Chain-forming mutants and the parental strain grown under conditions to promote chain formation showed increased adherence to human epithelial cells (A549 cells) in vitro. Additionally, adherence to A549 cells selected for longer chains within the wild-type strain. In vivo in a murine model of colonization, chain-forming mutants outcompeted the parental strain. Together, our results demonstrate that morphological heterogeneity in the pneumococcus may promote colonization of the upper respiratory tract by enhancing the ability of the organism to bind to the epithelial surface. PMID:22825449

  17. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  18. Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.

    PubMed

    Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C

    2015-01-01

    Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.

  19. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.

    PubMed

    Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S

    2006-11-01

    Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.

  20. Stem cell behavior on tailored porous oxide surface coatings.

    PubMed

    Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W

    2015-07-01

    Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biological evaluation of partially stabilized zirconia added HA/HDPE composites with osteoblast and fibroblast cell lines.

    PubMed

    Yari Sadi, Amir; Shokrgozar, Mohammad Ali; Homaeigohar, Seyed Shahin; Khavandi, Alireza

    2008-06-01

    In the present study, the biocompatibility of partially stabilized zirconia (PSZ) added hydroxyapatite (HA)--high density polyethylene (HDPE) composites was evaluated by proliferation and cell attachment assays on two osteoblast cell lines (G-292, Saos-2) and a type of fibroblast cell isolated from bone tissue namely HBF in different time intervals. Cell-material interactions on the surface of the composites were observed by scanning electron microscopy (SEM). The effect of composites on the behavior of osteoblast and fibroblast cells was compared with those of HDPE and Tissue Culture Poly Styrene (TPS) (as negative control) samples. Results showed that the composite samples supported a higher proliferation rate of osteoblast cells in the presence of composite samples as compared to the HDPE and TPS samples after 3, 7 and 14 days of incubation period. It was showed that an equal or in some cases an even higher proliferation rate of G-292 and Saos-2 osteoblast cells on composite samples in compare to negative controls in culture period (P < 0.05). The number of adhered cells on the composite samples was equal and in some cases higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods (P < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division.

  2. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.

    PubMed

    Barata, David; Spennati, Giulia; Correia, Cristina; Ribeiro, Nelson; Harink, Björn; van Blitterswijk, Clemens; Habibovic, Pamela; van Rijt, Sabine

    2017-09-07

    Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.

  3. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure.

    PubMed

    Machado, M; Dinis, A M; Salgueiro, L; Custódio, José B A; Cavaleiro, C; Sousa, M C

    2011-04-01

    The present work evaluates the anti-Giardia activity of Syzygium aromaticum and its major compound eugenol. The effects were evaluated on parasite growth, adherence, viability and ultrastructure. S. aromaticum essential oil (IC(50)=134 μg/ml) and eugenol (IC(50)=101 μg/ml) inhibited the growth of G. lamblia. The essential oil inhibited trophozoites adherence since the first hour of incubation and was able to kill almost 50% of the parasites population in a time dependent manner. The eugenol inhibited G. lamblia trophozoites adherence since the third hour and not induce cell lyses. The main morphological alterations were modifications on the cell shape, presence of precipitates in the cytoplasm, autophagic vesicles, internalization of flagella and ventral disc, membrane blebs, and intracellular and nuclear clearing. Taken together, our findings lead us to propose that eugenol was responsible for the anti-giardial activity of the S. aromaticum essential oil and both have potential for use as therapeutic agents against giardiasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook

    2007-06-29

    Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less

  5. Subinhibitory Doses of Aminoglycoside Antibiotics Induce Changes in the Phenotype of Mycobacterium abscessus

    PubMed Central

    Tsai, Sheng-Hui; Lai, Hsin-Chih

    2015-01-01

    Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections. PMID:26195529

  6. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications.

    PubMed

    Quintiliano, Kerlin; Crestani, Thayane; Silveira, Davi; Helfer, Virginia Etges; Rosa, Annelise; Balbueno, Eduardo; Steffens, Daniela; Jotz, Geraldo Pereira; Pilger, Diogo André; Pranke, Patricia

    2016-11-01

    Scaffolds produced by electrospinning act as supports for cell proliferation and differentiation, improved through the release of neurotrophic factors. The objective of this study was to develop aligned and random nanofiber scaffolds with and without nerve growth factor to evaluate the potential of mesenchymal stem cells (MSCs) for neural differentiation. Nanofiber morphology, diameter, degradability, cell morphology, adhesion, proliferation, viability, cytotoxicity, and neural differentiation were performed to characterize the scaffolds. The expression for nestin, β-III tubulin, and neuron-specific enolase was also evaluated. The scaffolds demonstrated a satisfactory environment for MSC growth, being nontoxic. The MSCs cultivated on the scaffolds were able to adhere and proliferate. The evaluation of neural differentiation indicated that in all groups of scaffolds the MSCs were able to upregulate neural gene expression.

  7. A multi-phenotypic imaging screen to identify bacterial effectors by exogenous expression in a HeLa cell line.

    PubMed

    Collins, Adam; Huett, Alan

    2018-05-15

    We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.

  8. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology;more » CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.« less

  9. Glycosides derived from Hemidesmus indicus R. Br. root inhibit adherence of Salmonella typhimurium to host cells: receptor mimicry.

    PubMed

    Das, Sarita; Devaraj, S Niranjali

    2006-09-01

    For centuries, indigenous plants have been used against enteritis but their molecular targets and mode of action remain obscure. The present study was carried out to elucidate the protective and therapeutic role, if any, of glycosides from Hemidesmus indicus against S. typhimurium-induced pathogenesis. Studies were carried out in a human intestinal cell line (Int 407) and a murine macrophage cell line (P388D1) in order to evaluate its potency in local as well as systemic infections. The inhibitory role of the glycosides present in Hemidesmus indicus root extract (GHI) were tested by pre-coating the cells (both Int 407 and P388D1) with GHI prior to infection, and by neutralizing the wild-type bacteria with GHI before cell infection. In both cases, GHI protected the host cells from the cytotoxic effects of the wild S. typhimurium. This suggests that the biologically significant sugars (hexose, hexosamine, fucose and sialic acid etc) present in GHI might be mimicking host cell receptor saccharides and thereby blocking the bacterial ligands from binding to the host cells. Int 407 cells infected with wild-type bacteria had a diffused adherence pattern after 4 h incubation, but this typical character was not observed in cells infected with GHI-treated bacteria and the cells were normal in appearance at 4 h. After 18 h cells infected with wild-type bacteria were hypertrophoid with a disintegrated membrane and wrapped in a bacterial coat, whereas cells infected with treated bacteria had comparatively less morphological changes and few defective shrunken rods adhered locally. This suggests that the glycosides can change the adherence pattern of S. typhimurium from diffused to local. Treated bacteria had less adherence and invasion capability in Int 407 as well as P388D1 cells. The results show the decreased ability of adherence of GHI-treated S. typhimurium was due to a loss of surface hydrophobicity. A nonspecific binding between S. typhimurium and the glycosides was confirmed using ELISA. In summary, the glycosides of H. indicus root inhibited S. typhimurium induced pathogenesis nonspecifically, by reducing bacterial surface hydrophobicity and perhaps also by mimicking host cell receptors, thereby blocking its attachment to host cell and further pathological effects. Copyright (c) 2006 John Wiley & Sons, Ltd.

  10. Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells

    PubMed Central

    Davidson, Allyson Fry; Glasscock, Cameron; McClanahan, Danielle R.; Benson, James D.; Higgins, Adam Z.

    2015-01-01

    Ice-free cryopreservation, known as vitrification, is an appealing approach for banking of adherent cells and tissues because it prevents dissociation and morphological damage that may result from ice crystal formation. However, current vitrification methods are often limited by the cytotoxicity of the concentrated cryoprotective agent (CPA) solutions that are required to suppress ice formation. Recently, we described a mathematical strategy for identifying minimally toxic CPA equilibration procedures based on the minimization of a toxicity cost function. Here we provide direct experimental support for the feasibility of these methods when applied to adherent endothelial cells. We first developed a concentration- and temperature-dependent toxicity cost function by exposing the cells to a range of glycerol concentrations at 21°C and 37°C, and fitting the resulting viability data to a first order cell death model. This cost function was then numerically minimized in our state constrained optimization routine to determine addition and removal procedures for 17 molal (mol/kg water) glycerol solutions. Using these predicted optimal procedures, we obtained 81% recovery after exposure to vitrification solutions, as well as successful vitrification with the relatively slow cooling and warming rates of 50°C/min and 130°C/min. In comparison, conventional multistep CPA equilibration procedures resulted in much lower cell yields of about 10%. Our results demonstrate the potential for rational design of minimally toxic vitrification procedures and pave the way for extension of our optimization approach to other adherent cell types as well as more complex systems such as tissues and organs. PMID:26605546

  11. Separation of integrin-dependent adhesion from morphological changes based on differential PLC specificities.

    PubMed

    Wooten, D K; Teague, T K; McIntyre, B W

    1999-01-01

    In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.

  12. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    PubMed

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  13. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    NASA Astrophysics Data System (ADS)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  14. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization

    PubMed Central

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel H.; Jedlicka, Sabrina S.; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. PMID:25641802

  15. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination

    PubMed Central

    Shamir, Eliah R.; Coutinho, Kester; Georgess, Dan; Auer, Manfred

    2016-01-01

    ABSTRACT Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1+ epithelium displayed extensive intercellular junctions, and Twist1– luminal epithelial cells could still adhere to disseminating Twist1+ cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1+ cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate. PMID:27402962

  16. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  17. Considerations for the Use of SH-SY5Y Neuroblastoma Cells in Neurobiology

    PubMed Central

    Kovalevich, Jane; Langford, Dianne

    2016-01-01

    The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC® CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC® HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC® in 1970 by June L. Biedler. Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler’s group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Nat Cancer Inst 71:741–747, 1983). These two phenotypes may correspond to the “N” and “S” types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75:991–1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-β-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Nat Cancer Inst 71:741–747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is characterized by neuronal markers. There are several methods to differentiate SH-SY5Y cells and are mentioned below. Retinoic acid is the most commonly used means for differentiation and will be addressed in detail. PMID:23975817

  18. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology.

    PubMed

    Kovalevich, Jane; Langford, Dianne

    2013-01-01

    The use of primary mammalian neurons derived from embryonic central nervous system tissue is limited by the fact that once terminally differentiated into mature neurons, the cells can no longer be propagated. Transformed neuronal-like cell lines can be used in vitro to overcome this limitation. However, several caveats exist when utilizing cells derived from malignant tumors. In this context, the popular SH-SY5Y neuroblastoma cell line and its use in in vitro systems is described. Originally derived from a metastatic bone tumor biopsy, SH-SY5Y (ATCC(®) CRL-2266™) cells are a subline of the parental line SK-N-SH (ATCC(®) HTB-11™). SK-N-SH were subcloned three times; first to SH-SY, then to SH-SY5, and finally to SH-SY5Y. SH-SY5Y were deposited to the ATCC(®) in 1970 by June L. Biedler.Three important characteristics of SH-SY5Y cells should be considered when using these cells in in vitro studies. First, cultures include both adherent and floating cells, both types of which are viable. Few studies address the biological significance of the adherent versus floating phenotypes, but most reported studies utilize adherent populations and discard the floating cells during media changes. Second, early studies by Biedler's group indicated that the parental differentiated SK-N-SH cells contained two morphologically distinct phenotypes: neuroblast-like cells and epithelial-like cells (Ross et al., J Nat Cancer Inst 71:741-747, 1983). These two phenotypes may correspond to the "N" and "S" types described in later studies in SH-SY5Y by Encinas et al. (J Neurochem 75:991-1003, 2000). Cells with neuroblast-like morphology are positive for tyrosine hydroxylase (TH) and dopamine-β-hydroxylase characteristic of catecholaminergic neurons, whereas the epithelial-like counterpart cells lacked these enzymatic activities (Ross et al., J Nat Cancer Inst 71:741-747, 1983). Third, SH-SY5Y cells can be differentiated to a more mature neuron-like phenotype that is characterized by neuronal markers. There are several methods to differentiate SH-SY5Y cells and are mentioned below. Retinoic acid is the most commonly used means for differentiation and will be addressed in detail.

  19. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this population is not a classical DC population. The cells might earlier be related to the veiled macrophage-like cells also earlier described in afferent lymph.

  20. Mesenchymal stem cells reside in anterior cruciate ligament remnants in situ.

    PubMed

    Fu, Weili; Li, Qi; Tang, Xin; Chen, Gang; Zhang, Chenghao; Li, Jian

    2016-07-01

    It has been reported that the anterior cruciate ligament (ACL) has certain self-healing ability after acute injury or with primary suture repair. Many studies have confirmed that a remnant preservation technique with ACL reconstruction contributes to biological augmentation for ACL healing. However, it remains unclear whether mesenchymal stem cells (MSC) reside in ACL remnants in situ. The aim of this study was to investigate the methods of culture and identification of MSC derived from the remnants of ACL rupture patients and to analyse these MSC's properties. The cells of ACL remnants from the ACL rupture patients were isolated by the methods of enzymatic digestion and cultured in vitro to the third passage under the microscope to observe their morphology and growth status. The third passage of isolated cells was analysed for the identification of immunophenotype, osteogenic, adipogenic and chondrogenic differentiation. On the third to fifth days of in vitro culture, a few cells of long fusiform shape appeared and were adherent to the plastic walls. On the sixth to ninth days, cells clustered and colonies were observed. The third passage cells showed uniform cell morphology and good proliferation, with appearance of the typical surface markers of MSC, CD29, CD44, CD90 and CD105. The surface markers of CD34 and CD45 of haematopoietic stem cells were not expressed. Under appropriate conditions of in vitro culture, isolated cells could be differentiated into osteoblasts that deposit mineralised matrix and express early osteogenic markers, adipocytes that accumulate lipid droplets in cytoplasm and chondrocytes that secrete chondrogenic-specific matrix aggrecan and collagen II. Real-time polymerase chain reaction (PCR) analysis demonstrated that the specific mRNA expression of osteogenesis, adipogenesis and chondrogenesis increased significantly compared with the control groups at day zero. Stem cells derived in situ from the human ACL stump were successfully isolated and characterised. Those isolated cells were identified as MSC according to their adherent ability, morphology, surface markers and multilineage differentiation potential. MSC derived from ACL remnants could be a potential source of seeding cells for ligament regeneration.

  1. Tumour-cytolytic human monocyte-derived macrophages: a simple and efficient method for the generation and long-term cultivation as non-adherent cells in a serum-free medium.

    PubMed

    Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L

    1992-01-01

    We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the results of ongoing studies in which scanning electron microscopy and confocal laser scanning microscopy are being used to define MAC function in different immunological reactions, and examples of these observations are presented herein.

  2. Live cell isolation by laser microdissection with gravity transfer

    NASA Astrophysics Data System (ADS)

    Podgorny, Oleg V.

    2013-05-01

    Laser microdissection by pulsing ultraviolet laser allows the isolation and recultivation of live cells based on morphological features or/and fluorescent labelling from adherent cell cultures. Previous investigations described only the use of the laser microdissection and pressure catapulting (LMPC) for live cell isolation. But LMPC requires complex manipulations and some skill. Furthermore, single-cell cloning using laser microdissection has not yet been demonstrated. The first evidence of successful application of laser microdissection with gravity transfer (LMDGT) for capturing and recultivation of live cells is presented. A new strategy for LMDGT is presented because of the failure to reproduce the manufacturer's protocol. Using the new strategy, successful capturing and recultivation of circle-shaped samples from confluent monolayer of HeLa cells was demonstrated. It was found that LMDGT is easier than LMPC because it doesn't require personal participation of investigator in transferring of isolated samples to final culture dishes. Moreover, for the first time, the generation of clonal colonies from single live cells isolated by laser microdissection was demonstrated. Data obtained in this study confirm that LMDGT is a reliable and high-yield method allowing isolation and expansion of both cell clusters and single cells from adherent cell cultures.

  3. Evaluation of Bone Marrow Processing Protocol for Therapeutic Applications via Culture and Characterization of Mesenchymal Stem Cells.

    PubMed

    Verma, Poonam; Bansal, Himanshu; Agrawal, Anupama; Leon, Jerry; Sundell, I Birgitta; Koka, Prasad S

    Human mesenchymal stem cells from bone marrow (hMSCs) have broad therapeutic potential. These cells can be are readily isolated from bone marrow by their property to adhere to tissue culture treated culture wares. However, the proliferation rates and other properties of the cells gradually change during expansion. This study aims to validate the protocol of isolation and differentiation of hMSCs from bone marrow for therapeutic applications. Sixty ml of bone marrow was extracted from 5 patients and MSCs were isolated. These were characterized by Flow Cytometry, CFU assay and were differentiated into bone, fat cells and neurocytes. The cells were having healthy morphology. These were positive for the markers CD105, CD90 and CD73 and negative for CD45, CD34 and HLA-DR. The cells could differentiate into fat, bone and neural cells. MSCs from the bone marrow were isolated and differentiated. These cells were morphologically healthy and passed CFU assay. The cells exhibited differentiation potential into bone, fat and neural tissue. These cells can be used in therapeutic applications.

  4. Deletion of Aspergillus nidulans GDP-mannose transporters affects hyphal morphometry, cell wall architecture, spore surface character, cell adhesion, and biofilm formation.

    PubMed

    Kadry, Ashraf A; El-Ganiny, Amira M; Mosbah, Rasha A; Kaminskyj, Susan G W

    2018-07-01

    Systemic human fungal infections are increasingly common. Aspergillus species cause most of the airborne fungal infections. Life-threatening invasive aspergillosis was formerly found only in immune-suppressed patients, but recently some strains of A. fumigatus have become primary pathogens. Many fungal cell wall components are absent from mammalian systems, so they are potential drug targets. Cell-wall-targeting drugs such as echinocandins are used clinically, although echinocandin-resistant strains were discovered shortly after their introduction. Currently there are no fully effective anti-fungal drugs. Fungal cell wall glycoconjugates modulate human immune responses, as well as fungal cell adhesion, biofilm formation, and drug resistance. Guanosine diphosphate (GDP) mannose transporters (GMTs) transfer GDP-mannose from the cytosol to the Golgi lumen prior to mannosylation. Aspergillus nidulans GMTs are encoded by gmtA and gmtB. Here we elucidate the roles of A. nidulans GMTs. Strains engineered to lack either or both GMTs were assessed for hyphal and colonial morphology, cell wall ultrastructure, antifungal susceptibility, spore hydrophobicity, adherence and biofilm formation. The gmt-deleted strains had smaller colonies with reduced sporulation and with thicker hyphal walls. The gmtA deficient spores had reduced hydrophobicity and were less adherent and less able to form biofilms in vitro. Thus, gmtA not only participates in maintaining the cell wall integrity but also plays an important role in biofilm establishment and adherence of A. nidulans. These findings suggested that GMTs have roles in A. nidulans growth and cell-cell interaction and could be a potential target for new antifungals that target virulence determinants.

  5. The bovine endometrial epithelial cells promote the differentiation of trophoblast stem-like cells to binucleate trophoblast cells.

    PubMed

    Li, Xiawei; Li, Zhiying; Hou, Dongxia; Zhao, Yuhang; Wang, Chen; Li, Xueling

    2016-12-01

    Endometrial epithelial cells (EECs) cultured in vitro are valuable tools for investigating embryo implantation and trophoblast differentiation. In this study, we have established the bovine EECs and trophoblast stem-like (TS) coculture system, and used it to investigate the binucleate cell formation of ungulates. The EECs was derived from the uterine horn ipsilateral to the corpus luteum by using collagenase I and deoxyribonuclease I, which exhibited typical epithelial morphology and were expressing bovine uterine epithelial marker such as IFNAR1, IFNAR2, Erα, PGR, ESR1 and KRT18. The cells immunostained positively by epithelial and trophectoderm marker cytokeratin 18 (KRT18) and stromal marker vimentin antibodies, and the KRT18 positive cells reached 99 %. The EECs can be cultured for up to 20 passages in vitro with no significant morphology changes and uterine epithelial marker gene expression alteration. The bTS cells were established in a dual inhibitor system and exhibited typical trophoblast stem cell characteristics. When bTS cells were cultured with EECs, the bTS cells adhered to the EECs as adhering to feeder cells. Binucleate cells began appearing on day 4 of coculture and reached approximately 18.47 % of the differentiated cells. Quantitative real-time PCR or immunofluorescence analyses were performed on bTS cells cocultured at day 6 and day 12. The results showed that the expression level of KRT18 was down-regulated while the expression level of trophoblast differentiation marker MASH2, HAND1, GCM1 and CDX2 was up-regulated in bTS cells. In conclusion, bovine EECs can be obtained from the uterine horn ipsilateral to the corpus luteum via treatment with collagenase I and deoxyribonuclease I, and the EECs-bTS cells coculture system presents an ideal tool for studying the differentiation of bTS cells to trophoblast binucleate cells.

  6. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor.

    PubMed

    Izak, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-05-01

    We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes.

    PubMed

    Rezek, Bohuslav; Ukraintsev, Egor; Krátká, Marie; Taylor, Andrew; Fendrych, Frantisek; Mandys, Vaclav

    2014-09-01

    The authors show that nanocrystalline diamond (NCD) thin films prepared by microwave plasma enhanced chemical vapor deposition apparatus with a linear antenna delivery system are well compatible with epithelial cells (5637 human bladder carcinoma) and significantly improve the cell adhesion compared to reference glass substrates. This is attributed to better adhesion of adsorbed layers to diamond as observed by atomic force microscopy (AFM) beneath the cells. Moreover, the cell morphology can be adjusted by appropriate surface treatment of diamond by using hydrogen and oxygen plasma. Cell bodies, cytoplasmic rims, and filopodia were characterized by Peakforce AFM. Oxidized NCD films perform better than other substrates under all conditions (96% of cells adhered well). A thin adsorbed layer formed from culture medium and supplemented with fetal bovine serum (FBS) covered the diamond surface and played an important role in the cell adhesion. Nevertheless, 50-100 nm large aggregates formed from the RPMI medium without FBS facilitated cell adhesion also on hydrophobic hydrogenated NCD (increase from 23% to 61%). The authors discuss applicability for biomedical uses.

  8. [Isolation and purification of primary Kupffer cells from mouse liver].

    PubMed

    Sun, Chao; Luo, Qingbo; Lu, Xiuxian; Zheng, Daofeng; He, Diao; Wu, Zhongjun

    2016-08-01

    Objective To isolate and purify Kupffer cells (KCs) from BALB/c mice by an efficient method of low-speed centrifugation and rapid adherence. Methods The mouse liver tissue was perfused in situ and digested with 0.5 g/L collagenase type IV in vitro by water bath. Then, through the low-speed centrifugation, KCs were separated from the mixed hepatocytes, and purified by rapid adherent characteristics. Finally, the production and activity of KCs obtained by this modified method were compared with those isolated by Percoll density gradient centrifugation. We used F4/80 antibody immunofluorescence technique to observe morphological features of KCs, flow cytometry (FCM) to detect the expression of F4/80 antibody and the ink uptake test to observe the phagocytic activity. Moreover, using FCM, we evaluated the expressions of molecules associated with antigen presentation, including major histocompatibility complex class II (MHC II), CD40, CD86 and CD68 on the surface of KCs subjected to hypoxia/reoxygenation (H/R) modeling. And, ELISA was conducted to measure tumor necrosis factor-α (TNF-α) production of the cultured KCs following H/R. Results The yield of KCs was (5.83±0.54)×10(6) per mouse liver and the survival rate of KCs was up to 92% by low-speed centrifugation and rapid adherent method. Compared with Percoll density gradient centrifugation [the yield of KCs was (2.19±0.43)×10(6) per liver], this new method significantly improved the yield of KCs. F4/80 immunofluorescence showed typical morphologic features of KCs such as spindle or polygon shapes and FCM identified nearly 90% F4/80 positive cells. The phagocytic assay showed that lots of ink particles were phagocytosed into the isolated cells. KC H/R models expressed more MHC II, CD40 and CD86 and produced more TNF-α participating in inflammation. Conclusion The efficient method to isolate and purify KCs from BALB /c mice has been successfully established.

  9. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307

  10. Cellular compatibility of highly degradable bioactive ceramics for coating of metal implants.

    PubMed

    Radetzki, F; Wohlrab, D; Zeh, A; Delank, K S; Mendel, T; Berger, G; Syrowatka, F; Mayr, O; Bernstein, A

    2011-01-01

    Resorbable ceramics can promote the bony integration of implants. Their rate of degradation should ideally be synchronized with bone regeneration. This study examined the effect of rapidly resorbable calcium phosphate ceramics 602020, GB14, 305020 on adherence, proliferation and morphology of human bone-derived cells (HBDC) in comparison to β-TCP. The in vitro cytotoxicity was determined by the microculture tetrazolium (MTT) assay. HBDC were grown on the materials for 3, 7, 11, 15 and 19 days and counted. Cell morphology, cell attachment, cell spreading and the cytoskeletal organization of HBDC cultivated on the substrates were investigated using laser scanning microscopy and environmental scanning electron microscopy. All substrates supported sufficient cellular growth for 19 days and showed no cytotoxicity. On each material an identical cell colonisation of well communicating, polygonal, vital cells with strong focal contacts was verified. HBDC showed numerous well defined stress fibres which give proof of well spread and strongly anchored cells. Porous surfaces encouraged the attachment and spreading of HBDC. Further investigations regarding long term biomaterial/cell interactions in vitro and in vivo are required to confirm the utility of the new biomaterials.

  11. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    PubMed

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p < 0.05), while in the case of HBF an equal or even higher number of cells adhered to PE was observed. The number of adhered osteoblast cells was almost equal and in some days even higher than the number of adhered cells on negative control sample, while in the case of fibroblast this difference was significantly higher than TPS (p < 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were observed to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  12. Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.

    2012-09-01

    We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.

  13. NanoTopoChip: High-throughput nanotopographical cell instruction.

    PubMed

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Phenotypic feature quantification of patient derived 3D cancer spheroids in fluorescence microscopy image

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee

    2017-03-01

    Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.

  15. Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye

    2014-07-01

    This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.

  16. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    PubMed

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. iCELLigence real-time cell analysis system for examining the cytotoxicity of drugs to cancer cell lines

    PubMed Central

    Türker Şener, Leyla; Albeni̇z, Gürcan; Di̇nç, Bi̇rcan; Albeni̇z, Işil

    2017-01-01

    The recently developed iCELLigence™ real-time cell analyzer (RTCA) can be used for the label-free real-time monitoring of cancer cell proliferation, viability, invasion and cytotoxicity. The RTCA system uses 16-well microtiter plates with a gold microelectrode biosensor array that measures impedance when cells adhere to the microelectrodes causing an alternating current. By measuring the electric field generated in this process, the RTCA system can be used for the analysis of cell proliferation, viability, morphology and migration. The present review aimed to summarize the working method of the RTCA system, in addition to discussing the research performed using the system for various applications, including cancer drug discovery via measuring cytotoxicity. PMID:28962095

  18. Dynamic self-organization of microwell-aggregated cellular mixtures.

    PubMed

    Song, Wei; Tung, Chih-Kuan; Lu, Yen-Chun; Pardo, Yehudah; Wu, Mingming; Das, Moumita; Kao, Der-I; Chen, Shuibing; Ma, Minglin

    2016-06-29

    Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels.

  19. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; Gadegaard, Nikolaj; Oreffo, Richard O. C.

    2014-06-01

    Stem cells respond to nanoscale surface features, with changes in cell growth and differentiation mediated by alterations in cell adhesion. The interaction of nanotopographical features with integrin receptors in the cells' focal adhesions alters how the cells adhere to materials surfaces, and defines cell fate through changes in both cell biochemistry and cell morphology. In this Review, we discuss how cell adhesions interact with nanotopography, and we provide insight as to how materials scientists can exploit these interactions to direct stem cell fate and to understand how the behaviour of stem cells in their niche can be controlled. We expect knowledge gained from the study of cell-nanotopography interactions to accelerate the development of next-generation stem cell culture materials and implant interfaces, and to fuel discovery of stem cell therapeutics to support regenerative therapies.

  20. Protein Adsorption and Subsequent Fibroblasts Adhesion on Hydroxyapatite Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Takemura, Taro; Hanagata, Nobutaka; Yoshioka, Tomohiko; Tanaka, Junzo

    2011-10-01

    Quartz crystal microbalance with dissipation (QCM-D) technique was employed for protein adsorption and subsequent fibroblast adhesion on hydroxyapatite (HAp) nanocrystals. The pre-adsorption of three proteins (albumin (BSA) or fibronectin (Fn) or collagen (Col)) and subsequent adsorption of fetal bovine serum (FBS), and the adhesion of fibroblasts on the surface were in situ monitored, and evaluated with the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic change as ΔD-Δf plot. The Col adsorption showed larger Δf and ΔD values compared with BSA or Fn adsorption, and the subsequent FBS adsorption depended on the pre-adsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed the different behaviour on the surfaces, indicating the process affected by cell-protein interactions. The confocal laser scanning microscope images of adherent cells showed the different morphology and pseudopod on the surfaces. The cells adhered on the surfaces modified with Fn and Col had the uniaxially expanded shape with fibrous pseudopods, while those modified with BSA had round shape. The different cell-protein interaction would cause the arrangement of extracellular matrix and cytoskeleton changes at the interfaces.

  1. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    NASA Astrophysics Data System (ADS)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  2. Collective Cell Behavior in Mechanosensing of Substrate Thickness.

    PubMed

    Tusan, Camelia G; Man, Yu-Hin; Zarkoob, Hoda; Johnston, David A; Andriotis, Orestis G; Thurner, Philipp J; Yang, Shoufeng; Sander, Edward A; Gentleman, Eileen; Sengers, Bram G; Evans, Nicholas D

    2018-06-05

    Extracellular matrix stiffness has a profound effect on the behavior of many cell types. Adherent cells apply contractile forces to the material on which they adhere and sense the resistance of the material to deformation-its stiffness. This is dependent on both the elastic modulus and the thickness of the material, with the corollary that single cells are able to sense underlying stiff materials through soft hydrogel materials at low (<10 μm) thicknesses. Here, we hypothesized that cohesive colonies of cells exert more force and create more hydrogel deformation than single cells, therefore enabling them to mechanosense more deeply into underlying materials than single cells. To test this, we modulated the thickness of soft (1 kPa) elastic extracellular-matrix-functionalized polyacrylamide hydrogels adhered to glass substrates and allowed colonies of MG63 cells to form on their surfaces. Cell morphology and deformations of fluorescent fiducial-marker-labeled hydrogels were quantified by time-lapse fluorescence microscopy imaging. Single-cell spreading increased with respect to decreasing hydrogel thickness, with data fitting to an exponential model with half-maximal response at a thickness of 3.2 μm. By quantifying cell area within colonies of defined area, we similarly found that colony-cell spreading increased with decreasing hydrogel thickness but with a greater half-maximal response at 54 μm. Depth-sensing was dependent on Rho-associated protein kinase-mediated cellular contractility. Surface hydrogel deformations were significantly greater on thick hydrogels compared to thin hydrogels. In addition, deformations extended greater distances from the periphery of colonies on thick hydrogels compared to thin hydrogels. Our data suggest that by acting collectively, cells mechanosense rigid materials beneath elastic hydrogels at greater depths than individual cells. This raises the possibility that the collective action of cells in colonies or sheets may allow cells to sense structures of differing material properties at comparatively large distances. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy

    NASA Astrophysics Data System (ADS)

    Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.

    2018-02-01

    We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.

  4. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth

    NASA Astrophysics Data System (ADS)

    Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-01

    The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.

  5. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium.

    PubMed

    Yamada, Shinya; Maeda, Hirotaka; Obata, Akiko; Lohbauer, Ulrich; Yamamoto, Akiko; Kasuga, Toshihiro

    2013-12-12

    Poly(l-lactic acid)-based films which include 60 wt % of vaterite (V) or siloxane-containing vaterite (SiV) were coated on a pure magnesium substrate, denoted by PLLA/V or PLLA/SiV, respectively, to suppress early corrosion and improve its cytocompatibility. Both coating films adhered to the Mg substrate with 2.3-2.8 MPa of tensile bonding strength. Soaking test for 7 days in α-modified minimum essential medium revealed that the morphological instability of the PLLA/V film caused a higher amount of Mg 2+ ion to be released from the coating sample. On the other hand, in the case of the coating with the PLLA/SiV film, no morphological change even after the soaking test was observed, owing to the suppression of the degradation rate. In cell culture tests, the proliferation of mouse osteoblast-like cell (MC3T3-E1) was significantly enhanced by both coatings, in comparison with the uncoated magnesium substrate. The cell morphology revealed that a few less-spread cells were observed on the PLLA/V film, while more elongated cells were done on the PLLA/SiV film. The cells on the PLLA/SiV film exhibited an extremely higher alkaline phosphatase activity after 21 days of incubation than that on the PLLA/V one. The PLLA/SiV film suppressed the early corrosion and enhanced cytocompatibility on metallic magnesium.

  6. Clostridium perfringens Type E Virulence Traits Involved in Gut Colonization

    PubMed Central

    Redondo, Leandro M.; Carrasco, Juan M. Díaz; Redondo, Enzo A.; Delgado, Fernando; Miyakawa, Mariano E. Fernández

    2015-01-01

    Clostridium perfringens type E disease in ruminants has been characterized by hemorrhagic enteritis or sudden death. Although type E isolates are defined by the production of alpha and iota toxin, little is known about the pathogenesis of C. perfringens type E infections. Thus far, the role of iota toxin as a virulence factor is unknown. In this report, iota toxin showed positive effects on adherence and colonization of C. perfringens type E while having negative effect on the adherence of type A cells. In-vitro and in-vivo models suggest that toxinotype E would be particularly adapted to exploit the changes induced by iota toxin in the surface of epithelial cells. In addition, type E strains produce metabolites that affected the growth of potential intra-specific competitors. These results suggest that the alteration of the enterocyte morphology induced by iota toxin concomitantly with the specific increase of type E cell adhesion and the strong intra-specific growth inhibition of other strains could be competitive traits inherent to type E isolates that improve its fitness within the bovine gut environment. PMID:25799452

  7. Isolation and characterization of mesenchymal progenitors derived from the bone marrow of goats native from northeastern Brazil.

    PubMed

    Silva Filho, Osmar Ferreira da; Argôlo Neto, Napoleão Martins; Carvalho, Maria Acelina Martins de; Carvalho, Yulla Klinger de; Diniz, Anaemilia das Neves; Moura, Laécio da Silva; Ambrósio, Carlos Eduardo; Monteiro, Janaína Munuera; Almeida, Hatawa Melo de; Miglino, Maria Angélica; Alves, Jacyara de Jesus Rosa Pereira; Macedo, Kássio Vieira; Rocha, Andressa Rego da; Feitosa, Matheus Levi Tajra; Alves, Flávio Ribeiro

    2014-08-01

    To characterize bone marrow progenitors cells grown in vitro, using native goats from northeastern Brazil as animal model. Ten northeastern Brazil native goats of both genders were used from the Piauí Federal University Agricultural Science Center's (UFPI) - Goat Farming Sector. Bone marrow aspirates where taken from the tibial ridge and seeded on culture plates for isolation, expansion and Flow Cytometry (expression markers - Oct-3/4, PCNA, Ck-Pan, Vimentina, Nanog). Progenitor cells showed colonies characterized by the presence of cell pellets with fibroblastoid morphology. Cell confluence was taken after 14 days culture and the non-adherent mononuclear cell progressive reduction. After the first passage, 94.36% cell viability was observed, starting from 4.6 x 106 cell/mL initially seeded. Cells that went through flow cytometry showed positive expression for Oct-3/4, PCNA, Ck-Pan, Vimentina, and Nanog. Bone marrow progenitor isolated of native goats from northeastern Brazil showed expression markers also seen in embryonic stem cells (Oct-3/4, Nanog), markers of cell proliferation (PCNA) and markers for mesenchymal cells (Vimentina and Ck-pan), which associated to morphological and culture growth features, suggest the existence of a mesenchymal stem cell (MSC) population in the goat bone marrow stromal cells studied.

  8. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    PubMed

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

    PubMed

    Hoefert, Sebastian; Sade Hoefert, Claudia; Munz, Adelheid; Schmitz, Inge; Grimm, Martin; Yuan, Anna; Northoff, Hinnak; Reinert, Siegmar; Alexander, Dorothea

    2016-03-01

    Immune deficiency and bacterial infection have been suggested to play a role in the pathophysiology of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Zoledronate was previously found to promote THP-1 cell death. To examine this hypothesis with all commonly prescribed bisphosphonates, we tested the effect of (nitrogen-containing) ibandronate, risedronate, alendronate, pamidronate, and (non-nitrogen-containing) clodronate on macrophagic THP-1 cells. Activated THP-1 cells were exposed to .5 to 50 μM of nitrogen-containing bisphosphonates and .5 to 500 μM of clodronate. Cell adherence and survival were assessed in vitro using the xCELLigence real-time monitoring system. Results were confirmed histologically and verified with Live/Dead staining. All bisphosphonates inhibited THP-1 cell adherence and survival dose and time dependently, significant for zoledronate, alendronate, pamidronate, and clodronate in high concentrations (50 μM and 500 μM; P < .05). Low concentrations (0.5 μM) of risedronate, alendronate, and pamidronate prolonged the inflexion points of THP-1 cell survival compared with controls (P < .05). THP-1 cells exhibited no cytomorphologic changes at all concentrations. Commonly prescribed bisphosphonates inhibit the survival of macrophagic THP-1 cells dose-dependently without altering morphology. This may suggest a local immune dysfunction reflective of individual bisphosphonate potency leading to the pathogenesis of BRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film.

    PubMed

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle's-medium-and-Ham's-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures.

  11. Behavior of a Spontaneously Arising Human Retinal Pigment Epithelial Cell Line Cultivated on Thin Alginate Film

    PubMed Central

    Najafabadi, Hoda Shams; Soheili, Zahra-Soheila; Ganji, Shahla Mohammad

    2015-01-01

    Purpose: A cell line spontaneously derived from human retinal pigment epithelium (hRPE) was cultured on alginate film gelatinized with different concentrations of neurobasal cell culture medium (NCCM) to assess its growth and morphological behavior on this naturally occurring polysaccharide. Methods: Neonatal human globes were used to isolate hRPE cells. They were cultured in Dulbecco's modified Eagle’s-medium-and-Ham’s-F12-medium-(DMEM/F12) supplemented with 10% fetal bovine serum (FBS). Cultures were continuously studied using phase contrast microscopy. After the nineth passage, cells were characterized through immunocytochemical analysis for Oct4, Chx10, and Pax6 and Ki67 markers. In each well of a 6-well microplate, 1 and 2% weight/volume (w/v) alginate in deionized water was added and gelatinized using 1× and 10× NCCM. hRPE cells were cultured at a density of 2 × 105 cells/well in alginate-coated microplates. After 5 days, hRPE colonies were harvested and re-plated on polystyrene substrates. Morphology and growth of hRPE cultures were determined during the next 2 weeks. Results: The first few passages of the cultures were purely hRPE cells that revealed typical morphological features of the pigmented epithelium. They made spaces, devoid of cells, between hRPE cell monolayer and fill in the unoccupied spaces. They grew faster than native RPE cells and rapidly overgrew. Immunocytochemical test revealed that the founded cells expressed Chx10, Pax6, Ki67 and Oct4. The hRPE cells survived unlimitedly on alginate film and formed giant adjoining colonies. After re-plating, hRPE colonies adhered quickly on polystyrene and displayed native hRPE morphological features. Conclusion: Alginate film can support the survival and growth of hRPE cells and induce the cells to re-organize in tissue-like structures. PMID:26730315

  12. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  13. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.

    PubMed Central

    MacDonald, T T; Carter, P B

    1982-01-01

    Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173

  14. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  15. Preparation and characterization of microporous poly(d,l-lactic acid) film for tissue engineering scaffold

    PubMed Central

    Shi, Shuai; Wang, Xiu Hong; Guo, Gang; Fan, Min; Huang, Mei Juan; Qian, Zhi Yong

    2010-01-01

    We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy structure with multimicrometer scale pores on the air surface of film could be observed. As the morphology of PLA film could not be stabilized using solvent–nonsolvent phase separation, we investigated the effect of temperature, air movement, and concentration on the properties of microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it was easy to prepare PLA film with micropores, and it was stable. As the relationship between the morphology and formation factors was clear and the morphology of the PLA film was controllable, we studied the PLA film’s potential use for cell culture. SEM results showed that NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption and proliferation of fibroblasts. PMID:21179227

  16. Adherence of Moraxella bovis to cell cultures of bovine origin.

    PubMed

    Annuar, B O; Wilcox, G E

    1985-09-01

    The adherence of five strains of Moraxella bovis to cell cultures was investigated. M bovis adhered to cultures of bovine corneal epithelial and Madin-Darby bovine kidney cells but not to cell types of non-bovine origin. Both piliated and unpiliated strains adhered but piliated strains adhered to a greater extent than unpiliated strains. Antiserum against pili of one strain inhibited adherence of piliated strains but caused only slight inhibition of adherence to the unpiliated strains. Treatment of bacteria with magnesium chloride caused detachment of pili from the bacterial cell and markedly inhibited adherence of piliated strains but caused only slight inhibition of adherence by the unpiliated strains. The results suggested that adhesion of piliated strains to cell cultures was mediated via pili but that adhesins other than pili may be involved in the attachment of unpiliated strains of M bovis to cells.

  17. Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-12-01

    Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. Copyright © 2016. Published by Elsevier B.V.

  18. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    PubMed Central

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways including endothelial barrier damage and inflammation, potentially leading to vascular hyperpermeability and severe illness in vivo. This work provides new insights into the pathophysiological mechanisms of Leptospira infection. PMID:28750011

  19. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    PubMed

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways including endothelial barrier damage and inflammation, potentially leading to vascular hyperpermeability and severe illness in vivo. This work provides new insights into the pathophysiological mechanisms of Leptospira infection.

  20. IL-5-stimulated eosinophils adherent to periostin undergo stereotypic morphological changes and ADAM8-dependent migration.

    PubMed

    Johansson, M W; Khanna, M; Bortnov, V; Annis, D S; Nguyen, C L; Mosher, D F

    2017-10-01

    IL-5 causes suspended eosinophils to polarize with filamentous (F)-actin and granules at one pole and the nucleus in a specialized uropod, the "nucleopod," which is capped with P-selectin glycoprotein ligand-1 (PSGL-1). IL-5 enhances eosinophil adhesion and migration on periostin, an extracellular matrix protein upregulated in asthma by type 2 immunity mediators. Determine how the polarized morphology evolves to foster migration of IL-5-stimulated eosinophils on a surface coated with periostin. Blood eosinophils adhering to adsorbed periostin were imaged at different time points by fluorescent microscopy, and migration of eosinophils on periostin was assayed. After 10 minutes in the presence of IL-5, adherent eosinophils were polarized with PSGL-1 at the nucleopod tip and F-actin distributed diffusely at the opposite end. After 30-60 minutes, the nucleopod had dissipated such that PSGL-1 was localized in a crescent or ring away from the cell periphery, and F-actin was found in podosome-like structures. The periostin layer, detected with monoclonal antibody Stiny-1, shown here to recognize the FAS1 4 module, was cleared in wide areas around adherent eosinophils. Clearance was attenuated by metalloproteinase inhibitors or antibodies to disintegrin metalloproteinase 8 (ADAM8), a major eosinophil metalloproteinase previously implicated in asthma pathogenesis. ADAM8 was not found in podosome-like structures, which are associated with proteolytic activity in other cell types. Instead, immunoblotting demonstrated proteoforms of ADAM8 that lack the cytoplasmic tail in the supernatant. Anti-ADAM8 inhibited migration of IL-5-stimulated eosinophils on periostin. Migrating IL-5-activated eosinophils on periostin exhibit loss of nucleopodal features and appearance of prominent podosomes along with clearance of the Stiny-1 periostin epitope. Migration and epitope clearance are both attenuated by inhibitors of ADAM8. We propose, therefore, that eosinophils remodel and migrate on periostin-rich extracellular matrix in the asthmatic airway in an ADAM8-dependent manner, making ADAM8 a possible therapeutic target. © 2017 John Wiley & Sons Ltd.

  1. Anti-adhesion Property of the Potential Probiotic Strain Lactobacillus fermentum 8711 Against Methicillin-Resistant Staphylococcus aureus (MRSA).

    PubMed

    Jayashree, Sathyanarayanan; Karthikeyan, Raman; Nithyalakshmi, Sampath; Ranjani, Jothi; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen and one of the leading causes of nosocomial infection worldwide. Probiotic bacteria play a significant role in preventive or therapeutic interventions of gastrointestinal infections in human as well as animals. In this study, we have investigated the adhesion property of the probiotic strain Lactobacillus fermentum MTCC 8711 and its ability to prevent the adhesion of MRSA to human colon adenocarcinoma cells, Caco-2. We have shown that L. fermentum could efficiently adhere to the Caco-2 cells. Also, we have shown that L. fermentum significantly reduced MRSA adhesion to Caco-2 cells. Three types of experiments were performed to assess the anti-adhesion property of L. fermentum against MRSA. Inhibition (Caco-2 cells were pre-treated with L. fermentum , and subsequently MRSA was added), competition (both L. fermentum and MRSA were added to Caco-2 cells simultaneously), and displacement or exclusion (Caco-2 cells were pre-treated with MRSA, and subsequently L. fermentum was added). In all three experiments, adhesion of MRSA was significantly reduced. Interestingly, L. fermentum could efficiently displace the adhered MRSA, and hence this probiotic can be used for therapeutic applications also. In cytotoxicity assay, we found that L. fermentum per se was not cytotoxic, and also significantly reduced the MRSA-induced cytotoxicity. The protective effect occurred without affecting Caco-2 cell morphology and viability.

  2. Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.

    PubMed

    Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J

    2013-07-01

    There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Role of Candida albicans polymorphism in interactions with oral epithelial cells.

    PubMed

    Villar, C C; Kashleva, H; Dongari-Bagtzoglou, A

    2004-08-01

    Candida albicans is a polymorphic organism which undergoes morphologic transition between yeast, pseudohyphal and hyphal forms. The ability of C. albicans to change from yeast to filamentous types is a major virulence determinant of this organism. However, the exact role of hyphal transformation in establishing oral mucosal infection is still poorly understood. In this study we used mutants with defects in filamentation, as well as oral strains, which differ in their capacity to form true hyphae, to examine the role of hyphal transformation in the interactions of C. albicans with oral epithelial cells in vitro. These interactions included the ability of these strains to adhere to and injure epithelial cells, as well as their ability to trigger a proinflammatory cytokine response. We found that strains SC5314 and ATCC28366 formed true hyphae on epithelial cells, whereas strain ATCC32077 and the tup1/tup1 mutant formed only pseudohyphae. Double mutant efg1/efg1cph1/cph1 grew exclusively as blastospores. We also found that yeast and pseudohyphal strains showed reduced adherence capacity to oral keratinocytes and caused minimal cell damage. Moreover, we showed that both yeast and pseudohyphal forms have a strongly attenuated proinflammatory phenotype, since they failed to induce significant interleukin (IL)-1alpha and IL-8 responses by oral epithelial cells. Germination of C. albicans into true hyphae is particularly important in the interactions with oral epithelial cells in vitro.

  4. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount ofmore » viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.« less

  5. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    PubMed

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.

  6. A Reliable and Reproducible Model for Assessing the Effect of Different Concentrations of α-Solanine on Rat Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Ordóñez-Vásquez, Adriana; Jaramillo-Gómez, Lorenza; Duran-Correa, Camilo; Escamilla-García, Erandi; De la Garza-Ramos, Myriam Angélica; Suárez-Obando, Fernando

    2017-01-01

    Αlpha-solanine ( α -solanine) is a glycoalkaloid present in potato (Solanum tuberosum) . It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α -solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α -solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs) to different concentrations of α -solanine for 24 h. The results demonstrate that nonlethal concentrations of α -solanine (2-6  μ M) changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α -solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α -solanine.

  7. A Reliable and Reproducible Model for Assessing the Effect of Different Concentrations of α-Solanine on Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Ordóñez-Vásquez, Adriana; Jaramillo-Gómez, Lorenza; Duran-Correa, Camilo

    2017-01-01

    Αlpha-solanine (α-solanine) is a glycoalkaloid present in potato (Solanum tuberosum). It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α-solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α-solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs) to different concentrations of α-solanine for 24 h. The results demonstrate that nonlethal concentrations of α-solanine (2–6 μM) changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α-solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α-solanine. PMID:29201465

  8. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium

    PubMed Central

    Yamada, Shinya; Maeda, Hirotaka; Obata, Akiko; Lohbauer, Ulrich; Yamamoto, Akiko; Kasuga, Toshihiro

    2013-01-01

    Poly(l-lactic acid)-based films which include 60 wt % of vaterite (V) or siloxane-containing vaterite (SiV) were coated on a pure magnesium substrate, denoted by PLLA/V or PLLA/SiV, respectively, to suppress early corrosion and improve its cytocompatibility. Both coating films adhered to the Mg substrate with 2.3–2.8 MPa of tensile bonding strength. Soaking test for 7 days in α-modified minimum essential medium revealed that the morphological instability of the PLLA/V film caused a higher amount of Mg2+ ion to be released from the coating sample. On the other hand, in the case of the coating with the PLLA/SiV film, no morphological change even after the soaking test was observed, owing to the suppression of the degradation rate. In cell culture tests, the proliferation of mouse osteoblast-like cell (MC3T3-E1) was significantly enhanced by both coatings, in comparison with the uncoated magnesium substrate. The cell morphology revealed that a few less-spread cells were observed on the PLLA/V film, while more elongated cells were done on the PLLA/SiV film. The cells on the PLLA/SiV film exhibited an extremely higher alkaline phosphatase activity after 21 days of incubation than that on the PLLA/V one. The PLLA/SiV film suppressed the early corrosion and enhanced cytocompatibility on metallic magnesium. PMID:28788425

  9. A new protocol for the propagation of dendritic cells from rat bone marrow using recombinant GM-CSF, and their quantification using the mAb OX-62

    PubMed Central

    Chen-Woan, M.; Delaney, C.P.; Fournier, V.; Wakizaka, Y.; Murase, N.; Fung, J.; Starzl, T.E.; Demetris, A.J.

    2010-01-01

    Bone marrow (BM)-derived dendritic cells (DC) are the most potent known antigen (Ag) presenting cell in vivo and in vitro. Detailed analysis of their properties and mechanisms of action requires an ability to produce large numbers of DC. Although DC have been isolated from several rat tissues, including BM, the yield is uniformly low. We describe a simple method for the propagation of large numbers of DC from rat BM and document cell yield with the rat DC marker, OX-62. After depletion of plastic-adherent and Fc+ cells by panning on dishes coated with normal serum, residual BM cells were cultured in gelatin coated flasks using murine rGM-CSF supplemented medium. Prior to analysis, non-adherent cells were re-depleted of contaminating Fc+ cells. Propagation of DC was monitored by double staining for FACS analysis (major histocompatibility complex (MHC) class II+/OX-62+, OX-19−). Functional assay, morphological analysis and evaluation of homing patterns of cultured cells revealed typical DC characteristics. MHC class II and OX-62 antigen expression increased with time in culture and correlated with allostimulatory ability. DC yield increased until day 7, when 3.3 × 106 DC were obtained from an initial 3 × 108 unfractionated BM cells. Significant numbers of DC can be generated from rat BM using these simple methods. This should permit analysis and manipulation of rat DC functions in vivo and in vitro. PMID:7836778

  10. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    PubMed

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  11. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns

    PubMed Central

    2013-01-01

    Background Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. Results We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86–24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. Conclusion Our observations further support the fact that bison are likely ‘wildlife’ reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract. PMID:24373611

  12. Bison and bovine rectoanal junctions exhibit similar cellular architecture and Escherichia coli O157 adherence patterns.

    PubMed

    Kudva, Indira T; Stasko, Judith A

    2013-12-28

    Escherichia coli O157 (E. coli O157) has been isolated from bison retail meat, a fact that is important given that bison meat has been implicated in an E. coli O157-multistate outbreak. In addition, E. coli O157 has also been isolated from bison feces at slaughter and on farms. Cattle are well documented as E. coli O157 reservoirs, and the primary site of E. coli O157 persistence in such reservoirs is the rectoanal junction (RAJ), located at the distal end of the bovine gastrointestinal tract. Since bison and cattle share many genetic similarities manifested as common lineage, susceptibility to infection and the nature of immune responses to infectious agents, we decided to evaluate whether the RAJ of these animals were comparable both in terms of cellular architecture and as sites for adherence of E. coli O157. Specifically, we compared the histo-morphologies of the RAJ and evaluated the E. coli O157 adherence characteristics to the RAJ squamous epithelial (RSE) cells, from these two species. We found that the RAJ of both bison and cattle demonstrated similar distribution of epithelial cell markers villin, vimentin, cytokeratin, E-cadherin and N-cadherin. Interestingly, N-cadherin predominated in the stratified squamous epithelium reflecting its proliferative nature. E. coli O157 strains 86-24 SmR and EDL 933 adhered to RSE cells from both animals with similar diffuse and aggregative patterns, respectively. Our observations further support the fact that bison are likely 'wildlife' reservoirs for E. coli O157, harboring these bacteria in their gastrointestinal tract. Our results also extend the utility of the RSE-cell assay, previously developed to elucidate E. coli O157-cattle RAJ interactions, to studies in bison, which are warranted to determine whether these observations in vitro correlate with those occurring in vivo at the RAJ within the bison gastrointestinal tract.

  13. Role of the eosinophil in serum-mediated adherence of equine leukocytes to infective larvae of Strongylus vulgaris.

    PubMed

    Klei, T R; Chapman, M R; Dennis, V A

    1992-06-01

    The adherence of equine leukocytes to Strongylus vulgaris infective larvae (L3) in the presence of normal and immune sera was examined in vitro. Immune sera promoted adherence of buffy coat cells from ponies with S. vulgaris-induced eosinophilia (eosinophilic ponies) to S. vulgaris L3. However, eosinophils in the buffy coat cells were the predominant adherent cell type. Studies using leukocyte populations enriched for eosinophils, neutrophils, and mononuclear cells from eosinophilic ponies support the observations using buffy coat cells that eosinophils were the main effector cells. Adherent eosinophils from eosinophilic ponies immobilized L3. Neutrophils were less adherent and did not immobilize L3. Mononuclear cells failed to adhere. Normal eosinophils from strongly-naive ponies did not immobilize S. vulgaris L3 in the presence of immune serum, suggesting the in vivo activation of eosinophils in eosinophilic animals. Immune serum promoted less adherence of buffy coat cells to Strongylus edentatus or mixed species of Cyathostominae L3, suggesting that the serum-mediated cellular adherence phenomenon was species-specific. Normal serum promoted less cellular adherence to S. vulgaris L3 than immune serum. The adherence mediated by normal serum was removed by heat inactivation, suggesting that this nonspecific phenomenon was a complement-mediated reaction. Immune globulins promoted reactions similar to that seen using heat-inactivated immune serum, whereas normal globulins did not promote adherence. Immune globulins absorbed with pieces of S. vulgaris adult worms did not promote the adherence of buffy coat cells to S. vulgaris L3, suggesting that adult and L3 stages share antigens important in this phenomenon that resulted in the removal of specific adherence antibody during absorption.

  14. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein.

    PubMed

    Lengerer, Birgit; Pjeta, Robert; Wunderer, Julia; Rodrigues, Marcelo; Arbore, Roberto; Schärer, Lukas; Berezikov, Eugene; Hess, Michael W; Pfaller, Kristian; Egger, Bernhard; Obwegeser, Sabrina; Salvenmoser, Willi; Ladurner, Peter

    2014-02-12

    Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of the animals to adhere. The RNAi mediated changes of the anchor cell morphology are comparable to situations observed in human gut epithelia. Therefore, our current findings and future investigations using this powerful flatworm model system might contribute to a better understanding of the function of intermediate filaments and their associated human diseases.

  15. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).

    PubMed

    Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter

    2014-01-01

    Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

  16. Robust imaging and gene delivery to study human lymphoblastoid cell lines.

    PubMed

    Jolly, Lachlan A; Sun, Ying; Carroll, Renée; Homan, Claire C; Gecz, Jozef

    2018-06-20

    Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.

  17. In vitro analysis of equine, bone marrow-derived mesenchymal stem cells demonstrates differences within age- and gender-matched horses.

    PubMed

    Carter-Arnold, J L; Neilsen, N L; Amelse, L L; Odoi, A; Dhar, M S

    2014-09-01

    Stem cell therapies are used routinely in equine practice. Most published reports characterise stem cells derived from younger horses; however, middle-aged horses are often in athletic performance, and experience degenerative medical conditions. Thus, mesenchymal stem cells (MSCs) from this group should be investigated. To describe differences in in vitro adherence, proliferation and potential for differentiation of equine bone marrow-derived MSCs (equine BMMSCs) harvested from middle-aged (10-13 years old) female donors. Descriptive study of stem cell characteristics. Equine BMMSCs from 6 horses were cultured in vitro and evaluated for viability, proliferation, osteogenesis, chondrogenesis, adipogenesis, cluster-of-differentiation markers and gene expression. Equine BMMSCs from all 6 donors demonstrated fibroblastic, cellular morphology, adherence to plastic and expression of cluster-of-differentiation markers. They varied in their rate of proliferation and trilineage differentiation. The equine BMMSCs of one of 6 donors demonstrated a higher rate of proliferation, enhanced ability for cell passaging and a more robust in vitro differentiation. Comparatively, equine BMMSCs from 2 donors demonstrated a lower rate of proliferation and lack of osteogenic and chondrogenic differentiation. The results of this study confirm that donor-to-donor variation in equine BMMSCs exists and this variation can be documented using in vitro assays. Subjective assessment suggests that the rate of proliferation tends to correlate with differentiation potential. © 2013 EVJ Ltd.

  18. Curli Temper Adherence of Escherichia coli O157:H7 to Squamous Epithelial Cells from the Bovine Recto-Anal Junction in a Strain-Dependent Manner

    PubMed Central

    Carter, Michelle Q.; Sharma, Vijay K.; Stasko, Judith A.; Giron, Jorge A.

    2016-01-01

    ABSTRACT Our recent studies have shown that intimin and the locus of enterocyte effacement-encoded proteins do not play a role in Escherichia coli O157:H7 (O157) adherence to the bovine recto-anal junction squamous epithelial (RSE) cells. To define factors that play a contributory role, we investigated the role of curli, fimbrial adhesins commonly implicated in adherence to various fomites and plant and human epithelial cells, in O157 adherence to RSE cells. Specifically, we examined (i) wild-type strains of O157; (ii) curli variants of O157 strains; (iii) isogenic curli deletion mutants of O157; and (iv) adherence inhibition of O157 using anti-curlin sera. Results of these experiments conducted under stringent conditions suggest that curli do not solely contribute to O157 adherence to RSE cells and in fact demonstrate a modulating effect on O157 adherence to RSE cells in contrast to HEp-2 cells (human epidermoid carcinoma of the larynx cells with HeLa contamination). The absence of curli and presence of blocking anti-curli antibodies enhanced O157-RSE cell interactions among some strains, thus alluding to a spatial, tempering effect of curli on O157 adherence to RSE cells when present. At the same time, the presence or absence of curli did not alter RSE cell adherence patterns of another O157 strain. These observations are at variance with the reported role of curli in O157 adherence to human cell lines such as HEp-2 and need to be factored in when developing anti-adherence modalities for preharvest control of O157 in cattle. IMPORTANCE This study demonstrated that O157 strains interact with epithelial cells in a host-specific manner. The fimbriae/adhesins that are significant for adherence to human cell lines may not have a role or may have a modulating role in O157 adherence to bovine cells. Targeting such adhesins may not prevent O157 attachment to bovine cells but instead may result in improved adherence. Hence, conducting host-specific evaluations is critical when selecting targets for O157 control strategies. PMID:27742683

  19. Bacterial adherence and biofilm formation on medical implants: a review.

    PubMed

    Veerachamy, Suganthan; Yarlagadda, Tejasri; Manivasagam, Geetha; Yarlagadda, Prasad Kdv

    2014-10-01

    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants. © IMechE 2014.

  20. Dendritic cells loaded with HeLa-derived exosomes simulate an antitumor immune response.

    PubMed

    Ren, Guoping; Wang, Yanhong; Yuan, Shexia; Wang, Baolian

    2018-05-01

    The aim of the present study was to investigate the effect of loading dendritic cells (DCs) with HeLa-derived exosomes on cytotoxic T-lymphocyte (CTL) responses, and the cytotoxic effects of CTL responses on the HeLa cell line. Ultrafiltration centrifugation combined with sucrose density gradient ultracentrifugation was applied to isolate exosomes (HeLa-exo) from the supernatant of HeLa cells. Morphological features of HeLa-exo were identified by transmission electron microscopy (TEM), and the expression of cluster of differentiation (CD)63 was detected by western blotting. Next, monocytes were isolated from peripheral blood and cultured with the removal of adherent cells to induce DC proliferation. DCs were then phenotypically characterized by flow cytometry. Finally, MTT assays were performed to analyze the effects of DCs loaded with HeLa-exo on T cell proliferation and cytotoxicity assays to evaluate the effect of CTL responses on HeLa cells. TEM revealed that HeLa-exo exhibit typical cup-shaped morphology with a diameter range of 30-100 nm. It was also identified that the CD63 surface antigen is expressed on HeLa-exo. Furthermore, monocyte-derived DCs were able to express CD1a, suggesting that DC induction was a success. DCs exhibited hair-like protrusions and other typical dendritic cell morphology. Furthermore, DCs loaded with HeLa-exo could enhance CTL proliferation and the cytotoxic activity of CTLs compared with DCs without HeLa-exo (P<0.05). In conclusion, DCs loaded with HeLa-exo may promote T cell proliferation and induce CTL responses to inhibit the growth of cervical cancer cells in vitro .

  1. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings

    PubMed Central

    Qu, Chengjuan; Kaitainen, Salla; Kröger, Heikki; Lappalainen, Reijo; Lammi, Mikko J.

    2016-01-01

    The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs) would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM) techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs. PMID:28773947

  2. Ceramic modifications of porous titanium: effects on macrophage activation.

    PubMed

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Polarized Ends of Human Macula Densa Cells: Ultrastructural Investigation and Morphofunctional Correlations.

    PubMed

    Cangiotti, Angela Maria; Lorenzi, Teresa; Zingaretti, Maria Cristina; Fabri, Mara; Morroni, Manrico

    2018-05-01

    The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Control of dental-derived induced pluripotent stem cells through modified surfaces for dental application.

    PubMed

    Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum

    2017-07-01

    The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.

  5. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  6. Influence of Malaria Infection on the Elaboration of Soluble Mediators by Adherent Mononuclear Cells

    PubMed Central

    Wyler, David J.; Oppenheim, Joost J.; Koontz, Louis C.

    1979-01-01

    Malaria results in two seemingly paradoxical perturbations of the immune response: polyclonal B-cell activation and immunosuppression. To determine what immunoregulatory role mediators secreted by adherent cells might play in these alterations, we cultured adherent cells from uninfected mice and from mice at different times during infection with Plasmodium berghei or P. yoelii. Culture supernatants obtained from these cells were tested for their ability to enhance the in vitro proliferative responses of thymocytes to suboptimal concentrations of concanavalin A or to inhibit the mitogen-stimulated proliferation of normal spleen cells. Supernatants obtained from adherent cells of mice early in infection (days 1 to 3) contained significantly elevated levels of enhancing activity which on Bio-Gel P-100 chromatography resembled lymphocyte-activating factor. Later in infection (days 4 and 5), these supernatants contained inhibitory activity. Normal adherent cells, when cocultivated in vitro with parasitized erythrocytes, ingested parasite debris and were stimulated to produce the enhancing factor. At high parasite/adherent-cell ratios, cells elaborated an inhibitory factor. These findings suggest that during malaria, adherent cells are converted from a nonspecific helper role to a nonspecific suppressor role. This modulation in function may be due to the direct interaction between adherent cells and parasitized erythrocytes. PMID:457269

  7. Immunogenicity of an adeno-vector vaccine expressing the F protein of a respiratory syncytial virus manufactured from serum-free suspension culture.

    PubMed

    Shao, Hsiao-Yun; Hsu, Huai-Sheng; Yu, Shu-Ling; Wu, Shang-Rung; Hu, Kai-Chieh; Chang, Ching-Kun; Liu, Chia-Chyi; Chow, Yen-Hung

    2016-06-01

    We have developed an efficient cell culture process to scale up the production of a recombinant adenovirus that expresses the membrane-trunked fusion protein of respiratory syncytial virus (RSV; Ad-F0ΔTM). Adherent cells of human embryonic kidney (HEK) 293-derived cell, 293A, which supports the production of E1/E3-deleted Ad-F0ΔTM when cultured in the presence of fetal bovine serum (FBS), were adapted to suspension growth under serum-free medium. In doing so, we studied the immunogenicity of Ad-F0ΔTMsus, which propagated in a bioreactor that was cultured with serum-free suspension of 293A, in comparison with Ad-F0ΔTMadh, which was produced from parental 293A cells that were adherently cultured in medium containing FBS. The size and morphology of Ad-F0ΔTMsus and Ad-F0ΔTMadh virions were identical upon inspection with electron microscopy. The results showed that anti-F IgG and RSV-neutralizing titer were raised in the serum of both mice that were intranasally immunized twice with Ad-F0ΔTMsus or Ad-F0ΔTMadh at two-week injection intervals. Furthermore, the immune responses persisted for six months after vaccination. Activation of F protein-specific CD8(+) T cell's epitope associated IFN-ɣ and IL-4 was induced in both Ad-F0ΔTMsus- and Ad-F0ΔTMadh, but not in Ad-LacZsus, -immunized mouse splenocytes. No vaccine-enhanced lung inflammation, airway mucus occlusion or eosinophils infiltration were observed in Ad-immunized mice followed by RSV challenge; however, these symptoms were observed following immunization with formalin-inactivated RSV vaccine. These results indicate that the safety and potency of Ad-F0ΔTM produced from either adherent cells or suspension and serum-free cells are the same. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells.

    PubMed

    Molinari, G; Rohde, M; Talay, S R; Chhatwal, G S; Beckert, S; Podbielski, A

    2001-04-01

    Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.

  9. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering.

    PubMed

    Hayami, James W S; Surrao, Denver C; Waldman, Stephen D; Amsden, Brian G

    2010-03-15

    Herein we report on the development and characterization of a biodegradable composite scaffold for ligament tissue engineering based on the fundamental morphological features of the native ligament. An aligned fibrous component was used to mimic the fibrous collagen network and a hydrogel component to mimic the proteoglycan-water matrix of the ligament. The composite scaffold was constructed from cell-adherent, base-etched, electrospun poly(epsilon-caprolactone-co-D,L-lactide) (PCLDLLA) fibers embedded in a noncell-adherent photocrosslinked N-methacrylated glycol chitosan (MGC) hydrogel seeded with primary ligament fibroblasts. Base etching improved cellular adhesion to the PCLDLLA material. Cells within the MGC hydrogel remained viable (72 +/- 4%) during the 4-week culture period. Immunohistochemistry staining revealed ligament ECM markers collagen type I, collagen type III, and decorin organizing and accumulating along the PCLDLLA fibers within the composite scaffolds. On the basis of these results, it was determined that the composite scaffold design was a viable alternative to the current approaches used for ligament tissue engineering and merits further study. (c) 2009 Wiley Periodicals, Inc.

  10. Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy.

    PubMed

    Prymak, Oleg; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Muhr, Gert; Beckmann, Felix; Donath, Tilmann; Assad, Michel; Epple, Matthias

    2005-10-01

    Disks consisting of macroporous nickel-titanium alloy (NiTi, Nitinol, Actipore) are used as implants in clinical surgery, e.g. for fixation of spinal dysfunctions. The morphological properties were studied by scanning electron microscopy (SEM) and by synchrotron radiation-based microtomography (SRmuCT). The composition was studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and energy-dispersive X-ray spectroscopy (EDX). The mechanical properties were studied with temperature-dependent dynamical mechanical analysis (DMA). Studies on the biocompatibility were performed by co-incubation of porous NiTi samples with isolated peripheral blood leukocyte fractions (polymorphonuclear neutrophil granulocytes, PMN; peripheral blood mononuclear leukocytes, PBMC) in comparison with control cultures without NiTi samples. The cell adherence to the NiTi surface was analyzed by fluorescence microscopy and scanning electron microscopy. The activation of adherent leukocytes was analyzed by measurement of the released cytokines using enzyme-linked immunosorbent assay (ELISA). The cytokine response of PMN (analyzed by the release of IL-1ra and IL-8) was not significantly different between cell cultures with or without NiTi. There was a significant increase in the release of IL-1ra (p<0.001), IL-6 (p<0.05), and IL-8 (p<0.05) from PBMC in the presence of NiTi samples. In contrast, the release of TNF-alpha by PBMC was not significantly elevated in the presence of NiTi. IL-2 was released from PBMC only in the range of the lower detection limit in all cell cultures. The material, clearly macroporous with an interconnecting porosity, consists of NiTi (martensite; monoclinic, and austenite; cubic) with small impurities of NiTi2 and possibly NiC(x). The material is not superelastic upon manual compression and shows a good biocompatibility.

  11. Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation.

    PubMed

    Chiriac, G; Herten, M; Schwarz, F; Rothamel, D; Becker, J

    2005-09-01

    The aim of the present study was to investigate the influence of a new piezoelectric device, designed for harvesting autogenous bone chips from intra-oral sites, on chip morphology, cell viability and differentiation. A total of 69 samples of cortical bone chips were randomly gained by either (1) a piezoelectric device (PS), or (2) conventional rotating drills (RD). Shape and size of the bone chips were compared by means of morphometrical analysis. Outgrowing osteoblasts were identified by means of alkaline phosphatase activity (AP), immunhistochemical staining for osteocalcin (OC) synthesis and reverse transcriptase-polymerase chain reaction phenotyping. In 88.9% of the RD and 87.9% of the PS specimens, an outgrowth of adherent cells nearby the bone chips was observed after 6-19 days. Confluence of cells was reached after 4 weeks. Positive staining for AP and OC identified the cells as osteoblasts. The morphometrical analysis revealed a statistically significant more voluminous size of the particles collected with PS than RD. Within the limits of the present study, it may be concluded that both the harvesting methods are not different from each other concerning their detrimental effect on viability and differentiation of cells growing out of autogenous bone chips derived from intra-oral cortical sites.

  12. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  13. Isolation and characterization of vascular endothelial cells derived from fetal tooth buds of miniature swine.

    PubMed

    Nasu, Masanori; Nakahara, Taka; Tominaga, Noriko; Tamaki, Yuichi; Ide, Yoshiaki; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2013-03-01

    The aim of the present study was to isolate endothelial cells from tooth buds (unerupted deciduous teeth) of miniature swine. Mandibular molar tooth buds harvested from swine fetuses at fetal days 90-110 were cultured in growth medium supplemented with 15% fetal bovine serum in 100-mm culture dishes until the primary cells outgrown from the tooth buds reached confluence. A morphologically defined set of pavement-shaped primary cells were picked up manually with filter paper containing trypsin/ethylenediamine tetraacetic acid solution and transferred to a separate dish. A characterization of the cellular characteristics and a functional analysis of the cultured cells at passages 3 to 5 were performed using immunofluorescence, a reverse transcriptase polymerase chain reaction assay, a tube formation assay, and transmission electron microscopy. The isolated cells grew in a pavement arrangement and showed the characteristics of contact inhibition upon reaching confluence. The population doubling time was ~48 h at passage 3. As shown by immunocytostaining and western blotting with specific antibodies, the cells produced the endothelial marker proteins such as vascular endothelial cadherin, von Willebrand factor, and vascular endothelial growth factor receptor-2. Observation with time-lapse images showed that small groups of cells aggregated and adhered to each other to form tube-like structures. Moreover, as revealed through transmission electron microscopy, these adherent cells had formed junctional complexes. These endothelial cells from the tooth buds of miniature swine are available as cell lines for studies on tube formation and use in regenerative medical science.

  14. Characterization of the Murine Myeloid Precursor Cell Line MuMac-E8

    PubMed Central

    Fricke, Stephan; Riemschneider, Sina; Kohlschmidt, Janine; Hilger, Nadja; Fueldner, Christiane; Knauer, Jens; Sack, Ulrich; Emmrich, Frank; Lehmann, Jörg

    2014-01-01

    Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies. PMID:25546418

  15. Interaction of angiogenically stimulated intermediate CD163+ monocytes/macrophages with soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli matched to that of human arteries.

    PubMed

    Mayer, Anke; Kratz, Karl; Hiebl, Bernhard; Lendlein, Andreas; Jung, Friedrich

    2012-03-01

    The cell population of peripheral blood monocytes/macrophages (MO) is heterogeneous: The majority of the MO are CD14++ CD16- and named "classical" (= MO1). Furthermore, two other subpopulations were described: CD14++ CD16+ ("intermediate" = MO2) and CD14+ CD16++ ("non-classical" = MO3). It is reported that MO2 possess anti-inflammatory properties and express the MO lineage marker CD163. On a hydrophilic neutrally charged acrylamide-based hydrogel human intermediate (CD14++ CD16+ ), angiogenically stimulated CD163++ monocytes/macrophages (aMO2) maintained a proangiogenic and noninflammatory status for at least 14 days. Here, we explored whether this aMO2 subset adhered to hydrophobic poly(n-butyl acrylate) networks (cPnBA) and also remained in its proangiogenic and noninflammatory status. Because substrate elasticity can impact adherence, morphology, and function of cells, cPnBAs with different Young's modulus (250 and 1100 kPa) were investigated, whereby their elasticity was tailored by variation of the cross-linker content and matched to the elasticity of human arteries. The cPnBAs exhibited similar surface properties (e.g., surface roughness), which were maintained after ethylene oxide sterilization and exposure in serum-free cell culture medium for 18 h at 37°C. aMO2 were seeded on cPnBA samples (1.7 × 10(5) cells/1.33 cm(2) ) in Dulbecco's modified Eagle medium (DMEM high glucose) supplemented with vascular endothelial growth factor 165 (VEGF-A(165) , 10 ng/mL) and fetal calf serum (10 vol%) for 3 and 72 h. On both polymeric samples (n = 3 each), the numbers of adherent cells per unit area were significantly higher (P < 0.01; cPnBA0250: 3 h 13 ± 5 cells/mm(2) , 72 h 234 ± 106 cells/mm(2) ; cPnBA1100: 3 h 14 ± 3 cells/mm(2) , 72 h 198 ± 113 cells/mm(2) ) compared to control cultures (glass, 3 h: 6 ± 3 cells/mm(2) , 72 h: 130 ± 83 cells/mm(2) ) and showed a typically spread morphology. The mRNA expression profile of the aMO2 was not influenced by the substrate elasticity. In the supernatant of aMO2 on cPnBA0250, significantly less VEGF-A(165) product was found than expected based on the mRNA level measured (P < 0.01). Tests with recombinant VEGF-A(165) then demonstrated that significantly more VEGF-A(165) was adhered on cPnBA0250 than on cPnBA1100 (P < 0.01). Seeded on cPnBA, aMO2-unaffected by the elastic moduli of both substrates-seemed to remain in their subset status and secreted VEGF-A(165) without release of proinflammatory cytokines. These in vitro results might indicate that this MO subset can be used as cellular delivery system for proangiogenic and noninflammatory mediators to support the endothelialization of cPnBA. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. 3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    NASA Astrophysics Data System (ADS)

    Scaffaro, Roberto; Lo Re, Giada; Rigogliuso, Salvatrice; Ghersi, Giulio

    2012-08-01

    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability.

  17. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci.

    PubMed

    Hanson, D F; Murphy, P A; Windle, B E

    1980-06-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain.

  18. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci

    PubMed Central

    1980-01-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain. PMID:6247413

  19. Characterization of bone marrow mesenchymal stromal cells in aplastic anaemia.

    PubMed

    Hamzic, Edita; Whiting, Karen; Gordon Smith, Edward; Pettengell, Ruth

    2015-06-01

    In aplastic anaemia (AA), haemopoietic activity is significantly reduced and generally attributed to failure of haemopoietic stem cells (HSC) within the bone marrow (BM). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the BM microenvironment, including mesenchymal stromal cells (MSC). MSC involvement in the functional restriction of HSC in AA is largely unknown and therefore, the physical and functional properties of AA MSC were studied in vitro. MSC were characterized by their phenotype and ability to form adherent stromal layers. The functional properties of AA MSC were assessed through proliferative, clonogenic and cross-over culture assays. Results indicate that although AA MSC presented typical morphology and distinctive mesenchymal markers, stromal formation was reduced, with 50% of BM samples failing to produce adherent layers. Furthermore, their proliferative and clonogenic capacity was markedly decreased (P = 0·03 and P = 0·04 respectively) and the ability to sustain haemopoiesis was significantly reduced, as assessed by total cell proliferation (P = 0·032 and P = 0·019 at Week 5 and 6, respectively) and clonogenic potential of HSC (P = 0·02 at Week 6). It was concluded that the biological characteristics of AA MSC are different from those of control MSC and their in vitro haemopoiesis-supporting ability is significantly reduced. © 2015 John Wiley & Sons Ltd.

  20. Adherence of Trichomonas vaginalis to cell culture monolayers.

    PubMed

    Martinotti, M G; Martinetto, P; Savoia, D

    1986-06-01

    The in vitro adherence to WISH cells of a pathogenic Trichomonas vaginalis strain was studied with a method utilizing thymidine-labeled protozoa. A marked dose-related adherence was observed. Glutaraldehyde fixed trichomonads were not adherent. The presence of fetal calf serum during the assay did not influence attachment. Concanavalin A inhibited adherence of protozoa. Complete or partial inhibition of adherence was achieved by preincubating WISH cells with Lactobacillus fermentum or Streptococcus agalactiae. Finally, pretreatment of cells with alpha-estradiol, beta-estradiol, progesterone and estrone influenced attachment of protozoa, whereas estriol was ineffective. These results suggest that adherence of Trichomonas vaginalis is dependent on different factors, whose manipulation may have clinical relevance in preventing recurrence of trichomonad vaginitis.

  1. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.

  2. Separation and Analysis of Adherent and Non-Adherent Cancer Cells Using a Single-Cell Microarray Chip.

    PubMed

    Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime

    2017-10-21

    A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.

  3. NCAM polysialylation during adherence transitions: live cell monitoring using an antibody-mimetic EGFP-endosialidase and the viability dye DRAQ7.

    PubMed

    Smith, Paul J; Furon, Emeline; Wiltshire, Marie; Chappell, Sally; Patterson, Laurence H; Shnyder, Steven D; Falconer, Robert A; Errington, Rachel J

    2013-07-01

    Polysialylation of neural cell adhesion molecule (NCAM) in small-cell lung cancer (SCLC) is thought to regulate NCAM-mediated cell-surface interactions, imparting antiadhesive properties to cells. However, SCLC cells in culture demonstrate anchorage-independent growth and spontaneously generate adherent forms. Here, the ability of polySia-NCAM to influence cell proliferation and adherence is unclear. We analyzed live SCLC cell polySia-NCAM expression by flow cytometry, using the novel combination of a polySia antibody-mimetic eGFP-tagged endosialidase and the viability dye DRAQ7. Enrichment for adherence (<30 population doublings) in SCLC cell lines resolved populations with increased (SHP-77 and COR-L279) or negligible (NCI-H69) polysialylation compared with nonadherent parent populations. Adherent forms retained NCAM expression as confirmed by immunofluorescence and immunoblotting. Initial transition to adherence and loss of polysialylation in NCI-H69 was linked to a reduced proliferation rate with no increase in cell death. This reduced proliferation rate was reiterated in vivo as determined by the growth of noninvasive subcutaneous xenografts in mice. Continued selection for enhanced substrate adherence in NCI-H69 (>150 population doublings) resolved cells with stable re-expression of polySia and increased growth rates both in vitro and in vivo. Endoneuraminidase removal of polySia from re-expressing cells showed that rapid adherence to extracellular matrix components was functionally independent of polySia. PolySia expression was not altered when isolated adherent forms underwent enforced cell-cell contact in three-dimensional culture. Coculture of polySia expression variants modulated overall polySia expression profiles indicating an influence of SCLC microcommunity composition independent of substrate adherence potential. We conclude that an obligatory linkage between substrate adherence potential and polySia expression is rejected for SCLC cells. We suggest that a degree of homeostasis operates to regulate polysialylation within heterogeneous cell populations. The findings suggest a new model for SCLC progression while the application of live cell profiling of polysialylation could be used to assess polySia-NCAM-targeted therapies. Copyright © 2013 International Society for Advancement of Cytometry.

  4. Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Socol, Gabriel; Grumezescu, Alexandru Mihai; Ficai, Anton; Lazar, Veronica; Chifiriuc, Mariana Carmen; Trusca, Roxana; Iordache, Florin

    2015-05-01

    The purpose of this study was the fabrication of functionalized anti-adherent surfaces based on the polyvinyl chloride (PVC) coated with 3-amino propyltrimethoxysilane (APTMS) by matrix assisted pulsed laser evaporation (MAPLE) in order to improve the resistance of PVC based prosthetic devices to microbial colonization. Infrared microscopy (IRM) investigations of APTMS thin films proved the compositional homogeneity of the prepared thin film. Scanning electron microscopy (SEM) micrographs revealed a granular morphology with microspheres harboring a diameter between 15 and 60 nm. The microbiological assays proved that MAPLE deposited APTMS films inhibited the adherence capacity and biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus strains. Furthermore, this material proved to be highly biocompatible, allowing the normal growth and development of human endothelial cells. These traits highlight the fact that the fabricated APTMS thin films may be efficiently used for improving different surfaces of medical use, including prostheses and implantable devices.

  5. Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages.

    PubMed

    Jiao, Fei; Wang, Juan; Dong, Zhao-Lun; Wu, Min-Juan; Zhao, Ting-Bao; Li, Dan-Dan; Wang, Xin

    2012-08-01

    Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them "human limb bud-derived mesenchymal stem cells" (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro.

  6. Morphological and physiological changes exhibited by a Cd-resistant Dictyosphaerium chlorelloides strain and its cadmium removal capacity.

    PubMed

    Bartolomé, M C; Cortés, A A; Sánchez-Fortún, A; Garnica-Romo, M G; Sánchez-Carrillo, S; Sánchez-Fortún, Sebastián

    2016-12-01

    Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd.

  7. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  8. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  9. ["In vitro" interactions between influenza virus and mouse lung alveolar macrophages (author's transl)].

    PubMed

    Lemercier, G; Mavet, S; Burckhart, M F; Fontanges, R

    1979-01-01

    Interactions between influenza virus A/PR/8/34 (H0N1) and Balb/c mouse lung alveolar macrophages have been studied in vitro. One day after initiation of alveolar macrophage culture in 35 mm Falcon dishes, the virus suspension was allowed to adsorb to the cells for 1 h. Detachment of cells from the plastic substrate, morphological changes in adherent cells and decreased phagocytosis of heat-killed Candida albicans occured slowly as compared to control cultures. These facts appeared to be directly correlated to the concentration of viruses in the inoculum. Data yielded by virus titrations, electron microscopy and immunofluorescence suggest that mouse lung alveolar macrophages are able to take up a large amount of viral particles and inhibit their replication, allowing only an abortive viral cycle.

  10. Electrospun TiO₂ nanofibers decorated Ti substrate for biomedical application.

    PubMed

    Dumitriu, Cristina; Stoian, Andrei Bogdan; Titorencu, Irina; Pruna, Vasile; Jinga, Victor V; Latonen, Rose-Marie; Bobacka, Johan; Demetrescu, Ioana

    2014-12-01

    Various TiO2 nanofibers on Ti surface have been fabricated via electrospinning and calcination. Due to different elaboration conditions the electrospun fibers have different surface feature morphologies, characterized by scanning electronic microscopy, surface roughness, and contact angle measurements. The results have indicated that the average sample diameters are between 32 and 44 nm, roughness between 61 and 416 nm, and all samples are hydrophilic. As biological evaluation, cell culture with MG63 cell line originally derived from a human osteosarcoma was performed and correlation between nanofibers elaboration, properties and cell response was established. The cell adherence and growth are more evident on Ti samples with more aligned fibers, higher roughness and strong hydrophilic character and such fibers have been elaborated with a high speed rotating cylinder collector, confirming the idea that nanostructure elaboration conditions guide the cells' growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Silk screen based dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells.

    PubMed

    Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K

    2014-08-01

    Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.

  12. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma.

    PubMed

    Higashi, Mayumi; Kolla, Venkatadri; Iyer, Radhika; Naraparaju, Koumudi; Zhuang, Tiangang; Kolla, Sriharsha; Brodeur, Garrett M

    2015-08-07

    Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 μM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.

  13. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.

    PubMed

    De Nardo, Luigi; Bertoldi, Serena; Cigada, Alberto; Tanzi, Maria Cristina; Haugen, Håvard Jostein; Farè, Silvia

    2012-09-27

    Porous Shape Memory Polymers (SMPs) are ideal candidates for the fabrication of defect fillers, able to support tissue regeneration via minimally invasive approaches. In this regard, control of pore size, shape and interconnection is required to achieve adequate nutrient transport and cell ingrowth. Here, we assessed the feasibility of the preparation of SMP porous structures and characterized their chemico-physical properties and in vitro cell response. SMP scaffolds were obtained via solvent casting/particulate leaching of gelatin microspheres, prepared via oil/water emulsion. A solution of commercial polyether-urethane (MM-4520, Mitsubishi Heavy Industries) was cast on compacted microspheres and leached-off after polymer solvent evaporation. The obtained structures were characterized in terms of morphology (SEM and micro-CT), thermo-mechanical properties (DMTA), shape recovery behavior in compression mode, and in vitro cytocompatibility (MG63 Osteoblast-like cell line). The fabrication process enabled easy control of scaffold morphology, pore size, and pore shape by varying the gelatin microsphere morphology. Homogeneous spherical and interconnected pores have been achieved together with the preservation of shape memory ability, with recovery rate up to 90%. Regardless of pore dimensions, MG63 cells were observed adhering and spreading onto the inner surface of the scaffolds obtained for up to seven days of static in vitro tests. A new class of SMP porous structures has been obtained and tested in vitro: according to these preliminary results reported, SMP scaffolds can be further exploited in the design of a new class of implantable devices.

  14. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  15. In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Main, Benjamin J; Taylor, Brittany L; Gupta, Manu; Whitworth, Craig A; Cady, Craig; Freeman, Joseph W; El-Amin, Saadiq F

    2014-11-01

    The purpose of this study was to develop three-dimensional single-walled carbon nanotube composites (SWCNT/PLAGA) using 10-mg single-walled carbon nanotubes (SWCNT) for bone regeneration and to determine the mechanical strength of the composites, and to evaluate the interaction of MC3T3-E1 cells via cell adhesion, growth, survival, proliferation, and gene expression. PLAGA (polylactic-co-glycolic acid) and SWCNT/PLAGA microspheres and composites were fabricated, characterized, and mechanical testing was performed. MC3T3-E1 cells were seeded and cell adhesion/morphology, growth/survival, proliferation, and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated microspheres with uniform shape and smooth surfaces, and uniform incorporation of SWCNT into PLAGA matrix. The microspheres bonded in a random packing manner while maintaining spacing, thus resembling trabeculae of cancellous bone. Addition of SWCNT led to greater compressive modulus and ultimate compressive strength. Imaging studies revealed that MC3T3-E1 cells adhered, grew/survived, and exhibited normal, nonstressed morphology on the composites. SWCNT/PLAGA composites exhibited higher cell proliferation rate and gene expression compared with PLAGA. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration, for bone tissue engineering, and are promising for orthopedic applications as they possess the combined effect of increased mechanical strength, cell proliferation, and gene expression. © 2014 Wiley Periodicals, Inc.

  16. Human Mesenchymal Stem Cells Derived From Limb Bud Can Differentiate into All Three Embryonic Germ Layers Lineages

    PubMed Central

    Jiao, Fei; Wang, Juan; Dong, Zhao-lun; Wu, Min-juan; Zhao, Ting-bao; Li, Dan-dan

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them “human limb bud–derived mesenchymal stem cells” (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro. PMID:22775353

  17. Aeromonas species exhibit aggregative adherence to HEp-2 cells.

    PubMed Central

    Neves, M S; Nunes, M P; Milhomem, A M

    1994-01-01

    Clinical and environmental isolates of Aeromonas species (five A. hydrophila isolates, three A. caviae isolates, and two A. sobria isolates) were tested for their adherence to HEp-2 cells. Clinical isolates of A. hydrophila and A. sobria exhibited aggregative adherence similar to that presented by enteroadherent-aggregative Escherichia coli. Bacterial aggregates adhered to cells with a typical "stacked-brick" appearance. In contrast, A. caviae strains showed a diffuse adherence pattern. Images PMID:8027331

  18. Association of in vitro Escherichia coli adherence to vaginal and buccal epithelial cells with susceptibility of women to recurrent urinary-tract infections.

    PubMed

    Schaeffer, A J; Jones, J M; Dunn, J K

    1981-04-30

    To identify changes in epithelial cells that were associated with susceptibility to recurrent urinary-tract infections, we investigated the adherence of Escherichia coli to vaginal and buccal cells obtained from 11 healthy controls and 24 patients who had had at least three such infections in the preceding year. Adherence to vaginal cells was greater in patients than in controls (10.1 +/- 0.92 vs. 3.8 +/- 0.47 bacteria per cell [mean +/- S.E.], P less than 0.001), as was adherence to buccal cells (11.7 +/- 1.29 vs. 7.1 +/- 0.49, P = 0.002). This increased adherence in patients persisted despite temporary remission of the infection. Vaginal cells from patients not receiving antimicrobial prophylaxis had greater adherence than cells from patients given prophylactic therapy (11.7 +/- 1.34 vs. 8.3 +/- 1.0; P = 0.027). The range and rapidity of change in adherence as well as in vivo colonization of the vaginal mucosa were greater in patients than controls. Our data suggest that susceptibility to urinary-tract infections in women is associated with changes in the adhesive characteristics of epithelial cells.

  19. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines.

    PubMed

    Pollio, Antonino; Zarrelli, Armando; Romanucci, Valeria; Di Mauro, Alfredo; Barra, Federica; Pinto, Gabriele; Crescenzi, Elvira; Roscetto, Emanuela; Palumbo, Giuseppe

    2016-03-23

    The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  20. Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    PubMed Central

    Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

  1. Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity

    PubMed Central

    Saitakis, Michael; Dogniaux, Stéphanie; Goudot, Christel; Bufi, Nathalie; Asnacios, Sophie; Maurin, Mathieu; Randriamampita, Clotilde; Asnacios, Atef; Hivroz, Claire

    2017-01-01

    T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI: http://dx.doi.org/10.7554/eLife.23190.001 PMID:28594327

  2. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection.

    PubMed

    Kwok, Louisa; Stapleton, Ann E; Stamm, Walter E; Hillier, Sharon L; Wobbe, Cheryl L; Gupta, Kalpana

    2006-11-01

    Lactobacillus crispatus strain CTV-05 is a vaginal probiotic proposed for use in women with recurrent urinary tract infection to reduce vaginal colonization with Escherichia coli and the risk of urinary tract infection. However, the ability of this probiotic strain to adhere to the target mucosa, vaginal epithelial cells, has not been assessed in women with recurrent urinary tract infection. We measured the adherence of L. crispatus strain CTV-05 to vaginal epithelial cells collected from more than 100 premenopausal women with (cases) and without (controls) a history of recurrent urinary tract infection. We also examined the effects of relevant host factors on bacterial adherence. Bacterial adherence assays were performed by combining L. crispatus CTV-05 with exfoliated vaginal epithelial cells collected from 51 case women and 51 controls. L. crispatus CTV-05 adhered in high numbers to vaginal epithelial cells from women with recurrent urinary tract infection (mean adherence of 50.5 lactobacilli per vaginal epithelial cell) and controls (mean adherence of 39.4 lactobacilli per vaginal epithelial cell). Adherence was significantly higher using vaginal epithelial cells from women with a maternal history of urinary tract infection (p = 0.036) and a nonsecretor phenotype (p < 0.001), but was not significantly affected by recent spermicide use, oral contraceptive use, menstrual cycle phase or sexual activity. L. crispatus strain CTV-05 is highly adherent to vaginal epithelial cells collected from a large sample of premenopausal women with or without a history of recent recurrent urinary tract infection. These data strongly support further evaluation of this probiotic in clinical trials of women with recurrent urinary tract infection.

  3. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29.

    PubMed

    Adlerberth, I; Ahrne, S; Johansson, M L; Molin, G; Hanson, L A; Wold, A E

    1996-07-01

    Two Lactobacillus plantarum strains of human intestinal origin, strains 299 (= DSM 6595) and 299v (= DSM 9843), have proved to be efficient colonizers of the human intestine under experimental conditions. These strains and 17 other L. plantarum strains were tested for the ability to adhere to cells of the human colonic cell line HT-29.L.plantarum 299 and 299v and nine other L. plantarum strains, including all six strains that belong to the same genetic subgroup as L. plantarum 299 and 299v, adhered to HT-29 cells in a manner that could be inhibited by methyl-alpha-D-mannoside. The ability to adhere to HT-29 cells correlated with an ability to agglutinate cells of Saccharomyces cerevisiae and erythrocytes in a mannose-sensitive manner and with adherence to D-mannose-coated agarose beads. L. plantarum 299 and 299v adhered to freshly isolated human colonic and ileal enterocytes, but the binding was not significantly inhibited by methyl-alpha-D-mannoside. Periodate treatment of HT-29 cells abolished mannose-sensitive adherence, confirming that the cell-bound receptor was of carbohydrate nature. Proteinase K treatment of the bacteria also abolished adherence, indicating that the binding involved protein structures on the bacterial cell surface. Thus, a mannose-specific adhesin has been identified in L. plantarum; this adhesin could be involved in the ability to colonize the intestine.

  4. In Vitro Comparative Study of Oxygen Plasma Treated Poly(Lactic⁻Co⁻Glycolic) (PLGA) Membranes and Supported Nanostructured Oxides for Guided Bone Regeneration Processes.

    PubMed

    Torres-Lagares, Daniel; Castellanos-Cosano, Lizett; Serrera-Figallo, Maria-Angeles; López-Santos, Carmen; Barranco, Angel; Rodríguez-González-Elipe, Agustín; Gutierrez-Perez, Jose-Luis

    2018-05-08

    (1) Background: The use of physical barriers to prevent the invasion of gingival and connective tissue cells into bone cavities during the healing process is called guided bone regeneration. The objective of this in-vitro study was to compare the growth of human osteoblasts on Poly(Lactic⁻co⁻Glycolic) (PLGA) membranes modified with oxygen plasma and Hydroxyapatite (HA), silicon dioxide (SiO₂), and titanium dioxide (TiO₂) composite nanoparticles, respectively. (2) Methods: All the membranes received a common treatment with oxygen plasma and were subsequently treated with HA nanostructured coatings (n = 10), SiO₂ (n = 10) and TiO₂ (n = 10), respectively and a PLGA control membrane (n = 10). The assays were performed using the human osteoblast line MG-63 acquired from the Center for Scientific Instrumentation (CIC) from the University of Granada. The cell adhesion and the viability of the osteoblasts were analyzed by means of light-field microphotographs of each condition with the inverted microscope Axio Observer A1 (Carl Zeiss). For the determination of the mitochondrial energy balance, the MitoProbe™ JC-1 Assay Kit was employed. For the determination of cell growth and the morphology of adherent osteoblasts, two techniques were employed: staining with phalloidin-TRITC and staining with DAPI. (3) Results: The modified membranes that show osteoblasts with a morphology more similar to the control osteoblasts follow the order: PLGA/PO₂/HA > PLGA/PO₂/SiO₂ > PLGA/PO₂/TiO₂ > PLGA ( p < 0.05). When analysing the cell viability, a higher percentage of viable cells bound to the membranes was observed as follows: PLGA/PO₂/SiO₂ > PLGA/PO₂/HA > PLGA/PO₂/TiO₂ > PLGA ( p < 0.05), with a better energy balance of the cells adhered to the membranes PLGA/PO₂/HA and PLGA/PO₂/SiO₂. (4) Conclusion: The membrane in which osteoblasts show characteristics more similar to the control osteoblasts is the PLGA/PO₂/HA, followed by the PLGA/PO₂/SiO₂.

  5. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    PubMed

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P < 0.01). By using a dynamic three-dimensional cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  6. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications

    NASA Astrophysics Data System (ADS)

    Duta, L.; Ristoscu, C.; Stan, G. E.; Husanu, M. A.; Besleaga, C.; Chifiriuc, M. C.; Lazar, V.; Bleotu, C.; Miculescu, F.; Mihailescu, N.; Axente, E.; Badiceanu, M.; Bociaga, D.; Mihailescu, Ion N.

    2018-05-01

    We report on Matrix-Assisted Pulsed Laser Evaporation (MAPLE) deposition of Carbon thin films, simple or reinforced with intended concentrations of Ag and Si. A KrF∗ (λ = 248 nm, τFWHM ≤ 25 ns, ν = 10 Hz) excimer laser was used for irradiation. The effect of a post-deposition thermal treatment in vacuum was studied. Besides detailed morphological, compositional, structural and pull-out adherence characterizations, the potential of the carbonaceous films for medical applications was investigated in vitro by anti-biofilm and cytocompatibility assays. The microscopic images evidenced no delaminations. Micro-Raman spectroscopy revealed a graphitization tendency depending on preparation conditions, thermal treatment and reinforcing agents' presence. Adherence values improved considerably after thermal treatment. In vitro biological evaluation showed that the films containing ∼1.85 at.% Ag were non-cytotoxic for MG63 cells, while eliciting a limited antimicrobial activity. The increase of Ag content to 3.6 at.% results in a significant enhancement of antimicrobial activity, whilst maintaining the cytotoxic action and adherence characteristics at acceptable levels. We propose a new class of metamaterials based on C reinforced with Ag and Si obtained by MAPLE for medical applications, i.e. the prevention and treatment of various infections associated with biofilms developed on implants and other medical equipments.

  7. Purified Dendritic Cell-Tumor Fusion Hybrids Supplemented with Non-Adherent Dendritic Cells Fraction Are Superior Activators of Antitumor Immunity

    PubMed Central

    Wang, Yucai; Liu, Yunyan; Zheng, Lianhe

    2014-01-01

    Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy. PMID:24466232

  8. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations.

    PubMed

    Bahadorani, M; Hosseini, S M; Abedi, P; Hajian, M; Hosseini, S E; Vahdati, A; Baharvand, H; Nasr-Esfahani, Mohammad H

    2012-01-01

    To investigate the effect of serum supplementing on short-term culture, fate determination and gene expression of goat spermatogonial stem cells (SSCs). Crude testicular cells were plated over Datura-Stramonium Agglutinin (DSA) for 1 h, and non-adhering cells were cultured in the presence of different serum concentrations (1, 5, 10, and 15%) for 7 days in a highly enriched medium initially developed in mice. Colonies developed in each group were used for the assessment of morphology, immunocytochemistry, and gene expression. Brief incubation of testicular cells with DSA resulted in a significant increase in the number of cells that expressed the germ cell marker (VASA). The expression of THY1, a specific marker of undifferentiated spermatogonia, was significantly higher in colonies developed in the presence of 1% rather than 5, 10 and 15% serum. Goat SSCs could proliferate and maintain in SSC culture media for 1 week at serum concentrations as low as 1%, while higher concentrations had detrimental effects on SSC culture/expansion.

  9. Mitosis can drive cell cannibalism through entosis

    PubMed Central

    Durgan, Joanne; Tseng, Yun-Yu; Hamann, Jens C; Domart, Marie-Charlotte; Collinson, Lucy; Overholtzer, Michael; Florey, Oliver

    2017-01-01

    Entosis is a form of epithelial cell cannibalism that is prevalent in human cancer, typically triggered by loss of matrix adhesion. Here, we report an alternative mechanism for entosis in human epithelial cells, driven by mitosis. Mitotic entosis is regulated by Cdc42, which controls mitotic morphology. Cdc42 depletion enhances mitotic deadhesion and rounding, and these biophysical changes, which depend on RhoA activation and are phenocopied by Rap1 inhibition, permit subsequent entosis. Mitotic entosis occurs constitutively in some human cancer cell lines and mitotic index correlates with cell cannibalism in primary human breast tumours. Adherent, wild-type cells can act efficiently as entotic hosts, suggesting that normal epithelia may engulf and kill aberrantly dividing neighbours. Finally, we report that Paclitaxel/taxol promotes mitotic rounding and subsequent entosis, revealing an unconventional activity of this drug. Together, our data uncover an intriguing link between cell division and cannibalism, of significance to both cancer and chemotherapy. DOI: http://dx.doi.org/10.7554/eLife.27134.001 PMID:28693721

  10. Photosensitizer adhered to cell culture microplates induces phototoxicity in carcinoma cells.

    PubMed

    Ziegler, Verena; Kiesslich, Tobias; Krammer, Barbara; Plaetzer, Kristjan

    2013-01-01

    In vitro experiments in plastic receptacles are the basis of characterization of new photosensitizers (PSs) for the photodynamic therapy. We recently reported that lipophilic PSs adhere to cell culture microplates in a kinetic-like manner (Engelhardt et al., 2011). In the current study, we examined the interaction and phototoxic effects of the microplate-adhered PS in cancer cells. Therefore, we preloaded microplates with hypericin, Foscan, PVP-hypericin, or aluminum (III) phthalocyanine tetrasulfonate chloride (AlPCS4) for 24 hours and measured the PS distribution after addition of A431 human carcinoma cells: following another 24 hours up to 68% of hypericin were detected in the cell fraction. The hydrophilic PVP-hypericin and AlPCS4 also diffused into the cells, but the quantities of PS adherence were considerably lower. Microplate-adhered Foscan appeared not to be redistributed. In contrast to the hydrophilic PSs, the cellular phototoxicity of microplate-adhered lipophilic PS was high, independent of whether the PS (i) was pre-loaded onto microplates or (ii) added simultaneously with the cells or (iii) one day after cell seeding. Based on these results, we suggest testing lipophilic PS dyes for their adherence to microplates. Furthermore, the ability of plastic materials to (reversibly) store PSs might represent a new approach for the PS delivery or the development of antimicrobial coatings.

  11. Photosensitizer Adhered to Cell Culture Microplates Induces Phototoxicity in Carcinoma Cells

    PubMed Central

    Ziegler, Verena; Kiesslich, Tobias; Krammer, Barbara; Plaetzer, Kristjan

    2013-01-01

    In vitro experiments in plastic receptacles are the basis of characterization of new photosensitizers (PSs) for the photodynamic therapy. We recently reported that lipophilic PSs adhere to cell culture microplates in a kinetic-like manner (Engelhardt et al., 2011). In the current study, we examined the interaction and phototoxic effects of the microplate-adhered PS in cancer cells. Therefore, we preloaded microplates with hypericin, Foscan, PVP-hypericin, or aluminum (III) phthalocyanine tetrasulfonate chloride (AlPCS4) for 24 hours and measured the PS distribution after addition of A431 human carcinoma cells: following another 24 hours up to 68% of hypericin were detected in the cell fraction. The hydrophilic PVP-hypericin and AlPCS4 also diffused into the cells, but the quantities of PS adherence were considerably lower. Microplate-adhered Foscan appeared not to be redistributed. In contrast to the hydrophilic PSs, the cellular phototoxicity of microplate-adhered lipophilic PS was high, independent of whether the PS (i) was pre-loaded onto microplates or (ii) added simultaneously with the cells or (iii) one day after cell seeding. Based on these results, we suggest testing lipophilic PS dyes for their adherence to microplates. Furthermore, the ability of plastic materials to (reversibly) store PSs might represent a new approach for the PS delivery or the development of antimicrobial coatings. PMID:23509741

  12. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    PubMed

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  13. The use of real-time cell analyzer technology in drug discovery: defining optimal cell culture conditions and assay reproducibility with different adherent cellular models.

    PubMed

    Atienzar, Franck A; Tilmant, Karen; Gerets, Helga H; Toussaint, Gaelle; Speeckaert, Sebastien; Hanon, Etienne; Depelchin, Olympe; Dhalluin, Stephane

    2011-07-01

    The use of impedance-based label-free technology applied to drug discovery is nowadays receiving more and more attention. Indeed, such a simple and noninvasive assay that interferes minimally with cell morphology and function allows one to perform kinetic measurements and to obtain information on proliferation, migration, cytotoxicity, and receptor-mediated signaling. The objective of the study was to further assess the usefulness of a real-time cell analyzer (RTCA) platform based on impedance in the context of quality control and data reproducibility. The data indicate that this technology is useful to determine the best coating and cellular density conditions for different adherent cellular models including hepatocytes, cardiomyocytes, fibroblasts, and hybrid neuroblastoma/neuronal cells. Based on 31 independent experiments, the reproducibility of cell index data generated from HepG2 cells exposed to DMSO and to Triton X-100 was satisfactory, with a coefficient of variation close to 10%. Cell index data were also well reproduced when cardiomyocytes and fibroblasts were exposed to 21 compounds three times (correlation >0.91, p < 0.0001). The data also show that a cell index decrease is not always associated with cytotoxicity effects and that there are some confounding factors that can affect the analysis. Finally, another drawback is that the correlation analysis between cellular impedance measurements and classical toxicity endpoints has been performed on a limited number of compounds. Overall, despite some limitations, the RTCA technology appears to be a powerful and reliable tool in drug discovery because of the reasonable throughput, rapid and efficient performance, technical optimization, and cell quality control.

  14. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  15. Adhering grains and surface features on two Itokawa particles

    DOE PAGES

    Dobrica, E.; Ogliore, R. C.

    2016-02-13

    We investigated the surface texture and chemical compositions of two ~40-μm particles returned from the surface regolith of asteroid Itokawa (RB-DQ04-0062 and RB-DQ04-0091) by the Japan Aerospace Exploration Agency’s Hayabusa mission. We identified splash melts, surface blistering, and many small adhering particles. Seven focused ion beam sections were extracted from both Itokawa particles, targeting one splash melt and ten adhering particles to investigate their composition and provenance and the role of micrometeoroid impacts on Itokawa’s surface. Based on the particle’s structure, mineralogy, and interface between the adhering particle and host grain, we identified lithic fragments and particles deposited by impact.more » These have morphologies and compositions consistent with impact-generated deposits: two have morphologies and compositions that are consistent with impact-generated silica glass, and one was a Ni-free, metallic Fe, and S-rich assemblage that was likely generated by vapor recondensation during a micrometeoroid impact. Here this study shows that, even though its regolith is young, micrometeoroid impacts have altered the regolith of asteroid Itokawa.« less

  16. Scanning electron microscopic observations of Cysticercus fasciolaris (=Taenia taeniaeformis) after treatment of mice with mebendazole.

    PubMed

    Verheyen, A; Vanparijs, O; Borgers, M; Thienpont, D

    1978-06-01

    The time-related topographical changes in mature cysticerci of Taenia taeniaformis induced after medication of infected mice with 250 ppm of mebendazole are described. The changes included the gradual disappearance of microtriches and progressive degeneration of the tegment resulting in an irregular surface with grooves, holes, and craterlike structures. Host cells adhered to the altered areas and the number of these cells increased when more severe changes became apparent. Finally the necrotized cysticerci, which lost their tegument completely, were almost entirely covered with adhesive host cells. A difference in the time sequence of the reported changes occurred between the scolex, the pseudoproglottids, and the bladder. This difference in susceptibility towards the drug between the three parts of the parasite in relation to the morphology of their microtrichous covering is discussed.

  17. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics.

    PubMed

    Valtink, Monika; Gruschwitz, Rita; Funk, Richard H W; Engelmann, Katrin

    2008-01-01

    Access to primary human corneal endothelial cells (HCEC) is limited and donor-derived differences between cultures exacerbate the issue of data reproducibility, whereas cell lines can provide sufficient numbers of homogenous cells for multiple experiments. An immortalized HCEC population was adapted to serum-free culture medium and repeated cloning was performed. Clonally grown cells were propagated under serum-free conditions and growth curves were recorded. Cells were characterized immunocytochemically for junctional proteins, collagens, Na,K-ATPase and HCEC-specific 9.3.E-antigen. Ultrastructure was monitored by scanning and transmission electron microscopy. Two clonal cell lines, HCEC-B4G12 and HCEC-H9C1, could be isolated and expanded, which differed morphologically: B4G12 cells were polygonal, strongly adherent and formed a strict monolayer, H9C1 cells were less adherent and formed floating spheres. The generation time of B4G12 cells was 62.26 +/- 14.5 h and that of H9C1 cells 44.05 +/- 5.05 h. Scanning electron microscopy revealed that B4G12 cells had a smooth cell surface, while H9C1 cells had numerous thin filopodia. Both cell lines expressed ZO-1 and occludin adequately, and little but well detectable amounts of connexin-43. Expression of HCEC-specific 9.3.E-antigen was found commensurately in both cell lines, while expression of Na,K-ATPase alpha1 was higher in H9C1 cells than in B4G12 cells. B4G12 cells expressed collagen IV abundantly and almost no collagen III, while H9C1 cells expressed both collagens at reasonable amounts. It is concluded that the clonal cell line B4G12 represents an ideal model of differentiated HCEC, while H9C1 may reflect features of developing or transitional HCEC. Copyright 2008 S. Karger AG, Basel.

  18. Tumor-cytolytic human macrophages cultured as nonadherent cells: potential for the adoptive immunotherapy of cancer.

    PubMed

    Helinski, E H; Hurley, E L; Streck, R J; Bielat, K L; Pauly, J L

    1990-01-01

    Tumor-cytolytic lymphokine (e.g., interleukin-2; IL-2)-activated killer cells are currently being evaluated in IL-2/LAK cell adoptive immunotherapy regimens for the treatment of cancer. Monocyte-derived macrophages (M phi) are also known to be efficient tumor killer cells; accordingly, M phi that have been activated in vitro may also be of therapeutic merit. However, attempts to cultivate M phi for morphological and functional studies have often been compromised because M phi adhere rapidly and tenaciously to cultureware. Studies that we have conducted to address this problem have proven successful in developing procedures for the long-term cultivation of non-adherent immunocompetent M phi in serum-free medium using petri dishes containing a thin Teflon liner. The utility of this technology is documented by the results of studies presented herein in which light and scanning electron microscopy was used to analyze tumor-cytolytic human M phi. In these experiments, we demonstrated that nonadherent immunocompetent human M phi can be prepared for detailed examinations of their pleomorphic membrane architecture. Moreover, nonadherent human M phi could readily be collected for preparing conjugates of M phi and tumor cells. It is anticipated that this technology should prove useful for future structure-function studies defining the topographical location and spatial distribution of antigens and receptors on M phi membrane ultrastructures, particularly the microvilli-like projections that bridge together an immunocompetent effector M phi and target cell (e.g., tumor cells and microbial pathogens) and which provide the physical interaction required for the initial phases of a cellular immune response that includes antigen recognition and cell-to-cell adhesion.

  19. Sialoglycoproteins in morphological distinct stages of Mucor polymorphosporus and their influence on phagocytosis by human blood phagocytes.

    PubMed

    Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales

    2013-10-01

    The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.

  20. Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films.

    PubMed

    Tovar-Carrillo, Karla Lizette; Nakasone, Kazuki; Sugita, Satoshi; Tagaya, Motohiro; Kobayashi, Takaomi

    2014-09-01

    Waste bagasse of Agave tequilana-Weber fibers treated with sodium hydroxide was used to elaborate hydrogel films. The bagasse was offered in an alternative use for the preparation of hydrogel films by phase inversion method without crosslinking and further purification of cellulose. The effect on the properties of the obtained films was studied when the chemical treatment of the agave fibers was changed. It was found that the resultant hydrogels showed increment in tensile from 40 N/mm(2) to 56 N/mm(2) with the increase of sodium hypochlorite concentration from 1 to 10 vol.%, respectively. With regard to biocompatibility properties of the hydrogel films, platelet adhesion, clotting time and protein adsorption were investigated. Analysis of the morphology of adherent NIH3T3 fibroblast indicated that the projected cell area, aspect ratio and long axis gradually increased with the increment of sodium hypochlorite content in the agave treatment. It was presented that the chemical treatment affects cell adhesion and morphology and lignin content remains in the brown fibers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cranberry Products Inhibit Adherence of P-Fimbriated Escherichia Coli to Primary Cultured Bladder and Vaginal Epithelial Cells

    PubMed Central

    Gupta, K.; Chou, M. Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A. E.

    2011-01-01

    Purpose Cranberry proanthocyanidins have been identified as possible inhibitors of Escherichia coli adherence to uroepithelial cells. However, little is known about the dose range of this effect. Furthermore, it has not been studied directly in the urogenital system. To address these issues we tested the effect of a cranberry powder and proanthocyanidin extract on adherence of a P-fimbriated uropathogenic E. coli isolate to 2 new urogenital model systems, namely primary cultured bladder epithelial cells and vaginal epithelial cells. Materials and Methods E. coli IA2 was pre-incubated with a commercially available cranberry powder (9 mg proanthocyanidin per gm) or with increasing concentrations of proanthocyanidin extract. Adherence of E. coli IA2 to primary cultured bladder epithelial cells or vaginal epithelial cells was measured before and after exposure to these products. Results Cranberry powder decreased mean adherence of E. coli IA2 to vaginal epithelial cells from 18.6 to 1.8 bacteria per cell (p <0.001). Mean adherence of E. coli to primary cultured bladder epithelial cells was decreased by exposure to 50 μg/ml proanthocyanidin extract from 6.9 to 1.6 bacteria per cell (p <0.001). Inhibition of adherence of E. coli by proanthocyanidin extract occurred in linear, dose dependent fashion over a proanthocyanidin concentration range of 75 to 5 μg/ml. Conclusions Cranberry products can inhibit E. coli adherence to biologically relevant model systems of primary cultured bladder and vaginal epithelial cells. This effect occurs in a dose dependent relationship. These findings provide further mechanistic evidence and biological plausibility for the role of cranberry products for preventing urinary tract infection. PMID:17509358

  2. Quantitative assessment of cancer cell morphology and movement using telecentric digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh C.; Nehmetallah, George; Lam, Van; Chung, Byung Min; Raub, Christopher

    2017-02-01

    Digital holographic microscopy (DHM) provides label-free and real-time quantitative phase information relevant to the analysis of dynamic biological systems. A DHM based on telecentric configuration optically mitigates phase aberrations due to the microscope objective and linear high frequency fringes due to the reference beam thus minimizing digital aberration correction needed for distortion free 3D reconstruction. The purpose of this work is to quantitatively assess growth and migratory behavior of invasive cancer cells using a telecentric DHM system. Together, the height and lateral shape features of individual cells, determined from time-lapse series of phase reconstructions, should reveal aspects of cell migration, cell-matrix adhesion, and cell cycle phase transitions. To test this, MDA-MB-231 breast cancer cells were cultured on collagen-coated or un-coated glass, and 3D holograms were reconstructed over 2 hours. Cells on collagencoated glass had an average 14% larger spread area than cells on uncoated glass (n=18-22 cells/group). The spread area of cells on uncoated glass were 15-21% larger than cells seeded on collagen hydrogels (n=18-22 cells/group). Premitotic cell rounding was observed with average phase height increasing 57% over 10 minutes. Following cell division phase height decreased linearly (R2=0.94) to 58% of the original height pre-division. Phase objects consistent with lamellipodia were apparent from the reconstructions at the leading edge of migrating cells. These data demonstrate the ability to track quantitative phase parameters and relate them to cell morphology during cell migration and division on adherent substrates, using telecentric DHM. The technique enables future studies of cell-matrix interactions relevant to cancer.

  3. Role of bolA and rpoS genes in biofilm formation and adherence pattern by Escherichia coli K-12 MG1655 on polypropylene, stainless steel, and silicone surfaces.

    PubMed

    Adnan, Mohd; Sousa, Ana Margarida; Machado, Idalina; Pereira, Maria Olivia; Khan, Saif; Morton, Glyn; Hadi, Sibte

    2017-06-01

    Escherichia coli has developed sophisticated means to sense, respond, and adapt in stressed environment. It has served as a model organism for studies in molecular genetics and physiology since the 1960s. Stress response genes are induced whenever a cell needs to adapt and survive under unfavorable growth conditions. Two of the possible important genes are rpoS and bolA. The rpoS gene has been known as the alternative sigma (σ) factor, which controls the expression of a large number of genes, which are involved in responses to various stress factors as well as transition to stationary phase from exponential form of growth. Morphogene bolA response to stressed environment leads to round morphology of E. coli cells, but little is known about its involvement in biofilms and its development or maintenance. This study has been undertaken to address the adherence pattern and formation of biofilms by E. coli on stainless steel, polypropylene, and silicone surfaces after 24 h of growth at 37 °C. Scanning electron microscopy was used for direct examination of the cell attachment and biofilm formation on various surfaces and it was found that, in the presence of bolA, E. coli cells were able to attach to the stainless steel and silicone very well. By contrast, polypropylene surface was not found to be attractive for E. coli cells. This indicates that bolA responded and can play a major role in the presence and absence of rpoS in cell attachment.

  4. Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells.

    PubMed

    Vega, Sebastián L; Arvind, Varun; Mishra, Prakhar; Kohn, Joachim; Sanjeeva Murthy, N; Moghe, Prabhas V

    2018-06-12

    Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. Gaining a better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation. Copyright © 2018. Published by Elsevier Ltd.

  5. The Otto Aufranc Award: enhanced biocompatibility of stainless steel implants by titanium coating and microarc oxidation.

    PubMed

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Yong Sik

    2011-02-01

    Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants.

  6. Live-cell calcium imaging of adherent and non-adherent GL261 cells reveals phenotype-dependent differences in drug responses.

    PubMed

    Strong, Averey D; Daniels, Richard L

    2017-08-02

    The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. We demonstrate the use of low melting point agarose for immobilizing GL261 cells, a method that is broadly applicable to any cell type cultured in suspension, including acutely trypsinized cells and primary tumor cells. Our results indicate that it is important to consider GL261 phenotype (adherent or neurosphere) when interpreting data regarding physiological responses to experimental compounds.

  7. Insulin and heparin-binding epidermal growth factor-like growth factor synergistically promote astrocyte survival and proliferation in serum-free medium.

    PubMed

    Jia, Mei; Shi, Zhongfang; Yan, Xu; Xu, Lixin; Dong, Liping; Li, Jiaxin; Wang, Yujiao; Yang, Shaohua; Yuan, Fang

    2018-06-08

    In vitro systems allowing maintenance and experimentation on primary astrocyte cultures have been used for decades. Astrocyte cultures are most maintained in serum-containing medium which has been found to alter the morphology and gene profiles of astrocytes. Here, we reported a new serum-free medium for astrocyte culture, which consisted of DMEM and NB media supplemented with insulin and heparin-binding epidermal growth factor-like growth factor (HB-EGF) (SF-I-H medium). Meanwhile FBS-containing (FBS) medium composed of DMEM medium containing 10% FBS were used for comparison study. Cerebral cortex was harvested from postnatal day 1 Wistar rats and brain cells were isolated and seeded to poly-L-lysine coated culture dishes after 15 min differential velocity adherence. Compared with FBS medium, astrocytes in SF-I-H medium are smaller and exhibited process bearing morphologies. MTT assays showed that cell density and proliferation rate were higher in SF-I-H medium than in FBS medium all the time, and flow cytometry analysis revealed that SF-I-H medium promoted cell mitosis in a manner comparable to FBS medium. Consistently, western blot analysis further revealed that insulin and HB-EGF synergistically activated the PI3K-AKT and MAPK-ERK1/2 signaling cascades as FBS. Astrocytes cultured in SF-I-H medium grow faster than FBS medium. Taken together, our results indicated that SF-I-H medium, in which cell morphology was similar with astrocytes in brain, was more effective for astrocyte survival and proliferation than FBS medium, providing a new cell model to study astrocyte functions without the interference of serum. Copyright © 2018. Published by Elsevier B.V.

  8. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)

    PubMed Central

    Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.

    2018-01-01

    Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456

  9. Cell Phone-Based and Adherence Device Technologies for HIV Care and Treatment in Resource-Limited Settings: Recent Advances.

    PubMed

    Campbell, Jeffrey I; Haberer, Jessica E

    2015-12-01

    Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.

  10. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  11. Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets

    PubMed Central

    Sandmann, Rabea; Köster, Sarah

    2016-01-01

    Blood platelets are instrumental in blood clotting and are thus heavily involved in early wound closure. After adhering to a substrate they spread by forming protrusions like lamellipodia and filopodia. However, the interaction of these protrusions with the physical environment of platelets while spreading is not fully understood. Here we dynamically image platelets during this spreading process and compare their behavior on smooth and on structured substrates. In particular we analyze the temporal evolution of the spread area, the cell morphology and the dynamics of individual filopodia. Interestingly, the topographic cues enable us to distinguish two spreading mechanisms, one that is based on numerous persistent filopodia and one that rather involves lamellipodia. Filopodia-driven spreading coincides with a strong response of platelet morphology to the substrate topography during spreading, whereas lamellipodia-driven spreading does not. Thus, we quantify different degrees of filopodia formation in platelets and the influence of filopodia in spreading on structured substrates. PMID:26934830

  12. Biomaterial Property Effects on Platelets and Macrophages: An in Vitro Study.

    PubMed

    Fernandes, Kelly R; Zhang, Yang; Magri, Angela M P; Renno, Ana C M; van den Beucken, Jeroen J J P

    2017-12-11

    The purpose of this study was to evaluate the effects of surface properties of bone implants coated with hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) on platelets and macrophages upon implant installation and compare them to grit-blasted Ti and Thermanox used as a control. Surface properties were characterized using scanning electron microscopy, profilometry, crystallography, Fourier transform infrared spectroscopy, and coating stability. For platelets, platelet adherence and morphology were assessed. For macrophages, morphology, proliferation, and polarization were evaluated. Surface characterization showed similar roughness of ∼2.5 μm for grit-blasted Ti discs, both with and without coating. Coating stability assessment showed substantial dissolution of HA and β-TCP coatings. Platelet adherence was significantly higher for grit-blasted Ti, Ti-HA, and Ti-β-TCP coatings compared to that of cell culture control Thermanox. Macrophage cultures revealed a decreased proliferation on both HA and β-TCP coated discs compared to both Thermanox and grit-blasted Ti. In contrast, secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine TGF-β were marginal for grit-blasted Ti and Thermanox, while a coating-dependent increased secretion of pro- and anti-inflammatory cytokines was observed for HA and β-TCP coatings. The results demonstrated a significantly upregulated pro-inflammatory and anti-inflammatory cytokine secretion and marker gene expression of macrophages on HA and β-TCP coatings. Furthermore, HA induced an earlier M1 macrophage polarization but more M2 phenotype potency than β-TCP. In conclusion, our data showed that material surface affects the behaviors of first cell types attached to implants. Due to the demonstrated crucial roles of platelets and macrophages in bone healing and implant integration, this information will greatly aid the design of metallic implants for a higher rate of success in patients.

  13. Adherence of Escherichia coli O157:H7 to epithelial cells in vitro and in pig gut loops is affected by bacterial culture conditions

    PubMed Central

    Yin, Xianhua; Feng, Yanni; Wheatcroft, Roger; Chambers, James; Gong, Joshua; Gyles, Carlton L.

    2011-01-01

    The objectives of this study were to determine the effect of bacterial culture conditions on adherence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 in vivo to pig enterocytes and to compare the results with adherence in vitro to cultured HEp-2 and IPEC-J2 cells. Growth of O157:H7 in MacConkey broth (MB) resulted in almost no adherence to both HEp-2 and IPEC-J2 cells; prior exposure of the bacteria to pH 2.5 reduced adherence. There was greater adherence by bacteria from static cultures than by those from shaken cultures and by bacteria cultured in brain–heart infusion (BHI) plus NaHCO3 (BHIN) than by bacteria cultured in BHI. In contrast, in pig ileal loops, bacteria cultured in MB adhered well to enterocytes, and prior exposure to pH 2.5 had no effect on adherence. Among several media tested for their effect on bacterial adherence in the pig intestine, MB and BHIN proved to be the best. Bacterial adherence was dose-dependent and was more extensive in the ileum than in the colon. This study demonstrated that there are remarkable differences between culture conditions that promote adherence of an EHEC O157:H7 strain in vitro and in vivo, that culture conditions profoundly affect adherence to epithelial cells in vitro and in vivo, and that pig ileal loops are better suited to adherence studies than are colon loops. PMID:21731177

  14. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  15. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  16. Adherence of Non-O157 Shiga Toxin–Producing Escherichia coli to Bovine Recto-anal Junction Squamous Epithelial Cells Appears to Be Mediated by Mechanisms Distinct from Those Used by O157

    PubMed Central

    Hovde, Carolyn J.; John, Manohar

    2013-01-01

    Abstract This study presents evidence that the pattern (diffuse or aggregative) of adherence of clinically relevant non-O157 Shiga toxin–producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells is similar to that of E. coli O157, although the mechanisms of adherence appear to be distinct. Our results further suggest that novel adhesins, and not Intimin, are likely involved in non-O157 STEC adherence to bovine recto-anal junction squamous epithelial cells. These findings have important implications for the development of efficacious modalities for blocking adherence of non-O157 STEC to bovine gastrointestinal epithelial cells. PMID:23510495

  17. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes.

    PubMed

    Schwartz, R S; Tanaka, Y; Fidler, I J; Chiu, D T; Lubin, B; Schroit, A J

    1985-06-01

    The precise mechanism by which sickle erythrocytes (RBC) are removed from the circulation is controversial, although it is possible that enhanced recognition of these cells by circulating mononuclear phagocytes could contribute to this process. We investigated this possibility by interacting sickle cells with cultured human peripheral blood monocytes. Our results show that both irreversibly sickled cells (ISC) and deoxygenated reversibly sickled cells (RSC) had a higher avidity for adherence to monocytes than did oxygenated sickle and normal RBC. ISC were the most adherent cell type. Adherence of RSC to monocytes was found to be reversible; reoxygenation of deoxygenated RSC resulted in a significant decrease in RSC--monocyte adherence. Concomitant with alterations in sickle RBC adherence were alterations in the organization and bilayer distribution of membrane phospholipids in these cells. Specifically, enhanced adherence was associated with increased exposure of RBC membrane outer leaflet phosphatidylserine (PS) and phosphatidylethanolamine, whereas lack of adherence was associated with normal patterns of membrane phospholipid distribution. To investigate the possibility of whether the exposure of PS in the outer membrane leaflet of these cells might be responsible for their recognition by monocytes, the membranes of normal RBC were enriched with the fluorescent PS analogue 1-acyl-2[(N-4-nitro-benzo-2-oxa-1,3-diazole)aminocaproyl]-phosphatidy lse rine (NBD-PS) via transfer of the exogenous lipid from a population of donor phospholipid vesicles (liposomes). RBC enriched with NBD-PS exhibited enhanced adherence to monocytes, whereas adherence of RBC enriched with similar amounts of NBD-phosphatidylcholine (NBD-PC) was not increased. Furthermore, preincubation of monocytes with PS liposomes resulted in a approximately 60% inhibition of ISC adherence to monocytes, whereas no inhibition occurred when monocytes were preincubated with PC liposomes. These findings strongly suggest that erythrocyte surface PS may be a ligand recognized by receptors on human peripheral blood monocytes and that abnormal exposure of PS in the outer leaflet of the RBC membrane, as found in sickle RBC, might serve to trigger their recognition by circulating monocytes. Our results further suggest that abnormalities in the organization of erythrocyte membrane phospholipids may have significant pathophysiologic implications, possibly including shortened cell survival.

  18. Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining.

    PubMed

    Borucki, Wojciech; Bederska, Magdalena; Sujkowska-Rybkowska, Marzena

    2015-05-01

    We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.

  19. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  20. Patterns of Adherence of Helicobacter pylori Clinical Isolates to Epithelial Cells, and its Association with Disease and with Virulence Factors.

    PubMed

    Vázquez-Jiménez, Flor Elizabeth; Torres, Javier; Flores-Luna, Lourdes; Cerezo, Silvia Giono; Camorlinga-Ponce, Margarita

    2016-02-01

    Adherence to the gastric epithelium is one of the most important steps of Helicobacter pylori to remain and cause disease. The aim of this study was to analyze whether H. pylori isolates from patients with different gastroduodenal diseases present differences in the pattern of adherence to gastric epithelial cells (AGS), in the ability to induce IL-8, and in the presence of virulence genes. We tested 75 H. pylori strains isolated from nonatrophic gastritis, gastric cancer, and duodenal ulcer patients. The adhesion pattern and IL-8 induction were determined in AGS cells, and invasion of AGS cells was studied using a gentamicin protection assay. The IL-8 levels induced were determined by ELISA. Helicobacter pylori strains presented diffuse adherence (DA) and localized (LA) adherence patterns, similar to those described for enteropathogenic E. coli (EPEC), were observed in AGS cells. A DA pattern was observed in 57% and LA in 43% of the strains, and DA was more frequent in isolates from patients with gastric cancer (p = 0.044). Strains with a LA pattern induced higher levels of IL-8 (p = 0.042) in AGS cells. The adherence pattern was not associated with neither invasiveness nor with the presence of virulence genes. Our study shows that H. pylori strains present adherence patterns to AGS cells resembling those observed in EPEC and that these patterns may be associated with disease and with activity on AGS cells. © 2015 John Wiley & Sons Ltd.

  1. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells

    PubMed Central

    Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

    2010-01-01

    Summary Adherence to host tissues mediated by pili is pivotal in the establishment of infection by many bacterial pathogens. Corynebacterium diphtheriae assembles on its surface three distinct pilus structures. The function and the mechanism of how various pili mediate adherence, however, have remained poorly understood. Here we show that the SpaA-type pilus is sufficient for the specific adherence of corynebacteria to human pharyngeal epithelial cells. The deletion of the spaA gene, which encodes the major pilin forming the pilus shaft, abolishes pilus assembly but not adherence to pharyngeal cells. In contrast, adherence is greatly diminished when either minor pilin SpaB or SpaC is absent. Antibodies directed against either SpaB or SpaC block bacterial adherence. Consistent with a direct role of the minor pilins, latex beads coated with SpaB or SpaC protein bind specifically to pharyngeal cells. Therefore, tissue tropism of corynebacteria for pharyngeal cells is governed by specific minor pilins. Importantly, immunoelectron microscopy and immunofluorescence studies reveal clusters of minor pilins that are anchored to cell surface in the absence of a pilus shaft. Thus, the minor pilins may also be cell wall anchored in addition to their incorporation into pilus structures that could facilitate tight binding to host cells during bacterial infection. PMID:17376076

  2. In vitro adherence patterns of Shigella serogroups to bovine recto-anal junction squamous epithelial (RSE) cells are similar to those of Escherichia coli O157

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine whether Shigella species, which are human gastrointestinal pathogens, can adhere to cattle recto-anal junction squamous epithelial (RSE) cells using a recently standardized adherence assay, and to compare their adherence patterns to that of Escherichia coli O15...

  3. Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia

    PubMed Central

    2013-01-01

    Background For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. Methods Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. Results The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. Conclusions Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology. PMID:24080027

  4. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    PubMed

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  5. Infection of endothelial cells by common human viruses.

    PubMed

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  6. Effects of vitamin D-binding protein-derived macrophage-activating factor on human breast cancer cells.

    PubMed

    Pacini, Stefania; Punzi, Tiziana; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco

    2012-01-01

    Searching for additional therapeutic tools to fight breast cancer, we investigated the effects of vitamin D-binding protein-derived macrophage activating factor (DBP-MAF, also known as GcMAF) on a human breast cancer cell line (MCF-7). The effects of DBP-MAF on proliferation, morphology, vimentin expression and angiogenesis were studied by cell proliferation assay, phase-contrast microscopy, immunohistochemistry and western blotting, and chorioallantoic membrane (CAM) assay. DBP-MAF inhibited human breast cancer cell proliferation and cancer cell-stimulated angiogenesis. MCF-7 cells treated with DBP-MAF predominantly grew in monolayer and appeared to be well adherent to each other and to the well surface. Exposure to DBP-MAF significantly reduced vimentin expression, indicating a reversal of the epithelial/mesenchymal transition, a hallmark of human breast cancer progression. These results are consistent with the hypothesis that the known anticancer efficacy of DBP-MAF can be ascribed to different biological properties of the molecule that include inhibition of tumour-induced angiogenesis and direct inhibition of cancer cell proliferation, migration and metastatic potential.

  7. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers.

    PubMed

    Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I

    2010-11-01

    The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.

  8. Cellular requirements for cutaneous sensitivity elicitation.

    PubMed

    Aoki, I

    1985-01-01

    The role of glass-adherent cells in cutaneous sensitivity (CS) elicitation has been analyzed in this study. CS responses have been revealed to be mediated by at least two distinct subsets of genetically restricted T cells: I-restricted 'DTH-like' T cells and K/D-restricted 'CTL-like' T cells. Both T-cell responses require I-A-positive glass-adherent cell populations, which lack T-cell markers, to manifest their activities. The role of the adherent cells is different in the 'DTH-like' responses and the 'CTL-like' responses. The disparities between the present results and previous contentions are discussed in this paper.

  9. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    PubMed

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.

  10. Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus.

    PubMed

    Du, Shaoting; Zhang, Peng; Zhang, Ranran; Lu, Qi; Liu, Lin; Bao, Xiaowei; Liu, Huijun

    2016-12-01

    Increased use of graphene materials might ultimately lead to their release into the environment. However, only a few studies have investigated the impact of graphene-based materials on green plants. In this study, the impact of reduced graphene oxide (RGO) on the microalgae Scenedesmus obliquus was evaluated to determine its phytotoxicity. Treatment with RGO suppressed the growth of the microalgae. The 72-h IC 50 values of RGO evaluated using the logistic and Gompertz models were 148 and 151 mg L -1 , respectively. RGO significantly inhibited Chl a and Chl a/b levels in the algal cells. Chlorophyll a fluorescence analysis showed that RGO significantly down-regulated photosystem II activity. The mechanism of how RGO inhibited algal growth and photosynthetic performance was determined by analyzing the alterations in ultrastructural morphology. RGO adhered to the algal cell surface as a semitranslucent coating. Cell wall damage and membrane integrity loss occurred in the treated cells. Moreover, nuclear chromatin clumping and starch grain number increase were noted. These changes might be attributed to the increase in malondialdehyde and reactive oxygen species levels, which might have exceeded the scavenging ability of antioxidant enzymes (including peroxidase and superoxide dismutase). RGO impaired the extra- and intra-cellular morphology and increased oxidative stress and thus inhibited algal growth and photosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    PubMed

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  12. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID:21552715

  13. In vitro model for Campylobacter pylori adherence properties.

    PubMed Central

    Neman-Simha, V; Mégraud, F

    1988-01-01

    The adherence of 12 strains of Campylobacter pylori was studied on four cell lines. Immunofluorescence and scanning and transmission electron microscopy were used to visualize the bacteria. A heavy adherence to the epithelial cell line HEp-2 and to the intestinal cell line Int-407 was noted. By transmission electron microscopy, a close association between bacteria and cells in the form of cup-like structures was observed, but pedestals were not present. Images PMID:3182085

  14. Adherence of Clostridium perfringens spores to human intestinal epithelial Caco-2 cells.

    PubMed

    Sakanoue, Hideyo; Nakano, Takashi; Sano, Kouichi; Yasugi, Mayo; Monma, Chie; Miyake, Masami

    2018-03-01

    Clostridium perfringens is a gram-positive, spore-forming bacillus, and is a causative agent of foodborne infection, antibiotic-associated diarrhoea and sporadic diarrhoea in humans. In cases of antibiotic-associated and sporadic diarrhoea, C. perfringens colonises the intestine, proliferates and causes disease. However, bacterial colonisation of the intestine is not considered necessary in the pathogenesis of foodborne illness, because such pathogenesis can be explained by anchorage-independent production of diarrhoeic toxin by the bacterium in the intestine. In this study, we used an in vitro adherence assay to examine the adherence of C. perfringens spores to human intestinal Caco-2 cells. Adherence of spores from isolates of foodborne illness and nosocomial infection was observed within 15 min, and plateaued 60 min after inoculation. Electron microscopy revealed a tight association of spores with the surface of Caco-2 cells. The adherence of vegetative cells could not be confirmed by the same method, however. These results suggest that C. perfringens spores may adhere to intestinal epithelial cells in vivo, although its biological significance remains to be determined.

  15. Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells.

    PubMed

    Chao, Ting-Ting; Wang, Chih-Hung; Chen, Hsin-Chien; Shih, Cheng-Ping; Sytwu, Huey-Kang; Huang, Kun-Lun; Chen, Shao-Yuan

    2013-05-01

    Previously, our group reported that sphere-forming cells derived from the organ of Corti represent the stem/progenitor cells (SPCs) of the cochlea due to their properties of self-renewal and multipotency. However, long-term propagation of sphere-forming cells under suspension culture conditions may fail to maintain the characteristic stemness of these cells. Therefore, this study investigated whether an adherent culture system would be beneficial in terms of preserving more stem-like cells for long-term manipulations in vitro. Isolated modiolus-derived SPCs were placed on poly-d-lysine-coated petri dishes to form the so-called "adherent" culture system. Modiolus SPCs cultured under adherent conditions exhibited a significantly increased percentage of cells with the side population (SP) phenotype (18.6%) compared with cells cultured under conventional suspension culture conditions (0.8%). Even after repeated passages, modiolus SPCs cultured under adherent culture conditions preserved more SP phenotype cells. In comparison with the non-SP phenotype cells, the sorted SP cells exhibited more stem-like but less differentiated properties, with an upregulated expression of the ATP-binding cassette subfamily G member 2 (ABCG2), Nestin, Sox2, and Nanog proteins. Furthermore, Retinoic acid (RA) treatment confirmed the expression of the multipotent differentiation markers in the SP cells, including TUJ1, pancytokeratin, glial fibrillary acidic protein (GFAP), and p27(Kip1). Employment of an adherent culture system, instead of a suspension culture system, resulted in the enrichment of the SP cells from SPCs while retaining their stemness and multipotency. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes.

    PubMed

    Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn

    2012-09-01

    The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

  17. Cyto-adherence of Mycoplasma mycoides subsp. mycoides to bovine lung epithelial cells.

    PubMed

    Aye, Racheal; Mwirigi, Martin Kiogora; Frey, Joachim; Pilo, Paola; Jores, Joerg; Naessens, Jan

    2015-02-07

    Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.

  18. Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    PubMed Central

    Tso, Colin; Rye, Kerry-Anne; Barter, Philip

    2012-01-01

    Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904

  19. Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility.

    PubMed

    Comín, Romina; Cid, Mariana P; Grinschpun, Luciano; Oldani, Carlos; Salvatierra, Nancy A

    2017-04-26

    In clinical orthopedics, a critical problem is the bone tissue loss produced by a disease or injury. The use of composites from titanium and hydroxyapatite for biomedical applications has increased due to the resulting advantageous combination of hydroxyapatite bioactivity and favorable mechanical properties of titanium. Powder metallurgy is a simple and lower-cost method that uses powder from titanium and hydroxyapatite to obtain composites having hydroxyapatite phases in a metallic matrix. However, this method has certain limitations arising from thermal decomposition of hydroxyapatite in the titanium-hydroxyapatite system above 800°C. We obtained a composite from titanium and bovine hydroxyapatite powders sintered at 800°C and evaluated its bioactivity and cytocompatibility according to the ISO 10993 standard. Surface analysis and bioactivity of the composite was evaluated by X-ray diffraction and SEM. MTT assay was carried out to assess cytotoxicity on Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite surface were analyzed using fluorescence and SEM. We obtained a porous composite with hydroxyapatite particles well integrated in titanium matrix which presented excellent bioactivity. Our data did not reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3 cells. Moreover, extracts from composite did not affect cell morphology or density. Finally, NIH3T3 cells were capable of adhering to and proliferating on the composite surface. The composite obtained displayed promising biomedical applications through the simple method of powder metallurgy. Additionally, these findings provide an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite composite sintered at 800°C.

  20. Antifungal potential of eugenyl acetate against clinical isolates of Candida species.

    PubMed

    Musthafa, Khadar Syed; Hmoteh, Jutharat; Thamjarungwong, Benjamas; Voravuthikunchai, Supayang Piyawan

    2016-10-01

    The study evaluated the efficiency of eugenyl acetate (EA), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Minimum inhibitory concentrations (MIC) of EA against Candida isolates were in the range between 0.1% and 0.4% (v/v). Spot assay further confirmed the susceptibility of Candida isolates to the compound upon treatment with respective 1 × MIC. Growth profile measured in time kill study evidence that the compound at 1 × MIC and 1/2 × MIC retarded the growth of Candida cells, divulging the fungicidal activity. Light microscopic observation demonstrated that upon treated with EA, rough cell morphology, cell damage, and fragmented patterns were observed in C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata. Furthermore, unusual morphological changes of the organism were observed in scanning electron microscopic study. Therefore, it is validated that the compound could cause cell damage resulting in the cell death of Candida clinical isolates. Eventually, the compound at sub-MIC (0.0125% v/v) significantly inhibited serum-induced germ tube formation by C. albicans. Eugenyl acetate inhibited biofilm forming ability of the organisms as well as reduced the adherence of Candida cells to HaCaT keratinocytes cells. In addition, upon treatment with EA, the phagocytic activity of macrophages was increased significantly against C. albicans (P < 0.05). The results demonstrated the potential of EA as a valuable phytochemical to fight against emerging Candida infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glucosamine Treatment-mediated O-GlcNAc Modification of Paxillin Depends on Adhesion State of Rat Insulinoma INS-1 Cells*

    PubMed Central

    Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon

    2010-01-01

    Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364

  2. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    NASA Astrophysics Data System (ADS)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  3. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)-the effect of biomolecular ligands to balance cell adhesion and stimulated detachment.

    PubMed

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly( N -isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro . The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  4. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    PubMed Central

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  5. Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials.

    PubMed

    Mehta, J S; Futter, C E; Sandeman, S R; Faragher, R G A F; Hing, K A; Tanner, K E; Allan, B D S

    2005-10-01

    Published clinical series suggest the osteoodontokeratoprosthesis (OOKP) may have a lower extrusion rate than current synthetic keratoprostheses. The OOKP is anchored in the eye wall by autologous tooth. The authors' aim was to compare adhesion, proliferation, and morphology for telomerase transformed keratocytes seeded on calcium hydroxyapatite (the principal mineral constituent of tooth) and materials used in the anchoring elements of commercially available synthetic keratoprostheses. Test materials were hydroxyapatite, polytetrafluoroethylene (PTFE), polyhydroxyethyl methacrylate (HEMA), and glass (control). Cell adhesion and viability were quantified at 4 hours, 24 hours, and 1 week using a calcein-AM/EthD-1 viability/cytotoxicity assay. Focal contact expression and cytoskeletal organisation were studied at 24 hours by confocal microscopy with immunoflourescent labelling. Further studies of cell morphology were performed using light and scanning electron microscopy. Live cell counts were significantly greater on hydroxyapatite surfaces at each time point (p<0.04). Dead cell counts were significantly higher for PTFE at 7 days (p<0.002). ss(1) integrin expression was highest on hydroxyapatite. Adhesion structures were well expressed in flat, spread out keratocytes on both HA and glass. Keratocytes tended to be thinner and spindle shaped on PTFE. The relatively few keratocytes visible on HEMA test surfaces were rounded and poorly adherent. Keratocyte adhesion, spreading, and viability on hydroxyapatite test surfaces is superior to that seen on PTFE and HEMA. Improving the initial cell adhesion environment in the skirt element of keratoprostheses may enhance tissue integration and reduce device failure rates.

  6. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells

    PubMed Central

    Chung, H.J.; Hassan, M.M.; Park, J.O.; Kim, H.J.; Hong, S.T.

    2015-01-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery. PMID:25742639

  7. Adherence to On-Time ART Drug Pick-Up and Its Association with CD4 Changes and Clinical Outcomes Amongst HIV Infected Adults on First-Line Antiretroviral Therapy in Nigerian Hospitals.

    PubMed

    Anoje, Chukwuemeka; Agu, Kenneth Anene; Oladele, Edward A; Badru, Titilope; Adedokun, Oluwasanmi; Oqua, Dorothy; Khamofu, Hadiza; Adebayo, Olufunso; Torpey, Kwasi; Chabikuli, Otto Nzapfurundi

    2017-02-01

    Medication adherence is a major determinant of antiretroviral treatment (ART) success. Promptness in medication refill pick-ups may give an indication of medication adherence. This study determined medication refill adherence among HIV positive patients on ART and its association with treatment outcomes in HIV treatment centers in Nigeria. This retrospective multi-center cohort study involved a review of ART refill records for 3534 HIV-positive patients aged 18-60 years who initiated first-line ART between January 2008 and December 2009 and were on therapy for ≥18 months after ART initiation. Drug refill records of these patients for 10 consecutive refill visits after ART initiation were analyzed. The first ten consecutive refill appointment-keeping rates after ART initiation ranged from 64.3 % to 76.1 % which decreased with successive visits. Altogether, 743 (21.1 %) patients were deemed adherent, meaning they picked up their drugs within 7 days of the drug refill appointment date on at least nine out of ten refill visits. The adherent group of patients had a mean CD4 cells increase of 206 ± 6.1 cells/dl after 12 months of ART compared to 186 ± 7.1 cells/dl reported among the nonadherent group (p = 0.0145). The proportion of patients in the adherent category who showed no OIs after 12 months on ART (81 %) was significantly higher when compared to the proportion in the non-adherent category (23.5 %), (p = 0.008). The multivariate analysis showed that the odds of being adherent was 2-3 times more in patients who had a baseline CD4 count of less than 200 cells/dl compared to those with a baseline CD4 of >350 cells/dl. (AOR 2.43, 95 % CI 1.62-3.66). In addition, for patients with baseline CD4 cell count of 201-350 cells/dl, the odds of being adherent was found to be 1.9 compared to those with baseline CD4 of greater than 350 cells/dl (AOR 1.93, 95 % CI 1.27-2.94). Pharmacy refill data can serve as an adherence measure. Adherence to on-time drug pickup on ≥90 % of refill appointments was associated with a better CD4 count response and a reduction in the presence of opportunistic infections in ART patients after 12 months of treatment.

  8. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  9. Reduction and shaping of graphene-oxide by laser-printing for controlled bone tissue regeneration and bacterial killing

    NASA Astrophysics Data System (ADS)

    Palmieri, Valentina; Barba, Marta; Di Pietro, Lorena; Gentilini, Silvia; Chiara Braidotti, Maria; Ciancico, Carlotta; Bugli, Francesca; Ciasca, Gabriele; Larciprete, Rosanna; Lattanzi, Wanda; Sanguinetti, Maurizio; De Spirito, Marco; Conti, Claudio; Papi, Massimiliano

    2018-01-01

    Graphene and graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), a common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.

  10. In vitro adherence of radioactively labeled Escherichia coli in normal and cystitis-prone females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, C.L.; Anwar, H.; Stauffer, C.

    Numerous investigators report data obtained using an in vitro quantitative assay for measuring bacterial adherence to epithelial cells. In the modified assay described here, we eliminated the need for visual counting of bacteria by incorporating the use of radioactively labeled Escherichia coli. This allowed quantitation of bacterial adherence to as many as 50,000 vaginal cells, whereas the visual counting system limits the determination to perhaps 50 cells. Using the modified method, we found no statistically significant differences among values for adherence of E. coli type 04 to the vaginal cells of control and cystitis-prone women at either pH 6.4 ormore » 4.0.« less

  11. Inhibition of lymphocyte proliferative responses to Helicobacter pylori by plastic adherent cells.

    PubMed

    Uyub, A M; Anuar, A K

    2001-03-01

    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.

  12. Regulation of Biofilm Formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 encodes a variety of genetic factors for adherence to epithelial cells and to abiotic surfaces. While adherence to epithelial cells culminates in the formation of characteristic attaching and effacing (A/E) lesions, adherence to abiotic surfaces represents a prelude to the f...

  13. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells

    PubMed Central

    2012-01-01

    Background In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. Results Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. Conclusion Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti-adhesion O157 vaccines. PMID:22691138

  14. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.

    PubMed

    Ranjan, Ashwini; Webster, Thomas J

    2009-07-29

    The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.

  15. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  16. Bacterial adherence to periurethral epithelial cells in girls prone to urinary-tract infections.

    PubMed

    Källenius, G; Winberg, J

    1978-09-09

    Bacterial adherence to epithelial cells from the periurethral region of 48 healthy girls aged over 2 years and of 76 girls with repeated urinary-tract infections was investigated. The infection-prone girls had a significantly higher mean number of adhering bacteria than the healthy controls ( P less than 0.01). This difference was valid irrespective of whether or not the infection-prone girls had urinary-tract infections at the time of investigation. Furthermore, statistically significantly higher numbers of a pyelonephritic strain of Escherichia coli (075:H-:K-non-typable) were found to adhere to washed periurethral cells from infection-prone girls than to cells from healthy controls. These characteristics of the periurethral epithelial cells may facilitate the primary periurethral colonisation which precedes infection of the urinary tract.

  17. Pancreatic exocrine adult cells and placental stem cells co-culture. Working together is always the best way to go.

    PubMed

    Suşman, S; Rus-Ciucă, D; Soriţău, Olga; Tomuleasa, C; Buigă, R; Mihu, D; Pop, V I; Mihu, Carmen Mihaela

    2011-01-01

    The progress made in the last few years have managed to come up withy the possibility of using different stem cell types in an endeavor to correct the alterations that appear in different degenerative diseases. The pancreas, an organ with extremely low regenerative capacity, both for the endocrine and for the exocrine component, is an organ perfect for cell therapy in the hope of restoring its function and cure diabetes mellitus or chronic pancreatitis. One main issue in the stem cell transplantation problem is represented by the influence of the cellular niche, formed by completely differentiated cells, on the phenotype and function of the transplanted cells. In this study, we challenge current knowledge in the field by evaluating the influence of exocrine pancreatic cells on placental stem-like cells using the co-culture technique. In our experiments, we used two different protocols in which adult pancreatic cells were cultured together with mesenchymal stem cells isolated from human placenta. In the case of the first protocol, we seeded pancreatic cells on a pre-adhered single-cell layer of mesenchymal stem cells and in the second one, the seeding of two cell populations in suspension was done at the same time, after passage. During the experiment, we evaluated the alteration of the morphology of the placental cells using and inverted phase microscope and reverse transcriptase-PCR. Based on morphology, in both cases the interaction between epithelial pancreatic cells and placental ones have determined a change in phenotype from mesenchymal to epithelial-like. Taking into consideration the gene expression, placental stem cells have maintained pluripotency gene expression throughout the study. They also expressed pancreatic amylase. These experiments bring out the plasticity of placental stem cells, the cell microenvironment with a decisive part in phenotype and the level of gene expression. The results obtained in vitro can bring a new picture on the effects of the pancreatic stem cell niche.

  18. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.

    2014-06-15

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less

  19. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?

    PubMed

    Buschmann, Johanna; Gao, Shuping; Härter, Luc; Hemmi, Sonja; Welti, Manfred; Werner, Clement M L; Calcagni, Maurizio; Cinelli, Paolo; Wanner, Guido A

    2013-09-01

    Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Human dental pulp stem cells cultured in serum-free supplemented medium

    PubMed Central

    Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte

    2013-01-01

    Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs. PMID:24376422

  1. Atypical enteropathogenic Escherichia coli that contains functional locus of enterocyte effacement genes can be attaching-and-effacing negative in cultured epithelial cells.

    PubMed

    Rocha, Sérgio P D; Abe, Cecilia M; Sperandio, Vanessa; Bando, Silvia Y; Elias, Waldir P

    2011-05-01

    Enteropathogenic Escherichia coli (EPEC) induces a characteristic histopathology on enterocytes known as the attaching-and-effacing (A/E) lesion, which is triggered by proteins encoded by the locus of enterocyte effacement (LEE). EPEC is currently classified as typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence or absence of the EPEC adherence factor plasmid, respectively. Here we analyzed the LEE regions of three aEPEC strains displaying the localized adherence-like (LAL), aggregative adherence (AA), and diffuse adherence (DA) patterns on HEp-2 cells as well as one nonadherent (NA) strain. The adherence characteristics and the ability to induce A/E lesions were investigated with HeLa, Caco-2, T84, and HT29 cells. The adherence patterns and fluorescent actin staining (FAS) assay results were reproducible with all cell lines. The LEE region was structurally intact and functional in all strains regardless of their inability to cause A/E lesions. An EspF(U)-expressing plasmid (pKC471) was introduced into all strains, demonstrating no influence of this protein on either the adherence patterns or the capacity to cause A/E of the adherent strains. However, the NA strain harboring pKC471 expressed the LAL pattern and was able to induce A/E lesions on HeLa cells. Our data indicate that FAS-negative aEPEC strains are potentially able to induce A/E in vivo, emphasizing the concern about this test for the determination of aEPEC virulence. Also, the presence of EspF(U) was sufficient to provide an adherent phenotype for a nonadherent aEPEC strain via the direct or indirect activation of the LEE4 and LEE5 operons.

  2. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  3. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression.

    PubMed

    Mack, D R; Michail, S; Wei, S; McDougall, L; Hollingsworth, M A

    1999-04-01

    Probiotic agents, live microorganisms with beneficial effects for the host, may offer an alternative to conventional antimicrobials in the treatment and prevention of enteric infections. The probiotic agents Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG quantitatively inhibited the adherence of an attaching and effacing pathogenic Escherichia coli to HT-29 intestinal epithelial cells but did not inhibit adherence to nonintestinal HEp-2 cells. HT-29 cells were grown under conditions that induced high levels of either MUC2 or MUC3 mRNA, but HEp-2 cells expressed only minimal levels of MUC2 and no MUC3 mRNA. Media enriched for MUC2 and MUC3 mucin were added exogenously to binding assays and were shown to be capable of inhibiting enteropathogen adherence to HEp-2 cells. Incubation of L. plantarum 299v with HT-29 cells increased MUC2 and MUC3 mRNA expression levels. From these in vitro studies, we propose the hypothesis that the ability of probiotic agents to inhibit adherence of attaching and effacing organisms to intestinal epithelial cells is mediated through their ability to increase expression of MUC2 and MUC3 intestinal mucins.

  4. The suppression of mitogen responses associated with resistance to experimental autoimmune encephalomyelitis requires adherent and T cells.

    PubMed

    Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S

    1984-05-01

    Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.

  5. Sonoporation of adherent cells under regulated ultrasound cavitation conditions.

    PubMed

    Muleki Seya, Pauline; Fouqueray, Manuela; Ngo, Jacqueline; Poizat, Adrien; Inserra, Claude; Béra, Jean-Christophe

    2015-04-01

    A sonoporation device dedicated to the adherent cell monolayer has been implemented with a regulation process allowing the real-time monitoring and control of inertial cavitation activity. Use of the cavitation-regulated device revealed first that adherent cell sonoporation efficiency is related to inertial cavitation activity, without inducing additional cell mortality. Reproducibility is enhanced for the highest sonoporation rates (up to 17%); sonoporation efficiency can reach 26% when advantage is taken of the standing wave acoustic configuration by applying a frequency sweep with ultrasound frequency tuned to the modal acoustic modes of the cavity. This device allows sonoporation of adherent and suspended cells, and the use of regulation allows some environmental parameters such as the temperature of the medium to be overcome, resulting in the possibility of cell sonoporation even at ambient temperature. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Investigation of Immunoregulatory Alphaglobulin (IRA) in Shock and Trauma.

    DTIC Science & Technology

    1980-07-01

    rice whose limbs were amputated 2 days earlier Were fraction by adherence to glass Petri dishes or nylon wool columns (2 cycl,7), or by treatin Wi...to alloantigens. suggesting the presence of suppressor cells. The suppressor cells were found to adhere to glass and to nylon wool columns. They were...negative cell population capable of adhering to glass and nylon wool, Presumably macrophages. was responsible for inhibiting the response of lymphocytes

  7. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro?

    PubMed

    Mincheva, M; Sandhowe-Klaverkamp, R; Wistuba, J; Redmann, K; Stukenborg, J-B; Kliesch, S; Schlatt, S

    2018-02-01

    Can enzymatically dispersed testicular cells from adult men reassemble into seminiferous cord-like structures in vitro? Adult human testicular somatic cells reassembled into testicular cord-like structures via dynamic interactions of Sertoli and peritubular cells. In vitro approaches using dispersed single cell suspensions of human testes to generate seminiferous tubule structures and to initiate their functionality have as yet shown only limited success. Testes from 15 adult gender dysphoria patients (mean ± standard deviation age 35 ± 9.3 years) showing spermatogonial arrest became available for this study after sex-reassignment surgery. In vitro primary testicular somatic cell cultures were generated to explore the self-organizing ability of testicular somatic cells to form testis cords over a 2-week period. Morphological phenotype, protein marker expression and temporal dynamics of cell reassembly were analyzed. Cell suspensions obtained by two-step enzymatic digestion were plated onto glass coverslips in 24-well plates. To obtain adherent somatic cells, the supernatant was discarded on Day 2. The culture of the attached cell population was continued. Reassembly into cord-like structures was analyzed daily by microscopic observations. Endpoints were qualitative changes in morphology. Cell types were characterized by phase-contrast microscopy and immunohistochemistry. Dynamics of cord formation were recorded by time-lapse microscopy. Primary adult human testicular cells underwent sequential morphological changes including compaction and reaggregation resulting in round or elongated cord-like structures. Time-lapse video recordings within the first 4 days of culture revealed highly dynamic processes of migration and coalescence of reaggregated cells. The cellular movements were mediated by peritubular cells. Immunohistochemical analysis showed that both SRY-related high mobility box 9-positive Sertoli and α-smooth muscle actin-positive peritubular myoid cells interacted and contributed to cord-like structure formation. Not applicable. Owing to scarcity of normal human testicular tissue, testes from gender dysphoria patients were used in the study. The regressed status might influence the experimental responses of primary cells. We observed basic morphological features resembling in vivo testicular cords, however, the proof of functionality (e.g. support of germ cells) will need further studies. The proposed in vitro culture system may open opportunities for examination of testicular cell interactions during testicular tubulogenesis. Further refinement of our approach may enable initiation of ex vivo spermatogenesis. The work was supported by EU-FP7-PEOPLE-2013-ITN 603568: 'Growsperm'. No conflict of interests is declared. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  9. Isolation, expansion, and differentiation of goat adipose-derived stem cells.

    PubMed

    Ren, Yu; Wu, Haiqing; Zhou, Xueyuan; Wen, Jianxun; Jin, Muzi; Cang, Ming; Guo, Xudong; Wang, Qinglian; Liu, Dongjun; Ma, Yuzhen

    2012-08-01

    A goat adipose-derived stem cell (ADSC) line was established and compared to a rat line. Goat ADSC cells had normal diploidy after subculture. Proliferation of goat ADSCs was faster than rat cells in the same conditions. Both rat and goat ADSCs stained positively for vimentin, CD49d, CD44 and CD13, but stained negatively for CD34 and CD106. Bone nodules were apparent, and alizarin staining was positive after osteogenic induction. Cells expressing osteocalcin were positive by alkaline phosphatase (ALP) staining. After osteogenic induction, ossification nodules of goat ADSCs were larger than in rats, with dense ALP staining. Adipogenic induction resulting in lipid droplets and peroxisome proliferator-activated receptor (PPARγ2) expression were observed. Cartilage lacunae were formed and COL2A1 was expressed. More cartilage lacunae with better morphology were seen following differentiation of goat ADSC's using the hang-drop method. For goat ADSCs, results with both adherent-induced and hanging-drop induced cultures were better than for three-dimensional cultures. Copyright © 2012. Published by Elsevier India Pvt Ltd.

  10. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (Keystone Sym)

    EPA Science Inventory

    Our goal is to establish an in vitro model system to evaluate chemical effects using a single stem cell culture technique that would improve throughput and provide quantitative markers of differentiation and cell number. To this end, we have used an adherent cell differentiation ...

  11. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  12. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  13. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.

    PubMed

    Xia, Z; Goldsmith, H L; van de Ven, T G

    1994-04-01

    Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.

  14. Assessment of Wound Therapy Systems.

    DTIC Science & Technology

    1982-05-07

    able to rank this method of covering (1,11). The wafer material, already in use ("Stomahesive") for ostomy - bag attachment, consists of a mixture of...benefit in preserving the morphology of the skin. However, hopes that this intact, mature collagen would be better at promoting adhe- sion (276) or...side had the lowest adherence. There was a good deal of fluid accumulation under the covering so there was not much hope of good adherence. It should

  15. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility, thus allowing a broad range of materials to be used for cementless implants. PMID:20936386

  16. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  17. Constrained Adherable Area of Nanotopographic Surfaces Promotes Cell Migration through the Regulation of Focal Adhesion via Focal Adhesion Kinase/Rac1 Activation.

    PubMed

    Lim, Jiwon; Choi, Andrew; Kim, Hyung Woo; Yoon, Hyungjun; Park, Sang Min; Tsai, Chia-Hung Dylan; Kaneko, Makoto; Kim, Dong Sung

    2018-05-02

    Cell migration is crucial in physiological and pathological processes such as embryonic development and wound healing; such migration is strongly guided by the surrounding nanostructured extracellular matrix. Previous studies have extensively studied the cell migration on anisotropic nanotopographic surfaces; however, only a few studies have reported cell migration on isotropic nanotopographic surfaces. We herein, for the first time, propose a novel concept of adherable area on cell migration using isotropic nanopore surfaces with sufficient nanopore depth by adopting a high aspect ratio. As the pore size of the nanopore surface was controlled to 200, 300, and 400 nm in a fixed center-to-center distance of 480 nm, it produced 86, 68, and 36% of adherable area, respectively, on the fabricated surface. A meticulous investigation of the cell migration in response to changes in the constrained adherable area of the nanotopographic surface showed 1.4-, 1.5-, and 1.6-fold increase in migration speeds and a 1.4-, 2-, and 2.5-fold decrease in the number of focal adhesions as the adherable area was decreased to 86, 68, and 36%, respectively. Furthermore, a strong activation of FAK/Rac1 signaling was observed to be involved in the promoted cell migration. These results suggest that the reduced adherable area promotes cell migration through decreasing the FA formation, which in turn upregulates FAK/Rac1 activation. The findings in this study can be utilized to control the cell migration behaviors, which is a powerful tool in the research fields involving cell migration such as promoting wound healing and tissue repair.

  18. Streptococcus mutans Adherence: Presumptive Evidence for Protein-Mediated Attachment Followed by Glucan-Dependent Cellular Accumulation

    PubMed Central

    Staat, Robert H.; Langley, Sharon D.; Doyle, R. J.

    1980-01-01

    Adherence of Streptococcus mutans to smooth surfaces has been attributed to the production of sucrose-derived d-glucans. However, several studies indicate that the bacterium will adhere in the absence of sucrose. The present data confirmed that S. mutans adherence to saliva-coated hydroxyapatite beads in the absence of sucrose is described by the Langmuir equation. The nature of the sucrose-independent adherence was studied with the Persea americana agglutinin as a selective adherence inhibitor. Pretreatment of the bacterium with P. americana agglutinin caused a 10-fold reduction in adherence, and the inhibition was not reversed with the addition of sucrose. Pretreatment of S. mutans with proteases also reduced adherence, regardless of the sucrose content, whereas periodate oxidation and glucanohydrolase treatment of the bacteria reduced sucrose-mediated adherence to the levels found for sucrose-independent adherence. The P. americana agglutinin, glucanohydrolase, and pepsin pretreatment of the cells did not eliminate sucrose-induced agglutination. Scanning electron microscopy showed that short streptococcal chains were bound to saliva-coated hydroxyapatite crystals in the sucrose-independent system, whereas the presence of sucrose caused larger bacterial clumps to be found. A two-reaction model of S. mutans adherence was developed from these data. It is proposed that one reaction is attachment to the tooth pellicle which is mediated by cell-surface proteins rather than glucans or teichoic acids. The other reaction is cellular accumulation mediated by sucrose-derived d-glucans and cell surface lectins. A series of sequential adherence experiments with P. americana agglutinin as a selective inhibitor provided presumptive evidence for the validity of our model of S. mutans adherence. Images Fig. 1 PMID:7380545

  19. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    PubMed

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These results support differential functions for PKCeta and PKCtheta in T cell activation.

  20. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  1. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of CDF from the bile canaliculi into the culture supernatant with variations in dependence on the used matrix combination. In conclusion, the results of this study show that the choice of ECM has an impact on the morphology, cell assembly and bile canaliculi formation in PHH sandwich cultures. The morphology and the multicellular arrangement were essentially influenced by the underlaying matrix, while bile excretion and leakage of sandwich-cultured hepatocytes were mainly influenced by the overlay matrix. Leaking and damaged bile canaliculi could be a limitation of the investigated sandwich culture models in long-term excretion studies.

  2. A small molecule-based strategy for endothelial differentiation and three-dimensional morphogenesis from human embryonic stem cells.

    PubMed

    Geng, Yijie; Feng, Bradley

    2016-07-01

    The emerging models of human embryonic stem cell (hESC) self-organizing organoids provide a valuable in vitro platform for studying self-organizing processes that presumably mimic in vivo human developmental events. Here we report that through a chemical screen, we identified two novel and structurally similar small molecules BIR1 and BIR2 which robustly induced the self-organization of a balloon-shaped three-dimensional structure when applied to two-dimensional adherent hESC cultures in the absence of growth factors. Gene expression analyses and functional assays demonstrated an endothelial identity of this balloon-like structure, while cell surface marker analyses revealed a VE-cadherin(+)CD31(+)CD34(+)KDR(+)CD43(-) putative endothelial progenitor population. Furthermore, molecular marker labeling and morphological examinations characterized several other distinct DiI-Ac-LDL(+) multi-cellular modules and a VEGFR3(+) sprouting structure in the balloon cultures that likely represented intermediate structures of balloon-formation.

  3. Trichomonas vaginalis clinical isolates: cytoadherence and adherence to polystyrene, intrauterine device, and vaginal ring.

    PubMed

    Dos Santos, Odelta; Rigo, Graziela Vargas; Macedo, Alexandre José; Tasca, Tiana

    2017-12-01

    The parasitism by Trichomonas vaginalis is complex and in part is mediated by cytoadherence accomplished via five surface proteins named adhesins and a glycoconjugate called lipophosphoglycan (TvLPG). In this study, we evaluated the ability of T. vaginalis isolates to adhere to cells, plastic (polystyrene microplates), intrauterine device (IUD), and vaginal ring. Of 32 T. vaginalis isolates, 4 (12.5%) were strong adherent. The T. vaginalis isolates TV-LACM6 and TV-LACM14 (strong polystyrene-adherent) were also able to adhere to IUD and vaginal ring. Following chemical treatments, results demonstrated that the T. vaginalis components, lipophosphoglycan, cytoskeletal proteins, and surface molecules, were involved in both adherence to polystyrene and cytoadherence. The gene expression level from four adhesion proteins was highest in trophozoites adhered to cells than trophozoites adhered to the abiotic surface (polystyrene microplate). Our data indicate the major involvement of TvLPG in adherence to polystyrene, and that adhesins are important for cytoadherence. Furthermore, to our knowledge, this is the first report showing the T. vaginalis adherence to contraceptive devices, reaffirming its importance as pathogen among women in reproductive age.

  4. A novel co-culture model of murine K12 osteosarcoma cells and S. aureus on common orthopedic implant materials: 'the race to the surface' studied in vitro.

    PubMed

    McConda, David B; Karnes, Jonathan M; Hamza, Therwa; Lindsey, Brock A

    2016-07-01

    Infection is a major cause of orthopedic implant failure. There are few studies assessing both tissue cell and bacterial adherence on common orthopedic implant materials in a co-culture environment. An in vitro co-culture model was created using K12 osteosarcoma cells and Staphylococcus aureus in a medium incubated over metal disks for 48 h. The results showed that, in the presence of S. aureus, there were fewer osteosarcoma cells attached to the disks for all substrata tested. There were significantly more osteosarcoma cells adhering to the cobalt chrome than the stainless steel and titanium disks. Overall, in the presence of osteosarcoma cells, there were more bacteria adhering to the disks for all the substrata tested, with significantly more bacteria adhering to the stainless steel disks compared to cobalt chrome and titanium disks. Scanning electron microscopy verified that osteosarcoma cells and bacteria were adherent to the metal disks after incubation for 48 h. Furthermore, the observation that more bacteria were in the co-culture than in the control sample suggests that the osteosarcoma cells serve as a nutrient source for the bacteria. Future models assessing the interaction of osteogenic cells with bacteria on a substratum would be improved if the model accounted for the role of the immune system in secondary bone healing.

  5. Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.

    PubMed

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2018-01-16

    Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.

  6. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.

    PubMed

    Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit

    2011-04-01

    A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. bFGF-containing electrospun gelatin scaffolds with controlled nano-architectural features for directed angiogenesis

    PubMed Central

    Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.

    2011-01-01

    Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610

  8. Mechanism of vaso-occlusion in sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-11-01

    Vaso-occlusion crisis is one of the key hallmark of sickle cell anemia. While early studies suggested that the crisis is caused by blockage of a single elongated cell, recent experimental investigations indicate that vaso-occlusion is a complex process triggered by adhesive interactions among different cell groups in multiple stages. Based on dissipative particle dynamics, a multi-scale model for the sickle red blood cells (SS-RBCs), accounting for diversity in both shapes and cell rigidities, is developed to investigate the mechanism of vaso-occlusion crisis. Using this model, the adhesive dynamics of single SS-RBC was investigated in arterioles. Simulation results indicate that the different cell groups (deformable SS2 RBCs, rigid SS4 RBCs, leukocytes, etc.) exhibit heterogeneous adhesive behavior due to the different cell morphologies and membrane rigidities. We further simulate the tube flow of SS-RBC suspensions with different cell fractions. The more adhesive SS2 cells interact with the vascular endothelium and further trap rigid SS4 cells, resulting in vaso-occlusion in vessels less than 15 μm . Under inflammation, adherent leukocytes may also trap SS4 cells, resulting in vaso-occlusion in even larger vessels. This work was supported by the NSF grant CBET-0852948 and the NIH grant R01HL094270.

  9. Evaluation of ex vivo produced endothelial progenitor cells for autologous transplantation in primates.

    PubMed

    Qin, Meng; Guan, Xin; Zhang, Yu; Shen, Bin; Liu, Fang; Zhang, Qingyu; Ma, Yupo; Jiang, Yongping

    2018-01-22

    Autologous transplantation of endothelial progenitor cells (EPCs) is a promising therapeutic approach in the treatment of various vascular diseases. We previously reported a two-step culture system for scalable generation of human EPCs derived from cord blood CD34 + cells ex vivo. Here, we now apply this culture system to expand and differentiate human and nonhuman primate EPCs from mobilized peripheral blood (PB) CD34 + cells for the therapeutic potential of autologous transplantation. The human and nonhuman primate EPCs from mobilized PB CD34 + cells were cultured according to our previously reported system. The generated adherent cells were then characterized by the morphology, surface markers, nitric oxide (NO)/endothelial NO synthase (eNOS) levels and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake/fluorescein isothiocyanate (FITC)-lectin binding actives. Furthermore, the efficacy and safety studies were performed by autologous transplantation via hepatic portal vein injection in a nonhuman primate model with acute liver sinusoidal endothelial cell injury. The mobilized PB CD34 + cells from both human and nonhuman primate were efficiently expanded and differentiated. Over 2 × 10 8 adherent cells were generated from 20 mL mobilized primate PB (1.51 × 10 6  ± 3.39 × 10 5 CD34 + cells) by 36-day culture and more than 80% of the produced cells were identified as EPCs/endothelial cells (ECs). In the autologous transplant model, the injected EPC/ECs from nonhuman primate PB were scattered in the intercellular spaces of hepatocytes at the hepatic tissues 14 days post-transplantation, indicating successful migration and reconstitution in the liver structure as the functional EPCs/ECs. We successfully applied our previous two-step culture system for the generation of primate EPCs from mobilized PB CD34 + cells, evaluated the phenotypes ex vivo, and transplanted autologous EPCs/ECs in a nonhuman primate model. Our study indicates that it may be possible for these ex-vivo high-efficient expanded EPCs to be used in clinical cell therapy.

  10. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis.

    PubMed

    Biggerstaff, J P; Seth, N; Amirkhosravi, A; Amaya, M; Fogarty, S; Meyer, T V; Siddiqui, F; Francis, J L

    1999-01-01

    There is considerable evidence for a relationship between hemostasis and malignancy. Since platelet adhesion to tumor cells has been implicated in the metastatic process and plasma levels of fibrinogen (Fg) and soluble fibrin (sFn) monomer are increased in cancer, we hypothesized that these molecules might enhance tumor-platelet interaction. We therefore studied binding of sFn monomer to tumor cells in a static microplate adhesion assay and determined the effect of pre-treating tumor cells with sFn on tumor cell-induced thrombocytopenia and experimental metastasis. Soluble fibrin (produced by adding thrombin to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro-amide (GPRP-NH2) significantly increased platelet adherence to tumor cells. This effect was primarily mediated by the integrins alphaIIb beta3 on the platelet and CD 54 (ICAM-1) on the tumor cells. Platelets adhered to untreated A375 cells (28 +/- 8 platelets/tumor cell) and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or GPRP-NH2. Although thrombin treatment increased adherence, pre-incubation of the tumor cells with sFn resulted in a further increase in platelet binding to tumor cells. In contrast to untreated tumor cells, intravenous injection of sFn-treated A 375 cells reduced the platelet count in anticoagulated mice, supporting the in vitro finding that sFn enhanced tumor cell-platelet adherence. In a more aggressive model of experimental metastasis, treating tumor cells with sFn enhanced lung seeding by 65% compared to untreated cells. Extrapolation of our data to the clinical situation suggests that coagulation activation, and subsequent increase in circulating Fn monomer, may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  11. [Cytocompatibility of nanophase hydroxyapatite ceramics].

    PubMed

    Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong

    2004-12-01

    To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.

  12. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    PubMed

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  13. [Cytocompatibility of two porous bioactive glass-ceramic in vitro].

    PubMed

    Zhang, Yan; Jiang, Xinquan; Zhang, Xiuli; Wang, Deping; Zhen, Lei

    2013-06-01

    To compare the cytocompatibility of two kinds porous bioactive glass-ceramic made by same raw materials. Apatite/wollastonite bioactive glass-ceramic (4006) were prepared by sol-gel method, and bioactive glass (45S5) were prepared by melting method. Bone marrow stromal cells (BMSCs) were cultivated, differentiated and proliferated into osteoblasts, from a rabbit's marrow in the differentiatiofn culture medium with active function. The viability of BMSCs cultivated with extraction of these two kinds of biomaterial, which could represent the cytotoxicity effect of 4006 and 45S5 against BMSCs, was evaluated by the MTp assay. BMSCs were seeded and cocultivated with two kinds of biomaterial scaffolds respectively in vitro. The proliferation and biological properties of cells adhered to scaffolds were observed by inverted phase contrast microscope, scanning electron microscope (SEM), and environmental scanning electron microscope (ESEM), and a suitable cell amount for seeding on the scaffold was searched. There was no difference on the viability of BMSCs only cultured for one day by complete extract of 4006 and culture medium (P>0.05), but there was significant difference between them when the cells had been cultured for 3 days(P<0.01). The extract of 45S5 had significantly higher cytotoxicity than extract of culture medium (P<0.01). The BMSCs adhered, spread, and proliferated throughout the pores of the scaffold 4006, and the amount of cells adhered to 4006 was more than to 45S5. The adhered cells to 4006 increased with the rising amount of cells seeded. And 2 x 10(7) cells.mL-1 suspension resulted inthe highest cell adherence during the comparative cells adherence test. Apatite/woolastonite bioac tive glass-ceramic has good bioactivity and cytocompatibility. Therefore, it may have the potential to be a new cell vehicle for bone tissue engineering. And the suitable seeding cell amount of apatite/wollastonite bioactive glass-ceramic should be 2x10(7) cells.mL-1 or even more than that.

  14. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance.

    PubMed

    Kaul, D K; Koshkaryev, A; Artmann, G; Barshtein, G; Yedgar, S

    2008-10-01

    To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.

  15. ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids†

    PubMed Central

    Park, Kidong; Jang, Jaesung; Irimia, Daniel; Sturgis, Jennifer; Lee, James; Robinson, J. Paul; Toner, Mehmet; Bashir, Rashid

    2013-01-01

    The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. PMID:18584076

  16. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q  < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  17. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  18. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  19. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate

    PubMed Central

    Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices. PMID:29447224

  20. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate.

    PubMed

    Bahari, Liat; Bein, Amir; Yashunsky, Victor; Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices.

  1. [Effect of Echinococcus multilocularis Cyst Fluid on the Expression of Five MAPK-pathway Genes of Rat Hepatic Stellate Cells].

    PubMed

    Ren, Bin; Fan, Hai-ning; Deng, Yong; Wang, Hai-jiu; Ren, Li

    2015-04-01

    To investigate the effect of Echinococcus multilocularis cyst fluid on five MAPK (mitogen-activated protein kinase)-pathway genes of rat hepatic stellate cell. Rat hepatic stellate cell line, HSC-T6 cells were co-cultured with different protein concentrations of E. multilocularis cyst fluid (0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.9, 1.7, 3.4, 6.8, and 13.5 mg/ml) for 24 h. HSC-T6 cells cultured with complete medium served as control group. The morphological change of cells was observed under the microscope. The expression of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase(p38) in HSC-T6 cells was detected by real time fluorescent quantitative PCR. After co-cultured for 24 h, most HSC-T6 cells in 13.5 mg/ml group shrank as a precursor to slough off; In 6.8 mg/ml group, some HSC-T6 cells shrank and changed to long fusiform shape with many slender pseudopodia; In 3.4 mg/ml group, most HSC-T6 cells showed as adherent cells with an irregular polygon shape, formed a sheet with short pseudopodia. There was no difference in cell morphology between < 1.7 mg/ml groups and control group. When the protein concentration was above 1.7 mg/ml, the mRNA level of ERK1/2, JNK1/2, and P38 increased significantly increased. In 6.8 mg/ml cyst fluid group, the mRNA level of ERK1/2, JNK1/2, and P38 was higher than that of the control (P < 0.05). 6.8 mg/ml Echinococcus multilocularis cyst fluid can have a significant impact on mRNA levels of ERK1/2, JNK1/2 and p38 in rat hepatic stellate cells.

  2. Joint longitudinal data analysis in detecting determinants of CD4 cell count change and adherence to highly active antiretroviral therapy at Felege Hiwot Teaching and Specialized Hospital, North-west Ethiopia (Amhara Region).

    PubMed

    Seyoum, Awoke; Ndlovu, Principal; Temesgen, Zewotir

    2017-03-16

    Adherence and CD4 cell count change measure the progression of the disease in HIV patients after the commencement of HAART. Lack of information about associated factors on adherence to HAART and CD4 cell count reduction is a challenge for the improvement of cells in HIV positive adults. The main objective of adopting joint modeling was to compare separate and joint models of longitudinal repeated measures in identifying long-term predictors of the two longitudinal outcomes: CD4 cell count and adherence to HAART. A longitudinal retrospective cohort study was conducted to examine the joint predictors of CD4 cell count change and adherence to HAART among HIV adult patients enrolled in the first 10 months of the year 2008 and followed-up to June 2012. Joint model was employed to determine joint predictors of two longitudinal response variables over time. Furthermore, the generalized linear mixed effect model had been used for specification of the marginal distribution, conditional to correlated random effect. A total of 792 adult HIV patients were studied to analyze the longitudinal joint model study. The result from this investigation revealed that age, weight, baseline CD4 cell count, ownership of cell phone, visiting times, marital status, residence area and level of disclosure of the disease to family members had significantly affected both outcomes. From the two-way interactions, time * owner of cell phone, time * sex, age * sex, age * level of education as well as time * level of education were significant for CD4 cell count change in the longitudinal data analysis. The multivariate joint model with linear predictor indicates that CD4 cell count change was positively correlated (p ≤ 0.0001) with adherence to HAART. Hence, as adherence to HAART increased, CD4 cell count also increased; and those patients who had significant CD4 cell count change at each visiting time had been encouraged to be good adherents. Joint model analysis was more parsimonious as compared to separate analysis, as it reduces type I error and subject-specific analysis improved its model fit. The joint model operates multivariate analysis simultaneously; and it has great power in parameter estimation. Developing joint model helps validate the observed correlation between the outcomes that have emerged from the association of intercepts. There should be a special attention and intervention for HIV positive adults, especially for those who had poor adherence and with low CD4 cell count change. The intervention may be important for pre-treatment counseling and awareness creation. The study also identified a group of patients who were with maximum risk of CD4 cell count change. It is suggested that this group of patients needs high intervention for counseling.

  3. Microparticles Engineered to Highly Express Peroxisome Proliferator-Activated Receptor-γ Decreased Inflammatory Mediator Production and Increased Adhesion of Recipient Monocytes

    PubMed Central

    Sahler, Julie; Woeller, Collynn F.; Phipps, Richard P.

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation. PMID:25426628

  4. Microparticles engineered to highly express peroxisome proliferator-activated receptor-γ decreased inflammatory mediator production and increased adhesion of recipient monocytes.

    PubMed

    Sahler, Julie; Woeller, Collynn F; Phipps, Richard P

    2014-01-01

    Circulating blood microparticles are submicron vesicles released primarily by megakaryocytes and platelets that act as transcellular communicators. Inflammatory conditions exhibit elevated blood microparticle numbers compared to healthy conditions. Direct functional consequences of microparticle composition, especially internal composition, on recipient cells are poorly understood. Our objective was to evaluate if microparticle composition could impact the function of recipient cells, particularly during inflammatory provocation. We therefore engineered the composition of megakaryocyte culture-derived microparticles to generate distinct microparticle populations that were given to human monocytes to assay for influences recipient cell function. Herein, we tested the responses of monocytes exposed to either control microparticles or microparticles that contain the anti-inflammatory transcription factor, peroxisome proliferator-activated receptor-γ (PPARγ). In order to normalize relative microparticle abundance from two microparticle populations, we implemented a novel approach that utilizes a Nanodrop Spectrophotometer to assay for microparticle density rather than concentration. We found that when given to peripheral blood mononuclear cells, microparticles were preferentially internalized by CD11b+ cells, and furthermore, microparticle composition had a profound functional impact on recipient monocytes. Specifically, microparticles containing PPARγ reduced activated monocyte production of the proinflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared to activated monocytes exposed to control microparticles. Additionally, treatment with PPARγ microparticles greatly increased monocyte cell adherence. This change in morphology occurred simultaneously with increased production of the key extracellular matrix protein, fibronectin and increased expression of the fibronectin-binding integrin, ITGA5. PPARγ microparticles also changed monocyte mRNA levels of several genes including those under PPARγ control. Overall, the delivery of PPARγ from microparticles to human monocytes influenced gene expression, decreased inflammatory mediator production and increased monocyte adherence. These results support the concept that the composition of blood microparticles has a profound impact on the function of cells with which they interact, and likely plays a role in vascular inflammation.

  5. EVALUATING THE ROLE OF SDIA AND HHA IN ENHANCED ADHERENCE OF A SDIA HHA DOUBLE MUTANT OF ENTEROHEMORRHAGIC ESCHERICHIA COLI O157:H7

    USDA-ARS?s Scientific Manuscript database

    Adherence of Enterohemorrhagic Escherichia coli (EHEC) O157:H7 to biotic (epithelial cells) and abiotic surfaces (biofilm formation) proceeds from an initial reversible adherence to an irreversible stage of intimate adherence. While flagella and fimbriae facilitate initial stage of adherence in both...

  6. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect.

    PubMed

    Koga, Hideyuki; Shimaya, Masayuki; Muneta, Takeshi; Nimura, Akimoto; Morito, Toshiyuki; Hayashi, Masaya; Suzuki, Shiro; Ju, Young-Jin; Mochizuki, Tomoyuki; Sekiya, Ichiro

    2008-01-01

    Current cell therapy for cartilage regeneration requires invasive procedures, periosteal coverage and scaffold use. We have developed a novel transplantation method with synovial mesenchymal stem cells (MSCs) to adhere to the cartilage defect. For ex vivo analysis in rabbits, the cartilage defect was faced upward, filled with synovial MSC suspension, and held stationary for 2.5 to 15 minutes. The number of attached cells was examined. For in vivo analysis in rabbits, an autologous synovial MSC suspension was placed on the cartilage defect, and the position was maintained for 10 minutes to adhere the cells to the defect. For the control, either the same cell suspension was injected intra-articularly or the defects were left empty. The three groups were compared macroscopically and histologically. For ex vivo analysis in humans, in addition to the similar experiment in rabbits, the expression and effects of neutralizing antibodies for adhesion molecules were examined. Ex vivo analysis in rabbits demonstrated that the number of attached cells increased in a time-dependent manner, and more than 60% of cells attached within 10 minutes. The in vivo study showed that a large number of transplanted synovial MSCs attached to the defect at 1 day, and the cartilage defect improved at 24 weeks. The histological score was consistently better than the scores of the two control groups (same cell suspension injected intra-articularly or defects left empty) at 4, 12, and 24 weeks. Ex vivo analysis in humans provided similar results to those in rabbits. Intercellular adhesion molecule 1-positive cells increased between 1 minute and 10 minutes, and neutralizing antibodies for intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and activated leukocyte-cell adhesion molecule inhibited the attachment. Placing MSC suspension on the cartilage defect for 10 minutes resulted in adherence of >60% of synovial MSCs to the defect, and promoted cartilage regeneration. This adherent method makes it possible to adhere MSCs with low invasion, without periosteal coverage, and without a scaffold.

  7. An evaluation of bacterial contamination of barriers used in periapical tissue regeneration: Part 1--Bacterial adherence.

    PubMed

    Sharma, Priya; Mickel, André K; Chogle, Sami; Sharma, Prem Nath; Han, Yiping W; Jones, Jefferson J

    2008-02-01

    To compare the adherence of Prevotella melaninogenica and Enterococcus faecalis to 3 guided tissue regeneration membranes: Atrisorb, Lambone, and OsseoQuest. It was hypothesized that OsseoQuest would show increased bacterial adherence compared to Lambone and Atrisorb. The barriers were suspended in trypticase soy broth containing an inoculum of either P melaninogenica or E faecalis. The samples were incubated under appropriate conditions for 6, 24, and 48 hours. Following incubation, each membrane was mixed in fresh media in a vortex machine to dislodge adherent bacteria. The vortexed media was quantitatively assessed using serial dilutions for viable cell count. E faecalis exhibited higher adherence compared to P melaninogenica with time. Of the membranes tested, Lambone displayed the least bacterial adherence. An analysis of the results indicated that bacterial adherence was time-dependent for all membranes. Membrane structure, chemical configuration, hydrophobicity, and bacterial cell surface structure were suggested as factors contributing to variance in bacterial adherence.

  8. Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Sharma, Vijay K.; Kudva, Indira T.; Bearson, Bradley L.; Stasko, Judith A.

    2016-01-01

    In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose). PMID:26900701

  9. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  10. Quantitative characterization of mesenchymal stem cell adhesion to the articular cartilage surface.

    PubMed

    Hung, Ben P; Babalola, Omotunde M; Bonassar, Lawrence J

    2013-12-01

    There has been great interest in use of mesenchymal stem cell (MSC)-based therapies for cartilage repair. Most recently, treatments involving intra-articular injection of MSCs have shown great promise for cartilage repair and arthritis therapy, which rely on MSC adhesion to cartilage. While there is some information on chondrocyte adhesion to cartilage, there is relatively little known about the kinetics and strength of MSC adhesion to cartilage. The goals of this study were as follows: (1) to quantify the kinetics and strength of adhesion of marrow-derived MSCs to articular cartilage using standard laboratory hardware; (2) to compare this adhesion behavior to that of articular chondrocytes; and (3) to assess the effect of serial monolayer culture on MSC adhesion. First through fourth passage MSCs and primary articular chondrocytes were allowed to adhere to the articular surface of cartilage disks for up to 30 h and the number of adhered cells was recorded to quantify adhesion kinetics. After 30 h, adherent cells were subjected to centrifugal shear to determine adhesion strength, quantified as the shear necessary to detach half the adhered cells (σ50 ). The number of adhered MSCs and adhesion strength increased with passage number and MSCs adhered more strongly than did primary articular chondrocytes. As such, the kinetics and strength of MSC adhesion to cartilage is not dramatically lower than that for articular chondrocytes. This protocol for assessing cell adhesion to cartilage is simple to implement and may represent an important screening tool for assessing the efficacy of cell-based therapies for cartilage repair. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  11. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

    PubMed Central

    Rogers, Crystal D.; Saxena, Ankur

    2013-01-01

    The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT. PMID:24297751

  12. Colony variation of Helicobacter pylori: pathogenic potential is correlated to cell wall lipid composition.

    PubMed

    Bukholm, G; Tannaes, T; Nedenskov, P; Esbensen, Y; Grav, H J; Hovig, T; Ariansen, S; Guldvog, I

    1997-05-01

    Differences in expression of disease after infection with Helicobacter pylori have so far been connected with host factors and bacterial interstrain variation. In this study, spontaneous and ecology-mediated intrastrain variation was examined. Four clinical isolates of H. pylori were shown to give rise to two colony forms. Bacterial morphology was examined by electron microscopy. Bacterial fractions were examined for proteins using ion exchange chromatography and SDS-PAGE; for lipids using thin-layer chromatography, lipid anion-exchange chromatography, column chromatography on silica gel, 31P-NMR, gas chromatography and mass spectrometry. Bacterial in vitro invasiveness and adhesiveness were examined in two different systems, and urease and VacA toxin were assayed by Western blot analysis. H. pylori was shown to give rise to two colony forms: at normal pH the population was dominated by L colonies. One strain was chosen for further studies. Bacteria from L colonies retained VacA toxin and urease, did not invade or adhere to epithelial cells, and contained normal quantities of phosphatidylethanolamine. In a small frequency, spontaneous S colonies were formed. Bacteria from these colonies released VacA and urease, adhered to and invaded epithelial cells and contained increased amounts of lysophosphatidyl ethanolamine and phosphatidyl serine. After addition of HCl to the culture medium (pH6), almost only S colonies were formed. The results demonstrate that environmental factors, such as HCl, can change the bacterial cell wall, and thereby enhance expression of virulence factors of H. pylori in vitro. A similar in vivo variation would have implications for our understanding of the interaction between HCl secretion in the gastric mucosa and H. pylori in the development of peptic ulcer disease.

  13. Generation of avian cells resembling osteoclasts from mononuclear phagocytes

    NASA Technical Reports Server (NTRS)

    Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.

    1991-01-01

    Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.

  14. 3D morphometry of red blood cells by digital holography.

    PubMed

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Gennari, Oriella; Netti, Paolo Antonio; Ferraro, Pietro

    2014-12-01

    Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs. © 2014 International Society for Advancement of Cytometry.

  15. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.

    PubMed

    Faille, Christine; Jullien, Celine; Fontaine, Francoise; Bellon-Fontaine, Marie-Noelle; Slomianny, Christian; Benezech, Thierry

    2002-08-01

    The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation.

  16. Optimization and inhibition of the adherent ability of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Smith, H; Crandall, I; Prudhomme, J; Sherman, I W

    1992-01-01

    The vast majority of the 1-2 million malaria associated deaths that occur each year are due to anemia and cerebral malaria (the attachment of erythrocytes containing mature forms of Plasmodium falciparum to the endothelial cells that line the vascular beds of the brain). A "model system" for the study of cerebral malaria employs amelanotic melanoma cells as the "target" cells in an in vitro cytoadherence assay. Using this model system we determined that the optimum pH for adherence is 6.6 to 6.8, that high concentrations of Ca2+ (50mM) result in increased levels of binding, and that the type of buffer used influences adherence (Bis Tris > MOPS > HEPES > PIPES). We also observed that the ability of infected erythrocytes to cytoadhere varied from (erythrocyte) donor to donor. We have produced murine monoclonal antibodies against P. falciparum-infected red cells which recognize modified forms of human band 3; these inhibit the adherence of infected erythrocytes to melanoma cells in a dose-responsive fashion. Antimalarials (chloroquine, quinacrine, mefloquine, artemisinin), on the other hand, affected adherence in an indirect fashion i.e. since cytoadherence is due, in part, to the presence of knobs on the surface of the infected erythrocyte, and knob formation is dependent on intracellular parasite growth, when plasmodial development is inhibited so is knob production, and consequently adherence is ablated.

  17. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers.

    PubMed

    Burleson, Kathryn M; Casey, Rachael C; Skubitz, Keith M; Pambuccian, Stephan E; Oegema, Theodore R; Skubitz, Amy P N

    2004-04-01

    Ovarian carcinoma cells form multicellular aggregates, or spheroids, in the peritoneal cavity of patients with advanced disease. The current paradigm that ascites spheroids are non-adhesive leaves their contribution to ovarian carcinoma dissemination undefined. Here, spheroids obtained from ovarian carcinoma patients' ascites were characterized for their ability to adhere to molecules encountered in the peritoneal cavity, with the goal of establishing their potential to contribute to ovarian cancer spread. Spheroids were recovered from the ascites fluid of 11 patients with stage III or stage IV ovarian carcinoma. Adhesion assays to extracellular matrix (ECM) proteins and human mesothelial cell monolayers were performed for each of the ascites spheroid samples. Subsequently, inhibition assays were performed to identify the cell receptors involved. Most ascites samples adhered moderately to fibronectin and type I collagen, with reduced adhesion to type IV collagen and laminin. Monoclonal antibodies against the beta1 integrin subunit partially inhibited this adhesion. Ascites spheroids also adhered to hyaluronan. Additionally, spheroids adhered to live, but not fixed, human mesothelial cell monolayers, and this adhesion was partially mediated by beta1 integrins. The cellular content of the ascites fluid has often been considered non-adhesive, but our findings are the first to suggest that patient-derived ascites spheroids can adhere to mesothelial extracellular matrix via beta1 integrins, indicating that spheroids should not be ignored in the dissemination of ovarian cancer.

  18. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes.

    PubMed

    Debaize, Lydie; Jakobczyk, Hélène; Rio, Anne-Gaëlle; Gandemer, Virginie; Troadec, Marie-Bérengère

    2017-01-01

    Genetic abnormalities, including chromosomal translocations, are described for many hematological malignancies. From the clinical perspective, detection of chromosomal abnormalities is relevant not only for diagnostic and treatment purposes but also for prognostic risk assessment. From the translational research perspective, the identification of fusion proteins and protein interactions has allowed crucial breakthroughs in understanding the pathogenesis of malignancies and consequently major achievements in targeted therapy. We describe the optimization of the Proximity Ligation Assay (PLA) to ascertain the presence of fusion proteins, and protein interactions in non-adherent pre-B cells. PLA is an innovative method of protein-protein colocalization detection by molecular biology that combines the advantages of microscopy with the advantages of molecular biology precision, enabling detection of protein proximity theoretically ranging from 0 to 40 nm. We propose an optimized PLA procedure. We overcome the issue of maintaining non-adherent hematological cells by traditional cytocentrifugation and optimized buffers, by changing incubation times, and modifying washing steps. Further, we provide convincing negative and positive controls, and demonstrate that optimized PLA procedure is sensitive to total protein level. The optimized PLA procedure allows the detection of fusion proteins and protein interactions on non-adherent cells. The optimized PLA procedure described here can be readily applied to various non-adherent hematological cells, from cell lines to patients' cells. The optimized PLA protocol enables detection of fusion proteins and their subcellular expression, and protein interactions in non-adherent cells. Therefore, the optimized PLA protocol provides a new tool that can be adopted in a wide range of applications in the biological field.

  19. Inter-serotype comparison of polysaccharides produced by extracellular enzymes from Streptococcus mutans.

    PubMed

    Yakushiji, T; Inoue, M; Koga, T

    1984-04-15

    The biochemical and morphological characteristics of polysaccharides synthesized from sucrose by extracellular enzymes from D-glucose-grown Streptococcus mutans representing serotypes a-g were compared. The polysaccharides synthesized by the enzymes from serotypes a, d, and g formed visible aggregates and firmly adhered to glass surfaces, whereas those formed by the enzymes from serotypes b, c, e, and f floated homogeneously and were poorly adherent. The enzymes of serotypes a, d, and g produced large amounts of water-insoluble polysaccharides (IPs, D-glucans), and those of serotypes b, c, e, and f water-soluble polysaccharides (SPs, D-glucans and D- fructans ). As compared with the IPs of serotypes b, c, e, and f, the IPs of serotypes a, d, and g (a) contained a higher proportion of (1----3)-alpha-D-glucosidic linkages and alpha-D-(1----3,6) branch linkages; (b) showed higher susceptibility to (1----3)-alpha-D-glucanase (serotype a excepted) and lower (1----6)-alpha-D-glucanase sensitivity; (c) contained larger amounts of high-molecular-weight fractions; (d) showed higher intrinsic viscosities (serotype b excepted); and (e) had lower S. mutans cell-agglutination activities. On electron-microscope observation, the IPs of all serotypes showed two fibrillar components; a double-stranded fibril, with short, fluffy protrusions extending out of its periphery, and a fine, single-stranded fibril. Thus, the serotypes could be divided into two major groups: a, d, and g; and b, c, e, and f. No similar grouping of serotypes was indicated by the chemical and morphological properties of SPs.

  20. Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction.

    PubMed

    Côrtes, Luzia Mc; Silva, Roger Mm; Pereira, Bernardo As; Guerra, Camila; Zapata, Angela C; Bello, Felio J; Finkelstein, Léa C; Madeira, Maria F; Brazil, Reginaldo P; Côrte-Real, Suzana; Alves, Carlos R

    2011-11-14

    Leishmania (Vianna) braziliensis, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) chagasi are important parasites in the scenario of leishmaniasis in Brazil. During the life cycle of these parasites, the promastigote forms adhere to the midgut epithelial microvillii of phlebotomine insects to avoid being secreted along with digestive products. Lulo cells are a potential model that will help to understand the features of this adhesion phenomenon. Here, we analyze the interaction between Leishmania spp. promastigotes and Lulo cells in vitro, specifically focusing on adhesion events occurring between three Leishmania species and this cell line. Confluent monolayers of Lulo cells were incubated with promastigotes and adhesion was assessed using both light microscopy and scanning electron microscopy. The results indicate that species from the subgenera Leishmania and Viannia have great potential to adhere to Lulo cells. The highest adherence rate was observed for L. (L.) chagasi after 24 h of incubation with Lulo cells (27.3 ± 1.8% of cells with adhered promastigotes), followed by L. (L.) amazonensis (16.0 ± 0.7%) and L. (V.) braziliensis (3.0 ± 0.7%), both after 48 h. In the ultrastructural analysis, promastigote adherence was also assessed by scanning electron microscopy, showing that, for parasites from both subgenera, adhesion occurs by both the body and the flagellum. The interaction of Lulo cells with Leishmania (L.) chagasi showed the participation of cytoplasmic projections from the former closely associating the parasites with the cells. We present evidence that Lulo cells can be useful in studies of insect-parasite interactions for Leishmania species.

  1. Marker-free detection of progenitor cell differentiation by analysis of Brownian motion in micro-wells.

    PubMed

    Sekhavati, Farzad; Endele, Max; Rappl, Susanne; Marel, Anna-Kristina; Schroeder, Timm; Rädler, Joachim O

    2015-02-01

    The kinetics of stem and progenitor cell differentiation at the single-cell level provides essential clues to the complexity of the underlying decision-making circuits. In many hematopoietic progenitor cells, differentiation is accompanied by the expression of lineage-specific markers and by a transition from a non-adherent to an adherent state. Here, using the granulocyte-macrophage progenitor (GMP) as a model, we introduce a label-free approach that allows one to follow the course of this transition in hundreds of single cells in parallel. We trap single cells in patterned arrays of micro-wells and use phase-contrast time-lapse movies to distinguish non-adherent from adherent cells by an analysis of Brownian motion. This approach allowed us to observe the kinetics of induced differentiation of primary bone-marrow-derived GMPs into macrophages. The time lapse started 2 hours after addition of the cytokine M-CSF, and nearly 80% of the population had accomplished the transition within the first 20 h. The analysis of Brownian motion proved to be a sensitive and robust tool for monitoring the transition, and thus provides a high-throughput method for the study of cell differentiation at the single-cell level.

  2. Plasmin on adherent cells: from microvesiculation to apoptosis

    PubMed Central

    Doeuvre, Loïc; Plawinski, Laurent; Goux, Didier; Vivien, Denis; Anglés-Cano, Eduardo

    2010-01-01

    SYNOPSIS Cell activation by stressors is characterised by a sequence of detectable phenotypic cell changes. The strength of a given stimulus induces modifications in the activity of membrane phospholipids transporters and calpains, which leads to phosphatidylserine exposure, membrane blebbing and the release of microparticles (nanoscale membrane vesicles). This vesiculation could be considered as a warning signal that may be followed, if the stimulus is maintained, by cell detachment-induced apoptosis. In this study, plasminogen incubated onto adherent cells is activated into plasmin by constitutively expressed tPA or uPA. Plasmin formed on the cellular membrane then induces an unique response characterized by membrane blebbing and vesiculation. Hitherto unknown for plasmin, these membrane changes are similar to those induced by thrombin on platelets. If plasmin formation evolves, matrix proteins are then degraded, cells lose attachment and enter the apoptotic process, characterized by DNA fragmentation and electron microscopy features. This sequence of events was experimentally documented at all these stages. Since other proteolytic or inflammatory stimuli may evoke similar responses by distinct adherent cells, this sequence can be applied to distinguish activated adherent cells from cells entering the apoptotic process. This is a major definition crucial to the identification of mediators, inhibitors and potential therapeutic agents. PMID:20846121

  3. Adhesion of a monolayer of fibroblast cells to fibronectin under sonic vibrations in a bioreactor.

    PubMed

    Titze, Ingo R; Klemuk, Sarah A; Lu, Xiaoying

    2012-06-01

    We examined cell adhesion to a surface under vibrational forces approximating those of phonation. A monolayer of human fibroblast cells was seeded on a fibronectin-coated glass coverslip, which was attached to either the rotating part or the stationary part of a rheometer-bioreactor. The temperature, humidity, carbon dioxide level, nutrients, and cell seeding density were controlled. The cell density was on the order of 1,000 to 5,000 cells per square millimeter. Target stresses above 1 kPa at an oscillatory frequency of 100 Hz were chosen to reflect conditions of vocal fold tissue vibration. Fibronectin coating provided enough adhesion to support at least 2 kPa of oscillating stress, but only about 0.1 kPa of steady rotational shear. For stresses exceeding those limits, the cells were not able to adhere to the thin film of fibronectin. Cells will adhere to a planar surface under stresses typical of phonation, which provide a more stringent test than adherence in a 3-dimensional matrix. The density of cell seeding on the coverslip played a role in cell-extracellular matrix adhesion, in that the cells adhered to each other more than to the fibronectin coating when the cells were nearly confluent.

  4. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    NASA Astrophysics Data System (ADS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  5. Methicillin Resistant Staphylococcus Aureus Biofilm Formation Over A Separated Flow Region Under Steady And Pulsatile Flow Conditions

    NASA Astrophysics Data System (ADS)

    Salek, M. Mehdi; Martinuzzi, Robert

    2012-02-01

    Several researchers have observed that the formation, morphology and susceptibility of bacterial biofilms are affected by the local hydrodynamic condition and, in particular, shear stresses acting on the fluid-biofilm interface. A backwards facing step (BFS) experimental model has been widely utilized as an in vitro model to examine and characterize the effect of flow separation and recirculation zones comparable to those present within various medical devices as well as those observed in vivo. The specific geometry of BFS covers a vide range of flow features observed in physiological or environmental conditions. The hypothesis of this study is that the flow behavior and structures can effectively contribute to the transport and attachment of cells and affecting the morphology of adhered colonies as well as suspended structures (i.e. biofilm streamers). Hence, the formation of the recirculation region occurring within a backward facing step (BFS) under steady and pulsatile conditions as well as three-dimensional flow structures arising close to the side walls are investigated to correlate to biofilms behavior. This hypothesis is investigated using a backward facing step incorporated into a flow cell under steady and pulsatile flow regimes to study the growth of methicillin resistant Staphylococcus aureus (MRSA) UC18 as the study microorganism.

  6. Cytoskeletal and morphologic impact of cellular oxidant injury.

    PubMed Central

    Hinshaw, D. B.; Sklar, L. A.; Bohl, B.; Schraufstatter, I. U.; Hyslop, P. A.; Rossi, M. W.; Spragg, R. G.; Cochrane, C. G.

    1986-01-01

    The relationship between changes in cell morphology and the cytoskeleton in oxidant injury was examined in the P388D1 cell line. Flow cytometry of cells stained with NBD-phallacidin, a fluorescent probe specific for filamentous (F) actin, revealed a substantial increase in F actin content in H2O2-injured cells over 3-4 hours. Doses of H2O2 as low as 500 microM produced sustained increases in F actin content. Experiments where catalase was used to interrupt H2O2 exposure over a long time course revealed 15-30 minutes to be the critical period of exposure to 5 mM H2O2 necessary for a sustained increase in F actin as well as large increases in membrane blebbing and later cell death. The increase in F actin with H2O2 injury was confirmed with the use of electrophoresis in acrylamide gels of 1% Triton X-100 cytoskeletal extracts from P388D1 cells. Scanning electron microscopy revealed major loss of surface convolutions in addition to the formation of blebs. Fluorescence microscopy of adherent cells using rhodamine phalloidin showed considerable cell rounding and rearrangement of cellular F actin by 30 minutes of exposure to H2O2. Transmission electron microscopy revealed side to side aggregation of F actin bundles (microfilaments) developing during this time. Considerable swelling of mitochondria and other subcellular organelles was seen after 2 hours of injury. The apparent area of attachment to the substrate was markedly diminished in injured cells. H2O2 injury produced a marked increase in F actin with an associated rearrangement of the microfilaments and simultaneous changes in the plasma membrane prior to cell death in the P388D1 cell line. Images Figure 5 Figure 6 Figure 7 Figure 8 PMID:3717299

  7. [The Influence of New Medium with RGD on Cell Growth,Cell Fusion and Expression of Exogenous Gene].

    PubMed

    Wang, Pei-Pei; Wei, Da-Peng; Zhu, Tong-Bo

    2018-03-01

    To investigate the influence of a new culture medium added with RGD on cell growth,cell fusion and expression of exogenous gene. A new medium was prepared by adding different concentrations of RGD to ordinary culture medium. The optimum concentration of RGD was determined by observation of the growth of human pancreatic epithelial cell line HPDE6-C7. After determining the optimum concentration of RGD,different concentrations of cells HPDE6-C7 (5×10 4 ,10 5 ,5×10 5 mL -1 ) were inoculated in the two mediums. The morphology,adherence,growth and density of the cells were observed by inverted microscope; The ratio of clone formation and the positive rate of cloning were compared between the two cultures after fusion; The fluorescence intensity after the transfection of plasmid with green fluorescent protein ( GFP ) and the protein expression after transfection of plasmid with KRAS were observed to campare the expression of exogenous genes between the new medium with ordinary medium. Firstly,the optimal concentration of RGD was 10 ng/mL. Compared with the normal medium,the cultured cells with RGD had better morphology,adhesion and faster proliferation. In addition,both of the number and positive rate of clones formed in the new medium were significantly higher than that in the ordinary medium ( P <0.05);The fluorescence intensity after transfection of exogenous gene GFP in the new medium was significantly higher than that in normal medium ( P <0.05); Expression level of exogenous gene KRAS of the new medium was also significantly higher than that in normal medium. The new culture medium has highlighted advantages in cell growth,cell fusion and expression of exogenous genes. RGD peptide has widely prospect and potential value in the cell culture. Copyright© by Editorial Board of Journal of Sichuan University (Medical Science Edition).

  8. Adhesion of uropathogenic Escherichia coli to epithelial cells from women with recurrent urinary tract infection.

    PubMed

    Schaeffer, A J; Jones, J M; Duncan, J L; Chmiel, J S; Plotkin, B J; Falkowski, W S

    1982-01-01

    Adherence of Escherichia coli to human uroepithelial cells obtained from the midstream urine of healthy women, nd to vaginal and buccal cells obtained from 11 healthy women and 24 patients who had had at least three urinary tract infections in the preceding year was studied. Bacteria labeled with [3H] uridine were used, and unattached organisms were separated from the epithelial cells by vacuum filtration through a polycarbonate membrane filter (5-micrometers-pore-size). A day-to-day variation in the receptivity of uroepithelial cells was noted. The range and rapidity of change in adherence to both vaginal and buccal cells were greater in patients than in controls. Adherence to vaginal cells was greater in patients than in controls (10.1 +/- 0.92 vs. 3.8 +/- 0.47 bacteria per cell [mean +/- S. E.], P less than 0.001), as was adherence to buccal cells (1.7 +/- 1.29 vs. 7.1 +/- 0.49, P = 0.002). There was a very strong, positive non-linear correlation between vaginal and buccal cell receptivity (R = 0.87, P less than 0.0001). The data suggest that susceptibility in women to urinary-tract infections is associated with widespread, fluctuating changes in the adhesive characteristics of epithelial cells.

  9. Micro- and Nano-scale Technologies for Delivery into Adherent Cells

    PubMed Central

    Kang, Wonmo; McNaughton, Rebecca L.; Espinosa, Horacio D.

    2016-01-01

    Several recent micro- and nano-technologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle, yet effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. Here we review recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, e.g., non-destructive sampling and analysis of intracellular molecules. Need For Techniques To Study Adherent Cells A mechanistic understanding of cell biology is often limited by both the complexity of the processes and limitations of commonly available research tools that lack temporal or spatial resolution. The lack of tools capable of providing cell-specific, non-destructive biomolecular delivery and analysis is a particular barrier for advancing fundamental discoveries of cell heterogeneity, single-cell behavior within a complex environment, and the mechanisms that govern disease states, responses to drugs or other stimuli, and differentiation of stem cells. To gain new mechanistic understanding, advances in methods for precise intracellular delivery and non-destructive biochemical analyses of non-secretory molecules (e.g., mRNA and proteins) are greatly needed so that individual cells can be experimentally controlled and repeatedly analyzed over time and/or within a particular location of the cell. For example, developing neurons must undergo a series of sequential changes in gene expression to achieve a mature phenotype; hence, understanding the process will require the ability to accurately monitor the sequence of intracellular events, within individual cells, in a non-destructive manner. In addition, neuronal maturation is influenced by interactions with surrounding cells and with extracellular matrix, so it is necessary to be able to simultaneously monitor events occurring in multiple cells that are interacting with each other and with the matrix. While the requirements are challenging, these experimental capabilities would provide unprecedented insight into the determinants of both the timing of cellular processes and their phenotype, the principles of cell heterogeneity, and the role of cell-cell communication in homogeneous cell populations and co-cultures. Because most cells adhere to a substrate or to other cells during their growth or differentiation [1], it is advantageous for new technologies to be capable of accessing adhered cells to avoid the need to disrupt cell processes by suspension and replating. Several technologies for studying adhered cells are currently being developed, and due to the need for individual cell access and non-destructive probing, micro- and nano-technologies are a natural choice because they interact with cells at the appropriate length scale, reduce the working volume of expensive reagents, require less time and space for replicates, allow for automation and integration of sequential analyses, enable portability, and reduce waste [2, 3]. Here we present an overview of recently developed micro- and nano-tools, with a focus on trends in intracellular delivery for in vitro studies of adhered cells, and highlight major advantages/disadvantages of these technologies with respect to features such as individual cell selectivity, spatial resolution, non-destructive cell analysis, and potential for high throughput or automation. Finally, we discuss the exciting promise for these technologies to cause a paradigm shift in biological research by providing methods to study cells over time at the individual cell level. PMID:27287927

  10. Adherence of non-O157 Shiga-toxin Escherichia coli to bovine recto-anal junction squamous epithelial cells appears to be mediated by mechanisms distinct from those used by O157

    USDA-ARS?s Scientific Manuscript database

    This study presents evidence that the pattern of adherence of clinically relevant non-O157 Shiga-toxin producing Escherichia coli (STEC) to bovine recto-anal junction squamous epithelial cells (RSE) is similar to that of O157, although the mechanisms of adherence appear to be distinct. Our results f...

  11. Adherence to stainless steel by foodborne microorganisms during growth in model food systems.

    PubMed

    Hood, S K; Zottola, E A

    1997-07-22

    Biofilm formation on stainless steel by Salmonella typhimurium, Listeria monocytogenes, Escherichia coli O157:H7, Pseudomonas fragi and Pseudomonas fluorescens during growth in model food systems was studied. Test growth media included tryptic soy broth (TSB), diluted TSB (dTSB), 1% reconstituted skim milk (RSM) and diluted meat juice (DMJ). Adherent cells were stained with acridine orange and enumerated using epifluorescent microscopy and computerized image analysis. Cells were observed on the stainless steel surface after 1 h in all of the media. However, the increases in the number of adherent cells over time was seen only with S. typhimurium in DMJ, E. coli O157:H7 in TSB, dTSB and DMJ, P. fragi in RSM and P. fluorescens in RSM. The medium which produced the highest observed level of adherent cells was different for each microorganism.

  12. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo

    NASA Astrophysics Data System (ADS)

    Brodbeck, William G.; Patel, Jasmine; Voskerician, Gabriela; Christenson, Elizabeth; Shive, Matthew S.; Nakayama, Yasuhide; Matsuda, Takehisa; Ziats, Nicholas P.; Anderson, James M.

    2002-08-01

    An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 ± 3.7 and 57 ± 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.

  13. Differential activation of peritoneal cells by subcutaneous treatment of rats with cryptococcal antigens.

    PubMed

    Baronetti, José L; Chiapello, Laura S; Garro, Ana P; Masih, Diana T

    2009-08-01

    Previous studies in our laboratory have shown that the subcutaneous pretreatment of rats with heat-killed cells (HKC) of Cryptococcus neoformans emulsified in complete Freund adjuvant (CFA) promotes protective immunity against an intraperitoneal challenge with C. neoformans. In contrast, subcutaneous treatment with the capsular polysaccharide (PSC) emulsified in CFA exacerbates the cryptococcal infection. The purpose of this study was to analyze the mechanisms involved in these phenomena. Adherent peritoneal cells from rats treated with HKC-CFA showed upregulated ED2, CD80, and CD86 expression; an increase in the level of production of anticryptococcal metabolites; and the enhanced production of interleukin-12 (IL-12) in comparison with the findings for cells from rats treated with CFA-phosphate-buffered saline (PBS). Adherent peritoneal cells from rats treated with PSC-CFA, however, also presented upregulated ED2, CD80, and CD86 expression compared to the level of expression for peritoneal cells from controls, but these cells showed an increase in arginase activity and decreased levels of production of IL-12 and tumor necrosis factor (TNF) compared with the activity and levels of production by peritoneal cells from CFA-PBS-treated rats. In addition, treatment with HKC-CFA resulted in a rise in the phagocytic and anticryptococcal activities of adherent peritoneal cells compared to those for control rats. However, adherent peritoneal cells from rats treated with PSC-CFA presented a reduction in anticryptococcal activity in comparison with that for cells from animals treated with CFA-PBS. These results show the differential activation between adherent peritoneal cells from HKC-CFA- and PSC-CFA-treated rats, with this differential activation at the primary site of infection possibly being responsible, at least in part, for the phenomena of protection and exacerbation observed in our model.

  14. Friction-Controlled Traction Force in Cell Adhesion

    PubMed Central

    Pompe, Tilo; Kaufmann, Martin; Kasimir, Maria; Johne, Stephanie; Glorius, Stefan; Renner, Lars; Bobeth, Manfred; Pompe, Wolfgang; Werner, Carsten

    2011-01-01

    The force balance between the extracellular microenvironment and the intracellular cytoskeleton controls the cell fate. We report a new (to our knowledge) mechanism of receptor force control in cell adhesion originating from friction between cell adhesion ligands and the supporting substrate. Adherent human endothelial cells have been studied experimentally on polymer substrates noncovalently coated with fluorescent-labeled fibronectin (FN). The cellular traction force correlated with the mobility of FN during cell-driven FN fibrillogenesis. The experimental findings have been explained within a mechanistic two-dimensional model of the load transfer at focal adhesion sites. Myosin motor activity in conjunction with sliding of FN ligands noncovalently coupled to the surface of the polymer substrates is shown to result in a controlled traction force of adherent cells. We conclude that the friction of adhesion ligands on the supporting substrate is important for mechanotransduction and cell development of adherent cells in vitro and in vivo. PMID:22004739

  15. Suppression of unprimed T and B cells in antibody responses by irradiation-resistant and plastic-adherent suppressor cells in Toxoplasma gondii-infected mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Y.; Kobayashi, A.

    1983-04-01

    In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less

  16. Comparison of Human Denuded Amniotic Membrane and Porcine Small Intestine Submucosa as Scaffolds for Limbal Mesenchymal Stem Cells.

    PubMed

    Sous Naasani, Liliana I; Rodrigues, Cristiano; Azevedo, Jéssica Gonçalves; Damo Souza, Aline F; Buchner, Silvio; Wink, Márcia R

    2018-04-29

    Blinding corneal scarring is usually treated with allogeneic graft tissue. Nevertheless, the global shortage of donors leaves millions of patients in need of therapy. Traditional tissue engineering strategies involves the combination of cells, growth factors, and scaffolds that can supply cellular biological components allowing to restore the tissue function. The mesenchymal stem cells found in the limbal stroma (L-MSCs) have a self-renewal potential for multilineage differentiation. Thus, in this work we compared the potential of human amniotic membrane (hAM) and porcine small intestine submucosa (SIS) as scaffolds for L-MSCs, aiming at potential applications in corneal regeneration. For that, L-MSCs were seeded on hAM and SIS and we analyzed their viability, actin cytoskeleton, nuclei morphology, cell density, adhesion and surface markers. Our results showed that cells adhered and integrated into both membranes with a high cell density, an important characteristic for cell therapy. However, due to its transparency, the hAM allowed a better observation of L-MSCs. In addition, the analysis of surface markers expression on L-MSCs after two weeks showed a slight increase in the percentages of negative markers for MSCs grown on SIS membrane. Thus, considering a long-term culture, the hAM was considered better in maintaining the MSCs phenotype. Regarding the function as scaffolds, SIS was as efficient as the amniotic membrane, considering that these two types of biological matrices maintained the cell viability, actin cytoskeleton, nuclei morphology and mesenchymal phenotype, without causing cell death. Therefore, our data in vitro provides evidence for future pre-clinical studies were these membranes can be used as a support to transport mesenchymal stem cells to the injured area, creating a kind of temporary curative, allowing the release of bioactive molecules, such as cytokines and growth factors and then promoting the tissue regeneration, both in human and veterinary medicine.

  17. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  18. Virulence and the presence of aminoglycoside resistance genes of Staphylococcus haemolyticus strains isolated from clinical specimens.

    PubMed

    Krzymińska, Sylwia; Szczuka, Ewa; Dudzińska, Kinga; Kaznowski, Adam

    2015-04-01

    We examined thirty methicillin-resistant Staphylococcus haemolyticus isolates cultured from clinical specimens for antibiotic resistance, various important interactions of the bacteria with epithelial cells and putative virulence determinants. All strains were resistant to oxacillin and carried the mecA gene. Aminocyclitol-3'-phosphotransferase (aph(3')-IIIa) gene encoding nucleotidyltransferases was detected in 43 %, aminocyclitol-6'-acetyltransferase-aminocyclitol-2″-phosphotransferase (aac(6')/aph(2″)) gene encoding bifunctional acetyltransferases/phosphotransferases in 33 %, aminocyclitol-4'-adenylyltransferase (ant(4')-Ia) gene encoding phosphotransferases in 20 %. The coexistence of resistance to methicillin and aminoglycosides was investigated in multi-resistant strains. Coexisting (aac(6')/aph(2″)) and (aph(3')-IIIa) genes were detected in 33 % of isolates, whereas 63 % of isolates had at least one of these genes. All strains revealed adherence ability and most of them (63 %) were invasive to epithelial cells. Electron microscopy revealed that the bacteria were found in vacuoles inside the cells. We observed that the contact of the bacteria with host epithelial cells is a prerequisite to their cytotoxicity at 5 h-incubation. Culture supernatant of the strains induced a low effect of cytotoxicity at the same time of incubation. Cell-free supernatant of all isolates expressed cytotoxic activity which caused destruction of HEp-2 cells at 24 h. None of the strains was cytotonic towards CHO cells. Among thirty strains, 27 % revealed lipolytic activity, 43 % produced lecithinase and 20 % were positive for proteinase activity. Analyses of cellular morphology and DNA fragmentation exhibited typical characteristic features of those undergoing apoptosis. The Pearson linear test revealed positive correlations between the apoptotic index at 24 h and percentage of cytotoxicity. Our results provided new insights into the mechanisms contributing to the development of S. haemolyticus-associated infections. The bacteria adhered and invaded to non-professional phagocytes. The invasion of epithelial cells by S. haemolyticus could be similar to phagocytosis that requires polymerization of the actin cytoskeleton. The process is inhibited by cytochalasin D. Moreover, they survived within the cells by residing in membrane bound compartments and induced apoptotic cell death.

  19. Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress

    PubMed Central

    Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.

    2010-01-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278

  20. Single cells for forensic DNA analysis--from evidence material to test tube.

    PubMed

    Brück, Simon; Evers, Heidrun; Heidorn, Frank; Müller, Ute; Kilper, Roland; Verhoff, Marcel A

    2011-01-01

    The purpose of this project was to develop a method that, while providing morphological quality control, allows single cells to be obtained from the surfaces of various evidence materials and be made available for DNA analysis in cases where only small amounts of cell material are present or where only mixed traces are found. With the SteREO Lumar.V12 stereomicroscope and UV unit from Zeiss, it was possible to detect and assess single epithelial cells on the surfaces of various objects (e.g., glass, plastic, metal). A digitally operated micromanipulator developed by aura optik was used to lift a single cell from the surface of evidence material and to transfer it to a conventional PCR tube or to an AmpliGrid(®) from Advalytix. The actual lifting of the cells was performed with microglobes that acted as carriers. The microglobes were held with microtweezers and were transferred to the DNA analysis receptacles along with the adhering cells. In a next step, the PCR can be carried out in this receptacle without removing the microglobe. Our method allows a single cell to be isolated directly from evidence material and be made available for forensic DNA analysis. © 2010 American Academy of Forensic Sciences.

  1. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells.

    PubMed

    Balder, Rachel; Lipski, Serena; Lazarus, John J; Grose, William; Wooten, Ronald M; Hogan, Robert J; Woods, Donald E; Lafontaine, Eric R

    2010-09-28

    Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor.

  2. Behavioral and Pharmacological Adherence in Pediatric Sickle Cell Disease: Parent-Child Agreement and Family Factors Associated With Adherence.

    PubMed

    Klitzman, Page H; Carmody, Julia K; Belkin, Mary H; Janicke, David M

    2018-01-01

    This study aimed to evaluate agreement between children and parents on a measure of behavioral and pharmacological adherence in children with sickle cell disease (SCD), and the associations among family factors (i.e., problem-solving skills, routines, communication) and adherence behaviors. In all, 85 children (aged 8-18 years) with SCD and their parents completed questionnaires assessing individual and family factors. Overall parent-child agreement on an adherence measure was poor, particularly for boys and older children. Greater use of child routines was associated with better overall child-reported adherence. Open family communication was associated with higher overall parent-reported adherence. While further research is needed before definitive conclusions can be drawn, results suggest the need to assess child adherence behaviors via both child and parent reports. Findings also suggest that more daily family routines and open family communication may be protective factors for better disease management. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  4. Generation and characterisation of human umbilical cord derived mesenchymal stem cells by explant method.

    PubMed

    Yusoff, Z; Maqbool, M; George, E; Hassan, R; Ramasamy, R

    2016-06-01

    Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC's surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.

  5. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. © 2014 Wiley Periodicals, Inc.

  6. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  7. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction

    PubMed Central

    2011-01-01

    Background Leishmania (Vianna) braziliensis, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) chagasi are important parasites in the scenario of leishmaniasis in Brazil. During the life cycle of these parasites, the promastigote forms adhere to the midgut epithelial microvillii of phlebotomine insects to avoid being secreted along with digestive products. Lulo cells are a potential model that will help to understand the features of this adhesion phenomenon. Here, we analyze the interaction between Leishmania spp. promastigotes and Lulo cells in vitro, specifically focusing on adhesion events occurring between three Leishmania species and this cell line. Methods Confluent monolayers of Lulo cells were incubated with promastigotes and adhesion was assessed using both light microscopy and scanning electron microscopy. Findings The results indicate that species from the subgenera Leishmania and Viannia have great potential to adhere to Lulo cells. The highest adherence rate was observed for L. (L.) chagasi after 24 h of incubation with Lulo cells (27.3 ± 1.8% of cells with adhered promastigotes), followed by L. (L.) amazonensis (16.0 ± 0.7%) and L. (V.) braziliensis (3.0 ± 0.7%), both after 48 h. In the ultrastructural analysis, promastigote adherence was also assessed by scanning electron microscopy, showing that, for parasites from both subgenera, adhesion occurs by both the body and the flagellum. The interaction of Lulo cells with Leishmania (L.) chagasi showed the participation of cytoplasmic projections from the former closely associating the parasites with the cells. Conclusions We present evidence that Lulo cells can be useful in studies of insect-parasite interactions for Leishmania species. PMID:22082050

  9. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    PubMed

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  10. Enrichment isolation of adipose-derived stem/stromal cells from the liquid portion of liposuction aspirates with the use of an adherent column.

    PubMed

    Doi, Kentaro; Kuno, Shinichiro; Kobayashi, Akira; Hamabuchi, Takahisa; Kato, Harunosuke; Kinoshita, Kahori; Eto, Hitomi; Aoi, Noriyuki; Yoshimura, Kotaro

    2014-03-01

    Adipose-derived stem/progenitor cells (ASCs) are typically obtained from the lipoaspirates; however, a smaller number of ASCs can be isolated without enzymatic digestion from the infranatant liposuction aspirate fluid (LAF). We evaluated the effectiveness of an adherent column, currently used to isolate mesenchymal stromal cells from bone marrow, to isolate LAF cells. We applied peripheral blood (PB), PB mixed with cultured ASCs (PB-ASC), and LAF solution to the column and divided it into two fractions, the adherent (positive) and the non-adherent (negative) fractions. We compared this method with hypotonic hemolysis (lysis) for the red blood cell count, nucleated cells count and cell compositions as well as functional properties of isolated mesenchymal cells. The column effectively removed red blood cells, though the removal efficiency was slightly inferior to hemolysis. After column processing of PB-ASC, 60.5% of ASCs (53.2% by lysis) were selectively collected in the positive fraction, and the negative fraction contained almost no ASCs. After processing of LAF solution, nucleated cell yields were comparable between the column and hemolysis; however, subsequent adherent culture indicated that a higher average ASC yield was obtained from the column-positive samples than from the lysis samples, suggesting that the column method may be superior to hemolysis for obtaining viable ASCs. Mesenchymal differentiation and network formation assays showed no statistical differences in ASC functions between the lysis and column-positive samples. Our results suggest that a column with non-woven rayon and polyethylene fabrics is useful for isolating stromal vascular fraction cells from LAF solutions for clinical applications. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  12. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  13. Microbial colonization of irradiated pathogenic yeast to catheter surfaces: Relationship between adherence, cell surface hydrophobicity, biofilm formation and antifungal susceptibility. A scanning electron microscope analysis.

    PubMed

    Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed

    2015-06-01

    Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.

  14. Impact of nanoscale topography on genomics and proteomics of adherent bacteria.

    PubMed

    Rizzello, Loris; Sorce, Barbara; Sabella, Stefania; Vecchio, Giuseppe; Galeone, Antonio; Brunetti, Virgilio; Cingolani, Roberto; Pompa, Pier Paolo

    2011-03-22

    Bacterial adhesion onto inorganic/nanoengineered surfaces is a key issue in biotechnology and medicine, because it is one of the first necessary steps to determine a general pathogenic event. Understanding the molecular mechanisms of bacteria-surface interaction represents a milestone for planning a new generation of devices with unanimously certified antibacterial characteristics. Here, we show how highly controlled nanostructured substrates impact the bacterial behavior in terms of morphological, genomic, and proteomic response. We observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that type-1 fimbriae typically disappear in Escherichia coli adherent onto nanostructured substrates, as opposed to bacteria onto reference glass or flat gold surfaces. A genetic variation of the fimbrial operon regulation was consistently identified by real time qPCR in bacteria interacting with the nanorough substrates. To gain a deeper insight into the molecular basis of the interaction mechanisms, we explored the entire proteomic profile of E. coli by 2D-DIGE, finding significant changes in the bacteria adherent onto the nanorough substrates, such as regulations of proteins involved in stress processes and defense mechanisms. We thus demonstrated that a pure physical stimulus, that is, a nanoscale variation of surface topography, may play per se a significant role in determining the morphological, genetic, and proteomic profile of bacteria. These data suggest that in depth investigations of the molecular processes of microorganisms adhering to surfaces are of great importance for the design of innovative biomaterials with active biological functionalities.

  15. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  16. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa.

    PubMed

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Wilson, R

    2000-10-01

    Mycobacterium avium complex (MAC) are opportunistic respiratory pathogens that infect non-immunocompromised patients with established lung disease, although they can also cause primary infections. The ability to bind fibronectin is conserved among many mycobacterial species. We have investigated the adherence of a sputum isolate of MAC to the mucosa of organ cultures constructed with human tissue and the contribution of M. avium fibronectin attachment protein (FAP) to the process. MAC adhered to fibrous, but not globular mucus, and to extracellular matrix (ECM) in areas of epithelial damage, but not to intact extruded cells and collagen fibres. Bacteria occasionally adhered to healthy unciliated epithelium and to cells that had degenerated exposing their contents, but never to ciliated cells. The results obtained with different respiratory tissues were similar. Two ATCC strains of MAC gave similar results. There was a significant reduction (P < 0.05) in the number of bacteria adhering to ECM after preincubation of bacteria with fibronectin and after preincubation of the tissue with M. avium FAP in a concentration-dependant manner. The number of bacteria adhering to fibrous mucus was unchanged. Immunogold labelling demonstrated fibronectin in ECM as well as in other areas of epithelial damage, but only ECM bound FAP. A Mycobacterium smegmatis strain had the same pattern of adherence to the mucosa as MAC. When the FAP gene was deleted, the strain demonstrated reduced adherence to ECM, and adherence was restored when the strain was transfected with an M. avium FAP expression construct. We conclude that MAC adheres to ECM in areas of epithelial damage via FAP and to mucus with a fibrous appearance via another adhesin. Epithelial damage exposing ECM and poor mucus clearance will predispose to MAC airway infection.

  17. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafino, A.; Balestrieri, E.; Pierimarchi, P.

    2009-03-10

    Melanoma development is a multi-step process arising from a series of genetic and epigenetic events. Although the sequential stages involved in progression from melanocytes to malignant melanoma are clearly defined, our current understanding of the mechanisms leading to melanoma onset is still incomplete. Growing evidence show that the activation of endogenous retroviral sequences might be involved in transformation of melanocytes as well as in the increased ability of melanoma cells to escape immune surveillance. Here we show that human melanoma cells in vitro undergo a transition from adherent to a more malignant, non-adherent phenotype when exposed to stress conditions. Melanoma-derivedmore » non-adherent cells are characterized by an increased proliferative potential and a decreased expression of both HLA class I molecules and Melan-A/MART-1 antigen, similarly to highly malignant cells. These phenotypic and functional modifications are accompanied by the activation of human endogenous retrovirus K expression (HERV-K) and massive production of viral-like particles. Down-regulation of HERV-K expression by RNA interference prevents the transition from the adherent to the non-adherent growth phenotype in low serum. These results implicate HERV-K in at least some critical steps of melanoma progression.« less

  18. Haemophilus parasuis serovar 5 Nagasaki strain adheres and invades PK-15 cells.

    PubMed

    Frandoloso, Rafael; Martínez-Martínez, Sonia; Gutiérrez-Martín, César B; Rodríguez-Ferri, Elías F

    2012-01-27

    Haemophilus parasuis is the agent responsible for causing Glässer's disease, which is characterized by fibrinous polyserositis, polyarthritis and meningitis in pigs. The purpose of this study was to investigate the in vitro ability of two H. parasuis serovars of different virulence (serovar 5, Nagasaki strain, highly virulent, belonging to serovar 5, and SW114 strain, nonvirulent, belonging to serovar 3) to adhere to and invade porcine kidney epithelial cells (PK-15 line). Nagasaki strain was able to attach at high levels from 60 to 180 min of incubation irrespective of the concentrations compared (10(7)-10(10)CFU), and a substantial increase of surface projections could be seen in PK-15 cells by scanning electron microscopy. This virulent strain was also able to invade effectively these epithelial cells, and the highest invasion capacity was reached at 180 min of infection. On the contrary, nonvirulent SW114 strain hardly adhered to PK-15 cells, and it did not invade these cells, thus suggesting that adherence and invasion of porcine kidney epithelial cells could be a virulence mechanism involved in the lesions caused by H. parasuis Nagasaki strain in this organ. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Efficiency of a cleaning protocol for the removal of enterotoxigenic Staphylococcus aureus strains in dairy plants.

    PubMed

    Martin, José Guilherme Prado; de Oliveira E Silva, Gabriela; da Fonseca, Carolina Rodrigues; Morales, Caio Baptista; Souza Pamplona Silva, Caroline; Miquelluti, Daniel Lima; Porto, Ernani

    2016-12-05

    Staphylococci are considered a major concern in dairy plants mainly due to the intensive production flow, automation of processing plants and increased demand in the microbiological quality of dairy products. This study aimed to identify S. aureus strains isolated from three Brazilian dairy plants, evaluate the influence of time, temperature and contact surface on the bacterial adhesion process, as well as the efficiency of simulated hygiene and sanitation protocol in removing adhered cells. For genotypic analyses, the presence of icaA and icaD in strains was evaluated. Adherence assays were performed in biofilm reactor, comparing the influence of 2 temperatures (5°C and 35°C), 2 surfaces (stainless steel and polypropylene) and 4 contact times (3, 6, 12h and post-sanitization). To evaluate the process effectiveness in removing adhered cells, neutral detergent and sanitizing agent based on sodium hypochlorite were used in order to simulate the situation observed in one of the dairy plants analyzed. The presence of icaA and icaD genes was determined in 75.3% and 77.6% of strains, respectively; 70.6% of isolates showed both genes, whereas 17.6% showed no genes. Genes for enterotoxin production were found in all samples, relating to SEG and SEH toxins. The number of cells adhered on both surfaces was about 3 and 6 log 10 CFU/cm 2 at temperatures of 5°C and 35°C, respectively, for most situations evaluated, with significant increase over the evaluation period. In general, the temperature of 35°C favored greater adherence of S. aureus. At 5°C, there was a considerable number of adhered cells, but in populations significantly lower than those observed at 35°C. The cleaning and sanitizing protocol was ineffective in removing adhered cells; better performance of sodium hypochlorite was observed at 5°C, which should be related to lower adherence observed at this temperature. Thus, the process was not able to reduce the number of S. aureus bacteria adhered on both surfaces to safe levels under the conditions evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide.

    PubMed

    Al Mustafa, Maisa; Agis, Hermann; Müller, Heinz-Dieter; Watzek, Georg; Gruber, Reinhard

    2015-01-01

    Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  2. A positive immunoselection method to isolate villous cytotrophoblast cells from first trimester and term placenta to high purity.

    PubMed

    Pötgens, A J G; Kataoka, H; Ferstl, S; Frank, H-G; Kaufmann, P

    2003-04-01

    We developed a method for isolating highly pure villous cytotrophoblast cells from first trimester and term placenta that excludes extravillous trophoblast and syncytiotrophoblast fragments. The method is based on positive immunoselection using an antibody (mAb C76/18) reacting with hepatocyte growth factor activator inhibitor 1, HAI-1, a membrane antigen on villous cytotrophoblast. As a comparison, we also immunopurified cells using an antibody against CD105, present on syncytiotrophoblast and some extravillous trophoblast cells. The isolates were characterized by flow cytometry. HAI-1-positive cells from first trimester and term placentae were highly pure (>98 per cent cytokeratin 7-positive) mononuclear trophoblast cells. These isolations were contaminated with only very small percentages of vimentin and CD45-positive cells. HAI-1-positive trophoblast cells lacked CD105 and also HLA class I, a marker for extravillous trophoblast. In culture HAI-1-positive cells adhered, displayed an epithelial morphology, and survived for more than three days. In contrast, CD105-positive cell fractions from first trimester placenta were a heterogeneous mixture of mononuclear and multinuclear elements consisting of syncytiotrophoblast fragments, extravillous trophoblast cells, as well as around 5 per cent non-trophoblastic contaminants. In conclusion, the positive immunoselection method using antibody C76/18 yielded highly pure villous cytotrophoblast cells devoid of elements derived from syncytiotrophoblast or extravillous trophoblast.

  3. The effects of fluoride on neuronal function occurs via cytoskeleton damage and decreased signal transmission.

    PubMed

    Chen, Lingli; Ning, Hongmei; Yin, Zhihong; Song, Xiaochao; Feng, Yongchao; Qin, Hao; Li, Yi; Wang, Jundong; Ge, Yaming; Wang, Wenkui

    2017-10-01

    It has been reported that fluoride exposure may cause serious public health problems, particularly neurotoxicity. However, the underlying mechanisms remain unclear. This study used Neuro-2A cells to investigate the effects of fluoride on the cytoskeleton. The Neuro-2A cells were exposed to 0, 1, 2, 4 and 6 mM sodium fluoride (NaF) for 24 h. Cell viability and lactate dehydrogenase (LDH) release were examined. It was observed that exposure to NaF reduced cell viability, disrupted cellular membrane integrity, and high levels of LDH were released. The observed changes occurred in a dose response manner. Morphologic observations showed that cell became rounded and were loosely adherent following exposure to NaF. Axon spines and normal features disappeared with high dose NaF treatment. The expression of MAP2 and synaptophysin decreased, particularly at 4 mM and 6 mM (P < 0.05) for MAP2. These results corroborate the morphologic observations. The content of glutamate and NMDAR (glutamate receptor) protein were assessed to help understand the relationship between synapses and neurotransmitter release using ELISA and Western-blot. Compared with the control, glutamate and NMDAR expression declined significantly at 4 mM and 6 mM (P < 0.05) group. Finally, the ultrastructural changes observed with increasing doses of NaF were: disappearance of synapses, mitochondrial agglutination, vacuole formation, and cellular edema. Taken together, NaF exposure disrupted cellular integrity and suppressed the release of neurotransmitters, thus effecting neuronal function. These findings provide deeper insights into roles of NaF in neuron damage, which could contribute to a better understanding of fluoride-induced neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.

    PubMed

    Wang, Ying; You, Guoxing; Chen, Peipei; Li, Jianjun; Chen, Gan; Wang, Bo; Li, Penglong; Han, Dong; Zhou, Hong; Zhao, Lian

    2016-03-01

    The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young's modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells' extension ratio, the Young's moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.

  5. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly

    PubMed Central

    Schaufler, Viktoria; Czichos-Medda, Helmi; Hirschfeld-Warnecken, Vera; Neubauer, Stefanie; Rechenmacher, Florian; Medda, Rebecca; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P.; Cavalcanti-Adam, E. Ada

    2016-01-01

    ABSTRACT Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions. PMID:27003228

  6. Curli modulates adherence of Escherichia coli O157 to bovine recto-anal junction squamous epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  7. Haematozoan parasites of the lizard Ameiva ameiva (Teiidae) from Amazonian Brazil: a preliminary note.

    PubMed

    Lainson, Ralph; de Souza, Manoel C; Franco, Constância M

    2003-12-01

    Three different haematozoan parasites are described in the blood of the teiid lizard Ameiva ameiva Linn. from North Brazil: one in the monocytes and the other two in erythrocytes. The leucocytic parasite is probably a species of Lainsonia Landau, 1973 (Lankesterellidae) as suggested by the presence of sporogonic stages in the internal organs, morphology of the blood forms (sporozoites), and their survival and accumulation in macrophages of the liver. One of the erythrocytic parasites produces encapsulated, stain-resistant forms in the peripheral blood, very similar to gametocytes of Hemolivia Petit et al., 1990. The other is morphologically very different and characteristically adheres to the host-cell nucleus. None of the parasites underwent development in the mosquitoes Culex quinquefasciatus and Aedes aegypti and their behaviour in other haematophagous hosts is under investigation. Mixed infections of the parasites commonly occur and this often creates difficulties in relating the tissue stages in the internal organs to the forms seen in the blood. Concomitant infections with a Plasmodium tropiduri-like malaria parasite were seen and were sometimes extremely heavy.

  8. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisti, Karin E., E-mail: karinellensisti@gmail.com; Biomaterials Group, Institute of Chemistry, São Paulo State University; Federal University of Mato Grosso do Sul

    Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv)more » LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell morphology and cytoskeleton structure were affected. The current studies show Ti LASER modification can enhance the osseointegration between Ti and skeletal cells, with important implications for orthopaedic application. - Highlights: • Bone stem cells on LASER Ti surface display enhanced cell growth and viability. • Bone stem cells on LASER Ti surface exhibit marked biocompatibility. • Human bone stem cells on LASER Ti surface exhibit altered morphology. • LASER Ti enhance osteogenic differentiation of human bone skeletal stem cells. • LASER Ti provides a unique approach to enhance osseointegration with the material.« less

  9. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay: Book Chapter

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adher...

  10. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay-Book Chapter*

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adhere...

  11. Chapter 17 Sterile Plate-Based Vitrification of Adherent Human Pluripotent Stem Cells and Their Derivatives Using the TWIST Method.

    PubMed

    Neubauer, Julia C; Stracke, Frank; Zimmermann, Heiko

    2017-01-01

    Due to their high biological complexity, e.g., their close cell-to-cell contacts, cryopreservation of human pluripotent stem cells with standard slow-rate protocols often is inefficient and can hardly be standardized. Vitrification that means ultrafast freezing already showed very good viability and recovery rates for this sensitive cell system, but is only applicable for low cell numbers, bears a high risk of contamination, and can hardly be implemented under GxP regulations. In this chapter, a sterile plate-based vitrification method for adherent pluripotent stem cells and their derivatives is presented based on a procedure and device for human embryonic stem cells developed by Beier et al. (Cryobiology 66:8-16, 2013). This protocol overcomes the limitations of conventional vitrification procedures resulting in the highly efficient preservation of ready-to-use adherent pluripotent stem cells with the possibility of vitrifying cells in multi-well formats for direct application in high-throughput screenings.

  12. Hydrodynamics in Cell Studies

    PubMed Central

    2018-01-01

    Hydrodynamic phenomena are ubiquitous in living organisms and can be used to manipulate cells or emulate physiological microenvironments experienced in vivo. Hydrodynamic effects influence multiple cellular properties and processes, including cell morphology, intracellular processes, cell–cell signaling cascades and reaction kinetics, and play an important role at the single-cell, multicellular, and organ level. Selected hydrodynamic effects can also be leveraged to control mechanical stresses, analyte transport, as well as local temperature within cellular microenvironments. With a better understanding of fluid mechanics at the micrometer-length scale and the advent of microfluidic technologies, a new generation of experimental tools that provide control over cellular microenvironments and emulate physiological conditions with exquisite accuracy is now emerging. Accordingly, we believe that it is timely to assess the concepts underlying hydrodynamic control of cellular microenvironments and their applications and provide some perspective on the future of such tools in in vitro cell-culture models. Generally, we describe the interplay between living cells, hydrodynamic stressors, and fluid flow-induced effects imposed on the cells. This interplay results in a broad range of chemical, biological, and physical phenomena in and around cells. More specifically, we describe and formulate the underlying physics of hydrodynamic phenomena affecting both adhered and suspended cells. Moreover, we provide an overview of representative studies that leverage hydrodynamic effects in the context of single-cell studies within microfluidic systems. PMID:29420889

  13. Correlation of Cell Surface Biomarker Expression Levels with Adhesion Contact Angle Measured by Lateral Microscopy.

    PubMed

    Walz, Jenna A; Mace, Charles R

    2018-06-05

    Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.

  14. Cellular internalization of polycation-coated microparticles and its dependence on their zeta potential

    NASA Astrophysics Data System (ADS)

    Kato, Noritaka; Kondo, Ryosuke

    2018-03-01

    By applying microparticles to HeLa cells, the number of particles adhered on the cell and that of the ones internalized in the cells were evaluated. Three-dimensional tomographic images of the cells with the particles were obtained by multiphoton excitation laser scanning microscopy, and the adhered and internalized particles were counted separately. When the surface charge of the particles was reversed from negative to positive by coating the particles with polycations, both numbers significantly increased owing to the electrostatic attraction between the cells and the polycation-coated particles. Four different positively charged particles were prepared using four different polycations, and the numbers of adhered and internalized particles were compared. Our results suggest that these numbers depended on the zeta potential rather than the molecular structure of the polycation.

  15. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells.

    PubMed

    Wang, Kui; Kievit, Forrest M; Erickson, Ariane E; Silber, John R; Ellenbogen, Richard G; Zhang, Miqin

    2016-12-01

    The lack of in vitro models that support the growth of glioblastoma (GBM) stem cells (GSCs) that underlie clinical aggressiveness hinders developing new, effective therapies for GBM. While orthotopic patient-derived xenograft models of GBM best reflect in vivo tumor behavior, establishing xenografts is a time consuming, costly, and frequently unsuccessful endeavor. To address these limitations, a 3D porous scaffold composed of chitosan and hyaluronic acid (CHA) is synthesized. Growth and expression of the cancer stem cell (CSC) phenotype of the GSC GBM6 taken directly from fresh xenogratfs grown on scaffolds or as adherent monolayers is compared. While 2D adherent cultures grow as monolayers of flat epitheliod cells, GBM6 cells proliferate within pores of CHA scaffolds as clusters of self-adherent ovoid cells. Growth on scaffolds is accompanied by greater expression of genes that mediate epithelial-mesenchymal transition and maintain a primitive, undifferentiated phenotype, hallmarks of CSCs. Scaffold-grown cells also display higher expression of genes that promote resistance to hypoxia-induced oxidative stress. In accord, scaffold-grown cells show markedly greater resistance to clinically utilized alkylating agents compared to adherent cells. These findings suggest that our CHA scaffolds better mimic in vivo biological and clinical behavior and provide insights for developing novel individualized treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. IgG1 antimycobacterial antibodies can reverse the inhibitory effect of pentoxifylline on tumour necrosis factor alpha (TNF-alpha) secreted by mycobacterial antigen-stimulated adherent cells.

    PubMed

    Thakurdas, S M; Hasan, Z; Hussain, R

    2004-05-01

    Chronic inflammation associated with cachexia, weight loss, fever and arthralgia is the hallmark of advanced mycobacterial diseases. These symptoms are attributed to the chronic stimulation of tumour necrosis factor (TNF)-alpha. Mycobacterial components directly stimulate adherent cells to secrete TNF-alpha. We have shown recently that IgG1 antimycobacterial antibodies play a role in augmenting TNF-alpha in purified protein derivative (PPD)-stimulated adherent cells from non-BCG-vaccinated donors. We now show that IgG1 antibodies can also augment TNF-alpha expression in stimulated adherent cells obtained from BCG-vaccinated donors and this augmentation is not linked to interleukin (IL)-10 secretion. In addition IgG1 antimycobacterial antibodies can reverse the effect of TNF-alpha blockers such as pentoxifylline and thalidomide. These studies therefore have clinical implications for anti-inflammatory drug treatments which are used increasingly to alleviate symptoms associated with chronic inflammation.

  17. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics.

    PubMed

    Wu, Chengtie; Chang, Jiang

    2007-10-01

    The aim of this study was to investigate the effect of three bioceramics in the CaO-SiO(2)-MgO systems with different composition on the in vitro degradation, bioactivity, and cytocompatibility. The degradation was evaluated through the activation energy of Si ion release from ceramics and the weight loss of the ceramics in Tris-HCl buffers. The in vitro bioactivity of the ceramics was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF). The cytocompatibility was evaluated through osteoblast morphology and proliferation. The results showed that the activation energy of Si ion release increased and the degradation decreased from bredigite to diopside ceramics with the increase of Mg content, and the apatite-formation ability in SBF decreased. The Ca, Si, and Mg containing ionic products from three ceramics could stimulate cell proliferation at lower concentration, and inhibit cell proliferation with the increase of ion concentrations. Furthermore, osteoblasts could adhere, spread, and proliferate on three ceramic disks, and cell proliferation on diopside was more obvious than that on other two ceramic disks.

  18. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  19. Optical-mechanical properties of diseased cells measured by interferometry

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.

    2013-04-01

    Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.

  20. Adherence to hydroxyurea medication by children with sickle cell disease (SCD) using an electronic device: a feasibility study.

    PubMed

    Inoue, Susumu; Kodjebacheva, Gergana; Scherrer, Tammy; Rice, Gary; Grigorian, Matthew; Blankenship, Jeremy; Onwuzurike, Nkechi

    2016-08-01

    Adherence to hydroxyurea (HU) is a significant modifying factor in sickle cell vaso-occlusive pain. We conducted a study using an electronic medication container-monitor-reminder device (GlowCap™) to track adherence and determine whether use of this device affected rates of HU adherence. Subjects were regular attendees to our clinic. They were given a 37-item questionnaire and were asked to use a GlowCap containing HU. When the device cap is opened, it makes a remote "medication taken" record. The device also provides usage reminder in the form of lights and alarm sounds if the cap opening is delayed. Nineteen subjects participated in the survey, and 17 in the intervention phase. Of the 17, 12 had reliable adherence data. Seventeen caregivers of patients and two patients completed the survey. Two most common barriers to adherence identified were lack of reminders and absence of medicine home delivery. The intervention component of this study, which used both the electronic (GlowCap) method and medication possession ratio showed that the median adherence rate for the 12 patients evaluated was 85 %. The GlowCap device accurately kept a record of adherence rates. This device may be an effective tool for increasing HU medication adherence.

  1. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    PubMed

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  2. Enhanced differentiation potential of human amniotic mesenchymal stromal cells by using three-dimensional culturing.

    PubMed

    Lin, Xue; Li, Hao Yu; Chen, Lian Feng; Liu, Bo Jiang; Yao, Yian; Zhu, Wen Ling

    2013-06-01

    The therapeutic potential of human amniotic mesenchymal stromal cells (hAMSCs) remains limited because of their differentiation towards mesenchymal stem cells (MSCs) following adherence. The aim of this study was to develop a three-dimensional (3-D) culture system that would permit hAMSCs to differentiate into cardiomyocyte-like cells. hAMSCs were isolated from human amnions of full-term births collected after Cesarean section. Immunocytochemistry, immunofluorescence and flow cytometry analyses were undertaken to examine hAMSC marker expression for differentiation status after adherence. Membrane currents were determined by patch clamp analysis of hAMSCs grown with or without cardiac lysates. Freshly isolated hAMSCs were positive for human embryonic stem-cell-related markers but their marker profile significantly shifted towards that of MSCs following adherence. hAMSCs cultured in the 3-D culture system in the presence of cardiac lysate expressed cardiomyocyte-specific markers, in contrast to those maintained in standard adherent cultures or those in 3-D cultures without cardiac lysate. hAMSCs cultured in 3-D with cardiac lysate displayed a cardiomyocyte-like phenotype as observed by membrane currents, including a calcium-activated potassium current, a delayed rectifier potassium current and a Ca(2+)-resistant transient outward K(+) current. Thus, although adherence limits the potential of hAMSCs to differentiate into cardiomyocyte-like cells, the 3-D culture of hAMSCs represents a more effective method of their culture for use in regenerative medicine.

  3. Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata.

    PubMed

    Monteiro, D R; Gorup, L F; Silva, S; Negri, M; de Camargo, E R; Oliveira, R; Barbosa, D B; Henriques, M

    2011-08-01

    The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4-3.3 μg ml(-1)). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ∼90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.

  4. Development of an integration mutagenesis system in Lactobacillus gasseri.

    PubMed

    Selle, Kurt; Goh, Yong Jun; O'Flaherty, Sarah; Klaenhammer, Todd R

    2014-01-01

    Lactobacillus gasseri ATCC 33323 is a member of the acidophilus-complex group, microbes of human origin with significant potential for impacting human health based on niche-specific traits. In order to facilitate functional analysis of this important species, a upp-based counterselective chromosomal integration system was established and employed for targeting the lipoteichoic acid (LTA) synthesis gene, ltaS, in L. gasseri ATCC 33323. The ltaS gene encodes a phosphoglycerol transferase responsible for building the glycerol chain of LTA. No isogenic mutant bearing the deletion genotype was recovered, but an integration knockout mutant was generated with insertion inactivation at the ltaS locus. The ltaS deficient derivative exhibited an altered cellular morphology and significantly reduced ability to adhere to Caco-2 intestinal cell monolayers, relative to the wild-type parent strain.

  5. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia.

    PubMed

    Molino, Paul J; Campbell, Ewan; Wetherbee, Richard

    2009-11-01

    Diatoms are a major component of the slime layers that form on artificial surfaces in marine environments. In this article, the role played by diatoms during the pioneering stages of colonization of three marine antifouling (AF) coatings, viz Intersmooth 360, Super Yacht 800 and a fouling-release (FR) coating Intersleek 700, was investigated. The study was conducted over three distinct seasons in two very different marine environments in Australia, ie temperate Williamstown, Victoria and tropical Cairns, Queensland. Diatom fouling occurred more rapidly on the FR coating Intersleek 700, compared to both biocidal AF paints. However, colonization by diatoms on all three coatings was generally slow during the 16-day study. Benthic diatoms do not subsist by floating around in the water column, rather they only gain the opportunity to colonize new surfaces when they either voluntarily release or are displaced from their benthic habitat, thereafter entering the water column where the opportunity to adhere to a new surface presents itself. However, once settled, fouling diatoms grow exponentially from the site of attachment, spreading out until they populate large areas of the surface. This mode of surface colonization correlates more with an 'infection' type, epidemiology model, a mechanism that accounts for the colonization of significant regions of the coating surface from a single fouling diatom cell, forming 'clonal patches'. This is in comparison to the bacterial colonization of the surface, which exhibits far more rapid recruitment and growth of cells on the substratum surface. Therefore, it is hypothesized that fouling diatoms may be characterized more by their ability to adhere and grow on surfaces already modified by bacterial biofilms, rather than on their strength of adhesion. Cell morphology and the ability to avoid shear may also be an important factor.

  7. Barriers to hydroxyurea adherence and health-related quality of life in adolescents and young adults with sickle cell disease.

    PubMed

    Badawy, Sherif M; Thompson, Alexis A; Penedo, Frank J; Lai, Jin-Shei; Rychlik, Karen; Liem, Robert I

    2017-06-01

    To identify barriers to hydroxyurea adherence (negative beliefs, access, and/or recall barriers), and their relationship to adherence rates and health-related quality of life (HRQOL) among adolescents and young adults (AYA) with sickle cell disease (SCD). A cross-sectional survey was administered to 34 AYAs (12-22 years old) in SCD clinics from January to December 2015. Study measures included Brief Medication Questionnaire, Modified Morisky Adherence Scale 8-items, visual analog scale, and Patient Reported Outcomes Measurement Information System. Participants (59% male; 91% Black) had a median age of 13.5 years (IQR 12-18). Participants reported negative beliefs (32%), recall barriers (44%), and access barriers (32%). Participants with recall barriers reported worse pain (P=.02), fatigue (P=.05), and depression (P=.05). The number of adherence barriers inversely correlated with adherence level using ©MMAS-8 (r s =-.38, P=.02) and VAS dose (r s =-.25, P=.14) as well as MCV (r s =-.45, P=.01) and HbF% (r s =-.36, P=.05), suggesting higher hydroxyurea adherence in patients with fewer barriers. Patients with fewer barriers to hydroxyurea adherence were more likely to have higher adherence rates and better HRQOL scores. Routine assessment of hydroxyurea adherence and its related barriers could provide actionable information to improve adherence rates, HRQOL, and other clinical outcomes. © 2017 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

  8. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  9. Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding.

    PubMed

    Hiebl, Bernhard; Lützow, Karola; Lange, Maik; Jung, Friedrich; Seifert, Barbara; Klein, Frank; Weigel, Thomas; Kratz, Karl; Lendlein, Andreas

    2010-07-01

    Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    NASA Astrophysics Data System (ADS)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  11. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  12. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery

    NASA Astrophysics Data System (ADS)

    Hahn, Byung-Dong; Park, Dong-Soo; Choi, Jong-Jin; Ryu, Jungho; Yoon, Woon-Ha; Choi, Joon-Hwan; Kim, Jong-Woo; Ahn, Cheol-Woo; Kim, Hyoun-Ee; Yoon, Byung-Ho; Jung, In-Kwon

    2013-10-01

    Polyetheretherketone (PEEK) has attracted much interest as biomaterial for interbody fusion cages due to its similar stiffness to bone and good radio-transparency for post-op visualization. Hydroxyapatite (HA) coating stimulates bone growth to the medical implant. The objective of this work is to make an implant consisting of biocompatible PEEK with an osteoconductive HA surface for spinal or orthopedic applications. Highly dense and well-adhered HA coating was developed on medical-grade PEEK using aerosol deposition (AD) without thermal degradation of the PEEK. The HA coating had a dense microstructure with no cracks or pores, and showed good adhesion to PEEK at adhesion strengths above 14.3 MPa. The crystallinity of the HA coating was remarkably enhanced by hydrothermal annealing as post-deposition heat-treatment. In addition, in vitro and in vivo biocompatibility of PEEK, in terms of cell adhesion morphology, cell proliferation, differentiation, and bone-to-implant contact ratio, were remarkably enhanced by the HA coating through AD.

  13. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair.

    PubMed

    Yao, Chun-Hsu; Lee, Chia-Yu; Huang, Chiung-Hua; Chen, Yueh-Sheng; Chen, Kuo-Yu

    2017-10-01

    A bilayer membrane (GKU) with a commercial polyurethane wound dressing as an outer layer and electrospun gelatin/keratin nanofibrous mat as an inner layer was fabricated as a novel wound dressing. Scanning electron micrographs showed that gelatin/keratin nanofibers had a uniform morphology and bead-free structure with average fiber diameter of 160.4nm. 3-(4,5-Dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay using L929 fibroblast cells indicated that the residues released from the gelatin/keratin composite nanofibrous mat accelerated cell proliferation. Cell attachment experiments revealed that adhered cells spread better and migrated deeper into the gelatin/keratin nanofibrous mat than that into the gelatin nanofibrous mat. In animal studies, compared with the bilayer membrane without keratin, gauze and commercial wound dressing, Comfeel®, GKU membrane gave much more number of blood vessels and a greater reduction in wound area at 4days, and better wound repair at 14days with a thicker epidermis and larger number of newly formed hair follicles. GKU membrane, thus, could be a good candidate for wound dressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tension Monitoring during Epithelial-to-Mesenchymal Transition Links the Switch of Phenotype to Expression of Moesin and Cadherins in NMuMG Cells

    PubMed Central

    Schneider, David; Baronsky, Thilo; Pietuch, Anna; Rother, Jan; Oelkers, Marieelen; Fichtner, Dagmar; Wedlich, Doris; Janshoff, Andreas

    2013-01-01

    Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT. PMID:24339870

  15. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia.

    PubMed

    Aly, H; Mohsen, L; Badrawi, N; Gabr, H; Ali, Z; Akmal, D

    2012-09-01

    Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.

  16. Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System

    PubMed Central

    Liu, Hong; Lee, Mark J.; Snarr, Brendan D.; Chen, Dan; Xu, Wenjie; Kravtsov, Ilia; Hoareau, Christopher M. Q.; Vanier, Ghyslaine; Urb, Mirjam; Campoli, Paolo; Al Abdallah, Qusai; Lehoux, Melanie; Chabot, Josée C.; Ouimet, Marie-Claude; Baptista, Stefanie D.; Fritz, Jörg H.; Nierman, William C.; Latgé, Jean Paul; Mitchell, Aaron P.; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.

    2013-01-01

    Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis. PMID:23990787

  17. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method

    PubMed Central

    Salwe, Sukeshani; Kothari, Sweta; Chowdhary, Abhay; Deshmukh, Ranjana A.

    2018-01-01

    12–14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population. PMID:29682352

  18. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method.

    PubMed

    Gosavi, Rahul Ashok; Salwe, Sukeshani; Mukherjee, Sandeepan; Dahake, Ritwik; Kothari, Sweta; Patel, Vainav; Chowdhary, Abhay; Deshmukh, Ranjana A

    2018-01-01

    12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference ( P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.

  19. Expression of drebrin, an actin binding protein, in basal cell carcinoma, trichoblastoma and trichoepithelioma.

    PubMed

    Mizutani, Yoko; Iwamoto, Ikuko; Kanoh, Hiroyuki; Seishima, Mariko; Nagata, Koh-ichi

    2014-06-01

    Drebrin, an F-actin binding protein, is known to play important roles in cell migration, synaptogenesis and neural plasticity. Although drebrin was long thought to be specific for neuronal cells, its expression has recently been reported in non-neuronal cells. As for skin-derived cells, drebrin was shown to be enriched at adhering junctions (AJs) in cultured primary keratinocytes and also be highly expressed in basal cell carcinoma (BCC) cells. Since BCC and two types of benign neoplasm, trichoblastoma and trichoepithelioma, are considered to derive from the same origin, follicular germinative cells, it is sometimes difficult to morphologically distinguish BCC from trichoblastoma and trichoepithelioma. In this study, we performed immunohistochemical staining of drebrin in BCC, trichoblastoma and trichoepithelioma, to examine whether drebrin could serve as a biomarker for BCC diagnosis. In western blotting, drebrin was detected highly and moderately in the lysates from a squamous cell carcinoma cell line, DJM-1, and normal human epidermis, respectively. In immunofluorescence analyses, drebrin was colocalized with markers of AJs and tight junctions in DJM-1 cells and detected at cell-cell junction areas of human normal epidermis tissue. We then examined the distribution patterns of drebrin in BCC, trichoblastoma and trichoepithelioma. In BCC tissues, intense and homogeneous drebrin expression was observed mainly at tumor cell-cell boundaries. In contrast, drebrin was stained only weakly and non-homogeneously in trichoblastoma and trichoepthelioma tissue samples. For differential diagnosis of BCC, drebrin may be a novel and useful marker.

  20. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

    PubMed

    Ramirez-Hernandez, Alejandra; Rupnow, John; Hutkins, Robert W

    2015-08-01

    Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.

  1. Motivational Interviewing and Cognitive-Behavioral Intervention to Improve HIV Medication Adherence Among Hazardous Drinkers

    PubMed Central

    Parsons, Jeffrey T.; Golub, Sarit A.; Rosof, Elana; Holder, Catherine

    2009-01-01

    Objective To assess the efficacy of a behavioral intervention designed to improve HIV medication adherence and reduce alcohol consumption among HIV-positive men and women. Design A randomized controlled trial conducted between July 2002 and August 2005. Setting A behavioral research center in New York City. Participants HIV-positive men and women (n = 143) who were on HIV antiretroviral medication and met criteria for hazardous drinking. Intervention Participants were randomly assigned to an 8-session intervention based on motivational interviewing and cognitive-behavioral skills building or a time- and content-equivalent educational condition. Outcome Measures Viral load, CD4 cell count, and self-reported adherence and drinking behavior were assessed at baseline and at 3- and 6-month follow-ups. Results Relative to the education condition, participants in the intervention demonstrated significant decreases in viral load and increases in CD4 cell count at the 3-month follow-up and significantly greater improvement in percent dose adherence and percent day adherence. There were no significant intervention effects for alcohol use, however, and effects on viral load, CD4 cell count, and adherence were not sustained at 6 months. Conclusions An 8-session behavioral intervention can result in improvement in self-report and biologic markers of treatment adherence and disease progression. This type of intervention should be considered for dissemination and integration into HIV clinics providing comprehensive care for HIV-positive persons with alcohol problems. Although the effect was attenuated over time, future studies might test the added effectiveness of booster sessions or ongoing adherence counseling. PMID:18077833

  2. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.

    PubMed

    Coverdale, Benjamin D M; Gough, Julie E; Sampson, William W; Hoyland, Judith A

    2017-10-01

    We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  4. Effect of sperm entry on blastocyst development after in vitro fertilization and intracytoplasmic sperm injection - mouse model.

    PubMed

    Piotrowska-Nitsche, Karolina; Chan, Anthony W S

    2013-01-01

    To investigate whether in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), influence the embryo's development and its quality using the mouse as a model. Assisted fertilization was performed using ICSI and IVF. Fluorescent beads were adhered to the fertilization cone or place of previous sperm injection in the natural mated (NM), IVF and ICSI embryos, respectively. Embryo examination was carried out at the two-cell and blastocyst stage to determine the position of fluorescent bead. Protein expression was detected by fluorescence immunocytochemical staining and confocal microscopic imaging of blastocysts. IVF and ICSI embryos developed at rates comparable to NM group. Embryos show similar expression patterns of two transcription factors, Oct4 and Cdx2. The most preferred place for spermatozoa attachment was the equatorial site of the egg, whether fertilization occurred in vitro or under natural conditions. We also link the sperm entry position (SEP) to embryo morphology and the number of cells at the blastocyst stage, with no influence of the method of fertilization. IVF and ICSI, do not compromise in vitro pre-implantation development. Additional data, related to sperm entry, could offer further criteria to predict embryos that will implant successfully. Based on embryo morphology, developmental rate and protein expression level of key transcription factors, our results support the view that ART techniques, such as IVF and ICSI, do not perturb embryonic development or quality.

  5. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin.

    PubMed

    Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko

    2007-04-01

    alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.

  6. Curli temper adherence of Escherichia coli O157:H7 to squamous epithelial cells from the bovine recto-anal junction in a strain-dependent manner

    USDA-ARS?s Scientific Manuscript database

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  7. Interaction of Mycobacterium tuberculosis with human respiratory mucosa.

    PubMed

    Middleton, A M; Chadwick, M V; Nicholson, A G; Dewar, A; Groger, R K; Brown, E J; Ratliff, T L; Wilson, R

    2002-01-01

    Endobronchial infection is associated with pulmonary tuberculosis in the majority of cases. We have investigated the adherence of Mycobacterium tuberculosis to the human respiratory mucosa. Organ cultures constructed with human tissue were infected with M. tuberculosis in the presence or absence of mycobacterial fibronectin attachment cell surface proteins and examined by scanning electron microscopy. M. tuberculosis adhered mainly to extracellular matrix (ECM) in areas of mucosal damage, but not to ciliated mucosa, intact extruded cells, basement membrane or collagen fibres. Bacteria also adhered to fibrous but not globular mucus and occasionally to healthy unciliated mucosa, open tight junctions and to extruded cells that had degenerated, exposing their contents. There was a significant reduction (p<0.05) in the number of bacteria adhering to ECM after pre-incubation of bacteria with fibronectin and after pre-incubation of the tissue with M. avium fibronectin attachment protein (FAP) and M. bovis antigen 85B protein, in a concentration dependent manner. The combined effect of FAP and antigen 85B protein was significantly greater than either protein alone. Bacterial adherence to fibrous mucus was not influenced by fibronectin. We conclude that M. tuberculosis adheres to ECM in areas of mucosal damage at least in part via FAP and antigen 85B protein.

  8. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.

    PubMed

    Hopper, Niina; Wardale, John; Brooks, Roger; Power, Jonathan; Rushton, Neil; Henson, Frances

    2015-01-01

    This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.

  9. Surgical retrieval, isolation and in vitro expansion of human anterior cruciate ligament-derived cells for tissue engineering applications.

    PubMed

    Gupta, Ashim; Sharif, Kevin; Walters, Megan; Woods, Mia D; Potty, Anish; Main, Benjamin J; El-Amin, Saadiq F

    2014-04-30

    Injury to the ACL is a commonly encountered problem in active individuals. Even partial tears of this intra-articular knee ligament lead to biomechanical deficiencies that impair function and stability. Current options for the treatment of partial ACL tears range from nonoperative, conservative management to multiple surgical options, such as: thermal modification, single-bundle repair, complete reconstruction, and reconstruction of the damaged portion of the native ligament. Few studies, if any, have demonstrated any single method for management to be consistently superior, and in many cases patients continue to demonstrate persistent instability and other comorbidities. The goal of this study is to identify a potential cell source for utilization in the development of a tissue engineered patch that could be implemented in the repair of a partially torn ACL. A novel protocol was developed for the expansion of cells derived from patients undergoing ACL reconstruction. To isolate the cells, minced hACL tissue obtained during ACL reconstruction was digested in a Collagenase solution. Expansion was performed using DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). The cells were then stored at -80 ºC or in liquid nitrogen in a freezing medium consisting of DMSO, FBS and the expansion medium. After thawing, the hACL derived cells were then seeded onto a tissue engineered scaffold, PLAGA (Poly lactic-co-glycolic acid) and control Tissue culture polystyrene (TCPS). After 7 days, SEM was performed to compare cellular adhesion to the PLAGA versus the control TCPS. Cellular morphology was evaluated using immunofluorescence staining. SEM (Scanning Electron Microscope) micrographs demonstrated that cells grew and adhered on both PLAGA and TCPS surfaces and were confluent over the entire surfaces by day 7. Immunofluorescence staining showed normal, non-stressed morphological patterns on both surfaces. This technique is promising for applications in ACL regeneration and reconstruction.

  10. Surgical Retrieval, Isolation and In vitro Expansion of Human Anterior Cruciate Ligament-derived Cells for Tissue Engineering Applications

    PubMed Central

    Gupta, Ashim; Sharif, Kevin; Walters, Megan; Woods, Mia D.; Potty, Anish; Main, Benjamin J.; El-Amin, Saadiq F.

    2014-01-01

    Injury to the ACL is a commonly encountered problem in active individuals. Even partial tears of this intra-articular knee ligament lead to biomechanical deficiencies that impair function and stability. Current options for the treatment of partial ACL tears range from nonoperative, conservative management to multiple surgical options, such as: thermal modification, single-bundle repair, complete reconstruction, and reconstruction of the damaged portion of the native ligament. Few studies, if any, have demonstrated any single method for management to be consistently superior, and in many cases patients continue to demonstrate persistent instability and other comorbidities. The goal of this study is to identify a potential cell source for utilization in the development of a tissue engineered patch that could be implemented in the repair of a partially torn ACL. A novel protocol was developed for the expansion of cells derived from patients undergoing ACL reconstruction. To isolate the cells, minced hACL tissue obtained during ACL reconstruction was digested in a Collagenase solution. Expansion was performed using DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S). The cells were then stored at -80 ºC or in liquid nitrogen in a freezing medium consisting of DMSO, FBS and the expansion medium. After thawing, the hACL derived cells were then seeded onto a tissue engineered scaffold, PLAGA (Poly lactic-co-glycolic acid) and control Tissue culture polystyrene (TCPS). After 7 days, SEM was performed to compare cellular adhesion to the PLAGA versus the control TCPS. Cellular morphology was evaluated using immunofluorescence staining. SEM (Scanning Electron Microscope) micrographs demonstrated that cells grew and adhered on both PLAGA and TCPS surfaces and were confluent over the entire surfaces by day 7. Immunofluorescence staining showed normal, non-stressed morphological patterns on both surfaces. This technique is promising for applications in ACL regeneration and reconstruction. PMID:24836540

  11. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    PubMed

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  12. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures.

  13. Factors associated with therapeutic success in HIV-positive individuals in southern Brazil.

    PubMed

    Silveira, M P T; Maurer, P; Guttier, M C; Moreira, L B

    2015-04-01

    Therapeutic success is characterized by undetectable viral load, immune reconstitution confirmed by CD4+ T-cell count and no clinical manifestations of disease. High treatment adherence is a major determinant of therapeutic success that needs prevention of viral replication, allowing immune reconstitution. Adherence to treatment <95% has been associated with both immune and viral failure. The objective of this study was to evaluate factors associated with therapeutic success in adult patients on highly active antiretroviral therapy (HAART) in a specialized centre for HIV-AIDS in southern Brazil, being defined therapeutic success as achieving and maintaining undetectable viral load, stable immune status (CD4+ T lymphocyte count ≥200 cells/mm(3) ) and adherence to HAART ≥ 95%. We conducted a historical cohort study nested in the PC-HIV randomized clinical trial of PC-HIV. We included adults who were on HAART at Pelotas HIV/AIDS Assistance Service between June 2006 and July 2007 and for whom information on treatment adherence, viral load and CD4+ cell count was available. Pregnant women were excluded. We obtained clinical data from medical records and socio-demographic information in an interview. Therapeutic success was defined as achieving and maintaining undetectable viral load, stable immune status (CD4+ T lymphocyte count ≥200 cells/mm(3) ) and adherence to HAART ≥95%. We included 136 patients (60% male) in the cohort study. Mean age was 40 ± 10 years, and median treatment duration was 59 months (IQR 25-93). Family income varied from 0 to 8 times the minimum wage (IQR 1·0-2·3). Therapeutic success was achieved by 90% (122 patients), and it was associated with previously undetectable viral load (PR = 1·30; 95% CI = 1·13-1·49) and treatment adherence prior to study entry (PR = 1·34; 95% CI = 1·07-1·69), independently of sex, age and previous immune status. When undetectable viral load, CD4+ cell count ≥200 cells/mm(3) and treatment adherence above 95% are included in the definition of therapeutic success, the rate was elevated (90%) and the factors associated were previous history of adherence to HAART and previous undetectable viral load. © 2014 John Wiley & Sons Ltd.

  14. An integrated enhancement and reconstruction strategy for the quantitative extraction of actin stress fibers from fluorescence micrographs.

    PubMed

    Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn

    2017-05-22

    The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.

  15. Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors.

    PubMed

    Prieto, Ruth; Pascual, José María; Rosdolsky, Maria; Castro-Dufourny, Inés; Carrasco, Rodrigo; Strauss, Sewan; Barrios, Laura

    2016-12-01

    OBJECTIVE Craniopharyngioma (CP) adherence strongly influences the potential for achieving a radical and safe surgical treatment. However, this factor remains poorly addressed in the scientific literature. This study provides a rational, comprehensive description of CP adherence that can be used for the prediction of surgical risks associated with the removal of these challenging lesions. METHODS This study retrospectively analyzes the evidence provided in pathological, neuroradiological, and surgical CP reports concerning 3 components of the CP attachment: 1) the intracranial structures attached to the tumor; 2) the morphology of the adhesion; and 3) the adhesion strength. From a total of 1781 CP reports published between 1857 and 2016, a collection of 500 CPs providing the best information about the type of CP attachment were investigated. This cohort includes autopsy studies (n = 254); surgical studies with a detailed description or pictorial evidence of CP adherence (n = 298); and surgical CP videos (n = 61) showing the technical steps for releasing the attachment. A predictive model of CP adherence in hierarchical severity levels correlated with surgical outcomes was generated by multivariate analysis. RESULTS The anatomical location of the CP attachment occurred predominantly at the third ventricle floor (TVF) (54%, n = 268), third ventricle walls (23%, n = 114), and pituitary stalk (19%, n = 94). The optic chiasm was involved in 56% (n = 281). Six morphological patterns of CP attachment were identified: 1) fibrovascular pedicle (5.4%); 2) sessile or patch-like (21%); 3) cap-like (over the CP top, 14%); 4) bowl-like (around the CP bottom, 13.5%); 5) ring-like (encircling central band, 19%); and 6) circumferential (enveloping the entire CP, 27%). Adhesion strength was classified in 4 grades: 1) loose (easily dissectible, 8%); 2) tight (requires sharp dissection, 32%); 3) fusion (no clear cleavage plane, 40%); and 4) replacement (loss of brain tissue integrity, 20%). The types of CP attachment associated with the worst surgical outcomes are the ring-like, bowl-like, and circumferential ones with fusion to the TVF or replacement of this structure (p < 0.001). The CP topography is the variable that best predicts the type of CP attachment (p < 0.001). Ring-like and circumferential attachments were observed for CPs invading the TVF (secondary intraventricular CPs) and CPs developing within the TVF itself (infundibulo-tuberal CPs). Brain invasion and peritumoral gliosis occurred predominantly in the ring-like and circumferential adherence patterns (p < 0.001). A multivariate model including the variables CP topography, tumor consistency, and the presence of hydrocephalus, infundibulo-tuberal syndrome, and/or hypothalamic dysfunction accurately predicts the severity of CP attachment in 87% of cases. CONCLUSIONS A comprehensive descriptive model of CP adherence in 5 hierarchical levels of increased severity-mild, moderate, serious, severe, and critical-was generated. This model, based on the location, morphology, and strength of the attachment can be used to anticipate the surgical risk of hypothalamic injury and to plan the degree of removal accordingly.

  16. Loss of an actin crosslinker uncouples cell spreading from cell stiffening on gels with a gradient of stiffness

    NASA Astrophysics Data System (ADS)

    Wen, Qi; Byfield, Fitzroy J.; Nordstrom, Kerstin; Arratia, Paulo E.; Miller, R. Tyler; Janmey, Paul A.

    2009-03-01

    We use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of the actin crosslinker filamin A in cell responses to mechanical stimuli. M2 melanoma cells null for filamin A do not alter their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors, but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change adherent area on both substrates and respond more strongly to collagen 1-coated gels than to fibronectin-coated gels. A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7 cells on the softest gels achievable (1000 Pa). By contrasting the responses of these cell types to different adhesive substrates, cell spreading can be dissociated from stiffening.

  17. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions.

    PubMed

    Anniss, Angela M; Sparrow, Rosemary L

    2006-09-01

    Adherence of red blood cells (RBCs) to vascular endothelium impairs blood flow and decreases oxygen delivery. Although RBCs may be stored for up to 42 days before transfusion under current blood banking guidelines, little is known of how changes to RBCs during storage may affect their adherence properties. The influence of RBC product storage time and white blood cell (WBC) burden on the adherence of RBCs for transfusion to vascular endothelium under conditions of continuous flow was investigated in this study. RBC samples were collected from nonleukoreduced (S-RBC), buffy coat-poor (BCP-RBC), and leukofiltered (LF-RBC) products at fixed time points during storage. Samples were perfused, at controlled shear stress and temperature, across a confluent endothelial cell (EC) monolayer with a parallel-flow chamber mounted to an inverted microscope. RBC-EC interactions were recorded with a digital camera attached to the microscope. The number of RBCs adhering to the EC layer increased significantly with storage time in all RBC products; however, WBC reduction delayed this increase. LF-RBCs were also significantly less adherent than S-RBC or BCP-RBC products on Day 1 of storage (p < 0.05). The strength of RBC attachment to vascular endothelium was significantly stronger in S-RBC products compared to BCP-RBC and LF-RBC products. Our findings indicate that product storage time and WBC burden increase the number and strength of adhesion of RBCs to vascular endothelium. These results may lead to greater understanding of the interaction of transfused RBCs with recipient endothelium and the biologic consequences of this adherence.

  18. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in trypanosomatid cells and aspartic proteolytic inhibitors can be benefic chemotherapeutic agents against these human pathogenic microorganisms. PMID:23298141

  19. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  20. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    PubMed

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  1. Medullospheres from DAOY, UW228 and ONS-76 Cells: Increased Stem Cell Population and Proteomic Modifications

    PubMed Central

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Background Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. Methodology/Principal Findings The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Conclusions/Significance Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB. PMID:23717474

  2. A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton

    PubMed Central

    Coughlin, Mark F.; Stamenović, Dimitrije

    2003-01-01

    A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at ∼158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response. PMID:12547813

  3. A prestressed cable network model of the adherent cell cytoskeleton.

    PubMed

    Coughlin, Mark F; Stamenović, Dimitrije

    2003-02-01

    A prestressed cable network is used to model the deformability of the adherent cell actin cytoskeleton. The overall and microstructural model geometries and cable mechanical properties were assigned values based on observations from living cells and mechanical measurements on isolated actin filaments, respectively. The models were deformed to mimic cell poking (CP), magnetic twisting cytometry (MTC) and magnetic bead microrheometry (MBM) measurements on living adherent cells. The models qualitatively and quantitatively captured the fibroblast cell response to the deformation imposed by CP while exhibiting only some qualitative features of the cell response to MTC and MBM. The model for CP revealed that the tensed peripheral actin filaments provide the key resistance to indentation. The actin filament tension that provides mechanical integrity to the network was estimated at approximately 158 pN, and the nonlinear mechanical response during CP originates from filament kinematics. The MTC and MBM simulations revealed that the model is incomplete, however, these simulations show cable tension as a key determinant of the model response.

  4. A multidisciplinary approach to study the functional properties of neuron-like cell models constituting a living bio-hybrid system: SH-SY5Y cells adhering to PANI substrate

    NASA Astrophysics Data System (ADS)

    Caponi, S.; Mattana, S.; Ricci, M.; Sagini, K.; Juarez-Hernandez, L. J.; Jimenez-Garduño, A. M.; Cornella, N.; Pasquardini, L.; Urbanelli, L.; Sassi, P.; Morresi, A.; Emiliani, C.; Fioretto, D.; Dalla Serra, M.; Pederzolli, C.; Iannotta, S.; Macchi, P.; Musio, C.

    2016-11-01

    A living bio-hybrid system has been successfully implemented. It is constituted by neuroblastic cells, the SH-SY5Y human neuroblastoma cells, adhering to a poly-anyline (PANI) a semiconductor polymer with memristive properties. By a multidisciplinary approach, the biocompatibility of the substrate has been analyzed and the functionality of the adhering cells has been investigated. We found that the PANI films can support the cell adhesion. Moreover, the SH-SY5Y cells were successfully differentiated into neuron-like cells for in vitro applications demonstrating that PANI can also promote cell differentiation. In order to deeply characterize the modifications of the bio-functionality induced by the cell-substrate interaction, the functional properties of the cells have been characterized by electrophysiology and Raman spectroscopy. Our results confirm that the PANI films do not strongly affect the general properties of the cells, ensuring their viability without toxic effects on their physiology. Ascribed to the adhesion process, however, a slight increase of the markers of the cell suffering has been evidenced by Raman spectroscopy and accordingly the electrophysiology shows a reduction at positive stimulations in the cells excitability.

  5. In vitro effects of ambroxol on Cryptococcus adherence, planktonic cells, and biofilms.

    PubMed

    Kong, Qingtao; Du, Xue; Huang, Suyang; Yang, Rui; Zhang, Chengzhen; Shen, Yongnian; Liu, Weida; Sang, Hong

    2017-07-01

    The antifungal effects of ambroxol (Amb; the metabolite VIII of bromhexine) against Cryptococcus planktonic cells and mature biofilms were investigated in this study. Amb showed antifungal activity against planktonic cells and mature biofilms. Disk diffusion test similarly showed antifungal profile for planktonic cells. Furthermore, Amb was found to be synergetic with fluconazole against planktonic cells and reduced the adherence of cells to polystyrene. Our results suggest that Amb can inhibit cryptococcal cells and biofilms, indicating its potential role in the prevention and treatment of cryptococcosis. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells.

    PubMed

    Lin, Zhiguang; Chen, Bobin; Wu, Ting; Xu, Xiaoping

    2018-05-23

    Diffuse large B cell lymphoma (DLBCL) is heterogeneous. We aimed to explore how tumor microenvironment promotes lymphoma cell aggressiveness and heterogeneity. We created a coculture system using human DLBCL cells and mouse bone marrow stromal cells. Proliferative capacity, drug resistance, clonogenicity, and tumorigenicity were compared in lymphoma cells from the coculture system and lymphoma cells cultured alone. Expression of Notch signaling associated genes was evaluated using real-time reverse transcriptase PCR and Western blot. Lymphoma cells in the coculture system differentiated into a suspended cell group and an adherent cell group. They acquired a stronger proliferative capacity and drug resistance than lymphoma cells cultured alone, and differences existed between the adherent cell and suspended cell groups. The suspended cell group acquired the most powerful clonogenic and tumorigenic potential. However, Notch3 was exclusively expressed in the adherent lymphoma cell group and the use of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, an inhibitor of Notch pathway, could abolish the emergence of highly aggressive lymphoma cells. Highly tumorigenic lymphoma cells could be generated by coculture with stromal cells, and it was dependent on Notch3 expression in the adjacent lymphoma cells through interaction with stromal cells. © 2018 S. Karger AG, Basel.

  7. Individualised motivational counselling to enhance adherence to antiretroviral therapy is not superior to didactic counselling in South African patients: findings of the CAPRISA 058 randomised controlled trial.

    PubMed

    van Loggerenberg, Francois; Grant, Alison D; Naidoo, Kogieleum; Murrman, Marita; Gengiah, Santhanalakshmi; Gengiah, Tanuja N; Fielding, Katherine; Abdool Karim, Salim S

    2015-01-01

    Concerns that standard didactic adherence counselling may be inadequate to maximise antiretroviral therapy (ART) adherence led us to evaluate more intensive individualised motivational adherence counselling. We randomised 297 HIV-positive ART-naïve patients in Durban, South Africa, to receive either didactic counselling, prior to ART initiation (n = 150), or an intensive motivational adherence intervention after initiating ART (n = 147). Study arms were similar for age (mean 35.8 years), sex (43.1 % male), CD4+ cell count (median 121.5 cells/μl) and viral load (median 119,000 copies/ml). Virologic suppression at 9 months was achieved in 89.8 % of didactic and 87.9 % of motivational counselling participants (risk ratio [RR] 0.98, 95 % confidence interval [CI] 0.90-1.07, p = 0.62). 82.9 % of didactic and 79.5 % of motivational counselling participants achieved >95 % adherence by pill count at 6 months (RR 0.96, 95 % CI 0.85-1.09, p = 0.51). Participants receiving intensive motivational counselling did not achieve higher treatment adherence or virological suppression than those receiving routinely provided didactic adherence counselling. These data are reassuring that less resource intensive didactic counselling was adequate for excellent treatment outcomes in this setting.

  8. Individualised motivational counselling to enhance adherence to antiretroviral therapy is not superior to didactic counselling in South African patients: Findings of the CAPRISA 058 randomised controlled trial

    PubMed Central

    van Loggerenberg, Francois; Grant, Alison D.; Naidoo, Kogieleum; Murrman, Marita; Gengiah, Santhanalakshmi; Gengiah, Tanuja N.; Fielding, Katherine; Karim, Salim S. Abdool

    2014-01-01

    Concerns that standard didactic adherence counselling may be inadequate to maximise antiretroviral therapy (ART) adherence led us to evaluate more intensive individualised motivational adherence counselling. We randomised 297 HIV-positive ART-naïve patients in Durban, South Africa, to receive either didactic counselling, prior to ART initiation (n=150), or an intensive motivational adherence intervention after initiating ART (n=147). Study arms were similar for age (mean 35.8 years), sex (43.1% male), CD4+ cell count (median 121.5 cells/μl) and viral load (median 119 000 copies/ml). Virologic suppression at nine months was achieved in 89.8% of didactic and 87.9% of motivational counselling participants (risk ratio [RR] 0.98, 95% confidence interval [CI] 0.90-1.07, p=0.62). 82.9% of didactic and 79.5% of motivational counselling participants achieved >95% adherence by pill count at six months (RR 0.96, 95%CI 0.85-1.09, p=0.51). Participants receiving intensive motivational counselling did not achieve higher treatment adherence or virological suppression than those receiving routinely provided didactic adherence counselling. These data are reassuring that less resource intensive didactic counselling was adequate for excellent treatment outcomes in this setting. PMID:24696226

  9. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  10. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  11. Trichomonas vaginalis Contact-Dependent Cytolysis of Epithelial Cells

    PubMed Central

    Lustig, Gila; Ryan, Christopher M.; Secor, W. Evan

    2013-01-01

    Trichomonas vaginalis is an extracellular protozoan parasite that binds to the epithelium of the human urogenital tract during infection. In this study, we examined the propensities of 26 T. vaginalis strains to bind to and lyse prostate (BPH-1) and ectocervical (Ect1) epithelium and to lyse red blood cells (RBCs). We found that only three of the strains had a statistically significant preference for either BPH-1 (MSA1103) or Ect1 (LA1 and MSA1123). Overall, we observed that levels of adherence are highly variable among strains, with a 12-fold range of adherence on Ect1 cells and a 45-fold range on BPH-1 cells. Cytolysis levels displayed even greater variability, from no detectable cytolysis to 80% or 90% cytolysis of Ect1 and BPH-1, respectively. Levels of adherence and cytolysis correlate for weakly adherent/cytolytic strains, and a threshold of attachment was found to be necessary to trigger cytolysis; however, this threshold can be reached without inducing cytolysis. Furthermore, cytolysis was completely blocked when we prevented attachment of the parasites to host cells while allowing soluble factors complete access. We demonstrate that hemolysis was a rare trait, with only 4 of the 26 strains capable of lysing >20% RBCs with a 1:30 parasite/RBC ratio. Hemolysis also did not correlate with adherence to or cytolysis of either male (BPH-1)- or female (Ect1)-derived epithelial cell lines. Our results reveal that despite a broad range of pathogenic properties among different T. vaginalis strains, all strains show strict contact-dependent cytolysis. PMID:23429535

  12. Modulation of cell adhesion and viability of cultured murine bone marrow cells by arsenobetaine, a major organic arsenic compound in marine animals.

    PubMed

    Sakurai, T; Fujiwara, K

    2001-01-01

    1. In this study, we investigated the biological effects of trimethyl (carboxymethyl) arsonium zwitterion, namely arsenobetaine (AsBe), which is a major organic arsenic compound in marine animals using murine bone marrow (BM) cells and compared them with those of an inorganic arsenical, sodium arsenite, in vitro. 2. Sodium arsenite showed strong cytotoxicity in BM cells, and its IC(50) was 6 microM. In contrast, AsBe significantly enhanced the viability of BM cells in a dose-dependent manner during a 72-h incubation; about a twofold increase in the viability of cells compared with that of control cells cultured with the medium alone was observed with a microM level of AsBe. 3. In morphological investigations, AsBe enhanced the numbers of large mature adherent cells, especially granulocytes, during a 72-h BM culture. When BM cells were cultured together with AsBe and a low dose (1 u ml(-1)) of recombinant murine granulocyte/macrophage colony-stimulating factor (rMu GM-CSF), significant additive-like increasing effects were observed on the numbers of both granulocytes and macrophages originated from BM cells. However, AsBe did not cause proliferation of BM cells at all as determined by colony-forming assay using a gelatinous medium. 4. These findings demonstrate the unique and potent biological effects in mammalian cells of AsBe, a major organic arsenic compound in various marine animals which are ingested daily as seafood in many countries.

  13. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems

    PubMed Central

    Badenes, Sara M.; Fernandes, Tiago G.; Cordeiro, Cláudia S. M.; Boucher, Shayne; Kuninger, David; Vemuri, Mohan C.; Diogo, Maria Margarida; Cabral, Joaquim M. S.

    2016-01-01

    Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells. PMID:26999816

  14. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp.

    PubMed

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo; Lacerda de Carvalho, Acácia Fernandes; Rogatto, Silvia Regina; Pereira, Lygia da Veiga; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2011-11-01

    Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. The pulp tissue was gently separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal abnormalities was evaluated by G banding. The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow cytometry and fluorescence analyses revealed the presence of a heterogeneous population positive for embryonic and mesenchymal cell markers. Adipogenic, chondrogenic and osteogenic differentiation was achieved after two weeks of cell culture under chemically defined in vitro conditions. In addition, some elongated cells spontaneously acquired a contraction capacity. Our results reinforce that the dental pulp is an important source of adult stem cells and encourage studies on therapeutic potential of mDPSC in experimental disease models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease.

    PubMed

    Daviaud, Nicolas; Garbayo, Elisa; Sindji, Laurence; Martínez-Serrano, Alberto; Schiller, Paul C; Montero-Menei, Claudia N

    2015-06-01

    Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD. Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson's disease (PD). The present work elucidates and compares the survival, differentiation, and neuroprotective mechanisms of marrow-isolated adult multilineage inducible cells and human neural stem cells both adhered to neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo organotypic model of PD made from brain sagittal slices. ©AlphaMed Press.

  16. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    PubMed

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1 ± 0.5%, 84.4 ± 0.7%, and 94.2 ± 0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sperm preparation: state-of-the-art—physiological aspects and application of advanced sperm preparation methods

    PubMed Central

    Henkel, Ralf

    2012-01-01

    For assisted reproduction technologies (ART), numerous techniques were developed to isolate spermatozoa capable of fertilizing oocytes. While early methodologies only focused on isolating viable, motile spermatozoa, with progress of ART, particularly intracytoplasmic sperm injection (ICSI), it became clear that these parameters are insufficient for the identification of the most suitable spermatozoon for fertilization. Conventional sperm preparation techniques, namely, swim-up, density gradient centrifugation and glass wool filtration, are not efficient enough to produce sperm populations free of DNA damage, because these techniques are not physiological and not modeled on the stringent sperm selection processes taking place in the female genital tract. These processes only allow one male germ cell out of tens of millions to fuse with the oocyte. Sites of sperm selection in the female genital tract are the cervix, uterus, uterotubal junction, oviduct, cumulus oophorus and the zona pellucida. Newer strategies of sperm preparation are founded on: (i) morphological assessment by means of ‘motile sperm organelle morphological examination (MSOME)' (ii) electrical charge; and (iii) molecular binding characteristics of the sperm cell. Whereas separation methods based on electrical charge take advantage of the sperm's adherence to a test tube surface or separate in an electrophoresis, molecular binding techniques use Annexin V or hyaluronic acid (HA) as substrates. Techniques in this category are magnet-activated cell sorting, Annexin V-activated glass wool filtration, flow cytometry and picked spermatozoa for ICSI (PICSI) from HA-coated dishes and HA-containing media. Future developments may include Raman microspectrometry, confocal light absorption and scattering spectroscopic microscopy and polarization microscopy. PMID:22138904

  18. [A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented residue].

    PubMed

    Khramenkov, S V; Kozlov, M N; Krevbona, M V; Drofeev, A G; Kazakova, E A; Grachev, V A; Kuznetsov, B B; Poliakov, D Iu; Nikolaev, Iu A

    2013-01-01

    A new genus and species of bacteria capable of ammonium oxidation under anaerobic conditions in the presence of nitrite is described. The enrichment culture was obtained from the Moscow River silt by sequential cultivation in reactors with selective conditions for anaerobic ammonium oxidation. Bacterial cells were coccoid, -0.4 x 0.7 mm, with the intracellular membrane structures typical of bacteria capable of anaerobic ammonium oxidation (anammoxosome and paryphoplasm). The cells formed aggregates 5-25 μm in diameter (10 μm on average). They were readily adhered to solid surfaces. The cells were morphologically labile, they easily lost their content and changed their morphology during fixation for electron microscopy. The organism was capable of ammonium oxidation with nitrite. The semisaturation constants Ks for nitrite and ammonium were 0.38 mg N-NO2/L and 0.41 mg N-NH4/L, respectively. The maximal nitrite concentrations for growth were 90 and 75 mg N-NO2/L for single and continuous application, respectively. The doubling time was 32 days, μ(max) = 0.022 day(-1), the optimal temperature and pH were 20 degrees C and 7.8-8.3, respectively. According to the 16S rRNA gene sequencing, the bacterium was assigned to a new genus and species within the phylum Planctomycetes. The proposed name for the new bacterium is Candidatus Anammoximicrobium moscowii gen. nov., sp. nov. (a microorganisms carrying out anaerobia ammonium oxidation, isolated in the Moscow region).

  19. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells.

    PubMed

    Byrd, Matthew S; Pang, Bing; Mishra, Meenu; Swords, W Edward; Wozniak, Daniel J

    2010-06-29

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213-8221, 2006). Using an NF-kappaB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-kappaB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-kappaB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-kappaB activation, likely as a result of increasing contact between bacterial cells and epithelial cells.

  20. The Pseudomonas aeruginosa Exopolysaccharide Psl Facilitates Surface Adherence and NF-κB Activation in A549 Cells

    PubMed Central

    Byrd, Matthew S.; Pang, Bing; Mishra, Meenu; Swords, W. Edward; Wozniak, Daniel J.

    2010-01-01

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213–8221, 2006). Using an NF-κB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-κB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-κB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-κB activation, likely as a result of increasing contact between bacterial cells and epithelial cells. PMID:20802825

  1. Lymphocyte migration in the micro-channel of splenic sheathed capillaries in Chinese soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng

    2016-01-01

    The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Relationship of Inhaled Corticosteroid Adherence to Asthma Exacerbations in Patients with Moderate-to-Severe Asthma.

    PubMed

    Papi, Alberto; Ryan, Dermot; Soriano, Joan B; Chrystyn, Henry; Bjermer, Leif; Rodríguez-Roisin, Roberto; Dolovich, Myrna B; Harris, Mark; Wood, Lucy; Batsiou, Maria; Thornhill, Susannah I; Price, David B

    2018-04-05

    Patients with asthma and elevated blood eosinophils are at increased risk of severe exacerbations. Management of these patients should consider nonadherence to inhaled corticosteroid (ICS) therapy as a factor for increased exacerbation risk. The objective of this study was to investigate whether poor adherence to ICS therapy explains the occurrence of asthma exacerbations in patients with elevated blood eosinophil levels. This historical cohort study identified patients within the Optimum Patient Care Research Database, aged 18 years or more, at Global Initiative for Asthma step 3 or 4, with 2 or more ICS prescriptions during the year before the clinical review. Patient characteristics and adherence (based on prescription refills and patient self-report) for ICS therapy were analyzed for those with elevated (>400 cells/μL) or normal (≤400 cells/μL) blood eosinophils. We studied 7195 patients (66% female, mean age 60 years) with median eosinophil count of 200 cells/μL and found 81% to be not fully adherent to ICS therapy. A total of 1031 patients (14%) had elevated blood eosinophil counts (58% female, mean age 60 years), 83% of whom were not fully adherent to ICS. An increased proportion of adherent patients in the elevated blood eosinophil group had 2 or more exacerbations (14.0% vs 7.2%; P = .003) and uncontrolled asthma (73% vs 60.8%; P = .004) as compared with non-fully adherent patients. Approximately 1 in 7 patients had elevated eosinophils. Adherence to ICS therapy was not associated with decreased exacerbations for these patients. Additional therapy should be considered for these patients, such as biologics, which have been previously shown to improve control in severe uncontrolled eosinophilic asthma. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Surface design of antibody-immobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment.

    PubMed

    Kobayashi, Jun; Hayashi, Masaki; Ohno, Takahiro; Nishi, Masanori; Arisaka, Yoshinori; Matsubara, Yoshinori; Kakidachi, Hiroshi; Akiyama, Yoshikatsu; Yamato, Masayuki; Horii, Akihiro; Okano, Teruo

    2014-11-01

    Antibody-immobilized thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) [poly(IPAAm-co-CIPAAm)]-grafted cell culture surfaces were designed to enhance both the initial adhesion of weakly adhering cells and the ability of cells to detach in response to low temperature through the regulation of affinity binding between immobilized antibodies and antigens on the cellular surface. Ty-82 cells and neonatal normal human dermal fibroblasts (NHDFs), which express CD90 on the cell surface, adhered to anti-CD90 antibody-immobilized thermoresponsive surfaces at 37°C, a condition at which the grafted thermoresponsive polymer chains shrank. Adherent Ty-82 cells were detached from the surfaces by lowering the temperature to 20°C and applying external forces, such as pipetting, whereas cultured NHDF sheets spontaneously detached themselves from the surface in response to reduced temperature alone. When the temperature was decreased to 20°C, the swelling of grafted thermoresponsive polymer chains weakened the affinity binding between immobilized antibody and antigen on the cells due to the increasing steric hindrance of the polymer chains around the antigen-recognition site of the immobilized antibodies. No contamination was detected on cells harvested from covalently immobilized antibodies on the culture surfaces by low-temperature treatment, whereas a carryover of the antibody and avidin from the avidin-biotin binding surface was observed. Furthermore, the initial adhesion of adipose tissue-derived cells, which adhere weakly to PIPAAm-grafted surfaces, was enhanced on the antibody-immobilized thermoresponsive surfaces. © 2013 Wiley Periodicals, Inc.

  4. Decreased Superoxide Production, Degranulation, Tumor Necrosis Factor Alpha Secretion, and CD11b/CD18 Receptor Expression by Adherent Monocytes from Preterm Infants

    PubMed Central

    Kaufman, David; Kilpatrick, Laurie; Hudson, R. Guy; Campbell, Donald E.; Kaufman, Ann; Douglas, Steven D.; Harris, Mary C.

    1999-01-01

    Preterm infants have an increased incidence of infection, which is principally due to deficiencies in neonatal host defense mechanisms. Monocyte adherence is important in localizing cells at sites of infection and is associated with enhanced antimicrobial functions. We isolated cord blood monocytes from preterm and full-term infants to study their adhesion and immune functions, including superoxide (O2−) generation, degranulation, and cytokine secretion and their adhesion receptors. O2− production and degranulation were significantly diminished, by 28 and 37%, respectively, in adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, these differences were not seen in freshly isolated cells. We also observed a significant decrease of 35% in tumor necrosis factor alpha secretion by lipopolysaccharide-stimulated adherent monocytes from preterm infants compared to full-term infants (P < 0.05); however, this difference was not observed in interleukin-1β or interleukin-6 production by the monocytes. The cell surface expression of the CD11b/CD18 adhesion receptor subunits was significantly decreased (by 60 and 52%, respectively) in monocytes from preterm infants compared to full-term infants (P < 0.01). The cascade of the immune response to infection involves monocyte upregulation and adherence via CD11b/CD18 receptors followed by cell activation and the release of cytokines and bactericidal products. We speculate that monocyte adherence factors may be important in the modulation of immune responses in preterm infants. PMID:10391855

  5. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro.

    PubMed

    Baillie-Johnson, Peter; van den Brink, Susanne Carina; Balayo, Tina; Turner, David Andrew; Martinez Arias, Alfonso

    2015-11-24

    We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.

  6. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    PubMed

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  7. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    PubMed

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  8. Dynamic mechanical measurement of the viscoelasticity of single adherent cells

    NASA Astrophysics Data System (ADS)

    Corbin, Elise A.; Adeniba, Olaoluwa O.; Ewoldt, Randy H.; Bashir, Rashid

    2016-02-01

    Many recent studies on the viscoelasticity of individual cells link mechanics with cellular function and health. Here, we introduce a measurement of the viscoelastic properties of individual human colon cancer cells (HT-29) using silicon pedestal microelectromechanical systems (MEMS) resonant sensors. We demonstrate that the viscoelastic properties of single adherent cells can be extracted by measuring a difference in vibrational amplitude of our resonant sensor platform. The magnitude of vibration of the pedestal sensor is measured using a laser Doppler vibrometer (LDV). A change in amplitude of the sensor, compared with the driving amplitude (amplitude ratio), is influenced by the mechanical properties of the adhered cells. The amplitude ratio of the fixed cells was greater than the live cells, with a p-value <0.0001. By combining the amplitude shift with the resonant frequency shift measure, we determined the elastic modulus and viscosity values of 100 Pa and 0.0031 Pa s, respectively. Our method using the change in amplitude of resonant MEMS devices can enable the determination of a refined solution space and could improve measuring the stiffness of cells.

  9. High throughput RNAi assay optimization using adherent cell cytometry.

    PubMed

    Nabzdyk, Christoph S; Chun, Maggie; Pradhan, Leena; Logerfo, Frank W

    2011-04-25

    siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC). AoSMC were seeded at a density of 3000-8000 cells/well of a 96 well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.

  10. High throughput RNAi assay optimization using adherent cell cytometry

    PubMed Central

    2011-01-01

    Background siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC). Methods AoSMC were seeded at a density of 3000-8000 cells/well of a 96well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. Results After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. Conclusion This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs. PMID:21518450

  11. Human Antibodies to PhtD, PcpA, and Ply Reduce Adherence to Human Lung Epithelial Cells and Murine Nasopharyngeal Colonization by Streptococcus pneumoniae

    PubMed Central

    Kaur, Ravinder; Surendran, Naveen; Ochs, Martina

    2014-01-01

    Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection. PMID:25245804

  12. Galectin-1 induces cell adhesion to the extracellular matrix and apoptosis of non-adherent human colon cancer Colo201 cells.

    PubMed

    Horiguchi, Natsuko; Arimoto, Kei-ichiro; Mizutani, Atsushi; Endo-Ichikawa, Yoko; Nakada, Hiroshi; Taketani, Shigeru

    2003-12-01

    To isolate cDNAs for molecules involved in cell adhesion to the extracellular matrix, expression cloning with non-adherent colon cancer Colo201 cells was carried out. Four positive clones were isolated and, when sequenced, one was found to be galectin-1, a beta-galactoside-binding protein. When cultured on fibronectin-, laminin-, and collagen-coated and non-coated dishes, the adherent galectin-1 cDNA-transfected Colo201 cells increased and spread somewhat. Immunofluorescence staining revealed that galectin-1 was expressed inside and outside of Colo201 cells. The adhesion was dependent on the carbohydrate-recognition domain of galectin-1 since lactose inhibited the adhesion and exogenously-added galectin-1 caused the adhesion. PD58059, an inhibitor of mitogen-activated protein kinase, or LY294002, a phosphoinositide 3-OH kinase inhibitor, decreased the adhesion. Furthermore, the expression of galectin-1 in Colo201 cells induced apoptotic cell death, while exogenously-added galectin-1 did not cause apoptosis. These results indicate that galectin-1 plays a role in both cell-matrix interactions and the inhibition of Colo201 cell proliferation, and suggest that galectin-1 expressed in cells could be associated with apoptosis.

  13. Toxicity of cosmetic preservatives on human ocular surface and adnexal cells.

    PubMed

    Chen, Xiaomin; Sullivan, David A; Sullivan, Amy Gallant; Kam, Wendy R; Liu, Yang

    2018-05-01

    Cosmetic products, such as mascara, eye shadow, eyeliner and eye makeup remover are used extensively to highlight the eyes or clean the eyelids, and typically contain preservatives to prevent microbial growth. These preservatives include benzalkonium chloride (BAK) and formaldehyde (FA)-releasing preservatives. We hypothesize that these preservatives, at concentrations (BAK = 1 mg/ml; FA = 0.74 mg/ml) approved for consumer use, are toxic to human ocular surface and adnexal cells. Accordingly, we tested the influence of BAK and FA on the morphology, survival, and proliferation and signaling ability of immortalized human meibomian gland (iHMGECs), corneal (iHCECs) and conjunctival (iHConjECs) epithelial cells. iHMGECs, iHCECs and iHConjECs were cultured with different concentrations of BAK (5 μg/ml to 0.005 μg/ml) or FA (1 mg/ml to 1 μg/ml) under basal, proliferating or differentiating conditions up to 7 days. We used low BAK levels, because we found that 0.5 mg/ml and 50 μg/ml BAK killed iHMGECs within 1 day after a 15 min exposure. Experimental procedures included analyses of cell appearance, cell number, and neutral lipid content (LipidTox), lysosome accumulation (LysoTracker) and AKT signaling in all 3 cell types. Our results demonstrate that BAK and FA cause dose-dependent changes in the morphology, survival, proliferation and AKT signaling of iHMGECs, iHCECs and iHConjECs. Many of the concentrations tested induced cell atrophy, poor adherence, decreased proliferation and death, after 5 days of exposure. Cellular signaling, as indicated by AKT phosphorylation after 15 (FA) or 30 (BAK) minutes of treatment, was also reduced in a dose-dependent fashion in all 3 cell types, irrespective of whether cells had been cultured under proliferating or differentiating conditions. Our results support our hypothesis and demonstrate that the cosmetic preservatives, BAK and FA, exert many toxic effects on cells of the ocular surface and adnexa. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Contribution of Spores to the Ability of Clostridium difficile To Adhere to Surfaces

    PubMed Central

    Joshi, Lovleen Tina; Phillips, Daniel S.; Williams, Catrin F.; Alyousef, Abdullah

    2012-01-01

    Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student's t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species. PMID:22923404

  15. Strain-specific inhibition of the adherence of uropathogenic bacteria to bladder cells by probiotic Lactobacillus spp.

    PubMed

    de Llano, Dolores González; Arroyo, Amalia; Cárdenas, Nivia; Rodríguez, Juan Miguel; Moreno-Arribas, M Victoria; Bartolomé, Begoña

    2017-06-01

    Urinary tract infections (UTIs), one of most common infections worldwide, face high recurrence rates and increasing antimicrobial resistance. Probiotic bacteria, especially of the genus Lactobacillus, are considered a promising preventive and/or treatment therapy against UTIs. In order to elucidate the mechanisms involved in these beneficial effects, we studied the impact of different Lactobacillus strains (Lactobacillus salivarius UCM572, L. plantarum CLC17 and L. acidophilus 01) in the adherence of reference and clinical uropathogenic strains (Escherichia coli ATCC® 53503, E. coli 10791, Enterococcus faecalis 04-1, En. faecalis 08-1 and Staphylococcus epidermidis 08-3) to T24 epithelial bladder cells. In general, the Lactobacillus strains with previous in vivo evidence of beneficial effects against UTIs (L. salivarius UCM572 and L. acidophilus 01) significantly inhibited the adherence of the five uropathogens to T24 cells, displaying percentages of inhibition ranging between 22.2% and 43.9%, and between 16.5% and 53.7%, respectively. On the other hand, L. plantarum CLC17, a strain with no expected effects on UTIs, showed almost negligible anti-adherence effects.Therefore, these in vitro results suggest that inhibition of the adherence of uropathogens to epithelial bladder cells may be one of the mechanisms involved in the potential beneficial effects of probiotics against UTIs in vivo. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.

    PubMed

    Jackson, Sarah; Coulthwaite, Lisa; Loewy, Zvi; Scallan, Anthony; Verran, Joanna

    2014-10-01

    Candida albicans is a known etiologic agent of denture stomatitis. Candida hyphae exhibit the ability to respond directionally to environmental stimuli. This characteristic is thought to be important in the penetration of substrata such as resilient denture liners and host epithelium. It has been suggested that hyphal production also enhances adhesion and survival of Candida on host and denture surfaces. Surface roughness, in addition, can enhance adhesion where stronger interactions occur between cells and surface features of similar dimensions. The purpose of this study was to assess the development of hyphal and blastospore biofilms on abraded denture acrylic resin specimens and measure the ease of removal of these biofilms. Biofilms were grown for 48 hours on abraded 1-cm² denture acrylic resin specimens from adhered hyphal phase C albicans or from adhered blastospores. Subsequently, all specimens were stained with Calcofluor White and examined with confocal scanning laser microscopy. Biofilms were removed by vortex mixing in sterile phosphate buffered saline solution. Removed cells were filtered (0.2-μm pore size). Filters were dried at 37°C for 24 hours for dry weight measurements. Any cells that remained on the acrylic resin specimens were stained with 0.03% acridine orange and examined with epifluorescence microscopy. Biofilms grown from both cell types contained all morphologic forms of C albicans. Although the underlying surface topography did not affect the amount of biofilm produced, biofilms grown from hyphal phase Candida were visibly thicker and had greater biomass (P<.05). These biofilms were less easily removed from the denture acrylic resin, especially in the case of rougher surfaces, evidenced by the higher numbers of retained cells (P≤.05). The presence of hyphae in early Candida biofilms increased biofilm mass and resistance to removal. Increased surface roughness enhances retention of hyphae and yeast cells, and, therefore, will facilitate plaque regrowth. Therefore, minimization of denture abrasion during cleaning is desirable. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Adhesion-Dependent Redistribution of MAP Kinase and MEK Promotes Muscarinic Receptor-Mediated Signaling to the Nucleus

    PubMed Central

    Slack, Barbara E.; Siniaia, Marina S.

    2008-01-01

    The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 hours, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation. PMID:15779001

  18. Adherence to Mediterranean-style dietary pattern and risk of esophageal squamous cell carcinoma: a case-control study in Iran

    USDA-ARS?s Scientific Manuscript database

    The benefit of adherence to a Mediterranean-style dietary pattern in relation to the risk of esophageal squamous cell carcinoma (ESCC) has not been investigated among non-Mediterranean high-risk populations. The objective of the present study was to examine the association of compliance with the Med...

  19. Evaluation of an adherent mouse embryonic stem cell in vitro assay to predict developmental toxicity of ToxCast chemicals.

    EPA Science Inventory

    The potential for most environmental chemicals to produce developmental toxicity is unknown. Mouse embryonic stem cell (mESC) assays are an alternative in vitro model to assess chemicals. The chemical space evaluated using mESC and compared to in vivo is limited. We used an adher...

  20. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    PubMed

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.

  1. Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation

    PubMed Central

    Navabi, Nazanin; McGuckin, Michael A.; Lindén, Sara K.

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface. PMID:23869232

  2. Microplate Fluorescence Assay for Measurement of the Ability of Strains of Listeria monocytogenes from Meat and Meat-Processing Plants To Adhere to Abiotic Surfaces▿

    PubMed Central

    Gamble, Rachel; Muriana, Peter M.

    2007-01-01

    Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30°C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25°C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40°C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments. PMID:17586676

  3. Effect of PDGF-BB combined with EDTA gel on adhesion and proliferation to the root surface.

    PubMed

    Belal, Mahmoud Helmy; Watanabe, Hisashi; Ichinose, Shizuko; Ishikawa, Isao

    2012-07-01

    Periodontal regeneration using EDTA or PDGF showed promising results, but the effect of combined application was still unclear. This study aimed to verify the effect of EDTA and/or PDGF application on root adhesion and proliferation of PDL fibroblast cells. Eighty specimens were prepared from forty periodontitis teeth and made five groups: (1) diseased (untreated), (2) SRP (scaling root planing), (3) EDTA (24%), (4) PDGF (25 ng/ml) and (5) Combined application of EDTA and PDGF. Periodontal ligament cells were cultured on the above conditioned dentin plate, and SEM examination was preformed and cells were counted within a representative standard area for both cell morphology and density. All groups including untreated showed significantly increase of adhered cells from baseline to 7 days. Among them, rate of increase was much higher in EDTA, PDGF, and combined groups. ANOVA test indicated that the number of cells in PDGF and combined groups was significantly higher than diseased group at 1 day. On day 7, PDGF and combined groups showed significantly higher number of adhesion cells than that found in the diseased, SRP and EDTA groups. Thus, root conditioning with EDTA enhanced cell adhesion more than SRP alone. There was no significant difference of cell number between PDGF and combined group. Combined application of EDTA and PDGF increased significantly PDL cell adhesion than EDTA alone. PDGF alone, however, also showed comparable effect to combined application at all periods. Thus, synergistic effect between PDGF and EDTA was not observed.

  4. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.

    PubMed

    Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J

    2005-12-01

    It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.

  5. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.

    PubMed

    Bhuptani, Ronak S; Patravale, Vandana B

    2016-12-30

    The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Complement Regulator Factor H Mediates a Two-step Uptake of Streptococcus pneumoniae by Human Cells*

    PubMed Central

    Agarwal, Vaibhav; Asmat, Tauseef M.; Luo, Shanshan; Jensch, Inga; Zipfel, Peter F.; Hammerschmidt, Sven

    2010-01-01

    Streptococcus pneumoniae, a human pathogen, recruits complement regulator factor H to its bacterial cell surface. The bacterial PspC protein binds Factor H via short consensus repeats (SCR) 8–11 and SCR19–20. In this study, we define how bacterially bound Factor H promotes pneumococcal adherence to and uptake by epithelial cells or human polymorphonuclear leukocytes (PMNs) via a two-step process. First, pneumococcal adherence to epithelial cells was significantly reduced by heparin and dermatan sulfate. However, none of the glycosaminoglycans affected binding of Factor H to pneumococci. Adherence of pneumococci to human epithelial cells was inhibited by monoclonal antibodies recognizing SCR19–20 of Factor H suggesting that the C-terminal glycosaminoglycan-binding region of Factor H mediates the contact between pneumococci and human cells. Blocking of the integrin CR3 receptor, i.e. CD11b and CD18, of PMNs or CR3-expressing epithelial cells reduced significantly the interaction of pneumococci with both cell types. Similarly, an additional CR3 ligand, Pra1, derived from Candida albicans, blocked the interaction of pneumococci with PMNs. Strikingly, Pra1 inhibited also pneumococcal uptake by lung epithelial cells but not adherence. In addition, invasion of Factor H-coated pneumococci required the dynamics of host-cell actin microfilaments and was affected by inhibitors of protein-tyrosine kinases and phosphatidylinositol 3-kinase. In conclusion, pneumococcal entry into host cells via Factor H is based on a two-step mechanism. The first and initial contact of Factor H-coated pneumococci is mediated by glycosaminoglycans expressed on the surface of human cells, and the second step, pneumococcal uptake, is integrin-mediated and depends on host signaling molecules such as phosphatidylinositol 3-kinase. PMID:20504767

  7. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  8. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    PubMed

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  9. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines

    PubMed Central

    Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W.; Stringer, Brett W.; Boyd, Andrew W.; Johns, Terrance G.; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A.

    2015-01-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture. PMID:25806119

  10. Candida glabrata's Genome Plasticity Confers a Unique Pattern of Expressed Cell Wall Proteins.

    PubMed

    López-Fuentes, Eunice; Gutiérrez-Escobedo, Guadalupe; Timmermans, Bea; Van Dijck, Patrick; De Las Peñas, Alejandro; Castaño, Irene

    2018-06-05

    Candida glabrata is the second most common cause of candidemia, and its ability to adhere to different host cell types, to microorganisms, and to medical devices are important virulence factors. Here, we consider three characteristics that confer extraordinary advantages to C. glabrata within the host. (1) C. glabrata has a large number of genes encoding for adhesins most of which are localized at subtelomeric regions. The number and sequence of these genes varies substantially depending on the strain, indicating that C. glabrata can tolerate high genomic plasticity; (2) The largest family of CWPs (cell wall proteins) is the EPA (epithelial adhesin) family of adhesins. Epa1 is the major adhesin and mediates adherence to epithelial, endothelial and immune cells. Several layers of regulation like subtelomeric silencing, cis- acting regulatory regions, activators, nutritional signaling, and stress conditions tightly regulate the expression of many adhesin-encoding genes in C. glabrata , while many others are not expressed. Importantly, there is a connection between acquired resistance to xenobiotics and increased adherence; (3) Other subfamilies of adhesins mediate adherence to Candida albicans , allowing C. glabrata to efficiently invade the oral epithelium and form robust biofilms. It is noteworthy that every C. glabrata strain analyzed presents a unique pattern of CWPs at the cell surface.

  11. Insertional inactivation of Eap in Staphylococcus aureus strain Newman confers reduced staphylococcal binding to fibroblasts.

    PubMed

    Hussain, Muzaffar; Haggar, Axana; Heilmann, Christine; Peters, Georg; Flock, Jan-Ingmar; Herrmann, Mathias

    2002-06-01

    To initiate invasive infection, Staphylococcus aureus must adhere to host substrates, such as the extracellular matrix or eukaryotic cells, by virtue of different surface proteins (adhesins). Recently, we identified a 60-kDa cell-secreted extracellular adherence protein (Eap) of S. aureus strain Newman with broad-spectrum binding characteristics (M. Palma, A. Haggar, and J. I. Flock, J. Bacteriol. 181:2840-2845, 1999), and we have molecularly confirmed Eap to be an analogue of the previously identified major histocompatibility complex class II analog protein (Map) (M. Hussain, K. Becker, C. von Eiff, G. Peter, and M. Herrmann, Clin. Diagn. Lab. Immunol. 8:1281-1286, 2001). Previous analyses of the Eap/Map function performed with purified protein did not allow dissection of its precise role in the complex situation of the staphylococcal whole cell presenting several secreted and wall-bound adhesins. Therefore, the role of Eap was investigated by constructing a stable eap::ermB deletion in strain Newman and by complementation of the mutant. Patterns of extracted cell surface proteins analyzed both by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western ligand assays with various adhesive matrix molecules clearly confirmed the absence of Eap in the mutant. However, binding and adhesion tests using whole staphylococcal cells demonstrated that both the parent and mutant strains bound equally well to fibronectin- and fibrinogen-coated surfaces, possibly due to their recognition by other staphylococcal adhesins. Furthermore, Eap mediated staphylococcal agglutination of both wild-type and mutant cells. In contrast, the mutant adhered to a significantly lesser extent to cultured fibroblasts (P < 0.001) than did the wild type, while adherence was restorable upon complementation. Furthermore, adherence to both epithelial cells (P < 0.05) and fibroblasts (not significant) could be blocked with antibodies against Eap, whereas preimmune serum was not active. In conclusion, Eap may contribute to pathogenicity by promoting adhesion of whole staphylococcal cells to complex eukaryotic substrates.

  12. Characterization of an immortalized human vaginal epithelial cell line.

    PubMed

    Rajan, N; Pruden, D L; Kaznari, H; Cao, Q; Anderson, B E; Duncan, J L; Schaeffer, A J

    2000-02-01

    Adherence of type 1 piliated Escherichia coli to vaginal mucosa plays a major role in the pathogenesis of ascending urinary tract infections (UTIs) in women. Progress in understanding the mechanism of adherence to the vaginal surface could be enhanced by the utilization of well-characterized vaginal epithelial cells. The objective of this study was to immortalize vaginal epithelial cells and study their bacterial adherence properties. Primary vaginal cells were obtained from a normal post-menopausal woman, immortalized by infection with E6/E7 genes from human papillomavirus 16 (HPV 16) and cultured in serum free keratinocyte growth factor medium. Positive immunostaining with a pool of antibodies to cytokeratins 1, 5, 10 and 14 (K1, K5, K10 and K14) and to K13 confirmed the epithelial origin of these cells. The immortalized cells showed binding of type 1 piliated E. coli in a pili specific and mannose sensitive manner. This model system should facilitate studies on the interaction of pathogens with vaginal mucosal cells, an essential step in the progression of ascending UTIs in women.

  13. Evidence for the replication of bovine leukemia virus in the B lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, P.S.; Pomeroy, K.A.; Johnson, D.W.

    1977-06-01

    Bovine peripheral blood lymphocytes from a cow with persistent lymphocytosis were separated on nylon wool columns into nylon-adherent and nonadherent populations. Nylon-adherent cells were highly enriched for surface immunoglobulin (SIg) bearing B lymphocytes (95.5%) and nonadherent cells for SIg negative non-B cells, presumably T lymphocytes (96.3%). The B lymphocytes were found to be the major producers for bovine leukemia virus. A total of 39% of the B-enriched cells, surviving after 72 hours in culture, produced bovine leukemia virus as compared with 0.5% of the non-B cells.

  14. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation

    PubMed Central

    Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2017-01-01

    Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345

  15. Spatial and Temporal Control of Cavitation Allows High In Vitro Transfection Efficiency in the Absence of Transfection Reagents or Contrast Agents.

    PubMed

    Chettab, Kamel; Roux, Stéphanie; Mathé, Doriane; Cros-Perrial, Emeline; Lafond, Maxime; Lafon, Cyril; Dumontet, Charles; Mestas, Jean-Louis

    2015-01-01

    Sonoporation using low-frequency high-pressure ultrasound (US) is a non-viral approach for in vitro and in vivo gene delivery. In this study, we developed a new sonoporation device designed for spatial and temporal control of ultrasound cavitation. The regulation system incorporated in the device allowed a real-time control of the cavitation level during sonoporation. This device was evaluated for the in vitro transfection efficiency of a plasmid coding for Green Fluorescent Protein (pEGFP-C1) in adherent and non-adherent cell lines. The transfection efficiency of the device was compared to those observed with lipofection and nucleofection methods. In both adherent and non-adherent cell lines, the sonoporation device allowed high rate of transfection of pEGFP-C1 (40-80%), as determined by flow cytometry analysis of GFP expression, along with a low rate of mortality assessed by propidium iodide staining. The transfection efficiency and toxicity of sonoporation on the non-adherent cell lines Jurkat and K562 were similar to those of nucleofection, while these two cell lines were resistant to transfection by lipofection. Moreover, sonoporation was used to produce three stably transfected human lymphoma and leukemia lines. Significant transfection efficiency was also observed in two fresh samples of human acute myeloid leukemia cells. In conclusion, we developed a user-friendly and cost-effective ultrasound device, well adapted for routine in vitro high-yield transfection experiments and which does not require the use of any transfection reagent or gas micro-bubbles.

  16. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  17. Surface Display of the Receptor-Binding Region of the Lactobacillus brevis S-Layer Protein in Lactococcus lactis Provides Nonadhesive Lactococci with the Ability To Adhere to Intestinal Epithelial Cells

    PubMed Central

    Åvall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-01-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium. PMID:12676705

  18. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    PubMed

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  19. Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system.

    PubMed

    Chang, An-Chen; Chen, Po-Chun; Lin, Yu-Feng; Su, Chen-Ming; Liu, Ju-Fang; Lin, Tien-Huang; Chuang, Show-Mei; Tang, Chih-Hsin

    2018-07-10

    Bone metastasis is a frequent occurrence in prostate cancer (PCa) that is associated with severe complications such as fracture, bone pain and hypercalcemia. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. In our previous data, we have described how the involvement of the Wnt-induced secreted protein-1/vascular cell adhesion molecule-1 (WISP-1/VCAM-1) system in this tumor-bone interaction contributes to human PCa cell motility. In this study, we found that WISP-1 regulates bone mineralization by inducing bone morphogenetic protein-2 (BMP2), BMP4 and osteopontin (OPN) expression in osteoblasts. We also found that WISP-1 inhibited RANKL-dependent osteoclastogenesis. Moreover, osteoblast-derived WISP-1 enhanced VCAM-1 expression in PCa cells and subsequently promoted the adherence of cancer cells to osteoblasts. Furthermore, endothelin-1 (ET-1) expression in PCa cells was regulated by osteoblast-derived WISP-1, which promoted integrin α4β1 expression in osteoblasts via the MAPK pathway. Pretreatment of PCa cells with VCAM-1 antibody or osteoblasts with integrin α4β1 antibody attenuated the adherence of PCa cells to osteoblasts, suggesting that integrin α4β1 serves as a ligand that captures VCAM-1 + metastatic tumor cells adhering to osteoblasts. Our findings reveal that osteoblast-derived WISP-1 plays a key role in regulating the adhesion of PCa cells to osteoblasts via the VCAM-1/integrin α4β1 system. Osteoblast-derived WISP-1 is a promising target for the prevention and inhibition of PCa-bone interaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Guixian; Pan, Leiting, E-mail: plt@nankai.edu.cn; Li, Cunbo

    2014-01-17

    Highlights: •We detailedly examine temperature effects of Fluo-3 AM labelling in adherent cells. •4 °C Loading and 20 °C de-esterification of Fluo-3 AM yields brighter nuclei. •Brighter nuclei labelling by Fluo-3 AM also depends on cell adhesion quality. •A qualitative model of the brighter nucleus is proposed. -- Abstract: Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca{sup 2+}]{sub c}) and nuclear calcium ([Ca{sup 2+}]{sub n}) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injectionmore » always induces a brighter nucleus which is more responsive to [Ca{sup 2+}]{sub n} detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca{sup 2+}]{sub n} and [Ca{sup 2+}]{sub c} in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Dov, Nadav; Korenstein, Rafi, E-mail: korens@post.tau.ac.il

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction ofmore » inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.« less

  2. A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    PubMed Central

    Mih, Justin D.; Sharif, Asma S.; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M.; Tschumperlin, Daniel J.

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes. PMID:21637769

  3. A multiwell platform for studying stiffness-dependent cell biology.

    PubMed

    Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J

    2011-01-01

    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.

  4. Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion

    PubMed Central

    Hermes, Michiel; Schwarz-Linek, Jana; Poon, Wilson C. K.

    2018-01-01

    Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications. PMID:29719861

  5. Neuroglian-positive plasmatocytes of Manduca sexta and the initiation of hemocyte attachment to foreign surfaces.

    PubMed

    Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R

    2006-01-01

    Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.

  6. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite

    NASA Astrophysics Data System (ADS)

    Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Arumugam, Sangili; Mahalingam, Sundrarajan

    2018-03-01

    Multifunctional biologically active materials have approached for antibiofilm, anticancer and osteoblast adhesion activities with significant biomedical applications, owing to this MWCNT modified with polypyrrole (PPy) matrix with the incorporation of palladium nanoparticles (NPs). The synthesized composite displays a tube-shaped morphology with highly dispersed crystalline Pd NPs, which are established through XRD, SEM, TEM and SAED studies. The pyridinic-N(∼402.7), pyrrolic sbnd N (∼400.8) peak in XPS spectra evidenced the interaction of PPy with Pd and MWCNT. Polymer stretching frequencies in FTIR and Raman spectroscopy proves successful formation of PPy and the Pd-N (1609 cm-1) interaction. In the stability aspect, it is up to 58.73% mass withstood at 800 °C in TGA analysis. The composite exhibits an efficient Anti-biofilm against a set of bacterial stain with planktonic cell growth. In vitro cytotoxicity of Vero and HeLa cell line assess the composites toxicity and anticancer activity up to 100 μg. The outcome of cell adhesions showed that human osteosarcoma cells (HOS) can adhere and to develop on the MWCNT/PPy/Pd composites. Furthermore, the proliferation of cells on MWCNT/PPy/Pd composites was also proved the biocompatibility of the composites against HOS cells. These results suggest that Pd-doped MWCNT/PPy composites are promising materials for biomedical applications.

  7. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    PubMed

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  8. Dynamics of myosin II organization into cortical contractile networks and fibers

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  9. The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication

    USDA-ARS?s Scientific Manuscript database

    Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade co...

  10. A quality-by-design approach to risk reduction and optimization for human embryonic stem cell cryopreservation processes.

    PubMed

    Mitchell, Peter D; Ratcliffe, Elizabeth; Hourd, Paul; Williams, David J; Thomas, Robert J

    2014-12-01

    It is well documented that cryopreservation and resuscitation of human embryonic stem cells (hESCs) is complex and ill-defined, and often suffers poor cell recovery and increased levels of undesirable cell differentiation. In this study we have applied Quality-by-Design (QbD) concepts to the critical processes of slow-freeze cryopreservation and resuscitation of hESC colony cultures. Optimized subprocesses were linked together to deliver a controlled complete process. We have demonstrated a rapid, high-throughput, and stable system for measurement of cell adherence and viability as robust markers of in-process and postrecovery cell state. We observed that measurement of adherence and viability of adhered cells at 1 h postseeding was predictive of cell proliferative ability up to 96 h in this system. Application of factorial design defined the operating spaces for cryopreservation and resuscitation, critically linking the performance of these two processes. Optimization of both processes resulted in enhanced reattachment and post-thaw viability, resulting in substantially greater recovery of cryopreserved, pluripotent cell colonies. This study demonstrates the importance of QbD concepts and tools for rapid, robust, and low-risk process design that can inform manufacturing controls and logistics.

  11. CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes.

    PubMed

    Hayashi, Takeshi; Unno, Akihiro; Baba, Minami; Ohno, Tamio; Kitoh, Katsuya; Takashima, Yasuhiro

    2014-04-01

    Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood. In this study, we demonstrate that T. gondii-invaded human and mouse leukocytes express higher level of CD44, a ligand of hyaluronan (HA), and its expression on myeloid and non-myeloid leukocytes causes T. gondii-invaded human and mouse leukocyte to adhere to HA more effectively than non-invaded leukocytes. The specific adherence of parasite-invaded leukocytes was inhibited by anti CD44 antibody. Leukocytes of CD44 knockout mice did not show parasite-invaded leukocyte specific adhesion. Our results indicate that parasite-invaded leukocytes, regardless of whether myeloid or not, gain higher ability to adhere to HA than non-invaded leukocytes, via upregulation of CD44 expression and/or selective invasion to CD44 highly expressing cells. The difference in ability to adhere to HA between parasite-invaded cells and non-invaded neighboring cells might facilitate effective delivery of parasite-invaded leukocytes to the HA-producing endothelial cell surface and/or HA-rich extra cellular matrix. © 2013.

  12. A cell-ELISA for the quantification of adherent murine macrophages and the surface expression of antigens.

    PubMed

    Nibbering, P H; Van de Gevel, J S; Van Furth, R

    1990-07-20

    The present study was performed in order to establish whether a cell-ELISA could be used to determine the expression of antigens by adherent murine peritoneal macrophages and also quantify the numbers of such macrophages. Accurate determination of the number of adherent macrophages proved to be possible with a cell-ELISA designed to assess complement receptor type III (CRIII) expression. Expression of CRIII was considerably more sensitive than determination of the cell-protein or DNA content as a measure of the number of adherent macrophages. For the calculation of the expression of CRIII, Ia antigen, and antigen F4/80 by resident and activated macrophages, use was made of the linear part of the curve obtained when the numbers of macrophages were plotted against the absorbance values for each of the antigens. The values for CRIII expression did not differ significantly between resident macrophages, macrophages activated with recombinant interferon-gamma (rIFN-gamma) and macrophages activated with BCG/PPD. IFN-gamma-activated and BCG/PPD-activated macrophages expressed Ia antigen significantly more intensely than did resident peritoneal macrophages. In contrast the activated macrophages expressed F4/80 significantly less intensely than resident peritoneal macrophages.

  13. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

    PubMed

    Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B

    2018-02-28

    We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  14. Glass fibre-reinforced composite laced with chlorhexidine digluconate and yeast adhesion.

    PubMed

    Waltimo, T; Luo, G; Samaranayake, L P; Vallittu, P K

    2004-02-01

    The aim of this study was to lace dental glass fibre reinforced composite (FRC) prepreg with chlorhexidine digluconate and to examine the adherence of common oral fungal pathogen Candida albicans to FRC made of the prepreg. Four different test and control material groups each comprising 16 test specimens ((5.0 x 5.0 x 0.8) mm3) each were used as substrates for C. albicans adherence. A porous polymer pre-impregnated woven glass fibre prepreg was laced with solution of chlorhexidine gluconate and it was used with autopolymerized denture base polymer to fabricate FRC test specimens. Control group (Group 1) consisted of FRC test specimens stored in water. In Group 2, the test specimens were stored in 10% chlorhexidine digluconate solution for 24 h. Group 3 consisted of specimens fabricated using such fibre reinforcements which were pre-soaked in 20% chlorhexidine digluconate and dried before preparation with denture base resin, and followed by storage of the specimens in water. Group 4 was similar to Group 3 but instead of water storage the specimens were immersed in 10% chlorhexidine digluconate for 24 h. For the candidal adhesion assay the test and control specimens were incubated in standardized suspensions of four different strains of C. albicans, rinsed and prepared for light-microscopy. The mean number of adherent cells in each group was counted microscopically and analysed statistically. There were significantly (P < 0.05) more adherent C. albicans cells found in Group 1 than in the other three groups which did not differ significantly from each other. The lowest numbers of adherent cells were found in Group 3. Pretreating the porous polymer pre-impregnated glass fibre reinforcement with chlorhexidine digluconate result in reduction in the number of adherent yeast cells on the surface FRC material.

  15. Serotype, hemolysin production, and adherence characteristics of strains of Escherichia coli causing urinary tract infection in dogs.

    PubMed

    Senior, D F; deMan, P; Svanborg, C

    1992-04-01

    Virulence factors were studied in 82 strains of Escherichia coli isolated from the urine of dogs with urinary tract infections. The most frequently expressed O antigens were 2, 4, 6, 25, and 22/83. Most strains were K nontypeable. Mannose-sensitive hemagglutination (MSH) with canine erythrocytes was observed in 71 strains and mannose-resistant hemagglutination (MRH) was observed in 32 strains. Strains that caused MSH of erythrocytes from dogs also caused MSH of erythrocytes from guinea pigs. Most strains that caused MRH of human A1P1 erythrocytes also reacted with erythrocytes of dogs. Of 22 strains (27%) that agglutinated human A1P1 erythrocytes, but not A1p erythrocytes, 17 (77%) had specificity for globo A, but did not react with the galactose alpha 1----4galactose beta disaccharide receptor. The remaining 5 strains and 2 others that simultaneously expressed an X adhesin agglutinated galactose alpha 1----4galactose beta-coated latex beads. Bacterial adherence to canine uroepithelial cells from the bladder was most often observed in strains expressing MSH, less often observed in strains expressing MRH, and least often observed in strains that failed to induce hemagglutination. Adherence of MSH strains to canine uroepithelial cells was inhibited by alpha-methyl-D-mannoside. As a group, MRH strains expressing globo-A- and galactose alpha 1----4galactose beta-specific adhesins did not have strong adherence. Strains of E coli isolated from dogs with urinary tract infections most commonly expressed type-1 fimbriae, and the main mechanism of in vitro adherence to canine uroepithelial cells involved a mannose-sensitive mechanism. Overrepresentation of globo-A-specific adhesins did not appear to be related to adherence of canine uroepithelial cells.

  16. [Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].

    PubMed

    Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan

    2004-09-02

    To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.

  17. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    PubMed Central

    Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk

    2014-01-01

    Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265

  18. Recognising and Managing Refractory Coeliac Disease: A Tertiary Centre Experience.

    PubMed

    Nasr, Ikram; Nasr, Iman; Beyers, Carl; Chang, Fuju; Donnelly, Suzanne; Ciclitira, Paul J

    2015-12-01

    Refractory coeliac disease (RCD) is a rare complication of coeliac disease (CD) and involves malabsorption and villous atrophy despite adherence to a strict gluten-free diet (GFD) for at least 12 months in the absence of another cause. RCD is classified based on the T-cells in the intra-epithelial lymphocyte (IEL) morphology into type 1 with normal IEL and type 2 with aberrant IEL (clonal) by PCR (polymerase chain reaction) for T cell receptors (TCR) at the β/γ loci. RCD type 1 is managed with strict nutritional and pharmacological management. RCD type 2 can be complicated by ulcerative jejunitis or enteropathy associated lymphoma (EATL), the latter having a five-year mortality of 50%. Management options for RCD type 2 and response to treatment differs across centres and there have been debates over the best treatment option. Treatment options that have been used include azathioprine and steroids, methotrexate, cyclosporine, campath (an anti CD-52 monoclonal antibody), and cladribine or fluadribine with or without autologous stem cell transplantation. We present a tertiary centre's experience in the treatment of RCD type 2 where treatment with prednisolone and azathioprine was used, and our results show good response with histological recovery in 56.6% of treated individuals.

  19. Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics.

    PubMed

    Deak, Eszter; Wilson, Selwyn D; White, Elizabeth; Carr, Janice H; Balajee, S Arunmozhi

    2009-10-30

    Infection with Aspergillus terreus is more likely to result in invasive, disseminated disease when compared to other Aspergillus species; importantly this species appears to be less susceptible to the antifungal drug amphotericin B. Unique to this species is the ability to produce specialized structures denoted as accessory conidia (AC) directly on hyphae both in vitro and in vivo. With the hypothesis that production of AC by A. terreus may enhance virulence of this organism, we analyzed the phenotype, structure and metabolic potential of these conidia. Comparison of A. terreus phialidic conidia (conidia that arise from conidiophores, PC) and AC architecture by electron microscopy revealed distinct morphological differences between the two conidial forms; AC have a smoother, thicker outer cell surface with no apparent pigment-like layer. Further, AC germinated rapidly, had enhanced adherence to microspheres, and were metabolically more active compared to PC. Additionally, AC contained less cell membrane ergosterol, which correlated with decreased susceptibility to AMB as determined using a flow cytometry based analysis. Furthermore, AC exhibited surface patches of beta1-3 glucan, suggestive of attachment scarring. Collectively, the findings of this study suggest a possible role for AC in A. terreus pathogenesis.

  20. Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans

    PubMed Central

    Ito, Tatsuro; Ichinosawa, Takahiro; Shimizu, Takehiko

    2017-01-01

    Streptococcus mutans, the major causative agent of dental caries, adheres to tooth surfaces via the host salivary glycoprotein-340 (gp340). This adherence can be competitively inhibited by peptides derived from the SspA/B adhesins of Streptococcus gordonii, a human commensal microbe that competes for the same binding sites. Ssp(A4K-A11K), a double-lysine substituted SspA/B peptide analogue, has been shown to exhibit superior in vitro binding affinity for a gp340-derived peptide (SRCRP2), suggesting that Ssp(A4K-A11K) may be of clinical interest. In the present work, we tested the inhibitory effects of Ssp(A4K-A11K) on adherence and biofilm formation of S. mutans by reconstructing an artificial oral environment using saliva-coated polystyrene plates and hydroxyapatite disks. Bacterial adherence (adherence period: 1 h) was assessed by an enzyme-linked immunosorbent assay using biotinylated bacterial cells. Biofilm formation (periods: 8, 11, or 14 h) was assessed by staining and imaging of the sessile cells, or by recovering biofilm cells and plating for cell counts. The pH values of the culture media were measured as a biofilm acidogenicity indicator. Bactericidality was measured by loss of optical density during culturing in the presence of the peptide. We observed that 650 μM Ssp(A4K-A11K) significantly inhibited adherence of S. mutans to saliva-coated polystyrene; a similar effect was seen on bacterial affinity for SRCRP2. Ssp(A4K-A11K) had lesser effects on the adherence of commensal streptococci. Pretreatment of polystyrene and hydroxyapatite with 650 μM Ssp(A4K-A11K) significantly attenuated biofilm formation, whether tested with glucose- or sucrose-containing media. The SspA/B peptide’s activity did not reflect bactericidality. Strikingly, pH in Ssp-treated 8-h (6.8 ± 0.06) and 11-h (5.5 ± 0.06) biofilms showed higher values than the critical pH. Thus, Ssp(A4K-A11K) acts by inhibiting bacterial adherence and cariogrnic biofilm formation. We further consider these results in the context of the safety, specificity, and stability properties of the Ssp(A4K-A11K) peptide. PMID:28394940

  1. Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials

    PubMed Central

    Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R.; Zenke, Martin; Neuss, Sabine

    2013-01-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer® LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level. PMID:23234562

  2. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials.

    PubMed

    Hoss, Mareike; Šarić, Tomo; Denecke, Bernd; Peinkofer, Gabriel; Bovi, Manfred; Groll, Jürgen; Ko, Kinarm; Salber, Jochen; Halbach, Marcel; Schöler, Hans R; Zenke, Martin; Neuss, Sabine

    2013-05-01

    Stem cells with broad differentiation potential, such as the recently described germline-derived pluripotent stem cells (gPS cells), are an appealing source for tissue engineering strategies. Biomaterials can inhibit, support, or induce proliferation and differentiation of stem cells. Here we identified (1) polymers that maintain self-renewal and differentiation potential of gPS cells for feeder-free expansion and (2) polymers supporting the cardiomyogenic fate of gPS cells by analyzing a panel of polymers of an established biomaterial bank previously used to assess growth of diverse stem cell types. Identification of cytocompatible gPS cell/biomaterial combinations required analysis of several parameters, including morphology, viability, cytotoxicity, apoptosis, proliferation, and differentiation potential. Pluripotency of gPS cells was visualized by the endogenous Oct4-promoter-driven GFP and by Sox2 and Nanog immunofluorescence. Viability assay, proliferation assay, and flow cytometry showed that gPS cells efficiently adhere and are viable on synthetic polymers, such as Resomer(®) LR704 (poly(L-lactic-D,L-lactic acid), poly(tetrafluor ethylene) (PTFE), poly(vinylidene fluoride) (PVDF), and on gelatine-coated tissue culture polystyrene. Expansion experiments showed that Resomer LR704 is an alternative substrate for feeder-free gPS cell maintenance. Resomer LR704, PTFE, and PVDF were found to be suitable for gPS cell differentiation. Spontaneous beating in embryoid bodies cultured on Resomer LR704 occurred already on day 8 of differentiation, much earlier compared to the other surfaces. This indicates that Resomer LR704 supports spontaneous cardiomyogenic differentiation of gPS cells, which was also confirmed on molecular, protein and functional level.

  3. Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal

    PubMed Central

    Anderson, Jeneva K.; Huang, Julie Y.; Wreden, Christopher; Sweeney, Emily Goers; Goers, John; Remington, S. James

    2015-01-01

    ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxSOP) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. PMID:26152582

  4. Keratinocyte Motility Is Affected by UVA Radiation-A Comparison between Normal and Dysplastic Cells.

    PubMed

    Niculiţe, Cristina M; Nechifor, Marina T; Urs, Andreea O; Olariu, Laura; Ceafalan, Laura C; Leabu, Mircea

    2018-06-07

    UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT) and dysplastic (DOK) keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells' ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.

  5. Morphology manipulation of M13 bacteriophage template for nanostructure assembly

    NASA Astrophysics Data System (ADS)

    Ngo-Duc, Tam-Triet; Zaman, Mohammed S.; Moon, Chung-Hee; Haberer, Elaine D.

    2014-08-01

    A gold-binding M13 bacteriophage was used as a model system to explore templating of inorganic material on geometrically transformed viruses . Gold-binding filamentous phage were converted to spheroid form with a short chloroform treatment, and the resulting morphology was investigated with electron microscopy. Binding studies revealed that spheroid-shaped gold-binding phage preserved its affinity for gold. Spheroids adhered to a planar substrate assembled clusters or rings of gold nanoparticles. This gold-binding phage served as a demonstration of a highly shape-modifiable viral-template for inorganic materials.

  6. Adherence to Antiretroviral Therapy (ART) in Yaoundé-Cameroon: Association with Opportunistic Infections, Depression, ART Regimen and Side Effects

    PubMed Central

    Fonsah, Julius Y.; Njamnshi, Alfred K.; Kouanfack, Charles; Qiu, Fang; Njamnshi, Dora M.; Tagny, Claude T.; Nchindap, Emilienne; Kenmogne, Léopoldine; Mbanya, Dora; Heaton, Robert; Kanmogne, Georgette D.

    2017-01-01

    Following global efforts to increase antiretroviral therapy (ART) access in Sub-Saharan Africa, ART coverage among HIV-infected Cameroonians increased from 0% in 2003 to 22% in 2014. However, the success of current HIV treatment programs depends not only on access to ART, but also on retention in care and good treatment adherence. This is necessary to achieve viral suppression, prevent virologic failure, and reduce viral transmission and HIV/AIDS-related deaths. Previous studies in Cameroon showed poor adherence, treatment interruption, and loss to follow-up among HIV+ subjects on ART, but the factors that influence ART adherence are not well known. In the current cross-sectional study, patient/self-reported questionnaires and pharmacy medication refill data were used to quantify ART adherence and determine the factors associated with increased risk of non-adherence among HIV-infected Cameroonians. We demonstrated that drug side-effects, low CD4 cell counts and higher viral loads are associated with increased risk of non-adherence, and compared to females, males were more likely to forego ART because of side effects (p<0.05). Univariate logistic regression analysis demonstrated that subjects with opportunistic infections (on antibiotics) had 2.42-times higher odds of having been non-adherent (p<0.001). Multivariable analysis controlling for ART regimen, age, gender, and education showed that subjects with opportunistic infections had 3.1-times higher odds of having been non-adherent (p<0.0003), with significantly longer periods of non-adherence, compared to subjects without opportunistic infections (p = 0.02). We further showed that compared to younger subjects (≤40 years), older subjects (>40 years) were less likely to be non-adherent (p<0.01) and had shorter non-adherent periods (p<0.0001). The presence of depression symptoms correlated with non-adherence to ART during antibiotic treatment (r = 0.53, p = 0.04), and was associated with lower CD4 cell counts (p = 0.04) and longer non-adherent periods (p = 0.04). Change in ART regimen was significantly associated with increased likelihood of non-adherence and increased duration of the non-adherence period. Addressing these underlying risk factors could improve ART adherence, retention in care and treatment outcomes for HIV/AIDS patients in Cameroon. PMID:28141867

  7. Cell Migration in 1D and 2D Nanofiber Microenvironments.

    PubMed

    Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J

    2018-03-01

    Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.

  8. From honeycomb- to microsphere-patterned surfaces of poly(lactic acid) and a starch-poly(lactic acid) blend via the breath figure method.

    PubMed

    Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio

    2017-01-26

    This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.

  9. Exercise Intervention: Attrition, Compliance, Adherence, and Progression Following Hematopoietic Stem Cell Transplantation
.

    PubMed

    Peters, Tara; Erdmann, Ruby; Hacker, Eileen Danaher

    2018-02-01

    Exercise is widely touted as an effective intervention to optimize health and well-being after high-dose chemotherapy and hematopoietic stem cell transplantation. 
. This article reports attrition, compliance, adherence, and progression from the strength training arm of the single-blind randomized, controlled trial Strength Training to Enhance Early Recovery (STEER). 
. 37 patients were randomized to the intervention and participated in a structured strength training program introduced during hospitalization and continued for six weeks after release. Research staff and patients maintained exercise logs to document compliance, adherence, and progression. 
. No patients left the study because of burden. Patients were compliant with completion of exercise sessions, and their adherence was high; they also progressed on their exercise prescription. Because STEER balances intervention effectiveness with patient burden, the findings support the likelihood of successful translation into clinical practice.

  10. Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae.

    PubMed

    Kaur, Ravinder; Surendran, Naveen; Ochs, Martina; Pichichero, Michael E

    2014-12-01

    Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Effects of kefir fractions on innate immunity.

    PubMed

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  12. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow.

    PubMed Central

    Tempelman, L A; Hammer, D A

    1994-01-01

    The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 8 FIGURE 10 PMID:8038394

  13. STANDARDIZATION OF A FLUORESCENT-BASED QUANTITATIVE ADHESION ASSAY TO STUDY ATTACHMENT OF Taenia solium ONCOSPHERE TO EPITHELIAL CELLS In Vitro

    PubMed Central

    Chile, Nancy; Evangelista, Julio; Gilman, Robert H.; Arana, Yanina; Palma, Sandra; Sterling, Charles R; Garcia, Hector H.; Gonzalez, Armando; Verastegui, Manuela

    2012-01-01

    To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment. PMID:22178422

  14. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    PubMed

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bacillus Anthracis Spores of the bclA Mutant Exhibit Increased Adherence to Epithelial Cells, Fibroblasts, and Endothelial Cells but not to Macrophages

    DTIC Science & Technology

    2007-09-01

    immunofluorescence (IFM) and light microscopy. Samples were fixed in forma- lin, stained with immunofluorescent dyes (as described below) or spore stain ( malachite ...BEC. Adherence was assessed by microscopic observation of the infected cells stained with malachite green and counterstaining of the BEC. For enzymatic...this significant difference, BEC infected with spores were stained with malachite green and counter- stained with Wright-Giemsa (Fig. 1B and C). This

  16. Isolation and characterization of progenitor cells from surgically created - early healing alveolar defects in humans. A preliminary study.

    PubMed

    Sant'Ana, Adriana Campos Passanezi; Damante, Carla Andreotti; Martinez, Maria Alejandra Frias; Valdivia, Maria Alejandra Medina; Karam, Paula Stefânia Hage; de Oliveira, Flavia Amadeu; de Oliveira, Rodrigo Cardoso; Gasparoto, Thais Helena; Campanelli, Ana Paula; Zangrando, Mariana Schutzer Ragghianti; de Rezende, Maria Lúcia Rubo; Greghi, Sebastião Luiz Aguiar; Passanezi, Euloir

    2018-05-30

    The granulation tissue (GT) present in surgically-created early healing sockets has been considered as a possible source of osteoprogenitor cells for periodontal regeneration, as demonstrated in animal studies. However, the in vitro osteogenic properties of tissue removed from human surgically-created early healing alveolar defects (SC-EHAD) remains to be established, being that the aim of this study. Surgical defects were created in the edentulous ridge of two systemically healthy adults. The healing tissue present in these defects was removed 21 days later for the establishment of primary culture. The in vitro characteristics of the cultured cells were determined by Armelin method, MTT assay, immunohistochemistry, alkaline phosphatase (ALP) activity, mineralization assay and flow cytometry for detection of stem cells/osteoprogenitor cell markers. Cells were able to adhere to the plastic and assumed spindle-shaped morphology at earlier passages, changing to a cuboidal one with increasing passages. Differences in the proliferation rate were observed with increasing passages, suggesting osteogenic differentiation. ALP and mineralization activities were detected in conventional and osteogenic medium. Fresh samples of SC-EHAD tissue exhibited CD34 - and CD45 - phenotypes. Cells at later passages (14 th ) exhibited CD34 - , CD45 - , CD105 - , CD166 - and collagen type I + phenotype. Tissue removed from SC-EHAD is a possible source of progenitor cells. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.

  17. Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells

    NASA Astrophysics Data System (ADS)

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan

    2011-03-01

    Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.

  18. Saliva and dental plaque.

    PubMed

    Rudney, J D

    2000-12-01

    Dental plaque is being redefined as oral biofilm. Diverse overlapping microbial consortia are present on all oral tissues. Biofilms are structured, displaying features like channels and projections. Constituent species switch back and forth between sessile and planktonic phases. Saliva is the medium for planktonic suspension. Several major functions can be defined for saliva in relation to oral biofilm. It serves as a medium for transporting planktonic bacteria within and between mouths. Bacteria in transit may be vulnerable to negative selection. Salivary agglutinins may prevent reattachment to surfaces. Killing by antimicrobial proteins may lead to attachment of dead cells. Salivary proteins form conditioning films on all oral surfaces. This contributes to positive selection for microbial adherence. Saliva carries chemical messengers which allow live adherent cells to sense a critical density of conspecifics. Growth begins, and thick biofilms may become resistant to antimicrobial substances. Salivary macromolecules may be catabolized, but salivary flow also may clear dietary substrates. Salivary proteins act in ways that benefit both host and microbe. All have multiple functions, and many do the same job. They form heterotypic complexes, which may exist in large micelle-like structures. These issues make it useful to compare subjects whose saliva functions differently. We have developed a simultaneous assay for aggregation, killing, live adherence, and dead adherence of oral species. Screening of 149 subjects has defined high killing/low adherence, low killing/high adherence, high killing/high adherence, and low killing/low adherence groups. These will be evaluated for differences in their flora.

  19. Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces

    PubMed Central

    Cabeça, Tatiane Karen; Pizzolitto, Antonio Carlos; Pizzolitto, Elisabeth Loshchagin

    2012-01-01

    The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite). Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells. PMID:24031935

  20. Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis.

    PubMed

    Zangle, Thomas A; Teitell, Michael A; Reed, Jason

    2014-01-01

    The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning.

Top