Science.gov

Sample records for adherens junction aj

  1. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension

    PubMed Central

    Lee, Natalie K.; Fok, Ka Wai; White, Amanda; Wilson, Nicole H.; O'Leary, Conor J.; Cox, Hayley L.; Michael, Magdalene; Yap, Alpha S.; Cooper, Helen M.

    2016-01-01

    To maintain tissue integrity during epithelial morphogenesis, adherens junctions (AJs) must resist the mechanical stresses exerted by dynamic tissue movements. Junctional stability is dependent on actomyosin contractility within the actin ring. Here we describe a novel function for the axon guidance receptor, Neogenin, as a key component of the actin nucleation machinery governing junctional stability. Loss of Neogenin perturbs AJs and attenuates junctional tension. Neogenin promotes actin nucleation at AJs by recruiting the Wave regulatory complex (WRC) and Arp2/3. A direct interaction between the Neogenin WIRS domain and the WRC is crucial for the spatially restricted recruitment of the WRC to the junction. Thus, we provide the first example of a functional WIRS–WRC interaction in epithelia. We further show that Neogenin regulates cadherin recycling at the AJ. In summary, we identify Neogenin as a pivotal component of the AJ, where it influences both cadherin dynamics and junctional tension. PMID:27029596

  2. An introduction to adherens junctions: from molecular mechanisms to tissue development and disease.

    PubMed

    Harris, Tony J C

    2012-01-01

    Adherens junctions (AJs) are fundamental for the development of animal tissues and organs. The core complex is formed from transmembrane cell-cell adhesion molecules, cadherins, and adaptor molecules, the catenins, that link to cytoskeletal and regulatory networks within the cell. This complex can be considered over a wide range of biological organization, from atoms to molecules, protein complexes, molecular networks, cells, tissues, and overall animal development. AJs have also been an integral part of animal evolution, and play central roles in cancer development and pathogen infection. This book addresses major questions encompassing these aspects of AJ biology. How did AJs evolve? How do the cadherins and catenins interact to assemble AJs and mediate adhesion? How do AJs interface with other cellular machinery to couple adhesion with the whole cell? How do AJs affect cell behaviour and multicellular development? How can abnormal AJ activity lead to disease?

  3. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  4. E–N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells

    PubMed Central

    Straub, Beate K.; Rickelt, Steffen; Zimbelmann, Ralf; Grund, Christine; Kuhn, Caecilia; Iken, Marcus; Ott, Michael; Schirmacher, Peter

    2011-01-01

    Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this “cadherin switch” hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E–N heterodimers. We also show that cells possessing E–N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin–based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered. PMID:22105347

  5. Adherens junctions determine the apical position of the midbody during follicular epithelial cell division.

    PubMed

    Morais-de-Sá, Eurico; Sunkel, Claudio

    2013-08-01

    Cytokinesis is asymmetric along the apical-basal axis of epithelial cells, positioning the midbody near the apical domain. However, little is known about the mechanism and purpose of this asymmetry. We use live imaging of Drosophila follicle cell division to show that asymmetric cytokinesis does not result from intrinsic polarization of the main contractile ring components. We show that adherens junctions (AJs) maintain close contact with the apical side of the contractile ring during cytokinesis. Asymmetric distribution of AJ components within follicle cells and in the otherwise unpolarized S2 cells is sufficient to recruit the midbody, revealing that asymmetric cytokinesis is determined by apical AJs in the epithelia. We further show that ectopic midbody localization induces epithelial invaginations, shifting the position of the apical interface between daughter cells relative to the AB axis of the tissue. Thus, apical midbody localization is essential to maintain epithelial tissue architecture during proliferation.

  6. Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue.

    PubMed

    Herszterg, Sophie; Leibfried, Andrea; Bosveld, Floris; Martin, Charlotte; Bellaiche, Yohanns

    2013-02-11

    How adherens junctions (AJs) are formed upon cell division is largely unexplored. Here, we found that AJ formation is coordinated with cytokinesis and relies on an interplay between the dividing cell and its neighbors. During contraction of the cytokinetic ring, the neighboring cells locally accumulate Myosin II and produce the cortical tension necessary to set the initial geometry of the daughter cell interface. However, the neighboring cell membranes impede AJ formation. Upon midbody formation and concomitantly to neighboring cell withdrawal, Arp2/3-dependent actin polymerization oriented by the midbody maintains AJ geometry and regulates AJ final length and the epithelial cell arrangement upon division. We propose that cytokinesis in epithelia is a multicellular process, whereby the cooperative actions of the dividing cell and its neighbors define a two-tiered mechanism that spatially and temporally controls AJ formation while maintaining tissue cohesiveness.

  7. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules.

    PubMed

    Yang, Chih-Chao; Graves, Hillary K; Moya, Ivan M; Tao, Chunyao; Hamaratoglu, Fisun; Gladden, Andrew B; Halder, Georg

    2015-02-10

    Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

  8. Defects in the adherens junction complex (E-cadherin/ β-catenin) in inflammatory bowel disease.

    PubMed

    Mehta, Shameer; Nijhuis, Anke; Kumagai, Tomoko; Lindsay, James; Silver, Andrew

    2015-06-01

    The epithelial monolayer of the intestine is a selective barrier permitting nutrient and electrolyte absorption yet acting to protect the underlying tissue compartments and cellular components from attack and infiltration by antigens, bacteria and bacterial products present in the lumen. Disruption of this barrier has been associated with inflammatory bowel disease (IBD). The adherens junction (AJ), together with tight junctions (TJ) and desmosomes, form an apical junction complex that controls epithelial cell-to-cell adherence and barrier function as well as regulation of the actin cytoskeleton, intracellular signalling pathways and transcriptional regulation. Numerous studies and reviews highlight the responses of TJs to physiological and pathological stimuli. By comparison, the response of AJ proteins, and the subsequent consequences for barrier function, when exposed to the IBD inflammatory milieu, is less well studied. In this review, we will highlight the roles and responses of the AJ proteins in IBD and provide suggestions for future studies. We will also consider recently proposed therapeutic strategies to preserve or restore epithelial barrier functions to prevent and treat IBD.

  9. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells.

    PubMed

    Yamada, Tomohiro; Kuramitsu, Kaori; Rikitsu, Etsuko; Kurita, Souichi; Ikeda, Wataru; Takai, Yoshimi

    2013-11-01

    Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.

  10. Adherens junction remodeling by the Notch pathway in Drosophila melanogaster oogenesis.

    PubMed

    Grammont, Muriel

    2007-04-09

    Identifying genes involved in the control of adherens junction (AJ) remodeling is essential to understanding epithelial morphogenesis. During follicular epithelium development in Drosophila melanogaster, the main body follicular cells (MBFCs) are displaced toward the oocyte and become columnar. Concomitantly, the stretched cells (StCs) become squamous and flatten around the nurse cells. By monitoring the expression of epithelial cadherin and Armadillo, I have discovered that the rate of AJ disassembly between the StCs is affected in follicles with somatic clones mutant for fringe or Delta and Serrate. This results in abnormal StC flattening and delayed MBFC displacement. Additionally, accumulation of the myosin II heavy chain Zipper is delayed at the AJs that require disassembly. Together, my results demonstrate that the Notch pathway controls AJ remodeling between the StCs and that this role is crucial for the timing of MBFC displacement and StC flattening. This provides new evidence that Notch, besides playing a key role in cell differentiation, also controls cell morphogenesis.

  11. The adherens junction is lost during normal pregnancy but not during ovarian hyperstimulated pregnancy.

    PubMed

    Dowland, Samson N; Madawala, Romanthi J; Lindsay, Laura A; Murphy, Christopher R

    2016-03-01

    During early pregnancy in the rat, the luminal uterine epithelial cells (UECs) must transform to a receptive state to permit blastocyst attachment and implantation. The implantation process involves penetration of the epithelial barrier, so it is expected that the transformation of UECs includes alterations in the lateral junctional complex. Previous studies have demonstrated a deepening of the tight junction (zonula occludens) and a reduction in the number of desmosomes (macula adherens) in UECs at the time of implantation. However, the adherens junction (zonula adherens), which is primarily responsible for cell-cell adhesion, has been little studied during early pregnancy. This study investigated the adherens junction in rat UECs during the early stages of normal pregnancy and ovarian hyperstimulated (OH) pregnancy using transmission electron microscopy. The adherens junction is present in UECs at the time of fertilisation, but is lost at the time of blastocyst implantation during normal pregnancy. Interestingly, at the time of implantation after OH, adherens junctions are retained and may impede blastocyst penetration of the epithelium. The adherens junction anchors the actin-based terminal web, which is known to be disrupted in UECs during early pregnancy. However, artificial disruption of the terminal web, using cytochalasin D, did not cause removal of the adherens junction in UECs. This study revealed that adherens junction disassembly occurs during early pregnancy, but that this process does not occur during OH pregnancy. Such disassembly does not appear to depend on the disruption of the terminal web.

  12. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    PubMed Central

    Shahbazi, Marta N.; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G.; Fuchs, Elaine

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end–binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell–cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell–cell adhesion in epidermal stem cells. PMID:24368809

  13. Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes

    SciTech Connect

    Bajenova, Olga; Chaika, Nina; Tolkunova, Elena; Davydov-Sinitsyn, Alexander; Gapon, Svetlana; Thomas, Peter; O’Brien, Stephen

    2014-06-10

    Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA and beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.

  14. Rab35 regulates cadherin-mediated adherens junction formation and myoblast fusion

    PubMed Central

    Charrasse, Sophie; Comunale, Franck; De Rossi, Sylvain; Echard, Arnaud; Gauthier-Rouvière, Cécile

    2013-01-01

    Cadherins are homophilic cell–cell adhesion molecules implicated in many fundamental processes, such as morphogenesis, cell growth, and differentiation. They accumulate at cell–cell contact sites and assemble into large macromolecular complexes named adherens junctions (AJs). Cadherin targeting and function are regulated by various cellular processes, many players of which remain to be uncovered. Here we identify the small GTPase Rab35 as a new regulator of cadherin trafficking and stabilization at cell–cell contacts in C2C12 myoblasts and HeLa cells. We find that Rab35 accumulates at cell–cell contacts in a cadherin-dependent manner. Knockdown of Rab35 or expression of a dominant-negative form of Rab35 impaired N- and M-cadherin recruitment to cell–cell contacts, their stabilization at the plasma membrane, and association with p120 catenin and led to their accumulation in transferrin-, clathrin-, and AP-2–positive intracellular vesicles. We also find that Rab35 function is required for PIP5KIγ accumulation at cell–cell contacts and phosphatidyl inositol 4,5-bisphosphate production, which is involved in cadherin stabilization at contact sites. Finally, we show that Rab35 regulates myoblast fusion, a major cellular process under the control of cadherin-dependent signaling. Taken together, these results reveal that Rab35 regulates cadherin-dependent AJ formation and myoblast fusion. PMID:23197472

  15. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain.

    PubMed

    Yamamoto, Hideaki; Maruo, Tomohiko; Majima, Takashi; Ishizaki, Hiroyoshi; Tanaka-Okamoto, Miki; Miyoshi, Jun; Mandai, Kenji; Takai, Yoshimi

    2013-01-01

    Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell-cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell-cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.

  16. Myosin-dependent remodeling of adherens junctions protects junctions from Snail-dependent disassembly

    PubMed Central

    Weng, Mo

    2016-01-01

    Although Snail is essential for disassembly of adherens junctions during epithelial–mesenchymal transitions (EMTs), loss of adherens junctions in Drosophila melanogaster gastrula is delayed until mesoderm is internalized, despite the early expression of Snail in that primordium. By combining live imaging and quantitative image analysis, we track the behavior of E-cadherin–rich junction clusters, demonstrating that in the early stages of gastrulation most subapical clusters in mesoderm not only persist, but move apically and enhance in density and total intensity. All three phenomena depend on myosin II and are temporally correlated with the pulses of actomyosin accumulation that drive initial cell shape changes during gastrulation. When contractile myosin is absent, the normal Snail expression in mesoderm, or ectopic Snail expression in ectoderm, is sufficient to drive early disassembly of junctions. In both cases, junctional disassembly can be blocked by simultaneous induction of myosin contractility. Our findings provide in vivo evidence for mechanosensitivity of cell–cell junctions and imply that myosin-mediated tension can prevent Snail-driven EMT. PMID:26754645

  17. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.

    PubMed

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Loredo, María L; Barrera-Oviedo, Diana; Pinzón, Enrique; Rodríguez-Rangel, Daniela Saraí; Pedraza-Chaverri, José

    2016-01-01

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity.

  18. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions

    PubMed Central

    1996-01-01

    Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE

  19. Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis.

    PubMed

    Pérez, C; Sobarzo, C; Jacobo, P; Jarazo Dietrich, S; Theas, M; Denduchis, B; Lustig, L

    2011-12-01

    Experimental autoimmune orchitis (EAO) is characterized by an interstitial lymphomononuclear cell infiltration and a severe lesion of seminiferous tubules (ST) with germ cells that undergo apoptosis and sloughing. The aim of this study was to analyse the expression and localization of adherens junction (AJ) proteins: N-cadherin, α-, β- and p120 catenins and gap junction protein, connexin 43 (Cx43), to explore some aspects of germ-cell sloughing during the development of orchitis. EAO was induced in Sprague-Dawley adult rats by active immunization with testicular homogenate and adjuvants. Control rats (C) were injected with saline solution and adjuvants. Concomitant with early signs of germ-cell sloughing, we observed by immunofluorescence and Western blot, a delocalization and a significant increase in N-cadherin and α-catenin expression in the ST of EAO compared with C rats. In spite of this increased AJ protein expression, a severe germ-cell sloughing occurred. This is probably due to the impairment of the AJ complex function, as shown by the loss of N-cadherin/β-catenin colocalization (confocal microscopy) and increased pY654 β-catenin expression, suggesting lower affinity of these two proteins and increased pERK1/2 expression in the testis of EAO rats. The significant decrease in Cx43 expression detected in EAO rats suggests a gap junction function impairment also contributing to germ-cell sloughing.

  20. Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche.

    PubMed

    Michel, Marcus; Raabe, Isabel; Kupinski, Adam P; Pérez-Palencia, Raquel; Bökel, Christian

    2011-08-02

    According to the stem cell niche synapse hypothesis postulated for the mammalian haematopoietic system, spatial specificity of niche signals is maximized by subcellularly restricting signalling to cadherin-based adherens junctions between individual niche and stem cells. However, such a synapse has never been observed directly, in part, because tools to detect active growth factor receptors with subcellular resolution were not available. Here we describe a novel fluorescence-based reporter that directly visualizes bone morphogenetic protein (BMP) receptor activation and show that in the Drosophila testis a BMP niche signal is transmitted preferentially at adherens junctions between hub and germline stem cells, resembling the proposed synapse organization. Ligand secretion involves the exocyst complex and the Rap activator Gef26, both of which are also required for Cadherin trafficking towards adherens junctions. We, therefore, propose that local generation of the BMP signal is achieved through shared use of the Cadherin transport machinery.

  1. The Extracellular Architecture of Adherens Junctions Revealed by Crystal Structures of Type I Cadherins

    SciTech Connect

    O Harrison; X Jin; S Hong; F Bahna; G Ahlsen; J Brasch; Y Wu; J Vendome; K Felsovalyi; et al.

    2011-12-31

    Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in a previous C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.

  2. Structure of artificial and natural VE-cadherin-based adherens junctions.

    PubMed

    Taveau, Jean-Christophe; Dubois, Mathilde; Le Bihan, Olivier; Trépout, Sylvain; Almagro, Sébastien; Hewat, Elizabeth; Durmort, Claire; Heyraud, Stéphanie; Gulino-Debrac, Danielle; Lambert, Olivier

    2008-04-01

    In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Although, from structural crystallographic data, a dimeric structure arranged in a trans orientation has emerged as a potential mechanism of cell-cell adhesion, the cadherin organization within adherens junctions remains controversial. Concerning VE-cadherin, its extracellular part possesses the capacity to self-associate in solution as hexamers consisting of three antiparallel cadherin dimers. VE-cadherin-based adherens junctions were reconstituted in vitro by assembly of a VE-cadherin EC (extracellular repeat) 1-EC4 hexamer at the surfaces of liposomes. The artificial adherens junctions revealed by cryoelectron microscopy appear as a two-dimensional self-assembly of hexameric structures. This cadherin organization is reminiscent of that found in native desmosomal junctions. Further structural studies performed on native VE-cadherin junctions would provide a better understanding of the cadherin organization within adherens junctions. Homophilic interactions between cadherins are strengthened intracellularly by connection to the actin cytoskeleton. Recently, we have discovered that annexin 2, an actin-binding protein connects the VE-cadherin-catenin complex to the actin cytoskeleton. This novel link is labile and promotes the endothelial cell switch from a quiescent to an angiogenic state.

  3. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation

    PubMed Central

    Li, Jiebin; Li, Chunsheng; Yuan, Wei; Wu, Junyuan; Li, Jie; Li, Zhenhua; Zhao, Yongzhen

    2017-01-01

    Mild hypothermia improves survival and neurological recovery after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). However, the mechanism underlying this phenomenon is not fully elucidated. The aim of this study was to determine whether mild hypothermia alleviates early blood–brain barrier (BBB) disruption. We investigated the effects of mild hypothermia on neurologic outcome, survival rate, brain water content, BBB permeability and changes in tight junctions (TJs) and adherens junctions (AJs) after CA and CPR. Pigs were subjected to 8 min of untreated ventricular fibrillation followed by CPR. Mild hypothermia (33°C) was intravascularly induced and maintained at this temperature for 12 h, followed by active rewarming. Mild hypothermia significantly reduced cortical water content, decreased BBB permeability and attenuated TJ ultrastructural and basement membrane breakdown in brain cortical microvessels. Mild hypothermia also attenuated the CPR-induced decreases in TJ (occludin, claudin-5, ZO-1) and AJ (VE-cadherin) protein and mRNA expression. Furthermore, mild hypothermia decreased the CA- and CPR-induced increases in matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression and increased angiogenin-1 (Ang-1) expression. Our findings suggest that mild hypothermia attenuates the CA- and resuscitation-induced early brain oedema and BBB disruption, and this improvement might be at least partially associated with attenuation of the breakdown of TJ and AJ, suppression of MMP-9 and VEGF expression, and upregulation of Ang-1 expression. PMID:28355299

  4. The Interaction of JRAB/MICAL-L2 with Rab8 and Rab13 Coordinates the Assembly of Tight Junctions and Adherens Junctions

    PubMed Central

    Yamamura, Rie; Nishimura, Noriyuki; Nakatsuji, Hiroyoshi; Arase, Seiji

    2008-01-01

    The assembly of tight junctions (TJs) and adherens junctions (AJs) is regulated by the transport of integral TJ and AJ proteins to and/or from the plasma membrane (PM) and it is tightly coordinated in epithelial cells. We previously reported that Rab13 and a junctional Rab13-binding protein (JRAB)/molecule interacting with CasL-like 2 (MICAL-L2) mediated the endocytic recycling of an integral TJ protein occludin and the formation of functional TJs. Here, we investigated the role of Rab13 and JRAB/MICAL-L2 in the transport of other integral TJ and AJ proteins claudin-1 and E-cadherin to the PM by using a Ca2+-switch model. Although knockdown of Rab13 specifically suppressed claudin-1 and occludin but not E-cadherin transport, knockdown of JRAB/MICAL-L2 and expression of its Rab13-binding domain (JRAB/MICAL-L2-C) inhibited claudin-1, occludin, and E-cadherin transport. We then identified Rab8 as another JRAB/MICAL-L2-C-binding protein. Knockdown of Rab8 inhibited the Rab13-independent transport of E-cadherin to the PM. Rab8 and Rab13 competed with each other for the binding to JRAB/MICAL-L2 and functionally associated with JRAB/MICAL-L2 at the perinuclear recycling/storage compartments and PM, respectively. These results suggest that the interaction of JRAB/MICAL-L2 with Rab8 and Rab13 coordinates the assembly of AJs and TJs. PMID:18094055

  5. The organization of adherens junctions and desmosomes at the cardiac intercalated disc is independent of gap junctions.

    PubMed

    Gutstein, David E; Liu, Fang-Yu; Meyers, Marian B; Choo, Andrew; Fishman, Glenn I

    2003-03-01

    Adherens junctions and desmosomes are responsible for mechanically coupling myocytes in the heart and are found closely apposed to gap junction plaques at the intercalated discs of cardiomyocytes. It is not known whether loss of cardiac gap junctions, such as described in cardiac disease states, may influence the expression patterns of other intercalated disc-associated proteins. We investigated whether the major cardiac gap junction protein connexin43 (Cx43) may be responsible for regulating adherens junctions, desmosomes and their associated catenins, in terms of abundance and localization at the intercalated discs of cardiomyocytes. In order to study the effect of loss of cardiac gap junctions on the intercalated disc-associated proteins, we used a combination of immunoblotting, immunofluorescence with confocal microscopy and electron microscopy to evaluate heart tissue from mice with cardiac-specific conditional knockout of Cx43. We found that the cardiac adherens junctions, desmosomes and their associated catenins, as well as vinculin and ZO-1, maintain their normal abundance, structural appearance and localization in the absence of Cx43. We conclude from these data that Cx43 is not required for the organization of the cell adhesion junctions and their associated catenins at the intercalated disc in the adult cardiac myocyte.

  6. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.

    PubMed

    Tornavaca, Olga; Chia, Minghao; Dufton, Neil; Almagro, Lourdes Osuna; Conway, Daniel E; Randi, Anna M; Schwartz, Martin A; Matter, Karl; Balda, Maria S

    2015-03-16

    Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.

  7. Nectin-4 mutations causing ectodermal dysplasia with syndactyly perturb the rac1 pathway and the kinetics of adherens junction formation.

    PubMed

    Fortugno, Paola; Josselin, Emmanuelle; Tsiakas, Konstantinos; Agolini, Emanuele; Cestra, Gianluca; Teson, Massimo; Santer, René; Castiglia, Daniele; Novelli, Giuseppe; Dallapiccola, Bruno; Kurth, Ingo; Lopez, Marc; Zambruno, Giovanna; Brancati, Francesco

    2014-08-01

    Defective nectin-1 and -4 have been implicated in ectodermal dysplasia (ED) syndromes with variably associated features including orofacial and limb defects. In particular, nectin-1 mutations cause cleft lip/palate ED (CLPED1; OMIM#225060), whereas defective nectin-4 is associated with ED-syndactyly syndrome (EDSS1; OMIM#613573). Although the broad phenotypic overlap suggests a common mode of action of nectin-1 and -4, little is known about the pathogenic mechanisms involved. We report the identification of, to our knowledge, a previously undescribed nectin-4 homozygous p.Val242Met missense mutation in a patient with EDSS1. We used patient skin biopsy and primary keratinocytes, as well as nectin-4 ectopic expression in epithelial cell lines, to characterize functional consequences of p.Val242Met and p.Thr185Met mutations, the latter previously identified in compound heterozygosity with a truncating mutation. We show that nectin-4-altered expression perturbs nectin-1 clustering at keratinocyte contact sites and delays, but does not impede cell-cell aggregation and cadherin recruitment at adherens junctions (AJs). Moreover, trans-interaction of nectin-1 and -4 induces the activation of Rac1, a member of the Rho family of small GTPases, and regulates E-cadherin-mediated cell-cell adhesion. These data outline a synergistic action of nectin-1 and -4 in the early steps of AJ formation and implicate this interaction in modulating the Rac1 signaling pathway.

  8. Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation

    PubMed Central

    Todorovic´, Viktor; Koetsier, Jennifer L.; Godsel, Lisa M.; Green, Kathleen J.

    2014-01-01

    The pathways driving desmosome and adherens junction assembly are temporally and spatially coordinated, but how they are functionally coupled is poorly understood. Here we show that the Armadillo protein plakophilin 3 (Pkp3) mediates both desmosome assembly and E-cadherin maturation through Rap1 GTPase, thus functioning in a manner distinct from the closely related plakophilin 2 (Pkp2). Whereas Pkp2 and Pkp3 share the ability to mediate the initial phase of desmoplakin (DP) accumulation at sites of cell–cell contact, they play distinct roles in later steps: Pkp3 is required for assembly of a cytoplasmic population of DP-enriched junction precursors, whereas Pkp2 is required for transfer of the precursors to the membrane. Moreover, Pkp3 forms a complex with Rap1 GTPase, promoting its activation and facilitating desmosome assembly. We show further that Pkp3 deficiency causes disruption of an E-cadherin/Rap1 complex required for adherens junction sealing. These findings reveal Pkp3 as a coordinator of desmosome and adherens junction assembly and maturation through its functional association with Rap1. PMID:25208567

  9. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin.

    PubMed

    Popov, Lauren M; Marceau, Caleb D; Starkl, Philipp M; Lumb, Jennifer H; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L; Merakou, Christina; Bouley, Donna M; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E; Amieva, Manuel R

    2015-11-17

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7(-/-) mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections.

  10. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin

    PubMed Central

    Popov, Lauren M.; Marceau, Caleb D.; Starkl, Philipp M.; Lumb, Jennifer H.; Shah, Jimit; Guerrera, Diego; Cooper, Rachel L.; Merakou, Christina; Bouley, Donna M.; Meng, Wenxiang; Kiyonari, Hiroshi; Takeichi, Masatoshi; Galli, Stephen J.; Bagnoli, Fabio; Citi, Sandra; Carette, Jan E.; Amieva, Manuel R.

    2015-01-01

    Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking among the leading causes of skin and soft tissue infections as well as severe pneumonia. The secreted bacterial α-toxin is essential for S. aureus virulence in these epithelial diseases. To discover host cellular factors required for α-toxin cytotoxicity, we conducted a genetic screen using mutagenized haploid human cells. Our screen identified a cytoplasmic member of the adherens junctions, plekstrin-homology domain containing protein 7 (PLEKHA7), as the second most significantly enriched gene after the known α-toxin receptor, a disintegrin and metalloprotease 10 (ADAM10). Here we report a new, unexpected role for PLEKHA7 and several components of cellular adherens junctions in controlling susceptibility to S. aureus α-toxin. We find that despite being injured by α-toxin pore formation, PLEKHA7 knockout cells recover after intoxication. By infecting PLEKHA7−/− mice with methicillin-resistant S. aureus USA300 LAC strain, we demonstrate that this junctional protein controls disease severity in both skin infection and lethal S. aureus pneumonia. Our results suggest that adherens junctions actively control cellular responses to a potent pore-forming bacterial toxin and identify PLEKHA7 as a potential nonessential host target to reduce S. aureus virulence during epithelial infections. PMID:26489655

  11. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein.

    PubMed

    Takahashi, K; Nakanishi, H; Miyahara, M; Mandai, K; Satoh, K; Satoh, A; Nishioka, H; Aoki, J; Nomoto, A; Mizoguchi, A; Takai, Y

    1999-05-03

    We have isolated a novel actin filament-binding protein, named afadin, localized at cadherin-based cell-cell adherens junctions (AJs) in various tissues and cell lines. Afadin has one PDZ domain, three proline-rich regions, and one actin filament-binding domain. We found here that afadin directly interacted with a family of the immunoglobulin superfamily, which was isolated originally as the poliovirus receptor-related protein (PRR) family consisting of PRR1 and -2, and has been identified recently to be the alphaherpes virus receptor. PRR has a COOH-terminal consensus motif to which the PDZ domain of afadin binds. PRR and afadin were colocalized at cadherin-based cell-cell AJs in various tissues and cell lines. In E-cadherin-expressing EL cells, PRR was recruited to cadherin-based cell-cell AJs through interaction with afadin. PRR showed Ca2+-independent cell-cell adhesion activity. These results indicate that PRR is a cell-cell adhesion molecule of the immunoglobulin superfamily which is recruited to cadherin-based cell-cell AJs through interaction with afadin. We rename PRR as nectin (taken from the Latin word "necto" meaning "to connect").

  12. Giardia disrupts the arrangement of tight, adherens and desmosomal junction proteins of intestinal cells.

    PubMed

    Maia-Brigagão, C; Morgado-Díaz, J A; De Souza, W

    2012-06-01

    Giardia duodenalis is a parasitic protozoan that causes diarrhea and other symptoms which together constitute a disease known as giardiasis. Although the disease has been well defined, the mechanisms involving the establishment of the infection have not yet been fully elucidated. In this study, we show that after 24h of interaction between parasites and intestinal Caco-2 cells, there was an alteration of the paracellular permeability, as observed by an approximate 42% of reduction in the transepithelial electrical resistance and permeation to ruthenium red, which was concomitant with ultrastructural changes. Nevertheless, epithelium viability was not affected. We also demonstrate that there was no change in expression of junctional proteins (tight and adherens) but that the distribution of these proteins in Caco-2 cells after parasite adhesion was significantly altered, as observed via laser scanning confocal microscopy 3D reconstruction. The present work shows that adhesion of Giardia duodenalis trophozoites to intestinal cells in vitro induces disturbances of the tight, adherens and desmosomal junctions.

  13. Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus.

    PubMed

    Jung, Kwonil; Eyerly, Bryan; Annamalai, Thavamathi; Lu, Zhongyan; Saif, Linda J

    2015-06-12

    Integrity of the intestinal epithelium is critical for proper functioning of the barrier that regulates absorption of water and restricts uptake of luminal bacteria. It is maintained mainly by tight junctions (TJs) and adherens junctions (AJs). We conducted immunofluorescence (IF) staining for in situ identification of zonula occludin (ZO)-1 proteins for TJ and E-Cadherin proteins for AJ in the small and large intestinal villous and crypt epithelium of nursing pigs infected with porcine epidemic diarrhea virus (PEDV). Twenty 9-day-old piglets [PEDV-infected (n=9) and Mock (n=11)] from PEDV seronegative sows, were orally inoculated [8.9 log₁₀ genomic equivalents/pig] with PEDV PC21A strain or mock. At post-inoculation days (PIDs) 1-5, infected pigs showed severe watery diarrhea and/or vomiting and severe atrophic enteritis. By immunohistochemistry, PEDV antigens were evident in enterocytes lining the villous epithelium. At PIDs 1-5, PEDV-infected pigs exhibited mildly to extensively disorganized, irregular distribution and reduced expression of ZO-1 or E-Cadherin in villous, but not crypt epithelial cells of the jejunum and ileum, but not in the large intestine, when compared to the negative controls. The structural destruction and disorganization of TJ and AJ were extensive in PEDV-infected pigs at PIDs 1-3, but then appeared to reversibly recover at PID 5, as evident by increased numbers of ZO-1-positive epithelial cells and markedly improved appearance of E-Cadherin-positive villous epithelium. Our results suggest a possible involvement of structurally impaired TJ and AJ in the pathogenesis of PEDV, potentially leading to secondary bacterial infections.

  14. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  15. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development.

    PubMed

    Martín-Bermudo, Maria-Dolores; Bardet, Pierre-Luc; Bellaïche, Yohanns; Malartre, Marianne

    2015-04-15

    Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.

  16. Multicomponent Analysis of Junctional Movements Regulated by Myosin II Isoforms at the Epithelial Zonula Adherens

    PubMed Central

    Smutny, Michael; Wu, Selwin K.; Gomez, Guillermo A.; Mangold, Sabine; Yap, Alpha S.; Hamilton, Nicholas A.

    2011-01-01

    The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA. PMID:21799860

  17. Formation of adherens junctions leads to the emergence of a tissue-level tension in epithelial monolayers

    PubMed Central

    Harris, Andrew R.; Daeden, Alicia; Charras, Guillaume T.

    2014-01-01

    ABSTRACT Adherens junctions and desmosomes integrate the cytoskeletons of adjacent cells into a mechanical syncitium. In doing so, intercellular junctions endow tissues with the strength needed to withstand the mechanical stresses encountered in normal physiology and to coordinate tension during morphogenesis. Though much is known about the biological mechanisms underlying junction formation, little is known about how tissue-scale mechanical properties are established. Here, we use deep atomic force microscopy (AFM) indentation to measure the apparent stiffness of epithelial monolayers reforming from dissociated cells and examine which cellular processes give rise to tissue-scale mechanics. We show that the formation of intercellular junctions coincided with an increase in the apparent stiffness of reforming monolayers that reflected the generation of a tissue-level tension. Tension rapidly increased, reaching a maximum after 150 min, before settling to a lower level over the next 3 h as monolayers established homeostasis. The emergence of tissue tension correlated with the formation of adherens junctions but not desmosomes. As a consequence, inhibition of any of the molecular mechanisms participating in adherens junction initiation, remodelling and maturation significantly impeded the emergence of tissue-level tension in monolayers. PMID:24659804

  18. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread

    PubMed Central

    Li, Xiujuan; Padhan, Narendra; Sjöström, Elisabet O.; Roche, Francis P.; Testini, Chiara; Honkura, Naoki; Sáinz-Jaspeado, Miguel; Gordon, Emma; Bentley, Katie; Philippides, Andrew; Tolmachev, Vladimir; Dejana, Elisabetta; Stan, Radu V.; Vestweber, Dietmar; Ballmer-Hofer, Kurt; Betsholtz, Christer; Pietras, Kristian; Jansson, Leif; Claesson-Welsh, Lena

    2016-01-01

    The specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2Y949F/Y949F leads to VEGFA-resistant endothelial adherens junctions and a block in molecular extravasation. Vessels in Vegfr2Y949F/Y949F mice remain sensitive to inflammatory cytokines, and vascular morphology, blood pressure and flow parameters are normal. Tumour-bearing Vegfr2Y949F/Y949F mice display reduced vascular leakage and oedema, improved response to chemotherapy and, importantly, reduced metastatic spread. The inflammatory infiltration in the tumour micro-environment is unaffected. Blocking VEGFA-induced disassembly of endothelial junctions, thereby suppressing tumour oedema and metastatic spread, may be preferable to full vascular suppression in the treatment of certain cancer forms. PMID:27005951

  19. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    PubMed

    Sufiawati, Irna; Tugizov, Sharof M

    2014-01-01

    Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  20. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

    PubMed

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-04-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).

  1. Segmentation and Tracking of Adherens Junctions in 3D for the Analysis of Epithelial Tissue Morphogenesis

    PubMed Central

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-01-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) PMID:25884654

  2. FSGS3/CD2AP is a barbed-end capping protein that stabilizes actin and strengthens adherens junctions.

    PubMed

    Tang, Vivian W; Brieher, William M

    2013-12-09

    By combining in vitro reconstitution biochemistry with a cross-linking approach, we have identified focal segmental glomerulosclerosis 3/CD2-associated protein (FSGS3/CD2AP) as a novel actin barbed-end capping protein responsible for actin stability at the adherens junction. FSGS3/CD2AP colocalizes with E-cadherin and α-actinin-4 at the apical junction in polarized Madin-Darby canine kidney (MDCK) cells. Knockdown of FSGS3/CD2AP compromised actin stability and decreased actin accumulation at the adherens junction. Using a novel apparatus to apply mechanical stress to cell-cell junctions, we showed that knockdown of FSGS3/CD2AP compromised adhesive strength, resulting in tearing between cells and disruption of barrier function. Our results reveal a novel function of FSGS3/CD2AP and a previously unrecognized role of barbed-end capping in junctional actin dynamics. Our study underscores the complexity of actin regulation at cell-cell contacts that involves actin activators, inhibitors, and stabilizers to control adhesive strength, epithelial behavior, and permeability barrier integrity.

  3. Overexpression of CD97 in Intestinal Epithelial Cells of Transgenic Mice Attenuates Colitis by Strengthening Adherens Junctions

    PubMed Central

    Wobus, Manja; Schneider, Rick; Amasheh, Salah; Sittig, Doreen; Kerner, Christiane; Naumann, Ronald; Hamann, Joerg; Aust, Gabriela

    2010-01-01

    The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis. PMID:20084281

  4. fps/fes knockout mice display a lactation defect and the fps/fes tyrosine kinase is a component of E-cadherin-based adherens junctions in breast epithelial cells during lactation.

    PubMed

    Truesdell, Peter F; Zirngibl, Ralph A; Francis, Sarah; Sangrar, Waheed; Greer, Peter A

    2009-10-15

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase implicated in vesicular trafficking and cytokine and growth factor signaling in hematopoietic, neuronal, vascular endothelial and epithelial lineages. Genetic evidence has suggested a tumor suppressor role for Fps/Fes in breast and colon. Here we used fps/fes knockout mice to investigate potential roles for this kinase in development and function of the mammary gland. Fps/Fes expression was induced during pregnancy and lactation, and its kinase activity was dramatically enhanced. Milk protein and fat composition from nursing fps/fes-null mothers was normal; however, pups reared by them gained weight more slowly than pups reared by wild-type mothers. Fps/Fes displayed a predominantly dispersed punctate intracellular distribution which was consistent with vesicles within the luminal epithelial cells of lactating breast, while a small fraction co-localized with beta-catenin and E-cadherin on their basolateral surfaces. Fps/Fes was found to be a component of the E-cadherin adherens junction (AJ) complex; however, the phosphotyrosine status of beta-catenin and core AJ components in fps/fes-null breast tissue was unaltered, and epithelial cell AJs and gland morphology were intact. We conclude that Fps/Fes is not essential for the maintenance of epithelial cell AJs in the lactating breast but may instead play important roles in vesicular trafficking and milk secretion.

  5. A novel amphioxus cadherin that localizes to epithelial adherens junctions has an unusual domain organization with implications for chordate phylogeny.

    PubMed

    Oda, Hiroki; Wada, Hiroshi; Tagawa, Kunifumi; Akiyama-Oda, Yasuko; Satoh, Nori; Humphreys, Tom; Zhang, Shicui; Tsukita, Shoichiro

    2002-01-01

    Although data are available from only vertebrates, urochordates, and three nonchordate animals, there are definite differences in the structures of classic cadherins between vertebrates plus urochordates and nonchordates. In this study we examined structural diversity of classic cadherins among bilaterian animals by obtaining new data from an amphioxus (Cephalochordata, Chordata), an acorn worm (Hemichordata), a sea star (Echinodermata), and an oyster (Mollusca). The structures of newly identified nonchordate cadherins are grouped together with those of the known sea urchin and Drosophila cadherins, whereas the structure of an amphioxus (Branchiostoma belcheri) cadherin, designated BbC, is differently categorized from those of other known chordate cadherins. BbC is identified as a cadherin by its cytoplasmic domain whose sequence is highly related to the cytoplasmic sequences of all known classic cadherins, but it lacks all of the five repeats constituting the extracellular homophilic-binding domain of other chordate cadherins. The ectodomains of BbC match the ectodomains found in nonchordate cadherins but not present in other chordate cadherins. We show that the BbC functions as a cell-cell adhesion molecule when expressed in Drosophila S2 cells and localizes to adherens junctions in the ectodermal epithelia in amphioxus embryos. We argue that BbC is the amphioxus homologue of the classic cadherins involved in the formation of epithelial adherens junctions. The structural relationships of the cadherin molecules allow us to propose a possibility that cephalochordates might be basal to the sister-groups vertebrates and urochordates.

  6. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions

    PubMed Central

    Dorland, Yvonne L.; Malinova, Tsveta S.; van Stalborch, Anne-Marieke D.; Grieve, Adam G.; van Geemen, Daphne; Jansen, Nicolette S.; de Kreuk, Bart-Jan; Nawaz, Kalim; Kole, Jeroen; Geerts, Dirk; Musters, René J. P.; de Rooij, Johan; Hordijk, Peter L.; Huveneers, Stephan

    2016-01-01

    Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell–cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue. PMID:27417273

  7. RacGAP1-driven focal adhesion formation promotes melanoma transendothelial migration through mediating adherens junction disassembly.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Fu, Changliang; Chen, Feng; Zeng, Panying; Wu, Chengxiang; Ye, Qichao; Dong, Cheng; Song, Yang; Song, Erqun

    2015-03-27

    Melanoma cell migration across vascular endothelial cells is an essential step of tumor metastasis. Here, we provide evidence that RacGAP1, a cytokinesis-related Rho GTPase-activating protein, contributed to this process. Depletion of RacGAP1 with RacGAP1-targeting siRNA or overexpression of RacGAP1 mutant (T249A) attenuated melanoma cell transendothelial migration and concomitant changes of adherens junctions. In addition, RacGAP1 promoted the activations of RhoA, FAK, paxillin and triggered focal adhesion formation and cytoskeletal rearrangement. By overexpressing FAK-related non-kinase (FRNK) in endothelium, we showed that RacGAP1 mediated endothelial barrier function loss and melanoma transmigration in a focal adhesion-dependent manner. These results suggest that endothelial RacGAP1 may play critical roles in pathogenic processes of cancer by regulating endothelial permeability.

  8. Disruption of CDH2/N-cadherin-based adherens junctions leads to apoptosis of ependymal cells and denudation of brain ventricular walls.

    PubMed

    Oliver, Cristian; González, César A; Alvial, Genaro; Flores, Carlos A; Rodríguez, Esteban M; Bátiz, Luis Federico

    2013-09-01

    Disruption/denudation of the ependymal lining has been associated with the pathogenesis of various human CNS disorders, including hydrocephalus, spina bifida aperta, and periventricular heterotopia. It has been traditionally considered that ependymal denudation is a consequence of mechanical forces such as ventricular enlargement. New evidence indicates that ependymal disruption can precede ventricular dilation, but the cellular and molecular mechanisms involved in the onset of ependymal denudation are unknown. Here, we present a novel model to study ependymal cell pathophysiology and demonstrate that selective disruption of N-cadherin-based adherens junctions is sufficient to provoke progressive ependymal denudation. Blocking N-cadherin function using specific peptides that interfere with the histidine-alanine-valine extracellular homophilic interaction domain caused early pathologic changes characterized by disruption of zonula adherens and abnormal intracellular accumulation of N-cadherin. These changes then triggered massive apoptosis of ependymal cells and denudation of brain ventricular walls. Because no typical extrinsic mechanical factors such as elevated pressure or stretching forces are involved in this model, the critical role of N-cadherin-based adherens junctions in ependymal survival/physiology is highlighted. Furthermore, the results suggest that abnormal adherens junctions between ependymal cells should be considered as key components of the pathogenesis of CNS disorders associated with ependymal denudation.

  9. Lateral assembly of N-cadherin drives tissue integrity by stabilizing adherens junctions

    PubMed Central

    Garg, S.; Fischer, S. C.; Schuman, E. M.; Stelzer, E. H. K.

    2015-01-01

    Cadherin interactions ensure the correct registry and anchorage of cells during tissue formation. Along the plasma membrane, cadherins form inter-junctional lattices via cis- and trans-dimerization. While structural studies have provided models for cadherin interactions, the molecular nature of cadherin binding in vivo remains unexplored. We undertook a multi-disciplinary approach combining live cell imaging of three-dimensional cell assemblies (spheroids) with a computational model to study the dynamics of N-cadherin interactions. Using a loss-of-function strategy, we demonstrate that each N-cadherin interface plays a distinct role in spheroid formation. We found that cis-dimerization is not a prerequisite for trans-interactions, but rather modulates trans-interfaces to ensure tissue stability. Using a model of N-cadherin junction dynamics, we show that the absence of cis-interactions results in low junction stability and loss of tissue integrity. By quantifying the binding and unbinding dynamics of the N-cadherin binding interfaces, we determined that mutating either interface results in a 10-fold increase in the dissociation constant. These findings provide new quantitative information on the steps driving cadherin intercellular adhesion and demonstrate the role of cis-interactions in junction stability. PMID:25589573

  10. Negatively Charged Silver Nanoparticles Cause Retinal Vascular Permeability by Activating Plasma Contact System and Disrupting Adherens Junction

    PubMed Central

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C.; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P.; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical, and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex-vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In-vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  11. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs.

  12. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  13. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    PubMed Central

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  14. Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells.

    PubMed

    Wuchter, Patrick; Boda-Heggemann, Judit; Straub, Beate K; Grund, Christine; Kuhn, Caecilia; Krause, Ulf; Seckinger, Anja; Peitsch, Wiebke K; Spring, Herbert; Ho, Anthony D; Franke, Werner W

    2007-06-01

    Substrate-adherent cultured cells derived from human bone marrow or umbilical cord blood ("mesenchymal stem cells") are of special interest for regenerative medicine. We report that such cells, which can display considerable heterogeneity with respect to their cytoskeletal protein complement, are often interconnected by special tentacle-like cell processes contacting one or several other cells. These processus adhaerentes, studded with many (usually small) puncta adhaerentia and varying greatly in length (up to more than 400 microm long), either contact each other in the intercellular space ("ET touches") or insert in a tight-fitting manner into deep plasma membrane invaginations (recessus adhaerentes), thus forming a novel kind of long (up to 50 microm) continuous cuff-like junction (manubria adhaerentia). The cell processes contain an actin microfilament core that is stabilized with ezrin, alpha-actinin, and myosin and accompanied by microtubules, and their adhering junctions are characterized by a molecular complement comprising the transmembrane glycoproteins N-cadherin and cadherin-11, in combination with the cytoplasmic plaque proteins alpha- and beta-catenin, together with p120(ctn), plakoglobin, and afadin. The processes are also highly dynamic and rapidly foreshorten as cell colonies approach a denser state of cell packing. These structures are obviously able to establish cell-cell connections, even over long distances, and can form deep-rooted and tight cell-cell adhesions. The possible relationship to similar cell processes in the embryonic primary mesenchyme and their potential in cell sorting and tissue formation processes in the body are discussed.

  15. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions

    PubMed Central

    Budnar, Srikanth; Yap, Alpha S.

    2017-01-01

    Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. PMID:28273072

  16. Quantitative cell polarity imaging defines leader-to-follower transitions during collective migration and the key role of microtubule-dependent adherens junction formation.

    PubMed

    Revenu, Céline; Streichan, Sebastian; Donà, Erika; Lecaudey, Virginie; Hufnagel, Lars; Gilmour, Darren

    2014-03-01

    The directed migration of cell collectives drives the formation of complex organ systems. A characteristic feature of many migrating collectives is a 'tissue-scale' polarity, whereby 'leader' cells at the edge of the tissue guide trailing 'followers' that become assembled into polarised epithelial tissues en route. Here, we combine quantitative imaging and perturbation approaches to investigate epithelial cell state transitions during collective migration and organogenesis, using the zebrafish lateral line primordium as an in vivo model. A readout of three-dimensional cell polarity, based on centrosomal-nucleus axes, allows the transition from migrating leaders to assembled followers to be quantitatively resolved for the first time in vivo. Using live reporters and a novel fluorescent protein timer approach, we investigate changes in cell-cell adhesion underlying this transition by monitoring cadherin receptor localisation and stability. This reveals that while cadherin 2 is expressed across the entire tissue, functional apical junctions are first assembled in the transition zone and become progressively more stable across the leader-follower axis of the tissue. Perturbation experiments demonstrate that the formation of these apical adherens junctions requires dynamic microtubules. However, once stabilised, adherens junction maintenance is microtubule independent. Combined, these data identify a mechanism for regulating leader-to-follower transitions within migrating collectives, based on the relocation and stabilisation of cadherins, and reveal a key role for dynamic microtubules in this process.

  17. Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA

    PubMed Central

    Walther, Rhian F.; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J.; Pichaud, Franck

    2016-01-01

    Summary The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. PMID:27052178

  18. Formation of adherens and communicating junctions coordinate the differentiation of the shedding-layer and beta-epidermal generation in regenerating lizard epidermis.

    PubMed

    Alibardi, Lorenzo

    2014-06-01

    In the lizard epidermis, the formation of a stratified alpha- and beta-layer, separated by a shedding complex for molting, suggests that keratinocytes communicate in a coordinated manner after they leave the basal layers during the shedding cycle. I have therefore studied the localization of cell junctional proteins such as beta-catenin and connexins 43 and 26 during scale regeneration in lizard using immunocytochemistry. Beta-catenin is also detected in nuclei of basal cells destined to give rise to the Oberhäutchen and beta-cells suggesting activation of the Wnt-pathway during beta-cell differentiation. The observations show that cells of the entire shedding layer (clear and Oberhäutchen) and beta-layer are connected by beta-catenin (adherens junctions) and connexins (communicating junctions) during their differentiation. This likely cell coupling determines the formation of a distinct shedding and beta-layer within the regenerating epidermis. The observed pattern of cell junctional stratification suggests that after departing from the basal layer Oberhäutchen and beta-cells form a continuous communicating compartment that coordinates the contemporaneous differentiation along the entire scale. While the beta-layer matures the junctions are lost while other cell junctions are formed in the following mesos- and alpha-cell layers. This process determines the formation of layers with different texture (harder or softer) and the precise localization of the shedding layer within lizard epidermis.

  19. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module

    PubMed Central

    Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A.; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan

    2015-01-01

    Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics. PMID:26611125

  20. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module.

    PubMed

    Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan

    2015-11-27

    Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics.

  1. Targeting Fyn in Ras-transformed cells induces F-actin to promote adherens junction-mediated cell-cell adhesion.

    PubMed

    Fenton, Sarah E; Hutchens, Kelli A; Denning, Mitchell F

    2015-10-01

    Fyn, a member of the Src family kinases (SFK), is an oncogene in murine epidermis and is associated with cell-cell adhesion turnover and induction of cell migration. Additionally, Fyn upregulation has been reported in multiple tumor types, including cutaneous squamous cell carcinoma (cSCC). Introduction of active H-Ras(G12V) into the HaCaT human keratinocyte cell line resulted in upregulation of Fyn mRNA (200-fold) and protein, while expression of other SFKs remained unaltered. Transduction of active Ras or Fyn was sufficient to induce an epithelial-to-mesenchymal transition in HaCaT cells. Inhibition of Fyn activity, using siRNA or the clinical SFK inhibitor Dasatinib, increased cell-cell adhesion and rapidly (5-60 min) increased levels of cortical F-actin. Fyn inhibition with siRNA or Dasatinib also induced F-actin in MDA-MB-231 breast cancer cells, which have elevated Fyn. F-actin co-localized with adherens junction proteins, and Dasatinib-induced cell-cell adhesion could be blocked by Cytochalasin D, indicating that F-actin polymerization was a key initiator of cell-cell adhesion through the adherens junction. Conversely, inhibiting cell-cell adhesion with low Ca(2+) media did not block Dasatinib-induced F-actin polymerization. Inhibition of the Rho effector kinase ROCK blocked Dasatinib-induced F-actin and cell-cell adhesion, implicating relief of Rho GTPase inhibition as a mechanism of Dasatinib-induced cell-cell adhesion. Finally, topical Dasatinib treatment significantly reduced total tumor burden in the SKH1 mouse model of UV-induced skin carcinogenesis. Together these results identify the promotion of actin-based cell-cell adhesion as a newly described mechanism of action for Dasatinib and suggest that Fyn inhibition may be an effective therapeutic approach in treating cSCC.

  2. Nornicotine impairs endothelial cell-cell adherens junction complexes in EA.hy926 cell line via structural reorganization of F-actin.

    PubMed

    Gagat, Maciej; Grzanka, Dariusz; Izdebska, Magdalena; Maczynska, Ewa; Grzanka, Alina

    2013-01-01

    The aim of the study was to estimate the effect of nornicotine on endothelial EA.hy926 cells in the context of its impact on cell-cell junctions. The objective of the study was to determine the relationship between junctional proteins and F-actin after treating the cells with nornicotine. After 24 h of cell exposure to 0.08, 0.12, and 0.16 ng/mL nornicotine, analysis was performed of cell death, cell migration, ultrastructure, and colocalization of beta-catenin/F-actin and zonula occludens (ZO)-1/F-actin. Our study did not reveal any alterations in EA.hy926 cell line survival following treatment with nornicotine. However, nornicotine exerted disparate effects on cell migration and led to changes in both the ultrastructure and organization of cell-cell junctional complexes and F-actin. Moreover, the cell migration observed in the experiments performed in the present work negatively correlated with the number of Weibel-Palade bodies seen through transmission electron microscopy (TEM). Moreover, the mechanism of cell migration promotion was VEGF-independent, and the decrease in the number of Weibel-Palade bodies resulted from nornicotine-induced F-actin depolymerization. In conclusion, the present study demonstrated that low concentrations of nornicotine do not affect cell survival, but promote cell movement and impair adherens junctions through changes in F-actin organization. Our results indicate for the first time the effect of nornicotine on endothelial EA.hy926 cells and suggest that nornicotine may induce transmigration pathways and, consequently, facilitate the transendothelial migration of monocytes associated with atherosclerosis.

  3. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    SciTech Connect

    Di Kaijun; Wong, Y.C. Wang Xianghong

    2007-11-15

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation of MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.

  4. Placenta Growth Factor-1 Exerts Time-Dependent Stabilization of Adherens Junctions Following VEGF-Induced Vascular Permeability

    PubMed Central

    Cai, Jun; Wu, Lin; Qi, Xiaoping; Shaw, Lynn; Li Calzi, Sergio; Caballero, Sergio; Jiang, Wen G.; Vinores, Stanley A.; Antonetti, David; Ahmed, Asif; Grant, Maria B.; Boulton, Michael E.

    2011-01-01

    Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows. PMID:21464949

  5. Oxygen deprivation inhibits basal keratinocyte proliferation in a model of human skin and induces regio-specific changes in the distribution of epidermal adherens junction proteins, aquaporin-3, and glycogen.

    PubMed

    Straseski, Joely A; Gibson, Angela L; Thomas-Virnig, Christina L; Allen-Hoffmann, B Lynn

    2009-01-01

    It is generally accepted that hypoxia and recovery from oxygen deprivation contribute to the breakdown and ulceration of human skin. The effects of these stresses on proliferation, differentiation and expression of cell-cell adhesion molecules were investigated for the first time in an organotypic model of human skin. Fully stratified tissues were exposed to a time course of oxygen deprivation and subsequent reoxygenation. Regional changes in keratinocyte morphology, glycogen stores and cellular junctions were observed, with more differentiated layers of the epidermis exhibiting the first evidence of oxygen deprivation. Cellular swelling within the granular layer was concurrent with aquaporin-3 depletion. The keratinocyte adherens junction proteins E-cadherin and beta-catenin were dramatically decreased in a regio-specific manner throughout the epidermis following oxygen deprivation. In contrast, P-cadherin and the desmosomal proteins desmoplakin and desmoglein-1 were refractory to oxygen deprivation. Relative to normoxic controls, hypoxic tissues exhibited increased mRNA levels of the transcriptional repressor Slug; however, mRNA levels of the related transcriptional factor Snail were unaffected. All cellular and molecular changes were reversible upon reoxygenation. These results show that oxygen deprivation and reoxygenation exert differential effects on epidermal adhesion proteins and suggest a novel role for cadherins, beta-catenin, and Slug in hypoxia-induced junctional changes occurring in stratified squamous epithelium.

  6. Oxygen deprivation inhibits basal keratinocyte proliferation in a model of human skin and induces regio-specific changes in the distribution of epidermal adherens junction proteins, aquaporin-3, and glycogen

    PubMed Central

    Straseski, Joely A.; Gibson, Angela L.; Thomas-Virnig, Christina L.; Allen-Hoffmann, B. Lynn

    2009-01-01

    It is generally accepted that hypoxia and recovery from oxygen deprivation contribute to the breakdown and ulceration of human skin. The effects of these stresses on proliferation, differentiation and expression of cell-cell adhesion molecules were investigated for the first time in an organotypic model of human skin. Fully stratified tissues were exposed to a time course of oxygen deprivation and subsequent reoxygenation. Regional changes in keratinocyte morphology, glycogen stores and cellular junctions were observed, with more differentiated layers of the epidermis exhibiting the first evidence of oxygen deprivation. Cellular swelling within the granular layer was concurrent with aquaporin-3 depletion. The keratinocyte adherens junction proteins E-cadherin and β-catenin were dramatically decreased in a regio-specific manner throughout the epidermis following oxygen deprivation. In contrast, P-cadherin and the desmosomal proteins desmoplakin and desmoglein-1 were refractory to oxygen deprivation. Relative to normoxic controls, hypoxic tissues exhibited increased mRNA levels of the transcriptional repressor Slug however mRNA levels of the related transcriptional factor Snail were unaffected. All cellular and molecular changes were reversible upon reoxygenation. These results demonstrate that oxygen deprivation and reoxygenation exert differential effects on epidermal adhesion proteins and suggest a novel role for cadherins, β-catenin, and Slug in hypoxia-induced junctional changes occurring in stratified squamous epithelium. PMID:19614926

  7. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  8. Endocytosis of Epithelial Apical Junctional Proteins by a Clathrin-mediated Pathway into a Unique Storage Compartment

    PubMed Central

    Ivanov, Andrei I.; Nusrat, Asma; Parkos, Charles A.

    2004-01-01

    The adherens junction (AJ) and tight junction (TJ) are key regulators of epithelial polarity and barrier function. Loss of epithelial phenotype is accompanied by endocytosis of AJs and TJs via unknown mechanisms. Using a model of calcium depletion, we defined the pathway of internalization of AJ and TJ proteins (E-cadherin, p120 and β-catenins, occludin, JAM-1, claudins 1 and 4, and ZO-1) in T84 epithelial cells. Proteinase protection assay and immunocytochemistry revealed orchestrated internalization of AJs and TJs into a subapical cytoplasmic compartment. Disruption of caveolae/lipid rafts did not prevent endocytosis, nor did caveolin-1 colocalize with internalized junctional proteins. Furthermore, AJ and TJ proteins did not colocalize with the macropinocytosis marker dextran. Inhibitors of clathrin-mediated endocytosis blocked internalization of AJs and TJs, and junctional proteins colocalized with clathrin and α-adaptin. AJ and TJ proteins were observed to enter early endosomes followed by movement to organelles that stained with syntaxin-4 but not with markers of late and recycling endosomes, lysosomes, or Golgi. These results indicate that endocytosis of junctional proteins is a clathrin-mediated process leading into a unique storage compartment. Such mechanisms may mediate the disruption of intercellular contacts during normal tissue remodeling and in pathology. PMID:14528017

  9. CXADR is required for AJ and TJ assembly during porcine blastocyst formation.

    PubMed

    Kwon, Jeong-Woo; Kim, Nam-Hyung; Choi, Inchul

    2016-04-01

    Coxsackie virus and adenovirus receptor (CXADR) is a member of the immunoglobulin superfamily as well as a member of the junctional adhesion molecule family of adhesion receptor. In human pre-implantation embryos, CXADR was detected and co-localized with tight junction (TJ) proteins on the membrane of the trophectoderm. However, its physiological roles were not elucidated in terms of blastocyst formation. Here, we reported expression patterns and biological functions of CXADR in porcine pre-implantation embryos. The transcripts of CXADR were detected at all stages of pre-implantation. Particularly, its expression dramatically increased and preferentially localized at the edge of cell-cell contacts, rather than in the nucleus from the eight-cell stage onwards. CXADR expression was knocked down (KD) by microinjecting double-stranded RNA into one-cell parthenotes. The vast majority of CXADR KD embryos failed to develop to the blastocyst stage, and a few developed KD blastocysts did not expand fully. Analysis of adherens junction (AJ)- and TJ-associated genes/proteins using qRT-PCR, immunocytochemistry and assessment of TJ permeability using FITC-dextran uptake assay revealed that the developmental failure and relatively small cavities are attributed to the defects of TJ assembly. In summary, CXADR is necessary for the AJ and TJ assembly/biogenesis during pre-implantation development.

  10. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  11. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions.

    PubMed

    Cichon, Christoph; Sabharwal, Harshana; Rüter, Christian; Schmidt, M Alexander

    2014-01-01

    Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the 'apical junctional complex-AJC' with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the 'Junctional Adhesion Molecules' (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.

  12. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

    PubMed Central

    Feygin, Alex; Ivanov, Andrei I.

    2015-01-01

    Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton. PMID:25809162

  13. Endocytosis and Recycling of Tight Junction Proteins in Inflammation

    PubMed Central

    Utech, Markus; Mennigen, Rudolf; Bruewer, Matthias

    2010-01-01

    A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-γ), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells. PMID:20011071

  14. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  15. Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1

    PubMed Central

    Grikscheit, Katharina; Frank, Tanja; Wang, Ying

    2015-01-01

    Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell–cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell–cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell–cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell–cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1. PMID:25963818

  16. Analysis of Myosin II Minifilament Orientation at Epithelial Zonula Adherens

    PubMed Central

    Michael, Magdalene; Liang, Xuan; Gomez, Guillermo A.

    2017-01-01

    Non-muscle myosin II (NMII) form bipolar filaments, which bind F-actin to exert cellular contractility during physiological processes (Vicente-Manzanares et al., 2009). Using a combinatorial approach to fluorescently label both N- and C-termini of the NMII heavy chain, recent works have demonstrated the ability to visualize NMII bipolar filaments at various subcellular localizations (Ebrahim et al., 2013; Beach et al., 2014). At the zonula adherens (ZA) of epithelia, NMII minifilaments bind the circumferential actin bundles in a pseudo-sarcomeric manner (Ebrahim et al., 2013), a conformation required to maintain junctional tension and tissue integrity (Ratheesh et al., 2012). By expressing green fluorescent protein (GFP)-NMIIA heavy chain and immunolabel it using a NMIIA C-terminus specific antibody, we were able to visualize the NMII minifilaments bound to F-actin bundles in Caco-2 cells (Michael et al., 2016), as previously reported (Ebrahim et al., 2013; Beach et al., 2014). In addition, we designed an FIJI/MATLAB analysis module to quantify the size, distance and alignment of these minifilaments with respect to junctional F-actin at the ZA. Measurements of the dispersion of minifilaments angles were proven to be a useful parameter that closely correlated to the extent of contractility at junctions (Michael et al., 2016). PMID:28251171

  17. AJ26 Rocket Engine Test

    NASA Video Gallery

    Engineers at NASA’s John C. Stennis Space Center conducts the second in a series of verification tests on an Aerojet AJ26 engine that will power the first stage of the Orbital Sciences Corporatio...

  18. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions

    PubMed Central

    Cichon, Christoph; Sabharwal, Harshana; Rüter, Christian; Schmidt, M Alexander

    2014-01-01

    Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the ‘apical junctional complex—AJC’ with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the ‘Junctional Adhesion Molecules’ (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers. PMID:25610754

  19. Remodeling the zonula adherens in response to tension and the role of afadin in this response

    PubMed Central

    Acharya, Bipul R.; Peyret, Grégoire; Fardin, Marc-Antoine; Mège, René-Marc; Ladoux, Benoit; Yap, Alpha S.; Fanning, Alan S.

    2016-01-01

    Morphogenesis requires dynamic coordination between cell–cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell–cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions. PMID:27114502

  20. ROCK activity regulates functional tight junction assembly during blastocyst formation in porcine parthenogenetic embryos

    PubMed Central

    Kwon, Jeongwoo

    2016-01-01

    The Rho-associated coiled-coil-containing protein serine/threonine kinases 1 and 2 (ROCK1 and ROCK2) are Rho subfamily GTPase downstream effectors that regulate cell migration, intercellular adhesion, cell polarity, and cell proliferation by stimulating actin cytoskeleton reorganization. Inhibition of ROCK proteins affects specification of the trophectoderm (TE) and inner cell mass (ICM) lineages, compaction, and blastocyst cavitation. However, the molecules involved in blastocyst formation are not known. Here, we examined developmental competence and levels of adherens/tight junction (AJ/TJ) constituent proteins, such as CXADR, OCLN, TJP1, and CDH1, as well as expression of their respective mRNAs, after treating porcine parthenogenetic four-cell embryos with Y-27632, a specific inhibitor of ROCK, at concentrations of 0, 10, 20, 100 µM for 24 h. Following this treatment, the blastocyst development rates were 39.1, 20.7, 10.0, and 0% respectively. In embryos treated with 20 µM treatment, expression levels of CXADR, OCLN, TJP1, and CDH1 mRNA and protein molecules were significantly reduced (P < 0.05). FITC-dextran uptake assay revealed that the treatment caused an increase in TE TJ permeability. Interestingly, the majority of the four-cell and morula embryos treated with 20 µM Y-27643 for 24 h showed defective compaction and cavitation. Taken together, our results indicate that ROCK activity may differentially affect assembly of AJ/TJs as well as regulate expression of genes encoding junctional proteins. PMID:27077008

  1. AJ26 rocket engine testing news briefing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Operators at NASA's John C. Stennis Space Center are completing modifications to the E-1 Test Stand to begin testing Aerojet AJ26 rocket engines in early summer of 2010. Modifications include construction of a 27-foot-deep flame deflector trench. The AJ26 rocket engines will be used to power Orbital Sciences Corp.'s Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. Stennis has partnered with Orbital to test all engines for the transport missions.

  2. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development

    PubMed Central

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development. PMID:27043020

  3. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development.

    PubMed

    Kwon, Jeongwoo; Jeong, Sung-min; Choi, Inchul; Kim, Nam-Hyung

    2016-01-01

    ADAM10 (A Disintegrin and Metalloprotease domain-containing protein 10) is a cell surface protein with a unique structure possessing both potential adhesion and protease domains. However, the role of ADAM10 in preimplantation stage embryos is not clear. In this study, we examined the expression patterns and functional roles of ADAM10 in porcine parthenotes during preimplantation development. The transcription level of ADAM10 dramatically increased from the morula stage onward. Immunostaining revealed that ADAM10 was present in both the nucleus and cytoplasm in early cleavage stage embryos, and localized to the apical region of the outer cells in morula and blastocyst embryos. Knockdown (KD) of ADAM10 using double strand RNA did not alter preimplantation embryo development until morula stage, but resulted in significantly reduced development to blastocyst stage. Moreover, the KD blastocyst showed a decrease in gene expression of adherens and tight junction (AJ/TJ), and an increase in trophectoderm TJ permeability by disrupting TJ assembly. Treatment with an ADAM10 specific chemical inhibitor, GI254023X, at the morula stage also inhibited blastocyst development and led to disruption of TJ assembly. An in situ proximity ligation assay demonstrated direct interaction of ADAM10 with coxsackie virus and adenovirus receptor (CXADR), supporting the involvement of ADAM10 in TJ assembly. In conclusion, our findings strongly suggest that ADADM10 is important for blastocyst formation rather than compaction, particularly for TJ assembly and stabilization in preimplantation porcine parthenogenetic development.

  4. Slit Diaphragms Contain Tight Junction Proteins

    PubMed Central

    Fukasawa, Hirotaka; Bornheimer, Scott; Kudlicka, Krystyna; Farquhar, Marilyn G.

    2009-01-01

    Slit diaphragms are essential components of the glomerular filtration apparatus, as changes in these junctions are the hallmark of proteinuric diseases. Slit diaphragms, considered specialized adherens junctions, contain both unique membrane proteins (e.g., nephrin, podocin, and Neph1) and typical adherens junction proteins (e.g., P-cadherin, FAT, and catenins). Whether slit diaphragms also contain tight junction proteins is unknown. Here, immunofluorescence, immunogold labeling, and cell fractionation demonstrated that rat slit diaphragms contain the tight junction proteins JAM-A (junctional adhesion molecule A), occludin, and cingulin. We found these proteins in the same protein complexes as nephrin, podocin, CD2AP, ZO-1, and Neph1 by cosedimentation, coimmunoprecipitation, and pull-down assays. PAN nephrosis increased the protein levels of JAM-A, occludin, cingulin, and ZO-1 several-fold in glomeruli and loosened their attachment to the actin cytoskeleton. These data extend current information about the molecular composition of slit diaphragms by demonstrating the presence of tight junction proteins, although slit diaphragms lack the characteristic morphologic features of tight junctions. The contribution of these proteins to the assembly of slit diaphragms and potential signaling cascades requires further investigation. PMID:19478094

  5. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet.

    PubMed

    Elfers, Kristin; Marr, Isabell; Wilkens, Mirja R; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.

  6. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    PubMed Central

    Wilkens, Mirja R.; Breves, Gerhard; Langeheine, Marion; Brehm, Ralph; Muscher-Banse, Alexandra S.

    2016-01-01

    Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by qPCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability. PMID:27120348

  7. Rhabdomyosarcomas in Aging A/J Mice

    PubMed Central

    Sher, Roger B.; Cox, Gregory A.; Mills, Kevin D.; Sundberg, John P.

    2011-01-01

    Rhabdomyosarcomas (RSCs) are skeletal muscle neoplasms found in humans and domestic mammals. The A/J inbred strain developed a high frequency (between 70–80%) of adult pleomorphic type (APT) RSC at >20 months of age while BALB/cByJ also develop RSC but less frequently. These neoplasms invaded skeletal muscle surrounding either the axial or proximal appendicular skeleton and were characterized by pleomorphic cells with abundant eosinophilic cytoplasm, multiple nuclei, and cross striations. The diagnosis was confirmed by detection of alpha-sarcomeric actin and myogenin in the neoplastic cells using immunocytochemistry. The A/J strain, but not the related BALB/c substrains, is also characterised by a progressive muscular dystrophy homologous to limb-girdle muscular dystrophy type 2B. The association between the development of RSC in similar muscle groups to those most severely affected by the progressive muscular dystrophy suggested that these neoplasms developed from abnormal regeneration of the skeletal muscle exacerbated by the dysferlin mutation. Transcriptome analyses of RSCs revealed marked downregulation of genes in muscular development and function signaling networks. Non-synonymous coding SNPs were found in Myl1, Abra, Sgca, Ttn, and Kcnj12 suggesting these may be important in the pathogenesis of RSC. These studies suggest that A strains of mice can be useful models for dissecting the molecular genetic basis for development, progression, and ultimately for testing novel anticancer therapeutic agents dealing with rhabdomyosarcoma. PMID:21853140

  8. AJ26 rocket engine testing news briefing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA's John C. Stennis Space Center Director Gene Goldman (center) stands in front of a 'pathfinder' rocket engine with Orbital Sciences Corp. President and Chief Operating Officer J.R. Thompson (left) and Aerojet President Scott Seymour during a Feb. 24 news briefing at the south Mississippi facility. The leaders appeared together to announce a partnership for testing Aerojet AJ26 rocket engines at Stennis. The engines will be used to power Orbital's Taurus II space vehicles to provide commercial cargo transportation missions to the International Space Station for NASA. During the event, the Stennis partnership with Orbital was cited as an example of the new direction of NASA to work with commercial interests for space travel and transport.

  9. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction

    PubMed Central

    Stamatovic, Svetlana M; Johnson, Allison M; Keep, Richard F; Andjelkovic, Anuska V

    2016-01-01

    abstract The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction. PMID:27141427

  10. Ultrastructural studies of the junctional complex in the musculature of the arrow-worm (Sagitta setosa) (Chaetognatha).

    PubMed

    Duvert, M; Gros, D; Salat, C

    1980-01-01

    In the A fibres of the primary musculature of Sagitta, the junctional complex is made up of three kinds of junctions. From the apex to the base they occur in the following order: an apical zonula adherens, a columnar zonula then columnar maculae intermingled with gap junction. Each columnar junction joins two intracellular filament networks in adjacent cells; this cytoskeleton is largely developed around the nucleus of the A fibres and in close relation with the contractile apparatus, especially at the I band level. The B fibres, which never reach the general cavity, lack zonula adherens and columnar zonula. The columnar junction constitutes a new type of junction which seems to belong to the adherens kind. At their level fibrous columns cross the extracellular space, joining the membranes. Each column faces two cytoplasmic densities localized against the cytoplasmic leaflets of the membranes. A cytoskeleton composed of bunldes of cytoplasmic filaments is in close contact with these cytoplasmic densities. The great number of columnar junctions and associated cytoskeleton assure the cohesion of the tissue and the distribution of contractile forces in the absence of connective tissue. The abundance of gap junctions can account for the metabolic and ionic coupling of the fibres.

  11. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  12. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens

    PubMed Central

    Priya, Rashmi; Liang, Xuan; Teo, Jessica L.; Duszyc, Kinga; Yap, Alpha S.; Gomez, Guillermo A.

    2017-01-01

    Rho kinases (ROCK1 and ROCK2) function downstream of the small GTPase RhoA to drive actomyosin cytoskeletal remodeling. It has often been believed that ROCK1 and ROCK2 may be functionally redundant, as they share a highly conserved kinase domain. However, in this study, we report differential functional effects for these ROCKs at the epithelial zonula adherens (ZA). Using specific siRNA, we found that ROCK1 depletion disrupted cadherin organization at the ZA, accompanied by loss of F-actin and NMIIA, whereas ROCK2 knockdown had no significant effect. Further, ROCK1, but not ROCK2, was necessary to stabilize GTP-RhoA at the ZA, thereby sustaining junctional tension and inhibiting intraepithelial cell movement. We also found that nonmuscle myosin IIA is a major determinant of ROCK1 cortical stability. Thus, despite sharing the catalytic domain with ROCK2, ROCK1 appears to be the dominant kinase essential for junctional integrity and contractile tension at epithelial ZA. PMID:28035042

  13. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  14. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  15. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions

    PubMed Central

    Xiao, Chang; Ogle, Sally A.; Schumacher, Michael A.; Schilling, Neal; Tokhunts, Robert A.; Orr-Asman, Melissa A.; Miller, Marian L.; Robbins, David J.; Hollande, Frederic

    2010-01-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5Ski) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/ShhKO) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5Ski cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/ShhKO mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1. PMID:20847300

  16. Camphoratins A-J, potent cytotoxic and anti-inflammatory triterpenoids from the fruiting body of Taiwanofungus camphoratus.

    PubMed

    Wu, Shwu-Jen; Leu, Yann-Lii; Chen, Chou-Hsiung; Chao, Chih-Hua; Shen, De-Yang; Chan, Hsiu-Hui; Lee, E-Jian; Wu, Tian-Shung; Wang, Yea-Hwey; Shen, Yuh-Chiang; Qian, Keduo; Bastow, Kenneth F; Lee, Kuo-Hsiung

    2010-11-29

    Ten new triterpenoids, camphoratins A-J (1-10), along with 12 known compounds were isolated from the fruiting body of Taiwanofungus camphoratus. Their structures were established by spectroscopic analysis and chemical methods. Compound 10 is the first example of a naturally occurring ergosteroid with an unusual cis-C/D ring junction. Compounds 2-6 and 11 showed moderate to potent cytotoxicity, with EC(50) values ranging from 0.3 to 3 μM against KB and KB-VIN human cancer cell lines. Compounds 6, 10, 11, 14-16, 18, and 21 exhibited anti-inflammatory NO-production inhibition activity with IC(50) values of less than 5 μM, and were more potent than the nonspecific NOS inhibitor N(ω)-nitro-L-arginine methyl ester.

  17. Shoichiro Tsukita: a life exploring the molecular architecture of the tight junction

    PubMed Central

    Takeichi, Masatoshi

    2006-01-01

    On December 11, 2005, Shoichiro Tsukita died at the young age of 52, after 14 months of treatment for cancer. Early in his career, Tsukita succeeded in isolating and purifying the adherens junction with his wife Sachiko, an accomplishment that he followed up with an impressive series of discoveries of cell adhesion and cytoskeletal molecules, including what may have been his greatest contribution to the field, the identification of occludin and the claudin family of molecules, which were watershed discoveries in the study of the molecular nature of tight junctions. PMID:16449186

  18. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

    PubMed Central

    Watanabe, Shigeki; Liu, Qiang; Davis, M Wayne; Hollopeter, Gunther; Thomas, Nikita; Jorgensen, Nels B; Jorgensen, Erik M

    2013-01-01

    Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI: http://dx.doi.org/10.7554/eLife.00723.001 PMID:24015355

  19. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  20. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  1. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  2. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  3. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  4. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  5. Cadherin-catenin complexes during zebrafish oogenesis: heterotypic junctions between oocytes and follicle cells.

    PubMed

    Cerdà, J; Reidenbach, S; Prätzel, S; Franke, W W

    1999-09-01

    During vertebrate oogenesis, the germ cells and associated somatic cells remain connected by a variety of adhering junctional complexes. However, the molecular composition of these cellular structures is largely unknown. To identify the proteins forming the heterotypic adherens junctions between oocytes and follicle cells in the zebrafish (Danio rerio), the cDNAs encoding alphaE-catenin and plakoglobin were isolated. Using these cDNAs, in combination with the previously isolated beta-catenin cDNA, and antibodies specific for alpha- and beta-catenin, plakoglobin, and N- and E-cadherin, we found differences in catenin and plakoglobin gene expression during oogenesis. The immunolocalization of these plaque proteins, as well as of cadherins, in the ovarian follicle indicated an enrichment of alpha- and beta-catenin and of E-cadherin-like protein(s) in the oocyte cortex, notably at sites of oocyte-follicle cell contacts, suggesting the presence of hitherto unknown heterotypic adherens junctions between these cells. By contrast, plakoglobin and N-cadherin localization was restricted to cell-cell contacts in the follicle cell layer. During oocyte maturation, mRNAs for alphaE- and beta-catenin and plakoglobin accumulated, and all three plaque-forming proteins were stored in unfertilized eggs, either in complexed forms with cadherins or as free cytoplasmic pools. These findings suggest possible roles of these junctional proteins during early embryogenesis.

  6. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    PubMed

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.

  7. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  8. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight

  9. Testicular cell junction: a novel target for male contraception.

    PubMed

    Lee, Nikki P Y; Wong, Elissa W P; Mruk, Dolores D; Cheng, C Yan

    2009-01-01

    Even though various contraceptive methods are widely available, the number of unwanted pregnancies is still on the rise in developing countries, pressurizing the already resource limited nations. One of the major underlying reasons is the lack of effective, low cost, and safe contraceptives for couples. During the past decade, some studies were performed using animal models to decipher if the Sertoli-germ cell junction in the testis is a target for male fertility regulation. Some of these study models were based on the use of hormones and/or chemicals to disrupt the hypothalamic-pituitary-testicular axis (e.g., androgen-based implants or pills) and others utilized a panel of chemical entities or synthetic peptides to perturb spermatogenesis either reversibly or non-reversibly. Among them, adjudin, a potential male contraceptive, is one of the compounds exerting its action on the unique adherens junctions, known as ectoplasmic specializations, in the testis. Since the testis is equipped with inter-connected cell junctions, an initial targeting of one junction type may affect the others and these accumulative effects could lead to spermatogenic arrest. This review attempts to cover an innovative theme on how male infertility can be achieved by inducing junction instability and defects in the testis, opening a new window of research for male contraceptive development. While it will still take much time and effort of intensive investigation before a product can reach the consumable market, these findings have provided hope for better family planning involving men.

  10. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice.

    PubMed

    Vijayakumar, Sarath; Lever, Teresa E; Pierce, Jessica; Zhao, Xing; Bergstrom, David; Lundberg, Yunxia Wang; Jones, Timothy A; Jones, Sherri M

    2015-04-01

    A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the

  11. The expression of gingival epithelial junctions in response to subgingival biofilms.

    PubMed

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the "red complex" species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the "red complex." In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection.

  12. The expression of gingival epithelial junctions in response to subgingival biofilms

    PubMed Central

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the “red complex” species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the “red complex.” In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection. PMID:26305580

  13. Virus interaction with the apical junctional complex.

    PubMed

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  14. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    SciTech Connect

    Kubásek, J. Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62

  15. Structure of the tight junctions of the human eccrine sweat gland.

    PubMed

    Briggman, J V; Bank, H L; Bigelow, J B; Graves, J S; Spicer, S S

    1981-12-01

    The human eccrine sweat gland contains two anatomically and functionally discrete segments: the secretory coil, which produces an isotonic or slightly hypertonic precursor fluid, and the coiled duct, which reabsorbs Na+ and Cl- to yield a hypotonic sweat. We examined the freeze-fracture morphology of tight junctions from isolated secretory coil and coiled duct segments to assess indirectly the contribution of paracellular ion transport in secretion and resorption in the sweat gland. In the secretory coil, tight junctions of the intercellular canaliculus and main lumen consisted of approximately 9 and 6, closely spaced, parallel or anastomosing elements, respectively. Tight junctions of the coiled duct were similar in appearance to those at the main lumen of the secretory coil. In both the secretory coil and coiled duct, and average of 2 to 3, widely spaced junctional elements were usually observed basolateral to the closely spaced junctional elements in the region corresponding to the location of the zonula adherens in Epon sections. The complexity of the tight junctions of the secretory coil exceeded what we expected for an epithelium secreting an isosmotic fluid. The elaborate tight junctions of the coiled duct support other evidence for an intermediate to high transepithelial resistance.

  16. A.J. STEVENS MEMORIAL, “ERECTED TO A FRIEND OF LABOR BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A.J. STEVENS MEMORIAL, “ERECTED TO A FRIEND OF LABOR BY HIS COWORKERS, NOV. 28, 1889.” CESAR CHAVEZ PLAZA, SACRAMENTO, CA. STEVENS WAS MASTER MECHANIC AT SACRAMENTO SHOPS FROM 1870-1888. - Southern Pacific, Sacramento Shops, 111 I Street, Sacramento, Sacramento County, CA

  17. Constituents of Psiadia terebinthina A.J. Scott, an endemic Asteraceae from Mauritius.

    PubMed

    Marie, Daniel; Gurib-Fakim, Ameenah; Gray, Alexandre; Waterman, Peter

    2006-11-01

    Kaemferol-3-methyl ether (1), quercetin-3-methyl ether (2), kaemferol-3,7-dimethyl ether (3), 3-caffeoyl quinic acid (4) and 3,4-O-dicaffeoyl quinic acid (5) have been isolated for the first time from the leaves of Psiadia terebinthina A.J. Scott (Asteraceae). The identity of the compounds 1-5 were confirmed by various spectroscopic methods.

  18. Spontaneous initiation, promotion and progression of colorectal cancer in the novel A/J Min/+ mouse.

    PubMed

    Sødring, Marianne; Gunnes, Gjermund; Paulsen, Jan Erik

    2016-04-15

    The C57BL/6J multiple intestinal neoplasia (Min/+) mouse is a widely used murine model for familial adenomatous polyposis, a hereditary form of human colorectal cancer. However, it is a questionable model partly because the vast majority of tumors arise in the small intestine, and partly because the fraction of tumors that progress to invasive carcinomas is minuscule. A/J mice are typically more susceptible to carcinogen-induced colorectal cancer than C57BL/6J mice. To investigate whether the novel Min/+ mouse on the A/J genetic background could be a better model for colorectal cancer, we examined the spontaneous intestinal tumorigenesis in 81 A/J Min/+ mice ranging in age from 4 to 60 weeks. The A/J Min/+ mouse exhibited a dramatic increase in number of colonic lesions when compared to what has been reported for the conventional Min/+ mouse; however, an increase in small intestinal lesions did not occur. In addition, this novel mouse model displayed a continual development of colonic lesions highlighted by the transition from early lesions (flat ACF) to tumors over time. In mice older than 40 weeks, 13 colonic (95% CI: 8.7-16.3) and 21 small intestinal (95% CI: 18.6-24.3) tumors were recorded. Notably, a considerable proportion of those lesions progressed to carcinomas in both the colon (21%) and small intestine (51%). These findings more closely reflect aspects of human colorectal carcinogenesis. In conclusion, the novel A/J Min/+ mouse may be a relevant model for initiation, promotion and progression of colorectal cancer.

  19. A Synthetic Peptide Corresponding to the Extracellular Domain of Occludin Perturbs the Tight Junction Permeability Barrier

    PubMed Central

    Wong, Vivian; Gumbiner, Barry M.

    1997-01-01

    Occludin, the putative tight junction integral membrane protein, is an attractive candidate for a protein that forms the actual sealing element of the tight junction. To study the role of occludin in the formation of the tight junction seal, synthetic peptides (OCC1 and OCC2) corresponding to the two putative extracellular domains of occludin were assayed for their ability to alter tight junctions in Xenopus kidney epithelial cell line A6. Transepithelial electrical resistance and paracellular tracer flux measurements indicated that the second extracellular domain peptide (OCC2) reversibly disrupted the transepithelial permeability barrier at concentrations of < 5 μM. Despite the increased paracellular permeability, there were no changes in gross epithelial cell morphology as determined by scanning EM. The OCC2 peptide decreased the amount of occludin present at the tight junction, as assessed by indirect immunofluorescence, as well as decreased total cellular content of occludin, as assessed by Western blot analysis. Pulse-labeling and metabolic chase analysis suggested that this decrease in occludin level could be attributed to an increase in turnover of cellular occludin rather than a decrease in occludin synthesis. The effect on occludin was specific because other tight junction components, ZO-1, ZO-2, cingulin, and the adherens junction protein E-cadherin, were unaltered by OCC2 treatment. Therefore, the peptide corresponding to the second extracellular domain of occludin perturbs the tight junction permeability barrier in a very specific manner. The correlation between a decrease in occludin levels and the perturbation of the tight junction permeability barrier provides evidence for a role of occludin in the formation of the tight junction seal. PMID:9015310

  20. MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence

    PubMed Central

    Zhuang, Yugang; Peng, Hu; Mastej, Victoria

    2016-01-01

    Cellular junctions play a critical role in structural connection and signal communication between cells in various tissues. Although there are structural and functional varieties, cellular junctions include tight junctions, adherens junctions, focal adhesion junctions, and tissue specific junctions such as PECAM-1 junctions in endothelial cells (EC), desmosomes in epithelial cells, and hemidesmosomes in EC. Cellular junction dysfunction and deterioration are indicative of clinical diseases. MicroRNAs (miRNA) are ~20 nucleotide, noncoding RNAs that play an important role in posttranscriptional regulation for almost all genes. Unsurprisingly, miRNAs regulate junction protein gene expression and control junction structure integrity. In contrast, abnormal miRNA regulation of junction protein gene expression results in abnormal junction structure, causing related diseases. The major components of tight junctions include zonula occluden-1 (ZO-1), claudin-1, claudin-5, and occludin. The miRNA regulation of ZO-1 has been intensively investigated. ZO-1 and other tight junction proteins such as claudin-5 and occludin were positively regulated by miR-126, miR-107, and miR21 in different models. In contrast, ZO-1, claudin-5, and occludin were negatively regulated by miR-181a, miR-98, and miR150. Abnormal tight junction miRNA regulation accompanies cerebral middle artery ischemia, brain trauma, glioma metastasis, and so forth. The major components of adherens junctions include VE-cadherin, β-catenin, plakoglobin, P120, and vinculin. VE-cadherin and β-catenin were regulated by miR-9, miR-99b, miR-181a, and so forth. These regulations directly affect VE-cadherin-β-catenin complex stability and further affect embryo and tumor angiogenesis, vascular development, and so forth. miR-155 and miR-126 have been shown to regulate PECAM-1 and affect neutrophil rolling and EC junction integrity. In focal adhesion junctions, the major components are integrin β4, paxillin, and focal

  1. The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non-mammalian species.

    PubMed

    Pieperhoff, Sebastian; Franke, Werner W

    2008-07-01

    Recent studies on the formation and molecular organization of the mammalian heart have emphasized the architectural and functional importance of the adhering junctions (AJs), which are densely clustered in the bipolar end regions (intercalated disks, IDs) connecting the elongated cardiomyocytes of the adult heart. Moreover, we learned from genetic studies of mutated AJ proteins that desmosomal proteins, which for the most part are integral components of ID-specific composite AJs (areae compositae, AC), are essential in heart development and function. Developmental studies have shown that the bipolar concentration of cardiomyocyte AJs in IDs is a rather late process and only completed postnatally. Here we report that in the adult hearts of diverse lower vertebrates (fishes, amphibia, birds) most AJs remain separate and distinct in molecular character, representing either fasciae adhaerentes, maculae adhaerentes (desmosomes) or--less frequently--some form of AC. In the mature hearts of the amphibian and fish species examined a large proportion of the AJs connecting cardiomyocytes is not clustered in the IDs but remains located on the lateral surfaces where they appear either as puncta adhaerentia or as desmosomes. In many places, these puncta connect parallel cardiomyocytes in spectacular ladder-like regular arrays (scalae adhaerentes) correlated with--and connected by--electron-dense plaque-like material to sarcomeric Z-bands. In the avian hearts, on the other hand, most AJs are clustered in the IDs but only a small proportion of the desmosomes appears as AC, compared to the dominance of distinct fasciae adhaerentes. We conclude that the fusion and amalgamation of AJs and desmosomes to ACs is a late process both in ontogenesis and in evolution. The significance and possible functional implications of the specific junctional structures in vertebrate evolution and the class-specific requirements of architectural and molecular assembly adaptation during regeneration

  2. 17 CFR 249.803 - Form X-15AJ-2, for annual consolidated supplement of a national securities association or an...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form X-15AJ-2, for annual....803 Form X-15AJ-2, for annual consolidated supplement of a national securities association or an... Form X-15AJ-2, see the List of CFR Sections Affected, which appears in the Finding Aids section of...

  3. 17 CFR 249.802 - Form X-15AJ-1, for amendatory and/or supplementary statements to registration statement of a...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form X-15AJ-1, for amendatory... Affiliated Securities Associations § 249.802 Form X-15AJ-1, for amendatory and/or supplementary statements to... association. Editorial Note: For Federal Register citations affecting Form X-15AJ-1, see the List of...

  4. 17 CFR 249.802 - Form X-15AJ-1, for amendatory and/or supplementary statements to registration statement of a...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form X-15AJ-1, for amendatory... Affiliated Securities Associations § 249.802 Form X-15AJ-1, for amendatory and/or supplementary statements to... association. Editorial Note: For Federal Register citations affecting Form X-15AJ-1, see the List of...

  5. 17 CFR 249.803 - Form X-15AJ-2, for annual consolidated supplement of a national securities association or an...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Form X-15AJ-2, for annual....803 Form X-15AJ-2, for annual consolidated supplement of a national securities association or an... Form X-15AJ-2, see the List of CFR Sections Affected, which appears in the Finding Aids section of...

  6. 17 CFR 249.803 - Form X-15AJ-2, for annual consolidated supplement of a national securities association or an...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Form X-15AJ-2, for annual....803 Form X-15AJ-2, for annual consolidated supplement of a national securities association or an... Form X-15AJ-2, see the List of CFR Sections Affected, which appears in the Finding Aids section of...

  7. 17 CFR 249.802 - Form X-15AJ-1, for amendatory and/or supplementary statements to registration statement of a...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Form X-15AJ-1, for amendatory... Affiliated Securities Associations § 249.802 Form X-15AJ-1, for amendatory and/or supplementary statements to... association. Editorial Note: For Federal Register citations affecting Form X-15AJ-1, see the List of...

  8. 17 CFR 249.802 - Form X-15AJ-1, for amendatory and/or supplementary statements to registration statement of a...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Form X-15AJ-1, for amendatory... Affiliated Securities Associations § 249.802 Form X-15AJ-1, for amendatory and/or supplementary statements to... association. Editorial Note: For Federal Register citations affecting Form X-15AJ-1, see the List of...

  9. 17 CFR 249.802 - Form X-15AJ-1, for amendatory and/or supplementary statements to registration statement of a...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Form X-15AJ-1, for amendatory... Affiliated Securities Associations § 249.802 Form X-15AJ-1, for amendatory and/or supplementary statements to... association. Editorial Note: For Federal Register citations affecting Form X-15AJ-1, see the List of...

  10. 17 CFR 249.803 - Form X-15AJ-2, for annual consolidated supplement of a national securities association or an...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Form X-15AJ-2, for annual....803 Form X-15AJ-2, for annual consolidated supplement of a national securities association or an... Form X-15AJ-2, see the List of CFR Sections Affected, which appears in the Finding Aids section of...

  11. 17 CFR 249.803 - Form X-15AJ-2, for annual consolidated supplement of a national securities association or an...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Form X-15AJ-2, for annual....803 Form X-15AJ-2, for annual consolidated supplement of a national securities association or an... Form X-15AJ-2, see the List of CFR Sections Affected, which appears in the Finding Aids section of...

  12. Garlic (Allium sativum) feeding impairs Sertoli cell junctional proteins in male Wistar rat testis: microscopy study.

    PubMed

    Hammami, I; Nahdi, A; Atig, F; El May, A; El May, M V

    2016-12-01

    Sertoli cell junctions, such as adhesion junction (AJ), gap junction (GJ) and tight junction (TJ), are important for maintaining spermatogenesis. In previous studies, we showed the inhibitory effect of crude garlic (Allium sativum, As) on spermatogenesis and steroidogenesis. The aim of this work was to complete our investigation on the impact of this plant, especially on Sertoli cell junctional proteins (SCJPs). During 1 month, 24 male rats were divided into groups: group control (0% of As) and treated groups fed 5%, 10% and 15% of As. Light and electron microscopy observations were performed to localise junctional proteins: connexin-43, Zona Occluding-1 and N-cadherin (immunohistochemistry) and to describe junctions. We showed that the specific cells involved in the localisation of the SCJP were similar in both control and treated groups, but with different immunoreactivity intensity between them. The electron microscopy observation focused on TJs between Sertoli cells, constituting the blood-testis barrier, showed ultrastructural changes such as fragmentation of TJs between adjacent Sertoli cell membranes and dilatation of rough endoplasmic reticulum saccules giving an aspect of scale to these junctions. We concluded that crude garlic consumption during 1 month induces perturbations on Sertoli cell junctions. These alterations can explain apoptosis in testicular germ cells previously showed.

  13. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    PubMed

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could work as a protective compensatory mechanism, helping tomaintain the dilated heart.We can hypothesize that inappropriate intercellular mechanical and electrical coupling associated with necrosis and/or apoptosis are important factors contributing to the transition to HF.

  14. DIFFERENTIATION OF THE JUNCTIONAL COMPLEX OF SURFACE CELLS IN THE DEVELOPING FUNDULUS BLASTODERM

    PubMed Central

    Lentz, Thomas L.; Trinkaus, J. P.

    1971-01-01

    The structure of the junctional complex between surface cells was investigated in blastula, mid gastrula, late gastrula, and early embryo of the teleost fish Fundulus heteroclitus. In blastulae, the intercellular complex is simple and consists of an apical region where the adjacent membranes are closely apposed (40–60 A) and in places touch, an intermediate zone with a wider intercellular space (> 100 A), and incipient desmosomes. In gastrulae, there are frequent points of fusion of membranes along the apical zone of the complex. Dilatations and an increased number of desmosomes in different stages of development are found along the intermediate zone. In mid gastrula, a close or gap junction with an intercellular space of 20 A occurs below the level of the desmosomes. In late gastrula, the gap junction is reduced in extent and desmosomes are better developed. In the early embryo, the basic organization of the complex is the same, although the deeply situated close junctions are no longer apparent and desmosomes and their associated system of filaments are well developed. At this time, the junctional complex is comparable to that of many epithelia and consists of an apical zonula occludens, a short zonula adherens, and deeply situated maculae adherentes. PMID:5545331

  15. Gap junctions of the medial collateral ligament: structure, distribution, associations and function

    PubMed Central

    Chi, Simon S; Rattner, JB; Sciore, Paul; Boorman, Richard; Lo, Ian KY

    2005-01-01

    Ligaments are composed of two major components: cells and extracellular matrix. The cells express gap junction proteins and are arranged into a series of rows that traverse the tissue, suggesting that all the cells of the tissue are functionally interconnected. The results of our study demonstrate that medial collateral ligament (MCL) cells do not have a uniform fusiform morphology or placement along a row of cells as previously suggested, but rather display a complex placement and form that weaves within the collagen matrix in a manner that is far more extensive and complex than previously appreciated. Within this morphological context, we find that MCL cells in vivo contain functional gap junctions (verified using fluorescence recovery after photobleaching) that are localized to sites of close cell–cell contact, and this pattern imparts or reflects a bipolarity inherent to each cell. When we studied ligament cells in conventional tissue culture we found that this bipolarity is lost, and the placement of gap junctions and their related proteins, as well as general cell morphology, is also altered. Finally, our study demonstrates, for the first time, that in addition to gap junctions, adherens junctions and desmosomes are also expressed by MCL cells both in vivo and in vitro and map to sites of cell–cell contact. PMID:16050901

  16. Wideband rotating junctions

    NASA Astrophysics Data System (ADS)

    Pochernyaev, V. N.

    1993-06-01

    Rotating junctions of coaxial-waveguide and waveguide type with a traveling wave coefficient exceeding 0.8 in a wide frequency range are considered. The design of these junctions is based on a method of the theory of electrodynamic circuits. Numerical results are obtained for rotating junctions of partially filled rectangular waveguide type and their particular cases.

  17. Inhibition of Inflammation with Celastrol Fails to Improve Muscle Function in Dysferlin-deficient A/J Mice

    PubMed Central

    Dillingham, Blythe C; Klimek, Margaret E Benny; Gernapudi, Ramkishore; Rayavarapu, Sree; Gallardo, Eduard; Van der Meulen, Jack H; Jordan, Sarah; Ampong, Beryl; Gordish-Dressman, Heather; Spurney, Christopher F; Nagaraju, Kanneboyina

    2015-01-01

    The dysferlin-deficient A/J mouse strain represents a homologous model for limb-girdle muscular dystrophy 2B. We evaluated the disease phenotype in 10 month old A/J mice compared to two dysferlin-sufficient, C57BL/6 and A/JOlaHsd, mouse lines to determine which functional end-points are sufficiently sensitive to define the disease phenotype for use in preclinical studies in the A/J strain. A/J mice had significantly lower open field behavioral activity (horizontal activity, total distance, movement time and vertical activity) when compared to C57BL/6 and A/JoIaHsd mice. Both A/J and A/JOIaHsd mice showed decreases in latency to fall with rotarod compared to C57BL/6. No changes were detected in grip strength, force measurements or motor coordination between these three groups. Furthermore, we have found that A/J muscle shows significantly increased levels of the pro-inflammatory cytokine TNF-α when compared to C57BL/6 mice, indicating an activation of NF-κB signaling as part of the inflammatory response in dysferlin-deficient muscle. Therefore, we assessed the effect of celastrol (a potent NF-κB inhibitor) on the disease phenotype in female A/J mice. Celastrol treatment for four months significantly reduced the inflammation in A/J muscle; however, it had no beneficial effect in improving muscle function, as assessed by grip strength, open field activity, and in vitro force contraction. In fact, celastrol treated mice showed a decrease in body mass, hindlimb grip strength and maximal EDL force. These findings suggest that inhibition of inflammation alone may not be sufficient to improve the muscle disease phenotype in dysferlin-deficient mice and may require combination therapies that target membrane stability to achieve a functional improvement in skeletal muscle. PMID:26119397

  18. Inhibition of inflammation with celastrol fails to improve muscle function in dysferlin-deficient A/J mice.

    PubMed

    Dillingham, Blythe C; Benny Klimek, Margaret E; Gernapudi, Ramkishore; Rayavarapu, Sree; Gallardo, Eduard; Van der Meulen, Jack H; Jordan, Sarah; Ampong, Beryl; Gordish-Dressman, Heather; Spurney, Christopher F; Nagaraju, Kanneboyina

    2015-09-15

    The dysferlin-deficient A/J mouse strain represents a homologous model for limb-girdle muscular dystrophy 2B. We evaluated the disease phenotype in 10 month old A/J mice compared to two dysferlin-sufficient, C57BL/6 and A/JOlaHsd, mouse lines to determine which functional end-points are sufficiently sensitive to define the disease phenotype for use in preclinical studies in the A/J strain. A/J mice had significantly lower open field behavioral activity (horizontal activity, total distance, movement time and vertical activity) when compared to C57BL/6 and A/JoIaHsd mice. Both A/J and A/JOIaHsd mice showed decreases in latency to fall with rotarod compared to C57BL/6. No changes were detected in grip strength, force measurements or motor coordination between these three groups. Furthermore, we have found that A/J muscle shows significantly increased levels of the pro-inflammatory cytokine TNF-α when compared to C57BL/6 mice, indicating an activation of NF-κB signaling as part of the inflammatory response in dysferlin-deficient muscle. Therefore, we assessed the effect of celastrol (a potent NF-κB inhibitor) on the disease phenotype in female A/J mice. Celastrol treatment for four months significantly reduced the inflammation in A/J muscle; however, it had no beneficial effect in improving muscle function, as assessed by grip strength, open field activity, and in vitro force contraction. In fact, celastrol treated mice showed a decrease in body mass, hindlimb grip strength and maximal EDL force. These findings suggest that inhibition of inflammation alone may not be sufficient to improve the muscle disease phenotype in dysferlin-deficient mice and may require combination therapies that target membrane stability to achieve a functional improvement in skeletal muscle.

  19. Purification and characterization of a novel thermoacid-stable fibrinolytic enzyme from Staphylococcus sp. strain AJ isolated from Korean salt-fermented Anchovy-joet.

    PubMed

    Choi, Nack-Shick; Song, Jae Jun; Chung, Dong-Min; Kim, Young Jae; Maeng, Pil Jae; Kim, Seung-Ho

    2009-03-01

    A novel fibrinolytic enzyme (AJ) was purified from Staphylococcus sp. strain AJ screened from Korean salt-fermented Anchovy-jeot. Relative molecular weight of AJ was determined as 26 kDa by using SDS-PAGE and fibrin zymography. Based on a 2D gel, AJ was found to consist of three active isoforms (pI 5.5-6.0) with the same N-terminal amino acid sequence. AJ exhibited optimum pH and temperature at 2.5-3.0 and 85 degrees C, respectively. AJ kept 85% of the initial activity after heating at 100 degrees C for 20 min on the zymogram gel. The Michaelis constant (K (m)) and K (cat) values of AJ towards alpha-casein were 0.38 mM and 19.73 s(-1), respectively. AJ cleaved the A alpha-chain of fibrinogen but did not affect the B beta- and gamma-chains, indicating that it is an alpha-fibrinogenase. The fibrinolytic activity was inhibited by diisopropyl fluorophosphate, indicating AJ is a serine protease. Interestingly, AJ was very stable at acidic condition, SDS, and heat (100 degrees C), whereas it was easily degraded at neutral and alkaline conditions. In particular, AJ formed an active homo-dimer in the pH range from 7.0 to 8.0. To our knowledge, a similar combination of acid and heat stability has not yet been reported for other fibrinolytic enzymes.

  20. Modulation of Intercellular Junctions by Cyclic-ADT Peptides as a Method to Reversibly Increase Blood-Brain Barrier Permeability

    PubMed Central

    Laksitorini, Marlyn D.; Kiptoo, Paul K.; On, Ngoc H.; Thliveris, James A.; Miller, Donald W.; Siahaan, Teruna J.

    2015-01-01

    It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily due to the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules (e.g., 14C-mannitol, Gd-DTPA) to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in MDCK cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of 14C-mannitol to the brain about twofold compared to the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously (i.v.). In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain. PMID:25640479

  1. Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability.

    PubMed

    Laksitorini, Marlyn D; Kiptoo, Paul K; On, Ngoc H; Thliveris, James A; Miller, Donald W; Siahaan, Teruna J

    2015-03-01

    It is challenging to deliver molecules to the brain for diagnosis and treatment of brain diseases. This is primarily because of the presence of the blood-brain barrier (BBB), which restricts the entry of many molecules into the brain. In this study, cyclic-ADT peptides (ADTC1, ADTC5, and ADTC6) have been shown to modify the BBB to enhance the delivery of marker molecules [e.g., (14) C-mannitol, gadolinium-diethylenetriaminepentacetate (Gd-DTPA)] to the brain via the paracellular pathways of the BBB. The hypothesis is that these peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells forming the BBB to increase paracellular drug permeation. In vitro studies indicated that ADTC5 had the best profile to inhibit adherens junction resealing in Madin-Darby canine kidney cell monolayers in a concentration-dependent manner (IC50 = 0.3 mM) with a maximal response at 0.4 mM. Under the current experimental conditions, ADTC5 improved the delivery of (14) C-mannitol to the brain about twofold compared with the negative control in the in situ rat brain perfusion model. Furthermore, ADTC5 peptide increased in vivo delivery of Gd-DTPA to the brain of Balb/c mice when administered intravenously. In conclusion, ADTC5 has the potential to improve delivery of diagnostic and therapeutic agents to the brain.

  2. Safety and Preclinical Efficacy of Aerosol Pioglitazone on Lung Adenoma Prevention in A/J Mice.

    PubMed

    Seabloom, Donna E; Galbraith, Arthur R; Haynes, Anna M; Antonides, Jennifer D; Wuertz, Beverly R; Miller, Wendy A; Miller, Kimberly A; Steele, Vernon E; Suen, Chen S; O'Sullivan, M Gerard; Ondrey, Frank G

    2017-02-01

    Pioglitazone is a PPARγ agonist commonly prescribed for the clinical treatment of diabetes. We sought to expand its use to lung cancer prevention in a benzo[a]pyrene (B[a]P) mouse model with direct lung delivery via inhalation. Initially, we conducted inhalational toxicity experiments with 0, 15, 50, 150, and 450 μg/kg body weight/day pioglitazone in 40 A/J mice. We examined the animals for any physical toxicity and bronchoalveolar lavage fluids for inflammatory and cytotoxicity markers. Doses up to and including 450 μg/kg bw/d failed to demonstrate toxicity with aerosol pioglitazone. For chemoprevention experiments, A/J mice were randomized to treatment groups of inhaled doses of 0, 50, 150, or 450 μg/kg bw/d pioglitazone 1 or 8 weeks after the last dose of B[a]P. For the early treatment group, we found up to 32% decrease in lung adenoma formation with 450 μg/kg bw/d pioglitazone. We repeated the treatments in a second late-stage experiment and found up to 44% decreases in lung adenoma formation in doses of pioglitazone of 150 and 450 μg/kg bw/day. Both the early- and the late-stage experiments demonstrated biologically relevant and statistically significant decreases in adenoma formation. We conclude that aerosol pioglitazone is well-tolerated in the A/J mouse model and a promising chemoprevention agent for the lower respiratory tract. Cancer Prev Res; 10(2); 124-32. ©2016 AACR.

  3. Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias?

    PubMed

    Mezzano, Valeria; Sheikh, Farah

    2012-02-27

    Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.

  4. The Impact of Angelina Jolie (AJ)'s Story on Genetic Referral and Testing at an Academic Cancer Centre in Canada.

    PubMed

    Raphael, Jacques; Verma, Sunil; Hewitt, Paul; Eisen, Andrea

    2016-12-01

    In May 2013, Angelina Jolie revealed to the media that she had undergone preventive double mastectomy after testing positive for a BRCA1 gene mutation. Media coverage has been extensive, but it is not clear how such a personal story affected the public and cancer genetics clinics. We conducted a retrospective review using data from the clinical database of the Familial Cancer Program at our centre. The impact of Ms. Jolie's story on genetic counseling referrals and the appropriateness of such referrals were assessed and reported. The number of women referred for genetic counseling increased by 90 % after 6 months and remained high one year after AJ's story with an increase of 88 % from baseline. The number of women who qualified for genetic testing increased by 105 % after 6 months; this increase persisted but was somewhat lower after one year with an increase of 68 % from baseline. Furthermore the number of BRCA1/2 carriers identified increased by 110 % after 6 months and by 42 % after one year.The effect of Mrs. Jolie's story persisted one year after its release; however in the latter half of the year, the hereditary cancer risk of referred women was significantly lower than initially observed. The next challenge for our health care system will not only be to meet the increased demand for cancer genetic services in our region, but also to ensure that referrals and hence use of genetic counseling resources are appropriate.

  5. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  6. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    PubMed Central

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis. PMID:26507779

  7. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  8. Inhibitory effect of 5F on development of lung cancer in A/J mice

    PubMed Central

    Ye, Hua; Yang, Xiaoqing; Wu, Kefeng; Li, Li; Lv, Yingnian; Liu, Yi; Zheng, Xuebao

    2015-01-01

    The purpose of the study is to investigate the effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F) on the model of induced A/J mice lung cancer in A/J mice. The expressions of tumor-related molecules including P65 and Bcl-2 at protein level were examined using the immunohistochemical method (IHC). Side effects of 5F were also monitored. The results indicated that 5F significantly suppressed the development of B[a]P and NNK-induced lung cancer in vivo by facilitating cell apoptosis with minimal side effects. Compared to the expressions of P65 and Bcl-2 in model group, the levels were strongly attenuated both in blank and 5F injection groups. Moreover, P65 and Bcl-2 levels varied among different groups receiving 5F treatment. The expressions of P65 and Bcl-2 were much lower in groups receiving high-concentration 5F treatment than those with low-concentration 5F injection. Findings revealed that 5F inhibited the pathogenesis of lung cancer through accelerating apoptosis in a dose-dependent manner. PMID:26097604

  9. Surface water and groundwater characteristics in the wetlands of the Ajó River (Argentina)

    NASA Astrophysics Data System (ADS)

    Carol, E. S.; Dragani, W. C.; Kruse, E. E.; Pousa, J. L.

    2012-10-01

    Intertidal wetlands are complex hydrological environments in which surface water and groundwater interact periodically with tidal flows. This work analyzes how the tidal flow determines the hydrodynamics and salinity of surface water and groundwater at different depths in the intertidal wetland located in the marsh of the Ajó River. Water level and salinity measurements were obtained from the Ajó River, the channels discharging into the river and the phreatic aquifer. The results in the natural marsh indicate the presence of saline stratification and that the surface water-groundwater relationship varies with the tide. At low tide, the water table discharges into the surface watercourses, and when the high tide rises above the regional groundwater discharge level, the tidal flow contributes to the water table, which causes an increase in salinity in surface water and groundwater. When the high tide does not rise above the discharge level, the tidal flow only enters the groundwater at the mouth section and the salinity of the surface water and groundwater decreases from low tide to high tide. In the marsh areas excluded from the tidal cycle due to the presence of floodgates, the water table always discharges into the canals, and in the surface water and groundwater there is no presence of saline stratification. The results obtained make it possible to generate a conceptual model of hydrological behaviour which shows the hydrodynamic and hydrochemical complexity of intertidal wetlands.

  10. Formin-mediated actin polymerization at cell–cell junctions stabilizes E-cadherin and maintains monolayer integrity during wound repair

    PubMed Central

    Rao, Megha Vaman; Zaidel-Bar, Ronen

    2016-01-01

    Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair. PMID:27440924

  11. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction

    PubMed Central

    Van Itallie, Christina M.; Tietgens, Amber Jean; Krystofiak, Evan; Kachar, Bechara; Anderson, James M.

    2015-01-01

    Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin. PMID:26063734

  12. Butylated hydroxyanisole and lung tumor development in A/J mice

    SciTech Connect

    Witschi, H.R.; Doherty, D.G.

    1984-01-01

    A diet containing 0.75% butylated hydroxyanisole (BHA) did not enhance the development of lung tumors in A/J mice if fed for 8 weeks after administration of urethane, benzo(a)pyrene (B(a)P), or dimethylnitrosamine (DMN). Prefeeding animals with BHA partially protected animals against the tumorigenic effect of urethane and B(a)P. Partial protection was also seen in animals given B(a)P and then exposed to BHA in the diet. The two isomers of BHA 3-tert.-butyl-4-hydroxyanisole and 2-tert.-butyl-4-hydroxyanisole) were synthesized and injected ip. They failed to enhance lung tumor development. It is concluded that BHA is not a promoting agent as is butylated hydroxytoluene (BHT) for lung tumors in mice. One possible explanation is that BHA in the diet does not produce the extensive cell proliferation seen in the lungs of mice fed BHT. 19 references, 5 tables.

  13. Indian Ocean Triple Junction

    SciTech Connect

    Tapscott, C.R.; Patriat, P.; Fisher, R.L.; Sclater, J.G.; Hoskins, H.; Parsons, B.

    1980-09-10

    The boundaries of three major plates (Africa, India, and Antarctica) meet in a triple junction in the Indian Ocean near 25 /sup 0/S, 70 /sup 0/E. Using observed bathymetry and magnetic anomalies, we locate the junction to within 5 km and show that it is a ridge-ridge-ridge type. Relative plate motion is N60 /sup 0/E at 50 mm/yr (full rate) across the Central Indian Ridge, N47 /sup 0/E at 60 mm/yr across the Southeast Indian Ridge, and N3 /sup 0/W at 15 mm/yr across te Southwest Indian Ridge; the observed velocity triangle is closed. Poles of instantaneous relative plate motion are determined for all plate pairs. The data in the South Atlantic and Indian oceans are consistent with a rigid African plate without significant internal deformation. Two of the ridges at the triple junction are normal midocean spreading centers with well-defined median valleys. The Southwest Indian Ridge, however, has a peculiar morphology near the triple junction, that of an elongate triangular deep, with the triple junction at its apex. The floor of the deep represents crust formed at the Southwest Indian Ridge, and the morphology is a consequence of the evolution of the triple junction and is similar to that at the Galapagos Triple Junction. Though one cannot determine with precision the stability conditions at the triple junction, the development of the junction over the last 10 m.y. can be mapped, and the topographic expressions of the triple junction traces may be detected on the three plates.

  14. Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna

    PubMed Central

    Burguener, Germán F.; Maldonado, Marcos J.; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A.

    2014-01-01

    Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations. PMID:24503991

  15. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  16. DIBENZO[A,L]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN A/J AND P53-DEFICIENT MICE

    EPA Science Inventory

    DIBENZO[a,l]PYRENE INDUCTION OF ERYTHROCYTE MICRONUCLEI IN AlJ AND P53-DEFICIENT MICE

    Male A/J and C57Bl/6 background p53+/+, p53+/- and p53-/- mice were treated with dibenzo[a,l]pyrene (DB[a,l]P), and micronucleus (MN) frequencies were measured in erythrocytes from bone ...

  17. Junctional Adhesion Molecule-A Is Required for Hematogenous Dissemination of Reovirus

    PubMed Central

    Antar, Annukka A. R.; Konopka, Jennifer L.; Campbell, Jacquelyn A.; Henry, Rachel A.; Perdigoto, Ana L.; Carter, Bruce D.; Pozzi, Ambra; Abel, Ty W.; Dermody, Terence S.

    2009-01-01

    SUMMARY Diverse families of viruses bind immunoglobulin superfamily (IgSF) proteins located in tight junctions (TJs) and adherens junctions of epithelium and endothelium. However, little is known about the roles of these receptors in the pathogenesis of viral disease. Junctional adhesion molecule-A (JAM-A) is an IgSF protein that localizes to TJs and serves as a receptor for mammalian reovirus. We inoculated wild-type (wt) and isogenic JAM-A−/− mice perorally with reovirus and found that JAM-A is dispensable for viral replication in the intestine but required for systemic dissemination. Reovirus replication in the brain and tropism for discrete neural regions are equivalent in wt and JAM-A−/− mice following intracranial inoculation, suggesting a function for JAM-A in reovirus spread to extra-intestinal sites. JAM-A promotes reovirus infection of endothelial cells, providing a conduit for the virus into the bloodstream. These findings indicate that a broadly expressed IgSF viral receptor specifically mediates hematogenous dissemination in the host. PMID:19154988

  18. Self-Organizing Actomyosin Patterns on the Cell Cortex at Epithelial Cell-Cell Junctions

    PubMed Central

    Moore, Thomas; Wu, Selwin K.; Michael, Magdalene; Yap, Alpha S.; Gomez, Guillermo A.; Neufeld, Zoltan

    2014-01-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  19. Relative susceptibilities of inbred mouse strains C57BL/6 and A/J to infection with Histoplasma capsulatum.

    PubMed Central

    Wu-Hsieh, B

    1989-01-01

    Differences in the 30-day survival of Histoplasma capsulatum after intravenous injection indicated that the A/J strain of inbred mouse was more resistant to experimental infection than was the C57BL/6 strain. CFU from the spleens of infected animals increased during the first week after injection but gradually declined over the next 3 weeks. The CFU per gram of tissue in the C57BL/6 animals were 10- to 100-fold higher than were those in the A/J mice during the time between 7 and 28 days after infection. The units of gamma interferon (IFN-gamma) in supernatants of spleen cells stimulated with heat-killed yeast cells of H. capsulatum reached a peak at the time of the largest number of CFU per gram of tissue. The titers of IFN-gamma at days 3 to 5 were higher in the A/J mice than they were in the C57BL/6 mice, but from days 7 to 28, the titers of IFN-gamma were not correlated with the more efficient clearance of the fungus from the spleens of A/J mice. The L3T4+ spleen cells were shown to be active IFN-gamma producers. Treatment of Histoplasma-infected mice with anti-IFN-gamma antibody resulted in much larger tissue burdens of the fungus in the lungs and spleens of treated animals than in untreated animals. There was no marked difference in the result of treatment with anti-IFN-gamma antibody between A/J and C57BL/6 mice. Treatment of Histoplasma-infected mice with recombinant murine IFN-gamma did not alter the course of infection in either inbred strain of mouse. PMID:2509369

  20. A survey of classical and quantum interpretations of experiments on Josephson junctions at very low temperatures

    NASA Astrophysics Data System (ADS)

    Blackburn, James A.; Cirillo, Matteo; Grønbech-Jensen, Niels

    2016-02-01

    For decades following its introduction in 1968, the resistively and capacitively shunted junction (RCSJ) model, sometimes referred to as the Stewart-McCumber model, was successfully applied to study the dynamics of Josephson junctions embedded in a variety of superconducting circuits. In 1980 a theoretical conjecture by A.J. Leggett suggested a possible new and quite different behavior for Josephson junctions at very low temperatures. A number of experiments seemed to confirm this prediction and soon it was taken as given that junctions at tens of millikelvins should be regarded as macroscopic quantum entities. As such, they would possess discrete levels in their effective potential wells, and would escape from those wells (with the appearance of a finite junction voltage) via a macroscopic quantum tunneling process. A zeal to pursue this new physics led to a virtual abandonment of the RCSJ model in this low temperature regime. In this paper we consider a selection of essentially prototypical experiments that were carried out with the intention of confirming aspects of anticipated macroscopic quantum behavior in Josephson junctions. We address two questions: (1) How successful is the non-quantum theory (RCSJ model) in replicating those experiments? (2) How strong is the evidence that data from these same experiments does indeed reflect macroscopic quantum behavior?

  1. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  2. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures.

    PubMed

    Franke, Werner W; Rickelt, Steffen

    2011-12-01

    Using biochemical as well as light- and electron-microscopic immunolocalization methods, in cultures of unicellular human blood tumor cells, we have studied the phenomenon of spontaneous and cumulative syntheses of certain epithelial proteins and glycoproteins and their assemblies to two major kinds of novel cell-cell junctions, adhering junctions (AJs) and junctions based on the epithelial cell adhesion molecule (EpCAM). More than two decades, we have selected and characterized clonal sublines of multipotential hematopoietic K562 cells, which are enriched in newly formed AJs based on cis-clusters of desmoglein Dsg2, in some sublines accompanied by desmocollin Dsc2. Both desmosomal cadherins can be anchored in a submembranous plaque containing plakoglobin and plakophilins Pkp2 and Pkp3, with or without other armadillo proteins and desmoplakin. Also, these cells are often connected by an additional, extended junction system, in which the transmembrane epithelial glycoprotein EpCAM is associated with a cytoplasmic plaque rich in several actin-binding proteins such as afadin, α-actinin, ezrin and vinculin. Both kinds of junctions contribute to connections of K562 cells into epithelioid monolayers or even three-dimensional, tissue-like structures, thus markedly changing the cell biological nature and behavior of the resulting tumor subforms (mesenchymal-epithelial transitions). We discuss molecular mechanisms involved in the formation and function of these junctions, also with respect to tumor spread and metastasis, as well as diagnostic and therapeutic consequences.

  3. Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatic hydrocarbons.

    PubMed Central

    Nesnow, S; Mass, M J; Ross, J A; Galati, A J; Lambert, G R; Gennings, C; Carter, W H; Stoner, G D

    1998-01-01

    The binary, ternary, quaternary, and quintary interactions of a five-component mixture of carcinogenic environmental polycyclic aromatic hydrocarbons (PAHs) using response surface analyses are described. Initially, lung tumor dose-response curves in strain A/J mice for each of the individual PAHs benzo[a]pyrene (B[a]P), benzo[b]fluoranthene (B[b]F), dibenz[a,h]anthracene (DBA), 5-methylchrysene (5MC), and cyclopenta[cd]pyrene (CPP) were obtained. From these data, doses were selected for the quintary mixture study based on toxicity, survival, range of response, and predicted tumor yields. The ratios of doses among PAHs were designed to simulate PAH ratios found in environmental air and combustion samples. Quintary mixtures of B[a]P, B[b]F, DBA, 5MC, and CPP were administered to male strain A/J mice in a 2(5) factorial 32-dose group dosing scheme (combinations of five PAHs each at either high or low doses) and lung adenomas were scored. Comparison of observed lung adenoma formation with that expected from additivity identified both greater than additive and less than additive interactions that were dose related i.e., greater than additive at lower doses and less than additive at higher doses. To identify specific interactions, a response surface analysis using response addition was applied to the tumor data. This response surface model contained five dose, ten binary, ten ternary, five quaternary, and one quintary parameter. This analysis produced statistically significant values of 16 parameters. The model and model parameters were evaluated by estimating the dose-response relationships for each of the five PAHs. The predicted dose-response curves for all five PAHs indicated a good estimation. The binary interaction functions were dominated for the most part by DBA and were inhibitory. The response surface model predicted, to a significant degree, the observed lung tumorigenic responses of the quintary mixtures. These data suggest that although interactions between

  4. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation

    SciTech Connect

    Sheth, Bhavwanti; Nowak, Rachael L.; Anderson, Rebecca; Kwong, Wing Yee; Papenbrock, Thomas; Fleming, Tom P.

    2008-11-01

    Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.

  5. cAMP Promotes Cell Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton Remodeling: Implications in Skin Wound Healing.

    PubMed

    Kim, Mi Ok; Ryu, Jung Min; Suh, Han Na; Park, Soo Hyun; Oh, Yeon-Mok; Lee, Sang Hun; Han, Ho Jae

    2015-11-01

    Stem cells have attracted great interest for their therapeutic capacity in tissue regeneration. Cyclic adenosine 3',5'-monophosphate (cAMP), existing in high concentration at wound sites, mediated various signaling pathways such as cytoskeleton dynamics, cell adhesion, and cell migration in stem cells, which suggest the critical roles of cAMP in the wound healing process through functional regulation of stem cells. However, the mechanisms behind the effect of cAMP on mouse embryonic stem cell (mESC) motility and its roles on skin wound healing remain to be fully elucidated. In the present study, 8-Bromo cAMP-treated mESCs showed significant wound closure and improved neovascularization. Moreover, 8-Bromo cAMP stimulated mESC migration into the wound bed. 8-Bromo cAMP also increased ESC motility in in vitro migration assay. 8-Bromo cAMP induced myosin light chain phosphorylation through Rac1 and Cdc42 signaling, which were involved in 8-Bromo cAMP-induced decrease in expression of junction proteins (connexin 43, E-cadherin, and occludin) at the plasma membrane. Subsequently, 8-Bromo cAMP induced the disruption of cell junctions (including gap junctions, adherens junctions, and tight junctions), which reduced the function of the gap junctions and cell adhesion. In addition, 8-Bromo cAMP-induced Rac1 and Cdc42 activation increased Arp3, TOCA, PAK, and N-WASP expression, but decreased cofilin phosphorylation level, which elicited actin cytoskeleton remodeling. In contrast to the control, 8-Bromo cAMP evoked a substantial migration of cells into the denuded area, which was blocked by the small interfering RNAs of the signaling pathway-related molecules or by inhibitors. In conclusion, cAMP enhanced the migration of mESCs through effective coordination of junctional disruption and actin cytoskeleton remodeling, which increased the wound healing capacity of ESCs.

  6. TLR4 Signaling Is Coupled to SRC Family Kinase Activation, Tyrosine Phosphorylation of Zonula Adherens Proteins, and Opening of the Paracellular Pathway in Human Lung Microvascular Endothelia*

    PubMed Central

    Gong, Ping; Angelini, Daniel J.; Yang, Shiqi; Xia, Guanjun; Cross, Alan S.; Mann, Dean; Bannerman, Douglas D.; Vogel, Stefanie N.; Goldblum, Simeon E.

    2008-01-01

    Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein-tyrosine kinases (PTKs) and their substrates required for LPS-induced protein tyrosine phosphorylation and opening of the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls). LPS disrupted barrier integrity in a dose- and time-dependent manner, and prior broad spectrum PTK inhibition was protective. LPS increased tyrosine phosphorylation of zonula adherens proteins, VE-cadherin, γ-catenin, and p120ctn. Two SRC family PTK (SFK)-selective inhibitors, PP2 and SU6656, blocked LPS-induced increments in tyrosine phosphorylation of VE-cadherin and p120ctn and paracellular permeability. In HMVEC-Ls, c-SRC, YES, FYN, and LYN were expressed at both mRNA and protein levels. Selective small interfering RNA-induced knockdown of c-SRC, FYN, or YES diminished LPS-induced SRC Tyr416 phosphorylation, tyrosine phosphorylation of VE-cadherin and p120ctn, and barrier disruption, whereas knockdown of LYN did not. For VE-cadherin phosphorylation, knockdown of either c-SRC or FYN provided total protection, whereas YES knockdown was only partially protective. For p120ctn phosphorylation, knockdown of FYN, c-SRC, or YES each provided comparable but partial protection. Toll-like receptor 4 (TLR4) was expressed both on the surface and intracellular compartment of HMVEC-Ls. Prior knockdown of TLR4 blocked both LPS-induced SFK activation and barrier disruption. These data indicate that LPS recognition by TLR4 activates the SFKs, c-SRC, FYN, and YES, which, in turn, contribute to tyrosine phosphorylation of zonula adherens proteins to open the endothelial paracellular pathway. PMID:18326860

  7. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  8. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  9. Idiotypic manipulation in mice: BALB/c mice can express the crossreactive idiotype of A/J mice.

    PubMed Central

    Moser, M; Leo, O; Hiernaux, J; Urbain, J

    1983-01-01

    The response of A/J mice to arsonate-coupled keyhole limpet hemocyanin is characterized by a crossreactive idiotype (CRIA). CRIA+ antibodies are restricted to the Igh-Ic haplotype and are never expressed in BALB/c mice after immunization with antigen. Studies at the DNA level suggest that the gene encoding the CRIA heavy chain in A/J mice is probably absent in the genome of BALB/c mice. Despite this, using the immunization cascade tool, we have been able to induce the expression of CRIA+ antibodies in BALB/c mice. These studies led to an apparent paradox, whose understanding will provide new insights into the regulatory mechanisms of the immune system. We suggest that clones secreting CRIA-like Igs in BALB/c mice are "somatic variants" that could arise from gene conversion events. PMID:6576348

  10. Isolation and cultivation of metabolically competent alveolar epithelial cells from A/J mice.

    PubMed

    Hansen, Tanja; Chougule, Anil; Borlak, Jürgen

    2014-08-01

    The A/J mouse strain is used in lung cancer studies. To enable mechanistic investigations the isolation and cultivation of alveolar epithelial cells (AECs) is desirable. Based on four different protocols dispase digestion of lung tissue was best and yielded 9.3 ± 1.5 × 10(6) AECs. Of these 61 ± 13% and 43 ± 5% were positive for AP and NBT staining, respectively. Purification by discontinuous Percoll gradient centrifugation did not change this ratio; however, reduced the total cell yield to 4.4 ± 1.1 × 10(6) AECs. Flow cytometry of lectin bound AECs determined 91 ± 7% and 87 ± 5% as positive for Helix pomatia and Maclura pomifera to evidence type II pneumocytes. On day 3 in culture the ethoxyresorufin-O-demethylase activity was 251 ± 80 pmol/4 h × 1.5 × 10(6) and the production of androstenedione proceed at 243.5 ± 344.4 pmol/24 h × 1.5 × 10(6) AECs. However, 6-α, 6-β and 16-β-hydroxytestosterone were produced about 20-fold less as compared to androstenedione and the production of metabolites depended on the culture media supplemented with 2% mouse serum or 10% FCS. Finally, by RT-PCR expression of CYP genes was confirmed in lung tissue and AECs; a link between testosterone metabolism and CYP2A12, 3A16 and 2B9/10 expression was established. Taken collectively, AECs can be successfully isolated and cultured for six days while retaining metabolic competence.

  11. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization.

    PubMed

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E; Jiang, Wen G; Harding, Keith G; Adams, Ralf H; Nobes, Catherine D; Martin, Paul

    2015-11-17

    For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.

  12. JAM-A and aPKC: A close pair during cell-cell contact maturation and tight junction formation in epithelial cells.

    PubMed

    Ebnet, Klaus

    2013-01-01

    Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of cell-cell contacts and the development of tight junctions (TJs). In our recent study we found that JAM-A is localized at primordial, spot-like cell-cell junctions (pAJs) in a non-phosphorylated form. After the recruitment of the PAR-aPKC complex and its activation at pAJs, aPKC phosphorylates JAM-A at Ser285 to promote the maturation of immature junctions. In polarized epithelial cells, aPKC phosphorylates JAM-A selectively at the TJs to maintain the barrier function of TJs. Thus, through mutual regulation, JAM-A and aPKC form a functional unit that regulates the establishment of barrier-forming junctions in vertebrate epithelial cells.

  13. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  14. The Agaricus blazei-Based Mushroom Extract, Andosan™, Protects against Intestinal Tumorigenesis in the A/J Min/+ Mouse

    PubMed Central

    Eide, Dag M.; Tangen, Jon M.; Haugen, Mads H.; Mirlashari, Mohammad R.; Paulsen, Jan E.

    2016-01-01

    Background The novel A/J Min/+ mouse, which is a model for human Familial Adenomatous Polyposis (FAP), develops spontaneously multiple adenocarcinomas in the colon as well as in the small intestine. Agaricus blazei Murill (AbM) is an edible Basidiomycetes mushroom that has been used in traditional medicine against cancer and other diseases. The mushroom contains immunomodulating β-glucans and is shown to have antitumor effects in murine cancer models. Andosan™ is a water extract based on AbM (82%), but it also contains the medicinal Basidiomycetes mushrooms Hericeum erinaceus and Grifola frondosa. Methods and findings Tap water with 10% Andosan™ was provided as the only drinking water for 15 or 22 weeks to A/J Min/+ mice and A/J wild-type mice (one single-nucleotide polymorphism (SNP) difference), which then were exsanguinated and their intestines preserved in formaldehyde and the serum frozen. The intestines were examined blindly by microscopy and also stained for the tumor-associated protease, legumain. Serum cytokines (pro- and anti-inflammatory, Th1-, Th2 -and Th17 type) were measured by Luminex multiplex analysis. Andosan™ treated A/J Min/+ mice had a significantly lower number of adenocarcinomas in the intestines, as well as a 60% significantly reduced intestinal tumor load (number of tumors x size) compared to control. There was also reduced legumain expression in intestines from Andosan™ treated animals. Moreover, Andosan™ had a significant cytotoxic effect correlating with apoptosis on the human cancer colon cell line, Caco-2, in vitro. When examining serum from both A/J Min/+ and wild type mice, there was a significant increase in anti-tumor Th1 type and pro-inflammatory cytokines in the Andosan™ treated mice. Conclusions The results from this mouse model for colorectal cancer shows significant protection of orally administered Andosan™ against development of intestinal cancer. This is supported by the finding of less legumain in intestines

  15. Intercellular junctions in myriapods.

    PubMed

    Dallai, R; Bigliardi, E; Lane, N J

    1990-01-01

    Tissue from the intestinal tract of myriapods, including millipedes, centipedes and pauropods were examined in tracer-impregnated sections and freeze-fracture replicas. The foregut and hindgut of all three classes exhibit pleated septate junctions; these display undulating intercellular ribbons in thin sections. In replicas they show discrete intramembranous particle (IMP) arrays aligned in rows in parallel; with one another. The tissues of the hindgut also possess scalariform junctions, characterized by cross-striated intercellular clefts in sections and IMP-enriched membranes in replicas. Gap junctions occur in all groups, but they are atypical in replicas in that their component IMPs do not always fracture onto the E face, as is characteristic of other arthropods; some IMPs cleave to the P face and others to the E face. The midgut of these organisms exhibits smooth septate junctions with conventional straight septal ribbons and occasional interseptal columns. However the intramembranous appearance in replicas is variable, particularly in centipedes, in that the rows of IMPs in chemically-unfixed propanecryofixed tissues, are prominent and adhere preferentially to the E face, with complementary P face grooves, while in fixed tissues the IMPs are much less distinct and fracture to either P face or E face. They tend not to protrude far beyond the mid-plane of the membrane bilayer and lie in rows which commonly take on the form of a network. Individual rows of the network sometimes curve to run beside a second row, over a short distance, before bending away into another part of the network. The aligned particle rows, which are much more prominent in millipedes, where they frequently lie in close parallel appositions, do not fuse into ridges as often occurs in insect tissues. The myriapod junctions, therefore, are of the same general kind as are found in the gut tract of other arthropod groups, but differ with respect to the subtleties of their intramembranous

  16. Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis

    PubMed Central

    Gungor-Ordueri, N Ece; Celik-Ozenci, Ciler; Cheng, C Yan

    2015-01-01

    Ezrin, radixin, moesin and merlin (ERM) proteins are highly homologous actin-binding proteins that share extensive sequence similarity with each other. These proteins tether integral membrane proteins and their cytoplasmic peripheral proteins (e.g., adaptors, nonreceptor protein kinases and phosphatases) to the microfilaments of actin-based cytoskeleton. Thus, these proteins are crucial to confer integrity of the apical membrane domain and its associated junctional complex, namely the tight junction and the adherens junction. Since ectoplasmic specialization (ES) is an F-actin-rich testis-specific anchoring junction-a highly dynamic ultrastructure in the seminiferous epithelium due to continuous transport of germ cells, in particular spermatids, across the epithelium during the epithelial cycle-it is conceivable that ERM proteins are playing an active role in these events. Although these proteins were first reported almost 25 years and have since been extensively studied in multiple epithelia/endothelia, few reports are found in the literature to examine their role in the actin filament bundles at the ES. Studies have shown that ezrin is also a constituent protein of the actin-based tunneling nanotubes (TNT) also known as intercellular bridges, which are transient cytoplasmic tubular ultrastructures that transport signals, molecules and even organelles between adjacent and distant cells in an epithelium to coordinate cell events that occur across an epithelium. Herein, we critically evaluate recent data on ERM in light of recent findings in the field in particular ezrin regarding its role in actin dynamics at the ES in the testis, illustrating additional studies are warranted to examine its physiological significance in spermatogenesis. PMID:25652626

  17. Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin

    PubMed Central

    Bibert, Stéphanie; Ayari, Hélène; Riveline, Daniel; Concord, Evelyne; Hermant, Bastien; Vernet, Thierry; Gulino-Debrac, Danièle

    2008-01-01

    Specifically expressed at intercellular adherens junctions of endothelial cells, VE-cadherin is a receptor that exhibits particular self-association properties. Indeed, in vitro studies demonstrated that the extracellular part of VE-cadherin elaborates Ca++-dependent hexameric structures. We hypothesized that this assembly could be at the basis of a new cadherin-mediated cell-cell adhesion mechanism. To verify this assumption, we first demonstrated that VE-cadherin can elaborate hexamers at the cell surface of confluent endothelial cells. Second, mutations were introduced within the extracellular part of VE-cadherin to destabilize the hexamer. Following an in vitro screening, three mutants were selected, among which, one is able to elaborate only dimers. The selected mutations were expressed as C-terminal Green Fluorescent Protein fusions in CHO cells. Despite their capacity to elaborate nascent cell-cell contacts, the mutants seem to be rapidly degraded and or internalized. Altogether, our results suggest that the formation of VE-cadherin hexamers protects this receptor and might allow the elaboration of mature endothelial cell-cell junctions. PMID:18343874

  18. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo.

    PubMed

    Shaykhiev, Renat; Otaki, Fouad; Bonsu, Prince; Dang, David T; Teater, Matthew; Strulovici-Barel, Yael; Salit, Jacqueline; Harvey, Ben-Gary; Crystal, Ronald G

    2011-03-01

    The apical junctional complex (AJC), composed of tight and adherens junctions, maintains epithelial barrier function. Since cigarette smoking and chronic obstructive pulmonary disease (COPD), the major smoking-induced disease, are associated with increased lung epithelial permeability, we hypothesized that smoking alters the transcriptional program regulating airway epithelial AJC integrity. Transcriptome analysis revealed global down-regulation of physiological AJC gene expression in the airway epithelium of healthy smokers (n = 59) compared to nonsmokers (n = 53) in association with changes in canonical epithelial differentiation pathways such as PTEN signaling accompanied by induction of cancer-related AJC components. The overall expression of AJC-related genes was further decreased in COPD smokers (n = 23). Exposure of airway epithelial cells to cigarette smoke extract in vitro resulted in down-regulation of several AJC genes paralleled by decreased transepithelial resistance. Thus, cigarette smoking induces transcriptional reprogramming of airway epithelial AJC architecture from its physiological pattern necessary for barrier function toward a disease-associated molecular phenotype.

  19. Involvement of the helix-loop-helix protein Id-1 in the glucocorticoid regulation of tight junctions in mammary epithelial cells.

    PubMed

    Woo, P L; Cercek, A; Desprez, P Y; Firestone, G L

    2000-09-15

    Mammary epithelial cell-cell junctions undergo morphological and structural differentiation during pregnancy and lactation, but little is known about the transcriptional regulators that are involved in this process. In Con8 mammary epithelial tumor cells, we have previously documented that the synthetic glucocorticoid, dexamethasone, induces the reorganization of the tight junction and adherens junction and stimulates the monolayer transepithelial electrical resistance (TER), a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment rapidly and strongly stimulated the level of the Id-1 protein, which is a serum-inducible helix-loop-helix transcriptional repressor. The steroid induction of Id-1 was robust by 4 h of treatment and maintained over a 24-h period. Isopropyl-1-thio-beta-d-galactopyranoside-inducible expression of exogenous Id-1 in Con8 cells was shown to strongly facilitate the dexamethasone induction of TER in the absence of serum without altering the dexamethasone-dependent reorganization of ZO-1, beta-catenin, or F-actin. Ectopic overexpression of Id-1 in the SCp2 nontumorigenic mammary epithelial cells, which does not undergo complete dexamethasone-dependent tight junction reorganization, enhanced the dexamethasone-induced ZO-1 tight junction localization and stimulated the monolayer TER. Moreover, antisense reduction of Id-1 protein in SCp2 cells prevented the apical junction reorganization and dexamethasone-stimulated TER. Our results implicate Id-1 as acting as a critical regulator of mammary epithelial cell-cell interactions at an early step in the glucocorticoid-dependent signaling pathway that controls tight junction integrity.

  20. Wear Protection of AJ62 Mg Engine Blocks using Plasma Electrolytic Oxidation Process

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2011-12-01

    In order to reduce the fuel consumption and pollution, automotive companies are developing magnesium-intensive components. However, due to the low wear resistance of the magnesium (Mg) alloys, Mg cylinder bores are vulnerable to the sliding wear attack. In this thesis, two approaches were used to protect the cylinder bores, made of a new developed Mg engine alloy AJ62 (MgA16Mn0.34Sr2). The first one was to use a Plasma Electrolytic Oxidation (PEO) process to produce oxide coatings on the Mg bores. The wear properties of the PEO coatings were evaluated by sliding wear tests under the boundary lubrication condition at the room and elevated temperatures. It was found that due to the substrate softening and the vaporization loss of the lubricant, the tribological properties of the PEO coatings were deteriorated at the elevated temperature. In order to optimize the PEO process, a statistical method (Response surface method) was used to analyze the effects of the 4 main PEO process parameters with 2 levels for each and their interactions on the tribological properties of the PEO coatings at the room and elevated temperatures, individually. A cylinder liner made of an economical metal-matrix composite (MMC) was another approach to improve the wear resistance of the Mg cylinder bore. In this thesis, an A1383/SiO2 MMC was designed to replace the expensive Alusil alloy used in the BMW Mg/Al composite engine to build the cylinder liner. To further increase the wear resistance of the MMC, PEO process was also used to form an oxide coating on the MMC. The effects of the SiO 2 content and coating thickness on the tribological properties of the MMC were studied. To evaluate the wear properties of the optimal PEO coated Mg coupons and the MMC with the oxide coatings, Alusil and cast iron, currently used on the cylinder bores of the commercial aluminum engines, were used as reference materials. The optimal PEO coated Mg coupons and the oxidized MMC showed their advantages over the

  1. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    SciTech Connect

    Imamura, Masafumi; Kojima, Takashi . E-mail: ktakashi@sapmed.ac.jp; Lan, Mengdong; Son, Seiichi; Murata, Masaki; Osanai, Makoto; Chiba, Hideki; Hirata, Koichi; Sawada, Norimasa

    2007-05-15

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions in fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.

  2. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  3. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.

  4. Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease.

    PubMed Central

    Brieland, J.; Freeman, P.; Kunkel, R.; Chrisp, C.; Hurley, M.; Fantone, J.; Engleberg, C.

    1994-01-01

    The role of host immune responses in the pathogenesis of Legionnaires' disease is incompletely understood, due in part to the current lack of an animal model that is both susceptible to replicative Legionella pneumophila-induced lung infection and for which species-specific immunological reagents are available. We have developed a model of replicative L. pneumophila lung infection in intratracheally inoculated A/J mice. L. pneumophila was obtained in the exponential growth phase and inoculated into the trachea of 6- to 8-week-old female A/J mice. Microbiological and histopathological evidence of infection was demonstrated in mice inoculated with 10(6) colony-forming units. Development of an acute pneumonia that resembled human Legionnaires' disease coincided with exponential growth of the bacteria in the lung 24 to 48 hours after intratracheal inoculation of L. pneumophila. This was associated with increased plasma levels of interferon-gamma at 24 hours after inoculation. After 48 hours, the bacteria were gradually eliminated from the lung over the next 5 days, corresponding with resolution of the inflammatory response in the lung, thereby mimicking the outcome frequently seen in the immunocompetent human host. Treatment of animals with anti-interferon-gamma antibody enhanced bacterial replication and disease progression, indicating an important role of host immune response in resolution of the infection. Because of the availability of murine-specific reagents, this model of replicative L. pneumophila lung infection in A/J mice after intrapulmonary inoculation of L. pneumophila potentially provides an important tool for future studies investigating the role of host immune responses in the pathogenesis of Legionnaires' disease in the immunocompetent host. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7992856

  5. Effects of buspirone on posthypoxic ventilatory behavior in the C57BL/6J and A/J mouse strains.

    PubMed

    Yamauchi, Motoo; Dostal, Jesse; Kimura, Hiroshi; Strohl, Kingman P

    2008-08-01

    Buspirone, a partial agonist of the serotonergic 5-HT1A receptor, improves breathing irregularities in humans with Rett syndrome or brain stem injury. The purpose of this study was to examine whether buspirone alters posthypoxic ventilatory behavior in C57BL/6J (B6) and A/J mouse strains. Measurements of ventilatory behavior were collected from unanesthetized adult male mice (n=6 for each strain) using the plethysmographic method. Mice were given intraperitoneal injections of vehicle or several doses of buspirone and exposed to 2 min of hypoxia (10% O2) followed by rapid reoxygenation (100% O2). Twenty minutes later, mice were tested for hypercapnic response (8% CO(2)-92% O2). On a separate day, mice were injected with the 5-HT1A receptor antagonist 4-iodo-N-{2-[4-(methoxyphenyl)-1-piperazinyl] ethyl}-N-2-pyridinylbenzamide (p-MPPI) before the injection of buspirone, and measurements were repeated. In separate studies, arterial blood-gas analysis was performed for each strain (n=12 in B6 and 10 in A/J) with buspirone or vehicle. In both strains, buspirone stimulated ventilation at rest. In the B6 mice, the hypoxic response was unchanged, but the response to hypercapnia was reduced with buspirone (5 mg/kg; P<0.05). With reoxygenation, vehicle-treated B6 exhibited periodic breathing and greater variation in ventilation compared with A/J (P<0.01). In B6 animals, >or=3 mg/kg of buspirone reduced variation and prevented the occurrence of posthypoxic periodic breathing. Both effects were reversed by p-MPPI. Treatment effect of buspirone was not explained by a difference in resting arterial blood gases. We conclude that buspirone improves posthypoxic ventilatory irregularities in the B6 mouse through its agonist effects on the 5-HT1A receptor.

  6. Comparative pulmonary carcinogenicity of inhaled beryllium A/J and C3H/HeJ mice

    SciTech Connect

    Nikula, K.J.; Belinsky, S.A.; Hoover, M.D.; Finch, G.L.

    1994-11-01

    The purpose of these investigations was to compare the pulomonary carcinogenicity of beryllium (Be) metal in A/J and C3H/HeJ mice, strains which are sensitive and resistant, respectively, to pulmonary neoplasia. Lesions in these mice will be used to study the molecular mechanisms of Be-induced carcinogenesis. Be, a metal that is generally negative in short-term genotoxicity assays, is a potent pulmonary carcinogen in F344/N rats. Although the epidemiological evidence is weak, Be is classified as a suspect human carcinogen.

  7. GATA6 reporter gene reveals myocardial phenotypic heterogeneity that is related to variations in gap junction coupling

    PubMed Central

    Rémond, Mathieu C.; Iaffaldano, Grazia; O'Quinn, Michael P.; Mezentseva, Nadejda V.; Garcia, Victor; Harris, Brett S.; Gourdie, Robert G.; Eisenberg, Carol A.

    2011-01-01

    This study examined transgenic mice whose expression of a β-galactosidase (lacZ) reporter is driven by a GATA6 gene enhancer. Previous investigations established that transcription of the transgene was associated with precardiac mesoderm and primary heart tube myocardium, which decreased progressively, so that its expression was no longer observed within ventricular myocardium by midgestation. Expression of this reporter in the adult was investigated for insights into myocyte homeostasis and cardiovascular biology. Morphometric analysis determined that <1% of myocytes, often found in small clusters, express this GATA6-associated reporter in the adult heart. LacZ expression was also found in the ascending aorta. Myocardial expression of the transgene was not associated with a proliferative phenotype or new myocyte formation, as lacZ-positive myocytes neither labeled with cell division markers nor following 5-bromodeoxyuridine pulse-chase experimentation. Despite exhibiting normal adherens junctions, these myocytes appeared to exhibit decreased connexin 43 gap junctions. Treatment with the gap junctional blocker heptanol both in vivo and in culture elevated myocardial β-galactosidase activity, suggesting that deficient gap junctional communication underlies expression of the transgenic reporter. LacZ expression within the myocardium was also enhanced in response to cryoinjury and isoproterenol-induced hypertrophy. These results reveal a previously uncharacterized phenotypic heterogeneity in the myocardium and suggest that decreased gap junctional coupling leads to induction of a signaling pathway that utilizes a unique GATA6 enhancer. Upregulation of lacZ reporter gene expression following cardiac injury indicates this transgenic mouse may serve as a model for examining the transition of the heart from healthy to pathological states. PMID:21908788

  8. GATA6 reporter gene reveals myocardial phenotypic heterogeneity that is related to variations in gap junction coupling.

    PubMed

    Rémond, Mathieu C; Iaffaldano, Grazia; O'Quinn, Michael P; Mezentseva, Nadejda V; Garcia, Victor; Harris, Brett S; Gourdie, Robert G; Eisenberg, Carol A; Eisenberg, Leonard M

    2011-11-01

    This study examined transgenic mice whose expression of a β-galactosidase (lacZ) reporter is driven by a GATA6 gene enhancer. Previous investigations established that transcription of the transgene was associated with precardiac mesoderm and primary heart tube myocardium, which decreased progressively, so that its expression was no longer observed within ventricular myocardium by midgestation. Expression of this reporter in the adult was investigated for insights into myocyte homeostasis and cardiovascular biology. Morphometric analysis determined that <1% of myocytes, often found in small clusters, express this GATA6-associated reporter in the adult heart. LacZ expression was also found in the ascending aorta. Myocardial expression of the transgene was not associated with a proliferative phenotype or new myocyte formation, as lacZ-positive myocytes neither labeled with cell division markers nor following 5-bromodeoxyuridine pulse-chase experimentation. Despite exhibiting normal adherens junctions, these myocytes appeared to exhibit decreased connexin 43 gap junctions. Treatment with the gap junctional blocker heptanol both in vivo and in culture elevated myocardial β-galactosidase activity, suggesting that deficient gap junctional communication underlies expression of the transgenic reporter. LacZ expression within the myocardium was also enhanced in response to cryoinjury and isoproterenol-induced hypertrophy. These results reveal a previously uncharacterized phenotypic heterogeneity in the myocardium and suggest that decreased gap junctional coupling leads to induction of a signaling pathway that utilizes a unique GATA6 enhancer. Upregulation of lacZ reporter gene expression following cardiac injury indicates this transgenic mouse may serve as a model for examining the transition of the heart from healthy to pathological states.

  9. ZEB2-transgene expression in the epidermis compromises the integrity of the epidermal barrier through the repression of different tight junction proteins.

    PubMed

    Tatari, Marianthi N; De Craene, Bram; Soen, Bieke; Taminau, Joachim; Vermassen, Petra; Goossens, Steven; Haigh, Katharina; Cazzola, Silvia; Lambert, Jo; Huylebroeck, Danny; Haigh, Jody J; Berx, Geert

    2014-09-01

    Epithelial homeostasis within the epidermis is maintained by means of multiple cell-cell adhesion complexes such as adherens junctions, tight junctions, gap junctions, and desmosomes. These complexes co-operate in the formation and the regulation of the epidermal barrier. Disruption of the epidermal barrier through the deregulation of the above complexes is the cause behind a number of skin disorders such as psoriasis, dermatitis, keratosis, and others. During epithelial-to-mesenchymal transition (EMT), epithelial cells lose their adhesive capacities and gain mesenchymal properties. ZEB transcription factors are key inducers of EMT. In order to gain a better understanding of the functional role of ZEB2 in epidermal homeostasis, we generated a mouse model with conditional overexpression of Zeb2 in the epidermis. Our analysis revealed that Zeb2 expression in the epidermis leads to hyperproliferation due to the combined downregulation of different tight junction proteins compromising the epidermal barrier. Using two epidermis-specific in vivo models and in vitro promoter assays, we identified occludin as a new Zeb2 target gene. Immunohistological analysis performed on human skin biopsies covering various pathogeneses revealed ZEB2 expression in the epidermis of pemphigus vulgaris. Collectively, our data support the notion for a potential role of ZEB2 in intracellular signaling of this disease.

  10. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  11. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice.

    PubMed

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-04-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl)phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle.

  12. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    PubMed Central

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  13. Fentanyl Effects on Breath Generation in C57BL/6J and A/J Mouse Strains

    PubMed Central

    Fechtner, Linnea; Ali, Mazen El; Sattar, Abdus; Moore, Michael; Strohl, Kingman P

    2015-01-01

    We examined the effect of fentanyl on chemoresponsiveness in mouse strains divergent in the expression of spontaneous and post-hypoxic pauses. Frequency and tidal volume were recorded with plethysmography in A/J and C57BL/6J (B6) male mice. Mice selected at random received an intraperitoneal (IP) injection of either saline, low dose fentanyl (LDF=0.04mg/kg), or high dose fentanyl (HDF=0.4mg/kg) under hypoxia (8% O2) or hyperoxia (100%O2). LDF produced a decrease in frequency during hypoxia in B6, but not A/J, mice. HDF significantly decreased frequency and tidal volume in both strains under hypoxia and hyperoxia (p<0.01); naloxone, an opioid antagonist, reversed this response. The acute administration of fentanyl at any dose did not promote apneas in strains of mice exhibiting regular or irregular respiratory patterns. However, higher doses depressed respiratory frequency in both strains. The B6 mice responded with a depressive response to hypoxia that did not recover with reoxygenation, but did recover with time or naloxone. PMID:25936679

  14. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  15. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  16. YBCO Josephson Junction Arrays

    DTIC Science & Technology

    1993-07-14

    Also, CaRuO 3 is chemically compatible with YBa2Cu30 7 and its conductivity does not appear to be strongly dependent on doping or oxygen concentration...barrier conductivity is quite high. The first YBa2Cu30 7 layer and the SrTiO3 layer are deposited first and then patterned with ion milling (to help form...the edge junction will dominate any leakage through the SrTiO3 , thus the integrity of that dielectric will not be a concern here. The integrity of the

  17. Dietary Dihydromethysticin Increases Glucuronidation of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanol in A/J Mice, Potentially Enhancing Its Detoxification

    PubMed Central

    Narayanapillai, Sreekanth C.; von Weymarn, Linda B.; Carmella, Steven G.; Leitzman, Pablo; Paladino, Jordan; Upadhyaya, Pramod; Hecht, Stephen S.; Murphy, Sharon E.

    2016-01-01

    Effective chemopreventive agents are needed against lung cancer, the leading cause of cancer death. Results from our previous work showed that dietary dihydromethysticin (DHM) effectively blocked initiation of lung tumorigenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice, and it preferentially reduced 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL)-derived DNA adducts in lung. This study explored the mechanism(s) responsible for DHM’s differential effects on NNK/NNAL-derived DNA damage by quantifying their metabolites in A/J mice. The results showed that dietary DHM had no effect on NNK or NNAL abundance in vivo, indicating that DHM does not affect NNAL formation from NNK. DHM had a minimal effect on cytochrome P450 2A5 (CYP2A5, which catalyzes NNK and NNAL bioactivation in A/J mouse lung), suggesting that it does not inhibit NNAL bioactivation. Dietary DHM significantly increased O-glucuronidated NNAL (NNAL-O-gluc) in A/J mice. Lung and liver microsomes from dietary DHM-treated mice showed enhanced activities for NNAL O-glucuronidation. These results overall support the notion that dietary DHM treatment increases NNAL detoxification, potentially accounting for its chemopreventive efficacy against NNK-induced lung tumorigenesis in A/J mice. The ratio of urinary NNAL-O-gluc and free NNAL may serve as a biomarker to facilitate the clinical evaluation of DHM-based lung cancer chemopreventive agents. PMID:26744252

  18. Dietary Dihydromethysticin Increases Glucuronidation of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanol in A/J Mice, Potentially Enhancing Its Detoxification.

    PubMed

    Narayanapillai, Sreekanth C; von Weymarn, Linda B; Carmella, Steven G; Leitzman, Pablo; Paladino, Jordan; Upadhyaya, Pramod; Hecht, Stephen S; Murphy, Sharon E; Xing, Chengguo

    2016-03-01

    Effective chemopreventive agents are needed against lung cancer, the leading cause of cancer death. Results from our previous work showed that dietary dihydromethysticin (DHM) effectively blocked initiation of lung tumorigenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mice, and it preferentially reduced 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL)-derived DNA adducts in lung. This study explored the mechanism(s) responsible for DHM's differential effects on NNK/NNAL-derived DNA damage by quantifying their metabolites in A/J mice. The results showed that dietary DHM had no effect on NNK or NNAL abundance in vivo, indicating that DHM does not affect NNAL formation from NNK. DHM had a minimal effect on cytochrome P450 2A5 (CYP2A5, which catalyzes NNK and NNAL bioactivation in A/J mouse lung), suggesting that it does not inhibit NNAL bioactivation. Dietary DHM significantly increased O-glucuronidated NNAL (NNAL-O-gluc) in A/J mice. Lung and liver microsomes from dietary DHM-treated mice showed enhanced activities for NNAL O-glucuronidation. These results overall support the notion that dietary DHM treatment increases NNAL detoxification, potentially accounting for its chemopreventive efficacy against NNK-induced lung tumorigenesis in A/J mice. The ratio of urinary NNAL-O-gluc and free NNAL may serve as a biomarker to facilitate the clinical evaluation of DHM-based lung cancer chemopreventive agents.

  19. C57BL/6 and A/J Mice Have Different Inflammatory Response and Liver Lipid Profile in Experimental Alcoholic Liver Disease

    PubMed Central

    Bavia, Lorena; de Castro, Íris Arantes; Isaac, Lourdes

    2015-01-01

    Alcoholic liver disease (ALD) is an important worldwide public health issue characterized by liver steatosis, inflammation, necrosis, and apoptosis of hepatocytes with eventual development of fibrosis and cirrhosis. Comparison of murine models with different inflammatory responses for ALD is important for an evaluation of the importance of genetic background in the interpretation of ethanol-induced phenotypes. Here, we investigated the role of inflammation and genetic background for the establishment of ALD using two different mouse strains: C57BL/6 (B6) and A/J. B6 and A/J mice were treated with a high fat diet containing ethanol (HFDE) and compared to the controls for 10 weeks. Hepatomegaly and steatohepatitis were similar in B6 and A/J mice, but only A/J mice were resistant to weight gain. On the other hand, HFDE-fed B6 accumulated more triglycerides (TG) and cholesterol and presented more intense cellular infiltrate in the liver when compared to HFDM-fed mice. Liver inflammatory environment was distinct in these two mouse strains. While HFDE-fed B6 produced more liver IL-12, A/J mice increased the TNF-α production. We concluded that mouse genetic background could dictate the intensity of the HFDE-induced liver injury. PMID:26448681

  20. Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases.

    PubMed

    Rickelt, Steffen; Pieperhoff, Sebastian

    2012-05-01

    In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-β3 (TGFβ3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies.

  1. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  2. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  3. AJ Cronin and The Citadel: did a work of fiction contribute to the foundation of the NHS?

    PubMed

    O'Mahony, S

    2012-06-01

    AJ Cronin (1896-1981) was a Scottish-born doctor-turned-novelist whose most famous novel is The Citadel, published in 1937. The book describes the struggles of an idealistic young doctor working in Wales and London in the 1920s and 30s. The novel was a global bestseller and its portrayal of a largely ineffective, corruption-ridden system of healthcare is thought to have directly influenced the foundation of the National Health Service in 1948. The Citadel anticipates such phenomena as evidence-based medicine and continuing medical education. This paper argues that the novel was never intended as propaganda for a state-controlled national health service. On the contrary, Cronin was against state control. Analysis of the novel is informed by recent biographical revelations about Cronin and the blurring of the margin between fact and fiction in Cronin's life and work is examined.

  4. Lung tumorigenesis suppressing effects of a commercial kava extract and its selected compounds in A/J mice.

    PubMed

    Johnson, Thomas E; Hermanson, David; Wang, Lei; Kassie, Fekadu; Upadhyaya, Pramod; O'Sullivan, Michael G; Hecht, Stephen S; Lu, Junxuan; Xing, Chengguo

    2011-01-01

    Lung cancer is the most deadly malignancy in the US. Chemoprevention is potentially a complementary approach to smoking cessation for lung cancer control. Recently, we reported that a commercially available form of kava extract significantly inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo(a)pyrene (BaP)-induced lung tumorigenesis in A/J mice at a dose of 10 mg per gram diet. In the present study, we examined the dose-dependent lung tumor inhibitory activities of kava and investigated potential active constituent(s). Mice treated with carcinogen alone contained 12.1±5.8 lung adenomas per mouse 22 weeks after final carcinogen administration. Mice that were fed diets containing kava at dosages of 1.25, 2.5, 5, and 10 mg/g of diet had 8.4±3.5, 6.6±3.5, 4.3±2.4, and 3.8±2.3 lung adenomas per mouse, respectively. This corresponds to a reduction of 31%, 46%, 65% and 69% in tumor multiplicity, which were all statistically significant (p < 0.05). Analyses of lung adenoma tissues derived from kava-treated animals revealed that kava significantly inhibited adenoma cell proliferation while it had no detectable effect on cell death, indicating that kava primarily suppressed lung tumorigenesis in A/J mice via inhibition of cell proliferation. Flavokawains A, B, and C, three chalcone-based components from kava, demonstrated greatly reduced chemopreventive efficacies even at concentrations much higher than their natural abundance, suggesting that they alone were unlikely to be responsible for kava's chemopreventive activity. Kava at all dosages and treatment regimens did not induce detectable adverse effects, particularly with respect to liver. Specifically, kava treatment showed no effect on liver integrity indicator enzymes or liver weight, indicating that kava may be potentially safe for long-term chemopreventive application.

  5. Evolution and cell physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells?

    PubMed

    Le Bivic, André

    2013-12-15

    The formation of the first epithelium was an essential step for animal evolution, since it has allowed coordination of the behavior of a cell layer and creation of a selective barrier between the internal medium and the outside world. The possibility of coupling the cells in a single layer has allowed morphogenetic events, such as tube formation, or gastrulation, to form more complex animal morphologies. The invention of sealed junctions between cells has allowed, on the other hand, creation of an asymmetry of nutrients or salts between the apical and the basal side of the epithelial layer. Creation of an internal medium has led to homeostasis, allowing the evolution of more complex physiological functions and the emergence of sophisticated animal shapes. During evolution, the origins of the first animals coincided with the invention of several protein complexes, including true cadherins and the polarity protein complexes. How these complexes regulate formation of the apicolateral border and the adherens junctions is still not fully understood. This review focuses on the role of these apical polarity complexes and, in particular, the Crumbs complex, which is essential for proper organization of epithelial layers from Drosophila to humans.

  6. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-07

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices.

  7. Annexin 2 Regulates Endothelial Morphogenesis by Controlling AKT Activation and Junctional Integrity*

    PubMed Central

    Su, Shih-Chi; Maxwell, Steve A.; Bayless, Kayla J.

    2010-01-01

    Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt. PMID:20947498

  8. Thermal conductance of superlattice junctions

    SciTech Connect

    Lu, Simon; McGaughey, Alan J. H.

    2015-05-15

    We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  9. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  10. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  11. Control of Junction Flow

    NASA Astrophysics Data System (ADS)

    Su, T.-C.; Bingham, C.; Kellier, L.

    2001-11-01

    Control for horseshoe vortices resulting from boundary layer separation in front of a structure has long been sought without satisfactory results. Tests were carried out in a water channel with the objective of seeking such a control. The water channel has a test section of .6m wide, .4m deep and 8m long, with an adjustable mean flow speed of up to .5m/s. Flow visualization technique was used to elucidate the flow process. To control the horseshoe vortex a long airfoil of 1cm chord was placed horizontally near the ground upstream of a 10cm thin square plate. It was found that the original horseshoe vortex moved toward and circulated around the airfoil. The junction flow immediately upstream of the obstacle was noticeably steady and free of disturbance. The process was insensitive to the streamwise location of the airfoil, horseshoe's vortical structure, stream speed and acceleration, upstream vortical influx, and magnitude/sign of airfoil's angle of attack. Experimental results with obliquely mounted square cylinder were similar, which demonstrated that controls were effective for all angles of attack.

  12. Effect of unilateral testicular rupture on histopathology and germ cell delayed-type hypersensitivity in C3H/He and A/J mice.

    PubMed

    Naito, Munekazu; Sakamoto, Yasuki; Terayama, Hayato; Hirai, Shuichi; Ning, Qu; Aota, Yoichi; Itoh, Masahiro

    2009-07-01

    Contralateral orchitis induced by unilateral testicular injury has been reported as sympathetic orchitis in men and experimental animals. In mice, experimental sympathetic orchitis (ESO) was first demonstrated in the C3H/He strain after experimental testicular trauma. Delayed-typed hypersensitivity (DTH) to testicular germ cells is induced by testicular trauma and treatment with cyclophosphamide before the trauma further enhances anti-testicular germ cell DTH. In the present study we investigated ESO induction with or without cyclophosphamide pretreatment in two murine strains, C3H/He and A/J mice, that are susceptible to testicular autoimmunity. The results show that traumatized testes undergo early degeneration of the seminiferous epithelium followed by neutrophilic inflammation and later fibrosis with little lymphocytic infiltration, in both murine strains. In the contralateral testes, ESO characterized by both lymphocytic inflammation and spermatogenic disturbance was induced in both strains. However, the incidence and severity of ESO in A/J mice tended to be higher than in C3H/He mice. In contrast, cyclophosphamide pretreatment significantly augmented both pathological stages of ESO and anti-testicular germ cell DTH in C3H/He mice, while those in A/J mice were fully developed by testicular rupture alone and were not further augmented by cyclophosphamide pretreatment. We conclude that A/J mice are more sensitive to trauma-induced testicular autoimmunity than C3H/He mice.

  13. Electronic thermometry in tunable tunnel junction

    DOEpatents

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  14. Clostridium difficile Toxins Disrupt Epithelial Barrier Function by Altering Membrane Microdomain Localization of Tight Junction Proteins

    PubMed Central

    Nusrat, A.; von Eichel-Streiber, C.; Turner, J. R.; Verkade, P.; Madara, J. L.; Parkos, C. A.

    2001-01-01

    The anaerobic bacterium Clostridium difficile is the etiologic agent of pseudomembranous colitis. C. difficile toxins TcdA and TcdB are UDP-glucosyltransferases that monoglucosylate and thereby inactivate the Rho family of GTPases (W. P. Ciesla, Jr., and D. A. Bobak, J. Biol. Chem. 273:16021–16026, 1998). We utilized purified reference toxins of C. difficile, TcdA-10463 (TcdA) and TcdB-10463 (TcdB), and a model intestinal epithelial cell line to characterize their influence on tight-junction (TJ) organization and hence to analyze the mechanisms by which they contribute to the enhanced paracellular permeability and disease pathophysiology of pseudomembranous colitis. The increase in paracellular permeability induced by TcdA and TcdB was associated with disorganization of apical and basal F-actin. F-actin restructuring was paralleled by dissociation of occludin, ZO-1, and ZO-2 from the lateral TJ membrane without influencing the subjacent adherens junction protein, E-cadherin. In addition, we observed decreased association of actin with the TJ cytoplasmic plaque protein ZO-1. Differential detergent extraction and fractionation in sucrose density gradients revealed TcdB-induced redistribution of occludin and ZO-1 from detergent-insoluble fractions constituting “raft-like” membrane microdomains, suggesting an important role of Rho proteins in maintaining the association of TJ proteins with such microdomains. These toxin-mediated effects on actin and TJ structure provide a mechanism for early events in the pathophysiology of pseudomembranous colitis. PMID:11179295

  15. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  16. Morphological differences of the carotid body among C57/BL6 (B6), A/J, and CSS B6A1 mouse strains.

    PubMed

    Chai, Sam; Gillombardo, Carl B; Donovan, Lucas; Strohl, Kingman P

    2011-08-15

    The C57/BL6 (B6) mouse strain exhibits post-hypoxic frequency decline and periodic breathing, as well as greater amount of irregular breathing during rest in comparison to the A/J and to the B6a1, a chromosomal substitution strain whereby the A/J chromosome 1 is bred onto the B6 background (Han et al., 2002; Yamauchi et al., 2008a,b). The hypothesis was that morphological differences in the carotid body would associate with such trait variations. After confirming strain differences in post-hypoxic ventilatory behavior, histological examination (n=8 in each group) using hematoxylin and eosin (H&E) staining revealed equivalent, well-defined tissue structure at the bifurcation of the carotid arteries, an active secretory parenchyma (type I cells) from the supportive stromal tissue, and clustering of type I cells in all three strains. Tyrosine hydroxylase (TH) immunohistochemical staining revealed a typical organization of type I cells and neurovascular components into glomeruli in all three strains. Image analysis from 5 μm sections from each strain generated a series of cytological metrics. The percent carotid body composition of TH+ type I cells in the A/J, B6 and B6a1 was 20±4%, 39±3%, and 44±3%, respectively (p=0.00004). However, cellular organization in terms of density and ultrastructure in the B6a1 is more similar to the B6 than to the A/J. These findings indicate that genetic mechanisms that produce strain differences in ventilatory function do not associate with carotid body structure or tyrosine hydroxylase morphology, and that A/J chromosome 1 does not contribute much to B6 carotid body morphology.

  17. Carcinogenic effects in A/J mice of particulate of a coal tar paint used in potable water systems.

    PubMed

    Robinson, M; Laurie, R D; Bull, R J; Stober, J A

    1987-01-01

    Coal tar paints are among the products used as inside coatings for water pipes and storage tanks to retard corrosion in potable water supply systems. Four different formulations of these paints were tested in earlier work by this laboratory in the Ames mutagenesis and the mouse skin carcinogenesis bioassays. The paint most active in these assays were then tested in a particulate form in the lung adenoma assay with A/J mice. The paint was applied to clean glass plates, cured, collected and homogenized in 2% Emulphor. Doses of this coal tar suspension were administered by gavage at 1.0, 10.0 and 55.0 mg in 0.2 ml per mouse 3X weekly for 8 weeks. The total doses of coal tar paint were 24, 240, and 1320 mg/mouse. Benzo[a]pyrene (BaP), administered in a parallel schedule to a total dose of 6 mg/mouse, served as positive control. A negative control group received an equivalent volume of 2% Emulphor. Animals were killed at 9 months of age (8 months after first dose) and lung adenomas counted. A dose-related response, in the average number of lung tumors per mouse, was observed with the coal tar particulate. There were also squamous cell tumors of the forestomach in 42% of the mice receiving 55.0 mg coal tar paint per application.

  18. Effects of cyclophosphamide and irradiation singly and in combination upon SaI growth in A/J mice

    SciTech Connect

    Anderson, R.E.; Williams, W.L.; Tokuda, S.

    1987-05-01

    The effects of various doses of cyclophosphamide and low-dose (15 rads) radiation upon the size of tumors caused by 10(4) Sarcoma I (SaI) cells was determined. In intact A/Jax (A/J) recipients, the effect of the two agents singly and in combination was found to be dependent especially upon the dosage of cyclophosphamide and the time of its administration in relation to tumor inoculation. In cell transfer experiments to adult thymectomized, lethally irradiated, bone-marrow-restored (ATxXBM) mice, the effects of cyclophosphamide and irradiation appeared to be either overlapping (low dosages of cyclophosphamide) or additive (dosages of cyclophosphamide greater than or equal to 50 mg/kg), suggesting that the two agents exert their influence in dissimilar fashion, perhaps by injuring different cell types with the same basic function. The most pronounced conjoint effects are seen when low dosages of cyclophosphamide are given 3 days after the adoptive transfer of spleen cells from mice pretreated with low-dose irradiation. The implications of this observation with respect to immunotherapy are discussed.

  19. Effect of dietary green tea extract and aerosolized difluoromethylornithine during lung tumor progression in A/J strain mice.

    PubMed

    Anderson, Marshall W; Goodin, Colleen; Zhang, Yu; Kim, Sangmi; Estensen, Richard D; Wiedmann, Timothy S; Sekar, Padmini; Buncher, C Ralph; Khoury, Jane C; Garbow, Joel R; You, Ming; Tichelaar, Jay W

    2008-08-01

    Chemoprevention strategies to prevent the development of lung cancer in at-risk individuals are a key component in disease management. In addition to being highly effective, an ideal chemopreventive agent will require low toxicity as patients are likely to require treatment for several years before their risk of cancer is lowered to background levels. In principle, a combination of safe agents that work through distinct mechanisms will improve efficacy while simultaneously maintaining a favorable safety profile. Here, we describe the use of the decaffeinated green tea extract Polyphenon E (Poly E) (1% in diet) and aerosolized difluoromethylornithine (DFMO) (20 mg/kg/day, 5 days/week) in a mouse lung cancer chemoprevention study using a progression protocol. Female A/J mice were injected with benzo[a]pyrene (B[a]P) at 8 weeks of age and precancerous lesions allowed to form over a period of 21 weeks before chemoprevention treatment for an additional 25 weeks. Poly E treatment did not significantly inhibit average tumor multiplicity but reduced per animal tumor load. Analysis of tumor pathology revealed a specific inhibition of carcinomas, with the largest carcinomas significantly decreased in Poly E-treated animals. Aerosolized DFMO did not have a significant effect on lung tumor progression. Magnetic resonance imaging of B[a]P-induced lung tumors confirmed the presence of a subset of large, rapidly growing tumors in untreated mice. Our results suggest a potential role for green tea extracts in preventing the progression of large, aggressive lung adenocarcinomas.

  20. Increased cytosine DNA-methyltransferase activity in A/J mouse lung cells following carcinogen exposure and during tumor progression

    SciTech Connect

    Belinsky, S.A.; Issa, J.-P.J.; Baylin, S.B.

    1994-11-01

    Considerable evidence has accumulated that 5-methylcytosine modification of mammalian DNA, both in exons and CpG rich islands located in promoter regions, is important in gene regulation. For example, a decrease of 5-methylcytosine in 5{prime} flanking regions or exons of genes has been associated with increased gene transcription. In addition, hypermethylation at specific regions of chromosomes 17p and 3p have also been observed in lung and colon cancer. During colon cancer development, these hypermethylation changes precede allelic loss. In addition, the activity of the enzyme which maintains the methylation status at CpG dinucleotides, DNA methyltransferase (MT), has been shown to increase during colon cancer progression. These observations suggest changes in methylation patterns within specific genes could result in either inappropriate gene expression or gene deletion, both of which would contribute to the establishment of the malignant phenotype. The purpose of this investigation was to determine if DNA MT activity is elevated in target (alveolar type II), but not in nontarget (Clara, endothelial, macrophage) lung cells isolated from the A/J mouse following exposure to nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK). In addition, the activity of this enzyme during tumor progression was examined.

  1. The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage.

    PubMed

    Attali, Cécile; Durmort, Claire; Vernet, Thierry; Di Guilmi, Anne Marie

    2008-11-01

    The precise mechanisms by which Streptococcus pneumoniae overcomes epithelial and endothelial barriers to access underlying human tissues remain to be determined. The plasminogen system is highly important for the tissue barrier degradation which allows cell migration. Plasminogen is known to interact with pneumococci via enolase, glyceraldehyde-3-phosphate dehydrogenase, and choline-binding protein E. These observations prompted us to evaluate the role of this proteolytic system in the pneumococcal invasion process. We observed that coating of S. pneumoniae R6 strain with plasminogen or inactivated plasmin increased adherence to pulmonary epithelial A549 and vascular endothelial EaHy cells in vitro. This indicates that plasminogen-mediated adherence is independent of the protease activity and involves plasminogen binding to receptors on eukaryotic cell surfaces. Conversely, decreased adherence of bacterial cells coated with active plasmin was observed, indicating that the protease activity limits bacterial attachment on the cell surface. We were then interested in investigating the role of the proteolytic plasmin activity in the traversal of tissue barriers. We observed that adherence of plasmin-coated D39 (encapsulated) or R6 (unencapsulated) pneumococci induced sporadic disruptions of EaHy and A549 monolayer cell junctions. This was not observed when plasmin was inhibited by aprotinin. Endothelial junction disorganization may proceed by proteolysis of the cell junction components. This is supported by our observation of the in vitro cleavage by plasmin bound to pneumococci of recombinant vascular endothelial cadherin, the main component of endothelial adherens junctions. Finally, junction damage induced by plasmin may be related to tissue barrier traversal, as we measured an increase of S. pneumoniae transmigration across epithelial A549 and endothelial EaHy layers when active plasmin was present on the bacterial surface. Our results highlight a novel function

  2. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  3. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.), 2 pepper species from the Andean region.

    PubMed

    Rodríguez-Burruezo, Adrián; González-Mas, Maria del Carmen; Nuez, Fernando

    2010-10-01

    The carotenoid patterns of fully ripe fruits from 12 Bolivian accessions of the Andean peppers Capsicum baccatum (ají) and C. pubescens (rocoto) were determined by high-performance liquid chromatography (HPLC)-photodiode array detector (PDA)-mass spectrometry (MS). We include 2 California Wonder cultivars as C. annuum controls. A total of 16 carotenoids were identified and differences among species were mostly found at the quantitative level. Among red-fruited genotypes, capsanthin was the main carotenoid in the 3 species (25% to 50% contribution to carotenoid fraction), although ajíes contained the lowest contribution of this carotenoid. In addition, the contribution of capsanthin 5,6-epoxide to total carotenoids in this species was high (11% to 27%) in comparison to rocotos and red C. annuum. Antheraxanthin and violaxanthin were, in general, the next most relevant carotenoids in the red Andean peppers (6.1% to 10.6%). Violaxanthin was the major carotenoid in yellow-/orange-fruited genotypes of the 3 species (37% to 68% total carotenoids), although yellow rocotos were characterized by lower levels (<45%). Cis-violaxanthin, antheraxanthin, and lutein were the next most relevant carotenoids in the yellow/orange Andean peppers (5% to 14%). As a whole, rocotos showed the highest contributions of provitamin A carotenoids to the carotenoid fraction. In terms of nutritional contribution, both ajíes and rocotos provide a remarkable provitamin A activity, with several accessions showing a content in retinol equivalents higher than California Wonder controls. Furthermore, levels of lutein in yellow/orange ajíes and rocotos were clearly higher than California Wonder pepper (≥1000 μg·100/g). Finally, the Andean peppers, particularly red ajíes, can be also considered as a noticeable source of capsanthin, the most powerful antioxidant compound among pepper carotenoids. Practical Application: Capsicum peppers are known for their content in carotenoids, although there is

  4. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  5. Regulating cell–cell junctions from A to Z

    PubMed Central

    2016-01-01

    Epithelial sheets often present a “cobblestone” appearance, but the mechanisms underlying the dynamics of this arrangement are unclear. In this issue, Choi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506115) show that afadin and ZO-1 regulate tension and maintain zonula adherens architecture in response to changes in contractility. PMID:27114498

  6. Regulating cell-cell junctions from A to Z.

    PubMed

    Hardin, Jeff

    2016-04-25

    Epithelial sheets often present a "cobblestone" appearance, but the mechanisms underlying the dynamics of this arrangement are unclear. In this issue, Choi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506115) show that afadin and ZO-1 regulate tension and maintain zonula adherens architecture in response to changes in contractility.

  7. Effect of Dietary Fibers on Cecal Microbiota and Intestinal Tumorigenesis in Azoxymethane Treated A/J Min/+ Mice

    PubMed Central

    Måge, Ingrid; Knutsen, Svein Halvor; Rud, Ida; Hetland, Ragna Bogen; Paulsen, Jan Erik

    2016-01-01

    Foods naturally high in dietary fiber are generally considered to protect against development of colorectal cancer (CRC). However, the intrinsic effect of dietary fiber on intestinal carcinogenesis is unclear. We used azoxymethane (AOM) treated A/J Min/+ mice, which developed a significantly higher tumor load in the colon than in the small intestine, to compare the effects of dietary inulin (IN), cellulose (CE) or brewers spent grain (BSG) on intestinal tumorigenesis and cecal microbiota. Each fiber was tested at two dose levels, 5% and 15% (w/w) content of the AIN-93M diet. The microbiota was investigated by next-generation sequencing of the 16S rRNA gene (V4). We found that mice fed IN had approximately 50% lower colonic tumor load than mice fed CE or BSG (p<0.001). Surprisingly, all three types of fiber caused a dose dependent increase of colonic tumor load (p<0.001). The small intestinal tumor load was not affected by the dietary fiber interventions. Mice fed IN had a lower bacterial diversity than mice fed CE or BSG. The Bacteroidetes/Firmicutes ratio was significantly (p = 0.003) different between the three fiber diets with a higher mean value in IN fed mice compared with BSG and CE. We also found a relation between microbiota and the colonic tumor load, where many of the operational taxonomic units (OTUs) related to low tumor load were significantly enriched in mice fed IN. Among the OTUs related to low tumor load were bacteria affiliated with the Bacteroides genus. These results suggest that type of dietary fiber may play a role in the development of CRC, and that the suppressive effect of IN on colonic tumorigenesis is associated with profound changes in the cecal microbiota profile. PMID:27196124

  8. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  9. Dihydromethysticin from kava blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis and differentially reduces DNA damage in A/J mice.

    PubMed

    Narayanapillai, Sreekanth C; Balbo, Silvia; Leitzman, Pablo; Grill, Alex E; Upadhyaya, Pramod; Shaik, Ahmad Ali; Zhou, Bo; O'Sullivan, M Gerard; Peterson, Lisa A; Lu, Junxuan; Hecht, Stephen S; Xing, Chengguo

    2014-10-01

    We have previously shown that kava and its flavokavain-free Fraction B completely blocked 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice with a preferential reduction in NNK-induced O (6)-methylguanine (O (6)-mG). In this study, we first identified natural (+)-dihydromethysticin (DHM) as a lead compound through evaluating the in vivo efficacy of five major compounds in Fraction B on reducing O (6)-mG in lung tissues. (+)-DHM demonstrated outstanding chemopreventive activity against NNK-induced lung tumorigenesis in A/J mice with 97% reduction of adenoma multiplicity at a dose of 0.05mg/g of diet (50 ppm). Synthetic (±)-DHM was equally effective as the natural (+)-DHM in these bioassays while a structurally similar analog, (+)-dihydrokavain (DHK), was completely inactive, revealing a sharp in vivo structure-activity relationship. Analyses of an expanded panel of NNK-induced DNA adducts revealed that DHM reduced a subset of DNA adducts in lung tissues derived from 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, the active metabolite of NNK). Preliminary 17-week safety studies of DHM in A/J mice at a dose of 0.5mg/g of diet (at least 10× its minimum effective dose) revealed no adverse effects, suggesting that DHM is likely free of kava's hepatotoxic risk. These results demonstrate the outstanding efficacy and promising safety margin of DHM in preventing NNK-induced lung tumorigenesis in A/J mice, with a unique mechanism of action and high target specificity.

  10. K-Ras mutant fraction in A/J mouse lung increases as a function of benzo[a]pyrene dose

    EPA Science Inventory

    K-Ras mutant fraction (MF) was measured to examine the default assumption of low dose linearity in the benzo[a]pyrene (B[a]P) mutational response. Groups of ten male A/J mice (7-9 weeks-old) received a single i.p. injection of 0, 0.05, 0.5, 5, or 50 mg/kg B[a]P, and were sacrifi...

  11. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae

    PubMed Central

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen. PMID:27005950

  12. Gender-dependent effects of gonadectomy on lung carcinogenesis by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female and male A/J mice

    PubMed Central

    NINOMIYA, FUMIKO; YOKOHIRA, MASANAO; KISHI, SOSUKE; NAKANO, YUKO; YAMAKAWA, KEIKO; INOUE, TATSUSHI; KUNO, TOSHIYA; IMAIDA, KATSUMI

    2013-01-01

    The present study was conducted to investigate the effects of gonadectomy on lung carcinogenesis in female and male mice, and to determine an association between sex hormone and lung carcinogenesis. Female and male A/J mice were divided into gonadectomized and unoperated control groups and all animals were treated intraperitoneally with 1 or 2 injections of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at the dose of 2 mg/mouse. The mice were sacrificed 18 or 56 weeks after surgery. Serum levels of estradiol in females and testosterone in males were confirmed to be decreased by gonadectomy. Lung white nodules were detected in all mice of all groups. In the control groups of 18- and 56-week studies, the multiplicities of lung nodules in females were significantly greater than in males. In males in the 56-week study, the multiplicity of macroscopical lung nodules, bronchiolo-alveolar hyperplasias, adenomas and tumors (adenomas and adenocarcinomas) showed significant increase with castration. In females in the 18-week study, the multiplicity of adenomas decreased significantly by ovariectomy. Based on the results of the present study, female A/J mice were confirmed to be more susceptible to NNK-induced lung carcinogenesis than males. Furthermore, it was suggested that the process is inhibited by testosterone and accelerated by estradiol. These findings indicate the possibility that sex hormones play important roles in determining sex differences in lung carcinogenesis in the A/J mice initiated by NNK. PMID:24085151

  13. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae.

    PubMed

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-03-23

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen.

  14. The Yolla Bolly junction revisited

    SciTech Connect

    Blake, M.C.; Jayko, A.S. ); Jones, D.L. . Dept. of Geology and Geophysics); Engebretson, D.C. . Dept. of Geology)

    1993-04-01

    West of Red Bluff, California, rocks of the northern Coast Ranges, Klamath-Sierra Nevada, and Great Valley provinces come together at what has been called the Yolla Bolly junction. Mapping of the Red Bluff and Willows 1:100,000 quadrangles has greatly clarified the enigmatic features of this complex area. Terranes of the Klamath Mountains and their Cretaceous sedimentary cover have been thrust northwestward over the Elder Creek terrane and Franciscan rocks, north of the left-lateral Cold Fork fault zone. The Condrey Mountain window (Franciscan Pickett Peak terrane) provides a measure of the magnitude of this thrusting (ca 90 km). South of the Cold Fork fault zone, the Franciscan and Elder Creek terranes were driven southeastward as tectonic wedges onto Sierran-Klamath basement. Timing of this scissor-tectonics is not constrained near the junction, but further north in southwest Oregon, Lower Eocene strata were deformed by overthrusting of the Klamath block whereas Upper Eocene strata overlap the thrust, indicating that thrusting occurred between about 52 and 60 Ma. Plate reconstructions for this time interval indicate the close proximity of the Kula-Farallon-North America triple junction and that old (ca 100 m.y.) Farallon lithosphere was being subducted north of the junction whereas to the south, very young (ca 10 m.y.) Kula plate was presumably obducted onto North America.

  15. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  16. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  17. ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture.

    PubMed

    Hernandez, Sandra; Chavez Munguia, Bibiana; Gonzalez-Mariscal, Lorenza

    2007-05-01

    ZO-2 is a tight junction (TJ) protein that shuttles between the plasma membrane and the nucleus. ZO-2 contains several protein binding sites that allow it to function as a scaffold that clusters integral, adaptor and signaling proteins. To gain insight into the role of ZO-2 in epithelial cells, ZO-2 was silenced in MDCK cells with small interference RNA (siRNA). ZO-2 silencing triggered: (A) changes in the gate function of the TJ, determined by an increase in dextran flow through the paracellular route of mature monolayers and achievement of lower transepithelial electrical resistance values upon TJ de novo formation; (B) changes in the fence function of the TJ manifested by a non-polarized distribution of E-cadherin on the plasma membrane; (C) altered expression of TJ and adherens junction proteins, determined by a decreased amount of occludin and E-cadherin in mature monolayers and a delayed arrival to the plasma membrane of ZO-1, occludin and E-cadherin during a calcium switch assay; and (D) an atypical monolayer architecture characterized by the appearance of widened intercellular spaces, multistratification of regions in the culture and an altered pattern of actin at the cellular borders.

  18. Tropomyosin-1 protects endothelial cell-cell junctions against cigarette smoke extract through F-actin stabilization in EA.hy926 cell line.

    PubMed

    Gagat, Maciej; Grzanka, Dariusz; Izdebska, Magdalena; Sroka, Wiktor Dariusz; Marszałł, Michał Piotr; Grzanka, Alina

    2014-05-01

    The aim of the study was to estimate the effect of cigarette smoke extract (CSE) on EA.hy926 endothelial cells in culture in the context of maintenance of cell-cell junctions through the structural stabilization of the actin cytoskeleton. In the present study, F-actin was stabilized by the overexpression of tropomyosin-1, which is known to stabilize actin filaments in muscle and non-muscle cells. Our study showed that the stabilization of F-actin significantly increased the survival of cells treated with 25% CSE. In addition, after stabilization of F-actin the migratory potential of EA.hy926 cells subjected to CSE treatment was increased. Our results also showed increased fluorescence intensity of alpha- and beta-catenin after CSE treatment in cells which had stabilized F-actin. Analysis of fluorescence intensity of Zonula occludens-1 did not reveal any significant differences when EA.hy926 cells overexpressing tropomyosin-1 were compared with those lacking overexpression. It would appear that overexpression of tropomyosin-1 preserved the structure of actin filaments in the cells treated with CSE. In conclusion, the present study demonstrates that stabilization of F-actin protects EA.hy926 cells against CSE-induced loss of both adherens and tight junctions. The data presented in this study suggest that overexpression of tropomyosin-1 stabilizes the organizational structure of actin filaments and helps preserve the endothelial barrier function under conditions of strong oxidative stress.

  19. Similar and Distinct Properties of MUPP1 and Patj, Two Homologous PDZ Domain-Containing Tight-Junction Proteins ▿ †

    PubMed Central

    Adachi, Makoto; Hamazaki, Yoko; Kobayashi, Yuka; Itoh, Masahiko; Tsukita, Sachiko; Furuse, Mikio; Tsukita, Shoichiro

    2009-01-01

    MUPP1 and Patj are both composed of an L27 domain and multiple PDZ domains (13 and 10 domains, respectively) and are localized to tight junctions (TJs) in epithelial cells. Although Patj is known to be responsible for the organization of TJs and epithelial polarity, characterization of MUPP1 is lacking. In this study, we found that MUPP1 and Patj share several binding partners, including JAM1, ZO-3, Pals1, Par6, and nectins (cell-cell adhesion molecules at adherens junctions). MUPP1 and Patj exhibited similar subcellular distributions, and the mechanisms with which they localize to TJs also appear to overlap. Despite these similarities, functional studies have revealed that Patj is indispensable for the establishment of TJs and epithelial polarization, whereas MUPP1 is not. Thus, although MUPP1 and Patj share several molecular properties, their functions are entirely different. We present evidence that the signaling mediated by Pals1, which has a higher affinity for Patj than for MUPP1 and is involved in the activation of the Par6-aPKC complex, is of principal importance for the function of Patj in epithelial cells. PMID:19255144

  20. Tight junction proteins: from barrier to tumorigenesis.

    PubMed

    Runkle, E Aaron; Mu, David

    2013-08-28

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis.

  1. Tight Junction Proteins: From Barrier to Tumorigenesis

    PubMed Central

    Runkle, E. Aaron; Mu, David

    2013-01-01

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis. PMID:23743355

  2. Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization

    PubMed Central

    Nunan, Robert; Campbell, Jessica; Mori, Ryoichi; Pitulescu, Mara E.; Jiang, Wen G.; Harding, Keith G.; Adams, Ralf H.; Nobes, Catherine D.; Martin, Paul

    2015-01-01

    Summary For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man. PMID:26549443

  3. Maternal effects on ethanol teratogenesis in a cross between A/J and C57BL/6J mice.

    PubMed

    Gilliam, David; Valdez, Nate; Branson, Scott; Dixon, Ashley; Downing, Chris

    2011-08-01

    Genetic factors influence adverse pregnancy outcome in both humans and animal models. Animal research reveals that both the maternal and fetal genetic profiles are important for determining the risk of physical birth defects and prenatal mortality. Using a reciprocal-cross breeding design, we investigated whether the mother's genes may be more important than fetal genes in determining risk for ethanol teratogenesis. Examination of possible synergistic genetic effects on ethanol teratogenesis was made possible by using two mouse strains known to be susceptible to specific malformations. Inbred A/J (A) and C57BL/6J (B6) mice were mated to produce four fetal genotype groups: the true-bred AċA and B6ċB6 genotypes and the genetically identical AċB6 and B6ċA genotypes (the F(1) genotype). Dams were administered either 5.8 g/kg ethanol or an isocaloric amount of maltose-dextrin on day 9 of pregnancy. Fetuses were removed by laparotomy on gestation day 18, weighed, and assessed for digit, vertebral, and kidney malformations. Digit malformations in the genetically identical F(1) ethanol-exposed litters showed a pattern consistent with a maternal genetic effect (AċB6 [2%] and B6ċA [30%]). In contrast, vertebral malformations were similar in all ethanol-exposed litters (AċA [26%], AċB6 [18%], B6ċA [22%], and B6ċB6 [33%]). The percentage of malformations did not differ between male and female fetuses, indicating sex-linked factors are not responsible for the maternal effect. Ethanol exposure decreased litter weights but did not affect litter mortality compared with maltose-exposed controls. This study supports the idea that genes influence malformation risk following in utero alcohol exposure. Specifically, maternal genes influence risk more than fetal genes for some teratogenic outcomes. No evidence supported synergistic genetic effects on ethanol teratogenesis. This research supports the conclusion that uterine environment contributes to determining risk of Fetal

  4. Seebeck effect in molecular junctions.

    PubMed

    Zimbovskaya, Natalya A

    2016-05-11

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  5. Seebeck effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  6. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  7. IDENTIFICATION OF STEREOCHEMICAL CONFIGURATIONS OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8 CELLS

    EPA Science Inventory

    Identification of Sterochemical Configurations of Cyclopent A[cd]Pyrene DNA Adducts in Strain A/J Mouse Lung and C3H10T1/2CL8 Cells.

    Four major and several minor DNA adducts were resolved by 32P-postlabeling analysis of DNA from strain A/J mouse lung and C3H10T1/2CL8 (C3H...

  8. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  9. Squeezed States in Josephson Junctions.

    NASA Astrophysics Data System (ADS)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  10. Establishment of cell polarity by afadin during the formation of embryoid bodies.

    PubMed

    Komura, Hitomi; Ogita, Hisakazu; Ikeda, Wataru; Mizoguchi, Akira; Miyoshi, Jun; Takai, Yoshimi

    2008-01-01

    Afadin directly links nectin, an immunoglobulin-like cell-cell adhesion molecule, to actin filaments (F-actin) at adherens junctions (AJs). The nectin-afadin complex is important for the formation of not only AJs but also tight junctions (TJs) in epithelial cells. Studies using afadin-knockout mice have revealed that afadin is indispensable for embryonic development by organizing the formation of cell-cell junctions. However, the molecular mechanism of cell-cell junction disorganization during embryonic development in afadin-knockout mice is poorly understood. To address this, we took advantage of embryoid bodies (EBs) as a model system. The formation of cell-cell junctions including AJs and TJs was impaired in afadin-null EBs. The proper accumulation of the Par complex and the activation of Cdc42 and atypical PKC (aPKC), which are crucial for the formation of cell polarity, were also inhibited by knockout of afadin. In addition, the disruption of afadin caused the abnormal deposition of laminin and the dislocalization of its receptors integrin alpha(6) and integrin beta(1). These results indicate that afadin organizes the formation of cell-cell junctions by regulating cell polarization in early embryonic development.

  11. Kava blocks 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in association with reducing O6-methylguanine DNA adduct in A/J mice.

    PubMed

    Leitzman, Pablo; Narayanapillai, Sreekanth C; Balbo, Silvia; Zhou, Bo; Upadhyaya, Pramod; Shaik, Ahmad Ali; O'Sullivan, M Gerard; Hecht, Stephen S; Lu, Junxuan; Xing, Chengguo

    2014-01-01

    We previously reported the chemopreventive potential of kava against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- and benzo(a)pyrene (BaP)-induced lung tumorigenesis in A/J mice during the initiation and postinitiation stages. In this study, we investigated the tumorigenesis-stage specificity of kava, the potential active compounds, and the underlying mechanisms in NNK-induced lung tumorigenesis in A/J mice. In the first experiment, NNK-treated mice were given diets containing kava at a dose of 5 mg/g of diet during different periods. Kava treatments covering the initiation stage reduced the multiplicity of lung adenomas by approximately 99%. A minimum effective dose is yet to be defined because kava at two lower dosages (2.5 and 1.25 mg/g of diet) were equally effective as 5 mg/g of diet in completely inhibiting lung adenoma formation. Daily gavage of kava (one before, during, and after NNK treatment) completely blocked lung adenoma formation as well. Kavalactone-enriched fraction B fully recapitulated kava's chemopreventive efficacy, whereas kavalactone-free fractions A and C were much less effective. Mechanistically, kava and fraction B reduced NNK-induced DNA damage in lung tissues with a unique and preferential reduction in O(6)-methylguanine (O(6)-mG), the highly tumorigenic DNA damage by NNK, correlating and predictive of efficacy on blocking lung adenoma formation. Taken together, these results demonstrate the outstanding efficacy of kava in preventing NNK-induced lung tumorigenesis in A/J mice with high selectivity for the initiation stage in association with the reduction of O(6)-mG adduct in DNA. They also establish the knowledge basis for the identification of the active compound(s) in kava.

  12. Determination of AJ-3941, a possible agent for the treatment of cerebrovascular disorders, in plasma and brain by means of high-performance liquid chromatography with fluorescence detection.

    PubMed

    Kurono, M; Yoshida, K; Naruto, S

    1992-07-01

    A sensitive and selective high-performance liquid chromatographic method with fluorescence detection is described for the determination of AJ-3941 (I), a possible agent for the treatment of cerebrovascular disorders, in plasma and brain tissue. A simple hexane extraction was used for plasma, and for brain homogenate the hexane extract was further purified by solid-phase extraction. The determination limit was ca. 3 ng/ml for both plasma (0.5 ml) and 10% (w/v) brain homogenate (1 ml). The method was applied to the determination of I in plasma and brain samples of experimental animals.

  13. Isolation and characterization of a subtilisin-like proteinase of Bacillus intermedius secreted by the Bacillus subtilis recombinant strain AJ73 at different growth stages.

    PubMed

    Mikhailova, E O; Mardanova, A M; Balaban, N P; Rudenskaya, G N; Sharipova, M R

    2007-02-01

    Two subtilisin-like serine proteinases of Bacillus intermedius secreted by the Bacillus subtilis recombinant strain AJ73 (pCS9) on the 28th and 48th h of culture growth (early and late proteinase, respectively) have been isolated by ion-exchange chromatography on CM-cellulose and by FPLC. Molecular weights of both proteinases were determined. The N-terminal sequences of the recombinant protein and mature proteinases of the original strain were compared. Kinetic parameters and substrate specificities of the early and late proteinase were analyzed. Physicochemical properties of the enzymes were studied.

  14. The Dissolution of Double Holliday Junctions

    PubMed Central

    Bizard, Anna H.; Hickson, Ian D.

    2014-01-01

    Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as “double Holliday junction dissolution.” This reaction requires the cooperative action of a so-called “dissolvasome” comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions. PMID:24984776

  15. Physics and Applications of NIS Junctions

    SciTech Connect

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  16. In vitro formation of gap junction vesicles.

    PubMed

    Goodenough, D A

    1976-02-01

    A method is described that uses trypsin digestion combined with collagenase-hyaluronidase which produces a population of gap junction vesicles. The hexagonal lattice of subunits ("connexons") comprising the gapjunctions appears unaltered by various structural criteria and by buoyant density measurements. The gap junction vesciles are closed by either a single or a double profile of nonjunctional "membrane," which presents a smooth, particle-free fracture face. Horseradish peroxidase and cytochrome c studies have revealed that about 20% of the gap junction vesicles are impermeable to proteins 12,000 daltons or larger. The increased purity of the trypsinized junction preparation suggests that one of the disulfide reduction products of the gap-junction principal protein may be a nonjunctional contaminating peptide. The gap junction appears to be composed of a single 18,000-dalton protein, connexin, which may be reduced to a single 9,000-dalton peak. The number of peptides in this reduced peak are still unknown.

  17. [Gap junctions and cancer: implications and perspectives].

    PubMed

    Mesnil, Marc

    2004-02-01

    Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.

  18. Magnetic tunnel junction pattern technique

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Schwarz, Benjamin; Choi, Chang Ju; Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Geha, Sam

    2003-05-01

    We have developed a magnetic tunnel junction (MTJ) pattern technique that involves transforming the magnetic layer above the tunnel barrier in unwanted areas into an insulator, thus providing insulation between different MTJ devices without suffering common tunnel barrier shorting problems. With this technique, 90%-100% yielding MTJ devices have been observed. MTJ results using this process are superior to an etching based process. Switching distribution of patterned magnetic bits is also narrower using this novel technique. Process control and the ability to stop on the tunnel barrier have been demonstrated.

  19. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  20. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  1. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  2. E-cadherin roles in animal biology: A perspective on thyroid hormone-influence.

    PubMed

    Izaguirre, María Fernanda; Casco, Victor Hugo

    2016-11-04

    The establishment, remodeling and maintenance of tissular architecture during animal development, and even across juvenile to adult life, are deeply regulated by a delicate interplay of extracellular signals, cell membrane receptors and intracellular signal messengers. It is well known that cell adhesion molecules (cell-cell and cell-extracellular matrix) play a critical role in these processes. Particularly, adherens junctions (AJs) mediated by E-cadherin and catenins determine cell-cell contact survival and epithelia function. Consequently, this review seeks to encompass the complex and prolific knowledge about E-cadherin roles during physiological and pathological states, particularly focusing on the influence exerted by the thyroid hormone (TH).

  3. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes

    PubMed Central

    Noritake, Kanako; Aki, Toshihiko; Funakoshi, Takeshi; Unuma, Kana; Uemura, Koichi

    2015-01-01

    Direct exposure of cardiomyocytes to ethanol causes cardiac damage such as cardiac arrythmias and apoptotic cell death. Cardiomyocytes are connected to each other through intercalated disks (ID), which are composed of a gap junction (GJ), adherens junction, and desmosome. Changes in the content as well as the subcellular localization of connexin43 (Cx43), the main component of the cardiac GJ, are reportedly involved in cardiac arrythmias and subsequent damage. Recently, the hippo-YAP signaling pathway, which links cellular physical status to cell proliferation, differentiation, and apoptosis, has been implicated in cardiac homeostasis under physiological as well as pathological conditions. This study was conducted to explore the possible involvement of junctional intercellular communication, mechanotransduction through cytoskeletal organization, and the hippo-YAP pathway in cardiac damage caused by direct exposure to ethanol. HL-1 murine atrial cardiac cells were used since these cells retain cardiac phenotypes through ID formation and subsequent synchronous contraction. Cells were exposed to 0.5–2% ethanol; significant apoptotic cell death was observed after exposure to 2% ethanol for 48 hours. A decrease in Cx43 levels was already observed after 3 hours exposure to 2% ethanol, suggesting a rapid degradation of this protein. Upon exposure to ethanol, Cx43 translocated into lysosomes. Cellular cytoskeletal organization was also dysregulated by ethanol, as demonstrated by the disruption of myofibrils and intermediate filaments. Coinciding with the loss of cell-cell adherence, decreased phosphorylation of YAP, a hippo pathway effector, was also observed in ethanol-treated cells. Taken together, the results provide evidence that cells exposed directly to ethanol show 1) impaired cell-cell adherence/communication, 2) decreased cellular mechanotransduction by the cytoskeleton, and 3) a suppressed hippo-YAP pathway. Suppression of hippo-YAP pathway signaling should be

  4. Complete amino acid sequence of heavy chain variable regions derived from two monoclonal anti-p-azophenylarsonate antibodies of BALB/c mice expressing the major cross-reactive idiotype of the A/J strain

    PubMed Central

    1984-01-01

    The primary structure of A/J anti-p-azophenylarsonate (anti-Ars) antibodies expressing the major A-strain cross-reactive idiotype (CRIA) has provided important insights into issues of antibody diversity and the molecular basis of idiotypy in this important model system. Until recently, this idiotype was thought to be rarely, if ever, expressed in BALB/c mice. Indeed, it has been reported that BALB/c mice lack the heavy chain variable segment (VH) gene that is utilized by the entire family of anti-Ars antibodies expressing the A/J CRI. Recently, however, it has been possible to elicit CRIA+, Ars binding antibodies in the BALB/c strain by immunizing first with anti-CRI and then with antigen. Such BALB/c, CRIA+ anti-Ars antibodies can be induced occasionally with antigen alone. VH region amino acid sequences are described for two CRIA+ hybridoma products derived from BALB/c mice. While remarkably similar to each other, their VH segments (1-98) differ from the VH segments of A/J CRIA+, anti-Ars antibodies in over 40 positions. Rather than the usual JH2 gene segment used by most A/J CRIA+ anti-Ars antibodies, one BALB/c CRIA+ hybridoma utilizes a JH1 gene segment, while the other uses a JH4. However, the D segments of both of the BALB/c antibodies are remarkably homologous to the D segments of several A/J CRIA+ antibodies sequenced previously, as are the amino terminal amino acid sequences of their light chains. These data imply that BALB/c mice express the A/J CRIA by producing antibodies with very similar, if not identical, light chain and heavy chain D segments, but in the context of different VH and JH gene segments than their A/J counterparts. The results document that molecules that share serologic specificities can have vastly different primary structures. PMID:6207261

  5. Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier.

    PubMed

    Rapôso, Catarina; Odorissi, Paulo Alexandre Miranda; Oliveira, Alexandre L R; Aoyama, Hiroshi; Ferreira, Carmen Verissima; Verinaud, Liana; Fontana, Karina; Ruela-de-Sousa, Roberta R; da Cruz-Höfling, Maria Alice

    2012-09-01

    Phoneutria nigriventer spider venom (PNV) contains Ca(2+), K(+) and Na(+) channel-acting peptides that affect neurotransmitter release and causes excitotoxicity in PNS and CNS. It has been demonstrated that PNV causes blood-brain barrier (BBB) breakdown of hippocampal microvessels time-dependently through enhanced microtubule-mediated vesicular transport. Herein, it is hypothesized that PNV can cause BBB breakdown in the hippocampus and cerebellum time-dependently through other molecular mechanisms. The BBB integrity was assessed through the analysis of expression of Poly-glycoprotein (P-gp) efflux transporter protein, laminin from basement membrane and endothelial tight junctional and adhesion junctional (TJ/AJ) proteins. Phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) expression, which are known to have a role in the phosphorylation of junctional proteins and BBB opening, were also investigated. Astrocytes P-gp activity was determined by flow cytometry. The study demonstrated temporary decreased expression of laminin, TJ and AJ proteins (ZO1//occludin//claudin-5//beta-catenin) and P-gp (more prominently in hippocampus), which was completely or partially resolved between 2 and 5 h (and more quickly for cerebellum). PNV inhibited P-gp activity in astrocytes. PP2A phosphorylation, which inhibits the enzyme activity, was increased in both regions (15-45 min); however the phosphorylation level returned to baseline after 2 h. In conclusion, PNV disrupts paracellular transport in the BBB and possesses substrates for the active P-gp efflux transporter located in the BBB complex. Further studies into cellular mechanisms of astrocyte/endothelial interactions, using PNV as tool, may identify how astrocytes regulate the BBB, a characteristic that may be useful for the temporary opening of the BBB.

  6. The effect of sevoflurane on developing A/J strain mouse embryos using a whole-embryo culture system--the incidence of cleft lip in culture embryos.

    PubMed

    Yamada, Morimasa; Yamamoto, Naoki; Ohgami, Saori; Kanazawa, Mayuko; Harada, Jun; Ohno, Norikazu; Natsume, Nagato

    2014-03-01

    A/J strain mice have a high spontaneous incidence of cleft lip (ICL) and/or palate. The primary palate-related effects of sevoflurane on developing A/J strain mouse embryos (embryos) were studied using a whole-embryo culture (WEC) system. This system could separate the direct effects of sevoflurane from those that are maternally mediated. A total of 205 10.5-d embryos were cultured for 24 h in either a control group (control gas: 95% O2 and 5% CO2) or sevoflurane-administered groups (1/4, 1/2, and 1 minimum alveolar concentration (MAC) with control gas) for 8 h. After 16 h, 11.5-d culture embryos were examined in terms of crown-rump length, number of somites, and protein content. Crown-rump length in the 1 MAC was significantly shorter than in the control group (p < 0.05). Protein content in the 1/2 MAC (p < 0.05) and 1 MAC (p < 0.001) was significantly lower than in the control group. The ICL showed no significant differences between each group. (The ICL rose with an increase in the sevoflurane concentration, but this was not significant). The positive findings in this study indicate that a WEC system is useful for studying the mechanisms of ICL (teratogenicity) associated with sevoflurane.

  7. A/J mouse lung tumorigenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by arylalkyl isothiocyanates

    SciTech Connect

    Hecht, S.S.; Morse, M.A.; Eklind, K.I.; Chung, F.L. )

    1991-03-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen found in tobacco and tobacco smoke. It is a potent lung tumorigen in rodents and appears to be involved in human cancer induced by tobacco products. NNK induces lung tumors in A/J mice after a single dose; tumor multiplicity is higher when the mice are maintained on an AIN-76A diet than when they are maintained on NIH-07 diet. This paper reviews our recent research using this single-dose model. Bioassays of deuterium substituted analogues of NNK have demonstrated that methylation of DNA by NNK is an important step in lung tumor induction. Arylalkyl isothiocyanates inhibit the metabolic activation of NNK and consequently inhibit its DNA binding and tumorigenesis. Structure activity studies have demonstrated that increasing alkyl chain length leads to increasing efficacy in prevention of NNK tumorigenesis. Thus, 3-phenylpropyl isothiocyanate and 4-phenylbutyl isothiocyanate blocked NNK induced lung tumor formation in A/J mice. Lower doses of longer chain arylalkyl isothiocyanates were even more effective as chemopreventive agents.

  8. Evaluation of the protective immunity of the Legionella pneumophila recombinant protein FlaA/MompS/PilE in an A/J mouse model.

    PubMed

    Xu, Ying; Guan, Wang; Xu, Jia-nan; Cao, De-ping; Yang, Bin-bin; Chen, Da-li; Chen, Jian-ping

    2011-05-23

    To investigate the protect effects of the recombinant protein FlaA/MompS/PilE against Legionella pneumophila (L. pneumophila), the coding sequences of the three proteins were optimized by DNA Star software firstly, cloned, expressed by Escherichia coli BL21, and purified. To give an enhanced the immunological response, the proteins were linked together with (Linker) or without a linker insert (NLinker) and were purified from E. coli BL21. The A/J mouse model was used to determine the level of the induction of protective immunity from the purified proteins. Our results showed that the IgG titer, which was measured by ELISA, was increased after the administration of the five proteins. Compared to the administration of the individual proteins, the chimeric Linker and NLinker proteins displayed lasting immunity to a lethal dose of L. pneumophila challenge. The Linker protein protected the A/J mouse against a higher dose of L. pneumonia compared to the other proteins used in this study, as it contained a more effective immunogen. The work presented here demonstrates that the bioinformatics software, DNA Star, is a valid tool to analyse the epitopes of proteins and was useful in the optimization of proteins that could induce the protective immune response to L. pneumophila. The cross-immunity of recombinant proteins, such as the Linker and the NLinker chimera, have higher generates a greater immune than the single proteins.

  9. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  10. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Amet, F.; Ke, C. T.; Draelos, A. W.; Wei, M. T.; Seredinski, A.; Watanabe, K.; Taniguchi, T.; Bomze, Y.; Yamamoto, M.; Tarucha, S.; Finkelstein, G.

    2016-12-01

    We investigate the critical current IC of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, IC is found to scale as ∝exp (-kBT /δ E ). The extracted energies δ E are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T →0 the critical current of a long (or short) junction saturates at a level determined by the product of δ E (or Δ ) and the number of the junction's transversal modes.

  11. Lack of Long-Lasting Hydrosalpinx in A/J Mice Correlates with Rapid but Transient Chlamydial Ascension and Neutrophil Recruitment in the Oviduct following Intravaginal Inoculation with Chlamydia muridarum

    PubMed Central

    Zhang, Hongbo; Zhou, Zhou; Chen, Jianlin; Wu, Ganqiu; Yang, Zhangsheng; Zhou, Zhiguang; Baseman, Joel; Zhang, Jin; Reddick, Robert Lee

    2014-01-01

    Lower genital tract infection with Chlamydia trachomatis and C. muridarum can induce long-lasting hydrosalpinx in the upper genital tract of women and female mice, respectively. However, A/J mice were highly resistant to induction of long-lasting hydrosalpinx by C. muridarum. We further compared host inflammatory responses and chlamydial infection courses between the hydrosalpinx-resistant A/J mice and CBA/J mice known to be susceptible to hydrosalpinx induction. Both mouse strains developed robust pyosalpinx during the acute phase followed by hydrosalpinx during the chronic phase. However, the hydrosalpinges disappeared in A/J mice by day 60 after infection, suggesting that some early hydrosalpinges are reversible. Although the overall inflammatory responses were indistinguishable between CBA/J and A/J mice, we found significantly more neutrophils in oviduct lumen of A/J mice on days 7 and 10, which correlated with a rapid but transient oviduct invasion by C. muridarum with a peak infection on day 7. In contrast, CBA/J mice developed a delayed and extensive oviduct infection. These comparisons have revealed an important role of the interactions of oviduct infection with inflammatory responses in chlamydial induction of long-lasting hydrosalpinx, suggesting that a rapid but transient invasion of oviduct by chlamydial organisms can prevent the development of the long-lasting hydrosalpinges. PMID:24711570

  12. Dressed fluxon in a Josephson window junction

    NASA Astrophysics Data System (ADS)

    Caputo, Jean Guy; Flytzanis, Nikos; Devoret, Michel

    1994-09-01

    The static fluxon solutions of a Josephson window junction have been studied numerically. We show that the effect of the idle region surrounding the junction is to ``dress'' the fluxon causing its energy to increase. This effect can be predicted accurately by a simple model.

  13. Analysis of Tight Junction Formation and Integrity

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Morrell-Falvey, Jennifer L; Foster, Carmen M; Retterer, Scott T

    2012-01-01

    In this paper, we study segmentation of tight junctions and analyze the formation and integrity of tight junctions in large-scale confocal image stacks, a challenging biological problem because of the low spatial resolution images and the presence of breaks in tight junction structure. We present an automated, three-step processing approach for tight junction analysis. In our approach, we first localize each individual nucleus in the image by using thresholding, morphological filters and active contours. By using each nucleus position as a seed point, we automatically segment the cell body based on the active contour. We then use an intensity-based skeletonization algorithm to generate the boundary regions for each cell, and features are extracted from tight junctions associated with each cell to assess tight junction continuity. Based on qualitative results and quantitative comparisons, we show that we are able to automatically segment tight junctions and compute relevant features that provide a quantitative measure of tight junction formation to which the permeability of the cell monolayer can ultimately be correlated.

  14. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  15. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  16. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  17. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions.

  18. Molecular mechanism of double Holliday junction dissolution

    PubMed Central

    2014-01-01

    Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is catalysed by two enzymes that work in tight coordination and belong to the same ‘dissolvasome’ complex. Within the dissolvasome, the RecQ-like BLM helicase provides the translocase function for Holliday junction migration, while the topoisomerase III alpha-RMI1 subcomplex works as a proficient DNA decatenase, together resulting in double-Holliday-junction unlinking. Here, we review the available architectural and biochemical knowledge on the dissolvasome machinery, with a focus on the structural interplay between its components. PMID:25061510

  19. Circuit Theory of Unconventional Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Nazarov, Yu. V.; Kashiwaya, S.

    2003-04-01

    We extend the circuit theory of superconductivity to cover transport and proximity effect in mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a simple application, we investigate the transport properties of a diffusive normal metal in series with a d-wave superconductor junction. We reveal the competition between the formation of Andreev bound states and proximity effect that depends on the crystal orientation of the junction interface.

  20. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  1. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  2. Afa/Dr diffusely adhering Escherichia coli C1845 infection promotes selective injuries in the junctional domain of polarized human intestinal Caco-2/TC7 cells.

    PubMed

    Peiffer, I; Blanc-Potard, A B; Bernet-Camard, M F; Guignot, J; Barbat, A; Servin, A L

    2000-06-01

    The Afa/Dr diffusely adhering Escherichia coli (DAEC) C1845 strain harboring the F1845 fimbrial adhesin interacts with the brush border-associated CD55 molecule and promotes elongation of brush border microvilli resulting from rearrangement of the F-actin network. This phenomenon involves the activation of a cascade of signaling coupled to the glycosylphosphatidylinositol-anchored receptor of the F1845 adhesin. We provide evidence that infection of the polarized human intestinal cell line Caco-2/TC7 by strain C1845 is followed by an increase in the paracellular permeability for [(3)H]mannitol without a decrease of the transepithelial resistance of the monolayers. Alterations in the distribution of tight-junction (TJ)-associated occludin and ZO-1 protein are observed, whereas the distribution of the zonula adherens-associated E-cadherin is not affected. Using the recombinant E. coli strains HB101(pSSS1) and -(pSSS1C) expressing the F1845 fimbrial adhesin, we demonstrate that the adhesin-CD55 interaction is not sufficient for the induction of structural and functional TJ lesions. Moreover, using the actin filament-stabilizing agent Jasplakinolide, we demonstrate that the C1845-induced functional alterations in TJs are independent of the C1845-induced apical cytoskeleton rearrangements. The results indicated that pathogenic factor(s) other than F1845 adhesin may be operant in Afa/Dr DAEC C1845.

  3. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  4. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  5. Current trends in salivary gland tight junctions

    PubMed Central

    Baker, Olga J.

    2016-01-01

    ABSTRACT Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  6. Presynaptic spike broadening reduces junctional potential amplitude.

    PubMed

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  7. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  8. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  9. Enhancement at the junction of silver nanorods.

    PubMed

    Gu, Geun Hoi; Suh, Jung Sang

    2008-08-19

    The enhancement of surface enhanced Raman scattering (SERS) at the junction of linearly joined silver nanorods (31 nm in diameter) deposited in the pores of anodic aluminum oxide templates was studied systematically by excitation with a 632.8 nm laser line. The single and joined silver nanorod arrays showed a similar extinction spectrum when their length was the same. Maximum enhancement was observed from the junction system of two nanorods of the same size with a total length of 62 nm. This length also corresponded to the optimum length of single nanorods for SERS by excitation with a 632.8 nm laser line. The enhancement at the junction was approximately 40 times higher than that of the 31 nm single nanorod, while it was 4 times higher than that of the 62 nm single nanorod. The enhancement factor at the junction after oxide removal was approximately 3.9 x 10 (9).

  10. UTE MRI of the Osteochondral Junction

    PubMed Central

    Biswas, Reni; Chen, Karen; Chang, Eric Y.; Chung, Christine B.

    2014-01-01

    The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them “invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction. PMID:25061547

  11. Anaesthesia management in craniovertebral junctional anomalies

    PubMed Central

    Mascarenhas, Oswald

    2016-01-01

    Craniovertebral Junctional (CVJ) anomalies are developmental disorders that affect the skeleton and enclosed neuraxis at the junction of cranium and cervical spine. The high prevalence of airway obstruction and restrictive pulmonary disease in combination with cardiovascular manifestations poses a high anaesthetic risk to these patients. This article provides a discussion of management of anaesthesia in patients with craniovertebral anomalies, the evaluation of risk factors in these patients and their management, including emergency airway issues. PMID:27891026

  12. Heat dissipation in atomic-scale junctions.

    PubMed

    Lee, Woochul; Kim, Kyeongtae; Jeong, Wonho; Zotti, Linda Angela; Pauly, Fabian; Cuevas, Juan Carlos; Reddy, Pramod

    2013-06-13

    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.

  13. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  14. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  15. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  16. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  17. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise.

  18. Predictive modelling of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  19. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  20. Differential effects of hydrocortisone and TNFα on tight junction proteins in an in vitro model of the human blood–brain barrier

    PubMed Central

    Förster, Carola; Burek, Malgorzata; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Olivier; Drenckhahn, Detlev

    2008-01-01

    Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood–brain barrier (BBB) which regulates the transport of molecules from blood into brain and back. Many disorders change the functionality and integrity of the BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders while their effects on others are questionable. In addition, conflicting results between clinical and experimental experience using animal models has arisen, so that the results of molecular studies in animal models need to be revisited in an appropriate in vitro model of the human BBB for more effective treatment strategies. Using the human brain microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the expression of barrier constituting adherens junction and tight junction transmembrane proteins (VE-cadherin, occludin, claudins) was investigated and compared to other established BBB models. In hCMEC/D3 cells the administration of glucocorticoids induced expression of the targets occludin 2.75 ± 0.04-fold and claudin-5 up to 2.32 ± 0.11-fold, which is likely to contribute to the more than threefold enhancement of transendothelial electrical resistance reflecting barrier tightness. Our analyses further provide direct evidence that the GC hydrocortisone prevents endothelial barrier breakdown in response to pro-inflammatory stimuli (TNFα administration), which could be demonstrated to be partly based on maintenance of occludin levels. Our studies strongly suggest stabilization of BBB function as a mode of GC action on a molecular level in the human brain vasculature. PMID:18258663

  1. Purification and gene cloning of alpha-methylserine aldolase from Ralstonia sp. strain AJ110405 and application of the enzyme in the synthesis of alpha-methyl-L-serine.

    PubMed

    Nozaki, Hiroyuki; Kuroda, Shinji; Watanabe, Kunihiko; Yokozeki, Kenzo

    2008-12-01

    By screening microorganisms that are capable of assimilating alpha-methyl-DL-serine, we detected alpha-methylserine aldolase in Ralstonia sp. strain AJ110405, Variovorax paradoxus AJ110406, and Bosea sp. strain AJ110407. A homogeneous form of this enzyme was purified from Ralstonia sp. strain AJ110405, and the gene encoding the enzyme was cloned and expressed in Escherichia coli. The enzyme appeared to be a homodimer consisting of identical subunits, and its molecular mass was found to be 47 kDa. It contained 0.7 to 0.8 mol of pyridoxal 5'-phosphate per mol of subunit and could catalyze the interconversion of alpha-methyl-L-serine to L-alanine and formaldehyde in the absence of tetrahydrofolate. Formaldehyde was generated from alpha-methyl-L-serine but not from alpha-methyl-D-serine, L-serine, or D-serine. Alpha-methyl-L-serine synthesis activity was detected when L-alanine was used as the substrate. In contrast, no activity was detected when D-alanine was used as the substrate. In the alpha-methyl-L-serine synthesis reaction, the enzymatic activity was inhibited by an excess amount of formaldehyde, which was one of the substrates. We used cells of E. coli as a whole-cell catalyst to express the gene encoding alpha-methylserine aldolase and effectively obtained a high yield of optically pure alpha-methyl-L-serine using L-alanine and formaldehyde.

  2. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  3. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    PubMed

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  4. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    ERIC Educational Resources Information Center

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  5. Benzo[b]fluoranthene: tumorigenicity in strain A/J mouse lungs, DNA adducts and mutations in the Ki-ras oncogene.

    PubMed

    Mass, M J; Abu-Shakra, A; Roop, B C; Nelson, G; Galati, A J; Stoner, G D; Nesnow, S; Ross, J A

    1996-08-01

    The polycyclic aromatic hydrocarbon benzo[b]fluoranthene (B[b]F) is a pervasive constituent of environmental combustion products. We sought to examine the lung tumorigenic activity of B[b]F in strain A/J mice, to study the relationship between formation and decay of B[b]F-DNA adducts and to examine mutations in the Ki-ras proto-oncogene in DNA from B[b]F-induced tumors. Mice were given i.p. injections of 0, 10, 50, 100 or 200 mg/kg body wt and lung adenomas were scored after 8 months. B[b]F induced significant numbers of mouse lung adenomas in a dose-related fashion, with the highest dose (200 mg/kg) yielding 6.95 adenomas/ mouse, with 100% of the mice exhibiting an adenoma. In mice given tricaprylin, the vehicle control, there were 0.60 adenomas/mouse, with 55% of the mice exhibiting an adenoma. Based on dose, B[b]F was less active than benzo[a]pyrene. DNA adducts were analyzed qualitatively and quantitatively by 32P-post-labeling in lungs of strain A/J mice 1, 3, 5, 7, 14 and 21 days after i.p. injection. Maximal levels of adduction occurred 5 days after treatment with the 200 mg/kg dose group, producing 1230 amol B[b]F-DNA adducts/microgram DNA. The major B[b]F-DNA adduct was identified by co-chromatography as trans-9, 10-dihydroxy-anti-11, 12-epoxy-5-hydroxy-9, 10, 11, 12-tetra-hydro-B[b]F-deoxyguanosine. Approximately 86% of the tumors had a mutation in codon 12 of the Ki-ras oncogene, as determined by direct DNA sequencing of PCR-amplified exon 1 and single-stranded conformation polymorphism analysis. Analysis of the Ki-ras mutation spectrum in 25 of 29 B[b]F-induced tumors revealed the predominant mutation to be a G-->T transversion in the first or second base of codon 12, congruous with the DNA adduct data. Our data are consistent with previous reports in mouse skin implicating a phenolic diol epoxide as the proximate carcinogenic form of B[b]F that binds to guanine.

  6. Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction

    PubMed Central

    Daneshjou, Nazila; Sieracki, Nathan; van Nieuw Amerongen, Geerten P.; Conway, Daniel E.; Schwartz, Martin A.

    2015-01-01

    The role of the RhoGTPase Rac1 in stabilizing mature endothelial adherens junctions (AJs) is not well understood. In this paper, using a photoactivatable probe to control Rac1 activity at AJs, we addressed the relationship between Rac1 and the dynamics of vascular endothelial cadherin (VE-cadherin). We demonstrated that Rac1 activation reduced the rate of VE-cadherin dissociation, leading to increased density of VE-cadherin at AJs. This response was coupled to a reduction in actomyosin-dependent tension across VE-cadherin adhesion sites. We observed that inhibiting myosin II directly or through photo-release of the caged Rho kinase inhibitor also reduced the rate of VE-cadherin dissociation. Thus, Rac1 functions by stabilizing VE-cadherin trans-dimers in mature AJs by counteracting the actomyosin tension. The results suggest a new model of VE-cadherin adhesive interaction mediated by Rac1-induced reduction of mechanical tension at AJs, resulting in the stabilization of VE-cadherin adhesions. PMID:25559184

  7. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  8. Tunnel junctions, cantilevers, and potentials

    NASA Astrophysics Data System (ADS)

    Tanner, Shawn

    We have developed a process for making sub-micrometer dimensional cantilevers, clamped beams, and more complicate electro-mechanical structures that carry integrated electrical leads. Such objects are perhaps useful as test structures for connecting to and measuring the electrical properties of molecular sized objects, as high frequency electromechanical components for radio and microwave frequency applications, and as sensor components for studying the fluctuation physics of small machines. Our process uses two realigned electron-beam lithography steps, a thin film angled deposition system, and differential removal of sacrificial aluminum layers to produce freely suspended sub-micron electromechanical components. We have produced cantilevers and beams on a variety of substrates (silica, silicon, and poly-imide) and have produced insulating, conductive, and multi-layer mechanical structures. We have measured mechanical resonances in the 10 MHz range by electrostatically actuating the cantilevers while in a magnetic field (3500 gauss) and measuring the voltage that results across the front edge of the cantilever. Two structures are fabricated sharing a common ground so that a balanced detection technique can be used to eliminate background signals. Due to the square dependence of the electrostatic force on the voltage, they can be resonated by a drive voltage of 1/2 the natural frequency or at the natural frequency. Two separate attempts have been made to apply these resonators. First, a process was developed to integrate a tunnel junction with the cantilever. These devices can possibly be used for probing small-scale systems such as molecules. We have verified the exponential variation of the tunneling resistance with both substrate flex and electrostatic gating. Second, a novel gate structure was developed to create a double potential well for resonator motion. This is accomplished by placing a multilayer structure in front of the hairpin cantilever consisting two

  9. YBCO step-edge junctions with high IcRn

    NASA Astrophysics Data System (ADS)

    Mitchell, E. E.; Foley, C. P.

    2010-06-01

    Step-edge junctions represent one type of grain boundary Josephson junction employed in high-temperature superconducting junction technology. To date, the majority of results published in the literature focus on [001]-tilt grain boundary junctions (GBJs) produced using bicrystal substrates. We investigate the step morphology and YBCO (yttrium barium copper oxide) film structure of YBCO-based step-edge junctions on MgO [001] substrates which structurally resemble [100]-tilt junctions. High-resolution electron microscopy reveals a clean GBJ interface of width ~ 1 nm and a single junction at the top edge. The dependence of the transport properties on the MgO step-edge and junction morphology is examined at 4.2 K, to enable direct comparison with results for other junction studies such as [001]-tilt and [100]-tilt junctions and building on previously published 77 K data. MgO step-edge junctions show a slower reduction in critical current density with step angle compared with [001]-tilt junctions. For optimized step parameters, transport measurements revealed large critical current and normal resistance (IcRN) products (~3-5 mV), comparable with the best results obtained in other kinds of [100]-tilt GBJs in YBCO at 4.2 K. Junction-based devices such as SQUIDs (superconducting quantum interference devices) and THz imagers show excellent performance when MgO-based step-edge junctions are used.

  10. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  11. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  12. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  13. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: development of junctional apparatus and the lethal effects of PBS mediated cell-cell dissociation.

    PubMed

    Talbot, N C; Garrett, W M

    2001-09-01

    Ultrastructural examination of 8-day hatched pig blastocysts (large and small), their cultured inner cell mass (ICM), and cultured epiblast tissue (embryonic stem cells) was undertaken to assess the development of epiblast cell junctions and cytoskeletal elements. In small blastocysts, epiblast cells had no desmosomes or tight junction (TJ) connections and few organized microfilament bundles, whereas in large blastocysts the epiblast cells were connected by TJ and desmosomes with associated microfilaments. ICM isolation by immunodissection damaged the endoderm cells beneath the trophectoderm cells but did not appear to damage the epiblast cells or their associated endoderm cells. Epiblast cells in cultured ICMs were similar in character to those in the intact large blastocyst except that perinuclear microfilaments were observed. Isolated pig epiblasts, cultured for approximately 36 hr on STO feeder layers, formed a monolayer whose cells were connected by TJ, adherens junctions and desmosomes with prominent microfilament bundles running parallel to the apical cytoplasmic membranes. Perinuclear microfilaments were a consistent feature in the approximately 36 hr cultured epiblast cells. A feature characteristic of differentiation into notochordal cells, i.e., a solitary cilium, was also observed in the cultured epiblast. Exposure of the cultured epiblast cells to Ca(++)-Mg(++)-free phosphate buffered saline (PBS) for 5-10 min resulted in extensive cell blebbing and lysis. The results may indicate that pig epiblast cells could be more easily dissociated from early blastocysts ( approximately 400 microm in diameter) if immunodissection damage to the ICM can be avoided. It may be difficult, however, to establish them as embryonic stem cell lines because the cultured pig epiblast cells were easily lysed by standard cell-cell dissociation methods.

  14. Erratum: "The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b" (AJ, 134, 1707 [2007])

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Holman, Matthew J.; Bakos, Gaspar Á.; Pál, András; Johnson, John Asher; Williams, Peter K. G.; Shporer, Avi; Mazeh, Tsevi; Fernandez, José; Latham, David W.; Gillon, Michaël

    2008-10-01

    Two of the midtransit times that were given in Table 3 of Winn et al. 2007 (AJ, 134, 1707-1712) are incorrect. The first entry was incorrect because a trend in the out-of-transit flux had not been removed as described in the text. The sixth entry gave an incorrect epoch, and a midtransit time that was too small by one orbital period, because of a rounding error in the computer code that generated the table. The corrected times are given below in a revised version of Table 3. With these revisions, the ephemeris parameters given in the text following Equation (4) are changed slightly, to Tc (0) = 2453997.79252(32) (HJD) and P = 4.46543(13) days, where the numbers in parentheses indicate the 1σ uncertainty in the last two digits. We note that a more precise ephemeris has been calculated by Johnson et al. (2008), based on a combination of the data presented here and more recent transit observations.

  15. Protective effects of green tea polyphenols administered by oral intubation against chemical carcinogen-induced forestomach and pulmonary neoplasia in A/J mice.

    PubMed

    Katiyar, S K; Agarwal, R; Mukhtar, H

    1993-09-30

    Our studies and others have shown the cancer chemopreventive effects of chronic administration of green tea in several animal tumor models. In this study, the administration of a polyphenolic fraction isolated from green tea (GTP) by oral intubation at a dose of 5 mg in 0.2 ml water 30 min prior to challenge with carcinogen, afforded significant protection against both diethylnitrosamine (DEN)- and benzo(a)pyrene (BP)-induced forestomach and lung tumorigenesis in A/J mice. The protective effects were evident by a decrease in numbers of tumors/mouse in GTP-fed groups compared to non GTP-fed controls. In the forestomach tumorigenesis protocol, GTP afforded 71 and 66% protection against, respectively DEN- and BP-induced tumor multiplicity. In the case of lung tumorigenesis protocol, however, the protective effects of GTP were 41 and 39%, respectively. Histological examination of forestomach tumors showed significantly lesser number of squamous cell carcinoma formation in GTP-fed groups of mice compared to carcinogen alone-treated controls. When pulmonary tumors were examined histologically, no adenocarcinomas were observed in GTP-fed groups compared to 15% mice with adenocarcinomas in DEN and BP alone-treated controls. The results of this study suggest that limited doses of GTP administration by gavage 30 min prior to carcinogen challenge may afford protection against carcinogen-induced tumorigenesis in internal body organs.

  16. 2-Deoxy-D-glucose inhibits intracellular multiplication and promotes intracellular killing of Legionella pneumophila in A/J mouse macrophages.

    PubMed Central

    Ogawa, M; Yoshida, S; Mizuguchi, Y

    1994-01-01

    Legionella pneumophila can grow intracellularly in A/J mouse macrophages. 2-Deoxy-D-glucose (2dG) (0.1, 1, and 10 mM) inhibited intracellular multiplication and promoted intracellular killing of L. pneumophila dose dependently when it was added to the culture medium of macrophage monolayers, whereas it did not inhibit the bacterial growth in buffered yeast extract broth, which was used for an L. pneumophila culture. The effect of 2dG was reversible because the surviving bacteria resumed intracellular multiplication after the washing away of 2dG from the culture. The effect of 2dG was also competitively inhibited by high concentrations of glucose. The inhibitory effect of 2dG was not attributed to the inhibition of bacterial phagocytosis by macrophages. Furthermore, sodium fluoride (0.1 and 1 mM), cycloheximide (0.1 and 1 microgram/ml), and tunicamycin (1, 2, and 5 micrograms/ml) did not promote the killing of L. pneumophila in macrophages, implying that the inhibitory effect of 2dG cannot be attributed to the inhibition of glycolysis, protein synthesis, and protein glycosylation in macrophages. We suggest that 2dG promotes intracellular killing of L. pneumophila by activating some novel killing mechanism of macrophages. PMID:8262638

  17. Methods for the fabrication of thermally stable magnetic tunnel junctions

    SciTech Connect

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  18. Thermionic refrigeration at CNT-CNT junctions

    NASA Astrophysics Data System (ADS)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  19. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  20. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  1. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  2. Photocurrent Measurements of Carbon Nanotube PN Junctions

    NASA Astrophysics Data System (ADS)

    Gabor, Nathaniel; Zhong, Zhaohui; Bosnick, Ken; Park, Jiwoong; McEuen, Paul

    2007-03-01

    Gated p-n junctions in semiconducting nanotubes have recently drawn much attention for their electronic and optoelectronic characteristics [1,2,3]. We investigate the photocurrent response at a nanotube gated p-n junction using a focused laser illumination source. We find that the photocurrent at zero source-drain bias increases linearly with optical power for the component of light along the length of the nanotube. Scanned photocurrent imaging demonstrates that carrier generation occurs primarily between the p- and n- type segments of the device. Measurements in an optical cryostat down to 4K reveal large photoresponse and step-like structure in the reverse bias photocurrent. These results show that nanotube p-n junctions are highly sensitive, nanoscale photodetectors. [1] J.U. Lee et al, App. Phys. Lett. 85, 145 (2004). [2] J.U. Lee, App. Phys. Lett. 87, 073101 (2005). [3] K. Bosnick et al, App. Phys. Lett. 89, 163121 (2006).

  3. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  4. Numerical Investigation of Josephson Junction Structures

    SciTech Connect

    Hristov, I.; Dimova, S.; Boyadjiev, T.

    2009-10-29

    Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

  5. Brownian refrigeration by hybrid tunnel junctions

    NASA Astrophysics Data System (ADS)

    Peltonen, J. T.; Helle, M.; Timofeev, A. V.; Solinas, P.; Hekking, F. W. J.; Pekola, J. P.

    2011-10-01

    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.210604 98, 210604 (2007) of this heat rectifying system, bearing resemblance to a Maxwell’s demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single-electron transistor configuration with two hybrid junctions in series, and show how the cooling is influenced by charging effects. We analyze also the cooling effect from nonequilibrium fluctuations instead of thermal noise, focusing on the shot noise generated in another tunnel junction. We conclude by discussing limitations for an experimental observation of the effect.

  6. Electronic Properties of Carbon Nanotubes and Junctions

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to

  7. Non-invasive microfluidic gap junction assay.

    PubMed

    Chen, Sisi; Lee, Luke P

    2010-03-01

    Gap junctions are protein channels between cells that allow direct electrical and metabolic coupling via the exchange of biomolecules and ions. Their expression, though ubiquitous in most mammalian cell types, is especially important for the proper functioning of cardiac and neuronal systems. Many existing methods for studying gap junction communication suffer from either unquantifiable data or difficulty of use. Here, we measure the extent of dye spread and effective diffusivities through gap junction connected cells using a quantitative microfluidic cell biology platform. After loading dye by hydrodynamic focusing of calcein/AM, dye transfer dynamics into neighboring, unexposed cells can be monitored via timelapse fluorescent microscopy. By using a selective microfluidic dye loading over a confluent layer of cells, we found that high expression of gap junctions in C6 cells transmits calcein across the monolayer with an effective diffusivity of 3.4 x 10(-13) m(2)/s, which are highly coupled by Cx43. We also found that the gap junction blocker 18alpha-GA works poorly in the presence of serum even at high concentrations (50 microM); however, it is highly effective down to 2.5 microM in the absence of serum. Furthermore, when the drug is washed out, dye spread resumes rapidly within 1 min for all doses, indicating the drug does not affect transcriptional regulation of connexins in these Cx43+ cells, in contrast to previous studies. This integrated microfluidic platform enables the in situ monitoring of gap junction communication, yielding dynamic information about intercellular molecular transfer and pharmacological inhibition and recovery.

  8. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  9. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  10. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  11. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  12. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  13. Resolving Atomic Connectivity in Graphene Nanostructure Junctions.

    PubMed

    Dienel, Thomas; Kawai, Shigeki; Söde, Hajo; Feng, Xinliang; Müllen, Klaus; Ruffieux, Pascal; Fasel, Roman; Gröning, Oliver

    2015-08-12

    We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

  14. A proposed route to independent measurements of tight junction conductance at discrete cell junctions

    PubMed Central

    Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui

    2015-01-01

    Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077

  15. Ballistic bipolar junctions in chemically gated graphene ribbons

    PubMed Central

    Baringhaus, Jens; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich; Tegenkamp, Christoph

    2015-01-01

    The realization of ballistic graphene pn-junctions is an essential task in order to study Klein tunneling phenomena. Here we show that intercalation of Ge under the buffer layer of pre-structured SiC-samples succeeds to make truly nano-scaled pn-junctions. By means of local tunneling spectroscopy the junction width is found to be as narrow as 5 nm which is a hundred times smaller compared to electrically gated structures. The ballistic transmission across the junction is directly proven by systematic transport measurements with a 4-tip STM. Various npn- and pnp-junctions are studied with respect to the barrier length. The pn-junctions are shown to act as polarizer and analyzer with the second junction becoming transparent in case of a fully ballistic barrier. This can be attributed to the almost full suppression of electron transmission through the junction away from normal incidence. PMID:25898259

  16. Gap junction- and hemichannel-independent actions of connexins

    PubMed Central

    Jiang, Jean X.; Gu, Sumin

    2007-01-01

    Connexins have been known to be the protein building blocks of gap junctions and mediate cell–cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed. PMID:15955305

  17. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  18. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  19. Radiation comb generation with extended Josephson junctions

    SciTech Connect

    Solinas, P.; Bosisio, R.; Giazotto, F.

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  20. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  1. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  2. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  3. Polyphosphonium-based ion bipolar junction transistors.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  4. Costochondral junction osteomyelitis in 3 septic foals

    PubMed Central

    Cesarini, Carla; Macieira, Susana; Girard, Christiane; Drolet, Richard; d’Anjou, Marc-André; Jean, Daniel

    2011-01-01

    The costochondral junction constitutes a potential site of infection in septic foals and it could be favored by thoracic trauma. Standard radiographs and ultrasonography are useful tools for diagnosis of this condition and ultrasound-guided needle aspiration could permit the definitive confirmation of infection. PMID:22210943

  5. Gap junctional communication during limb cartilage differentiation.

    PubMed

    Coelho, C N; Kosher, R A

    1991-03-01

    The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.

  6. All-carbon molecular tunnel junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L

    2011-11-30

    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V <30%). These all-carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  7. Regulation of Traffic Lights at Road Junctions

    NASA Astrophysics Data System (ADS)

    Cutolo, Alfredo; Manzo, Rosanna; Rarità, Luigi

    2009-08-01

    In this work, we aim to investigate the effects of traffic lights regulation at road junctions, modelled by a fluid dynamic approach. Numerical simulations prove that it is possible to plan some optimization strategies for green and red phases for networks consisting of more nodes.

  8. The dynamic organic p-n junction.

    PubMed

    Matyba, Piotr; Maturova, Klara; Kemerink, Martijn; Robinson, Nathaniel D; Edman, Ludvig

    2009-08-01

    Static p-n junctions in inorganic semiconductors are exploited in a wide range of today's electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.

  9. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  10. Chronic granulomatous pneumonia and lymphocytic responses induced by inhaled beryllium metal in A/J and C3H/HeJ mice

    SciTech Connect

    Nikula, K.J.; Swafford, D.S.; Hoover, M.D.; Tohulka, M.D.; Finch, G.L.

    1997-12-31

    Inhalation of beryllium (Be) has been associated with 2 syndromes: an acute chemical pneumonitis and a granulomatous lung disease known as chronic beryllium disease (CBD). The purpose of this study was to establish a mouse model of CBD using the inhalation route of exposure. A/J (H-2a haplotype) and C3H/HeJ (H-2{sup k}) Mice were exposed once for 90 min in nose-only exposure tubes to aerosols of Be metal. Six mo later, lung histopathologic responses were assessed. Further analyses defined the phenotypic profile of lymphocytes in pulmonary lesions and evaluated proliferation of lymphocytes in situ and in response to Be in vitro. Responses were similar in both strains of mice. Most Be-exposed mice had minimal to mild interstitial fibrosis. The majority of lymphocytes in interstitial infiltrates and in microgranulomas were CD4+ T cells. Interstitial compact aggregates of lymphocytes contained B cells centrally and CD4+ cells peripherally. Lymphocyte labeling indices, used to assess proliferation in situ, were significantly greater within microgranulomas compared to compact lymphocytic aggregates. Lymphocyte stimulation indices in response to BeSO{sub 4} in vitro were not positive in blood, spleen, or tracheobronchial lymph node samples. Be-specific immune responses and nonspecific inflammatory responses to toxic and foreign-body properties of Be may have contributed to the histopathology in both strains of mice. The interstitial mononuclear cell infiltrates, presence of microgranulomas, multinucleated foreign-body and Langhans giant cells, interstitial fibrosis, and CD4+ T-cell predominance with local proliferation are features similar to CBD in humans. The chronic lung disease induced in these mice by inhaled Be can be used to investigate the importance of variables such as dose, exposure pattern, and physicochemical form of Be in producing this disease. 29 refs., 6 figs., 3 tabs.

  11. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  12. The effects of phenethyl isothiocyanate, N-acetylcysteine and green tea on tobacco smoke-induced lung tumors in strain A/J mice.

    PubMed

    Witschi, H; Espiritu, I; Yu, M; Willits, N H

    1998-10-01

    Male and female strain A/J mice were exposed to a mixture of cigarette sidestream and mainstream smoke at a chamber concentration of total suspended particulates of 82.5 mg/m3. Exposure time was 6 h/day, 5 days/week for 5 months. The animals were allowed to recover for another 4 months in filtered air before sacrifice and lung tumor count. Male animals were fed either 0.2% N-acetylcysteine (NAC) or 0.05% phenethyl isothiocyanate (PEITC) in diet AIN-76A with 5% corn oil added. Female animals received normal laboratory chow and were given a 1.25% extract of green tea in the drinking water. Corresponding control groups were fed diets without NAC or PEITC or given plain tap water. Exposure to tobacco smoke increased lung tumor multiplicity to 1.1-1.6 tumors/lung, significantly higher than control values (0.5-1.0 tumors/lung). None of the putative chemopreventive agents (NAC, PEITC or green tea extract) had a protective effect. In positive control experiments, PEITC significantly reduced both lung tumor multiplicity and incidence in mice treated with the tobacco smoke-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In mice treated with three different doses of urethan and fed NAC in the diet, a significant reduction in lung tumor multiplicity was found only at one dose level. Green tea extract did not reduce lung tumor multiplicity in animals treated with a single dose of NNK. It was concluded that successful chemoprevention of tobacco smoke-induced lung tumorigenesis might require administration of several chemopreventive agents rather than just a single one.

  13. Chemopreventive Effects of the p53-Modulating Agents CP-31398 and Prima-1 in Tobacco Carcinogen-Induced Lung Tumorigenesis in A/J Mice1

    PubMed Central

    Rao, Chinthalapally V; Patlolla, Jagan Mohan R; Qian, Li; Zhang, Yuting; Brewer, Misty; Mohammed, Altaf; Desai, Dhimant; Amin, Shantu; Lightfoot, Stan; Kopelovich, Levy

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse) by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group) or 34 weeks (15 mice/group) to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001) lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001) lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation. PMID:24027427

  14. Chemopreventive effect of kava on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo[a]pyrene-induced lung tumorigenesis in A/J mice.

    PubMed

    Johnson, Thomas E; Kassie, Fekadu; O'Sullivan, M Gerard; Negia, Mesfin; Hanson, Timothy E; Upadhyaya, Pramod; Ruvolo, Peter P; Hecht, Stephen S; Xing, Chengguo

    2008-11-01

    Lung cancer is the leading cause of cancer death, and chemoprevention is a potential strategy to help control this disease. Epidemiologic survey indicates that kava may be chemopreventive for lung cancer, but there is a concern about its potential hepatotoxicity. In this study, we evaluated whether oral kava could prevent 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) plus benzo[a]pyrene (B[a]P)-induced lung tumorigenesis in A/J mice. We also studied the effect of kava to liver. At a dose of 10 mg/g diet, 30-week kava treatment (8 weeks concurrent with NNK and B[a]P treatment followed by 22 weeks post-carcinogen treatment) effectively reduced lung tumor multiplicity by 56%. Kava also reduced lung tumor multiplicity by 47% when administered concurrently with NNK and B[a]P for 8 weeks. Perhaps most importantly, kava reduced lung tumor multiplicity by 49% when administered after the final NNK and B[a]P treatment. These results show for the first time the chemopreventive potential of kava against lung tumorigenesis. Mechanistically, kava inhibited proliferation and enhanced apoptosis in lung tumors, as shown by a reduction in proliferating cell nuclear antigen (PCNA), an increase in caspase-3, and cleavage of poly(ADP-ribose) polymerase (PARP). Kava treatment also inhibited the activation of nuclear factor kappaBNF-kappaB, a potential upstream mechanism of kava chemoprevention. Although not rigorously evaluated in this study, our preliminary data were not suggestive of hepatotoxicity. Based on these results, further studies are warranted to explore the chemopreventive potential and safety of kava.

  15. Successful Wide Hybridization and Introgression Breeding in a Diverse Set of Common Peppers (Capsicum annuum) Using Different Cultivated Ají (C. baccatum) Accessions as Donor Parents

    PubMed Central

    2015-01-01

    Capsicum baccatum, commonly known as ají, has been reported as a source of variation for many different traits to improve common pepper (C. annuum), one of the most important vegetables in the world. However, strong interspecific hybridization barriers exist between them. A comparative study of two wide hybridization approaches for introgressing C. baccatum genes into C. annuum was performed: i) genetic bridge (GB) using C. chinense and C. frutescens as bridge species; and, ii) direct cross between C. annuum and C. baccatum combined with in vitro embryo rescue (ER). A diverse and representative collection of 18 accessions from four cultivated species of Capsicum was used, including C. annuum (12), C. baccatum (3), C. chinense (2), and C. frutescens (1). More than 5000 crosses were made and over 1000 embryos were rescued in the present study. C. chinense performed as a good bridge species between C. annuum and C. baccatum, with the best results being obtained with the cross combination [C. baccatum (♀) × C. chinense (♂)] (♀) × C. annuum (♂), while C. frutescens gave poor results as bridge species due to strong prezygotic and postzygotic barriers. Virus-like-syndrome or dwarfism was observed in F1 hybrids when both C. chinense and C. frutescens were used as female parents. Regarding the ER strategy, the best response was found in C. annuum (♀) × C. baccatum (♂) crosses. First backcrosses to C. annuum (BC1s) were obtained according to the crossing scheme [C. annuum (♀) × C. baccatum (♂)] (♀) × C. annuum (♂) using ER. Advantages and disadvantages of each strategy are discussed in relation to their application to breeding programmes. These results provide breeders with useful practical information for the regular utilization of the C. baccatum gene pool in C. annuum breeding. PMID:26642059

  16. Effects of novel 5-lipoxygenase inhibitors on the incidence of pulmonary adenomas in the A/J murine model when administered via nose-only inhalation.

    PubMed

    Myrdal, P B; Karlage, K; Kuehl, P J; Angersbach, B S; Merrill, B A; Wightman, P D

    2007-05-01

    The objective of this study was to determine the effects of 5-lipoxygenase (5-LO) inhibitors on the incidence of benzo(a)pyrene-induced pulmonary adenomas in female A/J mice. Two novel compounds, S-29606 and S-30621, and the Food and Drug Administration-approved Zileuton were investigated. S-29606 and S-30621 were selected from a group of similar active structures on the basis of local versus systemic 5-LO inhibitory activity. Preliminary studies found them to lack oral bioavailability, in direct contrast to Zileuton. Treatment was initiated 1 week following exposure to the carcinogen benzo(a)pyrene. Both S-29606 and S-30621 were dosed via nose-only inhalation 5 days a week, for 16 weeks, whereas Zileuton was administered orally. Dose levels for S-29606 and S-30621 were determined to be 220 and 430 microg/kg for the low- and high-dose groups, respectively, whereas the dose of Zileuton was 245 mg/kg. Both test compounds exhibited a significant reduction of pulmonary adenomas, compared with a positive control for high and low doses, P < 0.05. Additionally, a dose response for both S-29606 and S-30621 was observed when compared with placebo. Despite a dose 575 times greater than that of the novel test compounds, orally administered Zileuton did not produce a reduction in adenoma occurrence. The findings of this study offer compelling preliminary data for the use of S-29606 and S-30621 in further investigations of the treatment of pulmonary adenomas and support the use of inhalation drug delivery as an alternate to oral delivery for these compounds.

  17. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  18. Overview of the Grand Junction Office from Bluff east of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Grand Junction Office from Bluff east of facility. Note Buildings #35. #33 and #31A in lower left of photograph. VIEW WEST - Department of Energy, Grand Junction Office, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  19. Graphene junction field-effect transistor

    NASA Astrophysics Data System (ADS)

    Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart

    2014-03-01

    We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.

  20. Multiphase Flow in Micro-fracture Junctions

    NASA Astrophysics Data System (ADS)

    Basagaoglu, H.; Meakin, P.; Succi, S.; Wildenschild, D.

    2005-12-01

    A two-dimensional two-phase lattice-Boltzmann model was used to simulate immiscible fluid flow in four micro-fracture geometries closely related to geological fractured systems: (1) a fracture junction with fractal surfaces embedded in a non-porous matrix; (2) a fracture junction embedded in a heterogeneous porous matrix; (3) a heterogeneous porous medium overlying a fracture with fractal surfaces; and (4) a fracture network with fractal surfaces enclosed by a non-porous medium. The spatio-temporal distributions of fluids in fracture junctions were controlled by interplays between velocity-dependent contact angle dynamics, mediated by surface roughness, and pore-scale gravitational, viscous, and capillary forces. All simulations were conducted with actual physical units. Sensitivities of lateral and vertical spreads of fluids in the fracture junctions to the orientation of fracture junctions (tilted vs. vertical) and the wetting strength of fluids were analyzed via temporal moment analyses for the first two geometries. The simulation results revealed that the receding and advancing contact angles varied strongly with the transient fluid velocity. The patterns and distributions of thin films (continuous vs. discontinuous) on rough fracture walls were largely controlled by the wetting strength of the fluids. The spatio-temporal distributions of fluids were highly sensitive to the domain size and boundary conditions (periodic, no-flow, constant density, and flux-type). Single- and two-sided wetting of fracture aperture walls and long-term entrapment of a nonwetting less-dense fluid by a wetting dense fluid were observed in the simulations. These numerical results are useful for the design of experiments and for analyzing the relative strengths of pore-scale processes in more complex and realistic fracture systems such as those encountered at the Yucca Mountain and Idaho National Laboratory sites.

  1. Model building to facilitate understanding of holliday junction and heteroduplex formation, and holliday junction resolution.

    PubMed

    Selvarajah, Geeta; Selvarajah, Susila

    2016-07-08

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and computer-animated video, we included a model building activity using pipe cleaners. Biotechnology undergraduates (n = 108) used the model to simulate Holliday junction and heteroduplex formation, and Holliday junction resolution. Based on student perception, an average of 12.85 and 78.35% students claimed that they completely and partially understood the two concepts, respectively. A test conducted to ascertain their understanding about the two concepts showed that 66.1% of the students provided the correct response to the three multiple choice questions. A majority of the 108 students attributed the inclusion of model building to their better understanding of Holliday junction and heteroduplex formation, and Holliday junction resolution. This underlines the importance of incorporating model building, particularly in concepts that require spatial visualization. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):381-390, 2016.

  2. Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction.

    PubMed

    Yoon, Chansoo; Lee, Ji Hye; Lee, Sangik; Jeon, Ji Hoon; Jang, Jun Tae; Kim, Dae Hwan; Kim, Young Heon; Park, Bae Ho

    2017-03-08

    Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing ( Li et al. Sci. Rep. 2014 , 4 , 4096 ). Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr0.52Ti0.48O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of ∼4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (10(7)) and low energy consumption (potentiation energy consumption = ∼22 aJ and depression energy consumption = ∼2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.

  3. Demonstration of an ac Josephson junction laser

    NASA Astrophysics Data System (ADS)

    Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.

    2017-03-01

    Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

  4. String networks with junctions in competition models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2017-03-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  5. Junction between surfaces of two topological insulators

    NASA Astrophysics Data System (ADS)

    Sen, Diptiman; Deb, Oindrila

    2012-02-01

    We study scattering from a line junction which separates the surfaces of two three-dimensional topological insulators; some aspects of this problem were recently studied in Takahashi and Murakami, Phys. Rev. Lett. 107, 166805 (2011). The velocities of the Dirac electrons on the two surfaces may be unequal and may even have opposite signs; in the latter case, we find that the electrons must, in general, go into the two-dimensional interface separating the two topological insulators. We also study what happens if the two surfaces are at an angle φ with respect to each other. We find in this case that there are bound states which propagate along the line junction with a velocity and direction of spin which depend on the bending angle φ.

  6. Junction conditions in extended Teleparallel gravities

    SciTech Connect

    De la Cruz-Dombriz, Álvaro; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: peter.dunsby@uct.ac.za

    2014-12-01

    In the context of extended Teleparallel gravity theories, we address the issue of junction conditions required to guarantee the correct matching of different regions of spacetime. In the absence of shells/branes, these conditions turn out to be more restrictive than their counterparts in General Relativity as in other extended theories of gravity. In fact, the general junction conditions on the matching hypersurfaces depend on the underlying theory and a new condition on the induced tetrads in order to avoid delta-like distributions in the field equations. This result imposes strict consequences on the viability of standard solutions such as the Einstein-Straus-like construction. We find that the continuity of the scalar torsion is required in order to recover the usual General Relativity results.

  7. Current distributions in stripe Majorana junctions

    NASA Astrophysics Data System (ADS)

    Osca, Javier; Llorenç, Serra

    2017-02-01

    We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite ( y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

  8. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  9. Magnetoamplification in a bipolar magnetic junction transistor.

    PubMed

    Rangaraju, N; Peters, J A; Wessels, B W

    2010-09-10

    We have demonstrated the first bipolar magnetic junction transistor using a dilute magnetic semiconductor. For an InMnAs p-n-p transistor magnetoamplification is observed at room temperature. The observed magnetoamplification is attributed to the magnetoresistance of the magnetic semiconductor InMnAs heterojunction. The magnetic field dependence of the transistor characteristics confirm that the magnetoamplification results from the junction magnetoresistance. To describe the experimentally observed transistor characteristics, we propose a modified Ebers-Moll model that includes a series magnetoresistance attributed to spin-selective conduction. The capability of magnetic field control of the amplification in an all-semiconductor transistor at room temperature potentially enables the creation of new computer logic architecture where the spin of the carriers is utilized.

  10. Excess junction current of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wang, E. Y.; Legge, R. N.; Christidis, N.

    1973-01-01

    The current-voltage characteristics of n(plus)-p silicon solar cells with 0.1, 1.0, 2.0, and 10 ohm-cm p-type base materials have been examined in detail. In addition to the usual I-V measurements, we have studied the temperature dependence of the slope of the I-V curve at the origin by the lock-in technique. The excess junction current coefficient (Iq) deduced from the slope at the origin depends on the square root of the intrinsic carrier concentration. The Iq obtained from the I-V curve fitting over the entire forward bias region at various temperatures shows the same temperature dependence. This result, in addition to the presence of an aging effect, suggest that the surface channel effect is the dominant cause of the excess junction current.

  11. Cusps on cosmic superstrings with junctions

    SciTech Connect

    Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk

    2008-11-15

    The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.

  12. [Paroxysmal junctional reciprocal tachycardia and fetoplacental anasarca].

    PubMed

    Maurier, F; Delisle, G; Guay, M

    1985-02-01

    Foeto-placental anasarca was diagnosed at 34 weeks gestation in a patient with acute hydramnios. Foetal tachycardia at 300 bpm was recorded. This obstetrical problem led to the birth of a premature baby with generalised oedema, for which the only apparent cause was the tachycardia. This was identified as a paroxysmal junctional reciprocating tachycardia, initiating on atrial extrasystolic echos, terminating on R waves, with lengthening of the PR interval at the onset of tachycardia, without acceleration of the sinus rate and P'R = RP'. Paroxysmal junctional reciprocating tachycardia in utero was responsible for congestive cardiac failure and foeto-placental anasarca. The cardiac failure was treated by foetal delivery, artificial respiration and digoxin. The association of digoxin-disopyramide reduces the frequency of attacks of tachycardia and treatment may be stopped after one year's follow-up.

  13. Novel tunnelling barriers for spin tunnelling junctions

    NASA Astrophysics Data System (ADS)

    Sharma, Manish

    A tunnel junction consists of two metal electrodes separated by an insulating barrier thin enough for electrons to tunnel across. With ferromagnetic electrodes, a spin-dependent tunnelling (SDT) effect, electrons of one spin tunnelling preferentially over those of the other, is observed. When the electrodes are switched from a parallel to an anti-parallel alignment, the tunnelling current changes and gives rise to tunnelling magnetoresistance (TMR). Since 1995, interest in SDT junctions has increased as TMR in excess of 15% has been achieved, making viable their use in non-volatile memory and magnetic sensors applications. In this work, two key issues of SDT junctions are addressed: spin polarization of the electrode and the tunnel barrier. Spin polarization, a measure of electron states of up and down spins, is widely believed to be an intrinsic property of the electrode. In junctions with barriers formed by plasma oxidation of composite Ta/Al films, the surprising effect of the resistance being lower with the electrodes aligned antiparallel was observed. Junctions with Ta/Al barriers and those with Al/Ta barriers behave opposite to each other and exhibit an inversion only when the Ta side of the barrier is biased positive. This demonstrates the spin polarization is also influenced by the barrier material. Half-metallic materials such as magnetite (Fe3O4) have a gap in one of the spins' states at the fermi level, thus having a theoretical spin polarization of 100%. In this work, an ultrathin Fe3O 4 layer was added between the Al2O3 barrier and the NiFe electrode. The TMR increased sharply from 4% to 16% for thicknesses less than 0.5nm. As the tunnel barrier must be thinner than 2nm, choice of the barrier material becomes critical. Presently, Al2O3 is the best known barrier. In looking for alternative materials, AlN and AlON were formed by plasma nitridation and oxy-nitridation of deposited Al films. TMR results of up to 18% and resistance-area products down to 3

  14. Spontaneous supercurrent induced by ferromagnetic pi junctions.

    PubMed

    Bauer, A; Bentner, J; Aprili, M; Della Rocca, M L; Reinwald, M; Wegscheider, W; Strunk, C

    2004-05-28

    We present magnetization measurements of mesoscopic superconducting niobium loops containing a ferromagnetic (PdNi) pi junction. The loops are prepared on top of the active area of a micro-Hall sensor based on high mobility GaAs/AlGaAs heterostructures. We observe asymmetric switching of the loop between different magnetization states when reversing the sweep direction of the magnetic field. This provides evidence for a spontaneous current induced by the intrinsic phase shift of the pi junction. In addition, the presence of the spontaneous current near zero applied field is directly revealed by an increase of the magnetic moment with decreasing temperature, which results in half integer flux quantization in the loop at low temperatures.

  15. Physiology and Function of the Tight Junction

    PubMed Central

    Anderson, James M.; Van Itallie, Christina M.

    2009-01-01

    Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 Å in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information. PMID:20066090

  16. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  17. Quantum computing with Josephson junction circuits

    NASA Astrophysics Data System (ADS)

    Xu, Huizhong

    This work concerns the study of Josephson junction circuits in the context of their usability for quantum computing. The zero-voltage state of a current-biased Josephson junction has a set of metastable quantum energy levels. If a junction is well isolated from its environment, it will be possible to use the two lowest states as a qubit in a quantum computer. I first examine the meaning of isolation theoretically. Using a master equation, I analyzed the effect of dissipation on escape rates and suggested a simple method, population depletion technique, to measure the relaxation time (T1). Using a stochastic Bloch equation to analyze the dependence of microwave resonance peak width on current noise, I found decoherence due to current noise depends on the noise spectrum. For high frequency noise with a cutoff frequency fc much larger than 1/T1, I found decoherence due to noise can be described by a dephasing rate that is proportional to the noise spectral density. However, for low frequency noise such that its cutoff frequency fc is much smaller than 1/T 1, decoherence due to noise depends on the total rms current noise. I then analyze and test a few qubit isolation schemes, including resistive isolation, inductor-capacitor (LC) isolation, half-wavelength resonant isolation and inductor-junction (LJ) isolation. I found the resistive isolation scheme has a severe heating problem. Macroscopic quantum tunneling and energy level quantization were observed in the LC isolated Nb/AlOx/Nb and AL/ALOx/Al junction qubits at 25 mK. Relaxation times of 4--12 ns and spectroscopic coherence times of 1--3 ns were obtained for these LC isolated qubits. I found the half-wavelength isolated junction qubit has a relaxation time of about 20 ns measured by the population-depletion techniques, but no energy levels were observed in this qubit. Experimental results suggest the LJ isolated qubit has a longer relaxation and coherence times than all my previously examined samples. Using a

  18. Neuro-muscular junction block stimulator simulator.

    PubMed

    Sprick, Cyle

    2006-03-01

    Improved technology and higher fidelity are making medical simulations increasingly popular. A simulated peripheral nerve stimulator and thumb actuator has been developed for use with the SimMan Universal Patient Simulator. This device incorporates a handheld control box, a McKibben pneumatic muscle and articulated thumb, and a remote software interface for the simulation facilitator. The system simulates the action of a peripheral nerve stimulator on the ulnar nerve, and the effects of neuromuscular junction blocking agents on the thumb motion.

  19. Electronic and optical spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Preiner, Michael J.

    Electronic transport through molecules has been intensively studied in recent years, due to scientific interest in fundamental questions about charge transport and the technological promise of nanoscale circuitry. A wide range of range of experimental platforms have been developed to electronically probe both single molecules and molecular monolayers. However, it remains challenging to fabricate reliable electronic contacts to molecules, and the vast majority of molecular electronic architectures are not amenable to standard characterization techniques, such as optical spectroscopy. Thus the field of molecular electronics has been hampered with problems of reproducibility, and many fundamental questions about electronic transport remain unanswered. This thesis describes four significant contributions towards the fabrication and characterization of molecular electronic devices: (1) The development of a new method for creating robust, large area junctions where the electronic transport is through a single monolayer of molecules. This method utilizes atomic layer deposition (ALD) to grow an ultrathin oxide layer on top of a molecular monolayer, which protects the molecules against subsequent processing. (2) A new method for rapid imaging and analysis of single defects in molecular monolayers. This method also electrically passivates defects as it labels them. (3) Hot carrier spectroscopy of molecular junctions. Using optically excited hot carriers, we demonstrate the ability to probe the energy level lineup inside buried molecular junctions. (4) Efficient coupling of optical fields to metal-insulator-metal (MIM) surface plasmon modes. We show both theoretical and experimental work illustrating the ability to create very intense optical fields inside MIM systems. The intense fields generated in this manner have natural extensions to a variety of applications, such as photon assisted tunneling in molecular junctions, optical modulators, and ultrafast optoelectronic

  20. Semiconductor junction formation by directed heat

    DOEpatents

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  1. Quantum dynamics in the bosonic Josephson junction

    SciTech Connect

    Chuchem, Maya; Cohen, Doron; Smith-Mannschott, Katrina; Hiller, Moritz; Kottos, Tsampikos; Vardi, Amichay

    2010-11-15

    We employ a semiclassical picture to study dynamics in a bosonic Josephson junction with various initial conditions. Phase diffusion of coherent preparations in the Josephson regime is shown to depend on the initial relative phase between the two condensates. For initially incoherent condensates, we find a universal value for the buildup of coherence in the Josephson regime. In addition, we contrast two seemingly similar on-separatrix coherent preparations, finding striking differences in their convergence to classicality as the number of particles increases.

  2. Defect formation in long Josephson junctions

    SciTech Connect

    Gordeeva, Anna V.; Pankratov, Andrey L.

    2010-06-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density.

  3. Josephson junction microwave modulators for qubit control

    NASA Astrophysics Data System (ADS)

    Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.

    2017-02-01

    We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.

  4. Protection against N-nitrosodiethylamine and benzo[a]pyrene-induced forestomach and lung tumorigenesis in A/J mice by green tea.

    PubMed

    Katiyar, S K; Agarwal, R; Zaim, M T; Mukhtar, H

    1993-05-01

    In recent years we and others have shown the cancer chemopreventive effects of green tea in several animal tumor models. In this study we assessed the cancer chemopreventive effects of water extract of green tea (WEGT) and the polyphenolic fraction (GTP) isolated from WEGT against N-nitrosodiethylamine (DEN)- and benzo[a]pyrene (BP)-induced forestomach and lung tumorigenesis in A/J mice. The protective effects, both in forestomach and lungs, were evident by a decrease in number of tumors and the percentage of mice with tumors when WEGT and GTP were fed to animals during initiation, post-initiation and entire period of tumorigenesis protocols. Oral feeding of 0.2% GTP in drinking water to mice afforded 68-82 and 39-66% protection against DEN- and BP-induced forestomach tumorigenesis respectively. In case of pulmonary tumor multiplicity caused by DEN and BP, the protective effects of GTP were between 38-43 and 25-46% respectively. Similarly, oral feeding of 2.5% WEGT to mice also afforded 80-85 and 61-71% protection against DEN- and BP-induced forestomach tumorigenesis respectively. In case of lung tumorigenesis, the protective effects of WEGT were 43-62 and 25-51% respectively. Histological studies of forestomach tumors showed significantly lower squamous cell carcinoma counts in GTP- and WEGT-fed groups of mice compared to carcinogen alone treated control group of mice. When pulmonary tumors were examined histologically, no adenocarcinomas were observed in GTP- and WEGT-fed groups of mice compared to 20% mice with adenocarcinomas in carcinogen alone treated control group. Oral feeding of GTP and WEGT in drinking water also showed significant enhancement in the activities of glutathione S-transferase and NADP(H): quinone reductase in liver, small bowel, stomach and lung. The results of this study suggest that green tea possesses chemopreventive effects against carcinogen-induced tumorigenesis in internal body organs, and that the mechanism of such effects may

  5. Inhibition of lung carcinogenesis and effects on angiogenesis and apoptosis in A/J mice by oral administration of green tea.

    PubMed

    Liao, Jie; Yang, Guang-Yu; Park, Eon Sub; Meng, Xiaofeng; Sun, Yuhai; Jia, Dongxuan; Seril, Darren N; Yang, Chung S

    2004-01-01

    Oral administration of tea (Camellia sinensis) has been shown to inhibit the formation and growth of several tumor types in animal models. The present study investigated the effects of treatment with different concentrations of green tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Two days after a single dose of NNK (100 mg/kg body weight, i.p.), the mice were given 0.1, 0.2, 0.4, and 0.6% green tea solution (1, 2, 4, and 6 g of tea solids, respectively, dissolved in 1 l of water), 0.02% caffeine, or water as the sole source of drinking fluid until the termination of the experiment. Only the treatment with 0.6% tea preparation significantly reduced lung tumor multiplicity (mean +/- SE, 6.07 +/- 0.77 vs. 8.60 +/- 0.50 tumors per mouse, P = 0.018). Treatment with 0.6% tea also inhibited angiogenesis, as indicated by the lower microvessel density (number of blood vessels/mm2) based on immunostaining for the von Willebrand factor antigen (81.9 +/- 9.5 vs. 129.4 +/- 8.2, P = 0.0018) and anti-CD31 antibody staining (465.3 +/- 61.4 vs. 657.1 +/- 43.6, P = 0.0012). Significantly lower vascular endothelial growth factor immunostaining scores were also observed in the 0.6% tea-treated group (0.98 +/- 0.17 vs. 1.43 +/- 0.07, P = 0.006). The apoptosis index was significantly higher in lung adenomas from 0.6% tea-treated mice based on morphological analysis of cell apoptosis (2.51 +/- 0.18% vs. 1.57 +/- 0.11%, P = 0.00005), and the result was further confirmed using the TUNEL method. Inhibition of angiogenesis and the induction of apoptosis by green tea may be closely related to the inhibition of pulmonary carcinogenesis.

  6. Comparative analysis of the gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions?

    PubMed

    Gros, D B; Nicholson, B J; Revel, J P

    1983-12-01

    Gap junctions have been isolated from both rat heart and liver, tissues where junctions are typical in appearance and physiology. The purity of the fractions obtained was monitored by electron microscopy (thin-sectioning and negative staining) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The myocardial gap junctions are comprised of a single polypeptide of Mr 28,000, apparently derived from a protein of Mr 30,000. Hepatic gap junctions are also comprised of a single native protein of Mr 28,000 as previously reported. Exhaustive trypsin digestion of the isolated junctions cleaves both of these proteins similarly, while leaving their characteristic junctional lattice structures intact. However, comparison of heart and liver junctional proteins by two-dimensional peptide mapping of tryptic and alpha-chymotryptic fragments, followed by high pressure liquid chromatography, reveals no homology between these proteins.

  7. Josephson junction in a thin film

    SciTech Connect

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  8. Hemichannel and junctional properties of connexin 50.

    PubMed Central

    Beahm, Derek L; Hall, James E

    2002-01-01

    Lens fiber connexins, cx50 and cx46 (alpha3 and alpha8), belong to a small subset of connexins that can form functional hemichannels in nonjunctional membranes. Knockout of either cx50 or cx46 results in a cataract, so the properties of both connexins are likely essential for proper physiological functioning of the lens. Although portions of the sequences of these two connexins are nearly identical, their hemichannel properties are quite different. Cx50 hemichannels are much more sensitive to extracellular acidification than cx46 hemichannels and differ from cx46 hemichannels both in steady-state and kinetic properties. Comparison of the two branches of the cx50 hemichannel G-V curve with the junctional G-V curve suggests that cx50 gap junctions gate with positive relative polarity. The histidine-modifying reagent, diethyl pyrocarbonate, reversibly blocks cx50 hemichannel currents but not cx46 hemichannel currents. Because cx46 and cx50 have very similar amino acid sequences, one might expect that replacing the two histidines unique to the third transmembrane region of cx50 with the corresponding cx46 residues would produce mutants more closely resembling cx46. In fact this does not happen. Instead the mutant cx50H161N does not form detectable hemichannels but forms gap junctions indistinguishable from wild type. Cx50H176Q is oocyte lethal, and the double mutant, cx50H61N/H176Q, neither forms hemichannels nor kills oocytes. PMID:11916859

  9. Josephson effect in a Weyl SNS junction

    NASA Astrophysics Data System (ADS)

    Madsen, Kevin A.; Bergholtz, Emil J.; Brouwer, Piet W.

    2017-02-01

    We calculate the Josephson current density j (ϕ ) for a Weyl superconductor-normal-metal-superconductor junction for which the outer terminals are superconducting Weyl metals and the normal layer is a Weyl (semi)metal. We describe the Weyl (semi)metal using a simple model with two Weyl points. The model has broken time-reversal symmetry, but inversion symmetry is present. We calculate the Josephson current for both zero and finite temperature for the two pairing mechanisms inside the superconductors that have been proposed in the literature, zero-momentum BCS-like pairing and finite-momentum FFLO-like pairing, and assuming the short-junction limit. For both pairing types we find that the current is proportional to the normal-state junction conductivity, with a proportionality coefficient that shows quantitative differences between the two pairing mechanisms. The current for the BCS-like pairing is found to be independent of the chemical potential, whereas the current for the FFLO-like pairing is not.

  10. Primary thermometry with nanoscale tunnel junctions

    SciTech Connect

    Hirvi, K.P.; Kauppinen, J.P.; Paalanen, M.A.; Pekola, J.P.

    1995-10-01

    We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy k{sub B}T and the electrostatic charging energy E{sub c} of the islands between the junctions and is completely blocked by Coulomb repulsion at T=0 and at small voltages eV/2 {<=} Ec. In the opposite limit, k{sub B}T {much_gt} E{sub c}, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T{sup -1} and can be used as a secondary thermometer. We will show with Monte Carlo simulations how background charge and nonuniformities of the array will affect the thermometer.

  11. Molecular Diffusion through Cyanobacterial Septal Junctions.

    PubMed

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  12. Junction point on partially singular trajectories

    NASA Astrophysics Data System (ADS)

    Odia, Ameze; Bell, David J.

    2012-12-01

    In recent times, several works have been performed on the design of fuel optimal trajectories for space navigation. These works show the possibility of the existence of partially singular trajectories for systems that are linear analytic (Park et al. 2010). Linear analytic systems may show the existence of partially singular subarcs, and the point where these subarcs meet is called a junction point. Thus, knowledge about junction conditions became necessary when solving the optimal control problem for such systems. This led to the development of two 'theorems' on junction conditions, given by McDanell and Powers (McDanell, J.P. and Powers W.F. (1971), 'Necessary Conditions for Joining Optimal Singular and Nonsingular Sub Arcs', SIAM Journal of Control, 9, 161-173). However, the second 'theorem', which is now known as a conjecture, could not satisfy all classes of linear analytic system. Therefore, the aim of this study was to detect and correct the errors in the derivation of the McDanell and Powers conjecture. The error in their derivations was corrected and then tested on two newly mathematically constructed systems. The results of these tests were found to be satisfactory. This implies that by making the necessary corrections, the conjecture can still be useful in generating a general theorem for all classes of systems.

  13. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION

    PubMed Central

    Loewenstein, Werner R.; Kanno, Yoshinobu

    1964-01-01

    Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10-4 mho/cm2), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 104Ω cm2. As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed. PMID:14206423

  14. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  15. Gap junctions in several tissues share antigenic determinants with liver gap junctions.

    PubMed Central

    Dermietzel, R; Leibstein, A; Frixen, U; Janssen-Timmen, U; Traub, O; Willecke, K

    1984-01-01

    Using affinity-purified antibodies against mouse liver gap junction protein (26 K), discrete fluorescent spots were seen by indirect immunofluorescence labelling on apposed membranes of contiguous cells in several mouse and rat tissues: pancreas (exocrine part), kidney, small intestine (epithelium and circular smooth muscle), Fallopian tube, endometrium, and myometrium of delivering rats. No reaction was seen on sections of myocardium, ovaries and lens. Specific labelling of gap junction plaques was demonstrated by immunoelectron microscopy on ultrathin frozen sections through liver and the exocrine part of pancreas after treatment with gold protein A. Weak immunoreactivity was found on the endocrine part of the pancreas (i.e., Langerhans islets) after glibenclamide treatment of mice and rats, which causes an increase of insulin secretion and of the size as well as the number of gap junction plaques in cells of Langerhans islets. Furthermore, the affinity purified anti-liver 26 K antibodies were shown by immunoblot to react with proteins of similar mol. wt. in pancreas and kidney membranes. Taken together these results suggest that gap junctions from several, morphogenetically different tissues have specific antigenic sites in common. The different extent of specific immunoreactivity of anti-liver 26 K antibodies with different tissues is likely due to differences in size and number of gap junctions although structural differences cannot be excluded. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6209130

  16. On the structural organization of isolated bovine lens fiber junctions.

    PubMed

    Zampighi, G; Simon, S A; Robertson, J D; McIntosh, T J; Costello, M J

    1982-04-01

    Junctions between fiber cells of bovine lenses have been isolated in milligram quantities, without using detergents or proteases. The structure of the isolated junctions has been studied by thin-section, negative-stain, and freeze-fracture electron microscopy and by x-ray diffraction. The junctions are large and most often have an undulating surface topology as determined by thin sectioning and freeze-fracture. These undulations resemble the tongue-and-groove interdigitations between lens fiber cells previously seen by others (D. H. Dickson and G. W. Crock, 1972, Invest. Ophthalmol. 11:809-815). In sections, the isolated junctions display a pentalamellar structure approximately 13-14 nm in overall thickness, which is significantly thinner than liver gap junctions. Each junctional membrane contains in the plane of the lipid bilayers distinct units arranged in a square lattice with a center-to-center spacing of 6.6 nm. Freeze-fracture replicas of the junctions fractured transversely show that the repeating units extend across the entire thickness of each membrane. Each unit is probably constructed from four identical subunits, with each subunit containing a protein of an apparent molecular weight of 27,000. We conclude that the lens junctions are structurally and chemically, different from gap junctions and could represent a new kind of intercellular contact, not simply another crystalline state of the gap junction protein.

  17. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity

    PubMed Central

    Favale, Nicolás Octavio; Santacreu, Bruno Jaime; Pescio, Lucila Gisele; Marquez, Maria Gabriela; Sterin-Speziale, Norma Beatriz

    2015-01-01

    Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype. PMID:25670801

  18. CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.

    PubMed

    Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E; Cotsarelis, George

    2015-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode "budding" is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions (AJs) is clearly required for budding. Snail-mediated downregulation of AJ component E-cadherin is important for placode budding in mice. Beta-catenin, another AJ component, has been more difficult to study owing to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes, and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent AJ dissolution.

  19. The structural organization and protein composition of lens fiber junctions

    PubMed Central

    1989-01-01

    The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions

  20. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  1. The critical power to maintain thermally stable molecular junctions.

    PubMed

    Wang, Yanlei; Xu, Zhiping

    2014-07-09

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 10(9) kW(-1). Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  2. The critical power to maintain thermally stable molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Xu, Zhiping

    2014-07-01

    With the rise of atomic-scale devices such as molecular electronics and scanning probe microscopies, energy transport processes through molecular junctions have attracted notable research interest recently. In this work, heat dissipation and transport across diamond/benzene/diamond molecular junctions are explored by performing atomistic simulations. We identify the critical power Pcr to maintain thermal stability of the junction through efficient dissipation of local heat. We also find that the molecule-probe contact features a power-dependent interfacial thermal resistance RK in the order of 109 kW-1. Moreover, both Pcr and RK display explicit dependence on atomic structures of the junction, force and temperature. For instance, Pcr can be elevated in multiple-molecule junctions, and streching the junction enhances RK by a factor of 2. The applications of these findings in molecular electronics and scanning probing measurements are discussed, providing practical guidelines in their rational design.

  3. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw; Ager, III, Joel W.; Yu, Kin Man

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  4. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  5. Structure, regulation and function of gap junctions in liver

    PubMed Central

    Maes, Michaël; Decrock, Elke; Wang, Nan; Leybaert, Luc; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Jaeschke, Hartmut; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Gap junctions are a specialized group of cell-to-cell junctions that mediate direct intercellular communication between cells. They arise from the interaction of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin proteins. In liver, gap junctions are predominantly found in hepatocytes and play critical roles in virtually all phases of the hepatic life cycle, including cell growth, differentiation, liver-specific functionality and cell death. Liver gap junctions are directed through a broad variety of mechanisms ranging from epigenetic control of connexin expression to posttranslational regulation of gap junction activity. This paper reviews established and novel aspects regarding the architecture, control and functional relevance of liver gap junctions. PMID:27001459

  6. Electron optics with p-n junctions in ballistic graphene

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Han, Zheng; Elahi, Mirza M.; Habib, K. M. Masum; Wang, Lei; Wen, Bo; Gao, Yuanda; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Ghosh, Avik W.; Dean, Cory R.

    2016-09-01

    Electrons transmitted across a ballistic semiconductor junction are expected to undergo refraction, analogous to light rays across an optical boundary. In graphene, the linear dispersion and zero-gap band structure admit highly transparent p-n junctions by simple electrostatic gating. Here, we employ transverse magnetic focusing to probe the propagation of carriers across an electrostatically defined graphene junction. We find agreement with the predicted Snell’s law for electrons, including the observation of both positive and negative refraction. Resonant transmission across the p-n junction provides a direct measurement of the angle-dependent transmission coefficient. Comparing experimental data with simulations reveals the crucial role played by the effective junction width, providing guidance for future device design. Our results pave the way for realizing electron optics based on graphene p-n junctions.

  7. Coherent diffraction of thermal currents in long Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Guarcello, Claudio; Giazotto, Francesco; Solinas, Paolo

    2016-08-01

    We discuss heat transport in thermally-biased long Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat current through the junction displays coherent diffraction. Thermal transport is analyzed as a function of both the length and the damping of the junction, highlighting deviations from the standard "Fraunhofer" pattern characteristic of short junctions. The heat current diffraction patterns show features strongly related to the formation and penetration of Josephson vortices, i.e., solitons. We show that a dynamical treatment of the system is crucial for the realistic description of the Josephson junction, and it leads to peculiar results. In fact, hysteretic behaviors in the diffraction patterns when the field is swept up and down are observed, corresponding to the trapping of vortices in the junction.

  8. HER2 activation results in β-catenin-dependent changes in pulmonary epithelial permeability

    PubMed Central

    Vasu, Vihas T.; Thaikoottathil, Jyoti V.; Mishra, Rangnath; Shatat, Mohammad A.; Mason, Robert J.; Kern, Jeffrey A.

    2014-01-01

    The receptor tyrosine kinase human epidermal growth factor receptor-2 (HER2) is known to regulate pulmonary epithelial barrier function; however, the mechanisms behind this effect remain unidentified. We hypothesized that HER2 signaling alters the epithelial barrier through an interaction with the adherens junction (AJ) protein β-catenin, leading to dissolution of the AJ. In quiescent pulmonary epithelial cells, HER2 and β-catenin colocalized along the lateral intercellular junction. HER2 activation by the ligand neuregulin-1 was associated with tyrosine phosphorylation of β-catenin, dissociation of β-catenin from E-cadherin, and decreased E-cadherin-mediated cell adhesion. All effects were blocked with the HER2 inhibitor lapatinib. β-Catenin knockdown using shRNA significantly attenuated neuregulin-1-induced decreases in pulmonary epithelial resistance in vitro. Our data indicate that HER2 interacts with β-catenin, leading to dissolution of the AJ, decreased cell-cell adhesion, and disruption of the pulmonary epithelial barrier. PMID:25326580

  9. Geometrical theory of triple junctions of CSL boundaries.

    PubMed

    Gertsman, V Y

    2001-07-01

    When three grain boundaries having misorientations generating coincidence site lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is formed. A theory is developed as a set of theorems establishing the relationships between the geometrical parameters of the grain-boundary and triple-junction CSLs. Application of the theory is demonstrated in detail for the case of the cubic crystal system. It is also shown how the theory can be extended to an arbitrary crystal lattice.

  10. Observing Holliday junction branch migration one step at a time

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2004-03-01

    During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.

  11. Towards field theory in spaces with multivolume junctions

    NASA Astrophysics Data System (ADS)

    Fomin, P. I.; Shtanov, Yu V.

    2002-06-01

    We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.

  12. Craniovertebral Junction Instability: A Review of Facts about Facets

    PubMed Central

    2015-01-01

    Craniovertebral junction surgery involves an appropriate philosophical, biomechanical and anatomical understanding apart from high degree of technical skill and ability of controlling venous and arterial bleeding. The author presents his 30-year experience with treating complex craniovertebral junction instability related surgical issues. The facets of atlas and axis form the primary site of movements at the craniovertebral junction. All craniovertebral junction instability is essentially localized to the atlantoaxial facet joint. Direct manipulation and fixation of the facets forms the basis of treatment for instability. PMID:26240728

  13. Imaging snake orbits at graphene n -p junctions

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.

    2017-01-01

    We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.

  14. Photoresponse in arrays of thermoelectric nanowire junctions

    NASA Astrophysics Data System (ADS)

    Huber, T. E.; Scott, R.; Johnson, S.; Brower, T.; Belk, J. H.; Hunt, J. H.

    2013-07-01

    We report the first demonstration of optical detection by thermoelectric nanowire junctions. We employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by thermoelectric effects considering cooling rates given by heat diffusion through the array. In addition, under visible illumination, we observe a photovoltaic response.

  15. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  16. Collisions of Strings with Y Junctions

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2006-07-14

    We study the dynamics of Nambu-Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-Abelian string networks.

  17. Charge Transport Processes in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires

  18. Anatomy and biomechanics of the craniovertebral junction.

    PubMed

    Lopez, Alejandro J; Scheer, Justin K; Leibl, Kayla E; Smith, Zachary A; Dlouhy, Brian J; Dahdaleh, Nader S

    2015-04-01

    The craniovertebral junction (CVJ) has unique anatomical structures that separate it from the subaxial cervical spine. In addition to housing vital neural and vascular structures, the majority of cranial flexion, extension, and axial rotation is accomplished at the CVJ. A complex combination of osseous and ligamentous supports allow for stability despite a large degree of motion. An understanding of anatomy and biomechanics is essential to effectively evaluate and address the various pathological processes that may affect this region. Therefore, the authors present an up-to-date narrative review of CVJ anatomy, normal and pathological biomechanics, and fixation techniques.

  19. Nonintrusive Measurement Of Temperature Of LED Junction

    NASA Technical Reports Server (NTRS)

    Leidecker, Henning; Powers, Charles

    1991-01-01

    Temperature inferred from spectrum of emitted light. Method of determining temperature of junction based on two relevant characteristics of LED. Gap between valence and conduction electron-energy bands in LED material decreases with increasing temperature, causing wavelength of emitted photon to increase with temperature. Other, as temperature increases, non-radiative processes dissipate more of input electrical energy as heat and less as photons in band-gap wavelenth region; optical and quantum efficiencies decrease with increasing temperature. In principal, either characteristic alone used to determine temperature. However, desirable to use both to obtain indication of uncertainty.

  20. Magic-T Junction using Microstrip/Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence

    2008-01-01

    An improved broadband planar magic-T junction that incorporates microstrip/slotline transitions has been developed. In comparison with a prior broadband magic-T junction incorporating microstrip/slotline transitions, this junction offers superior broadband performance. In addition, because this junction is geometrically simpler and its performance is less affected by fabrication tolerances, the benefits of the improved design can be realized at lower fabrication cost. There are potential uses for junctions like this one in commercial microwave communication receivers, radar and polarimeter systems, and industrial microwave instrumentation. A magic-T junction is a four-port waveguide junction consisting of a combination of an H-type and an E-type junction. An E-type junction is so named because it includes a junction arm that extends from a main waveguide in the same direction as that of the electric (E) field in the waveguide. An H-type junction is so named because it includes a junction arm parallel to the magnetic (H) field in a main waveguide. A magic-T junction includes two input ports (here labeled 1 and 2, respectively) and two output ports (here labeled E and H, respectively). In an ideal case, (1) a magic-T junction is lossless, (2) the input signals add (that is, they combine in phase with each other) at port H, and (3) the input signals subtract (that is, they combine in opposite phase) at port E. The prior junction over which the present junction is an improvement affords in-phase-combining characterized by a broadband frequency response, and features a small slotline area to minimize in-band loss. However, with respect to isolation between ports 1 and 2 and return loss at port E, it exhibits narrowband frequency responses. In addition, its performance is sensitive to misalignment of microstrip and slotline components: this sensitivity is attributable to a limited number of quarter-wavelength (lambda/4) transmission-line sections for matching impedances

  1. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    NASA Astrophysics Data System (ADS)

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  2. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  3. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos

    PubMed Central

    Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-ichi; Suzuki, Atsushi; Alarcon, Vernadeth B.; Akimoto, Kazunori; Hirai, Takaaki; Hara, Takeshi; Adachi, Makoto; Chida, Kazuhiro; Ohno, Shigeo; Marikawa, Yusuke; Nakao, Kazuki; Shimono, Akihiko; Sasaki, Hiroshi

    2013-01-01

    Summary Background In preimplantation mouse embryos, the first cell fate specification to the trophectoderm or inner cell mass occurs by the early blastocyst stage. The cell fate is controlled by cell position-dependent Hippo signaling, although the mechanisms underlying position-dependent Hippo signaling are unknown. Results We showed that a combination of cell polarity and cell–cell adhesion establishes position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar, respectively. The junction-associated proteins angiomotin (Amot) and Amotl2 are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, Amot localizes to adherens junctions (AJs) and cell–cell adhesion activates the Hippo pathway. In the outer cells, the cell polarity sequesters Amot from basolateral AJs to apical domains, thereby suppressing Hippo signaling. The N-terminal domain of Amot is required for actin binding, Nf2/Merlin-mediated association with the E-cadherin complex, and interaction with Lats protein kinase. In AJs, Ser176 in the N-terminal domain of Amot is phosphorylated by Lats, which inhibits the actin-binding activity, thereby stabilizing the Amot–Lats interaction to activate the Hippo pathway. Conclusion We propose that the phosphorylation of S176 in Amot is a critical step for activation of the Hippo pathway in AJs and that cell polarity disconnects the Hippo pathway from cell–cell adhesion by sequestering Amot from AJ. This mechanism converts positional information into differential Hippo signaling, thereby leading to differential cell fates. PMID:23791731

  4. Rabies virus binding at neuromuscular junctions.

    PubMed

    Burrage, T G; Tignor, G H; Smith, A L

    1985-04-01

    Morphological, immunocytochemical, biochemical, and immunological techniques have been used to describe rabies virus binding to a sub-cellular unit and molecular complex at the neuromuscular junction (NMJ). Early after infection in vivo, virus antigen and virus particles were found by immunofluorescence, electron microscopy and immunoelectron microscopy in regions of high density acetylcholine receptors (AChR) at NMJs. One monoclonal antibody (alpha-Mab) to the alpha subunit of the AChR blocked attachment of radio-labeled rabies virus to cultured muscle cells bearing high density patches of AChR. A sub-cellular structure, resembling an array of AChR monomers, bound both rabies virus antigens and alpha-Mab. By immunoblotting with electrophoretically transferred motor endplate proteins, rabies virus proteins and alpha-Mab bound to two proteins of 43 000 and 110 000 daltons. A rabies virus glycoprotein antibody detected virus antigen bound to the 110 000 dalton protein. An auto-immune (anti-idiotypic) response followed immunization of mice with rabies virus glycoprotein antigen; the antibody was directed to the 110 000 dalton protein. This auto-antibody altered the kinetics of neutralization by rabies virus antibody and induced the formation of rabies virus antibody after inoculation of mice. These results define, at the neuromuscular junction, a rabies virus receptor which may be part of the acetylcholine receptor complex.

  5. Edge currents in frustrated Josephson junction ladders

    NASA Astrophysics Data System (ADS)

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  6. Ultrafast Photophysics of Organic Semiconductor Junctions

    NASA Astrophysics Data System (ADS)

    Burghardt, Irene; Bittner, Eric R.; Tamura, Hiroyuki; Pereverzev, Andrey; Ramon, John Glenn S.

    This contribution gives an overview of our recent studies of the electronic structure and ultrafast photophysics of semiconductor polymer junctions. We focus on the phonon-assisted exciton dissociation at donor-acceptor heterojunctions, using state-of-the-art electronic structure methods in conjunction with vibronic coupling models and multiconfigurational quantum dynamical techniques. The decay of the photogenerated exciton towards an interfacial charge-separated state is an ultrafast (femtosecond to picosecond scale) process which precedes photocurrent generation. We describe this process using a linear vibronic coupling model parametrized for two to three electronic states and 20-30 phonon modes. Several representative interface configurations are considered, which are shown to differ significantly in their cross-chain interactions but exhibit an efficient exciton dissociation in all cases investigated. The exciton decay depends critically on the presence of intermediate states and on the dynamical interplay between high-frequency (C=C stretch) and lowfrequency (ring-torsional) modes. The resulting molecular-level picture of exciton dissociation could contribute to the design of efficient polymer junctions.

  7. Functional ferroelectric tunnel junctions on silicon

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Wang, Zhe; Zeng, Shengwei; Han, Kun; Huang, Lisen; Schlom, Darrell G.; Venkatesan, T.; Ariando; Chen, Jingsheng

    2015-07-01

    The quest for solid state non-volatility memory devices on silicon with high storage density, high speed, low power consumption has attracted intense research on new materials and novel device architectures. Although flash memory dominates in the non-volatile memory market currently, it has drawbacks, such as low operation speed, and limited cycle endurance, which prevents it from becoming the “universal memory”. In this report, we demonstrate ferroelectric tunnel junctions (Pt/BaTiO3/La0.67Sr0.33MnO3) epitaxially grown on silicon substrates. X-ray diffraction spectra and high resolution transmission electron microscope images prove the high epitaxial quality of the single crystal perovskite films grown on silicon. Furthermore, the write speed, data retention and fatigue properties of the device compare favorably with flash memories. The results prove that the silicon-based ferroelectric tunnel junction is a very promising candidate for application in future non-volatile memories.

  8. Angular craniometry in craniocervical junction malformation.

    PubMed

    Botelho, Ricardo Vieira; Ferreira, Edson Dener Zandonadi

    2013-10-01

    The craniometric linear dimensions of the posterior fossa have been relatively well studied, but angular craniometry has been poorly studied and may reveal differences in the several types of craniocervical junction malformation. The objectives of this study were to evaluate craniometric angles compared with normal subjects and elucidate the main angular differences among the types of craniocervical junction malformation and the correlation between craniocervical and cervical angles. Angular craniometries were studied using primary cranial angles (basal and Boogard's) and secondary craniocervical angles (clivus canal and cervical spine lordosis). Patients with basilar invagination had significantly wider basal angles, sharper clivus canal angles, larger Boogard's angles, and greater cervical lordosis than the Chiari malformation and control groups. The Chiari malformation group does not show significant differences when compared with normal controls. Platybasia occurred only in basilar invagination and is suggested to be more prevalent in type II than in type I. Platybasic patients have a more acute clivus canal angle and show greater cervical lordosis than non-platybasics. The Chiari group does not show significant differences when compared with the control, but the basilar invagination groups had craniometric variables significantly different from normal controls. Hyperlordosis observed in the basilar inavagination group was associated with craniocervical kyphosis conditioned by acute clivus canal angles.

  9. Transoral approach to the craniovertebral junction.

    PubMed

    Landeiro, José Alberto; Boechat, Sávio; Christoph, Daniel de Holanda; Gonçalves, Mariângela Barbi; Castro, Igor de; Lapenta, Mario Alberto; Ribeiro, Carlos Henrique

    2007-12-01

    The transoral approach provides a safe exposure to lesions in the midline and the ventral side of the craniovertebral junction. The advantages of the transoral approach are 1) the impinging bony pathology and granulation tissue are accessible only via the ventral route; 2) the head is placed in the extended position, thus decreasing the angulation of the brainstem during the surgery; and 3) surgery is done through the avascular median pharyngeal raphe and clivus. We analyzed the clinical effects of odontoidectomy after treating 38 patients with basilar invagination. The anterior transoral operation to treat irreducible ventral compression in patients with basilar invagination was performed in 38 patients. The patients ages ranged from 34 to 67 years. Fourteen patients had associated Chiari malformation and eight had previously undergone posterior decompressive surgery. The main indication for surgery was significant neurological deterioration. Symptoms and signs included neck pain, myelopathy, lower cranial nerve dysfunction, nystagmus and gait disturbance. Extended exposure was performed in 24 patients. The surgery was beneficial to the majority of patients. There was one death within 10 days of surgery, due to pulmonary embolism. Postoperative complications included two cases of pneumonia, three cases of oronasal fistula with regurgitation and one cerebrospinal fluid leak. In patients with marked ventral compression, the transoral approach provides direct access to the anterior face of the craniovertebral junction and effective means for odontoidectomy.

  10. Molecular Diffusion through Cyanobacterial Septal Junctions

    PubMed Central

    Nieves-Morión, Mercedes

    2017-01-01

    ABSTRACT Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata”) linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. PMID:28049144

  11. Annealing free magnetic tunnel junction sensors

    NASA Astrophysics Data System (ADS)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  12. Tricellular Tight Junctions in the Inner Ear

    PubMed Central

    2016-01-01

    Tight junctions (TJs) are structures that seal the space between the epithelial cell sheets. In the inner ear, the barrier function of TJs is indispensable for the separation of the endolymphatic and perilymphatic spaces, which is essential for the generation and maintenance of the endocochlear potential (EP). TJs are formed by the intercellular binding of membrane proteins, known as claudins, and mutations in these proteins cause deafness in humans and mice. Within the epithelial cell sheet, however, a bound structure is present at the site where the corners of three cells meet (tricellular tight junctions (tTJs)), and the maintenance of the barrier function at this location cannot be explained by the claudins alone. Tricellulin and the angulin family of proteins (angulin-1/LSR, angulin-2/ILDR1, and angulin-3/ILDR2) have been identified as tTJ-associated proteins. Tricellulin and ILDR1 are localized at the tTJ and alterations in these proteins have been reported to be involved in deafness. In this review, we will present the current state of knowledge for tTJs. PMID:27195292

  13. Conductance spectroscopy of topological superconductor wire junctions

    NASA Astrophysics Data System (ADS)

    Setiawan, F.; Brydon, Philip; Sau, Jay

    We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS) junctions with topological superconductors across their topological transitions. Working within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. The zero-bias conductance takes nonuniversal values in the nontopological phase while it is robustly quantized at 2e2 / h in the topological regime. Despite this quantization at zero voltage, the zero-bias conductance only develops a peak (or a local maximum) as a function of voltage for sufficiently large interfacial barrier strength, or certain parameter regimes of spin-orbit coupling strength. Our calculated BTK conductance also shows that the conductance is finite inside the superconducting gap region because of the finite barrier transparency, providing a possible mechanism for the observed ``soft gap'' feature in the experimental studies. Work is done in collaboration with Sankar Das Sarma and supported by Microsoft Q, LPS-CMTC, and JQI-NSF-PFC.

  14. Thermoelectrics in an array of molecular junctions.

    PubMed

    Müller, K-H

    2008-07-28

    The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted.

  15. Switching and Rectification in Carbon-Nanotube Junctions

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Andriotis, Antonis N.; Menon, Madhu; Chernozatonskii, Leonid

    2003-01-01

    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification.

  16. Low resistance junctions in crayfish. Structural changes with functional uncoupling

    PubMed Central

    1976-01-01

    Electrical uncoupling of crayfish septate lateral giant axons is paralleled by structural changes in the gap junctions. The changes are characterized by a tighter aggregation of the intramembrane particles and a decrease in the overall width of the junction and the thickness of the gap. Preliminary measurements indicate also a decrease in particle diameter. The uncoupling is produced by in vitro treatment of crayfish abdominal cords either with a Ca++, Mg++-free solution containing EDTA, followed by return to normal saline (Van Harreveld's solution), or with VAn Harreveld's solution containing dinitrophenol (DNP). The uncoupling is monitored by the intracellular recording of the electrical resistance at a septum between lateral giant axons. The junctions of the same septum are examined in thin sections; those of other ganglia of the same chain used for the electrical measurements are studied by freeze-fracture. In controls, most junctions contain a more or less regular array of particles repeating at a center to center distance of approximately 200 A. The overall width of the junctions is approximately 200 A and the gap thickness is 40-50 A. Vesicles (400-700 A in diameter) are closely apposed to the junctional membranes. In uncoupled axons, most junctions contain a hexagonal array of particles repeating at a center to center distance of 150-155 A. The overall width of the junctions is approximately 180 A and the gap thickness is 20-30 A. These junctions are usually curved and are rarely associated with vesicles. Isolated, PTA-stained junctions, also believed to be uncoupled, display similar structural features. There are reasons to believe that the changes in structure and permeability are triggered by an increase in the intracellular free Ca++ concentration. Most likely, the changes in permeability are caused by conformational changes in some components of the intramembrane particles at the gap junctions. PMID:820701

  17. Claudins and the Modulation of Tight Junction Permeability

    PubMed Central

    Günzel, Dorothee

    2013-01-01

    Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions. PMID:23589827

  18. Diencephalic-Mesencephalic Junction Dysplasia: A Novel Recessive Brain Malformation

    ERIC Educational Resources Information Center

    Zaki, Maha S.; Saleem, Sahar N.; Dobyns, William B.; Barkovich, A. James; Bartsch, Hauke; Dale, Anders M.; Ashtari, Manzar; Akizu, Naiara; Gleeson, Joseph G.; Grijalvo-Perez, Ana Maria

    2012-01-01

    We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic "butterfly"-like contour of the…

  19. Fast temporal fluctuations in single-molecule junctions.

    PubMed

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  20. 10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW UPSTREAM OF PIPELINE SECTION AT JUNCTION OF HUME CEMENT PIPE AND CAST-IRON (460'). NOTE CYLINDRICAL COLLAR OF CEMENT SECTIONS AND BELL JUNCTIONS OF IRON PIPE. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  1. Septal Junctions in Filamentous Heterocyst-Forming Cyanobacteria.

    PubMed

    Flores, Enrique; Herrero, Antonia; Forchhammer, Karl; Maldener, Iris

    2016-02-01

    In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.

  2. Conditions for synchronization in Josephson-junction arrays

    SciTech Connect

    Chernikov, A.A.; Schmidt, G.

    1995-12-31

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  3. 75 FR 30756 - FM Table of Allotments, Pacific Junction, Iowa

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 FM Table of Allotments, Pacific Junction, Iowa AGENCY: Federal Communications... Channel 299C2 at Pacific Junction, Iowa. The reference coordinates for Channel 299C2 at Pacific...

  4. 75 FR 76294 - Radio Broadcasting Services: Pacific Junction, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services: Pacific Junction, IA AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY: The staff deletes FM Channel 299C2 at Pacific Junction, Iowa... landing system configurations and the Commission's spacing requirements Further, there are no other...

  5. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  6. TEMPORAL CHANGE IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES

    EPA Science Inventory

    TEMPORAL CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY *

    The objective of this study was to examine the reduction in gap junction communication (GJC) in primary hepatocytes due to coincident melatonin and magnetic field treatments to determine if these conditions could prov...

  7. Josephson junctions in high-T/sub c/ superconductors

    DOEpatents

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  8. The current-phase relation in HTS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Il'ichev, E.; Zakosarenko, V.; Ijsselsteijn, R. P. J.; Schultze, V.; Meyer, H.-G.; Hoenig, H. E.

    The current-phase relation of YBa2Cu3O7-x step-edge as well as 24° and 45° grain boundary Josephson junctions has been investigated experimentally. The junctions were incorporated into a washer-shaped superconducting ring with inductance L≈80-300 pH. The ring was inductively coupled to a tank circuit with a resonance frequency 9…40 MHz. The current-phase relation was obtained from the measurement of the impedance of the phase-biased junction. It is shown, that experimentally observed deviations from harmonic behavior of the apparent current-phase relation for step-edge and 24° grain boundary junctions can be explained by the influence of thermal noise. The current-phase relation of 45° grain boundary junctions was found to be extremely non-harmonic. The reasons of this unusual behavior are discussed.

  9. Evolution of perpendicular magnetized tunnel junctions upon annealing

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Couet, S.; Swerts, J.; Furnemont, A.

    2016-04-01

    We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 °C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375 °C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.

  10. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  11. Quasi-optical Josephson-junction oscillator arrays

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, H. G.; Zmuidzinas, J.

    1993-01-01

    Josephson junctions are natural voltage-controlled oscillators capable of generating submillimeter-wavelength radiation, but a single junction usually can produce only 100 nW of power and often has a broad spectral linewidth. The authors are investigating 2D quasi-optical power combining arrays of 103 and 104 NbN/MgO/NbN and Nb/Al-AlO(x)/Nb junctions to overcome these limitations. The junctions are dc-biased in parallel and are distributed along interdigitated lines. The arrays couple to a resonant mode of a Fabry-Perot cavity to achieve mutual phase-locking. The array configuration has a relatively low impedance, which should allow the capacitance of the junctions to be tuned out at the oscillation frequency.

  12. Subgap conductivity in SIN-junctions of high barrier transparency

    NASA Astrophysics Data System (ADS)

    Lotkhov, S. V.; Balashov, D. V.; Khabipov, M. I.; Buchholz, F.-I.; Zorin, A. B.

    2006-11-01

    We investigate the current-voltage characteristics of high-transparency superconductor-insulator-normal metal (SIN) junctions with the specific tunnel resistance ρ ≲ 30 Ω μm2. The junctions were fabricated from different superconducting and normal conducting materials, including Nb, Al, AuPd and Cu. The subgap leakage currents were found to be appreciably larger than those given by the standard tunnelling model. We explain our results using the model of two-electron tunnelling in the coherent diffusive transport regime. We demonstrate that even in the high-transparency SIN-junctions, a noticeable reduction of the subgap current can be achieved by splitting a junction into several submicron sub-junctions. These structures can be used as nonlinear low-noise shunts in rapid-single-flux-quantum (RSFQ) circuitry for controlling Josephson qubits.

  13. Design of Steerable Wavelets to Detect Multifold Junctions.

    PubMed

    Püspöki, Zsuzsanna; Uhlmann, Virginie; Vonesch, Cédric; Unser, Michael

    2016-02-01

    We propose a framework for the detection of junctions in images. Although the detection of edges and key points is a well examined and described area, the multiscale detection of junction centers, especially for odd orders, poses a challenge in pattern analysis. The goal of this paper is to build optimal junction detectors based on 2D steerable wavelets that are polar-separable in the Fourier domain. The approaches we develop are general and can be used for the detection of arbitrary symmetric and asymmetric junctions. The backbone of our construction is a multiscale pyramid with a radial wavelet function where the directional components are represented by circular harmonics and encoded in a shaping matrix. We are able to detect M -fold junctions in different scales and orientations. We provide experimental results on both simulated and real data to demonstrate the effectiveness of the algorithm.

  14. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  15. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy.

    PubMed Central

    Sepp, R.; Severs, N. J.; Gourdie, R. G.

    1996-01-01

    OBJECTIVE: To examine the distribution pattern of intercellular junctions (the mechanically coupling desmosomes and the electrically coupling gap junctions) in hypertrophic cardiomyopathy (HCM) hearts showing myofibre disarray. DESIGN: Samples from six necropsied hearts were studied, representing the interventricular septum and the free walls of the left and right ventricles. Immunohistochemical labelling of desmoplakin was used as a marker for desmosomes, and of connexin43 as a marker for gap junctions, in single and double stainings. The slides were examined by confocal laser scanning microscopy. RESULTS: Marked disorganisation of intercalated discs was observed in areas featuring myofibre disarray. Besides overall derangement, localised abnormalities in desmosome organisation were evident, which included: (1) the formation of abnormally enlarged megadiscs; (2) the presence of intersecting disc structures; and (3) aberrant side to side desmosomal connections. Gap junctional abnormalities included: (1) random distribution of gap junctions over the surface of myocytes, rather than localisation to intercalated discs; (2) abundant side to side gap junction connections between adjacent myocytes; and (3) formation of abnormally shaped gap junctions. Circles of myocytes continuously interconnected by gap junctions were also observed. Regions of the diseased hearts lacking myofibre disarray, and control hearts of normal patients and patients with other cardiac diseases, did not show these alterations. CONCLUSIONS: The disorganisation of the intercellular junctions associated with myofibre disarray in HCM may play an important role in the pathophysiological manifestations of the disease. The remodelling of gap junction distribution may underlie the formation of an arrhythmogenic substrate, thereby contributing to the generation and maintenance of cardiac arrhythmias associated with HCM. Images PMID:8944586

  16. Metal-free molecular junctions on ITO via amino-silane binding-towards optoelectronic molecular junctions.

    PubMed

    Sergani, S; Furmansky, Y; Visoly-Fisher, I

    2013-11-15

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

  17. Metal-free molecular junctions on ITO via amino-silane binding—towards optoelectronic molecular junctions

    NASA Astrophysics Data System (ADS)

    Sergani, S.; Furmansky, Y.; Visoly-Fisher, I.

    2013-11-01

    Light control over currents in molecular junctions is desirable as a non-contact input with high spectral and spatial resolution provided by the photonic input and the molecular electronics element, respectively. Expanding the study of molecular junctions to non-metallic transparent substrates, such as indium tin oxide (ITO), is vital for the observation of molecular optoelectronic effects. Non-metallic electrodes are expected to decrease the probability of quenching of molecular photo-excited states, light-induced plasmonic effects, or significant electrode expansion under visible light. We have developed micron-sized, metal free, optically addressable ITO molecular junctions with a conductive polymer serving as the counter-electrode. The electrical transport was shown to be dominated by the nature of the self-assembled monolayer (SAM). The use of amino-silane (APTMS) as the chemical binding scheme to ITO was found to be significant in determining the transport properties of the junctions. APTMS allows high junction yields and the formation of dense molecular layers preventing electrical short. However, polar amino-silane binding to the ITO significantly decreased the conductance compared to thiol-bound SAMs, and caused tilted geometry and disorder in the molecular layer. As the effect of the molecular structure on transport properties is clearly observed in our junctions, such metal-free junctions are suitable for characterizing the optoelectronic properties of molecular junctions.

  18. Investigation of Photoelectrode Redox Polymer Junctions

    DTIC Science & Technology

    2007-11-02

    15, 1985 Arlington, VA 22217 13. MUMMER OF’ AGES 1C. NdONIT ORING A~jE.4CY NAME ACORISZ53II d~ifetwM( IrO ConrWfiun OttiCO) IS. 1ICLtI~TY CY-AS&5 (of...junction is exposed to selected .chemical species. DD 1472 eOInlCN o’ INOV is i’s OesoL ITZ UNCLASSIFIED e"~ A44101CrATION OF THIS P AGE (W~ign 0...configuration consisting of a platinum working electrode, a platinum counter 2 V ELTRON RESEARCH INC. electrode and a Ag / Ag + reference electrode was

  19. Fully magnetic manganite spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Prasad, Bhagwati; Blamire, Mark G.

    2016-09-01

    In this paper we demonstrate spintronic devices which combine magnetic tunnel junctions with a spin-filtering tunnel barrier. These consist of an ultrathin ferromagnetic insulating barrier, Sm0.75Sr0.25MnO3, sandwiched between two ferromagnetic half-metallic manganite electrodes, La0.7Sr0.3MnO3 and La0.7Ca0.3MnO3, in a nanopillar structure. Depending on the relative magnetic configurations of barrier and electrode layers, three resistance states are well defined, which therefore represent a potential three-state memory concept. These results open the way for the development of spintronic devices by exploiting the many degrees of freedom of perovskite manganite heterostructure systems.

  20. Cascade Electronic Refrigerator Using Superconducting Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Q.; Peltonen, J. T.; Meschke, M.; Pekola, J. P.

    2016-11-01

    Microrefrigerators that operate in the subkelvin regime are key devices in quantum technology. A well-studied candidate, an electronic cooler using normal-metal-insulator-superconductor (N -I -S ) tunnel junctions, offers substantial performance and power. However, its superconducting electrodes are severely overheated due to exponential suppression of their thermal conductance towards low temperatures, and the cooler performs unsatisfactorily—especially in powerful devices needed for practical applications. We employ a second N -I -S cooling stage to thermalize the hot superconductor at the backside of the main N -I -S cooler. Not only providing a lower bath temperature, the second-stage cooler actively evacuates quasiparticles out of the hot superconductor, especially in the low-temperature limit. We demonstrate the apparent advantage of our approach. This cascade design can also be employed to manage excess heat in other cryoelectronic devices.

  1. Josephson junctions with tunable weak links.

    PubMed

    Schön, J H; Kloc, C; Hwang, H Y; Batlogg, B

    2001-04-13

    The electrical properties of organic molecular crystals, such as polyacenes or C60, can be tuned from insulating to superconducting by application of an electric field. By structuring the gate electrode of such a field-effect switch, the charge carrier density, and therefore also the superfluid density, can be modulated. Hence, weak links that behave like Josephson junctions can be fabricated between two superconducting regions. The coupling between the superconducting regions can be tuned and controlled over a wide range by the applied gate bias. Such devices might be used in superconducting circuits, and they are a useful scientific tool to study superconducting material parameters, such as the superconducting gap, as a function of carrier concentration or transition temperature.

  2. Work fluctuations in bosonic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Lena, R. G.; Palma, G. M.; De Chiara, G.

    2016-05-01

    We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that of the population imbalance of the two modes.

  3. Quantum Phase Transition in Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Moon, K.; Girvin, S. M.

    1997-03-01

    One-dimensional Josephson junction arrays of SQUIDS exhibit a novel superconductor-insulator phase transition. The critical regime can be accessed by tuning the effective Josephson coupling energy using a weak magnetic field applied to the SQUIDS. The role of instantons induced by quantum fluctuations will be discussed. One novel feature of these systems which can be explained in terms of quantum phase slips is that in some regimes, the array resistance decreases with increasing length of the array. We calculate the finite temperature crossover function for the array resistance and compare our theoretical results with the recent experiments by D. Haviland and P. Delsing at Chalmers. This work is supported by DOE grant #DE-FG02-90ER45427 and by NSF DMR-9502555.

  4. Studies of silicon pn junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  5. Field-effect P-N junction

    DOEpatents

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  6. Controlling local currents in molecular junctions

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2016-09-01

    The effects of nonequilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In a symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry-induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  7. Terbinafine inhibits gap junctional intercellular communication.

    PubMed

    Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu

    2016-09-15

    Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action.

  8. Permanent junctional reciprocating tachycardia in a dog.

    PubMed

    Santilli, Roberto A; Santos, Luis F N; Perego, Manuela

    2013-09-01

    A 5-year-old male English Bulldog was presented with a 1-year history of paroxysmal supraventricular tachycardia (SVT) partially responsive to amiodarone. At admission the surface ECG showed sustained runs of a narrow QRS complex tachycardia, with a ventricular cycle length (R-R interval) of 260 ms, alternating with periods of sinus rhythm. Endocardial mapping identified the electrogenic mechanism of the SVT as a circus movement tachycardia with retrograde and decremental conduction along a concealed postero-septal atrioventricular pathway (AP) and anterograde conduction along the atrioventricular node. These characteristics were indicative of a permanent junctional reciprocating tachycardia (PJRT). Radiofrequency catheter ablation of the AP successfully terminated the PJRT, with no recurrence of tachycardia on Holter monitoring at 12 months follow-up.

  9. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  10. Molecular force spectroscopy of homophilic nectin-1 interactions

    SciTech Connect

    Vedula, Sri Ram Krishna; Lim, T.S.; Hui Shi; Kausalya, P. Jaya; Lane, E. Birgitte; Rajagopal, Gunaretnam; Hunziker, Walter; Lim, C.T.

    2007-11-03

    Nectins are Ca{sup 2+} independent cell adhesion molecules localizing at the cadherin based adherens junctions. In this study, we have used atomic force microscopy to study interaction of a chimera of extra cellular fragment of nectin-1 and Fc of human IgG (nef-1) with wild type L-fibroblasts that express endogenous nectin-1 to elucidate the biophysical characteristics of homophilic nectin-1 trans-interactions at the level of single molecule. Bond strength distribution revealed three distinct bound states (or configurations) of trans-interactions between paired nectins, where each bound state has a unique unstressed off-rate and reactive compliance. Kinetic analysis of force-dependent off-rate of the bound state involving trans-interacting V-V domains between paired nectin-1 (unstressed off-rate {approx}1.465 {+-} 0.779 s{sup -1}, reactive compliance {approx}0.143 {+-} 0.072 nm) was found to be closest to E-cadherin, indicating that V-V domain trans-interactions are probably necessary to initiate and promote adhesions of E-cadherin at adherens junctions (AJs)

  11. Dietary D-glucarate effects on the biomarkers of inflammation during early post-initiation stages of benzo[a]pyrene-induced lung tumorigenesis in A/J mice

    PubMed Central

    ZOLTASZEK, ROBERT; KOWALCZYK, PIOTR; KOWALCZYK, MAGDALENA C.; HANAUSEK, MARGARET; KILIANSKA, ZOFIA M.; SLAGA, THOMAS J.; WALASZEK, ZBIGNIEW

    2011-01-01

    Previous studies showed that dietary calcium D-glucarate (CG) inhibited benzo[a]pyrene (B[a]P)-induced A/J mouse lung tumorigenesis, suppressing cell proliferation and chronic inflammation and inducing apoptosis during late post-initiation stages. The present study aimed to investigate changes in the homeostasis of cytokines in blood serum, as well as alterations in biomarkers of inflammation and apoptosis in lung tissue caused by dietary CG during early post-initiation stages of B[a]P-induced lung tumorigenesis. Two doses of 3 mg of B[a]P were given intragastrically to A/J mice 2 weeks apart. CG administration in the AIN-93G diet (2 and 4%, w/w) commenced at 2 weeks following the second dose of B[a]P. The levels of interleukin (IL)-6, IL-10 and tumor necrosis factor α (TNFα) in blood serum were investigated by FCAP array analysis. Two weeks after the second dose of B[a]P, approximately 8- and 28-fold increases of TNFα and IL-6, respectively, occurred in the blood serum and an approximately 16% decrease of IL-10 levels compared to the untreated control group was noted. At 4 weeks after the second dose of B[a]P and after 2 weeks of CG administration in the diet, the 2 and 4% CG diets significantly reduced the levels of IL-6 and TNFα (by 70 and 33%, respectively). In a dose-related manner, the diets also increased the level of anti-inflammatory cytokine IL-10 compared to the B[a]P group. At 6 weeks after the second dose of B[a]P, the cytokine levels in the serum continued to show a decrease in the CG-treated groups. These events are accompanied by an increased level of cleaved caspase-9 product with a molecular weight of 37 kDa. In conclusion, dietary D-glucarate decreases the level of proinflammatory cytokines, increases the level of the anti-inflammatory cytokine IL-10 during early post-initiation stages of B[a]P-induced lung tumorigenesis in A/J mice and affects apoptotic induction. PMID:22870144

  12. Dietary D-glucarate effects on the biomarkers of inflammation during early post-initiation stages of benzo[a]pyrene-induced lung tumorigenesis in A/J mice.

    PubMed

    Zoltaszek, Robert; Kowalczyk, Piotr; Kowalczyk, Magdalena C; Hanausek, Margaret; Kilianska, Zofia M; Slaga, Thomas J; Walaszek, Zbigniew

    2011-01-01

    Previous studies showed that dietary calcium D-glucarate (CG) inhibited benzo[a]pyrene (B[a]P)-induced A/J mouse lung tumorigenesis, suppressing cell proliferation and chronic inflammation and inducing apoptosis during late post-initiation stages. The present study aimed to investigate changes in the homeostasis of cytokines in blood serum, as well as alterations in biomarkers of inflammation and apoptosis in lung tissue caused by dietary CG during early post-initiation stages of B[a]P-induced lung tumorigenesis. Two doses of 3 mg of B[a]P were given intragastrically to A/J mice 2 weeks apart. CG administration in the AIN-93G diet (2 and 4%, w/w) commenced at 2 weeks following the second dose of B[a]P. The levels of interleukin (IL)-6, IL-10 and tumor necrosis factor α (TNFα) in blood serum were investigated by FCAP array analysis. Two weeks after the second dose of B[a]P, approximately 8- and 28-fold increases of TNFα and IL-6, respectively, occurred in the blood serum and an approximately 16% decrease of IL-10 levels compared to the untreated control group was noted. At 4 weeks after the second dose of B[a]P and after 2 weeks of CG administration in the diet, the 2 and 4% CG diets significantly reduced the levels of IL-6 and TNFα (by 70 and 33%, respectively). In a dose-related manner, the diets also increased the level of anti-inflammatory cytokine IL-10 compared to the B[a]P group. At 6 weeks after the second dose of B[a]P, the cytokine levels in the serum continued to show a decrease in the CG-treated groups. These events are accompanied by an increased level of cleaved caspase-9 product with a molecular weight of 37 kDa. In conclusion, dietary D-glucarate decreases the level of proinflammatory cytokines, increases the level of the anti-inflammatory cytokine IL-10 during early post-initiation stages of B[a]P-induced lung tumorigenesis in A/J mice and affects apoptotic induction.

  13. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%–33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.21–4.67 nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.2–7.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07 ± 0.11 TPa and 0.18–0.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  14. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  15. Thin-film Josephson junctions with alternating critical current density

    NASA Astrophysics Data System (ADS)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  16. Josephson radiation from InSb-nanowire junction

    NASA Astrophysics Data System (ADS)

    van Woerkom, David; Proutski, Alexander; Krivachy, Tamas; Bouman, Daniel; van Gulik, Ruben; Gul, Onder; Cassidy, Maja; Car, Diana; Bakkers, Erik; Kouwenhoven, Leo; Geresdi, Attila

    Semiconducting nanowire Josephson junctions has recently gained interest as building blocks for Majorana circuits and gate-tuneable superconducting qubits . Here we investigate the rich physics of the Andreev bound state spectrum of InSb nanowire junctions utilizing the AC Josephson relation 2eV_bias =hf . We designed and characterized an on-chip microwave circuit coupling the nanowire junction to an Al/AlOx/Al tunnel junction. The DC response of the tunnel junction is affected by photon-assisted quasiparticle current, which gives us the possibility to measure the radiation spectrum of the nanowire junction up to several tens of GHz in frequency. Our circuit design allows for voltage or phase biasing of the Josephson junction enabling direct mapping of Andreev bound states. We discuss our fabrication methods and choice of materials to achieve radiation detection up to a magnetic field of few hundred milliTesla, compatible with Majorana states in spin-orbit coupled nanowires. This work has been supported by the Netherlands Foundations FOM, Abstract NWO and Microsoft Corporation Station Q.

  17. High electronic couplings of single mesitylene molecular junctions.

    PubMed

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  18. A histone octamer blocks branch migration of a Holliday junction.

    PubMed Central

    Grigoriev, M; Hsieh, P

    1997-01-01

    The Holliday junction is a key intermediate in genetic recombination. Here, we examine the effect of a nucleosome core on movement of the Holliday junction in vitro by spontaneous branch migration. Histone octamers consisting of H2A, H2B, H3, and H4 are reconstituted onto DNA duplexes containing an artificial nucleosome-positioning sequence consisting of a tandem array of an alternating AT-GC sequence motif. Characterization of the reconstituted branch migration substrates by micrococcal nuclease mapping and exonuclease III and hydroxyl radical footprinting reveal that 70% of the reconstituted octamers are positioned near the center of the substrate and the remaining 30% are located at the distal end, although in both cases some translational degeneracy is observed. Branch migration assays with the octamer-containing substrates reveal that the Holliday junction cannot migrate spontaneously through DNA organized into a nucleosomal core unless DNA-histone interactions are completely disrupted. Similar results are obtained with branch migration substrates containing an octamer positioned on a naturally occurring sequence derived from the yeast GLN3 locus. Digestion of Holliday junctions with T7 endonuclease I establishes that the junction is not trapped by the octamer but can branch migrate in regions free of histone octamers. Our findings suggest that migration of Holliday junctions during recombination and the recombinational repair of DNA damage requires proteins not only to accelerate the intrinsic rate of branch migration but also to facilitate the passage of the Holliday junction through a nucleosome. PMID:9372946

  19. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  20. Regulation and roles for claudin-family tight junction proteins

    PubMed Central

    Findley, Mary K.; Koval, Michael

    2009-01-01

    Transmembrane proteins known as claudins play a critical role in tight junctions by regulating paracellular barrier permeability. The control of claudin assembly into tight junctions requires a complex interplay between several classes of claudins, other transmembrane proteins and scaffold proteins. Claudins are also subject to regulation by post-translational modifications including phosphorylation and palmitoylation. Several human diseases have been linked to claudin mutations, underscoring the physiologic function of these proteins. Roles for claudins in regulating cell phenotype and growth control also are beginning to emerge, suggesting a multifaceted role for claudins in regulation of cells beyond serving as a simple structural element of tight junctions. PMID:19319969

  1. Soft nanostructuring of YBCO Josephson junctions by phase separation.

    PubMed

    Gustafsson, D; Pettersson, H; Iandolo, B; Olsson, E; Bauch, T; Lombardi, F

    2010-12-08

    We have developed a new method to fabricate biepitaxial YBa2 Cu3 O7-δ (YBCO) Josephson junctions at the nanoscale, allowing junctions widths down to 100 nm and simultaneously avoiding the typical damage in grain boundary interfaces due to conventional patterning procedures. By using the competition between the superconducting YBCO and the insulating Y2 BaCuO5 phases during film growth, we formed nanometer sized grain boundary junctions in the insulating Y2 BaCuO5 matrix as confirmed by high-resolution transmission electron microscopy. Electrical transport measurements give clear indications that we are close to probing the intrinsic properties of the grain boundaries.

  2. Spin polarization of Co(0001)/graphene junctions from first principles.

    PubMed

    Sipahi, G M; Žutić, Igor; Atodiresei, N; Kawakami, R K; Lazić, P

    2014-03-12

    Junctions comprised of ferromagnets and nonmagnetic materials are one of the key building blocks in spintronics. With the recent breakthroughs of spin injection in ferromagnet/graphene junctions it is possible to consider spin-based applications that are not limited to magnetoresistive effects. However, for critical studies of such structures it is crucial to establish accurate predictive methods that would yield atomically resolved information on interfacial properties. By focusing on Co(0001)/graphene junctions and their electronic structure, we illustrate the inequivalence of different spin polarizations. We show atomically resolved spin polarization maps as a useful approach to assess the relevance of Co(0001)/graphene for different spintronics applications.

  3. Junction Temperature Measurement of IGBTs Using Short Circuit Current

    SciTech Connect

    Wang, Fei; Xu, Zhuxian; Ning, Puqi

    2012-01-01

    In this paper, a method is proposed to measure the junction temperatures of IGBT discrete devices and modules using short circuit current. Experimental results show that the short circuit current has good sensitivity, linearity and selectivity, which is suitable to be used as temperature sensitive electrical parameters (TSEP). Test circuit and hardware design are proposed for junction temperature measurement in single phase and three phase convertes. By connecting a temperature measurement unit to the converter and giving a short circuit pulse, the IGBT junction temperature can be measured.

  4. Effect of current injection into thin-film Josephson junctions

    DOE PAGES

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  5. Effect of current injection into thin-film Josephson junctions

    SciTech Connect

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  6. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    PubMed

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti

    2004-01-01

    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion.

  7. Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis

    PubMed Central

    Qian, Xuemin; Melkamu, Tamene; Upadhyaya, Pramod; Kassie, Fekadu

    2011-01-01

    We studied the chemopreventive efficacy of indole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables, to inhibit tobacco carcinogen-induced lung adenocarcinoma in A/J mice when given following post-initiation or progression protocol. Moreover, we assessed the potential mechanisms responsible for the anticancer effects of I3C. Post-initiation administration of I3C decreased the multiplicity of surface tumors as well as all forms of histopathological lesions, including adenocarcinoma, whereas administration of the compound during tumor progression failed to decrease the multiplicity of surface tumors and early forms of microscopic lesions but reduced the frequency of adenocarcinoma. Mechanistic studies in A549 lung adenocarcinoma cells indicated that the lung cancer preventive effects of I3C are mediated, at least in part, via modulation of the receptor tyrosine kinase/PI3K/Akt signaling pathway. PMID:21767909

  8. RWGSCAT - RECTANGULAR WAVEGUIDE JUNCTION SCATTERING PROGRAM

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1994-01-01

    In order to optimize frequency response and determine the tolerances required to meet RF specifications, accurate computer modeling of passive rectangular waveguide components is often required. Many rectangular waveguide components may be represented either exactly or approximately as a number of different size rectangular waveguides which are connected in series. RWGSCAT, Rectangular WaveGuide junction SCATtering program, solves for the scattering properties of a waveguide device. This device must consist of a number of rectangular waveguide sections of different cross sectional area which are connected in series. Devices which fall into this category include step transformers, filters, and smooth or corrugated rectangular horns. RWGSCAT will model such devices and accurately predict the reflection and transmission characteristics, taking into account higher order (other than dominant TE 10) mode excitation if it occurs, as well as multiple reflections and stored energy at each discontinuity. For devices which are large with respect to the wavelength of operation, the characteristics of the device may be required for computing a higher order mode or a number of higher order modes exciting the device. Such interactions can be represented by defining a scattering matrix for each discontinuity in the device, and then cascading the individual scattering matrices in order to determine the scattering matrix for the overall device. The individual matrices are obtained using the mode matching method. RWGSCAT is written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS. It has been successfully compiled and implemented using Lahey FORTRAN 77 under MS-DOS. A sample MS-DOS executable is provided on the distribution medium. It requires 377K of RAM for execution. Sample input data is also provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are

  9. Acute mild footshock alters ethanol drinking and plasma corticosterone levels in C57BL/6J male mice, but not DBA/2J or A/J male mice

    PubMed Central

    Matthews, Douglas B.; Morrow, A. Leslie; Todd, O’Buckley; Flanigan, Timothy J.; Berry, Raymond B.; Cook, Melloni N.; Mittleman, Guy; Goldowitz, Dan; Tokunaga, Sayaka; Silvers, Janelle M.

    2008-01-01

    Stress is an often-reported cause for alcohol consumption in humans. Acute intermittent footshock is a frequently used paradigm to produce stress in laboratory animals including mice. The effect produced by intermittent footshock stress on ethanol self-administration has been inconsistent: both increases and decreases in ethanol consumption have been reported. The current set of studies further investigates, in three commonly studied mouse strains, the effect of footshock stress on ethanol self-administration. Furthermore, the effect of footshock on plasma corticosterone levels was determined to investigate potential biochemical correlates. Adult male C57BL/6J, DBA/2J, and A/J mice were allowed to self-administer 10% (wt/vol) ethanol for 12 days in a standard 23-h two-bottle paradigm before receiving either 15 min of mild inescapable footshock or no footshock. Shock intensity was equal to the mean intensity at which each strain vocalized as previously determined. Following footshock, animals had the opportunity to self-administer ethanol for an additional 23 h. Separate animals were subjected to either footshock or no shock prior to collection of plasma for corticosterone. Mild footshock stress altered ethanol self-administration and increased plasma corticosterone levels in C57BL/6J mice. Footshock stress did not alter ethanol self-administration or plasma corticosterone levels in DBA/2J or A/J mice. These data demonstrate that mild footshock stress is a suboptimal method of modeling the stress-induced increases in ethanol consumption often reported by humans. PMID:18599253

  10. 23. Tunnel junction, view from the lower elevator room. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Tunnel junction, view from the lower elevator room. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  11. 39. Launch Control Equipment Room, seen from tunnel junction. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Launch Control Equipment Room, seen from tunnel junction. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  12. Interface Structure and Transport of Complex Oxide Junctions

    SciTech Connect

    Nelson-Cheeseman, B. B.; Wong, F.; Chopdekar, R. V.; Chi, M.; Arenholz, E.; Browning, N. D.; Suzuki, Y.

    2008-02-01

    The interface structure and magnetism of hybrid magnetic tunnel junction-spin filter devices have been investigated and correlated with the transport behavior exhibited. Magnetic tunnel junctions made of theoretically predicted half-metallic electrodes (perovskite La0.7Sr0.3MnO3 and spinel Fe3O4) sandwiching a spinel NiMn2O4 tunnel barrier exhibit very high crystalline quality as observed by transmission electron microscopy. Structurally abrupt interfaces allow for the distinct magnetic switching of the electrodes as well as large junction magnetoresistance. The change in the magnetic anisotropy observed at the spinel-spinel interface supports the presence of limited interdiffusion and the creation of a magnetically soft interfacial layer, whose strong exchange coupling to the Fe3O4 electrode likely accounts for the low background magnetoresistance observed in these junctions, and the successful spin filtering when the barrier layer is ferrimagnetic.

  13. Fabrication and analysis of dot junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Crotty, G. T.; Daud, T.

    1985-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junctions area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Efficiencies beyond 18 percent are obtainable in flat-plate terrestrial applications. Experimental solar-cell performance results, as functions of different area ratios, and bulk doping are presented. It is shown that saturation current reduction and open-circuit voltage increase is obtained by reduced junction area.

  14. View of Highway 140 and Overhang Rock. Location of junction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Highway 140 and Overhang Rock. Location of junction with Old Coulterville Road behind rock. Looking north-northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  15. Molecular electronics: some views on transport junctions and beyond.

    PubMed

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  16. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  17. High thermopower of mechanically stretched single-molecule junctions

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide

    2015-01-01

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions. PMID:26112999

  18. Thermoelectricity in atom-sized junctions at room temperatures.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-11-25

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e(2)/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks.

  19. High thermopower of mechanically stretched single-molecule junctions.

    PubMed

    Tsutsui, Makusu; Morikawa, Takanori; He, Yuhui; Arima, Akihide; Taniguchi, Masateru

    2015-06-26

    Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions.

  20. Macroscopic quantum tunnelling in spin filter ferromagnetic Josephson junctions.

    PubMed

    Massarotti, D; Pal, A; Rotoli, G; Longobardi, L; Blamire, M G; Tafuri, F

    2015-06-09

    The interfacial coupling of two materials with different ordered phases, such as a superconductor (S) and a ferromagnet (F), is driving new fundamental physics and innovative applications. For example, the creation of spin-filter Josephson junctions and the demonstration of triplet supercurrents have suggested the potential of a dissipationless version of spintronics based on unconventional superconductivity. Here we demonstrate evidence for active quantum applications of S-F-S junctions, through the observation of macroscopic quantum tunnelling in Josephson junctions with GdN ferromagnetic insulator barriers. We show a clear transition from thermal to quantum regime at a crossover temperature of about 100 mK at zero magnetic field in junctions, which present clear signatures of unconventional superconductivity. Following previous demonstration of passive S-F-S phase shifters in a phase qubit, our result paves the way to the active use of spin filter Josephson systems in quantum hybrid circuits.