Science.gov

Sample records for adherent cancer cells

  1. Soluble fibrin inhibits monocyte adherence and cytotoxicity against tumor cells: implications for cancer metastasis

    PubMed Central

    Biggerstaff, John P; Weidow, Brandy; Vidosh, Jacqueline; Dexheimer, Judith; Patel, Shonak; Patel, Pretesh

    2006-01-01

    Background Soluble fibrin (sFn) is a marker for disseminated intravascular coagulation and may have prognostic significance, especially in metastasis. However, a role for sFn in the etiology of metastatic cancer growth has not been extensively studied. We have reported that sFn cross-linked platelet binding to tumor cells via the major platelet fibrin receptor αIIbβ3, and tumor cell CD54 (ICAM-1), which is the receptor for two of the leukocyte β2 integrins (αLβ2 and aMβ2). We hypothesized that sFn may also affect leukocyte adherence, recognition, and killing of tumor cells. Furthermore, in a rat experimental metastasis model sFn pre-treatment of tumor cells enhanced metastasis by over 60% compared to untreated cells. Other studies have shown that fibrin(ogen) binds to the monocyte integrin αMβ2. This study therefore sought to investigate the effect of sFn on β2 integrin mediated monocyte adherence and killing of tumor cells. Methods The role of sFn in monocyte adherence and cytotoxicity against tumor cells was initially studied using static microplate adherence and cytotoxicity assays, and under physiologically relevant flow conditions in a microscope perfusion incubator system. Blocking studies were performed using monoclonal antibodies specific for β2 integrins and CD54, and specific peptides which inhibit sFn binding to these receptors. Results Enhancement of monocyte/tumor cell adherence was observed when only one cell type was bound to sFn, but profound inhibition was observed when sFn was bound to both monocytes and tumor cells. This effect was also reflected in the pattern of monocyte cytotoxicity. Studies using monoclonal blocking antibodies and specific blocking peptides (which did not affect normal coagulation) showed that the predominant mechanism of fibrin inhibition is via its binding to αMβ2 on monocytes, and to CD54 on both leukocytes and tumor cells. Conclusion sFn inhibits monocyte adherence and cytotoxicity of tumor cells by blocking

  2. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells

    PubMed Central

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A.; Entrena, José M.; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A.

    2016-01-01

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies. PMID:26752044

  3. Adherence to guidelines in gynecologic cancer surgery.

    PubMed

    Ferron, Gwenael; Martinez, Alejandra; Gladieff, Laurence; Mery, Eliane; David, Isabelle; Delannes, Martine; Montastruc, Marion; Balagué, Gisèle; Picaud, Laetitia; Querleu, Denis

    2014-11-01

    The purpose of this study is to review the available evidence documenting the prognostic role of adherence to guidelines in gynecologic cancers. A systematic review of the PubMed database using "guideline," "adherence," and "cancer" was carried out on February 25, 2014. Two thousand one hundred twenty-three publications were identified. Only publications addressing the question of adherence to recommendations regarding surgical care and multidisciplinary management of gynecologic cancers were selected. Six studies were identified in endometrial cancer, 4 in ovarian cancer, and none in cervical cancer. Adoption of guidelines is an effective tool for disease control and must consequently be considered as a process measure of quality cancer care. It is urgent to develop reliable and reproducible tools to assess adherence to guidelines based on level 1 evidence in gynecologic cancer then to carry out investigations to document the prognostic impact of compliance with guidelines. The time has come to include adherence to guidelines in quality assurance programs. PMID:25340292

  4. Atomic Force Microscopy Reveals a Role for Endothelial Cell ICAM-1 Expression in Bladder Cancer Cell Adherence

    PubMed Central

    Laurent, Valérie M.; Duperray, Alain; Sundar Rajan, Vinoth; Verdier, Claude

    2014-01-01

    Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells. PMID:24857933

  5. SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis.

    PubMed

    Siddharth, Sumit; Das, Sarita; Nayak, Anmada; Kundu, Chanakya Nath

    2016-10-01

    Cancer stem cells drive the metastatic cascade by undergoing epithelial to mesenchymal transition (EMT) and again mesenchymal to epithelial transition (MET). Using multiple breast cancer cell lines including cigarette smoke induced breast cancer cells and tumor derived primary cells from patient sample; we developed a breast cancer metastasis model and reported the existence of an adherent, distinct pre-metastatic phase, quiescent-breast cancer stem cells (Q-BCSCs) prior to attaining an EMT. SURVIVIN was found to be expressed in Q-BCSCs. Time dependant biphasic expression of SURVIVIN in Q-BCSCs reveals that Q-BCSCs is a pre-metastatic phase distinct from both epithelial and mesenchymal counterparts. SURVIVIN favours metastasis and up-regulates WNT/β-CATENIN pathway in a PI3 K/AKT-dependant manner for self-renewal. Knockdown of SURVIVIN in Q-BCSCs lost the metastatic property of cells by inhibiting invasion, EMT-MET, PI3 K/AKT/WNT cascade, and induced apoptosis. Thus, our data suggest the existence of a novel pre-metastatic phase (Q-BCSCs) before EMT and SURVIVIN acts as a marker for Quiescent-BCSCs. PMID:27411340

  6. SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis.

    PubMed

    Siddharth, Sumit; Das, Sarita; Nayak, Anmada; Kundu, Chanakya Nath

    2016-10-01

    Cancer stem cells drive the metastatic cascade by undergoing epithelial to mesenchymal transition (EMT) and again mesenchymal to epithelial transition (MET). Using multiple breast cancer cell lines including cigarette smoke induced breast cancer cells and tumor derived primary cells from patient sample; we developed a breast cancer metastasis model and reported the existence of an adherent, distinct pre-metastatic phase, quiescent-breast cancer stem cells (Q-BCSCs) prior to attaining an EMT. SURVIVIN was found to be expressed in Q-BCSCs. Time dependant biphasic expression of SURVIVIN in Q-BCSCs reveals that Q-BCSCs is a pre-metastatic phase distinct from both epithelial and mesenchymal counterparts. SURVIVIN favours metastasis and up-regulates WNT/β-CATENIN pathway in a PI3 K/AKT-dependant manner for self-renewal. Knockdown of SURVIVIN in Q-BCSCs lost the metastatic property of cells by inhibiting invasion, EMT-MET, PI3 K/AKT/WNT cascade, and induced apoptosis. Thus, our data suggest the existence of a novel pre-metastatic phase (Q-BCSCs) before EMT and SURVIVIN acts as a marker for Quiescent-BCSCs.

  7. Measurement of adherent cell mass and growth

    PubMed Central

    Park, Kidong; Millet, Larry J.; Kim, Namjung; Li, Huan; Jin, Xiaozhong; Popescu, Gabriel; Aluru, N. R.; Hsia, K. Jimmy; Bashir, Rashid

    2010-01-01

    The characterization of physical properties of cells such as their mass and stiffness has been of great interest and can have profound implications in cell biology, tissue engineering, cancer, and disease research. For example, the direct dependence of cell growth rate on cell mass for individual adherent human cells can elucidate the mechanisms underlying cell cycle progression. Here we develop an array of micro-electro-mechanical systems (MEMS) resonant mass sensors that can be used to directly measure the biophysical properties, mass, and growth rate of single adherent cells. Unlike conventional cantilever mass sensors, our sensors retain a uniform mass sensitivity over the cell attachment surface. By measuring the frequency shift of the mass sensors with growing (soft) cells and fixed (stiff) cells, and through analytical modeling, we derive the Young’s modulus of the unfixed cell and unravel the dependence of the cell mass measurement on cell stiffness. Finally, we grew individual cells on the mass sensors and measured their mass for 50+ hours. Our results demonstrate that adherent human colon epithelial cells have increased growth rates with a larger cell mass, and the average growth rate increases linearly with the cell mass, at 3.25%/hr. Our sensitive mass sensors with a position-independent mass sensitivity can be coupled with microscopy for simultaneous monitoring of cell growth and status, and provide an ideal method to study cell growth, cell cycle progression, differentiation, and apoptosis. PMID:21068372

  8. Non-adherent culture induces paclitaxel resistance in H460 lung cancer cells via ERK-mediated up-regulation of βIVa-tubulin.

    PubMed

    Atjanasuppat, Korakot; Lirdprapamongkol, Kriengsak; Jantaree, Phatcharida; Svasti, Jisnuson

    2015-10-23

    Circulating tumor cells (CTCs) are metastasizing epithelial cancer cells that adapt to survive when floating in bloodstream during metastasis. This condition can be mimicked in vitro by using non-adherent cell culture. The chemosensitivity of CTCs appears to correlate with the response of metastatic cancer patients to therapy, but chemoresistance is also frequently observed in advanced stage cancer patients, who have never previously received chemotherapy. We hypothesize that adaptation of epithelial cancer cells to become floating CTCs could lead to development of chemoresistance. Here, we explore whether chemoresistance is induced in epithelial cancer cells when cultured under non-adherent conditions. Increased paclitaxel-specific resistance was observed in floating cells compared to attached cells in H460, MCF-7, and HepG2 human cancer cell lines, by 15.6-, 3.9-, and 2.6-fold increases in IC50 values, respectively. qRT-PCR analysis showed that a paclitaxel-resistant β-tubulin isotype, βIVa-tubulin, was the most up-regulated gene compared with other β-tubulin isotypes in H460 floating cells, concomitant with elevated ERK activation. ERK inhibitor treatment could attenuate the up-regulation of βIVa-tubulin, and decreased the paclitaxel resistance of H460 floating cells, even though other β-tubulin isotypes were up-regulated when the ERK activation was blocked. In conclusion, we show induction of paclitaxel resistance in epithelial cancer cells, when floating in non-adherent culture, and this might occur with CTCs of cancer patients.

  9. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-01

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  10. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    ClinicalTrials.gov

    2016-03-01

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  11. Physics of adherent cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Ulrich S.; Safran, Samuel A.

    2013-07-01

    One of the most unique physical features of cell adhesion to external surfaces is the active generation of mechanical force at the cell-material interface. This includes pulling forces generated by contractile polymer bundles and networks, and pushing forces generated by the polymerization of polymer networks. These forces are transmitted to the substrate mainly by focal adhesions, which are large, yet highly dynamic adhesion clusters. Tissue cells use these forces to sense the physical properties of their environment and to communicate with each other. The effect of forces is intricately linked to the material properties of cells and their physical environment. Here a review is given of recent progress in our understanding of the role of forces in cell adhesion from the viewpoint of theoretical soft matter physics and in close relation to the relevant experiments.

  12. Hyaluronic Acid-Based Hydrogels as 3D Matrices for in Vitro Evaluation of Chemotherapeutic Drugs Using Poorly Adherent Prostate Cancer Cells

    PubMed Central

    Gurski, Lisa A.; Jha, Amit K.; Zhang, Chu; Jia, Xinqiao; Farach-Carson, Mary C.

    2009-01-01

    The current investigation aimed to develop a biomimetic, three-dimensional (3D) culture system for poorly adherent bone metastatic prostate cancer cells (C4-2B) for use as an in vitro platform for anti-cancer drug screening. To this end, hyaluronic acid (HA) derivatives carrying complementary aldehyde (HAALD) and hydrazide (HAADH) groups were synthesized and characterized. In situ encapsulation of C4-2B cells was achieved by simple mixing of HAALD and HAADH in the presence of the cells. Unlike two-dimensional (2D) monolayer culture in which cells adopt an atypical spread morphology, cells residing in the HA matrix formed distinct clustered structures which grew and merged, reminiscent of real tumors. Anti-cancer drugs added to the media surrounding the cell/gel construct diffused into the gel and killed the embedded cells. The HA hydrogel system was used successfully to test the efficacy of anti-cancer drugs including camptothecin, docetaxel, and rapamycin, alone and in combination, including specificity, dose and time responses. Responses of cells to anti-neoplastics differed between the 3D HA hydrogel and 2D monolayer systems. We suggest that the data obtained from 3D HA systems is superior to that from conventional 2D monolayers as the 3D system better reflects the bone metastatic microenvironment of the cancer cells. PMID:19695694

  13. Adherence to cancer prevention guidelines and risk of breast cancer.

    PubMed

    Catsburg, Chelsea; Miller, Anthony B; Rohan, Thomas E

    2014-11-15

    Healthy eating patterns and keeping physically active are potentially more important for chronic disease prevention than intake or exclusion of specific food items or nutrients. To this end, many health organizations routinely publish dietary and lifestyle recommendations aimed at preventing chronic disease. Using data from the Canadian National Breast Screening Study, we investigated the association between breast cancer risk and adherence to two sets of guidelines specific for cancer prevention, namely the American Cancer Society (ACS) Guidelines and the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Recommendations. At baseline, 49,613 women completed dietary and lifestyle questionnaires and height and weight measurements were taken. During a mean follow-up of 16.6 years, 2,503 incident cases of breast cancer were ascertained. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association of meeting each guideline, and number of guidelines met, with breast cancer risk. The two sets of guidelines yielded similar results. Specifically, adherence to all six ACS guidelines was associated with a 31% reduction in breast cancer risk when compared to subjects adhering to at most one guideline (HR=0.69; 95% CI=0.49-0.97); similarly, adherence to six or seven of the WCRF/AICR guidelines was also associated with a 31% reduction in breast cancer risk (HR=0.69; 95% CI=0.47-1.00). Under either classification, meeting each additional guideline was associated with a 4-6% reduction in breast cancer risk. These results suggest that adherence to cancer prevention guidelines is associated with a reduced risk of breast cancer.

  14. Adherence of Mycoplasma hyopneumoniae to cell monolayers.

    PubMed

    Zielinski, G C; Young, T; Ross, R F; Rosenbusch, R F

    1990-03-01

    This work was an attempt to develop an in vitro adherence model for Mycoplasma hyopneumoniae, using monolayers of human and porcine lung fibroblasts and porcine kidney cells. Mycoplasma hyopneumoniae grown in Friis mycoplasma broth was radiolabeled with 35[S]-methionine, washed, concentrated, and inoculated on the monolayers. After 15 minutes of centrifugation to facilitate adherence, monolayers were washed 3 times, dissolved with 0.1N NaOH, and suspended in scintillation liquid, and the radioactivity was determined in a liquid scintillation counter. Adherence, measured as a percentage of counts added, varied according to the mycoplasma strain and the cell line used. Comparison of strains J, 144L, and 232 of M hyopneumoniae revealed 7.5 +/- 5.9, 31.9 +/- 13, and 9.6 +/- 5% adherence to porcine kidney cells, respectively. Slightly different, but proportionally the same relationships were obtained with swine or human fibroblasts. Adherence was decreased slightly by repeated washings of the mycoplasma-treated cell monolayers; however, a plateau was reached, indicating irreversibility of the adherence process. Pretreatment of cell monolayers with nonlabeled organisms substantially blocked adherence by labeled organisms. Dilution of labeled organisms resulted in an increased proportion adhering. Therefore, it appears that the adherence was a receptor-dependent event. Treatment of the mycoplasmas with trypsin prior to the inoculation of monolayers resulted in a marked reduction in adherence. Treatment of the mycoplasmas with hyperimmune swine serum against M hyopneumoniae or normal swine serum resulted in 80 to 90% reduction of adherence; however, no inhibition occurred when mycoplasmas were treated with purified IgG from the hyperimmune serum.

  15. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate

  16. Eikenella corrodens adherence to human buccal epithelial cells.

    PubMed Central

    Yamazaki, Y; Ebisu, S; Okada, H

    1981-01-01

    The mechanism of Eikenella corrodens adherence to human buccal epithelial cells in vitro was studied. Initial experiments to determine the optimal conditions for adherence of E. corrodens to buccal epithelial cells showed that adherence was dependent on time, temperature, bacterial concentration, and pH. Different strains of E. corrodens varied in their ability to adhere, and strain 1073 showed the greatest ability in adherence. Strain 1073 was selected for studies of adherence mechanisms. Trypsin treatment or heating (100 degrees C, 10 min) of the bacterial cells abolished their capacity to adhere to buccal epithelial cells. Treatment of buccal epithelial cells with trypsin also abolished adherence of E. corrodens 1073, whereas neuraminidase treatment of buccal epithelial cells enhanced the adherence. The adherence was inhibited by ethylenediaminetetraacetic acid and restored by adding Ca2+. The adherence was remarkably inhibited by sugars containing D-galactose and n-acetyl-D-galactosamine. Treatment of neuraminidase-treated epithelial cells with sodium metaperiodate or alpha- and beta-galactosidase did not decrease the adherence. These data suggest that adherence of E. corrodens 1073 to human buccal epithelial cells may require the interaction of lectin-like proteins on the bacterial surface with galactose-like receptors on the surface of epithelial cells. PMID:6260661

  17. Improving adherence to oral cancer therapy in clinical practice.

    PubMed

    McCue, Debbie A; Lohr, Lisa K; Pick, Amy M

    2014-05-01

    Adherence to oral chemotherapy regimens maximizes their effectiveness and minimizes any potential toxicities. Factors specifically related to the treatment, patient, and health care provider may influence medication adherence. Treatment-related factors include the complexity of the regimen, the cost of therapy, the possibility of side effects, and the delay in treatment benefits. Meanwhile, patients may not have an adequate support system or an understanding of the need for the medication, and providers may not fully succeed in communicating the importance of adherence and the types of side effects that may occur. Nonadherence may lead to an increased risk of toxicity, decreased effectiveness, and increased utilization of health care resources. Although various methods for measuring adherence are available, self-reporting is the most widely used. Studies describing adherence in a broad range of cancers are reviewed. Treatment of chronic myeloid leukemia has been revolutionized by the development of oral tyrosine kinase inhibitors that are highly effective in managing the disease when taken consistently. However, nonadherence is relatively common and can lead to reduced rates of response and increased medical costs. Similar effects of nonadherence on outcome and cost have also been observed in patients with various other hematologic malignancies and solid tumors. Interventions to improve adherence to oral chemotherapy regimens include communication about the importance of adherence and the potential consequences of nonadherence, simplification of the patient's medication schedule (if possible), and inclusion of a caregiver or family member in the conversation. Written materials should always be provided to accompany verbal instructions. This review summarizes factors influencing medication adherence, impact of nonadherence on patient outcomes, methods for measuring adherence, previous studies of nonadherence in patients with cancer, common barriers to access, and

  18. Automated microinjection system for adherent cells

    NASA Astrophysics Data System (ADS)

    Youoku, Sachihiro; Suto, Yoshinori; Ando, Moritoshi; Ito, Akio

    2007-07-01

    We have developed an automated microinjection system that can handle more than 500 cells an hour. Microinjection injects foreign agents directly into cells using a micro-capillary. It can randomly introduce agents such as DNA, proteins and drugs into various types of cells. However, conventional methods require a skilled operator and suffer from low throughput. The new automated microinjection techniques we have developed consist of a Petri dish height measuring method and a capillary apex position measuring method. The dish surface height is measured by analyzing the images of cells that adhere to the dish surface. The contrast between the cell images is minimized when the focus plane of an object lens coincides with the dish surface. We have developed an optimized focus searching method with a height accuracy of +/-0.2 um. The capillary apex position detection method consists of three steps: rough, middle, and precise. These steps are employed sequentially to cover capillary displacements of up to +/-2 mm, and to ultimately accomplish an alignment accuracy of less than one micron. Experimental results using this system we developed show that it can introduce fluorescent material (Alexa488) into adherent cells, HEK293, with a success rate of 88.5%.

  19. Micromolded Arrays for Separation of Adherent Cells

    PubMed Central

    Wang, Yuli; Phillips, Colleen; Xu, Wei; Pai, Jeng-Hao; Dhopeshwarkar, Rahul; Sims, Christopher E.; Allbritton, Nancy

    2010-01-01

    We present an efficient, yet inexpensive, approach for isolating viable single cells or colonies from a mixed population. This cell microarray platform possesses innovations in both the array manufacture and the manner of target cell release. Arrays of microwells with bases composed of detachable concave elements, termed microrafts, were fabricated by a dip-coating process using a polydimethylsiloxane mold as the template and the array substrate. This manufacturing approach enabled the use of materials other than photoresists to create the array elements. Thus microrafts possessing low autofluorescence could be fabricated for fluorescence-based identification of cells. Cells plated on the microarray settled and attached at the center of the wells due to the microrafts’ concavity. Individual microrafts were readily dislodged by the action of a needle inserted through the compliant polymer substrate. The hard polymer material (polystyrene or epoxy resin) of which the microrafts were composed protected the cells from damage by the needle. For cell analysis and isolation, cells of interest were identified using a standard inverted microscope and microrafts carrying target cells were dislodged with the needle. The released cells/microrafts could be efficiently collected, cultured and clonally expanded. During the separation and collection procedures, the cells remained adherent and provided a measure of protection during manipulation, thus providing an extremely high single-cell cloning rate (>95%). Generation of a transfected cell line based on expression of a fluorescent protein demonstrated an important application for performing on-chip cell separations. PMID:20838672

  20. Distinct mechanical behavior of HEK293 cells in adherent and suspended states.

    PubMed

    Haghparast, Seyed Mohammad Ali; Kihara, Takanori; Miyake, Jun

    2015-01-01

    The mechanical features of individual animal cells have been regarded as indicators of cell type and state. Previously, we investigated the surface mechanics of cancer and normal stromal cells in adherent and suspended states using atomic force microscopy. Cancer cells possessed specific mechanical and actin cytoskeleton features that were distinct from normal stromal cells in adherent and suspended states. In this paper, we report the unique mechanical and actin cytoskeletal features of human embryonic kidney HEK293 cells. Unlike normal stromal and cancer cells, the surface stiffness of adherent HEK293 cells was very low, but increased after cell detachment from the culture surface. Induced actin filament depolymerization revealed that the actin cytoskeleton was the underlying source of the stiffness in suspended HEK293 cells. The exclusive mechanical response of HEK293 cells to perturbation of the actin cytoskeleton resembled that of adherent cancer cells and suspended normal stromal cells. Thus, with respect to their special cell-surface mechanical features, HEK293 cells could be categorized into a new class distinct from normal stromal and cancer cells.

  1. Topography Influences Adherent Cell Regulation of Osteoclastogenesis.

    PubMed

    Nagasawa, M; Cooper, L F; Ogino, Y; Mendonca, D; Liang, R; Yang, S; Mendonca, G; Uoshima, K

    2016-03-01

    The importance of osteoclast-mediated bone resorption in the process of osseointegration has not been widely considered. In this study, cell culture was used to investigate the hypothesis that the function of implant-adherent bone marrow stromal cells (BMSCs) in osteoclastogenesis is influenced by surface topography. BMSCs isolated from femur and tibia of Sprague-Dawley rats were seeded onto 3 types of titanium surfaces (smooth, micro, and nano) and a control surface (tissue culture plastic) with or without osteogenic supplements. After 3 to 14 d, conditioned medium (CM) was collected. Subsequently, rat bone marrow-derived macrophages (BMMs) were cultured in media supplemented with soluble receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) as well as BMSC CM from each of the 4 surfaces. Gene expression levels of soluble RANKL, osteoprotegerin, tumor necrosis factor α, and M-CSF in cultured BMSCs at different time points were measured by real-time polymerase chain reaction. The number of differentiated osteoclastic cells was determined after tartrate-resistant acid phosphatase staining. Analysis of variance and t test were used for statistical analysis. The expression of prominent osteoclast-promoting factors tumor necrosis factor α and M-CSF was increased by BMSCs cultured on both micro- and nanoscale titanium topographies (P < 0.01). BMSC CM contained a heat-labile factor that increased BMMs osteoclastogenesis. CM from both micro- and nanoscale surface-adherent BMSCs increased the osteoclast number (P < 0.01). Difference in surface topography altered BMSC phenotype and influenced BMM osteoclastogenesis. Local signaling by implant-adherent cells at the implant-bone interface may indirectly control osteoclastogenesis and bone accrual around endosseous implants. PMID:26553885

  2. Photosensitizer Adhered to Cell Culture Microplates Induces Phototoxicity in Carcinoma Cells

    PubMed Central

    Ziegler, Verena; Kiesslich, Tobias; Krammer, Barbara; Plaetzer, Kristjan

    2013-01-01

    In vitro experiments in plastic receptacles are the basis of characterization of new photosensitizers (PSs) for the photodynamic therapy. We recently reported that lipophilic PSs adhere to cell culture microplates in a kinetic-like manner (Engelhardt et al., 2011). In the current study, we examined the interaction and phototoxic effects of the microplate-adhered PS in cancer cells. Therefore, we preloaded microplates with hypericin, Foscan, PVP-hypericin, or aluminum (III) phthalocyanine tetrasulfonate chloride (AlPCS4) for 24 hours and measured the PS distribution after addition of A431 human carcinoma cells: following another 24 hours up to 68% of hypericin were detected in the cell fraction. The hydrophilic PVP-hypericin and AlPCS4 also diffused into the cells, but the quantities of PS adherence were considerably lower. Microplate-adhered Foscan appeared not to be redistributed. In contrast to the hydrophilic PSs, the cellular phototoxicity of microplate-adhered lipophilic PS was high, independent of whether the PS (i) was pre-loaded onto microplates or (ii) added simultaneously with the cells or (iii) one day after cell seeding. Based on these results, we suggest testing lipophilic PS dyes for their adherence to microplates. Furthermore, the ability of plastic materials to (reversibly) store PSs might represent a new approach for the PS delivery or the development of antimicrobial coatings. PMID:23509741

  3. Active mechanics and geometry of adherent cells and cell colonies

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya

    2014-03-01

    Measurements of traction stresses exerted by adherent cells or cell colonies on elastic substrates have yielded new insight on how the mechanical and geometrical properties of the substrate regulate cellular force distribution, mechanical energy, spreading, morphology or stress ber architecture. We have developed a generic mechanical model of adherent cells as an active contractile gel mechanically coupled to an elastic substrate and to neighboring cells in a tissue. The contractile gel model accurately predicts the distribution of cellular and traction stresses as observed in single cell experiments, and captures the dependence of cell shape, traction stresses and stress ber polarization on the substrate's mechanical and geometrical properties. The model further predicts that the total strain energy of an adherent cell is solely regulated by its spread area, in agreement with recent experiments on micropatterned substrates with controlled geometry. When used to describe the behavior of colonies of adherent epithelial cells, the model demonstrates the crucial role of the mechanical cross-talk between intercellular and extracellular adhesion in regulating traction force distribution. Strong intercellular mechanical coupling organizes traction forces to the colony periphery, whereas weaker intercellular coupling leads to the build up of traction stresses at intercellular junctions. Furthermore, in agreement with experiments on large cohesive keratinocyte colonies, the model predicts a linear scaling of traction forces with the colony size. This scaling suggests the emergence of an effective surface tension as a scale-free material property of the adherent tissue, originating from actomyosin contractility.

  4. Dynamic mechanical measurement of the viscoelasticity of single adherent cells

    NASA Astrophysics Data System (ADS)

    Corbin, Elise A.; Adeniba, Olaoluwa O.; Ewoldt, Randy H.; Bashir, Rashid

    2016-02-01

    Many recent studies on the viscoelasticity of individual cells link mechanics with cellular function and health. Here, we introduce a measurement of the viscoelastic properties of individual human colon cancer cells (HT-29) using silicon pedestal microelectromechanical systems (MEMS) resonant sensors. We demonstrate that the viscoelastic properties of single adherent cells can be extracted by measuring a difference in vibrational amplitude of our resonant sensor platform. The magnitude of vibration of the pedestal sensor is measured using a laser Doppler vibrometer (LDV). A change in amplitude of the sensor, compared with the driving amplitude (amplitude ratio), is influenced by the mechanical properties of the adhered cells. The amplitude ratio of the fixed cells was greater than the live cells, with a p-value <0.0001. By combining the amplitude shift with the resonant frequency shift measure, we determined the elastic modulus and viscosity values of 100 Pa and 0.0031 Pa s, respectively. Our method using the change in amplitude of resonant MEMS devices can enable the determination of a refined solution space and could improve measuring the stiffness of cells.

  5. Program Spending to Increase Adherence: South African Cervical Cancer Screening

    PubMed Central

    Goldhaber-Fiebert, Jeremy D.; Denny, Lynette A.; De Souza, Michelle; Kuhn, Louise; Goldie, Sue J.

    2009-01-01

    Background Adherence is crucial for public health program effectiveness, though the benefits of increasing adherence must ultimately be weighed against the associated costs. We sought to determine the relationship between investment in community health worker (CHW) home visits and increased attendance at cervical cancer screening appointments in Cape Town, South Africa. Methodology/Principal Findings We conducted an observational study of 5,258 CHW home visits made in 2003–4 as part of a community-based screening program. We estimated the functional relationship between spending on these visits and increased appointment attendance (adherence). Increased adherence was noted after each subsequent CHW visit. The costs of making the CHW visits was based on resource use including both personnel time and vehicle-related expenses valued in 2004 Rand. The CHW program cost R194,018, with 1,576 additional appointments attended. Adherence increased from 74% to 90%; 55% to 87%; 48% to 77%; and 56% to 80% for 6-, 12-, 24-, and 36-month appointments. Average per-woman costs increased by R14–R47. The majority of this increase occurred with the first 2 CHW visits (90%, 83%, 74%, and 77%; additional cost: R12–R26). Conclusions/Significance We found that study data can be used for program planning, identifying spending levels that achieve adherence targets given budgetary constraints. The results, derived from a single disease program, are retrospective, and should be prospectively replicated. PMID:19492097

  6. Complexities of Adherence and Post-Cancer Lymphedema Management

    PubMed Central

    Ostby, Pamela L.; Armer, Jane M.

    2015-01-01

    Breast cancer survivors are at increased risk for breast cancer-related lymphedema (BCRL), a chronic, debilitating, condition that is progressive and requires lifelong self-management. Up to 40% of 3 million breast cancer survivors in the US will develop BCRL, which has no cure, is irreversible, and requires self-management with regimens that may include multiple components. The complexities of treatment can negatively affect adherence to BCRL self-management which is critical to preventing progressive swelling and infection. The aim of this review of contemporary literature published from 2005–2015 is to examine the complexities of BCRL self-management, to identify adherence-focused studies relevant to BCRL, and to summarize barriers to self-management of BCRL. Six electronic indices were searched from which 120 articles were retrieved; 17 were BCRL-focused; and eight met inclusion criteria. Seventeen of 120 articles identified barriers to self-management of BCRL such as complexities of treatment regimens, symptom burden, balance of time for treatment and life demands, and lack of education and support; however, only eight studies included outcome measures of adherence to BCRL treatment regimens with a subsequent improvement in reduced limb volumes and/or perceptions of self-efficacy and self-regulation. A major limitation is the few number of rigorously developed outcome measures of BCRL adherence. In addition, randomized studies are needed with larger sample sizes to establish adequate levels of evidence for establishing best practice standards for improving adherence to BCRL self-management treatment regimens. PMID:26580657

  7. Automated adherent human cell culture (mesenchymal stem cells).

    PubMed

    Thomas, Robert; Ratcliffe, Elizabeth

    2012-01-01

    Human cell culture processes developed at research laboratory scale need to be translated to large-scale production processes to achieve commercial application to a large market. To allow this transition of scale with consistent process performance and control of costs, it will be necessary to reduce manual processing and increase automation. There are a number of commercially available platforms that will reduce manual process intervention and improve process control for different culture formats. However, in many human cell-based applications, there is currently a need to remain close to the development format, usually adherent culture on cell culture plastic or matrix-coated wells or flasks due to deterioration of cell quality in other environments, such as suspension. This chapter presents an example method for adherent automated human stem cell culture using a specific automated flask handling platform, the CompacT SelecT.

  8. Adherence of Bilophila wadsworthia to cultured human embryonic intestinal cells.

    PubMed

    Gerardo, S H; Garcia, M M; Wexler, H M; Finegold, S M

    1998-02-01

    Adherence of Bilophila wadsworthia to the cultured human embryonic intestinal cell line, Intestine 407 (Int 407), varied among the strains tested from strongly adherent (76-100% cells positive for one or more adherent bacteria) to non- or weakly adherent (0-25% positive cells). Although negative staining revealed that infrequent cells of an adherent strain, WAL 9077, the adherent type-strain, WAL 7959, and a non-adherent strain, WAL 8448, expressed loosely associated fimbrial structures, a role for these structures in adhesion could not be confirmed with either scanning or thin-section electron micrography. Ruthenium red staining of thin-section preparations and subsequent electron microscopy failed to reveal an extensive extracellular polysaccharide layer. SDS-PAGE analysis of crude outer membrane fractions of WAL 9077 and WAL 8448 demonstrated clear differences in their major and minor outer membrane protein components. Thus, we postulate that the adherence of B. wadsworthia to Int 407 cells is mediated by an outer membrane or cell wall component. PMID:16887620

  9. Cancer Screening in Women: BMI and Adherence to Physician Recommendations

    PubMed Central

    Ferrante, Jeanne M.; Chen, Ping-Hsin; Crabtree, Benjamin F.; Wartenberg, Daniel

    2007-01-01

    Objectives Reasons obese women are less likely to obtain mammograms and Pap smears are poorly understood. This study evaluated associations between body mass index (BMI) and receipt of and adherence to physician recommendations for mammography and Pap smear. Methods Data from the 2000 National Health Interview Survey (8289 women aged 40-74 years) were analyzed in 2006 using logistic regression. Women with prior hysterectomy were excluded from Pap smear analyses (n=5521). Outcome measures were being up-to-date with screening, receipt of physician recommendations, and women's adherence to physician recommendations for mammography and Pap smear. Results After adjusting for sociodemographic variables, health care access, health behaviors, and comorbidity, severely obese women (BMI ≥ 40 kg/m2) were less likely to have mammography within 2 years (OR 0.50; 95% CI 0.37, 0.68) and Pap smear within 3 years (OR, 0.43; 95% CI, 0.27,0.70). Obese women were as likely as normal weight women to receive physician recommendations for mammography and Pap smear. Severely obese women were less likely to adhere to physician recommendation for mammography (OR 0.49; 95% CI, 0.32-0.76). Women in all obese categories (BMI ≥ 30 kg/m2) were less likely to adhere to physician recommendation for Pap smear (OR's ranged 0.17-0.28; p<0.001). Conclusions Obese women are less likely to adhere to physician recommendations for breast and cervical cancer screening. Interventions focusing solely on increasing physician recommendations for mammography and Pap smears will probably be insufficient for obese women. Additional strategies are needed to make cancer screening more acceptable for this high-risk group. PMID:17533069

  10. Ferromagnetic Micropallets for Magnetic Capture of Single Adherent Cells

    PubMed Central

    Gunn, Nicholas M.; Chang, Ruth; Westerhof, Trisha; Li, Guann-Pyng; Bachman, Mark; Nelson, Edward L.

    2010-01-01

    We present a magnetic micropallet array and demonstration of its capacity to recover specific, individual adherent cells from large populations and deliver them for downstream single cell analysis. A ferromagnetic photopolymer was formulated, characterized, and used to fabricate magnetic micropallets, which are microscale pedestals that provide demarcated cell growth surfaces, with preservation of biophysical properties including photopatternability, biocompatibility, and optical clarity. Each micropallet holds a single adherent cell in culture and hundreds of thousands of micropallets compose a single micropallet array. Any micropallet in the array can be recovered on demand, carrying the adhered cell with it. We used this platform to selectively recover single cells, which were subsequently analyzed using single cell RT-qPCR. PMID:20968293

  11. Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: a prospective cohort study1234

    PubMed Central

    Kabat, Geoffrey C; Matthews, Charles E; Kamensky, Victor; Hollenbeck, Albert R; Rohan, Thomas E

    2015-01-01

    Background: Several health agencies have issued guidelines promoting behaviors to reduce chronic disease risk; however, little is known about the impact of such guidelines, particularly on cancer incidence. Objective: The objective was to determine whether greater adherence to the American Cancer Society (ACS) cancer prevention guidelines is associated with a reduction in cancer incidence, cancer mortality, and total mortality. Design: The NIH-AARP Diet and Health Study, a prospective cohort study of 566,401 adults aged 50–71 y at recruitment in 1995–1996, was followed for a median of 10.5 y for cancer incidence, 12.6 y for cancer mortality, and 13.6 y for total mortality. Participants who reported a history of cancer or who had missing data were excluded, yielding 476,396 subjects for analysis. We constructed a 5-level score measuring adherence to ACS guidelines, which included baseline body mass index, physical activity, alcohol intake, and several aspects of diet. Cox proportional hazards models were used to compute HRs and 95% CIs for the association of the adherence score with cancer incidence, cancer mortality, and total mortality. All analyses included fine adjustment for cigarette smoking. Results: Among 476,396 participants, 73,784 incident first cancers, 16,193 cancer deaths, and 81,433 deaths from all causes were identified in the cohort. Adherence to ACS guidelines was associated with reduced risk of all cancers combined: HRs (95% CIs) for the highest compared with the lowest level of adherence were 0.90 (0.87, 0.93) in men and 0.81 (0.77, 0.84) in women. Fourteen of 25 specific cancer sites showed a reduction in risk associated with increased adherence. Adherence was also associated with reduced cancer mortality [HRs (95% CIs) were 0.75 (0.70, 0.80) in men and 0.76 (0.70, 0.83) in women] and reduced all-cause mortality [HRs (95% CIs) were 0.74 (0.72, 0.76) in men and 0.67 (0.65, 0.70) in women]. Conclusions: In both men and women, adherence to the

  12. Elasticity of adherent active cells on a compliant substrate

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Mertz, Aaron F.; Dufresne, Eric R.; Marchetti, M. Cristina

    2012-02-01

    We present a continuum mechanical model of rigidity sensing by livings cells adhering to a compliant substrate. The cell or cell colony is modeled as an elastic active gel, adapting recently developed continuum theories of active viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the cell's deformation field to local stress gradients. In the presence of activity, the substrate induces spatially inhomogeneous contractile stresses and deformations, with a power law dependence of the total traction forces on cell or colony size. This is in agreement with recent experiments on keratinocyte colonies adhered to fibronectin coated surfaces. In the presence of acto-myosin activity, the substrate also enhances the cell polarization, breaking the cell's front-rear symmetry. Maximal polarization is observed when the substrate stiffness matches that of the cell, in agreement with experiments on stem cells.

  13. Enhancing Adherence among Older African American Men Enrolled in a Longitudinal Cancer Screening Trial

    ERIC Educational Resources Information Center

    Ford, Marvella E.; Havstad, Suzanne; Vernon, Sally W.; Davis, Shawna D.; Kroll, David; Lamerato, Lois; Swanson, G. Marie

    2006-01-01

    Purpose: The purpose of this study was to enhance adherence among older (aged 55 years and older) African American men enrolled in a cancer screening trial for prostate, lung, and colorectal cancer. For this study, we defined "adherence" as completing the trial screenings. Design and Methods: We used a randomized trial design. Case managers…

  14. Determinants of Breast, Cervical and Colorectal Cancer Screening Adherence in Mexican American Women

    PubMed Central

    Gonzalez, Patricia; Castaneda, Sheila F.; Mills, Paul J.; Talavera, Gregory A.; Elder, John P.; Gallo, Linda C.

    2012-01-01

    Despite the effectiveness of cancer screening procedures, its utilization among Latinas remains low. Guided, in part, by the Behavioral Model for Vulnerable Populations, this study examined the associations between predisposing, enabling, and need factors with self-reported breast, cervical, and colorectal cancer screening adherence. Participants were 319 Mexican American women, from a range of socioeconomic (SES) backgrounds, living near the United States-Mexico border. Women were adherent with breast cancer (BC) screening (≥42 years) if they had received at least one mammogram within the last two years, with cervical cancer (CC) screening (≥40 years) if they had received at least one Pap exam in the last three years, and with colorectal cancer (CRC) screening (≥52 years) if they had undergone one or more of the following: Fecal Occult Blood Test (FOBT) within the last year, or sigmoidoscopy in the last 5 years, or colonoscopy within the last 10 years. BC and CC screenings were higher in the current sample compared to national and state figures: 82% with mammography and 86% adherent with Pap exam screening. However, only 43% were adherent with CRC screening recommendations. Characteristics associated with mammography adherence included CC adherence and usual source of care. BC adherence was associated to CC adherence. Characteristics associated with CRC adherence included BC adherence, being premenopausal, and insurance coverage. A key correlate of cancer screening adherence was adherence to other preventive services. Results underscore the need for continued efforts to ensure that Latinas of all SES levels obtain regular and timely cancer screenings. PMID:21874364

  15. Determinants of breast, cervical and colorectal cancer screening adherence in Mexican-American women.

    PubMed

    Gonzalez, Patricia; Castaneda, Sheila F; Mills, Paul J; Talavera, Gregory A; Elder, John P; Gallo, Linda C

    2012-04-01

    Despite the effectiveness of cancer screening procedures, its utilization among Latinas remains low. Guided, in part, by the Behavioral Model for Vulnerable Populations, this study examined the associations between predisposing, enabling, and need factors with self-reported breast, cervical, and colorectal cancer screening adherence. Participants were 319 Mexican-American women, from a range of socioeconomic backgrounds, living near the United States-Mexico border. Women were adherent with breast cancer (BC) screening (≥42 years) if they had received at least one mammogram within the last 2 years, with cervical cancer (CC) screening (≥40 years) if they had received at least one Pap exam in the last 3 years, and with colorectal cancer (CRC) screening (≥52 years) if they had undergone one or more of the following: Fecal Occult Blood Test within the last year, or sigmoidoscopy in the last 5 years, or colonoscopy within the last 10 years. BC and CC screenings were higher in the current sample compared to national and state figures: 82% with mammography and 86% adherent with Pap exam screening. However, only 43% were adherent with CRC screening recommendations. Characteristics associated with mammography adherence included CC adherence and usual source of care. BC adherence was associated to CC adherence. Characteristics associated with CRC adherence included BC adherence, being premenopausal, and insurance coverage. A key correlate of cancer screening adherence was adherence to other preventive services. Results underscore the need for continued efforts to ensure that Latinas of all SES levels obtain regular and timely cancer screenings.

  16. Adherence of human basophils to cultured umbilical vein endothelial cells.

    PubMed Central

    Bochner, B S; Peachell, P T; Brown, K E; Schleimer, R P

    1988-01-01

    The mechanism by which circulating human basophils adhere to vascular endothelium and migrate to sites of allergic reactions is unknown. Agents have been identified which stimulate the adherence of purified basophils to cultured human umbilical vein vascular endothelial cells (HuVEC). Treatment of HuVEC with interleukin 1, tumor necrosis factor (TNF), bacterial endotoxin, and 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in time and dose-dependent increases of adhesiveness for basophils. Coincubation of basophils and HuVEC for 10 min with C5a, formyl-methionyl-leucyl-phenylalanine, the calcium ionophore A23187, platelet-activating factor, TNF, and TPA also resulted in significant dose-dependent increases in basophil adherence; this effect resulted from activation of the basophil. Adherence of basophils to HuVEC was time and temperature dependent, required divalent cations, and was unaffected by glucocorticoids. Monoclonal antibody 60.3, directed against the beta-subunit of the leukocyte adherence complex CD18, inhibited the binding of basophils to HuVEC. Adherence of basophils to vascular endothelium may be important in initiating basophil infiltrates in vivo. PMID:3130394

  17. Language use and adherence to multiple cancer preventive health behaviors among Hispanics.

    PubMed

    Oh, April; Dodd, Kevin; Ballard-Barbash, Rachel; Perna, Frank M; Berrigan, David

    2011-10-01

    Hispanics have lower cancer mortality rates than non-Hispanic Whites and Blacks, despite demographic profiles previously associated with higher cancer mortality. Differences in adherence to multiple cancer-preventive behaviors by acculturation may offer one explanation for this "Hispanic paradox," but the relationship is not well understood. We examined this relationship using the 2000 National Health Interview Survey, which provides cross-sectional data on a nationally representative sample of US Hispanics. Multinomial logistic regression models estimated relationships between language use (a measure of acculturation) and patterns of adherence, by gender, to multiple cancer-preventive health behaviors using adherence scores. Hispanics had greater odds of adherence to multiple behaviors compared to Non-Hispanics (OR = 2.76 [2.27, 3.36]). Hispanics with greater English language use had lower odds of adherence (OR = 0.45 [0.29, 0.69]). Women were more adherent than men (P < 0.01) and their language use was associated with patterns of behavioral adherence more so than among men. Differences by gender and language use were identified in patterns of adherence to behavioral recommendations among the Hispanic population. Greater English language use was negatively associated with tobacco, alcohol, fruit and vegetable recommendation adherence but not with exercise. Study findings support evidence behaviors occur in combination and contributes to understanding of the role of language use in patterns of behavioral adherence.

  18. Vaccine production: upstream processing with adherent or suspension cell lines.

    PubMed

    Genzel, Yvonne; Rödig, Jana; Rapp, Erdmann; Reichl, Udo

    2014-01-01

    The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered. PMID:24297427

  19. A Profile of Mexican-born Women Who Adhere to National Cervical Cancer Screening Recommendations

    PubMed Central

    Hernández, Christina M.; Wallace, Debra

    2014-01-01

    The purpose of this study was to examine Mexican-born women’s utilization and adherence to cervical cancer screening guidelines. Ninety-seven women in southeastern U.S. participated. Data was collected in Spanish. The majority of women met adherence guidelines for the Pap exam. Marital status, educational attainment, marianismo, blood pressure knowledge, fatalism, cultural cancer beliefs, trust in provider, and perceived provider communication abilities were not associated with utilization or adherence to screening guidelines. This study had higher than expected adherence to screening guidelines. Nearly all women received screenings through safety net services indicating the need to advocate for continued public health funding. PMID:25051321

  20. Establishment and characterization of a novel, spontaneously immortalized retinoblastoma cell line with adherent growth.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Kim, Chong Jai; Kim, Kyu-Won

    2007-09-01

    Retinoblastoma is the most common intraocular cancer of childhood, however, only a few cultured retinoblastoma cell lines are available to date. In the present study, we established a new human retinoblastoma cell line with adherent growth, named SNUOT-Rb1. The SNUOT-Rb1 cell line was established from an eye with retinoblastoma, which was enucleated from a 3-year-old Korean child. SNUOT-Rb1 has morphological and biochemical characteristics common to previous human retinoblastoma cell line, Y79: morphological features of fibroblast- or ganglion-like cells, and biochemical features of expression of glial fibrillary acidic protein and neuron-specific enolase. However, compared to Y79, SNUOT-Rb1 has a unique characteristic of growing in adherence, and the doubling time of SNUOT-Rb1 is shorter than Y79 in adherent or floating growth. In analysis of the tumorigenic potential of SNUOT-Rb1 in nude mice, orthotopic implantation of SNUOT-Rb1 mimics the pattern of local growth of retinoblastoma. In comparative genomic hybridization analysis, we found that SNUOT-Rb1 has significant chromosomal imbalances on chromosome 3, 9, 10, 11, 14, 16, 17, and 22. Therefore, SNUOT-Rb1 could be useful in studying the biological and genetic characteristics of retinoblastoma for insights into the heredity and genetics of childhood cancer. PMID:17671685

  1. Patterns of analgesic adherence predict health care utilization among outpatients with cancer pain

    PubMed Central

    Meghani, Salimah H; Knafl, George J

    2016-01-01

    Background Studies in chronic noncancer pain settings have found that opioid use increases health care utilization. Despite the key role of analgesics, specifically opioids, in the setting of cancer pain, there is no literature to our knowledge about the relationship between adherence to prescribed around-the-clock (ATC) analgesics and acute health care utilization (hospitalization) among patients with cancer pain. Purpose To identify adherence patterns over time for cancer patients taking ATC analgesics for pain, cluster these patterns into adherence types, combine the types into an adherence risk factor for hospitalization, identify other risk factors for hospitalization, and identify risk factors for inconsistent analgesic adherence. Materials and methods Data from a 3-month prospective observational study of patients diagnosed with solid tumors or multiple myeloma, having cancer-related pain, and having at least one prescription of oral ATC analgesics were collected. Adherence data were collected electronically using the medication event-monitoring system. Analyses were conducted using adaptive modeling methods based on heuristic search through alternative models controlled by likelihood cross-validation scores. Results Six adherence types were identified and combined into the risk factor for hospitalization of inconsistent versus consistent adherence over time. Twenty other individually significant risk factors for hospitalization were identified, but inconsistent analgesic adherence was the strongest of these predictors (ie, generating the largest likelihood cross-validation score). These risk factors were adaptively combined into a model for hospitalization based on six pairwise interaction risk factors with exceptional discrimination (ie, area under the receiver-operating-characteristic curve of 0.91). Patients had from zero to five of these risk factors, with an odds ratio of 5.44 (95% confidence interval 3.09–9.58) for hospitalization, with a unit

  2. Treatment non-adherence in teenage and young adult patients with cancer.

    PubMed

    Kondryn, Helena J; Edmondson, Claire L; Hill, Jonathan; Eden, Tim O B

    2011-01-01

    Adhering to treatment can be a significant issue for many patients diagnosed with chronic health conditions and this has been reported to be greater during the adolescent years. However, little is known about treatment adherence in teenage and young adult (TYA) patients with cancer. To increase awareness of the adherence challenges faced by these patients, we have reviewed the published work. The available evidence suggests that a substantial proportion of TYA patients with cancer do have difficulties, with reports that up to 63% of patients do not adhere to their treatment regimens. However, with inconsistent findings across studies, the true extent of non-adherence for these young patients is still unclear. Furthermore, it is apparent that there are many components of the cancer treatment regimen that have yet to be assessed in relation to patient adherence. Factors that have been shown to affect treatment adherence in TYA patients include patient emotional functioning (depression and self-esteem), patient health beliefs (perceived illness severity and vulnerability), and family environment (parental support and parent-child concordance). Strategies that foster greater patient adherence are also identified. These strategies are multifactorial, targeting not only the patient, but the health professional, family, and treatment regimen. This review highlights the lack of interventional studies addressing treatment adherence in TYA patients with cancer, with only one such intervention being identified: a video game intervention focusing on behavioural issues related to cancer treatment and care. Methodological issues in measuring adherence are addressed and suggestions for improving the design of future adherence studies highlighted, of which there is a great need.

  3. Adherence to WCRF/AICR cancer prevention recommendations and metabolic syndrome in breast cancer patients.

    PubMed

    Bruno, Eleonora; Gargano, Giuliana; Villarini, Anna; Traina, Adele; Johansson, Harriet; Mano, Maria Piera; Santucci De Magistris, Maria; Simeoni, Milena; Consolaro, Elena; Mercandino, Angelica; Barbero, Maggiorino; Galasso, Rocco; Bassi, Maria Chiara; Zarcone, Maurizio; Zagallo, Emanuela; Venturelli, Elisabetta; Bellegotti, Manuela; Berrino, Franco; Pasanisi, Patrizia

    2016-01-01

    Metabolic syndrome (MetS), conventionally defined by the presence of at least three out of five dismetabolic traits (abdominal obesity, hypertension, low plasma HDL-cholesterol and high plasma glucose and triglycerides), has been associated with both breast cancer (BC) incidence and prognosis. We investigated the association between the prevalence of MetS and a score of adherence to the World Cancer Research Fund (WCRF) and American Institute for Cancer Research (AICR) recommendations for the prevention of cancer in a cross-sectional study of BC patients. The DIet and ANdrogen-5 study (DIANA-5) for the prevention of BC recurrences recruited 2092 early stage BC survivors aged 35-70. At recruitment, all women completed a 24-hour food frequency and physical activity diary on their consumption and activity of the previous day. Using these diaries we created a score of adherence to five relevant WCRF/AICR recommendations. The prevalence ratios (PRs) and 95% confidence intervals (CIs) of MetS associated with the number of recommendations met were estimated using a binomial regression model. The adjusted PRs of MetS decreased with increasing number of recommendations met (p < 0.001). Meeting all the five recommendations versus meeting none or only one was significantly associated with a 57% lower MetS prevalence (95% CI 0.35-0.73). Our results suggest that adherence to WCRF/AICR recommendations is a major determinant of MetS and may have a clinical impact.

  4. ENHANCE—(Electronic Hydroxyurea Adherence): A Protocol to Increase Hydroxyurea Adherence in Patients with Sickle Cell Disease

    PubMed Central

    Chisolm, Deena J; O’Brien, Sarah H

    2016-01-01

    Background Hydroxyurea (HU) is the only disease-modifying medication for patients with sickle cell disease (SCD). HU can reduce SCD-related complications but only 35% to 50% of pediatric patients adhere to HU at the rates achieved in clinical trials and this limits its clinical effectiveness. Mobile Directly Observed Therapy (Mobile DOT) is a pilot-tested, electronic, multidimensional, HU adherence intervention that targets many components of the Health Behavior Model. Objective The aim of this study is to evaluate the impact of Mobile DOT on HU adherence in children with SCD. The objective of our study is to inform the development of future adherence interventions and pediatric SCD protocols. Methods This is a single-arm crossover study of pediatric patients with SCD. Participants self-record videos of their daily HU administrations and receive text message alerts to take HU, feedback on their HU adherence, and incentives when they achieve adherence goals during the 6-month Mobile DOT phase. Participants’ HU adherence during the Mobile DOT phase is compared with their baseline HU adherence (6 months prior to study entry) and to their HU adherence 6 months after completing the Mobile DOT phase. The primary outcome of this study is HU adherence measured by medication possession ratio. Results The trial is ongoing. Preliminary review of participant satisfaction results suggest that most participants can complete Mobile DOT in less than 5 minutes per day and are satisfied with the intervention. Conclusions If effective, the Mobile DOT strategy will increase HU adherence and this could improve patients’ clinical outcomes and reduce costs of care. PMID:27697749

  5. The functions of the variable lipoprotein family of Mycoplasma hyorhinis in adherence to host cells.

    PubMed

    Xiong, Qiyan; Wang, Jia; Ji, Yan; Ni, Bo; Zhang, Bixiong; Ma, Qinghong; Wei, Yanna; Xiao, Shaobo; Feng, Zhixin; Liu, Maojun; Shao, Guoqing

    2016-04-15

    Mycoplasma hyorhinis (M. hyorhinis) is a swine pathogen that is associated with various human cancers and contamination in cell cultures. However, no studies on the adhesion molecules of this pathogen have yet been reported. The variable lipoprotein (Vlp) family is an important surface component of M. hyorhinis. Herein, we performed several experiments to identify the function of the Vlp family in adherence to host cells. Seven recombinant Vlp (rVlp) proteins were expressed in Escherichia coli and purified by affinity chromatography. The potential role of rVlp adherence to pig kidney (PK-15) and swine tracheal epithelial (STEC) cells was then studied by indirect immunofluorescence assay and microtiter plate adherence assay. Adhesion of M. hyorhinis to PK-15 and STEC cells was specifically inhibited by the addition of a cocktail of rVlp proteins. The rVlp protein mixture was shown to bind to both PK-15 and STEC cells. The binding increased in a dose-dependent manner and could be blocked by antisera against the rVlp proteins. Most of the rVlp proteins could bind individually to both PK-15 and STEC cells except for rVlpD and rVlpF, which bound only to STEC cells. Because Vlp members vary in size among different strains and generations, they may vary in their cytoadhesion capabilities in various strains. In summary, the present results indicate that the Vlp family functions as adhesins of M. hyorhinis. PMID:27016761

  6. Electroporation chip for adherent cells on photochemically modified polymer surfaces

    NASA Astrophysics Data System (ADS)

    Olbrich, Michael; Rebollar, Esther; Heitz, Johannes; Frischauf, Irene; Romanin, Christoph

    2008-01-01

    We present a polytetrafluoroethylene electroporation microchip with integrated electrodes for transfection of adherent biological cells. For fabrication, UV-surface modification was employed in combination with metal deposition. UV irradiation in reactive atmosphere resulted in introduction of polar chemical groups into the polytetrafluoroethylene surface for significant adhesion enhancement of both biological cells as well as metal electrodes thereon. Electroporation was demonstrated by transfection of human embryonic kidney cells with the enhanced green fluorescent protein. Transparent, working at low voltages, and easy to handle, this chip yields the potential to reduce the amount of sequential working steps necessary for transfection.

  7. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  8. Adherence to Guidelines for Cancer Survivors and Health-Related Quality of Life among Korean Breast Cancer Survivors.

    PubMed

    Song, Sihan; Hwang, Eunkyung; Moon, Hyeong-Gon; Noh, Dong-Young; Lee, Jung Eun

    2015-12-01

    There is limited evidence on the association between adherence to guidelines for cancer survivors and health-related quality of life (HRQoL). In a cross-sectional study of Korean breast cancer survivors, we examined whether adherence to the guidelines of the American Cancer Society (ACS) and World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) for cancer survivors was related to levels of HRQoL, assessed by the Korean version of Core 30 (C30) and Breast cancer module 23 (BR23) of the European Organization for Research and Treatment of Cancer-Quality of Life Questionnaire (EORTC-QLQ). We included a total of 160 women aged 21 to 79 years who had been diagnosed with breast cancer according to American Joint Committee on Cancer (AJCC) stages I to III and had breast cancer surgery at least six months before the interview. Increasing adherence to ACS guidelines was associated with higher scores of social functioning (p for trend = 0.05), whereas increasing adherence to WCRF/AICR recommendations was associated with higher scores of arm symptoms (p for trend = 0.01). These associations were limited to those with stage II or III cancer. Diet may be an important factor in relation to quality of life among Korean breast cancer survivors, however our findings warrant further prospective studies to evaluate whether healthy diet improves survivors' quality of life.

  9. Adherence to Vaginal Dilation Following High Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Friedman, Lois C.; Abdallah, Rita; Schluchter, Mark; Panneerselvam, Ashok; Kunos, Charles A.

    2011-07-01

    Purpose: We report demographic, clinical, and psychosocial factors associated with adherence to vaginal dilation and describe the sexual and marital or nonmarital dyadic functioning of women following high dose rate (HDR) brachytherapy for endometrial cancer. Methods and Materials: We retrospectively evaluated women aged 18 years or older in whom early-stage endometrial (IAgr3-IIB) cancers were treated by HDR intravaginal brachytherapy within the past 3.5 years. Women with or without a sexual partner were eligible. Patients completed questionnaires by mail or by telephone assessing demographic and clinical variables, adherence to vaginal dilation, dyadic satisfaction, sexual functioning, and health beliefs. Results: Seventy-eight of 89 (88%) eligible women with early-stage endometrial cancer treated with HDR brachytherapy completed questionnaires. Only 33% of patients were adherers, based on reporting having used a dilator more than two times per week in the first month following radiation. Nonadherers who reported a perceived change in vaginal dimension following radiation reported that their vaginas were subjectively smaller after brachytherapy (p = 0.013). Adherers reported more worry about their sex lives or lack thereof than nonadherers (p = 0.047). Patients reported considerable sexual dysfunction following completion of HDR brachytherapy. Conclusions: Adherence to recommendations for vaginal dilator use following HDR brachytherapy for endometrial cancer is poor. Interventions designed to educate women about dilator use benefit may increase adherence. Although sexual functioning was compromised, it is likely that this existed before having cancer for many women in our study.

  10. pH changes during in vitro adherence of Escherichia coli to HeLa cells.

    PubMed Central

    McCabe, K; Mann, M D; Bowie, M D

    1994-01-01

    Escherichia coli-induced acidic pH conditions were observed during the in vitro adherence of E. coli to HeLa cells. No pH changes occurred in the absence of adherence. This suggests that adherence affects the function or interaction of HeLa cells and E. coli. PMID:7927801

  11. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer risk.

    PubMed

    Harris, Holly R; Bergkvist, Leif; Wolk, Alicja

    2016-06-01

    The World Cancer Research Fund/American Association for Cancer Research (WCRF/AICR) has published eight nutrition-related recommendations for the prevention of cancer. However, few prospective studies have examined these recommendations by breast cancer hormone receptor subtype and only one case-control study has included the dietary supplements recommendation in their evaluation. We investigated whether adherence to the WCRF/AICR cancer prevention recommendations was associated with breast cancer incidence, overall and by hormone receptor subtype, in the Swedish Mammography Cohort. Among 31,514 primarily postmenopausal women diet and lifestyle factors were assessed with a self-administered food frequency questionnaire. A score was constructed based on adherence to the recommendations for body fatness, physical activity, energy density, plant foods, animal foods, alcoholic drinks and dietary supplements (score range 0-7). Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs). During 15 years of follow-up 1,388 cases of breast cancer were identified. Women who met six to seven recommendations had a 51% decreased risk of breast cancer compared to women meeting only zero to two recommendations (95% CI = 0.35-0.70). The association between each additional recommendation met and breast cancer risk was strongest for the ER-positive/PR-positive subtype (HR = 0.86; 95% CI = 0.79-0.94), while for the ER-negative/PR-negative subtype the individual recommendations regarding plant and animal foods were most strongly associated with reduced risk. Our findings support that adherence to the WCRF/AICR recommendations reduces breast cancer risk in a population of primarily postmenopausal women. Promoting these recommendations to the public could help reduce breast cancer incidence.

  12. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer risk.

    PubMed

    Harris, Holly R; Bergkvist, Leif; Wolk, Alicja

    2016-06-01

    The World Cancer Research Fund/American Association for Cancer Research (WCRF/AICR) has published eight nutrition-related recommendations for the prevention of cancer. However, few prospective studies have examined these recommendations by breast cancer hormone receptor subtype and only one case-control study has included the dietary supplements recommendation in their evaluation. We investigated whether adherence to the WCRF/AICR cancer prevention recommendations was associated with breast cancer incidence, overall and by hormone receptor subtype, in the Swedish Mammography Cohort. Among 31,514 primarily postmenopausal women diet and lifestyle factors were assessed with a self-administered food frequency questionnaire. A score was constructed based on adherence to the recommendations for body fatness, physical activity, energy density, plant foods, animal foods, alcoholic drinks and dietary supplements (score range 0-7). Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs). During 15 years of follow-up 1,388 cases of breast cancer were identified. Women who met six to seven recommendations had a 51% decreased risk of breast cancer compared to women meeting only zero to two recommendations (95% CI = 0.35-0.70). The association between each additional recommendation met and breast cancer risk was strongest for the ER-positive/PR-positive subtype (HR = 0.86; 95% CI = 0.79-0.94), while for the ER-negative/PR-negative subtype the individual recommendations regarding plant and animal foods were most strongly associated with reduced risk. Our findings support that adherence to the WCRF/AICR recommendations reduces breast cancer risk in a population of primarily postmenopausal women. Promoting these recommendations to the public could help reduce breast cancer incidence. PMID:26804371

  13. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    PubMed

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death.

  14. Contractile Film Model for Polymorphism in Adherent Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Giomi, Luca

    2013-03-01

    The optimal shapes attained by contractile cells on elastic substrates are determined by the crosstalk between intracellular forces and extracellular forces of adhesion. We model an adherent stationary cell as a contractile film bounded by an elastic cortex and connected to the substrate via elastic links. When the adhesion sites are continuously distributed, optimal cell shape is constrained by the adhesion geometry, with a spread area sensitively dependent on the substrate stiffness and contractile tension. For discrete adhesion sites, equilibrium cell shape is convex at weak contractility, while developing local concavities at intermediate values of contractility. Increasing contractility beyond a critical value, controlled by substrate stiffness, cell contour undergoes a discontinuous transition to a star-shaped configuration with cusps and protrusions, accompanied by a region of bistability and hysteresis.

  15. Predictors of adherence to an Iyengar yoga program in breast cancer survivors

    PubMed Central

    Speed-Andrews, Amy E; Stevinson, Clare; Belanger, Lisa J; Mirus, Judith J; Courneya, Kerry S

    2012-01-01

    Context: Despite the known health benefits of physical activity, participation rates in cancer survivor groups remain low. Researchers have attempted to identify alternative modes of nontraditional physical activities that may increase participation and adherence rates. This study investigated the determinants of yoga in breast cancer survivors. Aim: To examine predictors of Iyengar yoga adherence in breast cancer survivors using the theory of planned behaviour. Settings and Design: Classes were held either in Campus Recreation facilities or at the Behavioral Medicine Fitness Center at the University of Alberta in Edmonton, Canada. The study was an evaluation of an existing yoga program. Materials and Methods: Twenty-three post adjuvant therapy breast cancer survivors participating in a community-based, twice weekly, 12 week Iyengar yoga program were asked to complete baseline measures of the theory of planned behavior, demographic, medical, health/fitness, and psychosocial variables. Adherence was measured by objective attendance to the classes. Statistical Analysis: We analyzed univariate associations between predictors and yoga adherence with independent t-tests. Results: Adherence to the Iyengar yoga program was 63.9% and was predicted by stronger intention (P<0.001), greater self-efficacy (P=0.003), more positive instrumental attitude (Ps=0.025), higher disease stage (P=0.018), yoga experience in the past year, (P=0.044), diagnosis of a second cancer (P=0.008), lower fatigue (P=0.037), and greater happiness (P=0.023). Conclusions: Adherence to Iyengar yoga in breast cancer survivors was strongly related to motivational variables from the theory of planned behaviour. Researchers attempting to improve yoga adherence in breast cancer survivors may benefit from targeting the key constructs in the theory of planned behaviour. PMID:22346059

  16. Better exercise adherence after treatment for cancer (BEAT Cancer) study: Rationale, design, and methods

    PubMed Central

    Rogers, Laura Q.; McAuley, Edward; Anton, Philip M.; Courneya, Kerry S.; Vicari, Sandra; Hopkins-Price, Patricia; Verhulst, Steven; Mocharnuk, Robert; Hoelzer, Karen

    2011-01-01

    Most breast cancer survivors do not engage in regular physical activity. Our physical activity behavior change intervention for breast cancer survivors significantly improved physical activity and health outcomes post-intervention during a pilot, feasibility study. Testing in additional sites with a larger sample and longer follow-up is warranted to confirm program effectiveness short and longer term. Importantly, the pilot intervention resulted in changes in physical activity and social cognitive theory constructs, enhancing our potential for testing mechanisms mediating physical activity behavior change. Here, we report the rationale, design, and methods for a two-site, randomized controlled trial comparing the effects of the BEAT Cancer physical activity behavior change intervention to usual care on short and longer term physical activity adherence among breast cancer survivors. Secondary aims include examining social cognitive theory mechanisms of physical activity behavior change and health benefits of the intervention. Study recruitment goal is 256 breast cancer survivors with a history of ductal carcinoma in situ or Stage I, II, or IIIA disease who have completed primary cancer treatment. Outcome measures are obtained at baseline, 3 months (i.e., immediately post-intervention), 6 months, and 12 months and include physical activity, psychosocial factors, fatigue, sleep quality, lower extremity joint dysfunction, cardiorespiratory fitness, muscle strength, and waist-to-hip ratio. Confirming behavior change effectiveness, health effects, and underlying mechanisms of physical activity behavior change interventions will facilitate translation to community settings for improving the health and well-being of breast cancer survivors. PMID:21983625

  17. A fully automated system for adherent cells microinjection.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application. PMID:24403406

  18. A fully automated system for adherent cells microinjection.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

  19. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections.

    PubMed

    Peter, Beatrix; Nador, Judit; Juhasz, Krisztina; Dobos, Agnes; Körösi, Laszlo; Székács, Inna; Patko, Daniel; Horvath, Robert

    2015-06-01

    The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.

  20. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections.

    PubMed

    Peter, Beatrix; Nador, Judit; Juhasz, Krisztina; Dobos, Agnes; Körösi, Laszlo; Székács, Inna; Patko, Daniel; Horvath, Robert

    2015-06-01

    The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy. PMID:26057033

  1. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections

    NASA Astrophysics Data System (ADS)

    Peter, Beatrix; Nador, Judit; Juhasz, Krisztina; Dobos, Agnes; Körösi, Laszlo; Székács, Inna; Patko, Daniel; Horvath, Robert

    2015-06-01

    The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.

  2. Adherence and Persistence With Oral Adjuvant Chemotherapy in Older Women With Early-Stage Breast Cancer in CALGB 49907: Adherence Companion Study 60104

    PubMed Central

    Partridge, Ann H.; Archer, Laura; Kornblith, Alice B.; Gralow, Julie; Grenier, Debjani; Perez, Edith; Wolff, Antonio C.; Wang, Xiaofei; Kastrissios, Helen; Berry, Donald; Hudis, Clifford; Winer, Eric; Muss, Hyman

    2010-01-01

    Purpose Patient adherence is critical in evaluating the effectiveness of an oral therapy. We sought to measure adherence among women randomly assigned to capecitabine in a preplanned substudy of a multicenter clinical trial. Patients and Methods Cancer and Leukemia Group B study CALGB 49907 was a randomly assigned trial comparing standard chemotherapy versus oral chemotherapy with capecitabine in patients age 65 years or older with early-stage breast cancer. We used microelectronic monitoring system (MEMS) caps on participants' capecitabine bottles to record pill bottle openings. Capecitabine was given in two divided daily doses for 14 consecutive days of a 21-day cycle for six cycles. Adherence was calculated as the number of doses taken divided by doses expected, taking into account toxicity-related dosing changes. A participant was defined as adherent if 80% or more of expected doses were recorded by MEMS. Results Overall, 161 patients were enrolled. Median age was 71 years (range, 65 to 89 years); 124 patients (83%) persisted with capecitabine to completion of planned protocol therapy. Adherence was 78% across all cycles, and adherence did not vary by cycle (P = .32). Twenty-five percent of participants took fewer than 80% of expected doses and were nonadherent. In a logistic regression model, participants with node-negative disease (P = .01) and mastectomy (P = .01) were more likely to be nonadherent. Adherence was not related to age, tumor stage, or hormone receptor status. Adherence was not significantly associated with relapse-free survival or grade 3 or 4 toxicity. Conclusion Most older women with early-stage breast cancer were adherent to short-term oral chemotherapy in a randomized clinical trial. Age was not associated with adherence. PMID:20368559

  3. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  4. Adherence to Competing Strategies for Colorectal Cancer Screening Over 3 Years

    PubMed Central

    Liang, Peter S.; Wheat, Chelle L.; Abhat, Anshu; Brenner, Alison T.; Fagerlin, Angela; Hayward, Rodney A.; Thomas, Jennifer P.; Vijan, Sandeep; Inadomi, John M.

    2016-01-01

    Objectives We have shown that, in a randomized trial comparing adherence to different colorectal cancer (CRC) screening strategies, participants assigned to either fecal occult blood testing (FOBT) or given a choice between FOBT and colonoscopy had significantly higher adherence than those assigned to colonoscopy during the first year. However, how adherence to screening changes over time is unknown. Methods In this trial, 997 participants were cluster randomized to one of the three screening strategies: (i) FOBT, (ii) colonoscopy, or (iii) a choice between FOBT and colonoscopy. Research assistants helped participants to complete testing only in the first year. Adherence to screening was defined as completion of three FOBT cards in each of 3 years after enrollment or completion of colonoscopy within the first year of enrollment. The primary outcome was adherence to assigned strategy over 3 years. Additional outcomes included identification of sociodemographic factors associated with adherence. Results Participants assigned to annual FOBT completed screening at a significantly lower rate over 3 years (14%) than those assigned to colonoscopy (38%, P<0.001) or choice (42%, P<0.001); however, completion of any screening test fell precipitously, indicating the strong effect of patient navigation. In multivariable logistic regression analysis, being randomized to the choice or colonoscopy group, Chinese language, homosexuality, being married/partnered, and having a non-nurse practitioner primary care provider were independently associated with greater adherence to screening (P<0.01). Conclusions In a 3-year follow-up of a randomized trial comparing competing CRC screening strategies, participants offered a choice between FOBT and colonoscopy continued to have relatively high adherence, whereas adherence in the FOBT group fell significantly below that of the choice and colonoscopy groups. Patient navigation is crucial to achieving adherence to CRC screening, and FOBT is

  5. Characteristics and response of mouse bone marrow derived novel low adherent mesenchymal stem cells acquired by quantification of extracellular matrix

    PubMed Central

    Zheng, Ri-Cheng; Heo, Seong-Joo; Koak, Jai-Young; Lee, Joo-Hee; Park, Ji-Man

    2014-01-01

    PURPOSE The aim of present study was to identify characteristic and response of mouse bone marrow (BM) derived low-adherent bone marrow mesenchymal stem cells (BMMSCs) obtained by quantification of extracellular matrix (ECM). MATERIALS AND METHODS Non-adherent cells acquired by ECM coated dishes were termed low-adherent BMMSCs and these cells were analyzed by in vitro and in vivo methods, including colony forming unit fibroblast (CFU-f), bromodeoxyuridine (BrdU), multi-potential differentiation, flow cytometry and transplantation into nude mouse to measure the bone formation ability of these low-adherent BMMSCs. Titanium (Ti) discs with machined and anodized surfaces were prepared. Adherent and low-adherent BMMSCs were cultured on the Ti discs for testing their proliferation. RESULTS The amount of CFU-f cells was significantly higher when non-adherent cells were cultured on ECM coated dishes, which was made by 7 days culturing of adherent BMMSCs. Low-adherent BMMSCs had proliferation and differentiation potential as adherent BMMSCs in vitro. The mean amount bone formation of adherent and low-adherent BMMSCs was also investigated in vivo. There was higher cell proliferation appearance in adherent and low-adherent BMMSCs seeded on anodized Ti discs than machined Ti discs by time. CONCLUSION Low-adherent BMMSCs acquired by ECM from non-adherent cell populations maintained potential characteristic similar to those of the adherent BMMSCs and therefore could be used effectively as adherent BMMSCs in clinic. PMID:25352957

  6. Role of sulfated glycans in adherence of the microsporidian Encephalitozoon intestinalis to host cells in vitro.

    PubMed

    Hayman, J Russell; Southern, Timothy R; Nash, Theodore E

    2005-02-01

    Microsporidia are obligate intracellular opportunistic protists that infect a wide variety of animals, including humans, via environmentally resistant spores. Infection requires that spores be in close proximity to host cells so that the hollow polar tube can pierce the cell membrane and inject the spore contents into the cell cytoplasm. Like other eukaryotic microbes, microsporidia may use specific mechanisms for adherence in order to achieve target cell proximity and increase the likelihood of successful infection. Our data show that Encephalitozoon intestinalis exploits sulfated glycans such as the cell surface glycosaminoglycans (GAGs) in selection of and attachment to host cells. When exogenous sulfated glycans are used as inhibitors in spore adherence assays, E. intestinalis spore adherence is reduced by as much as 88%. However, there is no inhibition when nonsulfated glycans are used, suggesting that E. intestinalis spores utilize sulfated host cell glycans in adherence. These studies were confirmed by exposure of host cells to xylopyranoside, which limits host cell surface GAGs, and sodium chlorate, which decreases surface sulfation. Spore adherence studies with CHO mutant cell lines that are deficient in either surface GAGs or surface heparan sulfate also confirmed the necessity of sulfated glycans. Furthermore, when spore adherence is inhibited, host cell infection is reduced, indicating a direct association between spore adherence and infectivity. These data show that E. intestinalis specifically adheres to target cells by way of sulfated host cell surface GAGs and that this mechanism serves to enhance infectivity.

  7. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (Keystone Sym)

    EPA Science Inventory

    Our goal is to establish an in vitro model system to evaluate chemical effects using a single stem cell culture technique that would improve throughput and provide quantitative markers of differentiation and cell number. To this end, we have used an adherent cell differentiation ...

  8. Predictors of Cervical Cancer Screening Adherence in the United States: A Systematic Review

    PubMed Central

    Limmer, Karen; LoBiondo-Wood, Geri; Dains, Joyce

    2014-01-01

    Cervical cancer incidence rates have decreased dramatically since the implementation of the Papanicolaou (Pap) smear. Nevertheless, the American Cancer Society (ACS) estimates for 2013 predicted more than 12,000 new cases of cervical cancer in the United States. Given that some subpopulations in the United States are at a higher risk for cervical cancer than others, efforts to increase screening adherence are warranted. Many studies have explored the demographics of underscreened women, but no systematic reviews of screening demographics in adult US women were identified in the past 10 years, after release of the 2002 ACS cervical cancer screening guidelines. Knowledge of adherence to these guidelines becomes important as new guidelines were developed and released in 2012. The purpose of this systematic review of relevant studies was to identify factors that predict the use of cervical cancer screening in US women. Variables found to be significantly associated with adherence to screening included education, financial status, acculturation, psychosocial issues, and marital status. Using this information, nurse practitioners and other providers can target specific at-risk populations to increase screening by educating women about the need for cervical cancer screening and ensuring access to methods for prevention and early detection of the disease. PMID:25032031

  9. [Observation on the biological behavior of human umbilical cord blood adherent cells].

    PubMed

    Zhang, Xi; Wang, Pin; Chen, Xing-Hua; Liu, Lin; Peng, Xian-Gui; Kong, Pei-Yan; Liu, Hong; Zhang, Yi; Wang, Qing-Yu

    2005-02-01

    To study the possibility of separation and culture of human umbilical cord blood adherent cell (HUCBAC), the umbilical cord blood CD34(+) cells were cultured in Dexter system in order to evaluate and observe the biological behavior of adherent cells in vitro. The results showed that all cells were cultured with Dexter system. By day 9-14 (at a median of 11.2 days), adherent cell colonies formed and reached their maximum at 15-22 days (mean 19.6 days), by day 28, all adherent cells spread over the bottom of Petri dish. By means of light microscopy, these cells were found to differentiate into three kinds of cells in culture of 28 days: fibroblast-liked cell, macrophage liked cell and small-round cells. The ratio of these three kinds of cells was 56.8%, 38%, 5.5% respectively. Cytochemistry assay revealed that the positive rate reached 100% in NSE stain and PAS stain; the adherent cell by ALP stain were shown 35% positive, but in POX stain the result was negative. Immunohistochemistry stain revealed that the positive rate of cord adherent cells for CD106, CD29, CD44, CD45, CD50, Fn, Ln, collagen IV etc reached 96%, 93%, 98%, 68%, 72%, 92%, 74%, 83% respectively. It is concluded there are hematopoietic adherent precursors in cord blood CD34(+) cells and the HUCBAC shows some biological behavior of hematopoietic stromal cells.

  10. Heparin-mediated inhibition of Chlamydia psittaci adherence to HeLa cells.

    PubMed

    Gutiérrez-Martín, C B; Ojcius, D M; Hsia, R; Hellio, R; Bavoil, P M; Dautry-Varsat, A

    1997-01-01

    The adherence of human strains of Chlamydia trachomatis has been recently shown to be inhibitable by heparin and heparitinase, leading to the proposal that Chlamydia binding to host cells may be mediated by a glycosaminoglycan (GAG)-dependent mechanism. We here describe the adherence of the guinea-pig pathogen, Chlamydia psittaci GPIC, to HeLa cells, which was measured by cytofluorometry with chlamydiae whose DNA was fluorescently labelled. Adherence could be inhibited by heat or trypsin pretreatment of the bacteria, and binding was much faster at 37 degrees C (reaching a plateau within 1 h) than 4 degrees C. Little binding remained when host cells were pre-fixed with paraformaldehyde, suggesting that host cell receptor mobility may be required for effective adherence. Visualization by confocal microscopy confirmed that the bacteria were at or near the host cell surface during the entire time-course of these experiments. Adherence increased as a function of pH between pH 6 and pH 8.0-8.5. Both adherence and infection of HeLa cells could be inhibited with heparin when the adherence step was performed at 4 degrees C, but only infection was inhibited when the adherence step was performed at 37 degrees C, even though heparitinase could block adherence at either 4 degrees C or 37 degrees C. Even at 4 degrees C, heparin-mediated inhibition was significantly lower at pH 8 than pH 7.4, suggesting that GAG-independent mechanisms may play a role in the higher adherence observed at basic pH. These results therefore demonstrate that a GAG-dependent adherence step may be operative in C. psittaci, and raise the possibility that other adherence mechanisms may also contribute to binding by this chlamydial strain. Furthermore, they suggest that there may not be a strict correlation between C. psittaci adherence and the ability to cause productive infections.

  11. Validation of the Adherence Determinants Questionnaire scale among women with breast and cervical cancer1

    PubMed Central

    Lessa, Paula Renata Amorim; Ribeiro, Samila Gomes; Aquino, Priscila de Souza; de Almeida, Paulo Cesar; Pinheiro, Ana Karina Bezerra

    2015-01-01

    Objectives: the aim was to translate and culturally adapt the Adherence Determinants Questionnaire scale for the Portuguese language in the Brazilian context, and to check its reliability and validity to analyze the elements of the adherence of patients to the clinical treatment for breast and cervical cancer. Method: this was a methodological study, carried out in two oncology reference centers. The sample consisted of 198 participants, with 152 being treated for breast cancer and 46 being treated for cervical cancer. The content validation was performed by a committee of experts. The construct validation was demonstrated through factor analysis and the reliability was analyzed using Cronbach's alpha. Results: the committee of experts made the necessary adjustments so that the scale was adapted to the Brazilian context. The factor analysis suggested a reduction from seven to five factors and the maintenance of 38 items similar to those of the original scale. The reliability, investigated through Cronbach's alpha, was .829, showing high internal consistency. Conclusion: it was concluded that the Brazilian version of the Adherence Determinants Questionnaire scale is a valid and reliable instrument that is able to measure the elements of adherence to the treatment for breast and cervical cancer. PMID:26487149

  12. Determinants of cervical cancer screening adherence in urban areas of Nakhon Ratchasima Province, Thailand.

    PubMed

    Visanuyothin, Sawitree; Chompikul, Jiraporn; Mongkolchati, Aroonsri

    2015-01-01

    Cervical cancer is the most common disease among Thai women. The cervical cancer mortality rate has increased in the previous decade. Therefore, this cross-sectional study was conducted to examine the factors associated with cervical cancer screening adherence. Stratified sampling with the proportional to size method was used to select registered women aged 30-60 years. Of the 700 self-administered questionnaires distributed during July and September of 2012, 675 were returned, resulting in a response rate of 96.2%. Approximately 65.4% of the women were considered to be adherent to cervical cancer screening (i.e., maintainers) as defined by at least one screening within the recommended 5-year screening interval and the expectation of attending a screening in the future. Chi-square tests revealed that occupation, marital status, number of children, sexual activity, health insurance scheme, history of oral contraceptive pill use, perceived barriers, perceived benefits, and knowledge about cervical cancer prevention were significantly associated with cervical cancer screening adherence. After adjusting for occupation, marital status, number of children, and health insurance in the model, perceived barriers (Adj OR=1.97, 95% CI=1.24-3.10) and knowledge (Adj OR=1.65, 95% CI=1.13-2.41) remained significant predictors of cervical cancer screening adherence. These findings suggest that the non-housewives, women of single/separated/divorced/widowed status, and women with no children should be the first priorities for getting Pap tests. Strategies for overcoming the barriers of these women, such as using mobile units for cervical cancer screening, should be promoted. Education programs should be strengthened and promoted to overcome negative perceptions and knowledge deficiencies.

  13. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis.

    PubMed

    Biggerstaff, J P; Seth, N; Amirkhosravi, A; Amaya, M; Fogarty, S; Meyer, T V; Siddiqui, F; Francis, J L

    1999-01-01

    There is considerable evidence for a relationship between hemostasis and malignancy. Since platelet adhesion to tumor cells has been implicated in the metastatic process and plasma levels of fibrinogen (Fg) and soluble fibrin (sFn) monomer are increased in cancer, we hypothesized that these molecules might enhance tumor-platelet interaction. We therefore studied binding of sFn monomer to tumor cells in a static microplate adhesion assay and determined the effect of pre-treating tumor cells with sFn on tumor cell-induced thrombocytopenia and experimental metastasis. Soluble fibrin (produced by adding thrombin to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro-amide (GPRP-NH2) significantly increased platelet adherence to tumor cells. This effect was primarily mediated by the integrins alphaIIb beta3 on the platelet and CD 54 (ICAM-1) on the tumor cells. Platelets adhered to untreated A375 cells (28 +/- 8 platelets/tumor cell) and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or GPRP-NH2. Although thrombin treatment increased adherence, pre-incubation of the tumor cells with sFn resulted in a further increase in platelet binding to tumor cells. In contrast to untreated tumor cells, intravenous injection of sFn-treated A 375 cells reduced the platelet count in anticoagulated mice, supporting the in vitro finding that sFn enhanced tumor cell-platelet adherence. In a more aggressive model of experimental metastasis, treating tumor cells with sFn enhanced lung seeding by 65% compared to untreated cells. Extrapolation of our data to the clinical situation suggests that coagulation activation, and subsequent increase in circulating Fn monomer, may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  14. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis.

    PubMed

    Biggerstaff, J P; Seth, N; Amirkhosravi, A; Amaya, M; Fogarty, S; Meyer, T V; Siddiqui, F; Francis, J L

    1999-01-01

    There is considerable evidence for a relationship between hemostasis and malignancy. Since platelet adhesion to tumor cells has been implicated in the metastatic process and plasma levels of fibrinogen (Fg) and soluble fibrin (sFn) monomer are increased in cancer, we hypothesized that these molecules might enhance tumor-platelet interaction. We therefore studied binding of sFn monomer to tumor cells in a static microplate adhesion assay and determined the effect of pre-treating tumor cells with sFn on tumor cell-induced thrombocytopenia and experimental metastasis. Soluble fibrin (produced by adding thrombin to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro-amide (GPRP-NH2) significantly increased platelet adherence to tumor cells. This effect was primarily mediated by the integrins alphaIIb beta3 on the platelet and CD 54 (ICAM-1) on the tumor cells. Platelets adhered to untreated A375 cells (28 +/- 8 platelets/tumor cell) and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or GPRP-NH2. Although thrombin treatment increased adherence, pre-incubation of the tumor cells with sFn resulted in a further increase in platelet binding to tumor cells. In contrast to untreated tumor cells, intravenous injection of sFn-treated A 375 cells reduced the platelet count in anticoagulated mice, supporting the in vitro finding that sFn enhanced tumor cell-platelet adherence. In a more aggressive model of experimental metastasis, treating tumor cells with sFn enhanced lung seeding by 65% compared to untreated cells. Extrapolation of our data to the clinical situation suggests that coagulation activation, and subsequent increase in circulating Fn monomer, may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread. PMID:10919717

  15. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  16. Educational opportunities in bladder cancer: increasing cystoscopic adherence and the availability of smoking-cessation programs.

    PubMed

    Kowalkowski, Marc A; Goltz, Heather Honoré; Petersen, Nancy J; Amiel, Gilad E; Lerner, Seth P; Latini, David M

    2014-12-01

    Cancer survivors who continue to smoke following diagnosis are at increased risk for recurrence. Yet, smoking prevalence among survivors is similar to the general population. Adherence to cystoscopic surveillance is an important disease-management strategy for non-muscle-invasive bladder cancer (NMIBC) survivors, but data from Surveillance, Epidemiology, and End Results program (SEER) suggest current adherence levels are insufficient to identify recurrences at critically early stages. This study was conducted to identify actionable targets for educational intervention to increase adherence to cystoscopic monitoring for disease recurrence or progression. NMIBC survivors (n = 109) completed telephone-based surveys. Adherence was determined by measuring time from diagnosis to interview date; cystoscopies received were then compared to American Urological Association (AUA) guidelines. Data were analyzed using non-parametric tests for univariate and logistic regression for multivariable analyses. Participants averaged 65 years (SD = 9.3) and were primarily white (95 %), male (75 %), married (75 %), and non-smokers (84 %). Eighty-three percent reported either Ta- or T1-stage bladder tumors. Forty-five percent met AUA guidelines for adherence. Compared to non-smokers, current smokers reported increased fear of recurrence and psychological distress (p < 0.05). In regression analyses, non-adherence was associated with smoking (OR = 33.91, p < 0.01), providing a behavioral marker to describe a survivor group with unmet needs that may contribute to low cystoscopic adherence. Research assessing survivorship needs and designing and evaluating educational programs for NMIBC survivors should be a high priority. Identifying unmet needs among NMIBC survivors and developing programs to address these needs may increase compliance with cystoscopic monitoring, improve outcomes, and enhance quality of life. PMID:24719024

  17. Predictors of Adherence to a 26-Week Viniyoga Intervention Among Post-Treatment Breast Cancer Survivors

    PubMed Central

    Cadmus-Bertram, Lisa; Ulrich, Cornelia M.; Stovall, Rachael; Ceballos, Rachel M.; McGregor, Bonnie A.; Wang, Ching-Yun; Ramaprasad, Jaya; McTiernan, Anne

    2013-01-01

    Abstract Objectives This study aimed to identify demographic, psychological, health-related, and geographic predictors of adherence to home-based and supervised components of a yoga intervention in breast cancer survivors. Methods Participants were the 32 post-treatment breast cancer survivors who were randomized to the Viniyoga intervention arm of a controlled trial. Participants were asked to practice yoga 5 times per week for 6 months, including at least one weekly facility-based session. Adherence was monitored using sign-in sheets and logs. Height and weight were measured; other potential predictors of adherence were obtained from baseline questionnaires. Results Participants attended 19.6±13.0 yoga classes and performed 55.8±32.8 home-based yoga sessions. Participants adhered to 58% of the overall yoga practice goal (75% of the goal for yoga classes and 54% of the goal for home based-sessions). Higher class attendance and home practice were predicted by greater self-efficacy for yoga (p=0.004 and 0.06, respectively). Additionally, employment outside the home was associated with greater class attendance (p=0.004), while higher waist circumference was marginally associated with lower adherence to home-based yoga (p=0.05). Conclusions High levels of facility- and home-based yoga practice were achieved. Breast cancer survivors who have lower self-efficacy for yoga or who have a higher waist circumference may benefit from additional support or intervention tailoring. Adherence may also be improved by ensuring that class times are convenient to both working and nonworking women. PMID:23663078

  18. Adherence of Candida to cultured vascular endothelial cells: mechanisms of attachment and endothelial cell penetration.

    PubMed

    Rotrosen, D; Edwards, J E; Gibson, T R; Moore, J C; Cohen, A H; Green, I

    1985-12-01

    To elucidate the pathogenesis of hematogenous Candida infections, we developed an in vitro model of Candida adherence to and penetration of human endothelial cells. We enhanced or inhibited adherence in order to probe mechanisms of attachment. Adherence of Candida albicans showed a linear relation to Candida inoculum (range, 10(2)-10(5) cfu, r = .99, P less than .01) and exceeded that of less virulent Candida species and that of Saccharomyces cerevisiae (P less than .01). Candida immune serum blocked attachment (greater than 95% inhibition; P less than .001), however, this activity was abolished by immunoprecipitation of immune serum with C. albicans mannan (P less than .001) and was unaffected by immunoprecipitation with S. cerevisiae mannan or by adsorption with particulate chitin. Adherence was diminished by exposing C. albicans to heat (greater than 99% inhibition; P less than .01), UV light (98% inhibition; P less than .01), or sodium periodate (greater than 72% inhibition; P less than .01). An extract from heat-exposed C. albicans blocked adherence (greater than 51% inhibition; P less than .001). Transmission electron microscopy demonstrated that viable or killed Candida organisms were attached to endothelial cells, were enveloped by membrane processes from the endothelial cell surface, and were incorporated into the endothelial cells within phagosomes. Cytochalasin B blocked incorporation without blocking surface attachment. PMID:3905987

  19. Depression and medication adherence among breast cancer survivors: bridging the gap with the theory of planned behaviour.

    PubMed

    Manning, Mark; Bettencourt, B Ann

    2011-09-01

    Evidence suggests that more depressed breast cancer patients will less likely adhere to treatment plans. This study presents evidence that the theory of planned behaviour mediates the relation between depression and intentions to adhere to treatment plans and between depression and lack of adherence to medication regime. Two hundred and thirteen women undergoing breast cancer treatment participated in this study. Measures of depressive symptoms and planned behaviour variables were collected at the first time point; measures of medication adherence were collected at the second time point. Structural equation models were utilised to fit the data to the proposed models. Depressive symptoms were significantly correlated to both intentions and medication adherence. In support of hypotheses, the relation between depressive symptoms and treatment intention was mediated by attitudes towards health maintenance plans. The relation between depressive symptoms and medication adherence was fully mediated by the planned behaviour process. Conditions under which treatment intentions and perceptions of control in adhering to treatment were most related to medication adherence were elucidated. The results point to avenues for interventions to increase medication adherence among breast cancer patients. Manipulating attitudes and perceptions of control towards treatment plans will potentially serve to increase medication adherence. PMID:21929477

  20. A validated measure of adherence to antibiotic prophylaxis in children with sickle cell disease

    PubMed Central

    Duncan, Natalie A; Kronenberger, William G; Hampton, Kisha C; Bloom, Ellen M; Rampersad, Angeli G; Roberson, Christopher P; Shapiro, Amy D

    2016-01-01

    Background Antibiotic prophylaxis is a mainstay in sickle cell disease management. However, adherence is estimated at only 66%. This study aimed to develop and validate a Sickle Cell Antibiotic Adherence Level Evaluation (SCAALE) to promote systematic and detailed adherence evaluation. Methods A 28-item questionnaire was created, covering seven adherence areas. General Adherence Ratings from the parent and one health care provider and medication possession ratios were obtained as validation measures. Results Internal consistency was very good to excellent for the total SCAALE (α=0.89) and four of the seven subscales. Correlations between SCAALE scores and validation measures were strong for the total SCAALE and five of the seven subscales. Conclusion The SCAALE provides a detailed, quantitative, multidimensional, and global measurement of adherence and can promote clinical care and research. PMID:27354768

  1. Adherence to colonoscopy recommendations for first-degree relatives of young patients diagnosed with colorectal cancer

    PubMed Central

    Garcia, Guilherme H; Riechelmann, Rachel P; Hoff, Paulo M

    2015-01-01

    OBJECTIVES: Colorectal cancer is the third leading cause of cancer death in the United States. The American College of Gastroenterology recommends screening for first-degree relatives of patients diagnosed with colorectal cancer before the age of 50. A colonoscopy is one of the most commonly recommended exams due to its specificity and the possibility to resect pre-malignant lesions. Nevertheless, the rate of physician adherence to this recommendation is unknown. METHODS: This transversal study was performed at a major cancer center in Brazil with 62 patients, aged 18 to 50, who completed a questionnaire on information received from their physicians regarding screening their first-degree relatives. We used the answers from patients who provided explicit consent. RESULTS: Two hundred and three patients were eligible to participate and 93 (45.8%) agreed to complete the questionnaire. Twenty-three questionnaires (24.73%) were returned and 39 were completed by telephone. Of the patients who answered the questionnaire, 39 (62.9%) had received a colonoscopy recommendation for their first-degree relatives and 23 (37.1%) were not informed of the recommendation. Among the patients who received the recommendations, 20.51% affirmed that all relatives completed the exam and 51.28% stated that no relatives completed the exam. DISCUSSION: The adherence rate of our physicians to the ACG guideline recommendations was 62.9%. Considering that our study was performed at a leading center for cancer treatment in Latin America, we had expected better adherence. The results show that adherence to the colorectal cancer screening recommendations for high-risk patients must be improved. PMID:26598083

  2. WCRF/AICR recommendation adherence and breast cancer incidence among postmenopausal women with and without non-modifiable risk factors.

    PubMed

    Nomura, Sarah J O; Inoue-Choi, Maki; Lazovich, DeAnn; Robien, Kim

    2016-06-01

    Taller height, family history of breast cancer, greater number of years of potential fertility and nulliparity are established non-modifiable risk factors for postmenopausal breast cancer. Greater adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) diet, physical activity and body weight recommendations has previously been shown to be associated with lower breast cancer risk. However, no prior studies have evaluated whether women with non-modifiable risk factors receive similar benefits from recommendation adherence compared to women without these risk factors. In the Iowa Women's Health Study prospective cohort, we investigated whether associations of WCRF/AICR recommendation adherence differed by the presence/absence of non-modifiable breast cancer risk factors. Baseline (1986) questionnaire data from 36,626 postmenopausal women were used to create adherence scores for the WCRF/AICR recommendations (maximum score = 8.0). Overall and single recommendation adherence in relation to breast cancer risk (n = 3,189 cases) across levels of non-modifiable risk factors were evaluated using proportional hazards regression. Mean adherence score was 5.0 points (range: 0.5-8.0). Higher adherence scores (score ≥ 6.0 vs. ≤ 3.5, HR = 0.76, 95% CI = 0.67-0.87), and adherence to the individual recommendations for body weight and alcohol intake were associated with a lower breast cancer incidence. While not statistically significant among women with more non-modifiable risk factors (score ≥ 6.0 vs. ≤ 3.5, HR = 0.76, 95% CI = 0.36-1.63), hazard ratios were comparable to women with the no non-modifiable risk factors (score ≥ 6.0 vs. ≤ 3.5, HR = 0.74, 95% CI = 0.49-0.93) (p-interaction = 0.57). WCRF/AICR recommendation adherence is associated with lower breast cancer risk, regardless of non-modifiable risk factor status.

  3. Persistence, adherence, and toxicity with oral CMF in older women with early-stage breast cancer (Adherence Companion Study 60104 for CALGB 49907)

    PubMed Central

    Ruddy, K. J.; Pitcher, B. N.; Archer, L. E.; Cohen, H. J.; Winer, E. P.; Hudis, C. A.; Muss, H. B.; Partridge, A. H.

    2012-01-01

    Background Cyclophosphamide-methotrexate-5-fluorouracil (CMF) is often selected as adjuvant chemotherapy for older patients with early-stage breast cancer due to perceived superior tolerability. We sought to measure persistence with CMF, adherence to oral cyclophosphamide, and the association of these with toxic effects. Patients and methods CALGB 49907 was a randomized trial comparing standard chemotherapy (CMF or AC, provider/patient choice) with capecitabine in patients aged ≥65 with stage I–IIIB breast cancer. Those randomized to standard therapy and choosing CMF were prescribed oral cyclophosphamide 100 mg/m2 for 14 consecutive days in six 28-day cycles. Persistence was defined as being prescribed six cycles of at least one of the three CMF drugs. Adherence was the number of cyclophosphamide doses that women reported they had taken divided by the number prescribed. Persistence and adherence were based on case report forms and medication calendars. Results Of 317 randomized to standard chemotherapy, 133 received CMF. Median age was 73 (range 65–88). Seventy-one percent submitted at least one medication calendar; 65% persisted with CMF. Non-persistence was associated with node negativity (P = 0.019), febrile neutropenia (P = 0.002), and fatigue (P = 0.044). Average adherence was 97% during prescribed cycles. Conclusions Self-reported adherence to cyclophosphamide was high, but persistence was lower, which may be attributable to toxic effects. PMID:22767584

  4. Localized electroporation effect on adherent cells in modified electric cell-substrate impedance sensing circuits

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Ram Song, Ka; Kim, Hee-Dae; Park, Bum Chul; Kim, Young Keun; Kang, Chi Jung

    2016-10-01

    Electroporation is a physical transfection method for introducing foreign genes or drugs into cells. It does not require toxic reagents or transfection vectors. However, its applications have been limited because of cell damage and nonspecific transport. Here, we present an effective method for selective and localized electroporation using atomic force microscopy. This electroporation method is applied to adherent cells on substrates, instead of conventionally used suspended cells, and offers relatively effective cell transfection. Moreover, this method enables localized transfection into targeted areas at the single-cell level.

  5. Adherence to the 2012 national cervical cancer screening guidelines: a pilot study

    PubMed Central

    Teoh, Deanna G. K.; Marriott, Amity E.; Vogel, Rachel Isaksson; Marriott, Ryan T.; Lais, Charles W.; Downs, Levi S.; Kulasingam, Shalini L.

    2015-01-01

    OBJECTIVE The goal of this pilot study was to evaluate adherence to the 2012 cervical cancer screening guidelines among health care providers in a large health maintenance organization. STUDY DESIGN A cross-sectional survey evaluating knowledge, reported practices, and views of the 2012 cervical cancer screening guidelines was distributed to 325 health care providers within HealthPartners. The survey was divided into 3 sections: (1) provider demographics; (2) knowledge of the 2012 age-specific cancer screening guidelines; and (3) provider practice. Comparisons based on appropriate knowledge and practice of the guidelines were made using Fisher exact tests. RESULTS The response rate was 42%. Of 124 respondents, 15 (12.1%) reported they were not aware of the 2012 guideline changes. Only 7 (5.7%) respondents answered all the knowledge questions correctly. A majority of respondents reported correct screening practices in the 21–29 year patient age group (65.8%) and in the >65 year patient age group (74.3%). Correct screening intervals in the 30–65 year patient age group varied by modality, with 89.3% correctly screening every 3 years with Pap smear alone, but only 57.4% correctly screening every 5 years with Pap smear + human papillomavirus cotesting. The most frequently cited reasons for not adhering were lack of knowledge of the guidelines and patient demand for a different screening interval. CONCLUSION Adherence to the 2012 cervical cancer screening guidelines is poor due, in part, to a lack of knowledge of the guidelines. Efforts should focus on improved provider and patient education, and methods that facilitate adherence to the guidelines such as electronic health record order sets. PMID:24992692

  6. Cell phones and cancer

    MedlinePlus

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  7. Inhibition of Pneumococcal Adherence to Human Nasopharyngeal Epithelial Cells by Anti-PsaA Antibodies

    PubMed Central

    Romero-Steiner, Sandra; Pilishvili, Tamar; Sampson, Jacquelyn S.; Johnson, Scott E.; Stinson, Annie; Carlone, George M.; Ades, Edwin W.

    2003-01-01

    The role of pneumococcal (Pnc) surface adhesin A (PsaA) in the adherence of Streptococcus pneumoniae (pneumococcus) to host cells is not well defined. We examined the effect of anti-PsaA antibodies in an inhibition of adherence assay using Detroit 562 nasopharyngeal human epithelial cells. Rabbit polyclonal (Pab) anti-recombinant PsaA (rPsaA) sera, a purified mouse monoclonal antibody (MAb) (MAb 6F62G8E12), and 22 healthy adult sera with known anti-PsaA IgG levels (obtained by enzyme-linked immunosorbent assay) were evaluated for their abilities to inhibit Pnc adherence to confluent monolayers (measured as percent reduction in CFU counts compared to those of uninhibited controls). Pnc adherence was dependent on capsular phenotype (no or low adherence for opaque strains). With an inoculum of 104 to 105 bacteria/well, the mean ± standard deviation count in controls was 163 ± 32 CFU/well for transparent strains. Low adherence was observed for a PsaA-minus mutant even at higher inoculum doses. Mean percent inhibitions of adherence with Pab and MAb were 54 and 50%, respectively. Adult sera showed inhibition in a dose-response fashion with a range of 98 to 8%, depending on the serum anti-PsaA antibody concentration. Absorption of Pab with rPsaA restored Pnc adherence to control levels. Absorption of sera with a PsaA-minus mutant did not result in a significant decrease (P >0.05) of inhibition of adherence activity. Additionally, nearly 100% of Pnc adherence was inhibited by lipidated rPsaA at 2.5 μg/ml. Our data support the argument that PsaA is an adhesin that mediates Pnc adherence to human nasopharyngeal cells. This functional assay may be useful in evaluating antibodies elicited in response to PsaA vaccination. PMID:12626450

  8. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide

    PubMed Central

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  9. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide.

    PubMed

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  10. Adherence to HEp-2 cells and enteropathogenic potential of Aeromonas spp.

    PubMed

    Grey, P A; Kirov, S M

    1993-04-01

    Aeromonas strains (total = 60) of clinical, water and food origin were tested for adherence to HEp-2 cells. Environmental strains were selected (except for A. caviae) to include primarily those expressing other virulence-associated properties. Adhesion was markedly species-dependent (A. veronii biotype sobria, 15 of 26 [58%]. A caviae, 4 of 12 [33%] and A. hydrophila, 2 of 8 [11%]). A. veronii biotype sobria were adhesive, irrespective of source (62 and 54% for clinical and environmental strains, respectively). Adherent strains of this species were enterotoxin-positive and most (13 of 15) grew at 43 degrees C. A. caviae isolated from clinical specimens contained a higher proportion (75%) of adherent strains than environmental strains (13%). Virulent subsets of A. veronii biotype sobria and A. caviae are adherent to HEp-2 cells. The HEp-2 assay is a useful model for investigating mechanisms of adherence and enteropathogenicity of virulent Aeromonas species.

  11. Inhibitory effects of bovine lactoferrin on the adherence of enterotoxigenic Escherichia coli to host cells.

    PubMed

    Kawasaki, Y; Tazume, S; Shimizu, K; Matsuzawa, H; Dosako, S; Isoda, H; Tsukiji, M; Fujimura, R; Muranaka, Y; Isihida, H

    2000-02-01

    Adherence is an essential and prerequisite step for the colonization of mucosal surfaces by enterotoxigenic Escherichia coli (ETEC). We studied the effect of bovine lactoferrin (BLF) on the adherence of ETEC to human epithelial cells in vitro, and to intestinal mucosa of ICR germfree mice in vivo. In the in vitro study, BLF was found to inhibit the adherence of ETEC. This adhesion-inhibiting activity of BLF was found to lessen with decreasing BLF concentration, but the data obtained suggest a positive inhibitory effect of BLF against the adhesion of ETEC cells. In the in vivo study, the counts of adherent bacteria in various sections of the intestinal tract (duodenum, jejunoileum, and large intestine) were lower in the BLF group than in the control group, suggesting the possible action of BLF as an intestinal tract adherence-blocking agent with regards to ETEC.

  12. An analysis of the association between cancer-related information seeking and adherence to breast cancer surveillance procedures

    PubMed Central

    Tan, Andy SL; Moldovan-Johnson, Mihaela; Gray, Stacy W; Hornik, Robert C; Armstrong, Katrina

    2012-01-01

    Background Breast cancer surveillance is important for women with a known history of breast cancer. However, relatively little is known about the prevalence and determinants of adherence to surveillance procedures, including associations with seeking of cancer-related information from medical and nonmedical sources. Methods We conducted a longitudinal cohort study of breast cancer patients diagnosed in Pennsylvania in 2005. Our main analyses included 352 women who were eligible for surveillance and participated in both baseline (approximately one year after cancer diagnosis) and follow-up surveys. Outcomes were self-reported doctor visits and physical examination, mammography, and breast self-examination (BSE) at one-year follow-up. Results Most women underwent two or more physical examinations according to recommended guidelines (85%). For mammography, 56% of women were adherent (one mammogram in a year) while 39% reported possible over-utilization (two or more mammograms). About 60% of respondents reported regular BSE (five or more times in a year). Controlling for potential confounders, higher levels of cancer-related information seeking from nonmedical sources at baseline was associated with regular BSE (OR=1.52, 95% CI=1.01 to 2.29, p=0.046). There was no significant association between information seeking behaviors from medical or nonmedical sources and surveillance with physical examination or mammography. Conclusions Seeking cancer related information from nonmedical sources is associated with regular BSE, a surveillance behavior that is not consistently recommended by professional organizations. Impact Findings from this study will inform clinicians on the contribution of active information seeking toward breast cancer survivors’ adherence to different surveillance behaviors. PMID:23118144

  13. Immunoregulatory adherent cells in human tuberculosis: radiation-sensitive antigen-specific suppression by monocytes

    SciTech Connect

    Kleinhenz, M.E.; Ellner, J.J.

    1985-07-01

    In human tuberculosis, adherent mononuclear cells (AMC) selectively depress in vitro responses to the mycobacterial antigen tuberculin purified protein derivative (PPD). The phenotype of this antigen-specific adherent suppressor cell was characterized by examining the functional activity of adherent cells after selective depletion of sheep erythrocyte-rosetting T cells or OKM1-reactive monocytes. Adherent cell suppression was studied in the (/sup 3/H)thymidine-incorporation microculture assay by using T cells rigorously depleted of T cells with surface receptors for the Fc portion of IgG (T gamma cells) as antigen-responsive cells. PPD-induced (/sup 3/H)thymidine incorporation by these non gamma T cells was uniformly reduced (mean, 42% +/- 10% (SD)) when autologous AMC were added to non gamma T cells at a ratio of 1:2. Antigen-specific suppression by AMC was not altered by depletion of sheep erythrocyte-rosetting T cells or treatment with indomethacin. However, AMC treated with OKM1 and complement or gamma irradiation (1,500 rads) no longer suppressed tuberculin responses in vitro. These studies identify the antigen-specific adherent suppressor cell in tuberculosis as an OKM1-reactive, non-erythrocyte-rosetting monocyte. The radiosensitivity of this monocyte immunoregulatory function may facilitate its further definition.

  14. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.

    PubMed

    Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo

    2014-07-01

    This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine.

  15. Adherence to dietary and lifestyle recommendations and prostate cancer risk in the Prostate Testing for Cancer and Treatment (ProtecT) trial

    PubMed Central

    Er, Vanessa; Lane, J Athene; Martin, Richard M; Emmett, Pauline; Gilbert, Rebecca; Avery, Kerry NL; Walsh, Eleanor; Donovan, Jenny L; Neal, David E; Hamdy, Freddie C; Jeffreys, Mona

    2014-01-01

    Background The World Cancer Research Fund (WCRF) and the American Institute for Cancer Research (AICR) published eight recommendations for cancer prevention but they are not targeted at prostate cancer prevention. We investigated whether adherence to the WCRF/AICR recommendations and a prostate cancer dietary index are associated with prostate cancer risk. Methods We conducted a nested case-control study of 1,806 PSA-detected prostate cancer cases and 12,005 controls in the ProtecT trial. We developed a prostate cancer dietary index by incorporating three dietary factors most strongly associated with prostate cancer. Scores were computed to quantify adherence to the WCRF/AICR recommendations and the prostate cancer dietary index separately. Results The prostate cancer dietary index score was associated with decreased risk of prostate cancer (OR per 1 score increment: 0.91, 95% CI: 0.84, 0.99; p-trend=0.04) but the WCRF/AICR index score was not (OR: 0.99, 95% CI: 0.94, 1.05; p-trend=0.71). There was no heterogeneity in association by prostate cancer stage (p=0.81) or grade (p=0.61). Greater adherence to recommendations to increase plant foods (OR per 0.25 index score increment: 0.94; 95% CI: 0.89, 0.99; p-trend=0.02) and tomato products (OR adherence vs. non-adherence: 0.82; 95% CI: 0.70, 0.97; p=0.02) were inversely associated with overall prostate cancer risk. Conclusions Adherence to the prostate cancer-specific dietary recommendations was associated with decreased risk of prostate cancer. High intake of plant foods and tomato products in particular may help protect against prostate cancer. Impact Meeting the WCRF/AICR recommendations alone is insufficient for prostate cancer prevention. Additional dietary recommendations should be developed. PMID:25017249

  16. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  17. Adherence of clinically isolated lactobacilli to human cervical cells in competition with Neisseria gonorrhoeae.

    PubMed

    Vielfort, Katarina; Sjölinder, Hong; Roos, Stefan; Jonsson, Hans; Aro, Helena

    2008-10-01

    Lactobacilli are normal inhabitants of our microbiota and are known to protect against pathogens. Neisseria gonorrhoeae is a human specific pathogenic bacterium that colonises the urogenital tract where it causes gonorrhoea. In this study we analysed early interactions between lactobacilli and gonococci and investigated how they compete for adherence to human epithelial cervical cells. We show that lactobacilli adhere at various levels and that the number of adherent bacteria does not correlate to the level of protection against gonococcal infection. Protection against gonococcal adhesion varied between Lactobacillus species. Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus reuteri were capable of reducing gonococcal adherence while Lactobacillus rhamnosus was not. Lactobacillus strains of vaginal origin had the best capacity to remain attached to the host cell during gonococcal adherence. Further, we show that gonococci and lactobacilli interact with each other with resultant lactobacilli incorporation into the gonococcal microcolony. Hence, gonococci bind to colonised lactobacilli and this complex frequently detaches from the epithelial cell surface, resulting in reduced bacterial colonisation. Also, purified gonococcal pili are capable of removing adherent lactobacilli from the cell surface. Taken together, we reveal novel data regarding gonococcal and lactobacilli competition for adherence that will benefit future gonococcal prevention and treatments.

  18. Behavioral Interventions to Enhance Adherence to Hormone Therapy in Breast Cancer Survivors: A Systematic Literature Review.

    PubMed

    Hurtado-de-Mendoza, Alejandra; Cabling, Mark L; Lobo, Tania; Dash, Chiranjeev; Sheppard, Vanessa B

    2016-08-01

    Adjuvant hormone therapy contributes to reductions in recurrence and mortality for women with hormone receptor-positive breast cancer. However, adherence to hormone therapy is suboptimal. This is the first systematic literature review examining interventions aimed at improving hormone therapy adherence. Researchers followed the PRISMA guidelines. PubMed-Medline, CINAHL, PsychInfo, Ovid-Medline, and EMBASE were searched for behavioral interventions that aimed to enhance adherence to adjuvant hormone therapy in breast cancer survivors. A total of 376 articles were screened for eligibility. Five articles met the study criteria. All interventions presented adherence outcomes after 1-year follow-up. None significantly enhanced adherence compared to the usual care in the primary analysis (odds ratios ranged from 1.03 to 2.06 for adherence and from 1.11 to 1.18 for persistence). All studies targeted patients, and only 3 studies included postmenopausal breast cancer patients. Three tested the same intervention consisting of educational materials. Only one was conducted in the United States. Only one reported participants' ethnicity. Overall, it was unclear whether the studies contained bias. The use of different terminology and operationalization of adherence made comparisons challenging. Interventions to improve adherence to adjuvant hormone therapy in US breast cancer populations that include survivors who are ethnically diverse, premenopausal, and receiving tamoxifen therapy are necessary to inform future interventions. Adoption of consistent adherence definitions/measurements will provide a clearer framework to consolidate aggregate findings. Given the limited efficacy of tested interventions, it is important to engage oncologists and researchers to develop approaches that target different components associated with hormone therapy adherence, such as doctor-patient communication or social support.

  19. Filamentous hemagglutinin has a major role in mediating adherence of Bordetella pertussis to human WiDr cells.

    PubMed Central

    Urisu, A; Cowell, J L; Manclark, C R

    1986-01-01

    [35S]methionine-labeled Bordetella pertussis adhered to monolayers of WiDr cells, an epitheliumlike cell line from a human intestinal carcinoma. Adherence was proportional to the density of the WiDr cells and to the concentration of B. pertussis in the assay. Adherence of virulent phase I strains Tohama phase I, 114, and BP338 was much greater than adherence of avirulent strains Tohama phase III and 423 phase IV. Mutants deficient in the production of the filamentous hemagglutinin (FHA) were hemagglutination negative and adhered to WiDr cells much less efficiently than the parent strains. Preincubation of B. pertussis cells with FHA increased their hemagglutination activity and adherence to WiDr cells. Goat antibody to FHA inhibited, in a dose-dependent manner, the adherence of strain Tohama I but not the adherence of FHA-deficient mutant Tohama 325. At similar protein concentrations, normal goat antibody, goat antibody to pertussis toxin, or the Fab fragments of goat antibody to serotype 2 fimbriae had no effect on adherence. Also, an FHA-positive strain without fimbriae showed high adherence, while a fimbriated FHA-deficient mutant adhered poorly. Our data indicate that FHA plays a major role in adherence of B. pertussis to human WiDr cells. Fimbriae do not appear to mediate attachment of B. pertussis to WiDr cells. PMID:2872165

  20. Inverting adherent cells for visualizing ECM interactions at the basal cell side.

    PubMed

    Gudzenko, Tetyana; Franz, Clemens M

    2013-05-01

    Interactions with the extracellular matrix (ECM) govern a wide range of cellular functions, including survival, migration and invasion. However, in adherent cells these interactions occur primarily on the basal cell side, making them inaccessible to high-resolution, surface-scanning imaging techniques such as atomic force microscopy (AFM) or scanning electron microscopy (SEM). Here we describe a fast and reliable method for inverting adherent cells, exposing the basal cell membrane for direct analysis by AFM or SEM in combination with fluorescence microscopy. Cells including their matrix adhesion sites remain intact during the inversion process and are transferred together with the complete array of basally associated ECM proteins. Molecular features of ECM proteins, such as the characteristic 67 nm collagen D-periodicity, are well preserved after inversion. To demonstrate the versatility of the method, we compared basal interactions of fibroblasts with fibrillar collagen I and fibronectin matrices. While fibroblasts remodel the fibronectin layer exclusively from above, they actively invade even thin collagen layers by contacting individual collagen nanofibrils both basally and apically through a network of cellular extensions. Cell-matrix entanglement coincides with enhanced cell spreading and flattening, indicating that nanoscale ECM interactions govern macroscopic changes in cell morphology. The presented cell inversion technique can thus provide novel insight into nanoscale cell-matrix interactions at the basal cell side.

  1. Cervical cancer screening adherence among HIV-positive female smokers from a comprehensive HIV clinic.

    PubMed

    Fletcher, Faith E; Vidrine, Damon J; Tami-Maury, Irene; Danysh, Heather E; King, Rachel Marks; Buchberg, Meredith; Arduino, Roberto C; Gritz, Ellen R

    2014-03-01

    HIV-positive women are at elevated risk for developing cervical cancer. While emerging research suggests that gynecologic health care is underutilized by HIV-positive women, factors associated with adherence to Pap testing, especially among HIV-positive female smokers are not well known. We utilized baseline data from a smoking cessation trial and electronic medical records to assess Pap smear screening prevalence and the associated characteristics among the HIV-positive female participants (n = 138). 46 % of the women had at least 1 Pap test in the year following study enrollment. Multiple logistic regression analysis indicated that younger age, African American race, hazardous drinking, increased number of cigarettes smoked per day, and smoking risk perception were associated with non-adherence to Pap smear screening. Cervical cancer screening was severely underutilized by women in this study. Findings underscore the importance of identifying predictors of non-adherence and addressing multiple risk factors and behavioral patterns among HIV-positive women who smoke.

  2. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread.

  3. Fibrin monomer increases platelet adherence to tumor cells in a flowing system: a possible role in metastasis?

    PubMed

    Biggerstaff, J P; Seth, N B; Meyer, T V; Amirkhosravi, A; Francis, J L

    1998-12-15

    Considerable evidence exists linking hemostasis and malignancy. Platelet adhesion to tumor cells has been implicated in the metastatic process. Plasma fibrinogen (Fg) and fibrin (Fn) monomer, increased in cancer, may play a role in tumor biology. Binding of Fn monomer to tumor cells and its effect on platelet-tumor cell adhesion in a flowing system were studied. Fn monomer was produced by adding thrombin (1 micro/mL) to FXIII- and plasminogen-free Fg in the presence of Gly-Pro-Arg-Pro (GPRP) amide. Fn monomer binding to live A375 cells was visualized by confocal laser scanning microscopy (CLSM). Adherent cells were perfused for 1h with Fn monomer, washed and stained in situ with anti-human Fn (American Biogenetic Sciences, Inc.) followed by goat anti-mouse IgG(FITC). Platelet adherence to Fn monomer treated A375 cells was performed under flow conditions by passing platelets (5x10(4)/microl 0.25 mL/min; labeled with the carbocyanine dye DiI) over the tumor cells for 30 min. CLSM images were obtained after washing. There was considerable binding of Fn monomer, but not Fg alone. Platelets adhered relatively weakly to untreated A375 cells and this was not significantly affected by pre-treatment of the tumor cells with fibrinogen or thrombin. However, pre-treatment with Fn monomer resulted in extensive platelet binding to tumor cells, suggesting that coagulation activation and the subsequent increase in circulating Fn monomer may enhance platelet adhesion to circulating tumor cells and thereby facilitate metastatic spread. PMID:9886911

  4. Beyond Adherence: Health Care Disparities and the Struggle to Get Screened for Colon Cancer.

    PubMed

    Hunleth, Jean M; Steinmetz, Emily K; McQueen, Amy; James, Aimee S

    2016-01-01

    Dominant health care professional discourses on cancer take for granted high levels of individual responsibility in cancer prevention, especially in expectations about preventive screening. At the same time, adhering to screening guidelines can be difficult for lower income and under-insured individuals. Colorectal cancer (CRC) is a prime example. Since the advent of CRC screening, disparities in CRC mortality have widened along lines of income, insurance, and race in the United States. We used a community-engaged research method, Photovoice, to examine how people from medically under-served areas experienced and gave meaning to CRC screening. In our analysis, we first discuss ways in which participants recounted screening as a struggle. Second, we highlight a category that participants suggested was key to successful screening: social connections. Finally, we identify screening as an emotionally laden process that is underpinned by feelings of uncertainty, guilt, fear, and relief. We discuss the importance of these findings to research and practice. PMID:26160775

  5. [Stem cells and cancer].

    PubMed

    Arvelo, Francisco; Cotte, Carlos; Sojo, Felipe

    2014-12-01

    Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Cancer stem cells are a subpopulation of the cells that form the tumor. The discovery of these human cancer cells opens a perspective for understanding tumor recurrence, drug resistance and metastasis; and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Therapeutic alternatives emerge from a better understanding of the biology and the environment of tumor stem cells. The present paper aims to summarize the characteristics and properties of cancer stem cells, the ongoing research, as well as the best strategies for prevention and control of the mechanisms of tumor recurrence.

  6. Adherence to human lung microvascular endothelial cells (HMVEC-L) of Plasmodium vivax isolates from Colombia

    PubMed Central

    2013-01-01

    Background For years Plasmodium vivax has been considered the cause of benign malaria. Nevertheless, it has been observed that this parasite can produce a severe disease comparable to Plasmodium falciparum. It has been suggested that some physiopathogenic processes might be shared by these two species, such as cytoadherence. Recently, it has been demonstrated that P. vivax-infected erythrocytes (Pv-iEs) have the capacity to adhere to endothelial cells, in which intercellular adhesion molecule-1 (ICAM-1) seems to be involved in this process. Methods Adherence capacity of 21 Colombian isolates, from patients with P. vivax mono-infection to a microvascular line of human lung endothelium (HMVEC-L) was assessed in static conditions and binding was evaluated at basal levels or in tumor necrosis factor (TNF) stimulated cells. The adherence specificity for the ICAM-1 receptor was determined through inhibition with an anti-CD54 monoclonal antibody. Results The majority of P. vivax isolates, 13 out of 21 (61.9%), adhered to the HMVEC-L cells, but P. vivax adherence was at least seven times lower when compared to the four P. falciparum isolates. Moreover, HMVEC-L stimulation with TNF led to an increase of 1.6-fold in P. vivax cytoadhesion, similar to P. falciparum isolates (1.8-fold) at comparable conditions. Also, blockage of ICAM-1 receptor with specific antibodies showed a significant 50% adherence reduction. Conclusions Plasmodium vivax isolates found in Colombia are also capable of adhering specifically in vitro to lung endothelial cells, via ICAM-1 cell receptor, both at basal state and after cell stimulation with TNF. Collectively, these findings reinforce the concept of cytoadherence for P. vivax, but here, to a different endothelial cell line and using geographical distinct isolates, thus contributing to understanding P. vivax biology. PMID:24080027

  7. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  8. Relationship of cell surface morphology and composition of Streptococcus salivarius K+ to adherence and hydrophobicity.

    PubMed Central

    Weerkamp, A H; van der Mei, H C; Slot, J W

    1987-01-01

    The cell surfaces of a range of variants of Streptococcus salivarius HB, altered in cell wall antigen composition, were compared with those of the parent with respect to adherence, ability to adsorb to hexadecane, morphology, and exposure of lipoteichoic acid (LTA). Adherence to host surfaces was measured by using both saliva-coated hydroxyapatite beads and tissue-cultured HeLa cells, and interbacterial adherence was measured by using Veillonella alcalescens V1 cells. Progressive loss of the protease-sensitive fibril classes was generally associated with decreasing ability to adsorb to hexadecane. However, increased exposure of protein antigen C (AgC) increased the apparent hydrophobicity of the cell. This correlated with the finding that AgC was the most hydrophobic of the solubilized fibrillar cell wall antigens. Collectively, this demonstrates that adsorption to hydrophobic ligands is directly related to the density of the fibrillar layer on the cells and the properties and surface exposure of specific fibril classes. The involvement of hydrophobic interactions in AgC-associated attachment was suggested by its sensitivity to low levels of the hydrophobic bond-breaking agent tetramethyl urea, although the reduction was not to the level of adherence observed with strains lacking AgC. However, hydrophobicity was less essential to other adherence reactions. Circumstantial evidence, including immunoelectron microscopy, showing that LTA was virtually absent from the fibrillar layer, whole-cell enzyme-linked immunosorbent assay, suggesting that surface exposure of LTA related inversely to the density of the fibrillar layer, and agarose gel electrophoresis, showing that LTA was not specifically associated with protein fibrillar antigens, strongly suggested that LTA does not confer hydrophobic properties to these cells and is not involved in adherence reactions associated with the cell wall protein antigens. Images PMID:3804445

  9. Predictors of adherence to a 12-week exercise program among men treated for prostate cancer: ENGAGE study.

    PubMed

    Craike, Melinda; Gaskin, Cadeyrn J; Courneya, Kerry S; Fraser, Steve F; Salmon, Jo; Owen, Patrick J; Broadbent, Suzanne; Livingston, Patricia M

    2016-05-01

    Understanding the factors that influence adherence to exercise programs is necessary to develop effective interventions for people with cancer. We examined the predictors of adherence to a supervised exercise program for participants in the ENGAGE study - a cluster randomized controlled trial that assessed the efficacy of a clinician-referred 12-week exercise program among men treated for prostate cancer. Demographic, clinical, behavioral, and psychosocial data from 52 participants in the intervention group were collected at baseline through self-report and medical records. Adherence to the supervised exercise program was assessed through objective attendance records. Adherence to the supervised exercise program was 80.3%. In the univariate analyses, cancer-specific quality of life subscales (role functioning r = 0.37, P = 0.01; sexual activity r = 0.26, P = 0.06; fatigue r = -0.26, P = 0.06, and hormonal symptoms r = -0.31, P = 0.03) and education (d = -0.60, P = 0.011) were associated with adherence. In the subsequent multivariate analysis, role functioning (B = 0.309, P = 0.019) and hormonal symptoms (B = -0.483, P = 0.054) independently predicted adherence. Men who experienced more severe hormonal symptoms had lower levels of adherence to the exercise program. Those who experienced more positive perceptions of their ability to perform daily tasks and leisure activities had higher levels of adherence to the exercise program. Hormonal symptoms and role functioning need to be considered when conducting exercise programs for men who have been treated for prostate cancer. PMID:26872005

  10. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    SciTech Connect

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  11. Variation in Adherence to External Beam Radiotherapy Quality Measures Among Elderly Men With Localized Prostate Cancer

    SciTech Connect

    Bekelman, Justin E. Zelefsky, Michael J.; Jang, Thomas L.; Basch, Ethan M.; Schrag, Deborah

    2007-12-01

    Purpose: To characterize the variation in adherence to quality measures of external beam radiotherapy (EBRT) for localized prostate cancer and its relation to patient and provider characteristics in a population-based, representative sample of U.S. men. Methods and Materials: We evaluated EBRT quality measures proposed by a RAND expert panel of physicians among men aged {>=}65 years diagnosed between 2000 and 2002 with localized prostate cancer and treated with primary EBRT using data from the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare program. We assessed the adherence to five EBRT quality measures that were amenable to analysis using SEER-Medicare data: (1) use of conformal RT planning; (2) use of high-energy (>10-MV) photons; (3) use of custom immobilization; (4) completion of two follow-up visits with a radiation oncologist in the year after therapy; and (5) radiation oncologist board certification. Results: Of the 11,674 patients, 85% had received conformal RT planning, 75% had received high-energy photons, and 97% had received custom immobilization. One-third of patients had completed two follow-up visits with a radiation oncologist, although 91% had at least one visit with a urologist or radiation oncologist. Most patients (85%) had been treated by a board-certified radiation oncologist. Conclusions: The overall high adherence to EBRT quality measures masked substantial variation in geography, socioeconomic status in the area of residence, and teaching affiliation of the RT facility. Future research should examine the reasons for the variations in these measures and whether the variation is associated with important clinical outcomes.

  12. Perceived Risk of Breast Cancer among Latinas Attending Community Clinics: Risk Comprehension and Relationship with Mammography Adherence

    PubMed Central

    Graves, Kristi D.; Huerta, Elmer; Cullen, Jennifer; Kaufman, Elizabeth; Sheppard, Vanessa; Luta, George; Isaacs, Claudine; Schwartz, Marc D.; Mandelblatt, Jeanne

    2015-01-01

    Objective To describe breast cancer risk perceptions, determine risk comprehension, and evaluate mammography adherence among Latinas. Methods Latina women age ≥ 35, primarily from Central and South America, were recruited from community-based clinics to complete in-person interviews (n=450). Risk comprehension was calculated as the difference between numeric perceived risk and Gail risk score. Based on recommended guidelines from the year data were collected (2002), mammography adherence was defined as having a mammogram every one to two years for women ≥ 40 years of age. Results Breast cancer risk comprehension was low, as 81% of women overestimated their risk and only 6.9% of women were high risk based on Gail risk scores. Greater cancer worry and younger age were significantly associated with greater perceived risk and risk overestimation. Of women age eligible for mammography (n = 328), 29.0% were non-adherent to screening guidelines. Adherence was associated with older age, (OR = 2.99, 95% CI = 1.76 – 5.09), having insurance (OR = 1.81, 95% CI = 1.03 – 3.17), greater acculturation (OR = 1.18, 95% CI = 1.02 – 1.36), and higher breast cancer knowledge (OR = 2.03, 95% CI = 1.21 – 3.40). Conclusions While most Latinas over-estimated their breast cancer risk, older age, having insurance, being more acculturated, and having greater knowledge were associated with greater screening adherence in this Latino population. Perceived risk, risk comprehension, and cancer worry were not associated with adherence. In Latinas, screening interventions should emphasize knowledge and target education efforts at younger, uninsured, and less acculturated mammography-eligible women. PMID:18704716

  13. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    PubMed

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  14. Pancreatic cancer stem cells

    PubMed Central

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever. PMID:26045976

  15. Effect of selective serotonin reuptake inhibitors use on endocrine therapy adherence and breast cancer mortality: a population-based study.

    PubMed

    Valachis, Antonis; Garmo, Hans; Weinman, John; Fredriksson, Irma; Ahlgren, Johan; Sund, Malin; Holmberg, Lars

    2016-09-01

    The purpose of the study was to investigate whether the concomitant use of selective serotonin reuptake inhibitors (SSRI) with tamoxifen influences the risk of death due to breast cancer, and we also investigated the association between SSRI use and adherence to oral endocrine therapy (ET). We analyzed data from BCBaSe Sweden, which is a database created by the data linkage of Registries from three different regions of Sweden. To investigate the association between ET adherence and SSRI use, we included all women who were diagnosed with non-distant metastatic ER-positive invasive breast cancer from July 2007 to July 2011 and had at least one dispensed prescription of oral tamoxifen or aromatase inhibitor. To investigate the role of concurrent administration of SSRI and tamoxifen on breast cancer prognosis, we performed a nested case-control study. In the adherence cohort, 9104 women were included in the analyses. Women who received SSRI, either before or after breast cancer diagnosis, were at higher risk for low adherence to ET. However, when the overlapping period between SSRI use and ET was >50 %, no excess risk for low adherence was observed. Non-adherence (<80 %) to ET was significantly associated with worse breast cancer survival (OR 4.07; 95 % CI 3.27-5.06). In the case-control study, 445 cases and 11125 controls were included. The concomitant administration of SSRI and tamoxifen did not influence breast cancer survival, neither in short-term (OR 1.41; 95 % CI 0.74-2.68) nor in long-term SSRI users (OR 0.85; 95 % CI 0.35-2.08). Concomitant SSRI and tamoxifen use does not seem to increase risk for death due to breast cancer. Given the positive association between continuing antidepressive pharmacotherapy for a longer period of time and adherence to ET, it is essential to capture and treat depression in breast cancer patients to secure adherence to ET. PMID:27492739

  16. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    PubMed

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain.

  17. Ovarian cancer stem cells enrichment.

    PubMed

    Yang, Lijuan; Lai, Dongmei

    2013-01-01

    The concept of cancer stem cells (CSCs) provides a new paradigm for understanding cancer biology. Cancer stem cells are defined as a minority of cancer cells with stem cell properties responsible for maintenance and growth of tumors. The targeting of CSCs is a potential therapeutic strategy to combat ovarian cancer. Ovarian epithelial cancer cells cultured in serum-free medium can form sphere cells. These sphere cells may be enriched for cancer stem cells (CSCs). The isolation of sphere cells from solid tumors is an important technique in studying cancer cell biology. Here we describe the isolation of sphere cells from primary ovarian cancer tissue, ascites fluid, and the cancer cell line SKOV3 with stem cell selection medium. PMID:23913228

  18. Contrasting effects of inflammatory stimuli on neutrophil and monocyte adherence to endothelial cells.

    PubMed

    Kamp, D W; Bauer, K D; Knap, A; Dunn, M M

    1989-08-01

    Leukocyte adherence to endothelial cells (EC) is an important early event in inflammatory responses, which are often characterized by a predominance of either neutrophils (PMN) or monocytes. However, there is little information concerning the molecular events important in leukocyte adherence to EC. Intracellular activation of protein kinase C and the calcium-second messenger system leads to the stimulation of a number of important functions in PMN and monocytes. We compared the effects of members of these pathways on human PMN and monocyte adherence to cultured bovine aortic EC. We observed that phorbol myristate acetate, phorbol, 12,13-dibutyrate, L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol, and ionomycin each induced significant dose-dependent increases in PMN adherence to EC monolayers. In contrast, similar concentrations of each of these agents induced significant decreases in EC adherence of monocytes enriched by countercurrent centrifugal elutriation. Separate experiments determined that the differences in PMN and monocyte adherence to EC were not related to differences in oxidant production because 1) phorbol myristate acetate and L-alpha-1-oleoyl-2-acetoyl-sn-3-glycerol caused similar marked increases in both PMN and monocyte superoxide anion and hydrogen peroxide production and 2) ionomycin, which had opposing effects on PMN and monocyte adherence, had no effect on PMN and monocyte superoxide anion or hydrogen peroxide release. We conclude that activators of protein kinase C and the Ca-second messenger pathway have opposite effects on PMN and monocyte adherence to EC and that these effects are mediated by O2 radical-independent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Role of different classes of mammalian cell surface molecules in adherence of coagulase positive and coagulase negative staphylococci.

    PubMed

    Hafez, Mohamed M; Aboulwafa, Mohammad M; Yassien, Mahmoud A; Hassouna, Nadia A

    2008-10-01

    In the present study the role of different mammalian cell receptors in adherence of the coagulase positive pathogen, Staphylococcus aureus and some coagulase negative staphylococci, namely Staphylococcus epidermidis and Staphylococcus saprophyticus was investigated. Upon testing the adherence to Vero and Hep-2 cells, S. aureus isolates showed an adherence to both cell lines while S. epidermidis and S. saprophyticus isolates adhered to Vero cells only. According to the obtained results, both O-linked and N-linked mammalian cell surface glycoproteins are involved in the adherence of S. aureus isolates to Vero and Hep-2 cells, whereas only the O-linked ones serve as receptors for adherence of S. epidermidis and S. saprophyticus isolates to Vero cells. Of the O-linked glycoproteins, GAG-like receptors are involved in adherence of all tested isolates to Vero cells. The coagulase positive staphylococci preferred to adhere to the highly sulphated GAGs (Heparin and chondroitin sulphate B) while the coagulase negative isolates showed higher affinity to the less sulphated ones (Chondroitin sulphate A and C). Mucin like receptors appeared to be important for the adherence of all tested staphylococci. The role exhibited by fibronectin- and fibrinogen-like receptors was detected with S. aureus and S. epidermidis but not with S. saprophyticus isolates. While, collagen and gelatin were found to contribute to the adherence of S. aureus isolates only. Neither carbohydrate moieties of the glycoconjugates nor lipid molecules on the mammalian cell surface played a role in the adherence of the tested staphylococcal isolates. Taken together, the results revealed that both coagulase negative and coagulase positive staphylococcal tested isolates adhere to the same classes of mammalian cell surface receptors such as mucin-like, fibrinogen-like, fibronectin-like and GAG-like receptors. However, the tested isolates exhibited different degrees of affinities to such receptors.

  20. Use of a solid phase red blood cell adherence method for pretransfusion platelet compatibility testing.

    PubMed

    Rachel, J M; Summers, T C; Sinor, L T; Plapp, F V

    1988-07-01

    A solid phase red blood cell adherence method has been used for platelet antibody detection and crossmatching for refractory platelet recipients. Patient sera were first screened for HLA or platelet-specific antibodies, then crossmatched with potential apheresis platelet donors. The overall correlation of platelet crossmatch results with transfusion outcome was 97% in patients with no evidence of nonimmune platelet destruction. The solid phase red blood cell adherence method provided a feasible and effective alternative to HLA matching as a means of donor selection for refractory platelet recipients. The speed and simplicity of this method may allow most hospital laboratories to perform platelet antibody screening before routine platelet transfusions.

  1. Proliferative activity of vervet monkey bone marrow-derived adherent cells

    SciTech Connect

    Kramvis, A.; Garnett, H.M.

    1987-11-01

    Vervet monkey bone marrow-derived adherent cell population cultured in Fischer's medium supplemented with 12.5% fetal calf serum and 12.5% horse serum consists of two cell shapes: fusiform (type I) and polygonal (type II). Limiting-dilution cloning of the cells suggested that the two morphologically distinct cell types belong to the same cellular system even though they differ in their proliferative capabilities. The labeling index of type II cells, as measured by autoradiography, was found to be consistently lower than that of type I cells. It is probable that these two phenotypes represent different stages of differentiation, where progenitor type I gives rise to type II cells. The bone marrow-derived adherent cells were found to be cytokinetically at rest in vivo, using the thymidine suicide test, and relatively radioresistant with a D0 = 2.1 Gy and n = 2.36 at the time of explantation from the bone. Furthermore, in culture these cells are characterized by a relatively long cell cycle of 60 h, where the length of the S phase is 30 h, G2 is 12 h, M is 6 h, and G1 is 12 h. Thus, the vervet monkey bone marrow-derived adherent cells represent a cell population with a low turnover rate both in vivo and in vitro.

  2. Adhesion and function of rat liver cells adherent to silk fibroin/collagen blend films.

    PubMed

    Cirillo, B; Morra, M; Catapano, G

    2004-01-01

    Collagen is often used in bioartificial livers as a biomimetic coating to promote liver cell adhesion and differentiation. Animal proteins are expensive and expose the host to risks of cross-species infection due to contamination with prions. Silk fibroin (SF) is a biocompatible protein produced by Bombyx mori silk worms and possibly an alternative to collagen. We prepared SF-collagen blend films with different SF content adherent to the bottom of standard tissue culture dishes, and characterized their surface morphology by SEM, their wettability and examined them for their capacity to support rat liver cell adhesion and metabolism. Cell metabolism was characterized by estimating the rate at which cells eliminated ammonia and synthesized urea for up to 48h of culture. SF-containing films were smooth, clear and more wettable than collagen. Cells readily adhered, formed junctions and small size aggregates on all films. As many cells adhered on SF as on collagen films. Cell adhesion to high collagen content blend films could not be reliably estimated because cells dwelt in the large cavities in the film. The effect of SF on cell metabolism differed with the investigated metabolic pathway. However, cells on SF-containing films eliminated ammonia and synthesized urea at rates generally comparable to, for urea synthesis at times higher than, that of cells on collagen. These results suggest that silk fibroin is a suitable substratum for liver cell attachment and culture, and a potential alternative to collagen as a biomimetic coating. PMID:14984185

  3. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies.

    PubMed

    Schwingshackl, Lukas; Hoffmann, Georg

    2015-12-01

    The aim of the present systematic review and meta-analysis of observational studies was to gain further insight into the effects of adherence to Mediterranean Diet (MD) on overall cancer mortality, incidence of different types of cancer, and cancer mortality risk in cancer survivors. Literature search was performed using the electronic databases PubMed, and EMBASE until 2 July 2015. We included either cohort (for specific tumors only incidence cases were used) or case-control studies. Study specific risk ratios, hazard ratios, and odds ratios (RR/HR/OR) were pooled using a random effect model. The updated review process showed 23 observational studies that were not included in the previous meta-analysis (total number of studies evaluated: 56 observational studies). An overall population of 1,784,404 subjects was included in the present update. The highest adherence score to an MD was significantly associated with a lower risk of all-cause cancer mortality (RR: 0.87, 95% CI 0.81-0.93, I(2) = 84%), colorectal cancer (RR: 0.83, 95% CI 0.76-0.89, I(2) = 56%), breast cancer (RR: 0.93, 95% CI 0.87-0.99, I(2) =15%), gastric cancer (RR: 0.73, 95% CI 0.55-0.97, I(2) = 66%), prostate cancer (RR: 0.96, 95% CI 0.92-1.00, I(2) = 0%), liver cancer (RR: 0.58, 95% CI 0.46-0.73, I(2) = 0%), head and neck cancer (RR: 0.40, 95% CI 0.24-0.66, I(2) = 90%), pancreatic cancer (RR: 0.48, 95% CI 0.35-0.66), and respiratory cancer (RR: 0.10, 95% CI 0.01-0.70). No significant association could be observed for esophageal/ovarian/endometrial/and bladder cancer, respectively. Among cancer survivors, the association between the adherence to the highest MD category and risk of cancer mortality, and cancer recurrence was not statistically significant. The updated meta-analyses confirm a prominent and consistent inverse association provided by adherence to an MD in relation to cancer mortality and risk of several cancer types.

  4. The evolution of pretransfusion testing: from agglutination to solid-phase red cell adherence tests.

    PubMed

    Plapp, F V; Sinor, L T; Rachel, J M

    1989-01-01

    Hospital transfusion services and blood centers still use manual hemagglutination tests for most of their serological procedures. Automation of hemagglutination reactions has proven to be difficult, primarily because hemagglutination lacks an objective endpoint which can be easily interpreted by inexpensive instruments. Alternatively, solid-phase red cell adherence assays for ABO cell and serum grouping, Rh typing, red cell and platelet antibody screening, red cell and platelet crossmatching, IgA deficiency screening, hepatitis B surface antigen, and HIV antibody screening have been developed. The performance of these assays compares favorably with current hemagglutination and enzyme immunoassay methods. All of these tests share a common objective endpoint of adherence or nonadherence of indicator red cells. This uniformity allows easy interpretation of results visually, spectrophotometrically, or by image analysis. The latter technique has the potential to revolutionize the reading and interpretation of all agglutination tests. Solid-phase red cell adherence tests in microplates are ideal for batch processing large numbers of specimens. However, adherence tests are not restricted to this format. Therefore, blood grouping dipsticks have been produced, which permit testing of individual blood samples even outside of the laboratory.

  5. Low adherence to colonoscopy in the screening of first‐degree relatives of patients with colorectal cancer

    PubMed Central

    Bujanda, Luis; Sarasqueta, Cristina; Zubiaurre, Leire; Cosme, Angel; Muñoz, Carmen; Sánchez, Araceli; Martín, Cristina; Tito, Llucia; Piñol, Virginia; Castells, Antoni; Llor, Xavier; Xicola, Rosa M; Pons, Elisenda; Clofent, Juan; de Castro, María L; Cuquerella, Jaime; Medina, Enrique; Gutierrez, Ana; Arenas, Juan I; Jover, Rodrigo

    2007-01-01

    Background Colonoscopy is one of the methods of choice for screening relatives of patients with colorectal cancer. Objective To evaluate the rate of adherence to colonoscopy in first‐degree relatives of patients with colorectal cancer and describe the lesions found. Methods A prospective, cross‐sectional, multicentre, nationwide study was conducted. The study population was composed of first‐degree relatives of patients with colorectal cancer selected randomly from the EPICOLON study. Seventy‐four index patients were included. These had 342 living first‐degree relatives (parents, siblings and children), of whom 281 were interviewed. Results The adherence rate was 38% (107/281). Adherence was greater in families with a higher degree of familial aggregation for colorectal cancer (88.9% for Amsterdam vs 33.3% for Bethesda and sporadic cancer; p<0.05), an index patient aged under 65 years (60% for patients <65 years vs 32.9% for patients ⩾65 years; p<0.05) and an index patient who was female (46.2% for women vs 31% for men; p = 0.28). Adherence was also greater in relatives under 65 years (54% in patients <65 years vs 18% in patients ⩾65 years; p = 0.05), in female relatives (49% in female relatives vs 27.3% in male relatives; p<0.05) and in siblings and children (40% in siblings and children vs 13% in parents; p<0.05). Lesions were found in 26% (28/107) of the study population. Nine (8.4%) individuals had a total of 18 advanced lesions. Conclusions These results indicate that adherence to colonoscopy in our population of first‐degree relatives was low. The adherence was more frequently associated with a higher degree of familial aggregation, a relative age of under 65 years, a sibling or offspring relationship, and female sex. PMID:17400596

  6. Use of bovine primary mammary epithelial cells for the comparison of adherence and invasion ability of Staphylococcus aureus strains.

    PubMed

    Hensen, S M; Pavicić, M J; Lohuis, J A; Poutrel, B

    2000-03-01

    Adherence and invasion of epithelial cells are thought to play a role in the pathogenesis of Staphylococcus aureus mastitis. A cell culture model with primary mammary epithelial cells originating from the secretory tissue from the bovine udder was used to study adherence and invasion of S. aureus. The cells were characterized with antibodies against several cell markers that had been validated on histologic cryostat sections of bovine mammary tissue. All cells stained positively with the anticytokeratin antibodies, which are restricted to epithelial cells. The cell cultures contained a small number of alpha-smooth-muscle-actin positive cells (< 1%), probably myoepithelial cells. The use of bovine primary mammary epithelial cells and bovine S. aureus isolates, which were cultured in milk serum, results in a system similar to in vivo. Strain differences for adherence and invasion of S. aureus strains cultured in milk serum were studied. In addition, the correlation between adherence and invasion was evaluated. The number of adhered and invaded bacteria was strain dependent. The percentage of adherence after 5 min of incubation was correlated to the percentage of adherence after 3 h of incubation (r = 0.94; Pearson's correlation test). Fourteen of the 20 strains were able to invade epithelial cells. The percentage of invasion was correlated to the percentage of adherence after 5 min and to the percentage adherence after 3 h (r = 0.95 and 0.90, respectively; Pearson's correlation test). Results indicate that strain differences of adherence and invasion exist for S. aureus and that the invasion is a post adherence event.

  7. Fragmentation of cancer cells

    NASA Astrophysics Data System (ADS)

    Vanapalli, Siva; Kamyabi, Nabiollah

    Tumor cells have to travel through blood capillaries to be able to metastasize and colonize in distant organs. Among the numerous cells that are shed by the primary tumor, very few survive in circulation. In vivo studies have shown that tumor cells can undergo breakup at microcapillary junctions affecting their survival. It is currently unclear what hydrodynamic and biomechanical factors contribute to fragmentation and moreover how different are the breakup dynamics of highly and weakly metastatic cells. In this study, we use microfluidics to investigate flow-induced breakup of prostate and breast cancer cells. We observe several different modes of breakup of cancer cells, which have striking similarities with breakup of viscous drops. We quantify the breakup time and find that highly metastatic cancer cells take longer to breakup than lowly metastatic cells suggesting that tumor cells may dynamically modify their deformability to avoid fragmentation. We also identify the role that cytoskeleton and membrane plays in the breakup process. Our study highlights the important role that tumor cell fragmentation plays in cancer metastasis. Cancer Prevention and Research Institute of Texas.

  8. [ADHERING TO MEDICAL STANDARTS, EVIDENCE-BASED STAGING IN GYNECOLOGICAL CANCER].

    PubMed

    Chakalova, G

    2016-01-01

    Among the key factors that influence the survival of patients is adherence to medical treatment standards. Indicators are assessing the degree of adherence to medical standards and represent the relative shares (%) of patients who fulfilled the relevant aspect of any subject. Data from the BNCR of 9842 cases of patients with malignant diseases of the female reproductive diagnosed in 2011-2013 in Bulgaria has been analyzed. Patients with tumors of the vulva were incorrectly staged in 15% to 30% of the cases, and those with vaginal tumors were incorrectly staged in 20% to 23% of cases. In patients with malignant tumors of the cervix incorrect staging was established in 19% to 47% of the cases. Patients with tumors of the uterus were incorrectly staged in 6% to 26% of the cases. Among the patients with ovarian tumors were incorrectly staged in 18% to 43%. Our results show that one in three patients with gynecological cancer in Bulgaria was incorrectly staged. We recommend using the current TNM and FIGO systems. PMID:27514165

  9. Characterization of antibody inhibiting adherence of Bordetella pertussis to human respiratory epithelial cells.

    PubMed Central

    Tuomanen, E I; Zapiain, L A; Galvan, P; Hewlett, E L

    1984-01-01

    We have recently established the topographic specificity of the adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. For this study, we employed the same quantitative, immunofluorescent adherence assay to test the possibility that sera of patients recovering from naturally acquired whooping cough or immunized with pertussis vaccine may contain activity capable of interfering with this specific adherence. Evaluation of paired sera from six children with culture-proven pertussis demonstrated that antiadherence activity appeared in serum during convalescence from disease. Nine children immunized with diptheria-pertussin-tetanus vaccine also showed activity against adherence, although it was significantly less than in those with clinical disease. Naturally acquired serum antiadherence activity was identified in both immunoglobulin G (IgG) and IgA antibody classes, whereas, as expected, only IgG antibody was present in children receiving the parenteral vaccine. The findings suggest that natural infection or vaccination are associated with the acquisition of serum activity inhibiting the adherence of B. pertussis to ciliated cells. Immunization may fail to elicit IgA antiadherence activity. PMID:6092416

  10. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Tolic-Norrelykke, Iva Marija; Chen, Jianxin; Mijailovich, Srboljub M.; Butler, James P.; Fredberg, Jeffrey J.; Stamenovic, Dimitrije; Ingber, D. E. (Principal Investigator)

    2002-01-01

    The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth muscle (HASM) cells. Traction microscopy was used to measure the distribution of contractile stresses arising at the interface between each cell and its substrate; this distribution is called the traction field. Because the traction field must be balanced by tensile stresses within the cell body, the prestress could be computed. Cell stiffness (G) was measured by oscillatory magnetic twisting cytometry. As the contractile state of the cell was modulated with graded concentrations of relaxing or contracting agonists (isoproterenol or histamine, respectively), the mean prestress ((t)) ranged from 350 to 1,900 Pa. Over that range, cell stiffness increased linearly with the prestress: G (Pa) = 0.18(t) + 92. While this association does not necessarily preclude other interpretations, it is the hallmark of systems that secure shape stability mainly through the prestress. Regardless of mechanism, these data establish a strong association between stiffness of HASM cells and the level of tensile stress within the cytoskeleton.

  11. Measuring Survival of Adherent Cells with the Colony-Forming Assay.

    PubMed

    Crowley, Lisa C; Christensen, Melinda E; Waterhouse, Nigel J

    2016-01-01

    Measuring cell death with colorimetric or fluorimetric dyes such as trypan blue and propidium iodide (PI) can provide an accurate measure of the number of dead cells in a population at a specific time; however, these assays cannot be used to distinguish cells that are dying or marked for future death. In many cases it is essential to measure the proliferative capacity of treated cells to provide an indirect measurement of cell death. This can be achieved using the colony-forming assay described here. This protocol specifically applies to measurement of HeLa cells but can be used for most adherent cell lines with limited motility. PMID:27480717

  12. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  13. Basal cell cancer (image)

    MedlinePlus

    ... is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure rate of more than 95%, but regular examination ...

  14. Triggering Death of Adherent Cells with Ultraviolet Radiation.

    PubMed

    Crowley, Lisa C; Waterhouse, Nigel J

    2016-01-01

    Ultraviolet (UV) radiation is a convenient stimulus for triggering cell death that is available in most laboratories. We use a Stratalinker UV cross-linker because it is a safe, cheap, reliable, consistent, and easily controlled source of UV irradiation. This protocol describes using a Stratalinker to trigger UV-induced death of HeLa cells. PMID:27371593

  15. Campylobacter jejuni: components for adherence to and invasion of eukaryotic cells.

    PubMed

    Lugert, Raimond; Gross, Uwe; Zautner, Andreas E

    2015-01-01

    Campylobacter (C.) jejuni is the most important reported cause for bacterial diarrhoea. The infection can be accompanied by fever and abdominal cramps and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Several biological properties of Cjejuni, e. g. motility and chemotaxis, contribute to the biological fitness of the pathogen. For this, deficiencies in the function of these features clearly reduce the pathogenicity of C. jejuni without being a virulence factor per se. Opposing to this, there are two essential requirements to determine the virulence of C. jejuni which represent the adherence to, and the invasion of host cells. Thereby, adherence, as a virulence factor, is mediated by many different bacterial-derived components like proteins but also by several oligo- and polysaccharide structures that are linked to surface proteins but also to the flagella. In addition, several invasion-relevant features of C. jejuni have been detected so far. Whereas some of them are described functionally to modulate cytoskeleton arrangement of the host cell, others are only described as invasion relevant. Indeed, investigations with respect to the pathogenic potential of some adherence- and invasion-relevant components did not give identical results indicating that their relevance might depend on the interplay of the respective C. jejuni strains used in these studies with the corresponding host cells. This review summarizes the C. jejuni components for adherence to and invasion of host cells together with their particular mode of action if known.

  16. IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase.

    PubMed

    Ariel, A; Yavin, E J; Hershkoviz, R; Avron, A; Franitza, S; Hardan, I; Cahalon, L; Fridkin, M; Lider, O

    1998-09-01

    Migration of inflammatory cells requires cell adhesion and their subsequent detachment from the extracellular matrix (ECM). Leukocyte activation and migration must be terminated to stop inflammation. Here, we report that IL-2 enhances human T cell adherence to laminin, collagen type IV, and fibronectin (FN). In contrast, neutrophil elastase, an enzyme activated during inflammation, degrades IL-2 to yield IL-2 fractions that inhibit IL-2-induced T cell adhesion to FN. The amino acid composition of two of these IL-2 fractions, which appear to block T cell adherence to FN, were analyzed, and three peptides were consequently synthesized. The three peptides IVL, RMLT, and EFLNRWIT, but not the corresponding inversely synthesized peptides, inhibited T cell adhesion to FN induced by a variety of activators: IL-2, IL-7, macrophage inflammatory protein (MIP)-1beta, and PMA, as well as anti-CD3 and anti-beta1 integrin-activating mAb. Moreover, these IL-2 peptides inhibited T cell chemotaxis via FN-coated membranes induced by IL-2 and MIP-1beta. Inhibition of T cell adherence and migration apparently involves abrogation of the rearrangement of the T cell actin cytoskeleton. Thus, the migrating immune cells, the cytokines, and the ECM can create a functional relationship in which both inflammation-inducing signals and inhibitory molecules of immune responses can coexist; the enzymatic products of IL-2 may serve as natural feedback inhibitors of inflammation. PMID:9725245

  17. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii.

    PubMed Central

    Holmes, A R; Gopal, P K; Jenkinson, H F

    1995-01-01

    Candida albicans ATCC 10261 and CA2 bound to cells of the oral bacteria Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguis when these bacteria were immobilized onto microtiter plate wells, but they did not bind to cells of Streptococcus mutans or Streptococcus salivarius. Cell wall polysaccharide was extracted with alkali from S. gordonii NCTC 7869, the streptococcal species to which C. albicans bound with highest affinity, and was effective in blocking the coaggregation of C. albicans and S. gordonii cells in the fluid phase. When fixed to microtiter plate wells, the S. gordonii polysaccharide was bound by all strains of C. albicans tested. The polysaccharide contained Rha, Glc, GalNAc, GlcNAc, and Gal and was related compositionally to previously characterized cell wall polysaccharides from strains of S. oralis and S. sanguis. The adherence of yeast cells to the immobilized polysaccharide was not inhibitable by a number of saccharides. Antiserum raised to the S. gordonii NCTC 7869 polysaccharide blocked adherence of C. albicans ATCC 10261 to the polysaccharide. The results identify a complex cell wall polysaccharide of S. gordonii as the coaggregation receptor for C. albicans. Adherent interactions of yeast cells with streptococci and other bacteria may be important for colonization of both hard and soft oral surfaces by C. albicans. PMID:7729891

  18. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210

    PubMed Central

    Bigagli, Elisabetta; Luceri, Cristina; Guasti, Daniele; Cinci, Lorenzo

    2016-01-01

    ABSTRACT Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer

  19. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  20. Chemotherapy targeting cancer stem cells.

    PubMed

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future.

  1. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  2. Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments.

    PubMed

    Cansolino, L; Clerici, A M; Zonta, C; Dionigi, P; Mazzini, G; Di Liberto, R; Altieri, S; Ballarini, F; Bortolussi, S; Carante, M P; Ferrari, M; González, S J; Postuma, I; Protti, N; Santa Cruz, G A; Ferrari, C

    2015-12-01

    The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones. PMID:26256647

  3. Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments.

    PubMed

    Cansolino, L; Clerici, A M; Zonta, C; Dionigi, P; Mazzini, G; Di Liberto, R; Altieri, S; Ballarini, F; Bortolussi, S; Carante, M P; Ferrari, M; González, S J; Postuma, I; Protti, N; Santa Cruz, G A; Ferrari, C

    2015-12-01

    The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones.

  4. Differences in Haemophilus parasuis adherence to and invasion of AOC-45 porcine aorta endothelial cells

    PubMed Central

    2013-01-01

    Background The pathogenesis of Haemophilus parasuis depends on the bacterium’s ability to interact with endothelial cells and invade adjacent tissues. In this study, we investigated the abilities of eight H. parasuis reference strains belonging to serovars 1, 2, 4, 5, 7, 9, 10 and 13 to adhere to and invade porcine aortic endothelial cells (AOC-45 cell line). Results The strains belonging to serovars 1, 2 and 5 were able to attach at high rates between 60 and 240 min of incubation, and serovars 4, 7 and 13 had moderate attachment rates; however, the strains belonging to serovars 9 and 10 had low adherence at all time points. Strong adherence was observed by scanning electron microscopy for the strains of serovars 5 and 4, which had high and moderate numbers, respectively, of H. parasuis cells attached to AOC-45 cells after 240 min of incubation. The highest invasiveness was reached at 180 min by the serovar 4 strain, followed by the serovar 5 strain at 240 min. The invasion results differed substantially depending on the strain. Conclusion The reference strains of H. parasuis serovars 1, 2, 4 and 5 exhibited high adhesion and invasion levels to AOC-45 porcine aorta endothelial cells, and these findings could aid to better explain the pathogenesis of the disease caused by these serovars. PMID:24119995

  5. Refining Measurement of Social Cognitive Theory Factors Associated with Exercise Adherence in Head and Neck Cancer Patients.

    PubMed

    Rogers, Laura Q; Fogleman, Amanda; Verhulst, Steven; Bhugra, Mudita; Rao, Krishna; Malone, James; Robbs, Randall; Robbins, K Thomas

    2015-01-01

    Social cognitive theory (SCT) measures related to exercise adherence in head and neck cancer (HNCa) patients were developed. Enrolling 101 HNCa patients, psychometric properties and associations with exercise behavior were examined for barriers self-efficacy, perceived barriers interference, outcome expectations, enjoyment, and goal setting. Cronbach's alpha ranged from.84 to.95; only enjoyment demonstrated limited test-retest reliability. Subscales for barriers self-efficacy (motivational, physical health) and barriers interference (motivational, physical health, time, environment) were identified. Multiple SCT constructs were cross-sectional correlates and prospective predictors of exercise behavior. These measures can improve the application of the SCT to exercise adherence in HNCa patients.

  6. Refining Measurement of Social Cognitive Theory Factors Associated with Exercise Adherence in Head and Neck Cancer Patients.

    PubMed

    Rogers, Laura Q; Fogleman, Amanda; Verhulst, Steven; Bhugra, Mudita; Rao, Krishna; Malone, James; Robbs, Randall; Robbins, K Thomas

    2015-01-01

    Social cognitive theory (SCT) measures related to exercise adherence in head and neck cancer (HNCa) patients were developed. Enrolling 101 HNCa patients, psychometric properties and associations with exercise behavior were examined for barriers self-efficacy, perceived barriers interference, outcome expectations, enjoyment, and goal setting. Cronbach's alpha ranged from.84 to.95; only enjoyment demonstrated limited test-retest reliability. Subscales for barriers self-efficacy (motivational, physical health) and barriers interference (motivational, physical health, time, environment) were identified. Multiple SCT constructs were cross-sectional correlates and prospective predictors of exercise behavior. These measures can improve the application of the SCT to exercise adherence in HNCa patients. PMID:26177345

  7. Social capital and adherence to cervical and breast cancer screening guidelines: a cross-sectional study in rural Crete.

    PubMed

    Moudatsou, Maria M; Kritsotakis, George; Alegakis, Athanasios K; Koutis, Antonios; Philalithis, Anastasios E

    2014-07-01

    Breast and cervical cancers are among the leading causes of female mortality. The reasons that make women adhere, or not, to screening guidelines are not only related to individual and health characteristics but are also placed in a wider social and cultural context. Social capital might facilitate the dissemination of relevant knowledge of and the adherence to cancer screening guidelines. This cross-sectional study explored the associations of individual-level social capital with breast and cervical cancer screening and the knowledge for the existence of relevant screening tests (Pap test and mammography) in the municipality of Gorgolaini, a rural area in Crete, Greece. A random sample of 131 of the 592 women of the 2001 electoral register were invited to participate in the study and 125 completed the Social Capital Questionnaire and two questions on self-reported health knowledge and behaviour (participation rate 95.4%). Women were eligible to participate if they were aged 35-75, had lived in the area for the last 10 years and were of Greek origin. Multiple logistic regressions were performed to establish associations among each social capital factor (total, participation in the community, value of life, tolerance for diversity, feelings of safety, family/friends connections) and knowledge of and adherence to breast and cervical cancer screening guidelines after adjustment for confounders. Our results suggest that early detection of breast and cervical cancers may be facilitated when taking into account the social context of the population.

  8. Adherence to the Mediterranean diet is associated with lower likelihood of breast cancer: a case-control study.

    PubMed

    Mourouti, Niki; Kontogianni, Meropi D; Papavagelis, Christos; Plytzanopoulou, Petrini; Vassilakou, Tonia; Malamos, Nikolaos; Linos, Athena; Panagiotakos, Demosthenes B

    2014-01-01

    Mediterranean diet has long been associated with human health. However, its relationship with breast cancer remains not well understood and appreciated. The aim of this work was to evaluate the association between adherence to the Mediterranean diet and its inherent constituents, with breast-cancer. Two-hundred-and-fifty consecutive, newly diagnosed breast-cancer female patients (56 ± 12 yr) and 250, 1-to-1 age-matched with the patients, controls, were studied. A standardized, validated questionnaire assessing various sociodemographic, clinical, lifestyle, and dietary characteristics, was applied through face-to-face interviews. Adherence to the Mediterranean diet was evaluated using the 11-components MedDietScore (theoretical range 0-55). Multiple logistic regression was applied to test the research hypothesis, whereas discriminant analysis was used to explore the strength of each component in relation to the outcome. One unit increase in the MedDietScore (i.e., greater adherence to the Mediterranean diet) was associated with 9% lower likelihood of having breast cancer (odds ratio = 0.91; 95% confidence interval, 0.86, 0.97). Decomposition of the MedDietScore revealed that the most important components and with beneficial effect were nonrefined cereals, vegetables, fruits, and alcohol, followed by red meat, but with unfavorable effect. A dietary recommendation for healthy eating, close to the Mediterranean dietary pattern, seems promising for breast cancer prevention.

  9. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    SciTech Connect

    Saiman, L.; Cacalano, G.; Prince, A. )

    1990-08-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment.

  10. A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells

    PubMed Central

    Hara-Kaonga, Bochiwe; Pistole, Thomas G.

    2009-01-01

    Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are unable consistently to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells. PMID:17222473

  11. A dual fluorescence flow cytometric analysis of bacterial adherence to mammalian host cells.

    PubMed

    Hara-Kaonga, Bochiwe; Pistole, Thomas G

    2007-04-01

    Flow cytometry has provided a powerful tool for analyzing bacteria-host cell associations. Established approaches have used bacteria, labeled either directly with fluorochromes or indirectly with fluorescently conjugated antibodies, to detect these associations. Although useful, these techniques are consistently unable to include all host cells in the analysis while excluding free, aggregated bacteria. This study describes a new flow cytometry method of assessing bacterial adherence to host cells based on direct fluorescent labeling of both bacteria and host cells. Eukaryotic host cells were labeled with PKH-26, a red fluorescent dye, and bacteria were labeled with fluorescein isothiocyanate, a green fluorescent dye. The red host cells were gated and the mean green fluorescence intensity (MFI) of these red cells was determined. We used MFI values obtained from control samples (unlabeled and labeled host cells with unlabeled bacteria) to eliminate contributions due to autofluorescence. The final MFI values represent fluorescence of host cells resulting from the adherent bacteria. Because all red fluorescent cells are analyzed, this method includes all the eukaryotic cells for analysis but excludes all free or aggregated bacteria that are not bound to target cells.

  12. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells.

    PubMed

    Chung, H J; Hassan, M M; Park, J O; Kim, H J; Hong, S T

    2015-05-01

    Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery.

  13. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  14. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  15. Development and validation of an instrument to measure factors related to colorectal cancer screening adherence.

    PubMed

    Vernon, S W; Myers, R E; Tilley, B C

    1997-10-01

    This report describes the development and refinement of a set of scales for use in research on predictors of colorectal cancer screening adherence. The study population included 2693 of 4490 eligible white male automotive employees who answered a mailed questionnaire (60% response rate) on beliefs and attitudes related to colorectal cancer and screening. Exploratory and confirmatory factor analyses and multitrait scaling analysis were used to evaluate the construct validity of a priori scales developed to measure salience and coherence, perceived susceptibility, worries about screening, screening efficacy, social influence, and intention. Analyses supported the construct validity of scales for salience and coherence, perceived susceptibility, and worries about screening. Four items originally assigned to the salience and coherence construct loaded on a separate factor that appeared to measure self-efficacy. There was no empirical support for scales measuring screening efficacy and social influence, and there was limited empirical support for a scale measuring intention. Confirmatory factor analysis of the scales measuring salience and coherence, self-efficacy, perceived susceptibility, and worries about screening showed a similar factor structure in white men with and without a personal history of polyps, indicating that the scales may be useful for studies of both colorectal cancer screening and surveillance. Multitrait scaling analysis showed some support for internal consistency reliability of those scales in women (n = 42) and in African-American men (n = 56), and there was some support for the factor structure in those two subgroups. Future studies should evaluate the psychometric properties of these and similar scales in diverse population subgroups. PMID:9332766

  16. Impact Mediated Loading Cytoplasmic Loading of Macromolecules into Adherent Cells

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F.; Feeback, Daniel L.; Vanderburg, Charles R.

    2003-01-01

    The advent of modern molecular biology, including the development of gene array technologies, has resulted in an explosion of information concerning the specific genes activated during normal cellular development, as well as those associated with a variety of pathological conditions. These techniques have served as a highly efficient, broacI.-based screening approach for those specific genes involved. in regulating normal cellular physiology and identifying candidate genes directly associated with the etiology of specific disease states. However, this approach provides information at the transcriptional' level only and does not necessarily indicate . that the gene in question is in fact translated ito a protein, or whether or not post-translational modification of the protein occurs. The critical importance of post-translational modification (i.e. phosphorylation, glycosylation, sialyation, etc.) to protein function has been recognized with regard to a number of proteins involved in a variety of important disease states. For example, altered glycosylation of beta-amyloid precursor protein results in an increase in the amount of beta-amyloid peptide generated and hence secreted as insoluble extracellular amyloid deposits (Georgopoulou, McLaughlin et al. 2001; Walter, Fluhrer et al. 2001), a pathological hal1nark of Alzheimer's disease. Abnormal phosphorylaion of synapsin I has been linked to alterations in synaptic vesicle trafficking leading to defective neurotransmission in Huntington's disease (Lievens, Woodman et al. 2002). Altered phosphorylation of the TAU protein involved in microtubule function has been linked to a number of neurodegenative diseases such as Alzheimer's disease (Billingsley and Kincaid 1997; Sanchez, Alvarez-Tllada et a1. 2001). Aberrant siaIyation of cell/I surface antigens has been detected in a number of different tumor cell types and has been linked to the acquisition of a neoplastic phenotype (Sell 1990), while improper' sia1yation of

  17. Low white blood cell count and cancer

    MedlinePlus

    Neutropenia and cancer; Absolute neutrophil count and cancer; ANC and cancer ... A person with cancer can get a low white blood cell count from the cancer or from treatment for the cancer. Cancer may ...

  18. Heparin modulates intracellular cyclic AMP in human trabecular bone cells and adherent rheumatoid synovial cells.

    PubMed Central

    Crisp, A J; Roelke, M S; Goldring, S R; Krane, S M

    1984-01-01

    Cells were cultured from explants of human trabecular bone excised from eight patients and incubated usually for 20 minutes with bovine parathyroid hormone, salmon calcitonin, prostaglandin E2, or heparin. The intracellular content of cyclic AMP was measured by radioimmunoassay and was significantly increased by parathyroid hormone in four, by calcitonin in two, by prostaglandin E2 in eight, and by heparin in seven out of eight cultures. In the two cultures containing calcitonin-responsive cells heparin inhibited the cyclic AMP response induced by calcitonin. Heparin did not affect the cyclic AMP response to parathyroid hormone or prostaglandin E2. Heparin also increased the cyclic AMP content of cultured adherent rheumatoid synovial cells. It is proposed that, in certain situations of focal pathological bone resorption, although concentrations of circulating hormones may be normal, the local release of products such as heparin may modify the effect of hormones which regulate connective tissue homoeostasis. local changes in hormone responses could contribute to the enhanced bone resorption associated with inflammatory processes such as rheumatoid arthritis. Images PMID:6089675

  19. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  20. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    PubMed

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  1. Urease prevents adherence of Helicobacter pylori to Kato III gastric epithelial cells.

    PubMed

    Makristathis, A; Rokita, E; Pasching, E; Apfalter, P; Willinger, B; Rotter, M L; Hirschl, A M

    2001-08-15

    The role of urease in Helicobacter pylori adherence to and internalization by Kato III cells was investigated. Kato III cells were incubated with wild-type strains (N6 or P1), with isogenic mutants lacking urease (N6ureB::TnKm or P1ureA::TnMax5) or producing the inactive apoprotein (N6ureG::TnKm), and with urease-positive clones recovered after complementation of N6ureB::TnKm with ureAB. Bacteria were stained with the green fluorescent dye PKH2, and the bacteria load of cells was analyzed by flow cytometry. With mutants lacking urease, the bacteria load was considerably increased, in comparison with the corresponding parental strains (P<.001). With clone K2(3), producing larger amounts of urease than N6, a significant reduction of bacteria load was observed, in comparison with the wild type (P<.001). N6ureG::TnKm showed adherence characteristics similar to those of N6. The role of urease in internalization was not clear. Thus, urease significantly inhibits H. pylori adherence to Kato III cells by a mechanism largely independent of enzymatic activity. PMID:11471101

  2. Adherence to Adjuvant Hormone Therapy in Low-income Women with Breast Cancer: The Role of Provider-Patient Communication

    PubMed Central

    Liu, Yihang; Malin, Jennifer L.; Diamant, Allison L; Thind, Amardeep; Maly, Rose C

    2013-01-01

    Purpose To assess the impact of patient-provider communication on adherence to tamoxifen (TAM) and aromatase inhibitors (AI) 36 months after breast cancer (BC) diagnosis in a low-income population of women. Methods California statewide surveys were conducted among 921 low-income women with BC at 6-, 18-, and 36-months after BC diagnosis. A subset of 303 women with stage I–III BC who initiated hormone treatment after diagnosis was identified. Bivariate and multivariate logistic regression analyses were performed, and adjusted adherence rates were calculated. The main outcome measure was self-reported hormone use at 36 months after BC diagnosis and the chief independent variables were patient-centered communication after diagnosis by patient report as measured by the Consumer Assessment of Healthcare Providers and Systems (CAHPS) and patients’ self-efficacy in patient-physician interactions (PEPPI). Results Overall adherence to TAM/AI was relatively high (88%). Adjusted rates of adherence were 59% and 94% for patients with the lowest vs. highest scores on the CAHPS communication scale (AOR=1.22, P=0.006) and 72% vs. 91% for patients with the lowest and highest rating of PEPPI (AOR=1.04, P=0.04). Having at least one comorbid condition also increased the odds of adherence to hormonal therapy (AOR=3.14, P=0.03). Having no health insurance and experiencing side-effects from hormone treatment were barriers for adherence (AOR=0.12, P=0.001; AOR=0.26, P=0.003, respectively). Conclusions Patient-centered communication and perceived self-efficacy in patient-physician interaction were significantly associated with patient adherence to ongoing TAM/AI therapy among low-income women with BC. Interventions on patient-provider communication may provide opportunities to improve patient outcomes in this vulnerable population. PMID:23263740

  3. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells

    SciTech Connect

    Meng, Guixian; Pan, Leiting; Li, Cunbo; Hu, Fen; Shi, Xuechen; Lee, Imshik; Drevenšek-Olenik, Irena; Zhang, Xinzheng; Xu, Jingjun

    2014-01-17

    Highlights: •We detailedly examine temperature effects of Fluo-3 AM labelling in adherent cells. •4 °C Loading and 20 °C de-esterification of Fluo-3 AM yields brighter nuclei. •Brighter nuclei labelling by Fluo-3 AM also depends on cell adhesion quality. •A qualitative model of the brighter nucleus is proposed. -- Abstract: Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca{sup 2+}]{sub c}) and nuclear calcium ([Ca{sup 2+}]{sub n}) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca{sup 2+}]{sub n} detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca{sup 2+}]{sub n} and [Ca{sup 2+}]{sub c} in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells.

  4. Adherence of bacteria, yeast, blood cells, and latex spheres to large-porosity membrane filters.

    PubMed Central

    Zierdt, C H

    1979-01-01

    Strong adherence of bacteria, yeast, erythrocytes, leukocytes, platelets, spores, and polystyrene spheres to membrane filter materials was noted during filtration through membranes with pore size diameters much larger than the particles themselves. Quantitative recovery on the membrane filters of these particles from low-concentration suspensions was achieved during gravity- or vacuum-assisted filtration through membranes with pore diameters as much as 30 times that of the filtered particles. Mechanical sieving was not responsible. The phenomenon was judged to be electrostatic. It could be partially blocked by pretreating the filter with a nonionic surfactant (Tween 20), and elution of adherent particles was achieved with 0.05% Tween 20. Gram-positive cocci were removed from suspension more efficiently than gram-negative rods. The commonly used cellulose membranes adsorbed more bacteria, blood cells, and other particles than did polycarbonate filters. Of lesser adsorptive capacity were vinyl acetate, nylon, acrylic, and Teflon membranes. Backwashing with saline, serum, 6% NaCl, dextran solutions, or phosphate buffers of varying molality and pH removed only a fraction of adherent particles. Tween 20 (0.05%) eluted up to 45% of adherent particles in a single back-filtration. Selected filters quantitatively removed the particles tested, which then could be washed and subjected to reagents for a variety of purposes. It is important to anticipate the removal of particles during membrane filtration, since it is not a simple mechanical event. Images PMID:393171

  5. Upon impact: the fate of adhering Pseudomonas fluorescens cells during nanofiltration.

    PubMed

    Habimana, Olivier; Semião, Andrea J C; Casey, Eoin

    2014-08-19

    Nanofiltration (NF) is a high-pressure membrane filtration process increasingly applied in drinking water treatment and water reuse processes. NF typically rejects divalent salts, organic matter, and micropollutants. However, the efficiency of NF is adversely affected by membrane biofouling, during which microorganisms adhere to the membrane and proliferate to create a biofilm. Here we show that adhered Pseudomonas fluorescens cells under high permeate flux conditions are met with high fluid shear and convective fluxes at the membrane-liquid interface, resulting in their structural damage and collapse. These results were confirmed by fluorescent staining, flow cytometry, and scanning electron microscopy. This present study offers a "first-glimpse" of cell damage and death during the initial phases of bacterial adhesion to NF membranes and raises a key question about the role of this observed phenomena during early-stage biofilm formation under permeate flux and cross-flow conditions. PMID:25072514

  6. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  7. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    PubMed Central

    Busschots, Steven; O’Toole, Sharon; O’Leary, John J.; Stordal, Britta

    2014-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. • Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner. • The technique is quick, affordable and eliminates sample manipulation. • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  8. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell ... seen in young adults. Patients with mediastinal nonseminomatous EGC are typically classed as poor risk patients because ...

  9. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    PubMed

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents. PMID:19427124

  10. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells.

    PubMed Central

    Arroyo, R; Alderete, J F

    1989-01-01

    The role of cysteine proteinases in adherence of Trichomonas vaginalis NYH 286 to HeLa and human vaginal epithelial cells was evaluated. Only pretreatment of trichomonads, but not epithelial cells, with N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), an inhibitor of trichomonad cysteine proteinases, greatly diminished the ability of T. vaginalis to recognize and bind to epithelial cells. Leupeptin and L-1-tosylamide-2-phenylethyl chloromethyl ketone, other cysteine proteinase inhibitors, also decreased T. vaginalis cytadherence. Parasites incubated with TLCK and washed extensively still did not adhere to cells at levels equal to those seen for control trichomonads treated with phosphate-buffered saline or culture medium alone. Exposure of TLCK-treated organisms with other cysteine proteinases restored cytadherence levels, indicating that proteinase action on the parasite surface is prerequisite for host cell attachment. Concentrations of TLCK which inhibited cytadherence did not alter the metabolism of T. vaginalis, as determined by metabolic labeling of trichomonad proteins; the protein patterns of T. vaginalis in the presence and absence of TLCK were identical. Kinetics of TLCK-mediated inhibition of cytadherence of other T. vaginalis isolates with different levels of epithelial-cell parasitism were similar to the concentration-dependent inhibition seen for isolate NYH 286. Incubation of TLCK-treated, washed organisms in growth medium resulted in regeneration of adherence. Finally, treatment of T. vaginalis organisms with proteinase inhibitors for abrogation of cytadherence effectively rendered the trichomonads unable to kill host cells, which is consistent with the contact-dependent nature of host cytotoxicity. These data show for the first time the involvement of T. vaginalis cysteine proteinases in parasite attachment to human epithelial cells. These results have implications for future pharmacologic intervention at a key step in infection. PMID:2789190

  11. Transglutaminase 2 is essential for adherence of Porphyromonas gingivalis to host cells

    PubMed Central

    Boisvert, Heike; Lorand, Laszlo; Duncan, Margaret J.

    2014-01-01

    Porphyromonas gingivalis is the major causative agent of periodontitis, and it may also be involved in the development of systemic diseases (atherosclerosis, rheumatoid arthritis). P. gingivalis is found on and within oral and gingival epithelial cells following binding to surface components of host cells, which serve as receptors for the bacterium. Evidence is presented in this study that shows that transglutaminase 2 (TG2) plays a critical role in the adherence of P. gingivalis to host cells. Studies of confocal microscopy indicate colocalization of P. gingivalis with TG2 on the surface of HEp-2 epithelial cells, with clusters of TG2 seen at bacterial attachment sites. By silencing the expression of TG2 with siRNA in HEp-2 cells, P. gingivalis association was greatly diminished. The bacterium does not bind well to a mouse fibroblast cell line that produces low amounts of surface TG2, but binding can be restored by introduction of TG2 expressed on a plasmid. TG2 can form very tight complexes with fibronectin (FN), and the complementary binding sites of the two proteins are known. A synthetic peptide that mimics the main FN-binding sequence of TG2 blocks the formation of TG2–FN complexes and is highly effective in inhibiting adherence of P. gingivalis to host cells. These findings provide evidence of a role for cell-surface TG2 in bacterial attachment and subsequent internalization. PMID:24706840

  12. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  13. Pancreatic small cell cancer.

    PubMed

    El Rassy, Elie; Tabchi, Samer; Kourie, Hampig Raphael; Assi, Tarek; Chebib, Ralph; Farhat, Fadi; Kattan, Joseph

    2016-06-01

    Small cell carcinoma (SCC) is most commonly associated with lung cancer. Extra-pulmonary SCC can originate in virtually any organ system, with the gastrointestinal tract being the most common site of involvement. We review the clinical presentation, pathogenesis, histology, imaging modalities and optimal therapeutic management of PSCC in light of available evidence. PMID:26566245

  14. Correlates of Adherence to a Telephone-Based Multiple Health Behavior Change Cancer Preventive Intervention for Teens: The Healthy for Life Program (HELP)

    ERIC Educational Resources Information Center

    Mays, Darren; Peshkin, Beth N.; Sharff, McKane E.; Walker, Leslie R.; Abraham, Anisha A.; Hawkins, Kirsten B.; Tercyak, Kenneth P.

    2012-01-01

    This study examined factors associated with teens' adherence to a multiple health behavior cancer preventive intervention. Analyses identified predictors of trial enrollment, run-in completion, and adherence (intervention initiation, number of sessions completed). Of 104 teens screened, 73% (n = 76) were trial eligible. White teens were more…

  15. Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells

    NASA Astrophysics Data System (ADS)

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan

    2011-03-01

    Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.

  16. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells.

    PubMed

    Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo

    2014-10-01

    Adherent eukaryotic cells are subjected to a broad variety of extracellular and intracellular stimuli regulating their behaviour. These stimuli can be either purely chemical, for example soluble factors binding to the cell membrane, or mechano-chemical, for example integrin-based adhesion complexes stretching the cell cytoskeleton. Here, we focus on mechano-chemical stimuli such as extracellular forces (interstitial flow, pressurization) and intracellular forces (due to cell adhesion), which may combine generating stress-strain states in the cytoskeleton. These states are transferred to the nucleus to influence the transcription of specific genes, likely by changing the chromatin organization and by altering the permeability of the nuclear membrane. While there exists increasing experimental evidence of the mechanosensing role of the cell nucleus, both the underlying molecular mechanisms involved, and the nuclear structural behaviour in response to forces, are still poorly understood. Here, we review the existing literature on computational models developed to investigate the chemo-mechanical behaviour of adherent eukaryotic cells. We analyse two main classes of models of single-cell mechanics, based either on the discrete or on the continuum approaches. We focus on the bio-chemo-mechanical model and modelling techniques accounting for the nuclear body. The modelling techniques are discussed highlighting their ability in predicting cytoskeletal contractility states and nuclear stress-strain states.

  17. Effect of enteroviruses on adherence to and invasion of HEp-2 cells by Campylobacter isolates.

    PubMed Central

    Konkel, M E; Joens, L A

    1990-01-01

    Coinfection of HEp-2 epithelial cells with coxsackievirus B3, echovirus 7, poliovirus (LSc type 1), porcine enterovirus, and Campylobacter isolates was performed to determine if a synergistic effect could be obtained. The invasiveness of Campylobacter jejuni ATCC 33560 was significantly increased for HEp-2 cells preinfected with echovirus 7, coxsackievirus B3, and UV-inactivated (noninfectious) coxsackievirus B3 particles. Additionally, the invasiveness of C. jejuni M96, a clinical isolate, was significantly increased for HEp-2 cells preinfected with coxsackievirus B3. Poliovirus and porcine enterovirus had no effect on C. jejuni ATCC 33560 adherence and invasiveness. Furthermore, poliovirus had no effect on the ability of C. jejuni M96 to adhere to and invade HEp-2 cells. Campylobacter hyointestinalis and Campylobacter mucosalis, two noninvasive isolates, did not invade virus-infected HEp-2 cells. The increase in the invasiveness of C. jejuni appeared to be the result of specific interactions between the virus and the HEp-2 cell membrane. The data suggest that the invasiveness of Campylobacter spp. is dependent upon the inherent properties of the organism. Virus-induced cell alterations can potentiate the invasiveness of virulent Campylobacter spp. but are not sufficient to allow internalization of noninvasive bacteria. PMID:2156779

  18. Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells.

    PubMed

    Gavrilovskaya, Irina N; Gorbunova, Elena E; Mackow, Erich R

    2010-05-01

    Hantavirus infections are noted for their ability to infect endothelial cells, cause acute thrombocytopenia, and trigger 2 vascular-permeability-based diseases. However, hantavirus infections are not lytic, and the mechanisms by which hantaviruses cause capillary permeability and thrombocytopenia are only partially understood. The role of beta(3) integrins in hemostasis and the inactivation of beta(3) integrin receptors by pathogenic hantaviruses suggest the involvement of hantaviruses in altered platelet and endothelial cell functions that regulate permeability. Here, we determined that pathogenic hantaviruses bind to quiescent platelets via a beta(3) integrin-dependent mechanism. This suggests that platelets may contribute to hantavirus dissemination within infected patients and provides a means by which hantavirus binding to beta(3) integrin receptors prevents platelet activation. The ability of hantaviruses to bind platelets further suggested that cell-associated hantaviruses might recruit platelets to the endothelial cell surface. Our findings indicate that Andes virus (ANDV)- or Hantaan virus (HTNV)-infected endothelial cells specifically direct the adherence of calcein-labeled platelets. In contrast, cells comparably infected with nonpathogenic Tula virus (TULV) failed to recruit platelets to the endothelial cell surface. Platelet adherence was dependent on endothelial cell beta(3) integrins and neutralized by the addition of the anti-beta(3) Fab fragment, c7E3, or specific ANDV- or HTNV-neutralizing antibodies. These findings indicate that pathogenic hantaviruses displayed on the surface of infected endothelial cells bind platelets and that a platelet layer covers the surface of infected endothelial cells. This fundamentally changes the appearance of endothelial cells and has the potential to alter cellular immune responses, platelet activation, and endothelial cell functions that affect vascular permeability. Hantavirus-directed platelet quiescence and

  19. Moraxella catarrhalis Expresses a Cardiolipin Synthase That Impacts Adherence to Human Epithelial Cells

    PubMed Central

    Buskirk, Sean W.

    2014-01-01

    The major phospholipid constituents of Moraxella catarrhalis membranes are phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin (CL). However, very little is known regarding the synthesis and function of these phospholipids in M. catarrhalis. In this study, we discovered that M. catarrhalis expresses a cardiolipin synthase (CLS), termed MclS, that is responsible for the synthesis of CL within the bacterium. The nucleotide sequence of mclS is highly conserved among M. catarrhalis isolates and is predicted to encode a protein with significant amino acid similarity to the recently characterized YmdC/ClsC protein of Escherichia coli. Isogenic mclS mutant strains were generated in M. catarrhalis isolates O35E, O12E, and McGHS1 and contained no observable levels of CL. Site-directed mutagenesis of a highly conserved HKD motif of MclS also resulted in a CL-deficient strain. Moraxella catarrhalis, which depends on adherence to epithelial cells for colonization of the human host, displays significantly reduced levels of adherence to HEp-2 and A549 cell lines in the mclS mutant strains compared to wild-type bacteria. The reduction in adherence appears to be attributed to the absence of CL. These findings mark the first instance in which a CLS has been related to a virulence-associated trait. PMID:24142255

  20. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    PubMed

    Bedran, Telma Blanca Lombardo; Grignon, Louis; Spolidorio, Denise Palomari; Grenier, Daniel

    2014-01-01

    Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs) of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  1. Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells

    PubMed Central

    Davidson, Allyson Fry; Glasscock, Cameron; McClanahan, Danielle R.; Benson, James D.; Higgins, Adam Z.

    2015-01-01

    Ice-free cryopreservation, known as vitrification, is an appealing approach for banking of adherent cells and tissues because it prevents dissociation and morphological damage that may result from ice crystal formation. However, current vitrification methods are often limited by the cytotoxicity of the concentrated cryoprotective agent (CPA) solutions that are required to suppress ice formation. Recently, we described a mathematical strategy for identifying minimally toxic CPA equilibration procedures based on the minimization of a toxicity cost function. Here we provide direct experimental support for the feasibility of these methods when applied to adherent endothelial cells. We first developed a concentration- and temperature-dependent toxicity cost function by exposing the cells to a range of glycerol concentrations at 21°C and 37°C, and fitting the resulting viability data to a first order cell death model. This cost function was then numerically minimized in our state constrained optimization routine to determine addition and removal procedures for 17 molal (mol/kg water) glycerol solutions. Using these predicted optimal procedures, we obtained 81% recovery after exposure to vitrification solutions, as well as successful vitrification with the relatively slow cooling and warming rates of 50°C/min and 130°C/min. In comparison, conventional multistep CPA equilibration procedures resulted in much lower cell yields of about 10%. Our results demonstrate the potential for rational design of minimally toxic vitrification procedures and pave the way for extension of our optimization approach to other adherent cell types as well as more complex systems such as tissues and organs. PMID:26605546

  2. Applications of electroporation of adherent cells in situ, on a partly conductive slide.

    PubMed

    Raptis, L H; Brownell, H L; Liu, S K; Firth, K L; MacKenzie, L W; Stiles, C D; Alberta, J A

    1995-10-01

    Nontraumatic, simple, and reproducible procedures for the introduction of nonpermeant molecules into adherent mammalian cells by in situ electroporation are described. Cells are grown on a glass slide, half of which is coated with electrically conductive, optically transparent, indium-tin oxide. An electric pulse is applied in the presence of the molecules to be introduced, and their effect on the cellular phenotype can be observed. The cells growing on the nonconductive side of the slide do not receive any pulse and serve as controls. Careful adjustment of electric field strength can achieve the introduction of the molecules into essentially 100% of the cells, and this treatment causes no detectable disruption to cellular metabolism. This is applied in the presence of the fluorescent dye, Lucifer yellow, causing its penetration into the cells growing on the conductive half of the slide. The migration of the dye to the nonelectroporated cells growing on the nonconductive area is microscopically observed under fluorescence illumination. PMID:8556428

  3. Fibrin clots keep non-adhering living cells in place on glass for perfusion or fixation.

    PubMed

    Forer, Arthur; Pickett-Heaps, Jeremy

    2005-09-01

    We describe a method to hold living cells in place that ordinarily do not adhere to glass coverslips. The method, developed for insect spermatocytes but with application to other cell types, consists of embedding cells in a fibrin clot that forms after the enzyme thrombin cleaves the blood protein fibrinogen. The method permits continuous observation of living cells as they are treated with and recover from drug or other treatments: when held in the clot the living cells remain in place and keep their shapes when perfused with drugs that ordinarily cause drastic shape changes, and they remain in place and keep their shapes through lysis/fixation procedures. We describe how to place live cells in a fibrin clot and how subsequently to perfuse them. PMID:16095930

  4. Adherence of Staphylococcus epidermidis to human endothelial cells is associated with a polysaccharidic component of its extracellular mucous layer.

    PubMed

    Krevvata, Maria I; Spiliopoulou, Anastasia; Anastassiou, Evangelos D; Karamanos, Nikos; Kolonitsiou, Fevronia

    2011-06-01

    Bacterial adherence to eukaryotic cells is highly contributing to microbial pathogenesis. Bacterial adhesins, macromolecules, and glycosaminoglycan chains of the endothelial cell surface have been implicated in staphylococcal attachment. Our research group has isolated an antigenic polysaccharidic component of Staphylococcus epidermidis extracellular layer, known as 20-kDa PS (PS), and showed that antibodies against this polysaccharide protect from infections. Therefore, the role of PS in S. epidermidis adherence to endothelial cells was studied. For this purpose we examined the impact of PS on the ability of two S. epidermidis strains (a PS-producing and a non-PS-producing strain) to adhere to human endothelial cells in the presence or absence of specific antibodies to this polysaccharide. Hence, it is established that exogenous chondroitin sulfate (CS) decreases, in part, the S. epidermidis' attachment to endothelial cells and the antagonistic binding effect of CS and PS was also studied. The results obtained demonstrate that PS facilitates the adherence of S. epidermidis to both strains. CS abolished the PS-induced adherence in PS-producing strain and partially in the non-PS-producing one. Conclusively, the adherence of S. epidermidis to human endothelial cells is associated with its extracellular PS component and it is suggested that the bacterial binding via glycosaminoglycan chains is an important mechanism underlining the PS-induced binding to endothelial cells.

  5. Participation of Integrin α5β1 in the Fibronectin-Mediated Adherence of Enteroaggregative Escherichia coli to Intestinal Cells

    PubMed Central

    Izquierdo, Mariana; Nataro, James P.; Ruiz-Perez, Fernando; Farfan, Mauricio J.

    2014-01-01

    Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC) infection. The aggregative adherence fimbriae (AAFs) are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5β1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5β1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5β1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5β1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5β1 in the fibronectin-mediated EAEC binding to intestinal cells. PMID:25177698

  6. Participation of integrin α5β1 in the fibronectin-mediated adherence of enteroaggregative Escherichia coli to intestinal cells.

    PubMed

    Izquierdo, Mariana; Alvestegui, Alejandra; Nataro, James P; Ruiz-Perez, Fernando; Farfan, Mauricio J

    2014-01-01

    Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC) infection. The aggregative adherence fimbriae (AAFs) are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5β1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5β1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5β1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5β1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5β1 in the fibronectin-mediated EAEC binding to intestinal cells.

  7. Participation of integrin α5β1 in the fibronectin-mediated adherence of enteroaggregative Escherichia coli to intestinal cells.

    PubMed

    Izquierdo, Mariana; Alvestegui, Alejandra; Nataro, James P; Ruiz-Perez, Fernando; Farfan, Mauricio J

    2014-01-01

    Adherence to the intestinal epithelia is a key feature in enteroaggregative Escherichia coli (EAEC) infection. The aggregative adherence fimbriae (AAFs) are involved in EAEC interaction with receptors at the surface of intestinal cells. We and others have demonstrated that fibronectin is a receptor for AAF/II fimbriae. Considering that the major cellular receptor of fibronectin is integrin α5β1, in this study we evaluated the participation of this receptor in the fibronectin-mediated adherence of EAEC strain 042 to intestinal cells. We found that EAEC strain 042 has the ability to bind directly and indirectly to integrin α5β1; direct binding was not mediated by AAF/II fimbriae and indirect binding was mediated by AAF/II and fibronectin. Coimmunoprecipitation assays confirmed the formation of the complex AafA/fibronectin/integrin α5β1. To evaluate EAEC adherence to intestinal cells, T84 cells were incubated with fibronectin and an antibody that blocks the interaction region of integrin α5β1 to fibronectin, the RGD site. Under these conditions, we found the number of adherent bacteria to epithelial cells significantly reduced. Additionally, fibronectin-mediated adherence of EAEC strain 042 was abolished in HEp-2 cells transfected with integrin α5 shRNA. Altogether, our data support the involvement of integrin α5β1 in the fibronectin-mediated EAEC binding to intestinal cells. PMID:25177698

  8. Phenotypic analysis of nylon-wool-adherent suppressor cells that inhibit the effector process of tumour cell lysis by lymphokine-activated killer cells in patients with advanced gastric carcinoma.

    PubMed

    Koyama, S; Fukao, K

    1994-01-01

    The causes of down-regulation of cytotoxic immune responses in cancer patients have not been fully evaluated. We previously demonstrated that T-cell-growth-factor-activated peripheral blood lymphocytes (PBL) with the surface phenotype CD8+ CD11b-, from patients with widespread metastasis of gastric carcinoma, inhibited the effector process of lymphokine-activated-killer(LAK)-cell-mediated cytolysis. In this study, we examined suppressor cell activity in freshly prepared PBL from 18 patients with advanced gastric carcinoma, and 10 normal healthy individuals. The suppressor cell activity was assayed by recording whether or not PBL inhibited directly the effector process of LAK cell cytotoxicity. Most of the PBL suspensions from cancer patients showed that they contained a population of cells that can directly inhibit the effector phase of tumor cell lysis of the cytotoxic cells. To analyze further the PBL responsible for the suppression, the cells were passed over a nylon-wool column. Nylon-wool-adherent cells significantly augmented the suppression, while the cells passing through abrogated the suppressive effect. Most nylon-wool-adherent cells from 10 normal healthy controls did not inhibit the cytotoxic reaction. To determine further the suppressor-effector population in nylon-wool-adherent cells, negative-selection studies using CD8-, CD4- or CD11b-coated magnetic beads, and positive-selection studies using CD8- or CD4-coated magnetic beads were performed. Finally the results suggest that the suppressor-effector cells comprise at least two different surface phenotypes: CD8+ T and CD8-CD11b+ cells. The possible role of CD4+ T cells and HLA-DR+ LeuM3+ macrophages as suppressor cells was ruled out in nylon-wool-adherent cells. CD8+ T and possibly CD8-CD11b+ cells apparently suppressed the efferent limb of the antitumor immunity. The selective immune suppression mediated by these cells may partly be concerned with escape mechanisms of gastric carcinoma from the host

  9. Adherence to Analgesics for Cancer Pain: A Comparative Study of African Americans and Whites Using an Electronic Monitoring Device.

    PubMed

    Meghani, Salimah H; Thompson, Aleda M L; Chittams, Jesse; Bruner, Deborah W; Riegel, Barbara

    2015-09-01

    Despite well-documented disparities in cancer pain outcomes among African Americans, surprisingly little research exists on adherence to analgesia for cancer pain in this group. We compared analgesic adherence for cancer-related pain over a 3-month period between African Americans and whites using the Medication Event Monitoring System (MEMS). Patients (N = 207) were recruited from outpatient medical oncology clinics of an academic medical center in Philadelphia (≥18 years of age, diagnosed with solid tumors or multiple myeloma, with cancer-related pain, and at least 1 prescription of oral around-the-clock analgesic). African Americans reported significantly greater cancer pain (P < .001), were less likely than whites to have a prescription of long-acting opioids (P < .001), and were more likely to have a negative Pain Management Index (P < .001). There were considerable differences between African Americans and whites in the overall MEMS dose adherence, ie, percentage of the total number of prescribed doses that were taken (53% vs 74%, P < .001). On subanalysis, analgesic adherence rates for African Americans ranged from 34% (for weak opioids) to 63% (for long-acting opioids). Unique predictors of analgesic adherence varied by race; income levels, analgesic side effects, and fear of distracting providers predicted analgesic adherence for African Americans but not for whites. Perspective: Despite evidence of disparities in cancer pain outcomes among African Americans, surprisingly little research exists on African Americans' adherence to analgesia for cancer pain. This prospective study uses objective measures to compare adherence to prescribed pain medications between African American and white patients with cancer pain.

  10. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay-Book Chapter*

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adhere...

  11. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay: Book Chapter

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adher...

  12. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    PubMed

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  13. Enterotoxigenic Escherichia coli TibA Glycoprotein Adheres to Human Intestine Epithelial Cells

    PubMed Central

    Lindenthal, Christoph; Elsinghorst, Eric A.

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  14. Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells.

    PubMed

    Lindenthal, C; Elsinghorst, E A

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  15. Visualization of adherent cell monolayers by cryo-electron microscopy: A snapshot of endothelial adherens junctions.

    PubMed

    Le Bihan, Olivier; Decossas, Marion; Gontier, Etienne; Gerbod-Giannone, Marie-Christine; Lambert, Olivier

    2015-12-01

    Cryo-electron microscopy (cryo-EM) allows the visualization of the cell architecture in its native state. We developed a robust solution to adapt cryo-electron microscopy of vitreous sections (CEMOVIS) to a monolayer of adherent cells using a functionalized polyacrylamide hydrogel growing substrate. We applied this method to reconstitute an endothelial cell monolayer to visualize the morphology of adherens junctions (AJs) which regulate permeability and integrity of the vascular barrier. The fine morphology and ultrastructure of AJs from cultured primary human coronary artery endothelial cells (HCAECs) were analyzed in their native state by using CEMOVIS. Doxycycline and sphingosine-1-phosphate (S1P) are known as efficient regulators of endothelial permeability. Doxycycline and S1P treatments both led to a drastic morphological switch from very uneven to standardized 14-17 nm wide AJs over several microns indicative of a better membrane tethering. Repetitive structures were occasionally noticed within the AJ cleft reflecting a local improved structural organization of VE-cadherin molecules. The ultrastructural stabilization of AJs observed upon treatment likely indicates a better adhesion and thus provides structural clues on the mechanism by which these treatments improve the endothelial barrier function. This method was also successfully extended to a thick epithelial barrier model. We expect our strategy to extend the reliable application of CEMOVIS to virtually any adherent cultured cell systems.

  16. Cell Phone-Based and Adherence Device Technologies for HIV Care and Treatment in Resource-Limited Settings: Recent Advances.

    PubMed

    Campbell, Jeffrey I; Haberer, Jessica E

    2015-12-01

    Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.

  17. Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms.

    PubMed

    Zhang, Zhen; Bedder, Matthew; Smith, Stephen L; Walker, Dawn; Shabir, Saqib; Southgate, Jennifer

    2016-08-01

    This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models. PMID:27267455

  18. Adherence to hydroxyurea medication by children with sickle cell disease (SCD) using an electronic device: a feasibility study.

    PubMed

    Inoue, Susumu; Kodjebacheva, Gergana; Scherrer, Tammy; Rice, Gary; Grigorian, Matthew; Blankenship, Jeremy; Onwuzurike, Nkechi

    2016-08-01

    Adherence to hydroxyurea (HU) is a significant modifying factor in sickle cell vaso-occlusive pain. We conducted a study using an electronic medication container-monitor-reminder device (GlowCap™) to track adherence and determine whether use of this device affected rates of HU adherence. Subjects were regular attendees to our clinic. They were given a 37-item questionnaire and were asked to use a GlowCap containing HU. When the device cap is opened, it makes a remote "medication taken" record. The device also provides usage reminder in the form of lights and alarm sounds if the cap opening is delayed. Nineteen subjects participated in the survey, and 17 in the intervention phase. Of the 17, 12 had reliable adherence data. Seventeen caregivers of patients and two patients completed the survey. Two most common barriers to adherence identified were lack of reminders and absence of medicine home delivery. The intervention component of this study, which used both the electronic (GlowCap) method and medication possession ratio showed that the median adherence rate for the 12 patients evaluated was 85 %. The GlowCap device accurately kept a record of adherence rates. This device may be an effective tool for increasing HU medication adherence. PMID:27225236

  19. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties.

    PubMed

    Moldenhauer, Lachlan M; Cockshell, Michaelia P; Frost, Lachlan; Parham, Kate A; Tvorogov, Denis; Tan, Lih Y; Ebert, Lisa M; Tooley, Katie; Worthley, Stephen; Lopez, Angel F; Bonder, Claudine S

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3) strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs) with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133(+) EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs), namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133(+) cell expansion with clear pro-angiogenic properties (in vitro and in vivo) and thus may provide clinical utility for humans in the future. PMID:25900163

  20. Comparative genomic hybridization analysis of newly established retinoblastoma cell lines of adherent growth compared with Y79 of nonadherent growth.

    PubMed

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Dong Hun; Kim, Yong Kyu; Kim, Kyu-Won

    2008-08-01

    Retinoblastoma (RB) shows cytogenetic aberrations involving genes other than RB gene located on 13q14. We analyzed genomic aberration in newly established RB cell lines SNUOT-RB1 and SNUOT-RB4 of adherent growth and Y79 cell line of nonadherent growth by microarray comparative genomic hybridization. SNUOT-RB1 showed 44 significant copy number changes (gain in 11 and loss in 33, P<0.0005). SNUOT-RB4 showed 42 significant copy number changes (gain in 8 and loss in 34, P<0.0005). Y79 cell line had the greatest gain of 19.65-fold in the locus of MYCN gene 2p24.1, whereas SNUOT-RB1 and SNUOT-RB4 showed no significant gain. SNUOT-RB1 and SNUOT-RB4 gained chromosomal copy numbers commonly in chromosome 11, especially in locus 11q13, which is responsible for cancer-related genes such as CCND1, MEN1, and FGF3. Losses of copy numbers occurred in chromosomes 3, 9, 10, 11, 16, and 17. In summary, SNUOT-RB1 and SNUOT-RB4 represented similar pattern in gain and loss of chromosomal copy number changes, while different from Y79. The loss of CYLD gene of tumor suppressor gene, 16q12-q13, was only on locus of common involvement in 3 cell lines. PMID:18799932

  1. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells.

    PubMed

    Brossard, Kari A; Campagnari, Anthony A

    2012-01-01

    Acinetobacter baumannii is a significant source of nosocomial infections worldwide. This bacterium has the ability to survive and persist on multiple abiotic surfaces in health care facilities, and once a focus has been established, this opportunistic pathogen is difficult to eradicate. This paper demonstrates that the A. baumannii biofilm-associated protein (Bap) is necessary for mature biofilm formation on medically relevant surfaces, including polypropylene, polystyrene, and titanium. Scanning electron microscopy analyses of biofilms show that Bap is required for three-dimensional tower structure and water channel formation. In conjunction with persistence on abiotic surfaces, adherence to eukaryotic cells is an important step in bacterial colonization resulting in infection of the host. We have described Bap as the surface structure involved in adherence of A. baumannii to both normal human bronchial epithelial cells and normal human neonatal keratinocytes. However, Bap is not involved in internalization of the bacterium in these two cell lines. Furthermore, this study shows that the presence of Bap increases the bacterial cell surface hydrophobicity. The results of this study are pertinent, as the data lead to a better understanding of the role of Bap in biofilm formation on medical surfaces and in colonization of the host.

  2. Isolation and manipulation of living adherent cells by micromolded magnetic rafts

    PubMed Central

    Gach, Philip C.; Wang, Yuli; Phillips, Colleen; Sims, Christopher E.; Allbritton, Nancy L.

    2011-01-01

    A new strategy for magnetically manipulating and isolating adherent cells with extremely high post-collection purity and viability is reported. Micromolded magnetic elements (termed microrafts) were fabricated in an array format and used as culture surfaces and carriers for living, adherent cells. A poly(styrene-co-acrylic acid) polymer containing well dispersed magnetic nanoparticles was developed for creating the microstructures by molding. Nanoparticles of γFe2O3 at concentrations up to 1% wt.∕wt. could be used to fabricate microrafts that were optically transparent, highly magnetic, biocompatible, and minimally fluorescent. To prevent cellular uptake of nanoparticles from the magnetic polymer, a poly(styrene-co-acrylic acid) layer lacking γFe2O3 nanoparticles was placed over the initial magnetic microraft layer to prevent cellular uptake of the γFe2O3 during culture. The microraft surface geometry and physical properties were altered by varying the polymer concentration or layering different polymers during fabrication. Cells plated on the magnetic microrafts were visualized using standard imaging techniques including brightfield, epifluorescence, and confocal microscopy. Magnetic microrafts possessing cells of interest were dislodged from the array and efficiently collected with an external magnet. To demonstrate the feasibility of cell isolation using the magnetic microrafts, a mixed population of wild-type cells and cells stably transfected with a fluorescent protein was plated onto an array. Microrafts possessing single, fluorescent cells were released from the array and magnetically collected. A post-sorting single-cell cloning rate of 92% and a purity of 100% were attained. PMID:22007266

  3. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  4. Fucoidans Disrupt Adherence of Helicobacter pylori to AGS Cells In Vitro.

    PubMed

    Chua, Eng-Guan; Verbrugghe, Phebe; Perkins, Timothy T; Tay, Chin-Yen

    2015-01-01

    Fucoidans are complex sulphated polysaccharides derived from abundant and edible marine algae. Helicobacter pylori is a stomach pathogen that persists in the hostile milieu of the human stomach unless treated with antibiotics. This study aims to provide preliminary data to determine, in vitro, if fucoidans can inhibit the growth of H. pylori and its ability to adhere to gastric epithelial cells (AGS). We analysed the activity of three different fucoidan preparations (Fucus A, Fucus B, and Undaria extracts). Bacterial growth was not arrested or inhibited by the fucoidan preparations supplemented into culture media. All fucoidans, when supplemented into tissue culture media at 1000 µg mL(-1), were toxic to AGS cells and reduced the viable cell count significantly. Fucoidan preparations at 100 µg mL(-1) were shown to significantly reduce the number of adherent H. pylori. These in vitro findings provide the basis for further studies on the clinical use of sulphated polysaccharides as complementary therapeutic agents. PMID:26604968

  5. Nonthermal Plasma-Mediated Cancer Cell Death; Targeted Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Choi, Byul-Bora; Choi, Yeon-Sik; Lee, Hae-Jun; Lee, Jae-Koo; Kim, Uk-Kyu; Kim, Gyoo-Cheon

    Non-thermal air plasma can kill cancer cells. However, there is no selectivity between normal and cancer cells. Therefore, cancer specific antibody conjugated gold nanoparticle (GNP) was pretreated before plasma irradiation. Stimulation of antibody conjugated GNP by plasma treatment resulted in a significant decrease in viability of cancer cells. This technology shows the feasibility of using plasma therapy for killing cancer cells selectively.

  6. Adherence to adjuvant hormone therapy in low-income women with breast cancer: the role of provider-patient communication.

    PubMed

    Liu, Yihang; Malin, Jennifer L; Diamant, Allison L; Thind, Amardeep; Maly, Rose C

    2013-02-01

    To assess the impact of patient-provider communication on adherence to tamoxifen (TAM) and aromatase inhibitors (AIs) 36 months after breast cancer (BC) diagnosis in a low-income population of women. California statewide surveys were conducted among 921 low-income women with BC at 6, 18, and 36 months after BC diagnosis. A subset of 303 women with stage I-III BC who initiated hormone treatment after diagnosis was identified. Bivariate and multivariate logistic regression analyses were performed, and adjusted adherence rates were calculated. The main outcome measure was self-reported hormone use at 36 months after BC diagnosis and the chief independent variables were patient-centered communication after diagnosis by patient report as measured by the Consumer Assessment of Healthcare Providers and Systems (CAHPS) and patients' self-efficacy in patient-physician interactions (PEPPI). Overall adherence to TAM/AI was relatively high (88 %). Adjusted rates of adherence were 59 and 94 % for patients with the lowest versus highest scores on the CAHPS communication scale (AOR = 1.22, P = 0.006) and 72 versus 91 % for patients with the lowest and highest rating of PEPPI (AOR = 1.04, P = 0.04). Having at least one comorbid condition also increased the odds of adherence to hormonal therapy (AOR = 3.14, P = 0.03). Having no health insurance and experiencing side-effects from hormone treatment were barriers for adherence (AOR = 0.12, P = 0.001; AOR = 0.26, P = 0.003, respectively). Patient-centered communication and perceived self-efficacy in patient-physician interaction were significantly associated with patient adherence to ongoing TAM/AI therapy among low-income women with BC. Interventions on patient-provider communication may provide opportunities to improve patient outcomes in this vulnerable population.

  7. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    PubMed

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  8. Factors Associated with Adherence to an End-of-study Biopsy: Lessons from the Prostate Cancer Prevention Trial (SWOG-Coordinated Intergroup Study S9217)

    PubMed Central

    Gritz, Ellen R.; Arnold, Kathryn B.; Moinpour, Carol M.; Burton-Chase, Allison M.; Tangen, Catherine M.; Probstfield, Jeffrey F.; See, William A.; Lieber, Michael M.; Caggiano, Vincent; Moody-Thomas, Sarah; Szczepanek, Connie; Ryan, Anne; Carlin, Susie; Hill, Shannon; Goodman, Phyllis J.; Padberg, Rose Mary; Minasian, Lori M.; Meyskens, Frank L.; Thompson, Ian M.

    2014-01-01

    Background The Prostate Cancer Prevention Trial (PCPT) was a 7-year randomized, double-blind, placebo-controlled trial of the efficacy of finasteride for the prevention of prostate cancer with a primary outcome of histologically-determined prevalence of prostate cancer at the end of 7 years. Methods A systematic modeling process using logistic regression identified factors available at year 6 that are associated with end-of-study (EOS) biopsy adherence at year 7, stratified by whether participants were ever prompted for a prostate biopsy by year 6. Final models were evaluated for discrimination. At year 6, 13,590 men were available for analysis. Results Participants were more likely to have the EOS biopsy if they were adherent to study visit schedules and procedures and/or were in good health (p<.01). Participants at larger sites and/or sites that received retention and adherence grants were also more likely to have the EOS biopsy (p<.05). Conclusions Our results show good adherence to study requirements one year prior to the EOS biopsy was associated with greater odds that a participant would comply with the invasive EOS requirement. Impact Monitoring adherence behaviors may identify participants at risk of non-adherence to more demanding study end points. Such information could help frame adherence intervention strategies in future trials. PMID:25028457

  9. Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells in vitro.

    PubMed

    Lázaro-Díez, María; Navascués-Lejarza, Teresa; Remuzgo-Martínez, Sara; Navas, Jesús; Icardo, José Manuel; Acosta, Felix; Martínez-Martínez, Luis; Ramos-Vivas, José

    2016-09-01

    The molecular and genetic basis of Acinetobacter baumannii and Acinetobacter pittii virulence remains poorly understood, and there is still lack of knowledge in host cell response to these bacteria. In this study, we have used eleven clinical Acinetobacter strains (A. baumannii n = 5; A. pittii n = 6) to unravel bacterial adherence, invasion and cytotoxicity to human lung epithelial cells. Our results showed that adherence to epithelial cells by Acinetobacter strains is scarce and cellular invasion was not truly detected. In addition, all Acinetobacter strains failed to induce any cytotoxic effect on A549 cells.

  10. In vitro adherence patterns of Shigella serogroups to bovine recto-anal junction squamous epithelial (RSE) cells are similar to those of Escherichia coli O157

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine whether Shigella species, which are human gastrointestinal pathogens, can adhere to cattle recto-anal junction squamous epithelial (RSE) cells using a recently standardized adherence assay, and to compare their adherence patterns to that of Escherichia coli O15...

  11. Longitudinal cohort study to determine effectiveness of a novel simulated case and feedback system to improve clinical pathway adherence in breast, lung and GI cancers

    PubMed Central

    Kubal, Timothy; Letson, Doug G; Chiappori, Alberto A; Springett, Gregory M; Tamondong Lachica, Diana; Peabody, John W

    2016-01-01

    Objectives This study examined whether a measurement and feedback system led to improvements in adherence to clinical pathways. Design The M-QURE (Moffitt—Quality, Understanding, Research and Evidence) Initiative was introduced in 2012 to enhance and improve adherence to pathways at Moffitt Cancer Center (MCC) in three broad clinical areas: breast, lung and gastrointestinal (GI) cancers. M-QURE used simulated patient vignettes based on MCC's Clinical Pathways to benchmark clinician adherence and monitor change over three rounds of implementation. Setting MCC, located in Tampa, Florida, a National Cancer Institute Comprehensive Cancer Center. Participants Three non-overlapping cohorts at MCC (one each in breast, lung and GI) totalling 48 providers participated in this study, with each member of the multidisciplinary team (composed of medical oncologists, radiation oncologists, surgeons and advanced practice providers) invited to participate. Interventions Each participant was asked to complete a set of simulated patient vignettes over three rounds within their own cancer specialty. Participants were required to complete all assigned vignettes over each of the three rounds, or they would be excluded from this study. Primary outcome measure Increased domain and overall provider care adherence to clinical pathways, as scored by blinded physician abstractors. Results We found significant improvements in pathway adherence between the third and first rounds of data collection particularly for workup and treatment of cancer cases. By clinical grouping, breast improved by 13.6% (p<0.001), and lung improved by 12.1% (p<0.001) over baseline, whereas GI showed a decrease of 1.4% (p=0.68). Conclusions Clinical pathway adherence improved in a short timeframe for breast and lung cancers using group-level measurement and individual feedback. This suggests that a measurement and feedback programme may be a useful tool to improve clinical pathway adherence. PMID:27625063

  12. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.

    PubMed

    Orgad, Oded; Oren, Yoram; Walker, Sharon L; Herzberg, Moshe

    2011-08-01

    Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment.

  13. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties.

    PubMed

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-02-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

  14. Comprehensive CYP2D6 genotype and adherence affect outcome in breast cancer patients treated with tamoxifen monotherapy.

    PubMed

    Thompson, Alastair M; Johnson, Andrea; Quinlan, Philip; Hillman, Grantland; Fontecha, Marcel; Bray, Susan E; Purdie, Colin A; Jordan, Lee B; Ferraldeschi, Roberta; Latif, Ayshe; Hadfield, Kirsten D; Clarke, Robert B; Ashcroft, Linda; Evans, D Gareth; Howell, Anthony; Nikoloff, Michele; Lawrence, Jeffrey; Newman, William G

    2011-01-01

    The association between CYP2D6 genotype and outcome in breast cancer patients treated with adjuvant tamoxifen remains controversial. We assessed the influence of comprehensive versus limited CYP2D6 genotype in the context of tamoxifen adherence and co-medication in a large cohort of 618 patients. Genotyping of 33 CYP2D6 alleles used two archival cohorts from tamoxifen-treated women with invasive breast cancer (Dundee, n = 391; Manchester, n = 227). Estimates for recurrence-free survival (RFS) were calculated based on inferred CYP2D6 phenotypes using Kaplan-Meier and Cox proportional hazard models, adjusted for nodal status and tumour size. Patients with at least one reduced function CYP2D6 allele (60%) or no functional alleles (6%) had a non-significant trend for worse RFS: hazard ratio (HR) 1.52 (CI 0.98-2.36, P = 0.06). For post-menopausal women on tamoxifen monotherapy, the HR for recurrence in patients with reduced functional alleles was 1.96 (CI 1.05-3.66, P = 0.036). However, RFS analysis limited to four common CYP2D6 allelic variants was no longer significant (P = 0.39). The effect of CYP2D6 genotype was increased by adjusting for adherence to tamoxifen therapy, but not significantly changed when adjusted for co-administration of potent inhibitors of CYP2D6. Comprehensive genotyping of CYP2D6 and adherence to tamoxifen therapy may be useful to identify breast cancer patients most likely to benefit from adjuvant tamoxifen.

  15. Treatment Option Overview (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  16. Stages of Small Cell Lung Cancer

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  17. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells.

    PubMed

    Saroj, Sunil D; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  18. An optical pressure chamber designed for high numerical aperture studies on adherent living cells.

    PubMed

    Pagliaro, L; Reitz, F; Wang, J

    1995-06-01

    We have developed an optical pressure chamber designed for use with high numerical aperture oil immersion microscope objectives at working pressures up to 1,000 psi (67 atm abs). The chamber is optimized for studies of living, adherent, cultured mammalian cells using high resolution epifluorescence and phase contrast microscopy, and biophysical techniques such as fluorescence redistribution after photobleaching and optical trapping. The primary optical window assembly of the chamber can be removed and placed into a standard 35-mm tissue culture dish, allowing for culture, microinjection, and micromanipulation of adherent cells before they are loaded into the chamber. The chamber is designed to fit into a commercially available stage heater for temperature control, and we used a computer-controlled high pressure liquid chromatography pump for pressure control. A graphic software interface allows the user to program "dive" profiles and to link temperature and pressure data with digital image files of specimens under study. A minor modification of the present design will allow perfusion at high pressure. PMID:7633279

  19. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells.

    PubMed

    Saroj, Sunil D; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics.

  20. Lactobacilli Interfere with Streptococcus pyogenes Hemolytic Activity and Adherence to Host Epithelial Cells

    PubMed Central

    Saroj, Sunil D.; Maudsdotter, Lisa; Tavares, Raquel; Jonsson, Ann-Beth

    2016-01-01

    Streptococcus pyogenes [Group A streptococcus (GAS)], a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of S. pyogenes S165. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS). Conditioned medium (CM) from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289, and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics. PMID:27524981

  1. Bead transfection: rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells.

    PubMed

    Matthews, K E; Mills, G B; Horsfall, W; Hack, N; Skorecki, K; Keating, A

    1993-05-01

    We report a simple, rapid, efficient and cost-effective method of gene transfer into bone marrow stromal and other adherent mammalian cells. Our approach involves brief incubation of cells with glass beads in a solution containing the DNA to be transferred. We optimized the technique using COS cells (SV40 transformed kidney cell line from African green monkey) and a transient expression assay for chloramphenicol acetyl transferase (CAT). Factors affecting gene transfer include size and condition of the beads and DNA concentration, but not DNA conformation. Gene transfer efficiency, assessed in a transient expression assay for beta-galactosidase activity, was 5 and 3% in nontransformed human bone marrow stromal cells and COS cells, respectively. Long-term stable expression with the selectable marker, neomycin phosphotransferase, was demonstrated in clonogenic COS cells at a frequency of 27%. Southern analysis of resistant clones revealed the transferred DNA to be integrated in low copy number at one or two sites in the host cell genome. Comparison with electroporation and DEAE-dextran indicates that bead transfection is more efficient than the latter and less costly than either of these methods. In view of its simplicity and because the use of retroviral sequences can be avoided, bead transfection may be an attractive means of gene insertion for gene therapy.

  2. Viability of adhered bacterial cells: tracking MinD protein oscillations

    NASA Astrophysics Data System (ADS)

    Barrett, Matt; Colville, Keegan; Schultz-Nielsen, Chris; Jericho, Manfred; Dutcher, John

    2010-03-01

    To study bacterial cells using atomic force microscopy, it is necessary to immobilize the cells on a substrate. Because bacterial cells and common substrates such as glass and mica have a net negative charge, positively charged polymers such as poly-L-lysine (PLL) and polyethyleneimine (PEI) are commonly used as adhesion layers. However, the use of adhesion polymers could stress the cell and even render it inviable. Viable E. coli cells use oscillations of Min proteins along the axis of the rod-shaped cells to ensure accurate cell division. By tagging MinD proteins with GFP, oscillations can be observed using fluorescence microscopy. For a healthy cell in an ideal environment, the oscillation period is measured to be ˜40 s. Prior experiments have shown that PLL increases the oscillation period significantly (up to 80%). In the present study, we have used epifluorescence and total internal reflection fluorescence (TIRF) to track MinD protein oscillations in E. coli bacteria adhered to a variety of positively charged polymers on mica as a function of polymer surface coverage.

  3. Adherence to Cervical Cancer Screening Guidelines for U.S. Women Aged 25–64: Data from the 2005 Health Information National Trends Survey (HINTS)

    PubMed Central

    Moser, Richard P.; Gaffey, Allison; Waldron, William

    2009-01-01

    Abstract Background Although it is widely accepted that Papanicolaou (Pap) screening can reduce cervical cancer mortality, many women still do not maintain regular cervical cancer screenings. Objective To describe the prevalence of cervical cancer screening and the demographic, behavioral, psychological, and cancer-related knowledge factors associated with adherence to U.S. Preventive Services Task Force (USPSTF) cervical cancer screening guidelines among women in the United States. Methods Data for women aged 25–64 were obtained from the National Cancer Institute's (NCI) 2005 Health Information National Trends Survey (HINTS). Women were considered adherent to screening guidelines if they had two consecutive, on-schedule screenings and planned to have another within the next 3 years. The sample comprised 2070 women. Results Ninety-eight percent of women reported ever having a Pap smear, 90% reported having had a recent Pap smear (within 3 years), and 84% were adherent to USPSTF screening guidelines. Maintaining regular cervical cancer screening was significantly associated with having health insurance, normal body mass index (BMI), smoking status (nonsmoker), mood (absence of a mood disturbance), and being knowledgeable about cervical cancer screening and human papillomavirus (HPV) infection. Conclusions Based on the observation that women who were current smokers, obese, or experiencing a substantial degree of psychological distress were significantly less likely to adhere to recommended screening guidelines, we suggest that healthcare providers pay particular attention to the screening needs of these more vulnerable women. PMID:19951209

  4. Effect of Iron on Adherence and Cytotoxicity of Entamoeba histolytica to CHO Cell Monolayers

    PubMed Central

    Lee, Jongweon; Park, Soon-Jung

    2008-01-01

    Iron is an essential element for almost all living organisms. The possible role of iron for growth, adherence and cytotoxicity of Entamoeba histolytica was evaluated in this study. The absence of iron from TYI-S-33 medium stopped amebic growth in vitro. However, iron concentrations in the culture media of 21.4-285.6 µM did not affect the growth of the amebae. Although growth was not retarded at these concentrations, the adhesive abilities of E. histolytica and their cytotoxicities to CHO cell monolayer were correlated with iron concentration. Amebic adhesion to CHO cell monolayers was significantly reduced by low-iron (24.6 ± 2.1%) compared with 62.7 ± 2.8 and 63.1 ± 1.4% of amebae grown in a normal-iron and high-iron media, respectively. E. histolytica cultured in the normal- and high-iron media destroyed 69.1 ± 4.3% and 72.6 ± 5.7% of cultured CHO cell monolayers, but amebae grown in the low-iron medium showed a significantly reduced level of cytotoxicity to CHO cells (2.8 ± 0.2%). Addition of divalent cations other than iron to amebic trophozoites grown in the low-iron medium failed to restore levels of the cytotoxicity. However, when E. histolytica grown in low-iron medium were transferred to normal-iron medium, the amebae showed completely restored cytotoxicity within 7 days. The result suggests that iron is an important factor in the adherence and cytotoxicity of E. histolytica to CHO cell monolayer. PMID:18344676

  5. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    SciTech Connect

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal {beta} III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  6. Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis.

    PubMed

    Mundodi, V; Kucknoor, A S; Klumpp, D J; Chang, T-H; Alderete, J F

    2004-08-01

    Host parasitism by Trichomonas vaginalis is complex and in part mediated by adherence to vaginal epithelial cells (VECs). Four trichomonad surface proteins bind VECs as adhesins, and AP65 is a major adhesin with sequence identity to an enzyme of the hydrogenosome organelle that is involved in energy generation. In order to perform genetic analysis and assess the role of AP65 in T. vaginalis adherence, we silenced expression of ap65 using antisense RNA. The gene for ap65 was inserted into the vector pBS-neo in sense and antisense orientations to generate plasmids pBS-neoS (S) and pBS-neoAS (AS), respectively. Trichomonads were then transfected with S and AS plasmids for selection of stable transfectants using Geneticin, and the presence of plasmid in transfectants was confirmed by polymerase chain reaction of the neo gene. Reverse transcription polymerase chain reaction and Northern blot analysis showed decreased amounts of ap65 transcript in AS transfected parasites. Growth kinetics of the antisense-transfected and wild type organisms were similar, suggesting that silencing AP65 did not affect overall energy generation for growth. Immunoblot analysis using monoclonal antibody (mAb) to AP65 of AS transfectants showed decreased amounts of AP65 when compared to wild type or S transfectants. Not unexpectedly, this corresponded to decreased amounts of AP65 bound to VECs in a functional ligand assay. Reduction in parasite surface expression of AP65 was related to lower levels of adherence to VECs by AS-transfectants compared to control organisms. Antisense silencing of ap65 was not alleviated by growth of trichomonads in high iron, which up-regulates transcription of ap65. Our work reaffirms the role for AP65 as an adhesin, and in addition, we demonstrate antisense RNA gene silencing in T. vaginalis to study the contribution of specific genes in pathogenesis. PMID:15306014

  7. The HAART cell phone adherence trial (WelTel Kenya1): a randomized controlled trial protocol

    PubMed Central

    Lester, Richard T; Mills, Edward J; Kariri, Antony; Ritvo, Paul; Chung, Michael; Jack, William; Habyarimana, James; Karanja, Sarah; Barasa, Samson; Nguti, Rosemary; Estambale, Benson; Ngugi, Elizabeth; Ball, T Blake; Thabane, Lehana; Kimani, Joshua; Gelmon, Lawrence; Ackers, Marta; Plummer, Francis A

    2009-01-01

    Background The objectives are to compare the effectiveness of cell phone-supported SMS messaging to standard care on adherence, quality of life, retention, and mortality in a population receiving antiretroviral therapy (ART) in Nairobi, Kenya. Methods and Design A multi-site randomized controlled open-label trial. A central randomization centre provided opaque envelopes to allocate treatments. Patients initiating ART at three comprehensive care clinics in Kenya will be randomized to receive either a structured weekly SMS ('short message system' or text message) slogan (the intervention) or current standard of care support mechanisms alone (the control). Our hypothesis is that using a structured mobile phone protocol to keep in touch with patients will improve adherence to ART and other patient outcomes. Participants are evaluated at baseline, and then at six and twelve months after initiating ART. The care providers keep a weekly study log of all phone based communications with study participants. Primary outcomes are self-reported adherence to ART and suppression of HIV viral load at twelve months scheduled follow-up. Secondary outcomes are improvements in health, quality of life, social and economic factors, and retention on ART. Primary analysis is by 'intention-to-treat'. Sensitivity analysis will be used to assess per-protocol effects. Analysis of covariates will be undertaken to determine factors that contribute or deter from expected and determined outcomes. Discussion This study protocol tests whether a novel structured mobile phone intervention can positively contribute to ART management in a resource-limited setting. Trial Registration Trial Registration Number: NCT00830622 PMID:19772596

  8. Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis

    PubMed Central

    Mundodi, V.; Kucknoor, A. S.; Klumpp, D. J.; Chang, T.-H.; Alderete, J. F.

    2007-01-01

    Summary Host parasitism by Trichomonas vaginalis is complex and in part mediated by adherence to vaginal epithelial cells (VECs). Four trichomonad surface proteins bind VECs as adhesins, and AP65 is a major adhesin with sequence identity to an enzyme of the hydrogenosome organelle that is involved in energy generation. In order to perform genetic analysis and assess the role of AP65 in T. vaginalis adherence, we silenced expression of ap65 using antisense RNA. The gene for ap65 was inserted into the vector pBS-neo in sense and antisense orientations to generate plasmids pBS-neoS (S) and pBS-neoAS (AS), respectively. Trichomonads were then transfected with S and AS plasmids for selection of stable transfectants using Geneticin, and the presence of plasmid in transfectants was confirmed by polymerase chain reaction of the neo gene. Reverse transcription polymerase chain reaction and Northern blot analysis showed decreased amounts of ap65 transcript in AS transfected parasites. Growth kinetics of the antisense-transfected and wild type organisms were similar, suggesting that silencing AP65 did not affect overall energy generation for growth. Immunoblot analysis using monoclonal antibody (mAb) to AP65 of AS transfectants showed decreased amounts of AP65 when compared to wild type or S transfectants. Not unexpectedly, this corresponded to decreased amounts of AP65 bound to VECs in a functional ligand assay. Reduction in parasite surface expression of AP65 was related to lower levels of adherence to VECs by AS-transfectants compared to control organisms. Antisense silencing of ap65 was not alleviated by growth of trichomonads in high iron, which up-regulates transcription of ap65. Our work reaffirms the role for AP65 as an adhesin, and in addition, we demonstrate antisense RNA gene silencing in T. vaginalis to study the contribution of specific genes in pathogenesis. PMID:15306014

  9. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.

    PubMed Central

    Xia, Z; Goldsmith, H L; van de Ven, T G

    1994-01-01

    Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment. Images FIGURE 6 FIGURE 7 PMID:8038393

  10. NLRP3 protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence

    PubMed Central

    Kostadinova, Elena; Chaput, Catherine; Gutbier, Birgitt; Lippmann, Juliane; Sander, Leif E.; Mitchell, Timothy J.; Suttorp, Norbert; Witzenrath, Martin; Opitz, Bastian

    2016-01-01

    Bacterial pneumonia is a major cause of acute lung injury and acute respiratory distress syndrome, characterized by alveolar barrier disruption. NLRP3 is best known for its ability to form inflammasomes and to regulate IL-1β and IL-18 production in myeloid cells. Here we show that NLRP3 protects the integrity of the alveolar barrier in a mouse model of Streptococcus pneumoniae-induced pneumonia, and ex vivo upon treatment of isolated perfused and ventilated lungs with the purified bacterial toxin, pneumolysin. We reveal that the preserving effect of NLRP3 on the lung barrier is independent of inflammasomes, IL-1β and IL-18. NLRP3 improves the integrity of alveolar epithelial cell monolayers by enhancing cellular adherence. Collectively, our study uncovers a novel function of NLRP3 by demonstrating that it protects epithelial barrier function independently of inflammasomes. PMID:27476670

  11. Mechanical Restrictions on Biological Responses by Adherent Cells within Collagen Gels

    PubMed Central

    Simon, D.D.; Horgan, C.O.; Humphrey, J.D.

    2012-01-01

    Cell-seeded collagen and fibrin gels represent excellent assays for studying interactions between adherent interstitial cells and the three-dimensional extracellular matrix in which they reside. Over one hundred papers have employed the free-floating collagen gel assay alone since its introduction in 1979 and much has been learned about mechanobiological responses of diverse types of cells. Yet, given that mechanobiology is the study of biological responses by cells to mechanical stimuli that must respect the basic laws of mechanics, we must quantify better the mechanical conditions that are imposed on or arise in cell-seeded gels. In this paper, we suggest that cell responses and associated changes in matrix organization within the classical free-floating gel assay are highly restricted by the mechanics. In particular, many salient but heretofore unexplained or misinterpreted observations in free-floating gels can be understood in terms of apparent cell-mediated residual stress fields that satisfy quasi-static equilibria and continuity of tractions. There is a continuing need, therefore, to bring together the allied fields of mechanobiology and biomechanics as we continue to elucidate cellular function within both native connective tissues and tissue equivalents that are used in basic scientific investigations or regenerative medicine. PMID:23022259

  12. Investigation on cytoskeleton dynamics for non-adherent cells under point-like stimuli

    NASA Astrophysics Data System (ADS)

    Miccio, Lisa; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Fusco, Sabato; Paciello, Antonio; Ferraro, Pietro; Netti, Paolo A.

    2015-05-01

    In the present paper, Holographic Optical Tweezers (HOT) is employed to trap and manage functionalized micrometric latex beads with the aim at probing cellular forces in no-adherent state. For the first time at best of our knowledge, a suspended cell, subjected to mechanical stress, structures its cytoskeleton when anchored to point-like bonds. We exploit the HOT arrangement to induce mechanical deformation in suspended NIH 3T3 fibroblast. Our investigation is devoted to understand the inner cell mechanism when it is mechanically stressed by point-like stimulus without the substrate influence. In our experiment, cell adhesion is prevented and the stimulus is applied through latex beads trapped by HOT and positioned externally to the cell membrane. Our aims are devoted to analyze cell response during the transition from an homogeneous and isotropic structure (as it's in suspension) to a mechanically stressed state. To analyze the cell material interaction we combine the HOT arrangement with two imaging systems: a Digital Holography (DH) setup in microscope configuration that is an investigation method useful for quantitative, label-free and full-field analysis of low contrast object and a fluorescence modulus. HOT are exploited to induce cellular response to specific stimuli while DH allows to measure such responses in no-invasive way. Finally, fluorescence imaging is added to discriminate the inner cell structures.

  13. Stem cells, colorectal cancer and cancer stem cell markers correlations.

    PubMed

    Cherciu, Irina; Bărbălan, A; Pirici, D; Mărgăritescu, C; Săftoiu, A

    2014-01-01

    : The idea of stem cells as being progenitors of cancer was initially controversial, but later supported by research in the field of leukemia and solid tumors. Afterwards, it was established that genetic abnormalities can affect the stem and progenitor cells, leading to uncontrolled replication and deregulated differentiation. These alterations will cause the changeover to cancerous stem cells (CSC) having two main characteristics: tumor initiation and maintenance. This review will focus on the colorectal cancer stem cell (CR-CSCs) theory which provides a better understanding of different tumor processes: initiation, aggressive growth, recurrence, treatment resistance and metastasis. A search in PubMed/Medline was performed using the following keywords: colorectal cancer stem cells (CR-CSCs), colorectal neoplasms stem cells, colorectal cancer stem cell (CR-CSCs) markers, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Isolation of CR-CSCs can be achieved by targeting and selecting subpopulation of tumor cells based on expression of one or multiple cell surface markers associated with cancer self-renewal, markers as: CD133, CD166, CD44, CD24, beta1 integrin-CD29, Lgr5, EpCAM (ESA), ALDH-1, Msi-1, DCAMLK1 or EphB receptors. The identification and localization of CR-CSCs through different markers will hopefully lead to a better stratification of prognosis and treatment response, as well as the development of new effective strategies for cancer management.

  14. Factors Associated with Adherence to Adjuvant Endocrine Therapy Among Privately Insured and Newly Diagnosed Breast Cancer Patients: A Quantile Regression Analysis

    PubMed Central

    Farias, Albert J.; Hansen, Ryan N.; Zeliadt, Steven B.; Ornelas, India J.; Li, Christopher I.; Thompson, Beti

    2016-01-01

    BACKGROUND Adherence to adjuvant endocrine therapy (AET) for estrogen receptor-positive breast cancer remains suboptimal, which suggests that women are not getting the full benefit of the treatment to reduce breast cancer recurrence and mortality. The majority of studies on adherence to AET focus on identifying factors among those women at the highest levels of adherence and provide little insight on factors that influence medication use across the distribution of adherence. OBJECTIVE To understand how factors influence adherence among women across low and high levels of adherence. METHODS A retrospective evaluation was conducted using the Truven Health MarketScan Commercial Claims and Encounters Database from 2007–2011. Privately insured women aged 18-64 years who were recently diagnosed and treated for breast cancer and who initiated AET within 12 months of primary treatment were assessed. Adherence was measured as the proportion of days covered (PDC) over a 12-month period. Simultaneous multivariable quantile regression was used to assess the association between treatment and demographic factors, use of mail order pharmacies, medication switching, and out-of-pocket costs and adherence. The effect of each variable was examined at the 40th, 60th, 80th, and 95th quantiles. RESULTS Among the 6,863 women in the cohort, mail order pharmacies had the greatest influence on adherence at the 40th quantile, associated with a 29.6% (95% CI = 22.2–37.0) higher PDC compared with retail pharmacies. Out-of-pocket cost for a 30-day supply of AET greater than $20 was associated with an 8.6% (95% CI = 2.8–14.4) lower PDC versus $0-$9.99. The main factors that influenced adherence at the 95th quantile were mail order pharmacies, associated with a 4.4% higher PDC (95% CI = 3.8-5.0) versus retail pharmacies, and switching AET medication 2 or more times, associated with a 5.6% lower PDC versus not switching (95% CI = 2.3–9.0). CONCLUSIONS Factors associated with adherence

  15. Lung cancer - non-small cell

    MedlinePlus

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  16. Laser-generated Micro-bubbles for Molecular Delivery to Adherent Cells

    NASA Astrophysics Data System (ADS)

    Genc, Suzanne Lee

    We examine the use of optical breakdown in aqueous media as a means to deliver molecules into live adherent cell cultures. This process, called optoinjection (OI), is affected both by the media composition and the cellular exposure to hydrodynamic stresses associated with the cavitation bubble formed by the optical breakdown process. Here we explore the possibility of performing OI using laser microbeams focused at low numerical aperture to provide conditions where OI can be performed at high-throughput. We first investigate the effect of media composition on plasma and cavitation bubble formation. We make the discovery that irradiation of minimal essential media, supports the formation of low-density plasmas (LDP) resulting in the generation of small (2--20 mum radius) cavitation bubbles. This provides gentle specific hydrodynamic perturbations to single or small groups of cells. The addition of supplemental fetal bovine serum to the medium prevents the formation LDPs and the resulting avalanche ionization generates larger (> 100 mum radius) bubbles and more violent hydrodynamic effects. Second, using high-speed photography we provide the first visualization of LDP-generated cavitation bubbles at precise offset locations relative to a boundary on which a cell monolayer can be cultured. These images depict the cellular exposure to different hydrodynamic conditions depending on the normalized offset distance (gamma = s/Rmax) and show how it affects the cellular exposure to shear stresses upon bubble expansion and different distributions of bubble energy upon collapse. Lastly, we examine the effects of pulse energy, parameters, and single vs. multiple laser exposures on the ability to deliver 3-5 kDa dextrans into adherent cells using both small (< 20 mum) and large (100mu m) radius bubbles. For single exposures, we identify several conditions under which OI can be optimized: (a) conditions where cell viability is maximized (˜90%) but optoinjection of viable cells

  17. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  18. On-chip integrated lensless microscopy module for optical monitoring of adherent growing mammalian cells.

    PubMed

    Li, Wei; Knoll, Thorsten; Thielecke, Hagen

    2010-01-01

    Lab-on-a-chip systems are increasingly applied in cell-based assays for toxicology and drug testing. In this paper, an on-chip integrated lensless microscopy module using a direct projection method for optical monitoring of the shadow images of adherent growing mammalian cells is presented. The biological cells are conserved and interfaced by a microfabricated cavity chip with a 1 microm thick silicon nitride (Si(3)N(4)) substrate onto the surface of a 5 megapixel CMOS image sensor with 2.2 microm pixel size. The optical resolution of the assembly is estimated by the contact/proximate printing theory from optical lithography. Further characterization is made by imaging microbeads in chips with the Si(3)N(4)-membrane as well as in cavity chips with membranes made from dry film resist (DFR, thickness 20, 40 and 60 microm). The module represents a 3 × optical microscope for cell morphology imaging. The function is demonstrated by the growth monitoring of L929 cells cultured in cavity chips with Si(3)N(4) substrate for 2 days and by checking the colorimetric staining of cells with a compromised membrane. PMID:21096993

  19. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  20. Contemporary Renal Cell Cancer Epidemiology

    PubMed Central

    Chow, Wong-Ho; Devesa, Susan S.

    2010-01-01

    We analyzed renal cell cancer incidence patterns in the United States and reviewed recent epidemiologic evidence with regard to environmental and host genetic determinants of renal cell cancer risk. Renal cell cancer incidence rates continued to rise among all racial/ethnic groups in the United States, across all age groups, and for all tumor sizes, with the most rapid increases for localized stage disease and small tumors. Recent cohort studies confirmed the association of smoking, excess body weight, and hypertension with an elevated risk of renal cell cancer, and suggested that these factors can be modified to reduce the risk. There is increasing evidence for an inverse association between renal cell cancer risk and physical activity and moderate intake of alcohol. Occupational exposure to TCE has been positively associated with renal cell cancer risk in several recent studies, but its link with somatic mutations of the VHL gene has not been confirmed. Studies of genetic polymorphisms in relation to renal cell cancer risk have produced mixed results, but genome-wide association studies with larger sample size and a more comprehensive approach are underway. Few epidemiologic studies have evaluated risk factors by subtypes of renal cell cancer defined by somatic mutations and other tumor markers. PMID:18836333

  1. Adherent-phagocytic cells influence suppressed concanavalin-A induced proliferation of spleen lymphoid cells in copper deficient rats

    SciTech Connect

    Kramer, T.R.; Briske-Anderson, M.; Johnson, W.T.

    1986-03-01

    Weanling male Lewis rats (N = 10/group) were fed ad-libitum for 42 days diets based on AIN standards containing 21% casein, 5% safflower oil, and deficient (0.6 ..mu..g/g) or adequate (5.6 ..mu..g/g) levels of cu. Cu-deficient rats showed typical biochemical and hematological changes. Immunological changes exhibited by Cu-deficient rats were influenced by the presence of splenic adherent-phagocytic cells (macrophage-like), but not by cytochrome-c oxidase activity of spleen lymphoid cells (SLC). Decreased proliferation was exhibited by concanavalin-A (Con-A) stimulated SLC of Cu-deficient rats. Following removal of plastic-adherent phagocytic cells from the SLC suspensions, equivalent proliferation was exhibited by Con-A stimulated nonadherent-SLC of Cu-deficient and Cu-adequate rats. Decreased cytochrome-c oxidase activity was exhibited by both unstimulated SLC and nonadherent-SLC of Cu-deficient rats, but decreased proliferation was exhibited only in Con-A stimulated SLC of Cu-deficient rats. These findings indicate that nonadherent splenic T-lymphocytes of Cu-deficient rats are not impaired in their ability to proliferate, and that cytochrome-c oxidase activity in unstimulated lymphoid cells of Cu-deficient rats is apparently not related to levels of proliferation by the Con-A stimulated cells.

  2. Isolation of an Escherichia coil strain mutant unable to form biofilm on polystyrene and to adhere to human pneumocyte cells: involvement of tryptophanase.

    PubMed

    Di Martino, P; Merieau, A; Phillips, R; Orange, N; Hulen, C

    2002-02-01

    Escherichia coli adherence to biotic and abiotic surfaces constitutes the first step of infection by promoting colonization and biofilm formation. The aim of this study was to gain a better understanding of the relationship between E. coli adherence to different biotic surfaces and biofilm formation on abiotic surfaces. We isolated mutants defective in A549 pneumocyte cells adherence, fibronectin adherence, and biofilm formation by random transposition mutagenesis and sequential passages over A549 cell monolayers. Among the 97 mutants tested, 80 were decreased in biofilm formation, 8 were decreased in A549 cells adherence, 7 were decreased in their adherence to fibronectin, and 17 had no perturbations in either of the three phenotypes. We observed a correlation between adherence to fibronectin or A549 cells and biofilm formation, indicating that biotic adhesive factors are involved in biofilm formation by E. coli. Molecular analysis of the mutants revealed that a transposon insertion in the tnaA gene encoding for tryptophanase was associated with a decrease in both A549 cells adherence and biofilm formation by E. coli. The complementation of the tnaA mutant with plasmid-located wild-type tnaA restored the tryptophanase activity, epithelial cells adherence, and biofilm formation on polystyrene. The possible mechanism of tryptophanase involvement in E. coli adherence and biofilm formation is discussed.

  3. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer

    PubMed Central

    Reunanen, Justus; Kainulainen, Veera; Huuskonen, Laura; Ottman, Noora; Belzer, Clara; Huhtinen, Heikki; de Vos, Willem M.

    2015-01-01

    Akkermansia muciniphila is a Gram-negative mucin-degrading bacterium that resides in the gastrointestinal tracts of humans and animals. A. muciniphila has been linked with intestinal health and improved metabolic status in obese and type 2 diabetic subjects. Specifically, A. muciniphila has been shown to reduce high-fat-diet-induced endotoxemia, which develops as a result of an impaired gut barrier. Despite the accumulating evidence of the health-promoting effects of A. muciniphila, the mechanisms of interaction of the bacterium with the host have received little attention. In this study, we used several in vitro models to investigate the adhesion of A. muciniphila to the intestinal epithelium and its interaction with the host mucosa. We found that A. muciniphila adheres strongly to the Caco-2 and HT-29 human colonic cell lines but not to human colonic mucus. In addition, A. muciniphila showed binding to the extracellular matrix protein laminin but not to collagen I or IV, fibronectin, or fetuin. Importantly, A. muciniphila improved enterocyte monolayer integrity, as shown by a significant increase in the transepithelial electrical resistance (TER) of cocultures of Caco-2 cells with the bacterium. Further, A. muciniphila induced interleukin 8 (IL-8) production by enterocytes at cell concentrations 100-fold higher than those for Escherichia coli, suggesting a very low level of proinflammatory activity in the epithelium. In conclusion, our results demonstrate that A. muciniphila adheres to the intestinal epithelium and strengthens enterocyte monolayer integrity in vitro, suggesting an ability to fortify an impaired gut barrier. These results support earlier associative in vivo studies and provide insights into the interaction of A. muciniphila with the host. PMID:25795669

  4. Numerical fluid-dynamic optimization of microchannel-provided porous scaffolds for the co-culture of adherent and non-adherent cells.

    PubMed

    Cantini, Marco; Fiore, Gianfranco B; Redaelli, Alberto; Soncini, Monica

    2009-03-01

    Computational fluid dynamic (CFD) techniques were used to optimize the microenvironment inside scaffolds for hematopoietic stem cell (HSC) culture in a perfusion bioreactor. These matrices are meant to be seeded with adherent bone marrow stromal cells and then co-cultivated with HSCs; the scaffold micro-architecture and the fluid-dynamic conditions have to be optimized to avoid non-adherent stem cells being dragged away while ensuring adequate nutrient supply. The insertion of longitudinal microchannels was tested as a tool to improve perfusion in a homogeneous porous scaffold. Models of microchannel-provided scaffolds, characterized by different values of geometric parameters concerning pores and channels, were built, and numerical fluid-dynamic and oxygen-transfer analyses were carried out. The results of the computations indicated that the microchannels created preferential paths for culture medium flow, causing low shear stresses and drag forces within the pores; meanwhile, they improved oxygen delivery by forcing its penetration into the scaffold bulk. In particular, an 85% porous, 3-mm-thick scaffold with 175-microm-diameter pores was considered; at a constant average drag force guaranteeing stem cell suspension inside this porous bulk, the addition of approximately 260-microm-diameter, 700-microm-spaced channels resulted in 34% higher oxygen partial pressure at the exit (approximately 135 vs 101 mmHg), maintaining a wall shear stress median value of approximately 0.14 mPa. The present work demonstrates the capacity of microchannel-provided scaffolds to ensure suitable conditions for HSC culture and shows that CFD methods are a valuable tool to retrieve significant clues for the design of the culture environment.

  5. Streptococcus pneumoniae ClpL Modulates Adherence to A549 Human Lung Cells through Rap1/Rac1 Activation

    PubMed Central

    Nguyen, Cuong Thach; Le, Nhat-Tu; Tran, Thao Dang-Hien; Kim, Eun-Hye; Park, Sang-Sang; Luong, Truc Thanh; Chung, Kyung-Tae; Pyo, Suhkneung

    2014-01-01

    Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens. PMID:24980975

  6. Cyclic Amphipathic Peptide-DNA Complexes Mediate High-Efficiency Transfection of Adherent Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Legendre, Jean-Yves; Szoka, Francis C., Jr.

    1993-02-01

    A DNA transfection protocol has been developed that makes use of the cyclic cationic amphipathic peptide gramicidin S and dioleoyl phosphatidylethanolamine. The DNA complex is formed by mixing gramicidin S with DNA at a 1:1 charge ratio and then adding phosphatidylethanolamine at a lipid/peptide molar ratio of 5:1. The complex mediates rapid association of DNA with cells and leads to transient expression levels of β-galactosidase ranging from 1 to 30% of the transfected cells, with long-term expression being about an order of magnitude lower. The respective roles of peptide and phospholipid are not yet resolved but optimal transfection requires both the cyclic peptide and the hexagonal phase-competent phospholipid PtdEtn. Transfection in CV-1 cells is not affected by lysomotrophic agents, which suggests that DNA entry into the cell is via the plasma membrane. This technique that is simple, economical, and reproducible mediates transfection levels up to 20-fold higher than cationic liposomes in adherent mammalian cells.

  7. A novel multi-coaxial hollow fiber bioreactor for adherent cell types. Part 1: hydrodynamic studies.

    PubMed

    Wolfe, Stephen P; Hsu, Edward; Reid, Lola M; Macdonald, Jeffrey M

    2002-01-01

    A novel multi-coaxial bioreactor for three-dimensional cultures of adherent cell types, such as liver, is described. It is composed of four tubes of increasing diameter placed one inside the other, creating four spatially isolated compartments. Liver acinar structure and physiological parameters are mimicked by sandwiching cells in the space between the two innermost semi-permeable tubes, or hollows fibers, and creating a radial flow of media from an outer compartment (ECC), through the cell mass compartment, and to an inner compartment (ICC). The outermost compartment is created by gas-permeable tubing, and the housing is used to oxygenate the perfusion media to periportal levels in the ECC. Experiments were performed using distilled water to correlate the radial flow rate (Q(r)) with (1) the pressure drop (DeltaP) between the media compartments that sandwich the cell compartment and (2) the pressure in the cell compartment (P(c)). These results were compared with the theoretical profile calculated based on the hydraulic permeability of the two innermost fibers. Phase-contrast velocity-encoded magnetic resonance imaging was used to visualize directly the axial velocities inside the bioreactor and confirm the assumptions of laminar flow and zero axial velocity at the boundaries of each compartment in the bioreactor. Axial flow rates were calculated from the magnetic resonance imaging results and were similar to the measured axial flow rates for the previously described experiments.

  8. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72

    PubMed Central

    2013-01-01

    Background The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Results Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. Conclusions These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process. PMID:24044741

  9. Small Cell Lung Cancer.

    PubMed

    Bernhardt, Erica B; Jalal, Shadia I

    2016-01-01

    Small cell lung cancer (SCLC) is an aggressive cancer of neuroendocrine origin, which is strongly associated with cigarette smoking. Patients typically present with a short duration of symptoms and frequently (60-65 %) with metastatic disease. SCLC is a heterogeneous disease including extremely chemosensitive and chemoresistant clones. For this reason, a high percentage of patients respond to first-line chemotherapy but rapidly succumb to the disease. SCLC is generally divided into two stages, limited and extensive. Standard treatment of limited stage disease includes combination chemotherapy with cisplatin and etoposide for four cycles, thoracic radiation initiated early with the first cycle of chemotherapy, and consideration of prophylactic cranial irradiation (PCI) in the subset of patients with good response. Surgery may play a role in TNM stages I and II. In extensive disease, platinum agents and etoposide, used in combination, are again the first-line standard of care in the USA. However, thoracic radiation therapy is used predominately in patients where local control is important and PCI is of uncertain benefit. Despite these treatments, prognosis remains poor and novel therapies are needed to improve survival in this disease. PMID:27535400

  10. Raman micro-spectroscopy study of living SH-SY5Y cells adhering on different substrates.

    PubMed

    Caponi, S; Mattana, S; Ricci, M; Sagini, K; Urbanelli, L; Sassi, P; Morresi, A; Emiliani, C; Dalla Serra, M; Iannotta, S; Musio, C; Fioretto, D

    2016-01-01

    In this paper we test the ability of Raman micro-spectroscopy and Raman mapping to investigate the status of cells grown in adhesion on different substrates. The spectra of immortalized SH-SY5Y cells, grown on silicon and on metallic substrates are compared with those obtained for the same type of cells adhering on organic polyaniline (PANI), a memristive substrate chosen to achieve a living bio-hybrid system. Raman spectra give information on the status of the single cell, its local biochemical composition, and on the modifications induced by the substrate interaction. The good agreement between Raman spectra collected from cells adhering on different substrates confirms that the PANI, besides allowing the cell growth, doesn't strongly affect the general biochemical properties of the cell. The investigation of the cellular state in a label free condition is challenging and the obtained results confirm the Raman ability to achieve this information. PMID:26256426

  11. A computational model of the response of adherent cells to stretch and changes in substrate stiffness

    PubMed Central

    Lutchen, Kenneth R.; Suki, Béla

    2014-01-01

    Cells in the body exist in a dynamic mechanical environment where they are subject to mechanical stretch as well as changes in composition and stiffness of the underlying extracellular matrix (ECM). However, the underlying mechanisms by which cells sense and adapt to their dynamic mechanical environment, in particular to stretch, are not well understood. In this study, we hypothesized that emergent phenomena at the level of the actin network arising from active structural rearrangements driven by nonmuscle myosin II molecular motors play a major role in the cellular response to both stretch and changes in ECM stiffness. To test this hypothesis, we introduce a simple network model of actin-myosin interactions that links active self-organization of the actin network to the stiffness of the network and the traction forces generated by the network. We demonstrate that such a network replicates not only the effect of changes in substrate stiffness on cellular traction and stiffness and the dependence of rate of force development by a cell on the stiffness of its substrate, but also explains the physical response of adherent cells to transient and cyclic stretch. Our results provide strong indication that network phenomena governed by the active reorganization of the actin-myosin structure plays an important role in cellular mechanosensing and response to both changes in ECM stiffness and externally applied mechanical stretch. PMID:24408996

  12. Stress Modulus of Cancer Cells

    NASA Astrophysics Data System (ADS)

    Bonin, Keith; Guthold, Martin; Guo, Xinyi; Sigley, Justin

    2012-02-01

    Our main goal is to study the different physical and mechanical properties of cells as they advance through different stages of neoplastic transformation from normal to the metastatic state. Since recent reports indicate there is significant ambiguity about how these properties change for different cancer cells, we plan to measure these properties for a single line of cells, and to determine whether the changes vary for different cellular components: i.e. whether the change in physical properties is due to a change in the cytoskeleton, the cell membrane, the cytoplasm, or a combination of these elements. Here we expect to present data on the stress modulus of cancer cells at different stages: normal, mortal cancerous, immortal cancerous, and tumorigenic. The cells are Weinberg cell line Human Mammary Epithelial (HME) cells. Atomic force microscope (AFM) probes with different diameters are used to push on the cell membrane to measure the local, regional and global cell stress modulus. Preliminary results on normal HME cells suggests a stress modulus of 1.5 ± 0.8 kPa when pushing with 7 μm spherical probes. We anticipate reporting an improved value for the modulus as well as results for some of the Weinberg cancer cells.

  13. CsrRS and Environmental pH Regulate Group B Streptococcus Adherence to Human Epithelial Cells and Extracellular Matrix

    PubMed Central

    Park, Su Eun; Jiang, Shengmei

    2012-01-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common colonizer of the gastrointestinal and genital tracts and an important cause of invasive infections in newborn infants and in adults with predisposing chronic conditions or advanced age. Attachment to epithelial surfaces at mucosal sites is a critical step in the successful colonization of a human host, and regulation of this process is likely to play an important role in both commensalism and dissemination to cause invasive disease. We found that inactivation of the CsrRS (or CovRS) two-component system increased GBS adherence to epithelial cells derived from human vaginal, cervical, and respiratory epithelium, as well as increasing adherence to extracellular matrix proteins and increasing biofilm formation on polystyrene. Neutral (as opposed to acidic) pH enhanced GBS binding to vaginal epithelial cells and to fibrinogen and fibronectin, effects that were partially dependent on CsrRS. The regulatory effects of CsrRS and environmental pH on bacterial adherence correlated with their effects on the expression of multiple surface adhesins, as assessed by quantitative reverse transcription-PCR. We conclude that GBS adherence to epithelial and abiotic surfaces is regulated by the CsrRS two-component system and by environmental pH through their regulatory effects on the expression of bacterial surface adhesins. Dynamic regulation of GBS adherence enhances the organism's adaptability to survival in multiple niches in the human host. PMID:22949550

  14. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells

    PubMed Central

    Kucknoor, Ashwini; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary Trichomonas vaginalis, an ancient protist, colonizes the vaginal mucosa causing trichomonosis, a vaginitis that sometimes leads to severe health complications. Preparatory to colonization of the vagina is the adhesion to vaginal epithelial cells (VECs) by trichomonads. We hypothesized that VECs alter the gene expression to form a complex signalling cascade in response to trichomonal adherence. In order to identify the genes that are upregulated, we constructed a subtraction cDNA library after contact with parasites that is enriched for differentially expressed genes from the immortalized MS-74 VECs. Sixty cDNA clones were sequenced and to our knowledge for the first time, differentially regulated genes were identified in response to early trichomonal infection. The identified genes were found to encode functional proteins with specific functions associated with cell structure maintenance and extracellular matrix components, proinflammatory molecules and apoptosis. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed expression of selected genes. Further, cyclooxygenase 2 (COX-2) protein expression was analysed using Western blot and immunofluorescence assays. Data suggest that p38 mitogen-activated protein (MAP) kinase and tyrosine kinases play a role in COX-2 induction. Finally, T. vaginalis and Tritrichomonas foetus but not Pentatrichomonas hominis induce expression of COX-2. This is a first attempt at elucidating the basis of interaction of trichomonads with host cells and the corresponding host responses triggered by the parasites. PMID:15888089

  15. CANCER STEM CELLS AND RADIORESISTANCE

    PubMed Central

    K, Rycaj; D.G, Tang

    2015-01-01

    Purpose Radiation therapy has made significant contributions to cancer therapy. However, despite continuous improvements, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be attributable to the presence of cancer stem cells (CSCs). Conclusions This review discusses CSC-specific mechanisms that confer radiation resistance with a focus on breast cancer and glioblastoma multiforme (GBM), thereby emphasizing the addition of these potential therapeutic targets in order to potentiate radiotherapy efficacy. PMID:24527669

  16. Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli.

    PubMed

    Koh, Seung Y; George, Sajan; Brözel, Volker; Moxley, Rodney; Francis, David; Kaushik, Radhey S

    2008-07-27

    Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. The organism causes diarrhea by adhering to and colonizing enterocytes in the small intestines. While much progress has been made in understanding the pathogenesis of ETEC, no homologous intestinal epithelial cultures suitable for studying porcine ETEC pathogenesis have been described prior to this report. In the current study, we investigated the adherence of various porcine ETEC strains to two porcine (IPEC-1 and IPEC-J2) and one human (INT-407) small intestinal epithelial cell lines. Each cell line was assessed for its ability to support the adherence of E. coli expressing fimbrial adhesins K88ab, K88ac, K88ad, K99, F41, 987P, and F18. Wild-type ETEC expressing K88ab, K88ac, and K88ad efficiently bound to both IPEC-1 and IPEC-J2 cells. An ETEC strain expressing both K99 and F41 bound heavily to both porcine cell lines but an E. coli strain expressing only K99 bound very poorly to these cells. E. coli expressing F18 adhesin strongly bound to IPEC-1 cells but did not adhere to IPEC-J2 cells. The E. coli strains G58-1 and 711 which express no fimbrial adhesins and those that express 987P fimbriae failed to bind to either porcine cell line. Only strains B41 and K12:K99 bound in abundance to INT-407 cells. The binding of porcine ETEC to IPEC-J2, IPEC-1 and INT-407 with varying affinities, together with lack of binding of 987P ETEC and non-fimbriated E. coli strains, suggests strain-specific E. coli binding to these cell lines. These findings suggest the potential usefulness of porcine intestinal cell lines for studying ETEC pathogenesis.

  17. Drugs Approved for Kidney (Renal Cell) Cancer

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs ... that are not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) ...

  18. The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lmof2365_2117 is a Listeria monocytogenes putative cell wall surface anchor protein with a conserved domain found in collagen binding proteins. We constructed a deletion mutation in lmof2365_2117 in serotype 4b strain F2365, evaluated its virulence, and determined its ability to adhere and invade co...

  19. Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography.

    PubMed

    Mölder, A; Sebesta, M; Gustafsson, M; Gisselson, L; Wingren, A Gjörloff; Alm, K

    2008-11-01

    Manual cell counting is time consuming and requires a high degree of skill on behalf of the person performing the count. Here we use a technique that utilizes digital holography, allowing label-free and completely non-invasive cell counting directly in cell culture vessels with adherent viable cells. The images produced can provide both quantitative and qualitative phase information from a single hologram. The recently constructed microscope Holomonitor (Phase Holographic Imaging AB, Lund, Sweden) combines the commonly used phase contrast microscope with digital holography, the latter giving us the possibility of achieving quantitative information on cellular shape, area, confluence and optical thickness. This project aimed at determining the accuracy and repeatability of cell counting measurements using digital holography compared to the conventional manual cell counting method using a haemocytometer. The collected data were also used to determine cell size and cellular optical thickness. The results show that digital holography can be used for non-invasive automatic cell counting as precisely as conventional manual cell counting. PMID:19017223

  20. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    SciTech Connect

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  1. Selective adherence of non-typeable Haemophilus influenzae (NTHi) to mucus or epithelial cells in the chinchilla eustachian tube and middle ear.

    PubMed

    Miyamoto, N; Bakaletz, L O

    1996-11-01

    Frozen sections of chinchilla Eustachian tube (ET) and middle ear mucosa were incubated with either FITC-labeled non-typeable Haemophilus influenzae (NTHi) or Bordetella pertussis. The number of bacteria adherent to "roof" vs "floor" regions was compared for each of three anatomic portions of the ET and for middle ear epithelium noting whether bacteria adhered to mucus or to epithelial cells. NTHi strains adhered significantly greater to mucus in the ET lumen whereas B. pertussis preferentially adhered to epithelial cells lining the ET (P < or = 0.05). A non-fimbriated isogenic mutant of NTHi adhered significantly less to mucus than the parental isolate at all sites of the ET floor (P < or = 0.05). Isolated fimbrin protein adhered to ET mucus and blocked adherence of whole organisms. Treatment with the mucolytic agent N-acetyl-L-cysteine resulted in significantly reduced adherence of NTHi to mucus (P < or = 0.001) and eliminated the ability to detect binding of isolated fimbrin protein. N-acetyl-L-cysteine treatment did not affect adherence of either B. pertussis or NTHi to epithelial cells. These data indicated that NTHi may mediate ascension of the ET from the nasopharynx primarily via adherence to and growth in mucus overlying the floor region of the tubal lumen. The OMP P5-homologous fimbriae were shown to contribute to this binding.

  2. Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells.

    PubMed

    Kim, Dae Kyoung; Seo, Eun Jin; Choi, Eun J; Lee, Su In; Kwon, Yang Woo; Jang, Il Ho; Kim, Seung-Chul; Kim, Ki-Hyung; Suh, Dong-Soo; Seong-Jang, Kim; Lee, Sang Chul; Kim, Jae Ho

    2016-01-01

    Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients. PMID:27561949

  3. Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells

    PubMed Central

    Kim, Dae Kyoung; Seo, Eun Jin; Choi, Eun J; Lee, Su In; Kwon, Yang Woo; Jang, Il Ho; Kim, Seung-Chul; Kim, Ki-Hyung; Suh, Dong-Soo; Seong-Jang, Kim; Lee, Sang Chul; Kim, Jae Ho

    2016-01-01

    Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients. PMID:27561949

  4. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery

    PubMed Central

    Fang, D D; Kim, Y J; Lee, C N; Aggarwal, S; McKinnon, K; Mesmer, D; Norton, J; Birse, C E; He, T; Ruben, S M; Moore, P A

    2010-01-01

    Background: Despite earlier studies demonstrating in vitro propagation of solid tumour cancer stem cells (CSCs) as non-adherent tumour spheres, it remains controversial as to whether CSCs can be maintained in vitro. Additional validation of the CSC properties of tumour spheres would support their use as CSC models and provide an opportunity to discover additional CSC cell surface markers to aid in CSC detection and potential elimination. Methods: Primary tumour cells isolated from 13 surgically resected colon tumour specimens were propagated using serum-free CSC-selective conditions. The CSC properties of long-term cultured tumour spheres were established and mass spectrometry-based proteomics performed. Results: Freshly isolated CD133+ colorectal cancer cells gave rise to long-term tumour sphere (or spheroids) cultures maintaining CD133 expression. These spheroid cells were able to self-renew and differentiate into adherent epithelial lineages and recapitulate the phenotype of the original tumour. Relative to their differentiated progeny, tumour spheroid cells were more resistant to the chemotherapeutic irinotecan. Finally, CD44, CD166, CD29, CEACAM5, cadherin 17, and biglycan were identified by mass spectrometry to be enriched in CD133+ tumour spheroid cells. Conclusion: Our data suggest that ex vivo-expanded colon CSCs isolated from clinical specimens can be maintained in culture enabling the identification of CSC cell surface-associated proteins. PMID:20332776

  5. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  6. Adherence to a healthy Nordic food index is associated with a lower incidence of colorectal cancer in women: the Diet, Cancer and Health cohort study.

    PubMed

    Kyrø, Cecilie; Skeie, Guri; Loft, Steffen; Overvad, Kim; Christensen, Jane; Tjønneland, Anne; Olsen, Anja

    2013-03-14

    Colorectal cancer (CRC) is a multi-factorial disease in which diet is believed to play a role. Little is known about the health effects of specific regional diets. The Nordic diet is high in fat and sugar but also includes a range of traditional products with anticipated health-promoting effects. The aim of this cohort study was to determine whether a healthy Nordic food index consisting of fish, cabbage, rye bread, oatmeal, apples, pears and root vegetables was related to CRC incidence. Data were obtained from a prospective cohort study of 57,053 Danish men and women aged 50-64 years, of whom 1025 developed CRC (13 years' follow-up). Incidence rate ratios (IRR) with 95 % CI were calculated from Cox proportional hazard models. Women who strongly adhered to a healthy Nordic food index had a 35 % lower incidence of CRC than women with poor adherence (adjusted IRR, 0·65; 95 % CI 0·46, 0·94); a similar tendency was found for men. Women had a 9 % lower incidence of CRC per point adherence to the healthy Nordic food index, but no significant effect was found for men. A regional diet based on healthy Nordic food items was therefore associated with a lower incidence of CRC in women. The protective effect was of the same magnitude as previously found for the Mediterranean diet, suggesting that healthy regional diets should be promoted in order to ensure health; this will also preserve cultural heredity and the environment. PMID:22874538

  7. Adherence to a healthy Nordic food index is associated with a lower incidence of colorectal cancer in women: the Diet, Cancer and Health cohort study.

    PubMed

    Kyrø, Cecilie; Skeie, Guri; Loft, Steffen; Overvad, Kim; Christensen, Jane; Tjønneland, Anne; Olsen, Anja

    2013-03-14

    Colorectal cancer (CRC) is a multi-factorial disease in which diet is believed to play a role. Little is known about the health effects of specific regional diets. The Nordic diet is high in fat and sugar but also includes a range of traditional products with anticipated health-promoting effects. The aim of this cohort study was to determine whether a healthy Nordic food index consisting of fish, cabbage, rye bread, oatmeal, apples, pears and root vegetables was related to CRC incidence. Data were obtained from a prospective cohort study of 57,053 Danish men and women aged 50-64 years, of whom 1025 developed CRC (13 years' follow-up). Incidence rate ratios (IRR) with 95 % CI were calculated from Cox proportional hazard models. Women who strongly adhered to a healthy Nordic food index had a 35 % lower incidence of CRC than women with poor adherence (adjusted IRR, 0·65; 95 % CI 0·46, 0·94); a similar tendency was found for men. Women had a 9 % lower incidence of CRC per point adherence to the healthy Nordic food index, but no significant effect was found for men. A regional diet based on healthy Nordic food items was therefore associated with a lower incidence of CRC in women. The protective effect was of the same magnitude as previously found for the Mediterranean diet, suggesting that healthy regional diets should be promoted in order to ensure health; this will also preserve cultural heredity and the environment.

  8. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis

    PubMed Central

    1994-01-01

    Asthma is a disease of airway inflammation and hyperreactivity that is associated with a lymphocytic infiltrate in the bronchial submucosa. The interactions between infiltrating T lymphocytes with cellular and extracellular matrix components of the airway and the consequences of these interactions have not been defined. We demonstrate the constitutive expression of CD44 on human airway smooth muscle (ASM) cells in culture as well as in human bronchial tissue transplanted into severe combined immunodeficient mice. In contrast, basal levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression are minimal but are induced on ASM by inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha). Activated, but not resting T cells, adhere to cultured ASM; stimulation of the ASM with TNF-alpha enhanced this adhesion. Adhesion was partially blocked by monoclonal antibodies (mAb) specific for lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4) on T cells and ICAM-1 and VCAM-1 on ASM cells. The observed integrin-independent adhesion was mediated by CD44/hyaluronate interactions as it was inhibited by anti-CD44 mAb 5F12 and by hyaluronidase. Furthermore, the adhesion of activated T lymphocytes induced DNA synthesis in growth-arrested ASM cells. Thus, the interaction between T cells and ASM may provide insight into the mechanisms that induce bronchial inflammation and possibly ASM cell hyperplasia seen in asthma. PMID:7520473

  9. Cancer stem cells: impact, heterogeneity, and uncertainty

    PubMed Central

    Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.

    2015-01-01

    The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924

  10. Fimbria-mediated adherence of Candida albicans to glycosphingolipid receptors on human buccal epithelial cells.

    PubMed Central

    Yu, L; Lee, K K; Sheth, H B; Lane-Bell, P; Srivastava, G; Hindsgaul, O; Paranchych, W; Hodges, R S; Irvin, R T

    1994-01-01

    Candida albicans is an opportunist fungal pathogen that has the ability to adhere to host cell surface receptors via a number of adhesins. Yu et al. (L. Yu, K. K. Lee, K. Ens, P. C. Doig, M. R. Carpenter, W. Staddon, R. S. Hodges, W. Paranchych, and R. T. Irvin, Infect. Immun. 62:2834-2842, 1994) described the purification and initial characterization of a fimbrial adhesin from C. albicans. In this paper, we show that C. albicans fimbriae also bind to asialo-GM1 [gangliotetraosylceramide: beta Gal(1-3)beta GalNAc(1-4) beta Gal(1-4)beta Glc(1-1)Cer] immobilized on microtiter plates in a saturable and concentration-dependent manner. C. albicans fimbrial binding to exfoliated human buccal epithelial cells (BECs) was inhibited by asialo-GM1 in in vitro binding assays. The fimbriae interact with the glycosphingolipid receptors via the carbohydrate portion of the receptors, since fimbriae were observed to bind to synthetic beta GalNAc(1-4)beta Gal-protein conjugates and the disaccharide was able to inhibit binding of fimbriae to BECs in in vitro binding assays. We conclude from these results that the C. albicans yeast form expresses a fimbrial adhesin that binds to glycosphingolipids displayed on the surface of human BECs. Images PMID:8005674

  11. Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells.

    PubMed

    Kása, Anita; Czikora, István; Verin, Alexander D; Gergely, Pál; Csortos, Csilla

    2013-09-01

    Reversible Ser/Thr phosphorylation of cytoskeletal and adherent junction (AJ) proteins has a critical role in the regulation of endothelial cell (EC) barrier function. We have demonstrated earlier that protein phosphatase 2A (PP2A) activity is important in EC barrier integrity. In the present work, macro- and microvascular EC were examined and we provided further evidence on the significance of PP2A in the maintenance of EC cytoskeleton and barrier function with special focus on the Bα (regulatory) subunit of PP2A. Immunofluorescent staining revealed that the inhibition of PP2A results in changes in the organization of EC cytoskeleton as microtubule dissolution and actin re-arrangement were detected. Depletion of Bα regulatory subunit of PP2A had similar effect on the cytoskeleton structure of the cells. Furthermore, transendothelial electric resistance measurements demonstrated significantly slower barrier recovery of Bα depleted EC after thrombin treatment. AJ proteins, VE-cadherin and β-catenin, were detected along with Bα in pull-down assay. Also, the inhibition of PP2A (by okadaic acid or fostriecin) or depletion of Bα caused β-catenin translocation from the membrane to the cytoplasm in parallel with its phosphorylation on Ser552. In conclusion, our data suggest that the A/Bα/C holoenzyme form of PP2A is essential in EC barrier integrity both in micro- and macrovascular EC. PMID:23721711

  12. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  13. Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations

    PubMed Central

    Lopez-Ayllon, Blanca D; Moncho-Amor, Veronica; Abarrategi, Ander; de Cáceres, Inmaculada Ibañez; Castro-Carpeño, Javier; Belda-Iniesta, Cristobal; Perona, Rosario; Sastre, Leandro

    2014-01-01

    Lung cancer is the top cause of cancer-related deceases. One of the reasons is the development of resistance to the chemotherapy treatment. In particular, cancer stem cells (CSCs), can escape treatment and regenerate the bulk of the tumor. In this article, we describe a comparison between cancer cells resistant to cisplatin and CSCs, both derived from the non-small-cell lung cancer cell lines H460 and A549. Cisplatin-resistant cells were obtained after a single treatment with the drug. CSCs were isolated by culture in defined media, under nonadherent conditions. The isolated CSCs were clonogenic, could be differentiated into adherent cells and were less sensitive to cisplatin than the original cells. Cisplatin resistant and CSCs were able to generate primary tumors and to metastasize when injected into immunodeficient Nu/Nu mice, although they formed smaller tumors with a larger latency than untreated cells. Notably, under appropriated proportions, CSCs synergized with differentiated cells to form larger tumors. CSCs also showed increased capacity to induce angiogenesis in Nu/Nu mice. Conversely, H460 cisplatin-resistant cells showed increased tendency to develop bone metastasis. Gene expression analysis showed that several genes involved in tumor development and metastasis (EGR1, COX2, MALAT1, AKAP12, ADM) were similarly induced in CSC and cisplatin-resistant H460 cells, in agreement with a close similarity between these two cell populations. Cells with the characteristic growth properties of CSCs were also isolated from surgical samples of 18 out of 44 lung cancer patients. A significant correlation (P = 0.028) was found between the absence of CSCs and cisplatin sensitivity. PMID:24961511

  14. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  15. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells.

    PubMed

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C; Schneider, Gerd; Grünewald, Kay

    2012-02-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the 'water-window' wavelength region (2.34-4.37nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach - the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only. PMID:22210307

  16. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells

    PubMed Central

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C.; Schneider, Gerd; Grünewald, Kay

    2012-01-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the ‘water-window’ wavelength region (2.34–4.37 nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extension of the transmission soft X-ray cryo-microscope (HZB TXM) at the beamline U41-XM of the BESSY II electron storage ring by an in-column epi-fluorescence and reflected light cryo-microscope. We demonstrate the new capability for correlative fluorescence and soft X-ray cryo-microscopy/tomography of this instrument along a typical life science experimental approach – the correlation of a fluorophore-tagged protein (pUL34-GFP of pseudorabies virus, PrV, the nuclear membrane-anchored component of the nuclear egress complex of the Herpesviridae which interacts with viral pUL31) in PrV pUL34-GFP/pUL31 coexpressing mammalian cells, with virus-induced vesicular structures in the nucleus, expanding the nucleoplasmic reticulum. Taken together, our results demonstrate new possibilities to study the role of specific proteins in substructures of adherent cells, especially of the nucleus in toto, accessible to electron microscopy in thinned samples only. PMID:22210307

  17. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  18. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.

    PubMed

    Jordan, Rachael P C; Williams, David W; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2014-04-01

    Candida albicans and Candida dubliniensis are very closely related pathogenic yeast species. Despite their close relationship, C. albicans is a far more successful colonizer and pathogen of humans. The purpose of this study was to determine if the disparity in the virulence of the two species is attributed to differences in their ability to adhere to human buccal epithelial cells (BECs) and/or extracellular matrix proteins. When grown overnight at 30°C in yeast extract peptone dextrose, genotype 1 C. dubliniensis isolates were found to be significantly more adherent to human BECs than C. albicans or C. dubliniensis genotypes 2-4 (P < 0.001). However, when the yeast cells were grown at 37°C, no significant difference between the adhesion of C. dubliniensis genotype 1 and C. albicans to human BECs was observed, and C. dubliniensis genotype 1 and C. albicans adhered to BECs in significantly greater numbers than the other C. dubliniensis genotypes (P < 0.001). Using surface plasmon resonance analysis, C. dubliniensis isolates were found to adhere in significantly greater numbers than C. albicans to type I and IV collagen, fibronectin, laminin, vitronectin, and proline-rich peptides. These data suggest that C. albicans is not more adherent to epithelial cells or matrix proteins than C. dubliniensis and therefore other factors must contribute to the greater levels of virulence exhibited by C. albicans.

  19. Evaluation of a solid phase red cell adherence technique for platelet antibody screening.

    PubMed

    Lown, J A; Ivey, J G

    1991-09-01

    Solid-phase red-cell adherence (SPRCA) techniques in platelet serology are used mainly for crossmatching. A SPRCA method for general diagnostic application was evaluated in parallel with the platelet suspension immunofluorescence test (PIFT). Of 149 patient sera sent for investigation of thrombocytopaenia, 76 were negative and 59 positive when studied by both methods, eight positive by PIFT only and six positive by SPRCA only. The reactivity observed for 24 sera containing HLA antibodies tested with chloroquine-treated and untreated platelets was similar for both methods. All of 14 sera containing quinine-associated antibodies reacted strongly to both techniques in the presence of added quinine. In comparison, however, whereas all sera were nonreactive to SPRCA in the absence of added quinine, and with PIFT, seven of the sera reacted weakly. Titration studies with three examples of anti-PlA1 and five sera containing HLA antibodies generally showed a one doubling dilution lower titre with the SPRCA procedure. End-point interpretation, however, was more readily achieved with the SPRCA method. The SPRCA technique displays similar sensitivity and specificity to the PIFT and is recommended for use by routine hospital laboratories to screen platelet antibodies.

  20. Oxidative phosphorylation in cancer cells.

    PubMed

    Solaini, Giancarlo; Sgarbi, Gianluca; Baracca, Alessandra

    2011-06-01

    Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.

  1. MiR-888 regulates side population properties and cancer metastasis in breast cancer cells.

    PubMed

    Huang, Shengjian; Chen, Liangbiao

    2014-08-01

    Cancer stem cells (CSCs) have recently been reported to possess properties related to cancer metastasis. However, the mechanism by which microRNAs (miRNAs) regulate these properties remains unclear. This study aims to investigate a correlation between miRNAs and the side population (SP) of human breast cancer cell line MCF-7 with CSC properties. miR-888 was found in our previous study to be up-regulated in SP cells and predicted to target E-Cadherin directly, indicating a potential role in maintaining SP properties and regulating the epithelial-mesenchymal transition (EMT) and cancer metastasis. After the over-expression of miR-888 in MCF-7 cells and knock-down of its expression in SP cells, we found that miR-888 played a role in maintaining CSC-related properties. Next, miR-888 was found to regulate the EMT process by targeting related gene expression. Lastly, MCF-7 cells over-expressing miR-888 exhibited a significant reduction in their ability to adhere to the extracellular matrix and an increased potential for migration and invasion, whereas knock-down of miR-888 expression in SP cells reversed these trends. In conclusion, miR-888 maintains SP properties and regulates EMT and metastasis in MCF-7 cells, potentially by targeting E-Cadherin expression.

  2. Squamous cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  3. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  4. An adherent cell perifusion technique to study the overall and sequential response of rat alveolar macrophages to toxic substances.

    PubMed Central

    Forget, G; Lacroix, M J; Cadieux, A; Calvert, R; Grose, J H; Sirois, P

    1983-01-01

    Essentially pure (97%) alveolar macrophages were isolated by bronchoalveolar lavage of rats with warm (37 degrees C) PBS solution. These cells were allowed to adhere to the inside walls of open-ended glass cylinders which were closed off at each end by three-way stopcocks. The adhering cells were perifused with RPMI-1640 medium supplemented with 5% fetal bovine serum for 18 hr at the rate of 1 mL/hr, and the effluent medium was collected automatically in 2-mL aliquots. Cell recoveries and viabilities did not differ from those found for Petri cultures treated similarly, indicating that the perifusion method under study offered an adequate milieu for short-term primary cultures. The alveolar macrophages in culture were subjected to the presence of particulate (chrysotile asbestos) and soluble (phorbol myristate) toxicants, and their response was monitored in the effluent medium by measuring the release of prostaglandins (PGE) by radioimmunoassay. A significant increase in the sequential release of PGE was observed in the presence of asbestos (100 micrograms/mL) or phorbol myristate (200 ng/mL). Treatment of the cells with indomethacin (20 microM) completely abolished the release of PGE stimulated with phorbol myristate. A cumulative response to the toxicants was also observed when cells were harvested manually from the chambers: asbestos caused a 2-fold increase in cell mortality relative to control, while phorbol myristate brought about a 3-fold increase in the number of dead cells. This effect was not prevented by the presence of indomethacin. Cell aggregation was also observed when cells were perifused in the presence of phorbol myristate, whether indomethacin was present or absent. Our results indicate that the cell perifusion system combines the advantages of conventional adherent cell cultures (viability, aggregation) with those of perifusion techniques (sequential metabolism studies). Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 6. PMID:6641651

  5. Schwann cells induce cancer cell dispersion and invasion

    PubMed Central

    Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.

    2016-01-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607

  6. Schwann cells induce cancer cell dispersion and invasion.

    PubMed

    Deborde, Sylvie; Omelchenko, Tatiana; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J

    2016-04-01

    Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

  7. Identification of Cell Surface-Exposed Proteins Involved in the Fimbria-Mediated Adherence of Enteroaggregative Escherichia coli to Intestinal Cells

    PubMed Central

    Izquierdo, Mariana; Navarro-Garcia, Fernando; Nava-Acosta, Raul; Nataro, James P.; Ruiz-Perez, Fernando

    2014-01-01

    Fimbria-mediated adherence to the intestinal epithelia is a key step in enteroaggregative Escherichia coli (EAEC) pathogenesis. To date, four fimbriae have been described for EAEC; aggregative adherence fimbria II (AAF/II) is the most important adherence factor for EAEC prototype strain 042. Previously, we described results showing that extracellular matrix (ECM) components might be involved in the recognition of AAF/II fimbriae by intestinal cells. In this study, we sought to identify novel potential receptors on intestinal epithelial cells recognized by the AAF/II fimbriae. Purified AafA-dsc protein, the major subunit of AAF/II fimbriae, was incubated with a monolayer of T84 cells, cross-linked to the surface-exposed T84 cell proteins, and immunoprecipitated by using anti-AafA antibodies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of cellular proteins bound to AafA-dsc protein identified laminin (previously recognized as a potential receptor for AAF/II) and cytokeratin 8 (CK8). Involvement of the major subunit of AAF/II fimbriae (AafA protein) in the binding to recombinant CK8 was confirmed by adherence assays with purified AAF/II fimbriae, AafA-dsc protein, and strain 042. Moreover, HEp-2 cells transfected with CK8 small interfering RNA (siRNA) showed reduced 042 adherence compared with cells transfected with scrambled siRNA as a control. Adherence of 042 to HEp-2 cells preincubated with antibodies against ECM proteins or CK8 was substantially reduced. Altogether, our results supported the idea of a role of CK8 as a potential receptor for EAEC. PMID:24516112

  8. Identification of cell surface-exposed proteins involved in the fimbria-mediated adherence of enteroaggregative Escherichia coli to intestinal cells.

    PubMed

    Izquierdo, Mariana; Navarro-Garcia, Fernando; Nava-Acosta, Raul; Nataro, James P; Ruiz-Perez, Fernando; Farfan, Mauricio J

    2014-04-01

    Fimbria-mediated adherence to the intestinal epithelia is a key step in enteroaggregative Escherichia coli (EAEC) pathogenesis. To date, four fimbriae have been described for EAEC; aggregative adherence fimbria II (AAF/II) is the most important adherence factor for EAEC prototype strain 042. Previously, we described results showing that extracellular matrix (ECM) components might be involved in the recognition of AAF/II fimbriae by intestinal cells. In this study, we sought to identify novel potential receptors on intestinal epithelial cells recognized by the AAF/II fimbriae. Purified AafA-dsc protein, the major subunit of AAF/II fimbriae, was incubated with a monolayer of T84 cells, cross-linked to the surface-exposed T84 cell proteins, and immunoprecipitated by using anti-AafA antibodies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of cellular proteins bound to AafA-dsc protein identified laminin (previously recognized as a potential receptor for AAF/II) and cytokeratin 8 (CK8). Involvement of the major subunit of AAF/II fimbriae (AafA protein) in the binding to recombinant CK8 was confirmed by adherence assays with purified AAF/II fimbriae, AafA-dsc protein, and strain 042. Moreover, HEp-2 cells transfected with CK8 small interfering RNA (siRNA) showed reduced 042 adherence compared with cells transfected with scrambled siRNA as a control. Adherence of 042 to HEp-2 cells preincubated with antibodies against ECM proteins or CK8 was substantially reduced. Altogether, our results supported the idea of a role of CK8 as a potential receptor for EAEC.

  9. Identification of cell surface-exposed proteins involved in the fimbria-mediated adherence of enteroaggregative Escherichia coli to intestinal cells.

    PubMed

    Izquierdo, Mariana; Navarro-Garcia, Fernando; Nava-Acosta, Raul; Nataro, James P; Ruiz-Perez, Fernando; Farfan, Mauricio J

    2014-04-01

    Fimbria-mediated adherence to the intestinal epithelia is a key step in enteroaggregative Escherichia coli (EAEC) pathogenesis. To date, four fimbriae have been described for EAEC; aggregative adherence fimbria II (AAF/II) is the most important adherence factor for EAEC prototype strain 042. Previously, we described results showing that extracellular matrix (ECM) components might be involved in the recognition of AAF/II fimbriae by intestinal cells. In this study, we sought to identify novel potential receptors on intestinal epithelial cells recognized by the AAF/II fimbriae. Purified AafA-dsc protein, the major subunit of AAF/II fimbriae, was incubated with a monolayer of T84 cells, cross-linked to the surface-exposed T84 cell proteins, and immunoprecipitated by using anti-AafA antibodies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of cellular proteins bound to AafA-dsc protein identified laminin (previously recognized as a potential receptor for AAF/II) and cytokeratin 8 (CK8). Involvement of the major subunit of AAF/II fimbriae (AafA protein) in the binding to recombinant CK8 was confirmed by adherence assays with purified AAF/II fimbriae, AafA-dsc protein, and strain 042. Moreover, HEp-2 cells transfected with CK8 small interfering RNA (siRNA) showed reduced 042 adherence compared with cells transfected with scrambled siRNA as a control. Adherence of 042 to HEp-2 cells preincubated with antibodies against ECM proteins or CK8 was substantially reduced. Altogether, our results supported the idea of a role of CK8 as a potential receptor for EAEC. PMID:24516112

  10. Using communication to manage uncertainty about cervical cancer screening guideline adherence among Appalachian women

    PubMed Central

    Cohen, Elisia L.; Gordon, Allison Scott; Record, Rachael; Shaunfield, Sara; Jones, Grace M.; Collins, Tom

    2015-01-01

    Changes to the United States Preventive Services Task Force (USPSTF) recommendations for cervical cancer preventive services have led to patient confusion, especially in medically underserved populations. We investigated how patient uncertainty concerning cervical cancer screening guidelines is appraised and managed through communication with healthcare providers by conducting in-depth, face-to-face interviews with 24 adult women between the ages of 24 and 65 (m = 41, SD = 14) living in Appalachia Kentucky. In general, participants expressed a high degree of uncertainty about the updated cervical cancer screening guidelines and appraised this uncertainty as both a danger and an opportunity. Communication with healthcare providers served both to exacerbate and to mitigate patient uncertainty. The study identifies how health care providers may use the change in USPSTF guidelines as a ‘teachable moment’ to productively counsel patients on the importance of timely screening, the typical progression of certain types of high-risk HPV infection to cervical cancer, and the importance of follow-up care. PMID:26949274

  11. Innate Lymphoid Cells in Cancer.

    PubMed

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  12. Innate Lymphoid Cells in Cancer.

    PubMed

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples. PMID:26438443

  13. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  14. The adherence of endothelial cells to Dacron induces the expression of the intercellular adhesion molecule (ICAM-1).

    PubMed Central

    Margiotta, M S; Robertson, F S; Greco, R S

    1992-01-01

    The intercellular adhesion molecule (ICAM-1) is a glycoprotein expressed by endothelial cells activated by cytokines. The lymphocyte-function-associated antigen (LFA-1) is an integrin expressed by activated white blood cells. Together, this receptor-ligand pair is responsible, in part, for the localization of neutrophils at sites of inflammation. Using an in vitro model, the authors studied the binding of antibodies against ICAM-1 by human saphenous vein endothelial cells (HSVEC) adherent to Dacron and control cultureware. After adherence to Dacron pretreated with fibronectin, 24% more HSVEC-bound antibody against ICAM-1 compared with HSVEC on controls. In contrast, 90% more HSVEC adherent to Dacron incubated with whole blood bound anti-ICAM-1 antibodies. These cells bound 17.7-fold greater amounts of antibody compared with HSVEC on controls. Pretreating Dacron with plasma resulted in no increase in antibody binding compared with control. Our studies suggest that the cellular components of blood in contact with Dacron create a microenvironment that activates HSVEC and enhances ICAM-1 expression. Induction of this adhesion molecule may play a pivotal role in the migration and localization of leukocytes at the site of the vascular prosthesis. PMID:1359845

  15. Predictors of adherence to screening guidelines for chronic diseases of lifestyle, cancers, and HIV in a health-insured population in South Africa

    PubMed Central

    Adonis, Leegale; Basu, Debashis; Luiz, John

    2014-01-01

    Background Adherence to screening guidelines has been widely accepted to reduce morbidity, mortality, and cost outcomes. The aim of this study was to identify predictors of adherence to screening guidelines for chronic diseases of lifestyle (CDL), cancers, and HIV in a health-insured population in South Africa, some of whom voluntarily opt into a wellness program that incentivizes screening. Method A cross-sectional study for the period 2007–2011 was conducted using a random sample of 170,471 health insurance members from a single insurer. Adherence to screening guidelines was calculated from medical claims data. Results Adherence to screening guidelines ranged from 1.1% for colorectal cancer to 40.9% for cholesterol screening. Members of the wellness program were up to three times more likely to screen for diseases (odds ratio [OR]=3.2 for HIV screening, confidence interval [CI]=2.75–3.73). Plan type (full comprehensive plan) was most strongly associated with cholesterol screening (OR=3.53, CI=3.27–3.80), and most negatively associated (hospital-only core plan) with cervical cancer screening (OR= 0.44, CI=0.28–0.70). Gender was a negative predictor for glucose screening (OR=0.88, CI=0.82–0.96). Provincial residence was most strongly associated with cervical cancer screening (OR=1.89, CI=0.65–5.54). Conclusion Adherence to screening recommendations was <50%. Plan type, gender, provincial residence, and belonging to an incentivized wellness program were associated with disproportionate utilization of screening services, even with equal payment access. PMID:24647130

  16. Solid Phase Red Cell Adherence Assay: a tubeless method for pretransfusion testing and other applications in transfusion science.

    PubMed

    Ching, Eric

    2012-06-01

    Solid Phase Red Cell Adherence Assay (SPRCA) is one of the two tubeless methods developed to improve sensitivity and specificity in blood group serology. The SPRCA (solid phase) and the column agglutination (gel) technology have gained wide acceptance following successful adaptation to fully automated platforms, The purpose of this paper is to discuss the development, principle, procedures as well as laboratory and clinical applications of the SPRCA in transfusion medicine.

  17. Establishment of an adherent cell feeder layer from human umbilical cord blood for support of long-term hematopoietic progenitor cell growth.

    PubMed Central

    Ye, Z Q; Burkholder, J K; Qiu, P; Schultz, J C; Shahidi, N T; Yang, N S

    1994-01-01

    Previous attempts to establish a stromal cell feeder layer from human umbilical cord blood (HUCB) have met with very limited success. It has been suggested that there is an insufficient number of stromal precursor cells in HUCB to form a hematopoietic-supporting feeder layer in primary cultures. The present study shows that HUCB does contain a significant accessory cell population that routinely develops into a confluent, adherent cell layer under defined primary culture conditions. HUCB-derived adherent layers were shown to support long-term hematopoietic activity for an average of 4 months. This was achieved by using a customized coverslip with a modified surface structure as the cell attachment substratum and using a specialized culture feeding regime. We have characterized the various cell types (including fibroblasts, macrophages, and endothelial cells) and extracellular matrix proteins (including fibronectin, collagen III, and laminin) that were present in abundance in the HUCB-derived adherent cell layer. In contrast, oil red O-staining fat cells were rarely detected. ELISA and bioassays showed that stem cell factor and interleukin 6 were produced by the HUCB stromal cell cultures, but interleukin 3 or granulocyte/macrophage colony-stimulating factor was not detected. Application of this hematopoietic culture system to transgenic and gene therapy studies of stem cells is discussed. Images PMID:7527553

  18. Nanomechanical analysis of cells from cancer patients

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Jin, Yu-Sheng; Rao, Jianyu; Gimzewski, James K.

    2007-12-01

    Change in cell stiffness is a new characteristic of cancer cells that affects the way they spread. Despite several studies on architectural changes in cultured cell lines, no ex vivo mechanical analyses of cancer cells obtained from patients have been reported. Using atomic force microscopy, we report the stiffness of live metastatic cancer cells taken from the body (pleural) fluids of patients with suspected lung, breast and pancreas cancer. Within the same sample, we find that the cell stiffness of metastatic cancer cells is more than 70% softer, with a standard deviation over five times narrower, than the benign cells that line the body cavity. Different cancer types were found to display a common stiffness. Our work shows that mechanical analysis can distinguish cancerous cells from normal ones even when they show similar shapes. These results show that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.

  19. Suppression of unprimed T and B cells in antibody responses by irradiation-resistant and plastic-adherent suppressor cells in Toxoplasma gondii-infected mice.

    PubMed Central

    Suzuki, Y; Kobayashi, A

    1983-01-01

    In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that the activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice. PMID:6219954

  20. Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells.

    PubMed

    Badea, Luminita; Doughty, Stephen; Nicholls, Larissa; Sloan, Joan; Robins-Browne, Roy M; Hartland, Elizabeth L

    2003-05-01

    Enteropathogenic E. coli(EPEC) is an important diarrhoeal pathogen that induces characteristic lesions on the host intestine termed attaching and effacing (A/E) lesions. In this study we have examined the contribution of a large gene, efa1, which is present in all A/E pathogens, to the adherence phenotype of EPEC. An efa- derivative of EPEC JPN15 was constructed and this mutant was significantly less adherent to epithelial cells than the parent strain. The JPN15 efa- derivative was FAS-positive, produced EspA filaments and showed comparable levels of EspA secretion to JPN15. In addition, polyclonal antibodies raised to Efa1 partially inhibited the adherence of JPN15 to cultured epithelial cells. In further work, we showed that human and rabbit hosts infected with an A/E pathogen produced antibodies to Efa1 and we observed that the truncated form of efa1 present in EHEC O157:H7 was specific to that serotype. Generally efa1 was present in its entirety in the genomes of other A/E pathogens. Overall our data suggest that Efa1 has host cell binding activity, at least in tissue culture, and that it is produced during infection. These findings suggest that Efa1 may play a direct role in the pathogenesis of infections caused by A/E pathogens.

  1. Rethinking adherence.

    PubMed

    Steiner, John F

    2012-10-16

    In 2012, the Centers for Medicare & Medicaid Services (CMS) will introduce measures of adherence to oral hypoglycemic, antihypertensive, and cholesterol-lowering drugs into its Medicare Advantage quality program. To meet these quality goals, delivery systems will need to develop and disseminate strategies to improve adherence. The design of adherence interventions has too often been guided by the mistaken assumptions that adherence is a single behavior that can be predicted from readily available patient characteristics and that individual clinicians alone can improve adherence at the population level.Effective interventions require recognition that adherence is a set of interacting behaviors influenced by individual, social, and environmental forces; adherence interventions must be broadly based, rather than targeted to specific population subgroups; and counseling with a trusted clinician needs to be complemented by outreach interventions and removal of structural and organizational barriers. To achieve the adherence goals set by CMS, front-line clinicians, interdisciplinary teams, organizational leaders, and policymakers will need to coordinate efforts in ways that exemplify the underlying principles of health care reform.

  2. OmpD but not OmpC is involved in adherence of Salmonella enterica serovar typhimurium to human cells.

    PubMed

    Hara-Kaonga, Bochiwe; Pistole, Thomas G

    2004-09-01

    Conflicting reports exist regarding the role of porins OmpC and OmpD in infections due to Salmonella enterica serovar Typhimurium. This study investigated the role of these porins in bacterial adherence to human macrophages and intestinal epithelial cells. ompC and ompD mutant strains were created by transposon mutagenesis using P22-mediated transduction of Tn10 and Tn5 insertions, respectively, into wild-type strain 14028. Fluorescein-labeled wild-type and mutant bacteria were incubated with host cells at various bacteria to cell ratios for 1 h at 37 degrees C and analyzed by flow cytometry. The mean fluorescence intensity of cells with associated wild-type and mutant bacteria was used to estimate the number of bacteria bound per host cell. Adherence was also measured by fluorescence microscopy. Neither assay showed a significant difference in binding of the ompC mutant and wild-type strains to the human cells. In contrast, the ompD mutant exhibited lowered binding to both cell types. Our findings suggest that OmpD but not OmpC is involved in the recognition of Salmonella serovar Typhimurium by human macrophages and intestinal epithelial cells.

  3. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts.

    PubMed

    Bellack, Annett; Huber, Harald; Rachel, Reinhard; Wanner, Gerhard; Wirth, Reinhard

    2011-06-01

    A novel chemolithoautotrophic, hyperthermophilic methanogen was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, north of Iceland. Based on its 16S rRNA gene sequence, the strain belongs to the order Methanococcales within the genus Methanocaldococcus, with approximately 95 % sequence similarity to Methanocaldococcus jannaschii as its closest relative. Cells of the novel organism stained Gram-negative and appeared as regular to irregular cocci possessing more than 50 polar flagella. These cell appendages mediated not only motility but also adherence to abiotic surfaces and the formation of cell-cell contacts. The new isolate grew at 55-90 °C, with optimum growth at 80 °C. The optimum NaCl concentration for growth was 2.5 % (w/v), and the optimal pH was 6.5. The cells gained their energy exclusively by reduction of CO(2) with H(2). Selenate, tungstate and yeast extract stimulated growth significantly. The genome size was determined to be in the range 1.8-2.0 kb, and the G+C content of the genomic DNA was 30 mol%. Despite being physiologically nearly identical to the other members of the genus Methanocaldococcus, analysis of whole-cell proteins revealed significant differences. Based on the results from phylogenetic, morphological and protein analyses, we conclude that the novel strain represents a novel species of the genus Methanocaldococcus, for which the name Methanocaldococcus villosus sp. nov. is proposed (type strain KIN24-T80(T)  = DSM 22612(T)  = JCM 16315(T)). PMID:20622057

  4. Association between the Adherence to the International Guidelines for Cancer Prevention and Mammographic Density

    PubMed Central

    Castelló, Adela; Prieto, Leandro; Ederra, María; Salas-Trejo, Dolores; Vidal, Carmen; Sánchez-Contador, Carmen; Santamariña, Carmen; Pedraz, Carmen; Moreo, Pilar; Aragonés, Nuria; Pérez-Gómez, Beatriz; Lope, Virginia; Vioque, Jesús; Pollán, Marina

    2015-01-01

    Introduction Mammographic density (MD) is considered a strong predictor of Breast Cancer (BC). The objective of the present study is to explore the association between MD and the compliance with the World Cancer Research Fund and the American Institute for Cancer Research (WCRF/AICR) recommendations for cancer prevention. Methods Data of 3584 women attending screening from a population-based multicenter cross-sectional study (DDM-Spain) collected from October 7, 2007 through July 14, 2008, was used to calculate a score that measures the level of compliance with the WCRF/AICR recommendations: R1)Maintain adequate body weight; R2)Be physically active; 3R)Limit the intake of high density foods; R4)Eat mostly plant foods; R5)Limit the intake of animal foods; R6)Limit alcohol intake; R7)Limit salt and salt preserved food intake; R8)Meet nutritional needs through diet. The association between the score and MD (assessed by a single radiologist using a semi-quantitative scale) was evaluated using ordinal logistic models with random center-specific intercepts adjusted for the main determinants of MD. Stratified analyses by menopausal status and smoking status were also carried out. Results A higher compliance with the WCRF/AICR recommendations was associated with lower MD (OR1-unit increase = 0.93 95%CI:0.86;0.99). The association was stronger in postmenopausal women (OR = 0.91 95%CI:0.84;0.99) and nonsmokers (OR = 0.87;95%CI:0.80;0.96 for nonsmokers, OR = 1.01 95%CI:0.91;1.12 for smokers, P-interaction = 0.042). Among nonsmokers, maintaining adequate body weight (OR = 0.81 95%CI:0.65;1.01), practicing physical activity (OR = 0.68 95%CI:0.48;0.96) and moderating the intake of high-density foods (OR = 0.58 95%CI:0.40;0.86) and alcoholic beverages (OR = 0.76 95%CI:0.55;1.05) were the recommendations showing the strongest associations with MD. Conclusions postmenopausal women and non-smokers with greater compliance with the WCRF/AICR guidelines have lower MD. These results may

  5. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells.

    PubMed

    Eaves-Pyles, Tonyia; Allen, Christopher A; Taormina, Joanna; Swidsinski, Alexander; Tutt, Christopher B; Jezek, G Eric; Islas-Islas, Martha; Torres, Alfredo G

    2008-07-01

    Inflammatory diseases of the intestinal tract are a major health concern both in the United States and around the world. Evidence now suggests that a new category of Escherichia coli, designated Adherent Invasive E. coli (AIEC) is highly prevalent in Crohn's Disease (CD) patients. AIEC strains have been shown to colonize and adhere to intestinal epithelial cells (IEC). However, the role AIEC strains play in the induction of an inflammatory response is not known. Therefore, we examined several E. coli strains (designated LF82, O83:H1, 6604 and 6655) that were isolated from CD patients for their ability to induce inflammation in two IEC, Caco-2BBe and T-84 cells. Results showed that each strain had varying abilities to adhere to and invade IEC as well as induced cytokine secretion from polarized IEC. However, E. coli O83:H1 displayed the best characteristics of AIEC strains as compared to the prototype AIEC strain LF82, inducing cytokine secretion from IEC and promoting immune cell migration through IEC. Upon further analysis, E. coli O83:H1 did not harbor virulence genes present in known pathogenic intestinal organisms. Further characterization of E. coli O83:H1 virulence determinants showed that a non-flagellated O83:H1 strain significantly decreased the organism's ability to adhere to and invade both IEC and elicit IEC cytokine secretion compared to the wild type and complemented strains. These findings demonstrate that E. coli O83:H1 possesses the characteristics of the AIEC LF82 strain that may contribute to the low-grade, chronic inflammation observed in Crohn's disease. PMID:17900983

  6. Cancer stem cells and metastasis.

    PubMed

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  7. General Information about Small Cell Lung Cancer

    MedlinePlus

    ... Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  8. General Information about Renal Cell Cancer

    MedlinePlus

    ... Renal Cell Cancer Treatment (PDQ®)–Patient Version General Information About Renal Cell Cancer Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  9. Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis

    PubMed Central

    Shemesh, Jonathan; Ben Arye, Tom; Avesar, Jonathan; Kang, Joo H.; Fine, Amir; Super, Michael; Meller, Amit; Ingber, Donald E.; Levenberg, Shulamit

    2014-01-01

    Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required. PMID:25053808

  10. Invasive cancer cells and metastasis

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  11. Alternative Fuels for Cancer Cells

    PubMed Central

    Keenan, Melissa; Chi, Jen-Tsan

    2015-01-01

    Tumor metabolism is significantly altered to support the various metabolic needs of tumor cells. The most prominent change is the increased tumor glycolysis that leads to increased glucose uptake and utilization. However, it has become obvious that many non-glucose nutrients, such as amino acids, lactate, acetate and macromolecules, can serve as alternative fuels for cancer cells. This knowledge reveals an unexpected flexibility and evolutionarily-conserved model in which cancer cells uptake nutrients from their external environment to fulfill their necessary energetic needs. It is possible that tumor cells have evolved the ability to utilize different carbon sources due to the limited supply of nutrient that can be driven by oncogenic mutations and tumor microenvironmental stresses. In certain cases, these factors permanently alter the tumor cells’ metabolism, causing certain nutrients to become indispensable and thus creating opportunities for therapeutic intervention to eradicate tumors by their metabolic vulnerabilities. PMID:25815843

  12. Prostate cancer stem cell biology

    PubMed Central

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan. T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of signaling pathways in prostate CSCs (4) involvement of prostate CSCs in metastasis of PCa and (5) microRNA-mediated regulation of prostate CSCs. Although definitive evidence for the identification and characterization of prostate CSCs still remains unclear, future directions pursuing therapeutic targets of CSCs may provide novel insights for the treatment of PCa. PMID:22402315

  13. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    NASA Astrophysics Data System (ADS)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and

  14. Promise of cancer stem cell vaccine

    PubMed Central

    Zhou, Li; Lu, Lin; Wicha, Max S; Chang, Alfred E; Xia, Jian-chuan; Ren, Xiubao; Li, Qiao

    2015-01-01

    Dendritic cell (DC)-based vaccines designed to target cancer stem cells (CSC) can induce significant antitumor responses via conferring host anti-CSC immunity. Our recent studies have demonstrated that CSC-DC vaccine could inhibit metastasis of primary tumors and induce humoral immune responses against cancer stem cells. This approach highlights the promise of cancer stem cell vaccine in cancer immunotherapy. PMID:26337078

  15. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  16. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  17. Targeting the Checkpoint to Kill Cancer Cells.

    PubMed

    Benada, Jan; Macurek, Libor

    2015-01-01

    Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells. PMID:26295265

  18. Targeting the Checkpoint to Kill Cancer Cells

    PubMed Central

    Benada, Jan; Macurek, Libor

    2015-01-01

    Cancer treatments such as radiotherapy and most of the chemotherapies act by damaging DNA of cancer cells. Upon DNA damage, cells stop proliferation at cell cycle checkpoints, which provides them time for DNA repair. Inhibiting the checkpoint allows entry to mitosis despite the presence of DNA damage and can lead to cell death. Importantly, as cancer cells exhibit increased levels of endogenous DNA damage due to an excessive replication stress, inhibiting the checkpoint kinases alone could act as a directed anti-cancer therapy. Here, we review the current status of inhibitors targeted towards the checkpoint effectors and discuss mechanisms of their actions in killing of cancer cells. PMID:26295265

  19. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Haustein, Maria; Ramer, Robert; Linnebacher, Michael; Manda, Katrin; Hinz, Burkhard

    2014-11-15

    Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids.

  20. Comparisons of mouse mesenchymal stem cells in primary adherent culture of compact bone fragments and whole bone marrow.

    PubMed

    Cai, Yiting; Liu, Tianshu; Fang, Fang; Xiong, Chengliang; Shen, Shiliang

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture.

  1. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    PubMed

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. PMID:24037521

  2. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    PubMed

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license.

  3. Assessment of mechanical properties of adherent living cells by bead micromanipulation: comparison of magnetic twisting cytometry vs optical tweezers.

    PubMed

    Laurent, Valérie M; Hénon, Sylvie; Planus, Emmanuelle; Fodil, Redouane; Balland, Martial; Isabey, Daniel; Gallet, François

    2002-08-01

    We compare the measurements of viscoelastic properties of adherent alveolar epithelial cells by two micromanipulation techniques: (i) magnetic twisting cytometry and (ii) optical tweezers, using microbeads of same size and similarly attached to F-actin. The values of equivalent Young modulus E, derived from linear viscoelasticity theory, become consistent when the degree of bead immersion in the cell is taken into account. E-values are smaller in (i) than in (ii): approximately 34-58 Pa vs approximately 29-258 Pa, probably because higher stress in (i) reinforces nonlinearity and cellular plasticity. Otherwise, similar relaxation time constants, around 2 s, suggest similar dissipative mechanisms.

  4. Targeting Breast Cancer Stem Cells

    PubMed Central

    McDermott, Sean P.; Wicha, Max S.

    2010-01-01

    The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. Although, the CSC hypothesis does not directly address the cell of origin of cancer, it is postulated that tissue-resident stem or progenitors are the most common targets of transformation. Clinically, CSCs are predicted to mediate tumor recurrence after chemo- and radiation-therapy due to the relative inability of these modalities to effectively target CSCs. If this is the case, then CSC must be efficiently targeted to achieve a true cure. Similarities between normal and malignant stem cells, at the levels of cell-surface proteins, molecular pathways, cell cycle quiescence, and microRNA signaling present challenges in developing CSC-specific therapeutics. Approaches to targeting CSCs include the development of agents targeting known stem cell regulatory pathways as well as unbiased high-throughput siRNA or small-molecule screening. Based on studies of pathways present in normal stem cells, recent work has identified potential “Achilles heals” of CSC, whereas unbiased screening provides opportunities to identify new pathways utilized by CSC as well as develop potential therapeutic agents. Here, we review both approaches and their potential to effectively target breast CSC. PMID:20599450

  5. Glutathione in Cancer Cell Death

    PubMed Central

    Ortega, Angel L.; Mena, Salvador; Estrela, Jose M.

    2011-01-01

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy. PMID:24212662

  6. Detection of cancerous cervical cells using physical adhesion of fluorescent silica particles and centripetal force.

    PubMed

    Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor

    2011-04-01

    Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062

  7. [Dendritic cells in cancer immunotherapy].

    PubMed

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  8. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  9. Prostate Cancer Stem Cells: Research Advances.

    PubMed

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  10. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells.

    PubMed

    Pastene, Edgar; Parada, Víctor; Avello, Marcia; Ruiz, Antonieta; García, Apolinaria

    2014-11-01

    In this work, the anti-Helicobacter pylori effect of an aqueous extract from dried leaves of Peumus boldus Mol. (Monimiaceae) was evaluated. This extract displayed high inhibitory activity against H. pylori urease. Therefore, in order to clarify the type of substances responsible for such effect, a bioassay-guided fractionation strategy was carried out. The active compounds in the fractions were characterized through different chromatographic methods (RP-HPLC; HILIC-HPLC). The fraction named F5 (mDP = 7.8) from aqueous extract was the most active against H. pylori urease with an IC50  = 15.9 µg gallic acid equivalents (GAE)/mL. HPLC analysis evidenced that F5 was composed mainly by catechin-derived proanthocyanidins (LC-MS and phloroglucinolysis). The anti-adherent effect of boldo was assessed by co-culture of H. pylori and AGS cells. Both the aqueous extract and F5 showed an anti-adherent effect in a concentration-dependent manner. An 89.3% of inhibition was reached at 2.0 mg GAE/mL of boldo extract. In conjunction, our results suggest that boldo extract has a potent anti-urease activity and anti-adherent effect against H. pylori, properties directly linked with the presence of catechin-derived proanthocyanidins. PMID:24853276

  11. Catechin-based procyanidins from Peumus boldus Mol. aqueous extract inhibit Helicobacter pylori urease and adherence to adenocarcinoma gastric cells.

    PubMed

    Pastene, Edgar; Parada, Víctor; Avello, Marcia; Ruiz, Antonieta; García, Apolinaria

    2014-11-01

    In this work, the anti-Helicobacter pylori effect of an aqueous extract from dried leaves of Peumus boldus Mol. (Monimiaceae) was evaluated. This extract displayed high inhibitory activity against H. pylori urease. Therefore, in order to clarify the type of substances responsible for such effect, a bioassay-guided fractionation strategy was carried out. The active compounds in the fractions were characterized through different chromatographic methods (RP-HPLC; HILIC-HPLC). The fraction named F5 (mDP = 7.8) from aqueous extract was the most active against H. pylori urease with an IC50  = 15.9 µg gallic acid equivalents (GAE)/mL. HPLC analysis evidenced that F5 was composed mainly by catechin-derived proanthocyanidins (LC-MS and phloroglucinolysis). The anti-adherent effect of boldo was assessed by co-culture of H. pylori and AGS cells. Both the aqueous extract and F5 showed an anti-adherent effect in a concentration-dependent manner. An 89.3% of inhibition was reached at 2.0 mg GAE/mL of boldo extract. In conjunction, our results suggest that boldo extract has a potent anti-urease activity and anti-adherent effect against H. pylori, properties directly linked with the presence of catechin-derived proanthocyanidins.

  12. Desmosomal molecules in and out of adhering junctions: normal and diseased States of epidermal, cardiac and mesenchymally derived cells.

    PubMed

    Pieperhoff, Sebastian; Barth, Mareike; Rickelt, Steffen; Franke, Werner W

    2010-01-01

    Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions. PMID:20671973

  13. FR901228 in Treating Patients With Refractory or Progressive Small Cell Lung Cancer or Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2013-08-14

    Extensive Stage Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer

  14. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    PubMed Central

    Kasai, T; Chen, L; Mizutani, AZ; Kudoh, T; Murakami, H; Fu, L; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-environment, which induces malignant tumors. In this review, we propose this micro-environment as a ‘cancerous niche’ and discuss its importance on the formation and maintenance of cancer stem cells with the recent experimental results to establish cancer stem cell models from induced pluripotent stem cells. These models of cancer stem cell will provide the great advantages in cancer research and its therapeutic applications in the future. PMID:25075155

  15. Impact of release dynamics of laser-irradiated polymer micropallets on the viability of selected adherent cells

    PubMed Central

    Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W.; Ras, Mat; Allbritton, Nancy L.; Sims, Christopher E.; Venugopalan, Vasan

    2012-01-01

    We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass–pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s−1 through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s−1 and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining

  16. Resistance of papillary thyroid cancer stem cells to chemotherapy

    PubMed Central

    GIUFFRIDA, RAFFAELLA; ADAMO, LUANA; IANNOLO, GIOACCHIN; VICARI, LUISA; GIUFFRIDA, DARIO; ERAMO, ADRIANA; GULISANO, MASSIMO; MEMEO, LORENZO; CONTICELLO, CONCETTA

    2016-01-01

    Thyroid carcinoma is the most common endocrine neoplasm, with the highest mortality rate of all the endocrine cancers. Among the endocrine malignancies, ~80% are papillary thyroid carcinomas (PTCs). In the initiation and progression of this tumor, genetic alterations in the mitogen-associated protein kinase pathway, including RAS point mutations, RET/PTC oncogene rearrangements and BRAF point mutations, play an important role, particularly in deciding targeted therapy. In the present study, a small population of thyroid tumor cells, known as tumor spheres, were isolated and characterized from PTC surgical samples. These spheres can be expanded indefinitely in vitro and give rise to differentiated adherent cells when cultivated in differentiative conditions. The present study showed by reverse transcription-polymerase chain reaction and flow cytometric analysis that the undifferentiated PTC cells exhibited a characteristic antigen expression profile of adult progenitor/stem cells. The cells were more resistant to chemotherapeutics, including bortezomib, taxol, cisplatin, etoposide, doxorubicin and vincristine, than differentiated PTC cells and the majority possessed a quiescent status, as revealed by the various cell cycle characteristics and anti-apoptotic protein expression. Such advances in cancer thyroid stem cell biology may provide relevant information for future targeted therapies. PMID:27347201

  17. Subcellular real-time in vivo imaging of intralymphatic and intravascular cancer-cell trafficking

    NASA Astrophysics Data System (ADS)

    McElroy, M.; Hayashi, K.; Kaushal, S.; Bouvet, M.; Hoffman, Robert M.

    2008-02-01

    With the use of fluorescent cells labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and a highly sensitive small animal imaging system with both macro-optics and micro-optics, we have developed subcellular real-time imaging of cancer cell trafficking in live mice. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 small animal imaging system with a sensitive CCD camera and four objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. We have also developed real-time imaging of cancer cell trafficking in lymphatic vessels. Cancer cells labeled with GFP and/or RFP were injected into the inguinal lymph node of nude mice. The labeled cancer cells trafficked through lymphatic vessels where they were imaged via a skin flap in real-time at the cellular level until they entered the axillary lymph node. The bright dual-color fluorescence of the cancer cells and the real-time microscopic imaging capability of the Olympus OV100 enabled imaging the trafficking cancer cells in both blood vessels and lymphatics. With the dual-color cancer cells and the highly sensitive imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time.

  18. Decreased Adherence of Enterohemorrhagic Escherichia coli to HEp-2 Cells in the Presence of Antibodies That Recognize the C-Terminal Region of Intimin

    PubMed Central

    Gansheroff, Lisa J.; Wachtel, Marian R.; O'Brien, Alison D.

    1999-01-01

    Antiserum raised against intimin from enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain 86-24 has been shown previously by our laboratory to inhibit adherence of this strain to HEp-2 cells. In the present study, we sought to identify the region(s) of intimin important for the effect of anti-intimin antisera on EHEC adherence and to determine whether antisera raised against intimin from an O157:H7 strain could reduce adherence of other strains. Compared to preimmune serum controls, polyclonal sera raised against the histidine-tagged intimin protein RIHisEae (intiminO157) or against His-tagged C-terminal fragments of intimin from strain 86-24 reduced adherence of this strain. Furthermore, an antibody fraction purified from the anti-RIHisEae serum that contained antibodies to the C-terminal third of intimin, the putative receptor-binding domain, also reduced adherence of strain 86-24, but a purified fraction containing antibodies to the N-terminal two-thirds of intimin did not inhibit adherence. The polyclonal anti-intiminO157 serum raised against RIHisEae inhibited, to different degrees, the adherence of another O157:H7 strain, an EHEC O55:H7 strain, one of two independent EHEC O111:NM isolates tested, and one of two EHEC O26:H11 strains tested. Adherence of the other O26:H11 and O111:NM strains and an EPEC O127:H6 strain was not reduced. Finally, immunoblot analysis indicated a correlation between the antigenic divergence in the C-terminal third of intimins from different strains and the capacity of anti-intiminO157 antiserum to reduce adherence of heterologous strains. Taken together, these data suggest that intiminO157 could be used as an immunogen to elicit adherence-blocking antibodies against O157:H7 strains and closely-related EHEC. PMID:10569757

  19. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    SciTech Connect

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  20. Cancer stem cells in small cell lung cancer.

    PubMed

    Codony-Servat, Jordi; Verlicchi, Alberto; Rosell, Rafael

    2016-02-01

    Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy.

  1. Cancer stem cells in small cell lung cancer

    PubMed Central

    Verlicchi, Alberto; Rosell, Rafael

    2016-01-01

    Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy. PMID:26958490

  2. Multiple Myeloma Cancer Stem Cells

    PubMed Central

    Huff, Carol Ann; Matsui, William

    2008-01-01

    Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow, elevated serum immunoglobulin, and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy, corticosteroids, radiation therapy, and a growing number of agents with novel mechanisms of action. However, few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myleoma cells is essential to ultimately improving long-term outcomes, but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease. PMID:18539970

  3. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  4. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  5. Tracking in real time the crawling dynamics of adherent living cells with a high resolution surface plasmon microscope

    NASA Astrophysics Data System (ADS)

    Streppa, L.; Berguiga, L.; Boyer Provera, E.; Ratti, F.; Goillot, E.; Martinez Torres, C.; Schaeffer, L.; Elezgaray, Juan; Arneodo, A.; Argoul, F.

    2016-03-01

    We introduce a high resolution scanning surface plasmon microscope for long term imaging of living adherent mouse myoblast cells. The coupling of a high numerical aperture objective lens with a fibered heterodyne interferometer provides both enhanced sensitivity and long term stability. This microscope takes advantage of the plasmon resonance excitation and the amplification of the electromagnetic field in near-field distance to the gold coated coverslip. This plasmon enhanced evanescent wave microscopy is particularly attractive for the study of cell adhesion and motility since it can be operated without staining of the biological sample. We show that this microscope allows very long-term imaging of living samples, and that it can capture and follow the temporal deformation of C2C12 myoblast cell protusions (lamellipodia), during their migration on a at surface.

  6. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    PubMed Central

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  7. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  8. Enhanced expression of stem cell markers and drug resistance in sphere-forming non-small cell lung cancer cells

    PubMed Central

    Sun, Feng-Feng; Hu, Yong-He; Xiong, Lv-Ping; Tu, Xiao-Yun; Zhao, Ji-Hua; Chen, Sheng-Song; Song, Juan; Ye, Xiao-Qun

    2015-01-01

    There is growing evidence suggesting that cancer stem cells (CSCs) are playing critical roles in tumor progression, metastasis and drug resistance. However, the role of CSCs in non-small cell lung cancer (NSCLC) remains elusive. In this study, we enriched for stem-like cells from tumor spheres derived from NSCLC cell line A549 cultured in serum-free medium. Our results showed that sphere-derived cells expressed various stem cell markers such as CD44, CD133, Sox2 and Oct4. Compared with the corresponding cells in monolayer cultures, sphere-derived cells showed marked morphologic changes and increased expression of the stem cell markers CD133. Furthermore, we found that sphere-derived cells exhibited increased proliferation, cell-cycle progression as well as drug-resistant properties as compared to A549 adherent cells. Consistently, expression of several drug resistance proteins, including lung resistance-related protein (LRP), glutathion-S-transferase-π (GST-π) and multidrug resistance proteins-1 (MRP1) were all significantly enhanced in sphere-derived cells. These results indicate the enrichment of CSCs in sphere cultures and support their role in regulating drug resistance in NSCLC. PMID:26261505

  9. Receptor-like glycocompounds in human milk that inhibit classical and El Tor Vibrio cholerae cell adherence (hemagglutination).

    PubMed Central

    Holmgren, J; Svennerholm, A M; Lindblad, M

    1983-01-01

    The two biotypes of Vibrio cholerae were found to have cell-associated hemagglutinins which differ with regard to binding to different species of erythrocytes and inhibition by monosaccharides. A total of 12 classical V. cholerae strains (Inaba or Ogawa) strongly agglutinated human erythrocytes in a reaction specifically inhibited by L-fucose, whereas 12 El Tor strains preferably agglutinated chicken erythrocytes, a reaction reversed by D-mannose or by higher concentrations of D-fructose, D-glucose, alpha-methyl-D-mannoside, or sucrose. Milk from Swedish women inhibited both of these adherence reactions, and the predominating inhibitory activity for each reaction resisted boiling, was destroyed by periodate treatment, and bound a concanavalin A-Sepharose column, suggesting a carbohydrate structure. Further characterization indicated that the inhibitory activity for classical V. cholerae hemagglutination was distributed about equally on glycoprotein and free oligosaccharide, but was not present on glycolipid. The El Tor inhibiting activity, on the other hand, was almost exclusively of a high-molecular-weight glycoprotein nature. These results support our previous suggestion (Holmgren et al., Infect. Immun. 33:136-141, 1981) that human milk may contain receptor-like glycocompounds which can prevent bacterial adherence by competition with receptors on target cells. PMID:6295953

  10. Dual Pili Post-translational Modifications Synergize to Mediate Meningococcal Adherence to Platelet Activating Factor Receptor on Human Airway Cells

    PubMed Central

    Schulz, Benjamin L.; Power, Peter M.; Swords, W. Edward; Weiser, Jeffery N.; Apicella, Michael A.; Edwards, Jennifer L.; Jennings, Michael P.

    2013-01-01

    Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. PMID:23696740

  11. Spatially and temporally controlled gene transfer by electroporation into adherent cells on plasmid DNA-loaded electrodes.

    PubMed

    Yamauchi, Fumio; Kato, Koichi; Iwata, Hiroo

    2004-01-01

    Functional characterization of human genes is one of the most challenging tasks in current genomics. Owing to a large number of newly discovered genes, high-throughput methodologies are greatly needed to express in parallel each gene in living cells. To develop a method that allows efficient transfection of plasmids into adherent cells in spatial- and temporal-specific manners, we studied electric pulse-triggered gene transfer using a plasmid-loaded electrode. A plasmid was loaded on a gold electrode surface having an adsorbed layer of poly(ethyleneimine), and cells were then plated directly onto this modified surface. The plasmid was detached from the electrode by applying a short electric pulse and introduced into the cells cultured on the electrode, resulting in efficient gene expression, even in primary cultured cells. The location of transfected cells could be restricted within a small area on a micropatterned electrode, showing the versatility of the method for spatially controlled transfection. Plasmid transfection could also be performed in a temporally controlled manner without a marked loss of the efficiency when an electric pulse was applied within 3 days after cell plating. The method described here will provide an efficient means to transfer multiple genes, in parallel, into cultured mammalian cells for high-throughput reverse genetics research. PMID:15613595

  12. Cancer Cell Fusion: Mechanisms Slowly Unravel

    PubMed Central

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  13. Mast cells, angiogenesis and cancer.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2011-01-01

    Mast cells (MCs) were first described by Paul Ehrlich 1 in his doctoral thesis. MCs have long been implicated in the pathogenesis of allergic reactions and certain protective responses to parasites. As most tumors contain inflammatory cell infiltrates, which often include plentiful MCs, the question as to the possible contribution of MCs to tumor development has progressively been emerging. In this chapter, the specific involvement of MCs in tumor biology and tumor fate will be considered, with particular emphasis on the capacity of these cells to stimulate tumor growth by promoting angiogenesis and lymphangiogenesis. Data from experimental carcinogenesis and from different tumor settings in human pathology will be summarized. Information to be presented will suggest that MCs may serve as a novel therapeutic target for cancer treatment. PMID:21713661

  14. Use of the immune adherence hemagglutination test for titration of breast cancer patients' sea cross-reacting with purified mouse mammary tumor virus.

    PubMed

    Nagayoshi, S; Imai, M; Tsutsui, Y; Saga, S; Takahashi, M; Hoshino, M

    1981-02-01

    Ninety-two sera from patients with breast cancer, 42 sera from patients with neoplastic diseases other than breast cancer and 59 sera from apparently healthy women were examined by means of the immune adherence hemagglutination (IAHA) test using purified mouse mammary tumor virus (MMTV) fron RII mouse milk. It was found that 36.4% (34/96) of the sera from breast cancer patients, 7.1% (3/42) of the sera from patients with other neoplastic diseases and 5.1% (3/59) of the sera from apparently healthy women showed a positive reaction. Among the IAHA positive sera from breast cancer patients, 82.9% (29/35) showed a titer of more than 1:16. On the other hand, none of the positive sera from patients with cancers other than breast cancer showed a titer of more than 1:16. The sera from 4 breast cancer patients, which showed a positive reaction with RII MMTV in the IAHA test, were tested to examine the specificity of the reaction by using milk samples from sources other than RII mice, including C57BL mice, dogs, cattle and humans. None of the 4 sera showed a positive reaction with milk samples from sources other than the RIII mouse.

  15. The biology of cancer stem cells.

    PubMed

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  16. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, M.J.; Weaver, V.M.

    1998-12-08

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.

  17. Restoration of normal phenotype in cancer cells

    DOEpatents

    Bissell, Mina J.; Weaver, Valerie M.

    1998-01-01

    A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.

  18. Deregulation of Cell Signaling in Cancer

    PubMed Central

    Giancotti, Filippo G.

    2014-01-01

    Summary Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to proapoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer. PMID:24561200

  19. Contributions of O Island 48 to Adherence of Enterohemorrhagic Escherichia coli O157:H7 to Epithelial Cells In Vitro and in Ligated Pig Ileal Loops▿

    PubMed Central

    Yin, Xianhua; Wheatcroft, Roger; Chambers, James R.; Liu, Bianfang; Zhu, Jing; Gyles, Carlton L.

    2009-01-01

    O island 48 (OI-48) of Escherichia coli consists of three functional gene clusters that encode urease, tellurite resistance (Ter), and putative adhesins Iha and AIDA-1. The functions of these clusters in enterohemorrhagic E. coli (EHEC) O157:H7 infection are unknown. Deletion mutants for these three regions were constructed and evaluated for their ability to adhere to epithelial cells in vitro and in ligated pig ileal loops. Deletion of the Ter gene cluster reduced the ability of the organism to adhere to and form large clusters on IPEC-J2 and HEp-2 cells. Complementation of the mutation by introducing the wild-type ter genes restored adherence and large-cluster formation. Tests in ligated pig ileal loops showed a decrease in colonization by the Ter-negative mutant, but the difference was not significant compared to colonization by the wild type (26.4% ± 21.2% versus 40.1% ± 19.1%; P = 0.168). The OI-48 aidA gene deletion had no effect on adherence in vitro or in vivo. Deletion of the iha and ureC genes had no effect on adherence in vitro but significantly reduced the colonization of EHEC O157:H7 in the ligated pig intestine. These data suggest that Ter, Iha, and urease may contribute to EHEC O157:H7 pathogenesis by promoting adherence of the pathogen to the host intestinal epithelium. PMID:19633120

  20. Heat-labile enterotoxin-induced activation of NF-κB and MAPK pathways in intestinal epithelial cells impacts enterotoxigenic Escherichia coli (ETEC) adherence.

    PubMed

    Wang, Xiaogang; Gao, Xiaofei; Hardwidge, Philip R

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) causes human morbidity and mortality in developing nations and is an emerging threat to food safety in developed nations. The ETEC heat-labile enterotoxin (LT) not only causes diarrheal disease by deregulating host adenylate cyclase, but also enhances ETEC adherence to intestinal epithelial cells. The mechanism governing this LT pro-adherence phenotype is unclear. Here we investigated intestinal epithelial cell signal transduction pathways activated by ETEC and quantified the relative importance of these host pathways to LT-induced ETEC adherence. We show that ETEC activates both NF-κB and mitogen-activated protein kinase signalling pathways through mechanisms that are primarily dependent upon LT. LT-induced NF-κB activation depends upon the cAMP-dependent activation of the Ras-like GTPase Rap1 but is independent of protein kinase A (PKA). By using inhibitors of these pathways, we demonstrate that inhibiting the p38 mitogen-activated protein kinase prevents LT from increasing ETEC adherence. By contrast, the LT pro-adherence phenotype appears unrelated to both LT-induced Rap1 activity and to subsequent NF-κB activation. We speculate that LT may alter host signal transduction to induce the presentation of ligands for ETEC adhesins in such a way that promotes ETEC adherence. Our findings provide insight into previously unexplored functions of LT and their relative importance to ETEC virulence. PMID:22452361

  1. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg Effect and colon cancer cell growth

    PubMed Central

    Schell, John C.; Olson, Kristofor A.; Jiang, Lei; Hawkins, Amy J.; Van Vranken, Jonathan G.; Xie, Jianxin; Egnatchik, Robert A.; Earl, Espen G.; Deberardinis, Ralph J.; Rutter, Jared

    2014-01-01

    Summary Cancer cells are typically subject to profound metabolic alterations, including the Warburg effect wherein cancer cells oxidize a decreased fraction of the pyruvate generated from glycolysis. We show herein that the mitochondrial pyruvate carrier (MPC), composed of the products of the MPC1 and MPC2 genes, modulates fractional pyruvate oxidation. MPC1 is deleted or underexpressed in multiple cancers and correlates with poor prognosis. Cancer cells re-expressing MPC1 and MPC2 display increased mitochondrial pyruvate oxidation, with no changes in cell growth in adherent culture. MPC re-expression exerted profound effects in anchorage-independent growth conditions, however, including impaired colony formation in soft agar, spheroid formation, and xenograft growth. We also observed a decrease in markers of stemness and traced the growth effects of MPC expression to the stem cell compartment. We propose that reduced MPC activity is an important aspect of cancer metabolism, perhaps through altering the maintenance and fate of stem cells. PMID:25458841

  2. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c.

    PubMed

    Fichtner, Lars; Schulze, Florian; Braus, Gerhard H

    2007-12-01

    Cell-cell and cell-surface adherence represents initial steps in forming multicellular aggregates or in establishing cell-surface interactions. The commonly used Saccharomyces cerevisiae laboratory strain S288c carries a flo8 mutation, and is only able to express the flocculin-encoding genes FLO1 and FLO11, when FLO8 is restored. We show here that the two flocculin genes exhibit differences in regulation to execute distinct functions under various environmental conditions. In contrast to the laboratory strain Sigma1278b, haploids of the S288c genetic background require FLO1 for cell-cell and cell-substrate adhesion, whereas FLO11 is required for pseudohyphae formation of diploids. In contrast to FLO11, FLO1 repression requires the Sin4p mediator tail component, but is independent of the repressor Sfl1p. FLO1 regulation also differs from FLO11, because it requires neither the KSS1 MAP kinase cascade nor the pathways which lead to the transcription factors Gcn4p or Msn1p. The protein kinase A pathway and the transcription factors Flo8p and Mss11p are the major regulators for FLO1 expression. Therefore, S. cerevisiae is prepared to simultaneously express two genes of its otherwise silenced FLO reservoir resulting in an appropriate cellular surface for different environments. PMID:18001350

  3. Cancer stem cells niche: a target for novel cancer therapeutics.

    PubMed

    Yi, Shan-Yong; Hao, Yi-Bin; Nan, Ke-Jun; Fan, Tian-Li

    2013-05-01

    Nowadays, cancer has been a frequent disease, and the first or second most common cause of death worldwide. Despite a better understanding of the biology of cancer cells, the therapy of most cancers has not significantly changed for the past four decades. It is because conventional chemotherapies and/or radiation therapies are usually designed to eradicate highly proliferative cells. Mounting evidence has implicated that cancer is a disease of stem cells. Cancer stem cells (CSC) are often relatively quiescent, and therefore may not be affected by therapies targeting rapidly dividing cells. Like normal stem cells (NSC) residing in a "stem cell niche" that maintains them in a stem-like state, CSC also require a special microenvironment to control their self-renewal and undifferentiated state. The "CSC niche" is likely to be the most crucial target in the treatment of cancer. In this article, we summarize the current knowledge regarding CSC and their niche microenvironments. Understanding of CSC's origin, molecular profile, and interaction with their microenvironments, this could be a paradigm shift in the treatment of cancer, away from targeting the blast cells and towards the targeting of the CSC, thus improving therapeutic outcome.

  4. The effect of nedocromil sodium on human airway epithelial cell-induced eosinophil chemotaxis and adherence to human endothelial cell in vitro.

    PubMed

    Abdelaziz, M M; Devalia, J L; Khair, O A; Rusznak, C; Calderon, M; Sapsford, R J; Bayram, H; Davies, R J

    1997-04-01

    Although some studies have shown that long-term treatment of asthmatics with nedocromil sodium can reduce airway hyperresponsiveness and improve symptoms and lung function, the mechanisms underlying its effects are not well understood. We have investigated the effect of nedocromil sodium on eosinophil chemotaxis, eosinophil adherence to human endothelial cells and release of soluble intercellular adhesion molecule-1 (sICAM-1) from endothelial cells, induced by conditioned medium collected from cultured human bronchial epithelial cells. Conditioned medium significantly increased eosinophil chemotaxis from a baseline median value of 2.1 (range 1.9-4.5) cells-high power field(-1) (HPF) to 10.5 (range 7.8-12.3) cells-HPF(-1) (p<0.05). Similarly, conditioned medium significantly increased eosinophil adherence to endothelial cells from a baseline value of 9 (range 8-12)% to 23 (range 21-30)% (p<0.05). Nedocromil sodium, at 10(-5) M concentration, significantly attenuated the eosinophil chemotaxis and adherence induced by conditioned medium. Conditioned medium also significantly increased the release of sICAM-1 from endothelial cells, from a baseline value of 11.5 (range 8.1-15.4) pg x microg(-1) protein to 67.6 (range 55.6-73.5) pg x microg(-1) protein (p<0.05). This was significantly attenuated by anti-tumour necrosis factor-alpha (TNF-alpha), anti-interleukin-1beta (IL-1beta) and 10(-5) M nedocromil sodium. These findings suggest that human bronchial epithelial cell-derived mediators may potentiate eosinophil activity, and that this can be modulated by nedocromil sodium, suggesting a possible mechanism underlying its anti-inflammatory effect.

  5. Treatment Options by Stage (Small Cell Lung Cancer)

    MedlinePlus

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points ...

  6. Nanoscopic vibrations of bacteria with different cell-wall properties adhering to surfaces under flow and static conditions.

    PubMed

    Song, Lei; Sjollema, Jelmer; Sharma, Prashant K; Kaper, Hans J; van der Mei, Henny C; Busscher, Henk J

    2014-08-26

    Bacteria adhering to surfaces demonstrate random, nanoscopic vibrations around their equilibrium positions. This paper compares vibrational amplitudes of bacteria adhering to glass. Spring constants of the bond are derived from vibrational amplitudes and related to the electrophoretic softness of the cell surfaces and dissipation shifts measured upon bacterial adhesion in a quartz-crystal-microbalance (QCM-D). Experiments were conducted with six bacterial strains with pairwise differences in cell surface characteristics. Vibrational amplitudes were highest in low ionic strength suspensions. Under fluid flow, vibrational amplitudes were lower in the direction of flow than perpendicular to it because stretching of cell surface polymers in the direction of flow causes stiffening of the polyelectrolyte network surrounding a bacterium. Under static conditions (0.57 mM), vibrational amplitudes of fibrillated Streptococcus salivarius HB7 (145 nm) were higher than that of a bald mutant HB-C12 (76 nm). Amplitudes of moderately extracellular polymeric substance (EPS) producing Staphylococcus epidermidis ATCC35983 (47 nm) were more than twice the amplitudes of strongly EPS producing S. epidermidis ATCC35984 (21 nm). No differences were found between Staphylococcus aureus strains differing in membrane cross-linking. High vibrational amplitudes corresponded with low dissipation shifts in QCM-D. In streptococci, the polyelectrolyte network surrounding a bacterium is formed by fibrillar surface appendages and spring constants derived from vibrational amplitudes decreased with increasing fibrillar density. In staphylococci, EPS constitutes the main network component, and larger amounts of EPS yielded higher spring constants. Spring constants increased with increasing ionic strength and strains with smaller electrophoretically derived bacterial cell surface softnesses possessed the highest spring constants. PMID:25025495

  7. The combined impact of adherence to five lifestyle factors on all-cause, cancer and cardiovascular mortality: a prospective cohort study among Danish men and women.

    PubMed

    Petersen, Kristina E N; Johnsen, Nina F; Olsen, Anja; Albieri, Vanna; Olsen, Lise K H; Dragsted, Lars O; Overvad, Kim; Tjønneland, Anne; Egeberg, Rikke

    2015-03-14

    Individual lifestyle factors have been associated with lifestyle diseases and premature mortality by an accumulating body of evidence. The impact of a combination of lifestyle factors on mortality has been investigated in several studies, but few have applied a simple index taking national guidelines into account. The objective of the present prospective cohort study was to investigate the combined impact of adherence to five lifestyle factors (smoking, alcohol intake, physical activity, waist circumference and diet) on all-cause, cancer and cardiovascular mortality based on international and national health recommendations. A Cox proportional hazards model was used to estimate hazard ratios (HR) with 95 % CI. During a median follow-up of 14 years, 3941 men and 2827 women died. Among men, adherence to one additional health recommendation was associated with an adjusted HR of 0·73 (95 % CI 0·71, 0·75) for all-cause mortality, 0·74 (95 % CI 0·71, 0·78) for cancer mortality and 0·70 (95 % CI 0·65, 0·75) for cardiovascular mortality. Among women, the corresponding HR was 0·72 (95 % CI 0·70, 0·75) for all-cause mortality, 0·76 (95 % CI 0·73, 0·80) for cancer mortality and 0·63 (95 % CI 0·57, 0·70) for cardiovascular mortality. In the present study, adherence to merely one additional health recommendation had a protective effect on mortality risk, indicating a huge potential in enhancing healthy lifestyle behaviours of the population. PMID:25690300

  8. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death

    PubMed Central

    Ray, Anasuya; Vasudevan, Smreti; Sengupta, Suparna

    2015-01-01

    Cancer stem cells (CSCs) pose a serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. In this study, we have investigated inhibitory activity of the ginger-derived compound 6-shogaol against breast cancer cells both in monolayer and in cancer-stem cell-like spheroid culture. The spheroids were generated from adherent breast cancer cells. 6-shogaol was effective in killing both breast cancer monolayer cells and spheroids at doses that were not toxic to noncancerous cells. The percentages of CD44+CD24-/low cells and the secondary sphere content were reduced drastically upon treatment with 6-shogaol confirming its action on CSCs. Treatment with 6-shogaol caused cytoplasmic vacuole formation and cleavage of microtubule associated protein Light Chain3 (LC3) in both monolayer and spheroid culture indicating that it induced autophagy. Kinetic analysis of the LC3 expression and a combination treatment with chloroquine revealed that the autophagic flux instigated cell death in 6-shogaol treated breast cancer cells in contrast to the autophagy inhibitor chloroquine. Furthermore, 6-shogaol-induced cell death got suppressed in the presence of chloroquine and a very low level of apoptosis was exhibited even after prolonged treatment of the compound, suggesting that autophagy is the major mode of cell death induced by 6-shogaol in breast cancer cells. 6-shogaol reduced the expression levels of Cleaved Notch1 and its target proteins Hes1 and Cyclin D1 in spheroids, and the reduction was further pronounced in the presence of a γ-secretase inhibitor. Secondary sphere formation in the presence of the inhibitor was also further reduced by 6-shogaol. Together, these results indicate that the inhibitory action of 6-shogaol on spheroid growth and sustainability is conferred through γ-secretase mediated down-regulation of Notch signaling. The efficacy of 6-shogaol in monolayer and cancer stem cell-like spheroids raise hope for its

  9. miRNAs expressed differently in cancer stem cells and cancer cells of human gastric cancer cell line MKN-45.

    PubMed

    Golestaneh, Azadeh Fahim; Atashi, Amir; Langroudi, Lida; Shafiee, Abbas; Ghaemi, Nasser; Soleimani, Masoud

    2012-07-01

    Recent studies show that cancers may originate from special cells named cancer stem cells (CSCs). As miRNAs have a prominent role in regulating cell activities, a question arise, that is, if there is any difference in miRNA expression level between CSC and other cancer cells of human gastric cancer cell line MKN-45. In this study, CSCs were isolated by fluorescence-activated cell sorter based on the expression level of cell surface marker CD44. CSC characteristics were checked using spheroid formation assay and soft agar assay. Using reverse transcriptase polymerase chain reaction (RT-PCR), the expression level of some stemness genes was studied. Real-time q-PCR was used for analysis of the expression level of miRNAs. CSCs were able to make spheroids and colonies, whereas other cancer cells failed to show aforementioned features. In addition, RT-PCR resulted in a difference in the expression levels of Nanog, Sox2, Lin28 and Oct-4 between these two kinds of cells. Real-time RT-PCR analysis demonstrated an increase in mir-21 and mir-302 expression level in CSCs, relative to cancer cells, whereas let-7a expression level was decreased in CSC in comparison with cancer cells, which may be due to their different differentiation level. On the other hand, mir-372, mir-373 and mir-520c-5p were markedly increased in cancer cells in comparison with CSCs. This study shows that there is a difference in miRNA expression level between CSCs and other cancer cells, which reflects dissimilar molecular pathways in these cells. These miRNAs may be promising objects for targeting CSCs specifically and efficiently.

  10. Radiofrequency treatment alters cancer cell phenotype

    PubMed Central

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-01-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment. PMID:26165830

  11. Radiofrequency treatment alters cancer cell phenotype

    NASA Astrophysics Data System (ADS)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  12. Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells

    PubMed Central

    Gaviraghi, Margherita; Tunici, Patrizia; Valensin, Silvia; Rossi, Marco; Giordano, Cinzia; Magnoni, Letizia; Dandrea, Mario; Montagna, Licia; Ritelli, Rossana; Scarpa, Aldo; Bakker, Annette

    2010-01-01

    Pancreatic cancer stem-like cells are described by membrane expression of CD24, CD44 and ESA (epithelial-specific antigen) and their capacity to grow as spheres in a serum-free medium containing well-defined growth factors. The capacity of a panel of four pancreatic cancer cell lines (PANC-1, CFPAC-1, PancTu-1 and PSN-1) to form spheres was tested. All cell lines with the exception of PancTu-1 developed spheres. Phenotypically, the sphere-growing cells showed an increased in vitro invasion capability. Both gene and protein expressions of markers of metastases [CXCR4 (CXC chemokine receptor 4), OPN (osteopontin) and CD44v6] and components of active hedgehog pathway signalling were assessed. Spheres clearly demonstrated increased expression of the above-mentioned markers when compared with their adherent counterpart. With the aim of identifying a minimum set of markers able to separate cells that have the capacity to form spheres from those incapable of forming spheres, a PCA (principal component analysis) of the multidimensional dataset was performed. Although PCA of the ‘accepted’ stemness genes was unable to separate sphere-forming from sphere-incapable cell lines, the addition of the ‘aggressiveness’ marker CD44v6 allowed a clear differentiation. Moreover, inoculation of the spheres and the adherent cells in vivo confirmed the superior aggressiveness (proliferation and metastasis) of the spheres over the adherent cells. In conclusion, the present study suggests that the sphere-growing cell population is not only composed of cells displaying classical stem membrane markers but also needs CD44v6-positive cells to successfully form spheres. Our results also emphasize the potential therapeutic importance of pathways such as CXCR4 and hedgehog for pancreatic cancer treatment. PMID:20426768

  13. Future Prospects in Breast Cancer Research – Cancer Stem Cells

    PubMed Central

    Franke, Henk R.; Klaase, Joost M.; Brinkhuis, Mariël; van den Berg, Albert; Vermes, István

    2012-01-01

    Breast cancer is one of the leading causes of cancer deaths among women. Although significant advances in the prevention, diagnosis and management are made, still every year half a million women die of breast cancer. Personalised treatment has the potential to increase treatment efficacy, and hence decrease mortality rates. Moreover, understanding cancer biology and translating this knowledge to the clinic, will improve the breast cancer therapy regime tremendously. Recently, it has been proposed that cancer stem cells (CSC) play an important role in tumour biology. CSC have the ability for self-renewal and are pivotal in setting the heterogeneous character of a tumour. Additionally, CSC possess several characteristics that make them resistant and more aggressive to the conventional chemo- and radiotherapy. Nowadays, breast cancer therapy is focused on killing the differentiated tumour cells, leaving the CSC unharmed, potentially causing recurrence of the disease and metastasis. Specific targeting of the CSC will improve the disease-free survival of breast cancer patients. In this article, two methods are described, aiming at specifically attacking the differentiated tumour cells (‘Apoptosis chip’) and the cancer stem cell. For this, microfluidics is used.

  14. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  15. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity.

    PubMed

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng; Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy.

  16. Characterization and Comparison of Intercellular Adherent Junctions Expressed by Human Corneal Endothelial Cells in Vivo and in Vitro

    PubMed Central

    Ying-Ting, Zhu; Hayashida, Yasutaka; Kheirkhah, Ahmad; He, Hua; Sue-Yue, Chen; Tseng, Scheffer C. G.

    2008-01-01

    Purpose Human corneal endothelial cell (HCEC) proliferation is controlled by their cell junctions, of which the mechanism remains unknown. We sought to characterize adherent junction components of in vivo HCECs, and compare their gene expression and their proliferative potential to those of in vitro counterparts. Methods Stripped human Descemet’s membranes were digested with collagenase A, and the resultant HCEC aggregates were cultured for 7, 14, and 21 days in supplemented hormonal epithelial medium (SHEM). Growth of HCEC monolayers was monitored by BrdU labeling performed 24 h before termination. Both in vivo and in vitro HCECs were subjected to immunostaining to FITC-phalloidin and antibodies to different junction components and BrdU. Their mRNA expressions were determined by RT-PCR. Results In vivo HCECs expressed transcripts of N-, VE-, E-, and P-cadherins, α-, β-, γ-, and p120-catenins, and p190. In vitro HCEC counterparts also expressed all these mRNAs except P-cadherin. In vivo HCECs displayed continuous circular F-actin, N-cadherin, β- and p120-catenins, and p190, discontinuous circular VE-cadherin bands at/close to cell junctions, and E-cadherin in the cytoplasm. Such an in vivo pattern was gradually achieved by in vitro HCECs at day 21 and was correlated with a progressive decline of BrdU labeling. Conclusions Both in vivo and in vitro HCECs displayed distinct protein cytolocalization of N-, VE-, and E-cadherins, β- and p120-catenins, and p190. Progressive maturation of adherent junctions was associated with a decline of the proliferative potential. This information allows us to devise new strategies to engineer in vitro HCECs by targeting these components. PMID:18502989

  17. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  18. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results.

  19. Allograft Cancer Cell Transplantation in Zebrafish.

    PubMed

    Moore, John C; Langenau, David M

    2016-01-01

    Allogeneic cell transplantation is the transfer of cells from one individual into another of the same species and has become an indispensable technique for studying development, immunology, regeneration and cancer biology. In experimental settings, tumor cell engraftment into immunologically competent recipients has greatly increased our understanding of the mechanisms that drive self-renewal, progression and metastasis in vivo. Zebrafish have quickly emerged as a powerful genetic model of cancer that has benefited greatly from allogeneic transplantation. Efficient engraftment can be achieved by transplanting cells into either early larval stage zebrafish that have not yet developed a functional acquired immune system or adult zebrafish following radiation or chemical ablation of the immune system. Alternatively, transplantation can be completed in adult fish using either clonal syngeneic strains or newly-generated immune compromised zebrafish models that have mutations in genes required for proper immune cell function. Here, we discuss the current state of cell transplantation as it pertains to zebrafish cancer and the available models used for dissecting important processes underlying cancer. We will also use the zebrafish model to highlight the power of cell transplantation, including its capacity to dynamically assess functional heterogeneity within individual cancer cells, visualize cancer progression and evolution, assess tumor-propagating potential and self-renewal, image cancer cell invasion and dissemination and identify novel therapies for treating cancer. PMID:27165358

  20. Inhibition of mitogenesis induced by phytohemagglutinin and Lens culinaris lectin in adherent-cell supernatants treated with protein extract of Mycobacterium tuberculosis.

    PubMed Central

    Parra, C; Montaño, L F; Huesca, M; Rayón, I; Willms, K; Goodsaid, F

    1986-01-01

    Specific stimulation of T cells by phytohemagglutinin and Lens culinaris lectin was inhibited by a soluble factor(s) secreted by normal adherent cells stimulated with culture filtrate protein extract (CFPE) derived from bacterial cultures of Mycobacterium tuberculosis H37Ra (avirulent) and H37Rv (virulent). The induction of the inhibitory factor was blocked by the presence of hyperimmune antisera to H37Rv or H37Ra CFPE. The inhibitory factor did not seem to be a CFPE reprocessed by the adherent cells. Inhibitory activity was maximal in supernatants of adherent-cell cultures incubated for 48 h; the inhibitory factor was heat labile, and its production was dependent on the concentration of M. tuberculosis CFPE. A mouse monocyte-macrophage cell line, ATCC J774A.1, produced an identical inhibitory factor, thus excluding a non-macrophage-contaminating adherent cell as the source of the factor. This inhibitory factor also interfered with the recognition of phytohemagglutinin and Lens culinaris lectin by T cells. PMID:3082760

  1. Open-channel microfluidic membrane device for long-term FT-IR spectromicroscopy of live adherent cells.

    PubMed

    Loutherback, Kevin; Chen, Liang; Holman, Hoi-Ying N

    2015-01-01

    Spatially resolved infrared spectroscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal information on functional groups in biomolecules of a sample by their characteristic vibrational modes. One difficulty in performing long-term FT-IR measurements on live cells is the competition between the strong IR absorption from water and the need to supply nutrients and remove waste. In this proof of principle study, we developed an open-channel membrane device that allows long-term continuous IR measurement of live, adherent mammalian cells. Composed of a gold-coated porous membrane between a feeding channel and a viewing chamber, it allows cells to be maintained on the upper membrane surface in a thin layer of fluid while media is replenished from the feeding channel below. Using this device, we monitored the spatiotemporal chemical changes in living colonies of PC12 cells under nerve growth factor (NGF) stimulation for up to 7 days using both conventional globar and high-resolution synchrotron radiation-based IR sources. We identified the primary chemical change cells undergo is an increase in glycogen that may be associated with secretion of glycoprotein to protect the cells from evaporative stress at the air-liquid interface. Analyzing the spectral maps with multivariate methods of hierarchical cluster analysis (HCA) and principal component analysis (PCA), we found that the cells at the boundary of the colony and in a localized region in the center of the colony tend to produce more glycogen and glycoprotein than cells located elsewhere in the colony and that the degree of spatial heterogeneity decreases with time. This method provides a promising approach for long-term live-cell spectromicroscopy on mammalian cell systems. PMID:25886198

  2. Interfacial geometry dictates cancer cell tumorigenicity

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Wycislo, Kathryn L.; Fan, Timothy M.; Kilian, Kristopher A.

    2016-08-01

    Within the heterogeneous architecture of tumour tissue there exists an elusive population of stem-like cells that are implicated in both recurrence and metastasis. Here, by using engineered extracellular matrices, we show that geometric features at the perimeter of tumour tissue will prime a population of cells with a stem-cell-like phenotype. These cells show characteristics of cancer stem cells in vitro, as well as enhanced tumorigenicity in murine models of primary tumour growth and pulmonary metastases. We also show that interfacial geometry modulates cell shape, adhesion through integrin α5β1, MAPK and STAT activity, and initiation of pluripotency signalling. Our results for several human cancer cell lines suggest that interfacial geometry triggers a general mechanism for the regulation of cancer-cell state. Similar to how a growing tumour can co-opt normal soluble signalling pathways, our findings demonstrate how cancer can also exploit geometry to orchestrate oncogenesis.

  3. FOXA1 expression affects the proliferation activity of luminal breast cancer stem cell populations.

    PubMed

    Tachi, Kana; Shiraishi, Akira; Bando, Hiroko; Yamashita, Toshiharu; Tsuboi, Ikki; Kato, Toshiki; Hara, Hisato; Ohneda, Osamu

    2016-03-01

    The expression of estrogen receptor is the key in most breast cancers (BC) and binding of estrogen receptor to the genome correlates to Forkhead protein (FOXA1) expression. We herein assessed the correlation between the cancer stem cell (CSC) population and FOXA1 expression in luminal BC. We established luminal BC cells derived from metastatic pleural effusion and analyzed the potency of CSC and related factors with established luminal BC cell lines. We also confirmed that mammosphere cultures have an increased aldehyde dehydrogenase-positive population, which is one of the CSC markers, compared with adherent culture cells. Using a quantitative PCR analysis, we found that mammosphere forming cells showed a higher expression of FOXA1 and stemness-related genes compared with adherent culture cells. Furthermore, the growth activity and colony-forming activity of 4-hydroxytamoxifen-treated BC cells were inhibited in a mammosphere assay. Interestingly, 4-hydroxytamoxifen-resistant cells had significantly increased FOXA1 gene expression levels. Finally, we established short hairpin RNA of FOXA1 (shFOXA1) MCF-7 cells and investigated the relationship between self-renewal potential and FOXA1 expression. As a result, we found no significant difference in the number of mammospheres but decreased colony formation in shFOXA1 MCF-7 cells compared with control. These results suggest that the expression of FOXA1 appears to be involved in the proliferation of immature BC cells rather than the induction of stemness-related genes and self-renewal potency of CSCs.

  4. Single-Cell Analysis in Cancer Genomics.

    PubMed

    Saadatpour, Assieh; Lai, Shujing; Guo, Guoji; Yuan, Guo-Cheng

    2015-10-01

    Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper we review the recent single-cell technological and computational advances at the genomic, transcriptomic, and proteomic levels, and discuss their applications in cancer research. PMID:26450340

  5. HIV Medication Adherence

    MedlinePlus

    HIV Treatment HIV Medication Adherence (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points Medication adherence means sticking ... exactly as prescribed. Why is adherence to an HIV regimen important? Adherence to an HIV regimen gives ...

  6. Fast, Efficient, and Gentle Transfection of Human Adherent Cells in Suspension.

    PubMed

    Agrawal, Pranav; Ingle, Nilesh P; Boyle, William S; Ward, Emily; Tolar, Jakub; Dorfman, Kevin D; Reineke, Theresa M

    2016-04-13

    We demonstrate a highly efficient method for gene delivery into clinically relevant human cell types, such as induced pluripotent stem cells (iPSCs) and fibroblasts, reducing the protocol time by one full day. To preserve cell physiology during gene transfer, we designed a microfluidic strategy, which facilitates significant gene delivery in a short transfection time (<1 min) for several human cell types. This fast, optimized and generally applicable cell transfection method can be used for rapid screening of different delivery systems and has significant potential for high-throughput cell therapy applications. PMID:27035392

  7. Learning about Cancer by Studying Stem Cells

    MedlinePlus

    ... About Cancer by Studying Stem Cells Inside Life Science View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem ... Once Upon a Stem Cell This Inside Life Science article also appears on LiveScience . Learn about related ...

  8. Modification of Solid Phase Red Cell Adherence Assay for the Detection of Platelet Antibodies in Patients With Thrombocytopenia

    PubMed Central

    Vongchan, Preeyanat; Nawarawong, Weerasak; Linhardt, Robert J.

    2009-01-01

    Platelet refractoriness is caused by HLA antibodies and platelet-specific antibodies. Current methods used to detect antiplatelet antibodies have limitations. Solid phase red cell adherence (SPRCA) lacks sensitivity and requires a second assay using chloroquine-treated intact platelets to specify the response due to anti-HLA. We modified SPRCA by using 2 types of antihuman platelet antibodies with different specificities toward platelet lysate and tested samples from 361 patients (69 with unexplained thrombocytopenia and 292 with poor response to platelet transfusions not explicable by alloimmunization or the clinical situation) and 50 from healthy volunteers. Our method compared favorably with platelet suspension direct immunofluorescence. All samples from healthy volunteers were negative; of the samples from the patient population, 240 were positive (147 samples had only antiplatelet and 3 samples had only anti-HLA antibodies). This modified technique had a sensitivity of 98% and a specificity of 91%. PMID:18701420

  9. Modification of solid phase red cell adherence assay for the detection of platelet antibodies in patients with thrombocytopenia.

    PubMed

    Vongchan, Preeyanat; Nawarawong, Weerasak; Linhardt, Robert J

    2008-09-01

    Platelet refractoriness is caused by HLA antibodies and platelet-specific antibodies. Current methods used to detect antiplatelet antibodies have limitations. Solid phase red cell adherence (SPRCA) lacks sensitivity and requires a second assay using chloroquine-treated intact platelets to specify the response due to anti-HLA. We modified SPRCA by using 2 types of antihuman platelet antibodies with different specificities toward platelet lysate and tested samples from 361 patients (69 with unexplained thrombocytopenia and 292 with poor response to platelet transfusions not explicable by alloimmunization or the clinical situation) and 50 from healthy volunteers. Our method compared favorably with platelet suspension direct immunofluorescence. All samples from healthy volunteers were negative; of the samples from the patient population, 240 were positive (147 samples had only antiplatelet and 3 samples had only anti-HLA antibodies). This modified technique had a sensitivity of 98% and a specificity of 91%.

  10. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds.

    PubMed

    Palomeras, Sònia; Rabionet, Marc; Ferrer, Inés; Sarrats, Ariadna; Garcia-Romeu, Maria Luisa; Puig, Teresa; Ciurana, Joaquim

    2016-01-01

    The cancer stem cell (CSC) population displays self-renewal capabilities, resistance to conventional therapies, and a tendency to post-treatment recurrence. Increasing knowledge about CSCs' phenotype and functions is needed to investigate new therapeutic strategies against the CSC population. Here, poly(ε-caprolactone) (PCL), a biocompatible polymer free of toxic dye, has been used to fabricate scaffolds, solid structures suitable for 3D cancer cell culture. It has been reported that scaffold cell culture enhances the CSCs population. A RepRap BCN3D+ printer and 3 mm PCL wire were used to fabricate circular scaffolds. PCL design and fabrication parameters were first determined and then optimized considering several measurable variables of the resulting scaffolds. MCF7 breast carcinoma cell line was used to assess scaffolds adequacy for 3D cell culture. To evaluate CSC enrichment, the Mammosphere Forming Index (MFI) was performed in 2D and 3D MCF7 cultures. Results showed that the 60° scaffolds were more suitable for 3D culture than the 45° and 90° ones. Moreover, 3D culture experiments, in adherent and non-adherent conditions, showed a significant increase in MFI compared to 2D cultures (control). Thus, 3D cell culture with PCL scaffolds could be useful to improve cancer cell culture and enrich the CSCs population. PMID:27120585

  11. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells.

    PubMed

    Bhandary, Lekhana; Whipple, Rebecca A; Vitolo, Michele I; Charpentier, Monica S; Boggs, Amanda E; Chakrabarti, Kristi R; Thompson, Keyata N; Martin, Stuart S

    2015-03-20

    The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy.

  12. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells

    PubMed Central

    Bhandary, Lekhana; Whipple, Rebecca A.; Vitolo, Michele I.; Charpentier, Monica S.; Boggs, Amanda E.; Chakrabarti, Kristi R.; Thompson, Keyata N.; Martin, Stuart S.

    2015-01-01

    The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy. PMID:25749040

  13. Response of adherent cells to mechanical perturbations of the surrounding matrix.

    PubMed

    Ben-Yaakov, Dan; Golkov, Roman; Shokef, Yair; Safran, Samuel A

    2015-02-01

    We present a generic and unified theory to explain how cells respond to perturbations of their mechanical environment such as the presence of neighboring cells, slowly applied stretch, or gradients of matrix rigidity. Motivated by experiments, we calculate the local balance of forces that give rise to a tendency for the cell to locally move or reorient, with a focus on the contribution of feedback and homeostasis to cell contractility (manifested by a fixed displacement, strain or stress) that acts on the adhesions at the cell boundary. These forces can be either reinforced or diminished by elastic stresses due to mechanical perturbations of the matrix. Our model predicts these changes and how their balance with local protrusive forces that act on the cell's leading edge either increase or decrease the tendency of the cell to locally move (toward neighboring cells or rigidity gradients) or reorient (in the direction of slowly applied stretch or rigidity gradients).

  14. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling.

    PubMed

    Crompton, Lucy A; Byrne, Meg L; Taylor, Hannah; Kerrigan, Talitha L; Bru-Mercier, Gilles; Badger, Jennifer L; Barbuti, Peter A; Jo, Jihoon; Tyler, Sue J; Allen, Shelley J; Kunath, Tilo; Cho, Kwangwook; Caldwell, Maeve A

    2013-11-01

    Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development. PMID:24013066

  15. Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers

    PubMed Central

    Zapperi, Stefano; La Porta, Caterina A. M.

    2012-01-01

    The identification of cancer stem cells in vivo and in vitro relies on specific surface markers that should allow to sort cancer cells in phenotypically distinct subpopulations. Experiments report that sorted cancer cell populations after some time tend to express again all the original markers, leading to the hypothesis of phenotypic switching, according to which cancer cells can transform stochastically into cancer stem cells. Here we explore an alternative explanation based on the hypothesis that markers are not perfect and are thus unable to identify all cancer stem cells. Our analysis is based on a mathematical model for cancer cell proliferation that takes into account phenotypic switching, imperfect markers and error in the sorting process. Our conclusion is that the observation of reversible expression of surface markers after sorting does not provide sufficient evidence in support of phenotypic switching. PMID:22679555

  16. Cystone – An ayurvedic polyherbal formulation inhibits adherence of uropathogenic E. coli and modulates H2O2-induced toxicity in NRK-52E cells

    PubMed Central

    Vidyashankar, Satyakumar; Maheshkumar, Puttanarasaiah; Patki, Pralhad S

    2010-01-01

    Gentamicin is a widely used antibiotic for the treatment of adverse urinary tract infections (UTI), which in turn causes nephrotoxicity to uroepithelial cells and hence an alternative safe herbal remedy is much desired to compensate these toxic effects. The bacterial adhesion to the uroepithelial cells is the primary step in UTI and it induces various immunogenic reactions leading to the generation of reactive oxygen species (ROS), which are detrimental to the cells survival. Inhibition of bacterial adherence to urinary tract epithelial cells has been assumed to account for the beneficial action ascribed to cystone (an ayurvedic polyherbal formulation) in the prevention of UTI. In this study, we have examined the effect of cystone on the adherence of pathogenic [2-14C]-acetate labeled Escherichia coli (MTCC-729) to rat proximal renal tubular cells (NRK-52E cells). Further, the antioxidant property of cystone was studied using hydrogen peroxide (400 μM) as a pro-oxidant in NRK-52E cells. The results showed that cystone inhibited the adherence of E. coli to NRK-52E cells significantly. Additionally cystone effectively combats the toxicity induced by H2O2 in NRK-52E cells. The cytoprotective effect of cystone is brought about by inhibiting lipid peroxidation by 36% in cells treated with cystone compared to H2O2-treated cells without cystone. The antioxidant enzymes catalase, glutathione were increased by 53% and 68% respectively and superoxide dismutase activity was increased 3-fold. The glutathione content was significantly increased by 2.4-fold in NRK-52E cells treated with cystone compared to H2O2 control group. These results suggest that cystone effectively inhibits bacterial adherence to NRK-52E cells and attenuates H2O2-induced toxicity in NRK-52E cells by inhibiting lipid peroxidation and increasing the antioxidant defense mechanism. PMID:27186087

  17. Cystone - An ayurvedic polyherbal formulation inhibits adherence of uropathogenic E. coli and modulates H2O2-induced toxicity in NRK-52E cells.

    PubMed

    Vidyashankar, Satyakumar; Maheshkumar, Puttanarasaiah; Patki, Pralhad S

    2010-01-01

    Gentamicin is a widely used antibiotic for the treatment of adverse urinary tract infections (UTI), which in turn causes nephrotoxicity to uroepithelial cells and hence an alternative safe herbal remedy is much desired to compensate these toxic effects. The bacterial adhesion to the uroepithelial cells is the primary step in UTI and it induces various immunogenic reactions leading to the generation of reactive oxygen species (ROS), which are detrimental to the cells survival. Inhibition of bacterial adherence to urinary tract epithelial cells has been assumed to account for the beneficial action ascribed to cystone (an ayurvedic polyherbal formulation) in the prevention of UTI. In this study, we have examined the effect of cystone on the adherence of pathogenic [2-(14)C]-acetate labeled Escherichia coli (MTCC-729) to rat proximal renal tubular cells (NRK-52E cells). Further, the antioxidant property of cystone was studied using hydrogen peroxide (400 μM) as a pro-oxidant in NRK-52E cells. The results showed that cystone inhibited the adherence of E. coli to NRK-52E cells significantly. Additionally cystone effectively combats the toxicity induced by H2O2 in NRK-52E cells. The cytoprotective effect of cystone is brought about by inhibiting lipid peroxidation by 36% in cells treated with cystone compared to H2O2-treated cells without cystone. The antioxidant enzymes catalase, glutathione were increased by 53% and 68% respectively and superoxide dismutase activity was increased 3-fold. The glutathione content was significantly increased by 2.4-fold in NRK-52E cells treated with cystone compared to H2O2 control group. These results suggest that cystone effectively inhibits bacterial adherence to NRK-52E cells and attenuates H2O2-induced toxicity in NRK-52E cells by inhibiting lipid peroxidation and increasing the antioxidant defense mechanism.

  18. Diet and Exercise Intervention Adherence and Health-Related Outcomes among Older Long-Term Breast, Prostate, and Colorectal Cancer Survivors

    PubMed Central

    Winger, Joseph G.; Mosher, Catherine E.; Rand, Kevin L.; Morey, Miriam C.; Snyder, Denise C.; Demark-Wahnefried, Wendy

    2014-01-01

    Background Diet and exercise interventions for cancer survivors result in health benefits; however, few studies have examined health outcomes in relation to adherence. Purpose We examined associations between adherence to components of a diet–exercise intervention and survivors’ physical and mental health. Methods A randomized controlled trial tested a telephone and mailed print intervention among 641 older, overweight, long-term survivors of breast, prostate, and colorectal cancer. Dietary and exercise behaviors were assessed at 14 time points throughout the year-long intervention; health outcomes were examined postintervention. Results Telephone session attendance had significant indirect relationships with health outcomes through intervention-period exercise and dietary behavior. Attendance showed positive indirect relationships with physical function (β= 0.11, p<0.05), basic and advanced lower extremity function (β=0.10, p<0.05/β=0.09, p<0.05), and mental health (β= 0.05, p<0.05), and a negative indirect relationship with body mass index (β=−0.06, p<0.05). Conclusions Session attendance is vital in facilitating improvement in health behaviors and attendant outcomes (Clinicaltrials.gov number NCT00303875). PMID:24648018

  19. Small-cell lung cancer (SCLC) cell adhesion on E- and P-selectin under physiological flow conditions.

    PubMed

    Richter, Ulrich

    2014-01-01

    Hematogenous metastasis is still a poorly understood phenomenon. The rate-limiting step within the metastatic cascade is not yet clear although it may be estimated that the extravasation of circulating tumor cells is a step of crucial importance, as most tumor cells that are shed into circulation undergo apoptosis. The process of extravasation includes a cascade of consecutive steps, starting with adhesion of tumor cells circulating in the bloodstream to endothelial cells, mimicking leukocyte adhesion and transmigration. Endothelial cell selectin-leukocyte glycan interaction occurs when leukocytes adhere to endothelial cells under conditions of shear stress. As there are parallels between cancer cell endothelial interactions with leukocyte endothelial cell systems an experimental setup has been developed in which adhesion of small cell lung carcinoma adhesive properties can be analyzed under physiological shear stress conditions during their attachment to E- and P-selection.

  20. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

    PubMed

    Ramirez-Hernandez, Alejandra; Rupnow, John; Hutkins, Robert W

    2015-08-01

    Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.

  1. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract.

    PubMed

    Ramirez-Hernandez, Alejandra; Rupnow, John; Hutkins, Robert W

    2015-08-01

    Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen. PMID:26219363

  2. Pericellular hydrogel/nanonets inhibit cancer cells.

    PubMed

    Kuang, Yi; Shi, Junfeng; Li, Jie; Yuan, Dan; Alberti, Kyle A; Xu, Qiaobing; Xu, Bing

    2014-07-28

    Fibrils formed by proteins are vital components for cells. However, selective formation of xenogenous nanofibrils of small molecules on mammalian cells has yet to be observed. Here we report an unexpected observation of hydrogel/nanonets of a small D-peptide derivative in pericellular space. Surface and secretory phosphatases dephosphorylate a precursor of a hydrogelator to trigger the self-assembly of the hydrogelator and to result in pericellular hydrogel/nanonets selectively around the cancer cells that overexpress phosphatases. Cell-based assays confirm that the pericellular hydrogel/nanonets block cellular mass exchange to induce apoptosis of cancer cells, including multidrug-resistance (MDR) cancer cells, MES-SA/Dx5. Pericellular hydrogel/nanonets of small molecules to exhibit distinct functions illustrates a fundamentally new way to engineer molecular assemblies spatiotemporally in cellular microenvironment for inhibiting cancer cell growth and even metastasis.

  3. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    SciTech Connect

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng Cao, Zhifei

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  4. In search of liver cancer stem cells.

    PubMed

    Ma, Stephanie; Chan, Kwok Wah; Guan, Xin-Yuan

    2008-09-01

    Recent research efforts in stem cell and cancer biology have put forth a "stem cell model of carcinogenesis" which stipulates that the capability to maintain tumor formation and growth specifically resides in a small population of cells called cancer stem cells. The stem cell-like characteristics of these cells, including their ability to self-renew and differentiate; and their limited number within the bulk of the tumor mass, are believed to account for their capability to escape conventional therapies. In the past few years, the hypothesis of stem cell-driven tumorigenesis in liver cancer has received substantial support from the recent ability to identify and isolate a subpopulation of liver cancer cells that is not only able to initiate tumor growth, but also serially establish themselves as tumor xenografts with high efficiency and consistency. In this review, stem cell biology that contributes to explain tumor development in the particular context of liver cancer will be discussed. We will begin by briefly considering the knowledge available on normal liver stem cells and their role in tissue renewal and regeneration. We will then summarize the current scientific knowledge of liver cancer stem cells, discuss their relevance to the diagnosis and treatment of the disease and consider the outstanding challenges and potential opportunities that lie ahead of us.

  5. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  6. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    PubMed

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  7. Dendritic cell-based cancer immunotherapy for colorectal cancer

    PubMed Central

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  8. Targeting prostate cancer stem cells for cancer therapy

    PubMed Central

    Wang, Guocan; Wang, Zhiwei; Sarkar, Fazlul H.; Wei, Wenyi

    2012-01-01

    Prostate cancer (PCa) is the most common malignant neoplasm in men and the second most frequent cause of cancer death for males in the United States. Recently, emerging evidence suggests that prostate cancer stem cells (CSCs) may play a critical role in the development and progression of PCa. Therefore, targeting prostate CSCs for the prevention of tumor progression and treatment of PCa could become a novel strategy for better treatment of patients diagnosed with PCa. In this review article, we will summarize the most recent advances in the prostate CSCs field, with particular emphasis on targeting prostate CSCs to treat prostate cancer. PMID:22369972

  9. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    PubMed

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  10. Wnt Signaling in Cancer Stem Cell Biology.

    PubMed

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  11. [Cancer stem cell research toward therapeutics].

    PubMed

    Ito, Keisuke

    2015-05-01

    The capacity of cancer stem cells, or cancer-initiating cells, to both provide mature tumor cells and perpetuate themselves through self-renewal is crucial to initiate and maintain tumorigenesis, and has become the focus of intense research interest as a promising source of new therapeutic strategies. However, many scientific challenges and technical barriers remain to be solved before recent findings can be translated into effective therapeutics. Here we highlight the latest advances in our knowledge of cancer stem cells, and provide a critical perspective on the clinical benefits promised by this developing area of research.

  12. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  13. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  14. Specific adhesion of carcinoembryonic antigen-bearing colorectal cancer cells to immobilized carcinoembryonic antigen.

    PubMed

    Levin, L V; Griffin, T W

    1991-11-01

    Recent characterization of the genomic structure of carcinoembryonic antigen (CEA) is consistent with that of a cellular adhesion molecule. To examine this function in colorectal cancer, the adherence of cell lines to microtiter wells coated with CEA and well-described adhesive molecules was determined. The CEA-positive cell line LoVo and the CEA-devoid cell line H-Meso-1 did not differ in adherence to the extracellular matrix proteins laminin, collagen and fibronectin, whereas LoVo cells adhered to CEA (10 micrograms/well) in a specific manner (43% bound cells vs. 1.5% bound cells with BSA or alpha-acidglycoprotein controls, P less than 0.01) while H-MESO-1 showed no adhesion to CEA (less than 0.6% bound cells). This adhesion of LoVo cells to CEA was not affected by co-incubation of cells with EDTA, sodium azide, or at 23 degrees C. However, the CEA to CEA adhesive interaction was inhibited by a monoclonal antibody directed against an epitope in the N-terminal domain of the CEA molecule, and decreased by enzymatic removal of CEA from the LoVo cell membrane. The extent of adhesion to immobilized CEA by four CEA-producing cell lines (LoVo, HT29, LS174T and LS174-S), correlated with membrane CEA expression as determined by FACS analysis. The results of these experiments add support to the concept that CEA may function as a specific homotypic cellular adhesion molecule for colorectal cancer cells.

  15. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells.

    PubMed

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells. PMID:25984833

  16. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells

    NASA Astrophysics Data System (ADS)

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

  17. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells.

    PubMed

    Hanson, Lindsey; Zhao, Wenting; Lou, Hsin-Ya; Lin, Ziliang Carter; Lee, Seok Woo; Chowdary, Praveen; Cui, Yi; Cui, Bianxiao

    2015-06-01

    The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells. Our measurements show that nanopillar-induced nuclear deformation is determined by nuclear stiffness, as well as opposing effects from actin and intermediate filaments. Furthermore, the depth, width and curvature of nuclear deformation can be controlled by varying the geometry of the nanopillar array. Overall, vertical nanopillar arrays constitute a novel approach for non-invasive, subcellular perturbation of nuclear mechanics and mechanotransduction in live cells.

  18. A family of cell-adhering peptides homologous to fibrinogen C-termini

    SciTech Connect

    Levy-Beladev, Liron; Levdansky, Lilia; Gaberman, Elena; Friedler, Assaf; Gorodetsky, Raphael

    2010-10-08

    Research highlights: {yields} Cell-adhesive sequences homologous to fibrinogen C-termini exist in other proteins. {yields} The extended homologous cell-adhesive C-termini peptides family is termed Haptides. {yields} In membrane-like environment random coiled Haptides adopt a helical conformation. {yields} Replacing positively charged residues with alanine reduces Haptides activity. -- Abstract: A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides C{beta}, preC{gamma}, and C{alpha}E, corresponding to sequences on the C-termini of fibrinogen chains {beta}, {gamma}, and {alpha}E, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1 and 2, tenascins C and X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preC{gamma} peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.

  19. A Functional Assay for Gap Junctional Examination; Electroporation of Adherent Cells on Indium-Tin Oxide

    PubMed Central

    Geletu, Mulu; Guy, Stephanie; Firth, Kevin; Raptis, Leda

    2014-01-01

    In this technique, cells are cultured on a glass slide that is partly coated with indium-tin oxide (ITO), a transparent, electrically conductive material. A variety of molecules, such as peptides or oligonucleotides can be introduced into essentially 100% of the cells in a non-traumatic manner.  Here, we describe how it can be used to study intercellular, gap junctional communication. Lucifer yellow penetrates into the cells when an electric pulse, applied to the conductive surface on which they are growing, causes pores to form through the cell membrane. This is electroporation. Cells growing on the nonconductive glass surface immediately adjacent to the electroporated region do not take up Lucifer yellow by electroporation but do acquire the fluorescent dye as it is passed to them via gap junctions that link them to the electroporated cells. The results of the transfer of dye from cell to cell can be observed microscopically under fluorescence illumination. This technique allows for precise quantitation of gap junctional communication. In addition, it can be used for the introduction of peptides or other non-permeant molecules, and the transfer of small electroporated peptides via gap junctions to inhibit the signal in the adjacent, non-electroporated cells is a powerful demonstration of signal inhibition. PMID:25350637

  20. AFBI assay – Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells

    PubMed Central

    Thiel, William H.; Giangrande, Paloma H.

    2016-01-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  1. Myeloid Derived Suppressor Cells in Breast Cancer

    PubMed Central

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R.

    2013-01-01

    Myeloid Derived Suppressor Cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to 1) discuss why MDSCs may be important in breast cancer, 2) describe model systems used to study MDSCs in vitro and in vivo, 3) discuss mechanisms involved in MDSC induction/function in breast cancer, and 4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes. PMID:23828498

  2. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells.

    PubMed

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-12-14

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance.

  3. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  4. Redox Regulation in Cancer Stem Cells

    PubMed Central

    Ding, Shijie; Li, Chunbao; Cheng, Ninghui; Cui, Xiaojiang; Xu, Xinglian; Zhou, Guanghong

    2015-01-01

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment. PMID:26273424

  5. Cancer Stem Cells in the Thyroid

    PubMed Central

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  6. Cancer Stem Cells in the Thyroid.

    PubMed

    Nagayama, Yuji; Shimamura, Mika; Mitsutake, Norisato

    2016-01-01

    The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed. PMID:26973599

  7. Apo A-I inhibits foam cell formation in apo E–deficient mice after monocyte adherence to endothelium

    PubMed Central

    Dansky, Hayes M.; Charlton, Sherri A.; Barlow, Courtenay B.; Tamminen, Minna; Smith, Jonathan D.; Frank, Joy S.; Breslow, Jan L.

    1999-01-01

    We have previously shown that expression of the human apo A-I transgene on the apo E–deficient background increases HDL cholesterol and greatly diminishes fatty streak lesion formation. To examine the mechanism, prelesional events in atherosclerotic plaque development were examined in 6- to 8-week-old apo E–deficient and apo E–deficient/human apo A-I transgenic mice. A quantitative assessment of subendothelial lipid deposition by freeze-fracture and deep-etch electron microscopy indicated that elevated apo A-I did not affect the distribution or amount of aortic arch subendothelial lipid deposits. Immunohistochemical staining for VCAM-1 demonstrated similar expression on endothelial cells at prelesional aortic branch sites from both apo E–deficient and apo E–deficient/human apo A-I transgenic mice. Transmission electron microscopy revealed monocytes bound to the aortic arch in mice of both genotypes, and immunohistochemical staining demonstrated that the area occupied by bound mononuclear cells was unchanged. Serum paraoxonase and aryl esterase activity did not differ between apo E–deficient and apo E–deficient/human apo A-I transgenic mice. These data suggest that increases in apo A-I and HDL cholesterol inhibit foam cell formation in apo E–deficient/human apo A-I transgenic mice at a stage following lipid deposition, endothelial activation, and monocyte adherence, without increases in HDL-associated paraoxonase. PMID:10393696

  8. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response.

    PubMed

    Kšonžeková, Petra; Bystrický, Peter; Vlčková, Silvia; Pätoprstý, Vladimír; Pulzová, Lucia; Mudroňová, Dagmar; Kubašková, Terézia; Csank, Tomáš; Tkáčiková, Ľudmila

    2016-05-01

    The aim of the study was to characterize exopolysaccharides (EPS) originated from Lactobacillus reuteri strain DSM 17938 (EPS-DSM17938) and L. reuteri strain L26 Biocenol™ (EPS-L26) and evaluate their influence on adherence of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells and proinflammatory gene expression. Both EPS were d-glucan polysaccharides with higher molecular weight (Mw), but differing in spatial conformation and elicited variable cytokine profile. EPS-DSM17938, relatively linear polysaccharide with (1→4) and (1→6) glycosidic linkages, increased IL-1β gene expression (0.1mg/mL; P<0.05), while EPS-L26, more branched polysaccharide with (1→3) and (1→6) glycosidic linkages, exerted slight but statistically significant up-regulation of NF-κB, TNF-α and IL-6 mRNA (P<0.05). The most significant finding is that preincubation of IPEC-1 cells with both EPS followed by ETEC infection inhibit ETEC adhesion on IPEC-1 cells (P<0.01) and ETEC-induced gene expression of proinflammatory cytokine IL-1β and IL-6 (P<0.01). PMID:26876991

  9. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle. PMID:27632932

  10. Epitaxially Grown Collagen Fibrils Reveal Diversity in Contact Guidance Behavior among Cancer Cells

    PubMed Central

    2015-01-01

    Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue. PMID:25531276

  11. Adherence to Mediterranean-style dietary pattern and risk of esophageal squamous cell carcinoma: a case-control study in Iran

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit of adherence to a Mediterranean-style dietary pattern in relation to the risk of esophageal squamous cell carcinoma (ESCC) has not been investigated among non-Mediterranean high-risk populations. The objective of the present study was to examine the association of compliance with the Med...

  12. Survivorship Care Planning in Patients With Colorectal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-12-16

    Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  13. The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux.

    PubMed

    Yoshino, Seiko; Hara, Toshiro; Nakaoka, Hiroki J; Kanamori, Akane; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2016-01-01

    Loss of anchorage to the extracellular matrix leads to apoptosis (anoikis) in normal cells, but cancerous cells are usually resistant to such stress. Here we report the pivotal role of an E3 ubiquitin ligase, ring-finger protein 126 (RNF126), in the resistance of cancer cells to the stress associated with non-adherent conditions. Non-adherent cancer cells exhibited increased flux through the tricarboxylic acid cycle via increased conversion of pyruvate to acetyl-CoA. RNF126 was found to act as a ubiquitin ligase for pyruvate dehydrogenase kinases (PDKs), resulting in their proteasomal degradation. This decrease in PDK levels allowed pyruvate dehydrogenases to catalyze the conversion of pyruvate to acetyl-CoA. Moreover, depletion of RNF126 or increased expression of PDK1 in cancer cells suppressed colony formation in soft agar as well as tumorigenicity in mice. RNF126 expression in cancer cells was found to be under the control of the extracellular signal-regulated kinase signaling pathway, which is essential for anoikis resistance. Thus, RNF126 is an attractive molecule for treating cancer by selectively targeting anchorage-independent growth. PMID:27462466

  14. The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux

    PubMed Central

    Yoshino, Seiko; Hara, Toshiro; Nakaoka, Hiroki J; Kanamori, Akane; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2016-01-01

    Loss of anchorage to the extracellular matrix leads to apoptosis (anoikis) in normal cells, but cancerous cells are usually resistant to such stress. Here we report the pivotal role of an E3 ubiquitin ligase, ring-finger protein 126 (RNF126), in the resistance of cancer cells to the stress associated with non-adherent conditions. Non-adherent cancer cells exhibited increased flux through the tricarboxylic acid cycle via increased conversion of pyruvate to acetyl-CoA. RNF126 was found to act as a ubiquitin ligase for pyruvate dehydrogenase kinases (PDKs), resulting in their proteasomal degradation. This decrease in PDK levels allowed pyruvate dehydrogenases to catalyze the conversion of pyruvate to acetyl-CoA. Moreover, depletion of RNF126 or increased expression of PDK1 in cancer cells suppressed colony formation in soft agar as well as tumorigenicity in mice. RNF126 expression in cancer cells was found to be under the control of the extracellular signal-regulated kinase signaling pathway, which is essential for anoikis resistance. Thus, RNF126 is an attractive molecule for treating cancer by selectively targeting anchorage-independent growth. PMID:27462466

  15. Mechanisms of Therapeutic Resistance in Cancer (Stem) Cells with Emphasis on Thyroid Cancer Cells

    PubMed Central

    Hombach-Klonisch, Sabine; Natarajan, Suchitra; Thanasupawat, Thatchawan; Medapati, Manoj; Pathak, Alok; Ghavami, Saeid; Klonisch, Thomas

    2014-01-01

    The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells. PMID:24723911

  16. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes

    PubMed Central

    WATSON, C; WHITTAKER, S; SMITH, N; VORA, A J; DUMONDE, D C; BROWN, K A

    1996-01-01

    Using a quantitative monolayer adhesion assay, the current report shows that treatment of human umbilical vein endothelial cells (HUVEC) with IL-6 increases their adhesiveness for blood lymphocytes, particularly CD4+ cells, but not for polymorphonuclear cells and monocytes. This effect, which was most pronounced when using low concentrations of the cytokine (0.1–1.0 U/ml) and a short incubation period (4 h), was also apparent with microvascular endothelial cells and a hybrid endothelial cell line. Skin lesions from patients with mycosis fungoides contain high levels of IL-6, and blood lymphocytes from patients with this disorder also exhibited an enhanced adhesion to IL-6-treated HUVEC. The cytokine enhanced intercellular adhesion molecule-1 (ICAM-1) expression and induced the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on endothelial cells. Antibody blocking studies demonstrated that the vascular adhesion molecules ICAM-1, VCAM-1 and E-selectin and the leucocyte integrin LFA-1 all contributed to lymphocyte binding to endothelium activated by IL-6. It is proposed that IL-6 may be involved in the recruitment of lymphocytes into non-lymphoid tissue. PMID:8697617

  17. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes.

    PubMed

    Watson, C; Whittaker, S; Smith, N; Vora, A J; Dumonde, D C; Brown, K A

    1996-07-01

    Using a quantitative monolayer adhesion assay, the current report shows that treatment of human umbilical vein endothelial cells (HUVEC) with IL-6 increases their adhesiveness for blood lymphocytes, particularly CD4+ cells, but not for polymorphonuclear cells and monocytes. This effect, which was most pronounced when using low concentrations of the cytokine (0.1-1.0 U/ml) and a short incubation period (4h), was also apparent with microvascular endothelial cells and a hybrid endothelial cell line. Skin lesions from patients with mycosis fungoides contain high levels of IL-6, and blood lymphocytes from patients with this disorder also exhibited an enhanced adhesion to IL-6-treated HUVEC. The cytokine enhanced intercellular adhesion molecule-1 (ICAM-1) expression and induced the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on endothelial cells. Antibody blocking studies demonstrated that the vascular adhesion molecules ICAM-1, VCAM-1 and E-selectin and the leucocyte integrin LFA-1 all contributed to lymphocyte binding to endothelium activated by IL-6. It is proposed that IL-6 may be involved in the recruitment of lymphocytes into non-lymphoid tissue.

  18. Hallmarks of cancer stem cell metabolism

    PubMed Central

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-01-01

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  19. Hallmarks of cancer stem cell metabolism.

    PubMed

    Sancho, Patricia; Barneda, David; Heeschen, Christopher

    2016-06-14

    Cancer cells adapt cellular metabolism to cope with their high proliferation rate. Instead of primarily using oxidative phosphorylation (OXPHOS), cancer cells use less efficient glycolysis for the production of ATP and building blocks (Warburg effect). However, tumours are not uniform, but rather functionally heterogeneous and harbour a subset of cancer cells with stemness features. Such cancer cells have the ability to repopulate the entire tumour and thus have been termed cancer stem cells (CSCs) or tumour-initiating cells (TICs). As opposed to differentiated bulk tumour cells relying on glycolysis, CSCs show a distinct metabolic phenotype that, depending on the cancer type, can be highly glycolytic or OXPHOS dependent. In either case, mitochondrial function is critical and takes centre stage in CSC functionality. Remaining controversies in this young and emerging research field may be related to CSC isolation techniques and/or the use of less suitable model systems. Still, the apparent dependence of CSCs on mitochondrial function, regardless of their primary metabolic phenotype, represents a previously unrecognised Achilles heel amendable for therapeutic intervention. Elimination of highly chemoresistant CSCs as the root of many cancers via inhibition of mitochondrial function bears the potential to prevent relapse from disease and thus improve patients' long-term outcome. PMID:27219018

  20. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Solarek, Wojciech; Kornakiewicz, Anna; Szczylik, Cezary

    2016-03-01

    This study was designed to analyze the impact of multi-targeted tyrosine kinase inhibitors on the cancer stem cell subpopulation in renal cell cancer. The second objective was to evaluate the effect of tumor growth inhibition related to a tumor niche factor - oxygen deprivation - as hypoxia develops along with the anti-angiogenic activity of tyrosine kinase inhibitors in renal tumors. Cells were treated with tyrosine kinase inhibitors, sunitinib, sorafenib and axitinib, in 2D and 3D culture conditions. Cell proliferation along with drug toxicity were evaluated. It was shown that the proliferation rate of cancer stem cells was decreased by the tyrosine kinase inhibitors. The efficacy of the growth inhibition was limited by hypoxic conditions and 3D intratumoral cell-cell interactions. We conclude that understanding the complex molecular interaction feedback loops between differentiated cancer cells, cancer stem cells and the tumor microenvironment in 3D culture should aid the identification of novel treatment targets and to evalute the efficacy of renal cancer therapies. Cell-cell interaction may represent a critical microenvironmental factor regulating cancer stem cell self-renewal potential, enhancing the stem cell phenotype and limiting drug toxicity. At the same time the role of hypoxia in renal cancer stem cell biology is also significant.

  1. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells

    PubMed Central

    Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J.W.

    2016-01-01

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer. PMID:27034170

  2. Cancer stem cells in head and neck cancer.

    PubMed

    Allegra, Eugenia; Trapasso, Serena

    2012-01-01

    Cancer stem cells (CSCs), also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal), giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division). A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on the presence of specific surface markers for selective cytotoxic agent vehicles. Finally, some research groups are trying to induce these cells to

  3. Cell Senescence: Aging and Cancer

    ScienceCinema

    Campisi, Judith

    2016-07-12

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  4. Cell Senescence: Aging and Cancer

    SciTech Connect

    Campisi, Judith

    2008-01-01

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  5. Established breast cancer stem cell markers do not correlate with in vivo tumorigenicity of tumor-initiating cells.

    PubMed

    Lehmann, Christian; Jobs, Gabriele; Thomas, Markus; Burtscher, Helmut; Kubbies, Manfred

    2012-12-01

    The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24(-)/CD44(+) and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil‑sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells.

  6. Cell Polarity As A Regulator of Cancer Cell Behavior Plasticity

    PubMed Central

    Muthuswamy, Senthil K; Xue, Bin

    2013-01-01

    Cell polarization is an evolutionarily conserved process that facilitates asymmetric distribution of organelles and proteins, is an evolutionarily conserved property that is modified dynamically during physiological processes such as cell division, migration, and morphogenesis. The plasticity with which cells change their behavior and phenotype in response to cell intrinsic and extrinsic cues is an essential feature of normal physiology. In disease states such as cancer, cells lose their ability to behave normally in response to physiological cues. A molecular understanding of mechanisms that alter the behavior of cancer cells is limited. Cell polarity proteins are an recognized class of molecules that can receive and interpret both intrinsic and extrinsic signals to modulate cell behavior. In this review, we discuss how cell polarity proteins regulate a diverse array of biological processes and how they can contribute to alterations in the behavior of cancer cells. PMID:22881459

  7. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  8. Extracellular mass transport considerations for space flight research concerning suspended and ad