Science.gov

Sample records for adhesin complex protein

  1. MAAP: malarial adhesins and adhesin-like proteins predictor.

    PubMed

    Ansari, Faraz Alam; Kumar, Naveen; Bala Subramanyam, Mekapati; Gnanamani, Muthiah; Ramachandran, Srinivasan

    2008-02-15

    Malaria caused by protozoan parasites belonging to the genus Plasmodium is a dreaded disease, second only to tuberculosis. The emergence of parasites resistant to commonly used drugs and the lack of availability of vaccines aggravates the problem. One of the preventive approaches targets adhesion of parasites to host cells and tissues. Adhesion of parasites is mediated by proteins called adhesins. Abrogation of adhesion by either immunizing the host with adhesins or inhibiting the interaction using structural analogs of host cell receptors holds the potential to develop novel preventive strategies. The availability of complete genome sequence offers new opportunities for identifying adhesin and adhesin-like proteins. Development of computational algorithms can simplify this task and accelerate experimental characterization of the predicted adhesins from complete genomes. A curated positive dataset of experimentally known adhesins from Plasmodium species was prepared by careful examination of literature reports. "Controversial" or "hypothetical" adhesins were excluded. The negative dataset consisted of proteins representing various intracellular functions including information processing, metabolism, and interface (transporters). We did not include proteins likely to be on the surface with unknown adhesin properties or which are linked even indirectly to the adhesion process in either of the training sets. A nonhomology-based approach using 420 compositional properties of amino acid dipeptide and multiplet frequencies was used to develop MAAP Web server with Support Vector Machine (SVM) model classifier as its engine for the prediction of malarial adhesins and adhesin-like proteins. The MAAP engine has six SVM classifier models identified through an exhaustive search from 728 kernel parameters set. These models displayed an efficiency (Mathews correlation coefficient) of 0.860-0.967. The final prediction P(maap) score is the maximum score attained by a given

  2. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan.

    PubMed

    Ishikawa, Masahito; Yoshimoto, Shogo; Hayashi, Ayumi; Kanie, Junichi; Hori, Katsutoshi

    2016-08-01

    Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis. PMID:27074146

  3. FaaPred: A SVM-Based Prediction Method for Fungal Adhesins and Adhesin-Like Proteins

    PubMed Central

    Ramana, Jayashree; Gupta, Dinesh

    2010-01-01

    Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections. PMID:20300572

  4. Characterization of the binding activities of proteinase-adhesin complexes from Porphyromonas gingivalis.

    PubMed Central

    Pike, R N; Potempa, J; McGraw, W; Coetzer, T H; Travis, J

    1996-01-01

    Adhesins from oral bacteria perform an important function in colonizing target tissues within the dentogingival cavity. In Porphyromonas gingivalis certain of these adhesion proteins exist as a complex with either of two major proteinases referred to as gingipain R (arginine-specific gingipain) and gingipain K (lysine-specific gingipain) (R. N. Pike, W. T. McGraw, J. Potempa, and J. Travis, J. Biol. Chem. 269:406-411, 1994). With specific proteinase inhibitors, it was shown that hemagglutination by either proteinase-adhesin complex could occur independently of proteinase activity. Significantly, low concentrations of fibrinogen, fibronectin, and laminin inhibited hemagglutination, indicating that adherence to these proteins and not the hemagglutination activity was a primary property of the adhesin activity component of complexes. Binding studies with gingipain K and gingipain R suggest that interaction with fibrinogen is a major function of the adhesin domain, with dissociation constants for binding to fibrinogen being 4 and 8.5 nM, respectively. Specific association with fibronectin and laminin was also found. All bound proteins were degraded by the functional proteinase domain, with gingipain R being more active on laminin and fibronectin and gingipain K being more effective in the digestion of fibrinogen. Cumulatively, these data suggest that gingipain R and gingipain K, acting as proteinase-adhesin complexes, progressively attach to, degrade, and detach from target proteins. Since such complexes appear to be present on the surfaces of both vesicles and membranes of P. gingivalis, they may play an important role in the attachment of this bacterium to host cell surfaces. PMID:8631676

  5. Specificity of Campylobacter jejuni Adhesin PEB3 for Phosphates and Structural Differences among Its Ligand Complexes

    SciTech Connect

    Min, Tongpil; Vedadi, Masoud; Watson, David C.; Wasney, Gregory A.; Munger, Christine; Cygler, Miroslaw; Matte, Allan; Young, N. Martin

    2009-04-22

    PEB3 is a glycoprotein adhesin from Campylobacter jejuni whose structure suggested a role in transport. We have investigated potential ligands for PEB3 and characterized their binding properties using biophysical methods in solution and by X-ray crystallography. A thermal aggregation assay of PEB3 with a library of physiological compounds identified three possible ligands [3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP), and aconitate], which stabilized wild-type PEB3 but did not stabilize either a PEB3 form containing two mutations at the ligand-binding site, T138A/S139A, or a second PEB3 mutant, K135E, at a site {approx}14 {angstrom} away. Fluorescence titration experiments and cocrystal structures with various ligands were used to characterize the binding of 3-PG, PEP, and phosphate to PEB3. Further, a C. jejuni growth experiment in minimal medium supplemented with 3-PG showed that this molecule enhances the growth of wild-type C. jejuni, but not of the PEB3 mutants. Crystallographic analysis of PEB3 complexes revealed that the Ser171-Gln180 region in the presence of 3-PG or other phosphates is helical and similar to those of other transport proteins, but it is nonhelical when citrate is bound. The K135E mutation resulted in expression of a more highly glycosylated form of PEB3 in vivo, and its crystal structure showed the conformation of the first two residues of the glycan. On the basis of our findings, we suggest that PEB3 is a transport protein that may function in utilization of 3-PG or other phosphate-containing molecules from the host.

  6. The gp38 Adhesins of the T4 Superfamily: A Complex Modular Determinant of the Phage’s Host Specificity

    PubMed Central

    Trojet, Sabrina N.; Caumont-Sarcos, Anne; Perrody, Elsa; Comeau, André M.; Krisch, H. M.

    2011-01-01

    The tail fiber adhesins are the primary determinants of host range in the T4-type bacteriophages. Among the indispensable virion components, the sequences of the long tail fiber genes and their associated adhesins are among the most variable. The predominant form of the adhesin in the T4-type phages is not even the version of the gene encoded by T4, the archetype of the superfamily, but rather a small unrelated protein (gp38) encoded by closely related phages such as T2 and T6. This gp38 adhesin has a modular design: its N-terminal attachment domain binds at the tip of the tail fiber, whereas the C-terminal specificity domain determines its host receptor affinity. This specificity domain has a series of four hypervariable segments (HVSs) that are separated by a set of highly conserved glycine-rich motifs (GRMs) that apparently form the domain’s conserved structural core. The role of gp38’s various components was examined by a comparative analysis of a large series of gp38 adhesins from T-even superfamily phages with differing host specificities. A deletion analysis revealed that the individual HVSs and GRMs are essential to the T6 adhesin’s function and suggests that these different components all act in synergy to mediate adsorption. The evolutionary advantages of the modular design of the adhesin involving both conserved structural elements and multiple independent and easily interchanged specificity determinants are discussed. PMID:21746838

  7. EHEC Adhesins

    PubMed Central

    McWilliams, Brian D.; Torres, Alfredo G.

    2014-01-01

    Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics. PMID:25635238

  8. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Howell, Steven A; Grainger, Munira; Moon, Robert W; Green, Judith L; Holder, Anthony A

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity. PMID

  9. The Binding of Plasmodium falciparum Adhesins and Erythrocyte Invasion Proteins to Aldolase Is Enhanced by Phosphorylation

    PubMed Central

    Diaz, Suraya A.; Martin, Stephen R.; Howell, Steven A.; Grainger, Munira; Moon, Robert W.; Green, Judith L.

    2016-01-01

    Aldolase has been implicated as a protein coupling the actomyosin motor and cell surface adhesins involved in motility and host cell invasion in the human malaria parasite Plasmodium falciparum. It binds to the cytoplasmic domain (CTD) of type 1 membrane proteins of the thrombospondin-related anonymous protein (TRAP) family. Other type 1 membrane proteins located in the apical organelles of merozoites, the form of the parasite that invades red blood cells, including apical membrane antigen 1 (AMA1) and members of the erythrocyte binding ligand (EBL) and reticulocyte binding homologue (RH) protein families have been implicated in host cell binding and invasion. Using a direct binding method we confirm that TRAP and merozoite TRAP (MTRAP) bind aldolase and show that the interaction is mediated by more than just the C-terminal six amino acid residues identified previously. Single amino acid substitutions in the MTRAP CTD abolished binding to aldolase. The CTDs of AMA1 and members of the EBL and RH protein families also bound to aldolase. MTRAP competed with AMA1 and RH4 for binding to aldolase, indicating overlapping binding sites. MTRAP CTD was phosphorylated in vitro by both calcium dependent kinase 1 (CDPK1) and protein kinase A, and this modification increased the affinity of binding to aldolase by ten-fold. Phosphorylation of the CTD of members of the EBL and RH protein families also increased their affinity for aldolase in some cases. To examine whether or not MTRAP expressed in asexual blood stage parasites is phosphorylated, it was tagged with GFP, purified and analysed, however no phosphorylation was detected. We propose that CTD binding to aldolase may be dynamically modulated by phosphorylation, and there may be competition for aldolase binding between different CTDs. The use and efficiency of alternate invasion pathways may be determined by the affinity of adhesins and cell invasion proteins for aldolase, in addition to their host ligand specificity. PMID

  10. Blastomyces Virulence Adhesin-1 Protein Binding to Glycosaminoglycans Is Enhanced by Protein Disulfide Isomerase

    PubMed Central

    Beaussart, Audrey; Brandhorst, Tristan

    2015-01-01

    ABSTRACT Blastomyces adhesin-1 (BAD-1) protein mediates the virulence of the yeast Blastomyces dermatitidis, in part by binding host lung tissue, the extracellular matrix, and cellular receptors via glycosaminoglycans (GAGs), such as heparan sulfate. The tandem repeats that make up over 90% of BAD-1 appear in their native state to be tightly folded into an inactive conformation, but recent work has shown that they become activated and adhesive upon reduction of a disulfide linkage. Here, atomic force microscopy (AFM) of a single BAD-1 molecule interacting with immobilized heparin revealed that binding is enhanced upon treatment with protein disulfide isomerase and dithiothreitol (PDI/DTT). PDI/DTT treatment of BAD-1 induced a plateau effect in atomic force signatures that was consistent with sequential rupture of tandem binding domains. Inhibition of PDI in murine macrophages blunted BAD-1 binding to heparin in vitro. Based on AFM, we found that a short Cardin-Weintraub sequence paired with a WxxWxxW sequence in the first, degenerate repeat at the N terminus of BAD-1 was sufficient to initiate heparin binding. Removal of half of the 41 BAD-1 tandem repeats led to weaker adhesion, illustrating their role in enhanced binding. Mass spectroscopy of the tandem repeat revealed that the PDI-induced interaction with heparin is characterized by ruptured disulfide bonds and that cysteine thiols remain reduced. Further binding studies showed direct involvement of thiols in heparin ligation. Thus, we propose that the N-terminal domain of BAD-1 governs the initial association with host GAGs and that proximity to GAG-associated host PDI catalyzes activation of additional binding motifs conserved within the tandem repeats, leading to enhanced avidity and availability of reduced thiols. PMID:26396244

  11. Minimum chemical requirements for adhesin activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex.

    PubMed

    Kanbe, T; Cutler, J E

    1998-12-01

    This study was conducted to define adhesive characteristics of the acid-stable moiety of the Candida albicans phosphomannoprotein complex (PMPC) on adherence of this fungus to marginal zone macrophages of the mouse spleen. Complete digestion of the acid-stable moiety (Fr.IIS) of the C. albicans PMPC with an alpha-mannosidase or hydrolysis with 0.6 N sulfuric acid destroyed adhesin activity, as determined by the inability of the soluble digests to inhibit yeast cell adherence to the splenic marginal zone. Fr.IIS adhesin activity was decreased following digestion with an alpha-1,2-specific mannosidase. Oligomannosyls consisting of one to six mannose units, which were isolated from the acid-stable part of the PMPC, did not inhibit yeast cell binding and thus do not function alone as adhesin sites in the PMPC. To gain more insight into the minimum requirements for adhesin activity, PMPCs were isolated from a Saccharomyces cerevisiae wild-type strain and from mutant strains mnn1, mnn2, and mnn4; the PMPCs were designated scwt/Fr.II, scmn1/Fr.II, scmn2/Fr.II, and scmn4/Fr.II, respectively. S. cerevisiae scmn2/Fr.II lacks oligomannosyl side chain branches from the outer core mannan, and scmn2/Fr.II was the only PMPC without adhesin activity. S. cerevisiae scwt/Fr.II, scmn1/Fr.II, and scmn4/Fr.II showed adhesin activities less than that of C. albicans Fr.II. These three S. cerevisiae PMPCs are generally similar to Fr. IIS, except that the S. cerevisiae structure has fewer and shorter side chains. Immunofluorescence microscopy show that the acid-stable part of the PMPC is displayed homogeneously on the C. albicans yeast cell surface, which would be expected for a surface adhesin. Our results indicate that both the mannan core and the oligomannosyl side chains are responsible for the adhesin activity of the acid-stable part of the PMPC. PMID:9826359

  12. Re-Evaluation of a Bacterial Antifreeze Protein as an Adhesin with Ice-Binding Activity

    PubMed Central

    Guo, Shuaiqi; Garnham, Christopher P.; Whitney, John C.; Graham, Laurie A.; Davies, Peter L.

    2012-01-01

    A novel role for antifreeze proteins (AFPs) may reside in an exceptionally large 1.5-MDa adhesin isolated from an Antarctic Gram-negative bacterium, Marinomonas primoryensis. MpAFP was purified from bacterial lysates by ice adsorption and gel electrophoresis. We have previously reported that two highly repetitive sequences, region II (RII) and region IV (RIV), divide MpAFP into five distinct regions, all of which require mM Ca2+ levels for correct folding. Also, the antifreeze activity is confined to the 322-residue RIV, which forms a Ca2+-bound beta-helix containing thirteen Repeats-In-Toxin (RTX)-like repeats. RII accounts for approximately 90% of the mass of MpAFP and is made up of ∼120 tandem 104-residue repeats. Because these repeats are identical in DNA sequence, their number was estimated here by pulsed-field gel electrophoresis. Structural homology analysis by the Protein Homology/analogY Recognition Engine (Phyre2) server indicates that the 104-residue RII repeat adopts an immunoglobulin beta-sandwich fold that is typical of many secreted adhesion proteins. Additional RTX-like repeats in RV may serve as a non-cleavable signal sequence for the type I secretion pathway. Immunodetection shows both repeated regions are uniformly distributed over the cell surface. We suggest that the development of an AFP-like domain within this adhesin attached to the bacterial outer surface serves to transiently bind the host bacteria to ice. This association would keep the bacteria within the upper reaches of the water column where oxygen and nutrients are potentially more abundant. This novel envirotactic role would give AFPs a third function, after freeze avoidance and freeze tolerance: that of transiently binding an organism to ice. PMID:23144980

  13. Structure of the Streptococcus pneumoniae Surface Protein and Adhesin PfbA

    PubMed Central

    Suits, Michael D.; Boraston, Alisdair B.

    2013-01-01

    PfbA (plasmin- and fibronectin-binding protein A) is an extracellular Streptococcus pneumoniae cell-wall attached surface protein that binds to fibronectin, plasmin, and plasminogen. Here we present a structural analysis of the surface exposed domains of PfbA using a combined approach of X-ray crystallography and small-angle X-ray scattering (SAXS). The crystal structure of the PfbA core domain, here called PfbAβ, determined to 2.28 Å resolution revealed an elongated 12-stranded parallel β-helix fold, which structure-based comparisons reveal is most similar to proteins with carbohydrate modifying activity. A notable feature of the PfbAβ is an extensive cleft on one face of the protein with electrochemical and spatial features that are analogous to structurally similar carbohydrate-active enzymes utilizing this feature for substrate accommodation. Though this cleft displays a combination of basic amino acid residues and solvent exposed aromatic amino acids that are distinct features for recognition of carbohydrates, no obvious arrangement of amino acid side chains that would constitute catalytic machinery is evident. The pseudo-atomic SAXS model of a larger fragment of PfbA suggests that it has a relatively well-ordered structure with the N-terminal and core domains of PfbA adopting an extend organization and reveals a novel structural class of surface exposed pneumococcal matrix molecule adhesins. PMID:23894284

  14. Adhesins of Bartonella spp.

    PubMed

    O'Rourke, Fiona; Schmidgen, Thomas; Kaiser, Patrick O; Linke, Dirk; Kempf, Volkhard A J

    2011-01-01

    Adhesion to host cells represents the first step in the infection process and one of the decisive features in the pathogenicity of Bartonella spp. B. henselae and B. quintana are considered to be the most important human pathogenic species, responsible for cat scratch disease, bacillary angiomatosis, trench fever and other diseases. The ability to cause vasculoproliferative disorders and intraerythrocytic bacteraemia are unique features of the genus Bartonella. Consequently, the interaction with endothelial cells and erythrocytes is a focus in Bartonella research. The genus harbours a variety of trimeric autotransporter adhesins (TAAs) such as the Bartonella adhesin A (BadA) of B. henselae and the variably expressed outer-membrane proteins (Vomps) of B. quintana, which display remarkable variations in length and modular construction. These adhesins mediate many of the biologically-important properties of Bartonella spp. such as adherence to endothelial cells and extracellular matrix proteins and induction of angiogenic gene programming. There is also significant evidence that the laterally acquired Trw-conjugation systems of Bartonella spp. mediate host-specific adherence to erythrocytes. Other potential adhesins are the filamentous haemagglutinins and several outer membrane proteins. The exact molecular functions of these adhesins and their interplay with other pathogenicity factors (e.g., the VirB/D4 type 4 secretion system) need to be analysed in detail to understand how these pathogens adapt to their mammalian hosts.

  15. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems?

    PubMed

    Backert, Steffen; Fronzes, Remi; Waksman, Gabriel

    2008-09-01

    Many type-IV secretion systems (T4SSs) of plant and human pathogens assemble a pilus used to inject virulence molecules (effectors) into host target cells. The T4SS of Agrobacterium tumefaciens consists of VirB1-VirB11 and VirD4 proteins. Whether targeting of T4SSs to the host requires a T4SS-adhesin that specifically engages host receptors for delivery of effectors has, until recently, remained unclear. Recent data of Agrobacterium and Helicobacter indicate that two classes of T4SS components, VirB2 and VirB5, might function as adhesins that mediate host-cell targeting through binding to specific host receptors. Here, we discuss this important issue and recent progress in the field. PMID:18706815

  16. [Adhesins of oral streptococci].

    PubMed

    Takahashi, Yukihiro; Urano-Tashiro, Yumiko; Konishi, Kiyoshi

    2013-01-01

    Oral streptococci comprise a numerically prominent group of oral bacteria that occur primarily on the human tooth surface as members of the biofilm community, commonly referred to as dental plaque. These streptococci are not only causative of dental caries and are primers for colonization of periodontopathic bacteria, but also well known for their ability to colonize damaged heart valves, identified most frequently as primary etiological agents of infective endocarditis. A number of streptococcal cell surface components are known to contribute to colonization of the tooth surface including putative adhesins recognizing host sialic acid (sialic acid-binding adhesins). Interactions mediated by these adhesins include the attachment of these bacteria to saliva-coated hydroxyapatite and their adhesion to erythrocytes, both of which are abolished or reduced by sialidase pretreatment of the corresponding host sialoglycoconjugate receptors. The sialic acid-binding adhesin on Streptococcus gordonii, an early colonizer on the tooth surface, has been molecularly analyzed. The adhesin, Hsa (203-kDa protein), consists of an N-terminal non repetitive region (NR1) including a signal sequence, a relatively short serine-rich region (SR1), a second non repetitive region (NR2), a long serine-rich region (SR2) containing 113 dodecapeptide repeats accounting for 75% of the whole protein, and a C-terminal cell wall anchoring domain. Therefore, it has been suggested that NR2, the putative sialic acid-binding domain of Hsa, is presented on the bacterial surface at the end of a long molecular stalk formed by SR2. The present review deals with the function and pathogenicity of oral streptococcal adhesins. PMID:23727707

  17. The apicomplexan glideosome and adhesins -- structures and function

    PubMed Central

    Boucher, Lauren E.; Bosch, Jürgen

    2015-01-01

    The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models. PMID:25764948

  18. The apicomplexan glideosome and adhesins - Structures and function.

    PubMed

    Boucher, Lauren E; Bosch, Jürgen

    2015-05-01

    The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.

  19. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence.

    PubMed

    Ocádiz-Ruiz, Ramón; Fonseca, Wendy; Linford, Alicia S; Yoshino, Timothy P; Orozco, Esther; Rodríguez, Mario A

    2016-01-01

    Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.

  20. Protection of gerbils from amebic liver abscess by immunization with a recombinant protein derived from the 170-kilodalton surface adhesin of Entamoeba histolytica.

    PubMed Central

    Zhang, T; Stanley, S L

    1994-01-01

    The protozoan parasite Entamoeba histolytica causes extensive morbidity and mortality worldwide through intestinal infection and amebic liver abscess. Here we show that vaccination of gerbils, a standard model for amebic liver abscess, with recombinant proteins derived from the 170-kDa galactose-binding adhesin of E. histolytica and the serine-rich E. histolytica protein or a combination of the two recombinant antigens provides excellent protection against subsequent hepatic challenge with virulent E. histolytica trophozoites. PMID:8188384

  1. A novel lily anther-specific gene encodes adhesin-like proteins associated with exine formation during anther development

    PubMed Central

    Liu, Ming-Che; Yang, Cheng-Shou; Wang, Co-Shine

    2014-01-01

    The anther-specific gene LLA1271 isolated from lily (Lilium longiflorum Thunb.) anthers is novel and exists in two forms. The protein encoded by LLA1271 may represent an adhesin-like protein first found in higher plants. The protein contains a typical N-terminal signal peptide followed by a highly conserved repeat domain. The LLA1271 gene is temporally expressed at the phase of microspore development. RNA blot and RNA in situ hybridization analyses demonstrated that the gene was expressed both in the tapetum and in the microspore. The gene is endo- and exogenously induced by gibberellin. Studies with the gibberellin biosynthesis inhibitor uniconazole and an inhibitor of ethylene activity, 2,5-norbornadien (NBD), revealed that LLA1271 is negatively regulated by ethylene, and a cross-talk of regulation between gibberellin and ethylene occurs in young anthers. The treatment with NBD caused the tapetum to become densely cytoplasmic and highly polarized, whereas uniconazole arrested tapetal development in a state close to that of a tapetum without treatment. The LLA1271 protein is heat stable and heterogeneous. An immunoblot of separated protein fractions of the anther revealed that the LLA1271 protein was detected in protein fraction of the microspore released from the cell wall by treatment with either 0.5% or 2% Triton X-100. Ectopic expression of LLA1271 resulted in impaired stamen and low pollen germination. Scanning electron microscopy of TAP::LLA1271 pollen showed distorted exine formation and patterning. The LLA1271 protein once synthesized in both the tapetum and microspore is secreted and deposited on the surface of microspores, moderately affecting exine formation and patterning. PMID:24591055

  2. Identification of adhesin-like protein ALP41 from Spiroplasma eriocheiris and induction immune response of Eriocheir sinensis.

    PubMed

    Meng, Qingguo; Li, Wenjie; Liang, Tingming; Jiang, Xuejiao; Gu, Wei; Wang, Wen

    2010-10-01

    Spiroplasma eriocheiris is a causative agent of the tremor disease (TD) of Chinese mitten crab Eriocheir sinensis which is a novel pathogen of aquatic animals found in recent years. A gene, adhesin-like protein (ALP41), of S. eriocheiris from E. sinensis was identified and its characteristics were analyzed in present paper. The role of this pathogen's host-binding protein in promoting immune responses was characterized through analyzing the interaction between S. eriocheiris and E. sinensis. The full-length DNA of ALP41 is 1074 bp and encodes 357 amino acid residues. The theoretical molecular weight and isoelectric point for the ALP41 are 40.94 kDa and 4.79, respectively. Since UGA is read as a tryptophan codon and not as a termination signal in most Mollicute species, the ALP41 gene was site-mutated from TGA to TGG and transcribed in Escherichia coli to full expression; the titer of rabbits anti-ALP41 serum was about 1:6000. A specific immunoreactive band was identified when rabbits anti-S. eriocheiris serum was opposed to the recombinant protein. The ALP41 band was detected using anti-ALP41 serum and the total proteins of S. eriocheiris. Realtime-PCR was used for detection of expression levels of the immune genes in E. sinensis. Among the examined genes, the mRNA expression of anti-lipopolysaccharide factor (ALF), prophenoloxidase (proPO), peroxiredoxin 6 (Prx6) and pacifastin light chain (PLC) in E. sinensis were significantly induced after ALP41 treatment. PMID:20538062

  3. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  4. Protein Complexes in Bacteria

    PubMed Central

    Caufield, J. Harry; Abreu, Marco; Wimble, Christopher; Uetz, Peter

    2015-01-01

    Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometry-characterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies. PMID:25723151

  5. OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.

    PubMed

    Kebbi-Beghdadi, Carole; Domröse, Andreas; Becker, Elisabeth; Cisse, Ousmane H; Hegemann, Johannes H; Greub, Gilbert

    2015-08-01

    Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.

  6. The Bfp60 surface adhesin is an extracellular matrix and plasminogen protein interacting in Bacteroides fragilis

    PubMed Central

    de Oliveira Ferreira, Eliane; Teixeira, Felipe; Cordeiro, Fabiana; Lobo, Leandro Araujo; Rocha, Edson R.; Smith, Jeffrey C.; Domingues, Regina M C P

    2014-01-01

    Plasminogen (Plg) is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by several pathogenic species of bacteria to manipulate the host plasminogen system and facilitate invasion of tissues during infection by modifying the activation of this process through the binding of Plg at their surface. Bacteroides fragilis is the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses and anaerobic bacteraemia. The ability of B. fragilis to convert plasminogen (Plg) into plasmin has been associated with an outer membrane protein named Bfp60. In this study, we characterized the function of Bfp60 protein in B. fragilis 638R by constructing the bfp60 defective strain and comparing its with that of the wild type regarding binding to laminin-1 (LMN-1) and activation of Plg into plasmin. Although the results showed in this study indicate that Bfp60 surface protein of B. fragilis is important for the recognition of LMN-1 and Plg activation, a significant slow activation of Plg into plasmin was observed in the mutant strain. For that reason, the possibility of another unidentified mechanism activating Plg is also present in B. fragilis can not be discarded. The results demonstrate that Bfp60 protein is responsible for the recognition of laminin and Plg-plasmin activation. Although the importance of this protein is still unclear in the pathogenicity of the species, it is accepted that since other pathogenic bacteria use this mechanism to disseminate through the extracellular matrix during the infection, it should also contribute to the virulence of B. fragilis. PMID:23850366

  7. Prokaryotic High-Level Expression System in Producing Adhesin Recombinant Protein E of Nontypeable Haemophilus influenzae

    PubMed Central

    Tavakoli, Minoo; Bouzari, Saeed; Siadat, Seyed Davar; Najar Peerayeh, Shahin; Jafari, Anis

    2015-01-01

    Background: Adhesion protein E (PE) of Haemophilus influenzae is a 16 - 18 kDa protein with 160 amino acids which causes adhesion to epithelial cells and acts as a major factor in pathogenesis. Objectives: In this study, we performed cloning, expression and purification of PE as a candidate antigen for vaccine design upon further study. Materials and Methods: At first, the pe gene of NTHi ATCC 49766 strain (483 bp) was amplified by PCR. Then, to sequence the resulted amplicon, it was cloned into TA vector (pTZ57R/T). In the next step, the sequenced gene was sub-cloned in pBAD/gIII A vector and transformed into competent Escherichia coli TOP10. For overexpression, the recombinant bacteria were grown in broth medium containing arabinose and the recombinant protein was purified using metal affinity chromatography (Ni-nitrilotriacetic acid) (Ni-NTA agarose). Finally, the protein was detected using sodium dodecyl sulfate polyacrylamide gel electrophores (SDS-PAG) and confirmed by western blotting. Results: The cloned gene was confirmed by PCR, restriction digestion and sequencing. The sequenced gene was searched for homology in GenBank and 99% similarity was found to the already deposited genes in GenBank. Then we obtained PE using Ni-NTA agarose with up to 7 mg/mL concentration. Conclusions: The pe gene was successfully cloned and confirmed by sequencing. Finally, PE was obtained with high concentration. Due to high homology and similarity among the pe gene from NTHi ATCC 49766 and other NTHi strains in GenBank, we believe that the protein is a universal antigen to be used as a vaccine design candidate and further studies to evaluate its immunogenicity is underway. PMID:26034537

  8. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin

    PubMed Central

    Li, Yirong; Chen, Yabing; Huang, Xiang; Zhou, Meixian; Wu, Ren; Dong, Shengli; Pritchard, David G.; Fives-Taylor, Paula; Wu, Hui

    2010-01-01

    Summary Fap1-like serine-rich proteins are a new family of bacterial adhesins found in a variety of streptococci and staphylococci that have been implicated in bacterial pathogenesis. A gene cluster encoding glycosyltransferases and accessory Sec components is required for Fap1 glycosylation and biogenesis in Streptococcus parasanguinis. Here we report that the glycosylation-associated protein, Gap1, contributes to glycosylation and biogenesis of Fap1 by interacting with another glycosylation-associated protein, Gap3. Gap1 shares structural homology with glycosyltransferases. The gap1 mutant, like the gap3 mutant, produced an aberrantly-glycosylated Fap1 precursor and failed to produce mature Fap1, suggesting that Gap1 and Gap3 might function in concert in the Fap1 glycosylation and biogenesis. Indeed, Gap1 interacted with Gap3 in vitro and in vivo. A Gap1 amino-terminal motif, within a highly conserved domain of unknown function (DUF1975) identified in many bacterial glycosyltrasnferases, was required for the Gap1-Gap3 interaction. Deletion of one, four, and nine amino acids within the conserved motif gradually inhibited the Gap1-Gap3 interaction and diminished production of mature Fap1 and concurrently increased production of the Fap1 precursor. Consequently, bacterial adhesion to an in vitro tooth model was also reduced. These data demonstrate that the Gap1-Gap3 interaction is required for Fap1 biogenesis and Fap1-dependent bacterial adhesion. PMID:18826412

  9. A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron.

    PubMed

    Moreno-Brito, Verónica; Yáñez-Gómez, Carmina; Meza-Cervantez, Patricia; Avila-González, Leticia; Rodríguez, Mario Alberto; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2005-02-01

    Trichomonas vaginalis, a human sexually transmitted protozoan, relies on adherence to the vaginal epithelium for colonization and maintenance of infection in the host. Thus, adherence molecules play a fundamental role in the trichomonal infection. Here, we show the identification and characterization of a 120 kDa surface glycoprotein (AP120) induced by iron, which participates in cytoadherence. AP120 is synthesized by the parasite when grown in 250 microM iron medium. Antibodies to AP120 and the electro-eluted AP120 inhibited parasite adherence in a concentration-dependent manner, demonstrating its participation in cytoadherence. In addition, a protein of 130 kDa was detected on the surface of HeLa cells as the putative receptor for AP120. By peptide matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the AP120 adhesin showed homology with a hydrogenosomal enzyme, the pyruvate:ferredoxin oxidoreductase (PFO) encoded by the pfoa gene. This homology was confirmed by immunoblot and indirect immunofluorescence assays with an antibody to the carboxy-terminus region of the Entamoeba histolytica PFO. Reverse transcription polymerase chain reaction (RT-PCR) assays showed that a pfoa-like gene was better transcribed in trichomonads grown in iron-rich medium. In conclusion, the homology of AP120 to PFO suggests that this novel adhesin induced by iron could be an example of moonlighting protein in T. vaginalis.

  10. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  11. Purification of the Escherichia coli type 1 pilin and minor pilus proteins and partial characterization of the adhesin protein.

    PubMed Central

    Hanson, M S; Hempel, J; Brinton, C C

    1988-01-01

    Type 1 pili of Escherichia coli contain three integral minor proteins with apparent molecular weights (Mr) of 28,000 (28K protein), 16,500, and 14,500 attached to rods composed of Mr-17,000 pilin subunits (Hanson and Brinton, Nature [London] 322:265-268). We describe here an improvement on our earlier method of pilus purification, which gives higher yields and higher purity. Also reported are methods allowing fractionation of intact type 1 pili into rods of pure pilin and free minor proteins, as well as fractionation of the 28K tip adhesion protein from the 16.5K and 14.5K proteins. We have determined the amino acid composition and amino-terminal sequence of the adhesion protein. This sequence shows limited homology with the amino-terminal sequences of several E. coli pilins, including type 1. Images PMID:2900235

  12. The mannose-specific lectin domains of Flo1p from Saccharomyces cerevisiae and Lg-Flo1p from S. pastorianus: crystallization and preliminary X-ray diffraction analysis of the adhesin-carbohydrate complexes.

    PubMed

    Ielasi, Francesco S; Goyal, Parveen; Sleutel, Mike; Wohlkonig, Alexandre; Willaert, Ronnie G

    2013-07-01

    Flo1p and Lg-Flo1p are two cell-wall adhesins belonging to the Flo (flocculation) protein family from the yeasts Saccharomyces cerevisiae and S. pastorianus. The main function of these modular proteins endowed with calcium-dependent lectin activity is to mediate cell-cell adhesion events during yeast flocculation, a process which is well known at the cellular level but still not fully characterized from a molecular perspective. Recently, structural features of the N-terminal Flo lectin domains, including the N-terminal domain of Lg-Flo1p (N-Lg-Flo1p), and their interactions with carbohydrate molecules have been investigated. However, structural data concerning the N-terminal domain of Flo1p (N-Flo1p), which is the most specific among the Flo proteins, are missing and information about the N-Lg-Flo1p-carbohydrate interaction still lacks detailed structural insight. Here, the crystallization and preliminary X-ray characterization of the apo form and the mannose complex of N-Flo1p and X-ray analysis of N-Lg-Flo1p crystals soaked in α-1,2-mannobiose are reported. The N-Flo1p crystals diffracted to a resolution of 1.43 Å in the case of the apo form and to 2.12 Å resolution for the mannose complex. Both crystals were orthorhombic and belonged to space group P212121, with one molecule in the asymmetric unit. The N-Lg-Flo1p-α-1,2-mannobiose complex crystal diffracted to 1.73 Å resolution and belonged to the monoclinic space group P1211 with two molecules in the asymmetric unit.

  13. An adhesin-like protein, Lam29, from Lactobacillus mucosae ME-340 binds to histone H3 and blood group antigens in human colonic mucus.

    PubMed

    Watanabe, Masamichi; Kinoshita, Hideki; Huang, I-Nung; Eguchi, Kei; Tsurumi, Takuya; Kawai, Yasushi; Kitazawa, Haruki; Kimura, Katsunori; Taketomo, Naoki; Kikuchi, Daisuke; Sase, Tomohiko; Miura, Koh; Ogawa, Hitoshi; Shibata, Chikashi; Horii, Akira; Saito, Tadao

    2012-01-01

    A cell-surface 29-kDa protein (Lam29, cysteine-binding protein of the ABC transporter) from Lactobacillus mucosae ME-340 showed an adhesin-like property for human ABO blood group antigens expressed on the gastrointestinal mucosa. In addition, here we report that Lam29 also bound to an 18-kDa protein on human colonic mucus. By ligand blot assay and N-terminal amino acid sequence of the protein, it was identified as human histone H3. By ligand blot and microplate binding assays with recombinant histone H3, binding between Lam29 and histone H3 was confirmed. The adhesion of ME-340 cells to histone H3 was significantly inhibited by 26% after the addition of 2.5 mg/mL Lam29 as compared to the absence of Lam29 (p<0.01). By GHCl extraction and transcription attenuation of ME-340 cells, binding reduction of ME340 cells against histone H3 was detected at 12% and 13% respectively, as compared to control cells by the BIACORE assay (p<0.01). These data indicate that Lam29 shows multiple binding activities to blood group antigens and histone H3 in human colonic mucus. This is the first report to indicate that lactobacilli expressing Lam29 adhere to histone H3 on gastrointestinal mucosa.

  14. Characterization of an Acidic-pH-Inducible Stress Protein (hsp70), a Putative Sulfatide Binding Adhesin, from Helicobacter pylori

    PubMed Central

    Huesca, Mario; Goodwin, Avery; Bhagwansingh, Arianna; Hoffman, Paul; Lingwood, Clifford A.

    1998-01-01

    The in vitro glycolipid binding specificity of the gastric pathogen Helicobacter pylori is altered to include sulfated glycolipids (sulfatides) following brief exposure of the organism to acid pH typical of the stomach. This change is prevented by anti-hsp70 antibodies, suggesting that hsp70 may be a stress-induced surface adhesin, mediating sulfatide recognition. To facilitate investigation of the role of hsp70 in attachment, we have cloned and sequenced the H. pylori hsp70 gene (dnaK). The hsp70 gene was identified by probing a cosmid DNA library made from H. pylori 439 with a PCR amplicon generated with oligonucleotides synthesized to highly conserved regions of dnaK. The 1.9-kb H. pylori hsp70 gene encodes a product of 616 amino acids. Primer extension analysis revealed a single transcription start site, while Northern blot analysis established that hsp70 was preferentially induced by low pH rather than by heat shock. The ability of H. pylori to alter its glycolipid binding specificity following exposure to low pH by upregulating hsp70 and by expressing hsp70 on the bacterial surface may provide a survival advantage during periods of high acid stress. PMID:9712748

  15. Methicillin-Susceptible Staphylococcus aureus Endocarditis Isolates Are Associated With Clonal Complex 30 Genotype and a Distinct Repertoire of Enterotoxins and Adhesins

    PubMed Central

    Nienaber, Juhsien J.C.; Sharma Kuinkel, Batu K.; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H.; Barriere, Steve; Woods, Christopher W.; Chu, Vivian H.; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G.Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R.; Reller, L. Barth

    2011-01-01

    Background. Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. Methods. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. Results. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). Conclusions. MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study. PMID:21844296

  16. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    PubMed

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  17. A Collagen-Binding Adhesin, Acb, and Ten Other Putative MSCRAMM and Pilus Family Proteins of Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis Group, Biotype I)▿ §

    PubMed Central

    Sillanpää, Jouko; Nallapareddy, Sreedhar R.; Qin, Xiang; Singh, Kavindra V.; Muzny, Donna M.; Kovar, Christie L.; Nazareth, Lynne V.; Gibbs, Richard A.; Ferraro, Mary J.; Steckelberg, James M.; Weinstock, George M.; Murray, Barbara E.

    2009-01-01

    Members of the Streptococcus bovis group are important causes of endocarditis. However, factors associated with their pathogenicity, such as adhesins, remain uncharacterized. We recently demonstrated that endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates frequently adhere to extracellular matrix (ECM) proteins. Here, we generated a draft genome sequence of an ECM protein-adherent S. gallolyticus subsp. gallolyticus strain and found, by genome-wide analyses, 11 predicted LPXTG-type cell wall-anchored proteins with characteristics of MSCRAMMs, including a modular architecture of domains predicted to adopt immunoglobulin (Ig)-like folding. A recombinant segment of one of these, Acb, showed high-affinity binding to immobilized collagen, and cell surface expression of Acb correlated with the presence of acb and collagen adherence of isolates. Three of the 11 proteins have similarities to major pilus subunits and are organized in separate clusters, each including a second Ig-fold-containing MSCRAMM and a class C sortase, suggesting that the sequenced strain encodes three distinct types of pili. Reverse transcription-PCR demonstrated that all three genes of one cluster, acb-sbs7-srtC1, are cotranscribed, consistent with pilus operons of other gram-positive bacteria. Further analysis detected expression of all 11 genes in cells grown to mid to late exponential growth phases. Wide distribution of 9 of the 11 genes was observed among S. gallolyticus subsp. gallolyticus isolates with fewer genes present in other S. bovis group species/subspecies. The high prevalence of genes encoding putative MSCRAMMs and pili, including a collagen-binding MSCRAMM, among S. gallolyticus subsp. gallolyticus isolates may play an important role in the predominance of this subspecies in S. bovis endocarditis. PMID:19717590

  18. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine.

    PubMed

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development.

  19. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine

    PubMed Central

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development. PMID:26990554

  20. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

    PubMed Central

    Ielasi, Francesco S.; Alioscha-Perez, Mitchel; Donohue, Dagmara; Claes, Sandra; Sahli, Hichem; Schols, Dominique

    2016-01-01

    ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. PMID:27406561

  1. Structural Context for Protein N-glycosylation in Bacteria: The Structure of PEB3, an Adhesin from Campylobacter Jejuni

    SciTech Connect

    Rangarajan,E.; Bhatia, S.; Watson, D.; Munger, C.; Cygler, M.; Matte, A.; Young, N.

    2007-01-01

    Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.

  2. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  3. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  4. Importance of adhesins in virulence of Paracoccidioides spp.

    PubMed Central

    de Oliveira, Haroldo C.; da Silva, Julhiany de Fátima; Scorzoni, Liliana; Marcos, Caroline M.; Rossi, Suelen A.; de Paula e Silva, Ana C. A.; Assato, Patrícia A.; da Silva, Rosângela A. M.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

    2015-01-01

    Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis. PMID:25914695

  5. Evaluation of Cell Binding Activities of Leptospira ECM Adhesins

    PubMed Central

    Robbins, Gregory T.; Hahn, Beth L.; Evangelista, Karen V.; Padmore, Lavinia; Aranda, Patrick S.; Coburn, Jenifer

    2015-01-01

    Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM) adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs). While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection. PMID:25875373

  6. Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick

    PubMed Central

    de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael

    2013-01-01

    Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570

  7. Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis.

    PubMed

    Kumar, Sanjiv; Puniya, Bhanwar Lal; Parween, Shahila; Nahar, Pradip; Ramachandran, Srinivasan

    2013-01-01

    Pathogenic bacteria interacting with eukaryotic host express adhesins on their surface. These adhesins aid in bacterial attachment to the host cell receptors during colonization. A few adhesins such as Heparin binding hemagglutinin adhesin (HBHA), Apa, Malate Synthase of M. tuberculosis have been identified using specific experimental interaction models based on the biological knowledge of the pathogen. In the present work, we carried out computational screening for adhesins of M. tuberculosis. We used an integrated computational approach using SPAAN for predicting adhesins, PSORTb, SubLoc and LocTree for extracellular localization, and BLAST for verifying non-similarity to human proteins. These steps are among the first of reverse vaccinology. Multiple claims and attacks from different algorithms were processed through argumentative approach. Additional filtration criteria included selection for proteins with low molecular weights and absence of literature reports. We examined binding potential of the selected proteins using an image based ELISA. The protein Rv2599 (membrane protein) binds to human fibronectin, laminin and collagen. Rv3717 (N-acetylmuramoyl-L-alanine amidase) and Rv0309 (L,D-transpeptidase) bind to fibronectin and laminin. We report Rv2599 (membrane protein), Rv0309 and Rv3717 as novel adhesins of M. tuberculosis H37Rv. Our results expand the number of known adhesins of M. tuberculosis and suggest their regulated expression in different stages.

  8. Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis

    PubMed Central

    Garcia, Ana F.; Chang, Te-Hung; Benchimol, Marlene; Klumpp, David Jichael; Lehker, Michael W.; Alderete, John F.

    2007-01-01

    Summary The proteins AP65, AP51, AP33 and AP23 synthesized by Trichomonas vaginalis organisms in high iron play a role in adherence. Multigene families encode enzymes of the hydrogenosome organelles, which have identity to adhesins. This fact raises questions regarding the compartmentalization of the proteins outside the organelle and about the interactions of adhesins with host cells. Data here demonstrate the presence of the proteins outside the organelle under high-iron conditions. Fluorescence and immunocytochemical experiments show that high-iron-grown organisms coexpressed adhesins on the surface and intracellularly in contrast with low-iron parasites. Furthermore, the AP65 epitopes seen by rabbit anti-AP65 serum that blocks adherence and detects surface proteins were identified, and a mAb reacting to those epitopes recognized the trichomonal surface. Two-dimensional electrophoresis and immunoblot of adhesins from surface-labelled parasites provided evidence that all members of the multigene family were co-ordinately expressed and placed on the trichomonal surface. Similar two-dimensional analysis of proteins from purified hydrogenosomes obtained from iodinated trichomonads confirmed the specific surface labelling of proteins. Contact of trichomonads with vaginal epithelial cells increased the amount of surface-expressed adhesins. Moreover, we found a direct relationship between the levels of adherence and amount of adhesins bound to immortalized vaginal and ureter epithelial cells, further reinforcing specific associations. Finally, trichomonads of MR100, a drug-resistant isolate absent in hydrogenosome proteins and adhesins, were non-adherent. Overall, the results confirm an important role for iron and contact in the surface expression of adhesins of T. vaginalis organisms. PMID:12603729

  9. A domain dictionary of trimeric autotransporter adhesins.

    PubMed

    Bassler, Jens; Hernandez Alvarez, Birte; Hartmann, Marcus D; Lupas, Andrei N

    2015-02-01

    Trimeric autotransporter adhesins (TAAs) are modular, highly repetitive outer membrane proteins that mediate adhesion to external surfaces in many Gram-negative bacteria. In recent years, several TAAs have been investigated in considerable detail, also at the structural level. However, in their vast majority, putative TAAs in prokaryotic genomes remain poorly annotated, due to their sequence diversity and changeable domain architecture. In order to achieve an automated annotation of these proteins that is both detailed and accurate we have taken a domain dictionary approach, in which we identify recurrent domains by sequence comparisons, produce bioinformatic descriptors for each domain type, and connect these to structural information where available. We implemented this approach in a web-based platform, daTAA, in 2008 and demonstrated its applicability by reconstructing the complete fiber structure of a TAA conserved in enterobacteria. Here we review current knowledge on the domain structure of TAAs.

  10. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    PubMed

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  11. The Biology of Neisseria Adhesins

    PubMed Central

    Hung, Miao-Chiu; Christodoulides, Myron

    2013-01-01

    Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology. PMID:24833056

  12. Novel adhesin from Pasteurella multocida that binds to the integrin-binding fibronectin FnIII9-10 repeats.

    PubMed

    Mullen, Lisa M; Nair, Sean P; Ward, John M; Rycroft, Andrew N; Williams, Rachel J; Robertson, Giles; Mordan, Nicky J; Henderson, Brian

    2008-03-01

    Phage display screening with fragmented genomic DNA from the animal pathogen Pasteurella multocida has identified a gene encoding a putative fibronectin binding protein (19). Homologues of this gene (PM1665) are found in all other sequenced members of the Pasteurellaceae. Gene PM1665 has been cloned, and the protein has been expressed. Recombinant PM1665 protein binds to both soluble and immobilized fibronectin and is unique in that it interacts with the integrin-binding fibronectin type III (FnIII) repeats FnIII(9-10) and not, as is the case for almost all other fibronectin adhesins, to the N-terminal type I repeats. Surface plasmon resonance analysis revealed a complex binding mechanism with a K(D) (equilibrium dissociation constant) of 150 nM +/- 70 nM. Bioinformatics analysis suggests that the PM1665 protein contains two helix-hairpin-helix (HhH) motifs, and truncation mutation studies have identified the binding site in the protein as a combination of these two HhH motifs in conjunction with a conserved amino acid motif, VNINTA. We have shown that the PM1665 protein is on the cell surface and that binding of P. multocida to fibronectin is almost completely inhibited by anti-PM1665 antiserum. These results support the hypothesis that the PM1665 protein is a member of a new family of fibronectin binding adhesins that are important in the adhesion of P. multocida to fibronectin. PMID:18160478

  13. Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC)

    PubMed Central

    2010-01-01

    Background Extraintestinal pathogenic E. coli (ExPEC) represent a phylogenetically diverse group of bacteria which are implicated in a large range of infections in humans and animals. Although subgroups of different ExPEC pathotypes, including uropathogenic, newborn meningitis causing, and avian pathogenic E. coli (APEC) share a number of virulence features, there still might be factors specifically contributing to the pathogenesis of a certain subset of strains or a distinct pathotype. Thus, we made use of suppression subtractive hybridization and compared APEC strain IMT5155 (O2:K1:H5; sequence type complex 95) with human uropathogenic E. coli strain CFT073 (O6:K2:H5; sequence type complex 73) to identify factors which may complete the currently existing model of APEC pathogenicity and further elucidate the position of this avian pathoype within the whole ExPEC group. Results Twenty-eight different genomic loci were identified, which are present in IMT5155 but not in CFT073. One of these loci contained a gene encoding a putative autotransporter adhesin. The open reading frame of the gene spans a 3,498 bp region leading to a putative 124-kDa adhesive protein. A specific antibody was raised against this protein and expression of the adhesin was shown under laboratory conditions. Adherence and adherence inhibition assays demonstrated a role for the corresponding protein in adhesion to DF-1 chicken fibroblasts. Sequence analyses revealed that the flanking regions of the chromosomally located gene contained sequences of mobile genetic elements, indicating a probable spread among different strains by horizontal gene transfer. In accordance with this hypothesis, the adhesin was found to be present not only in different phylogenetic groups of extraintestinal pathogenic but also of commensal E. coli strains, yielding a significant association with strains of avian origin. Conclusions We identified a chromosomally located autotransporter gene in a highly virulent APEC

  14. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy.

    PubMed

    Arnal, L; Longo, G; Stupar, P; Castez, M F; Cattelan, N; Salvarezza, R C; Yantorno, O M; Kasas, S; Vela, M E

    2015-11-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions. PMID:26446736

  15. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-01

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE. PMID:25587788

  16. The giant adhesin SiiE of Salmonella enterica.

    PubMed

    Barlag, Britta; Hensel, Michael

    2015-01-12

    Salmonella enterica is a Gram-negative, food-borne pathogen, which colonizes the intestinal tract and invades enterocytes. Invasion of polarized cells depends on the SPI1-encoded type III secretion system (T3SS) and the SPI4-encoded type I secretion system (T1SS). The substrate of this T1SS is the non-fimbrial giant adhesin SiiE. With a size of 595 kDa, SiiE is the largest protein of the Salmonella proteome and consists of 53 repetitive bacterial immunoglobulin (BIg) domains, each containing several conserved residues. As known for other T1SS substrates, such as E. coli HlyA, Ca2+ ions bound by conserved D residues within the BIg domains stabilize the protein and facilitate secretion. The adhesin SiiE mediates the first contact to the host cell and thereby positions the SPI1-T3SS to initiate the translocation of a cocktail of effector proteins. This leads to actin remodeling, membrane ruffle formation and bacterial internalization. SiiE binds to host cell apical membranes in a lectin-like manner. GlcNAc and α2-3 linked sialic acid-containing structures are ligands of SiiE. Since SiiE shows repetitive domain architecture, we propose a zipper-like binding mediated by each individual BIg domain. In this review, we discuss the characteristics of the SPI4-T1SS and the giant adhesin SiiE.

  17. Protein sorting in complex plastids.

    PubMed

    Sheiner, Lilach; Striepen, Boris

    2013-02-01

    Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.

  18. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  19. Mass Spectrometry of Intact Membrane Protein Complexes

    PubMed Central

    Laganowsky, Arthur; Reading, Eamonn; Hopper, Jonathan T.S.; Robinson, Carol V.

    2014-01-01

    Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries. PMID:23471109

  20. Investigation of a protein complex network

    NASA Astrophysics Data System (ADS)

    Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.

    2004-09-01

    The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.

  1. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  2. The novel chlamydial adhesin CPn0473 mediates the lipid raft‐dependent uptake of Chlamydia pneumoniae

    PubMed Central

    Fechtner, Tim; Galle, Jan N.

    2016-01-01

    Summary Chlamydiae are Gram‐negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down‐stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473‐coupled fluorescent latex beads adhere to human epithelial HEp‐2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp‐2 cells with rCPn0473 does not attenuate adhesion but promotes dose‐dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473‐dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae. PMID:26780295

  3. The novel chlamydial adhesin CPn0473 mediates the lipid raft-dependent uptake of Chlamydia pneumoniae.

    PubMed

    Fechtner, Tim; Galle, Jan N; Hegemann, Johannes H

    2016-08-01

    Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.

  4. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2

    PubMed Central

    Li, Quan; Liu, Hanze; Du, Dechao; Yu, Yanfei; Ma, Caifeng; Jiao, Fangfang; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2015-01-01

    Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5′-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions. PMID:26636044

  5. Protein import into complex plastids: Cellular organization of higher complexity.

    PubMed

    Maier, Uwe G; Zauner, Stefan; Hempel, Franziska

    2015-01-01

    Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of protein import into the plastids of diatoms.

  6. A Protein Complex Map of Trypanosoma brucei

    PubMed Central

    Mehta, Vaibhav; Najafabadi, Hamed S.; Moshiri, Houtan; Jardim, Armando; Salavati, Reza

    2016-01-01

    The functions of the majority of trypanosomatid-specific proteins are unknown, hindering our understanding of the biology and pathogenesis of Trypanosomatida. While protein-protein interactions are highly informative about protein function, a global map of protein interactions and complexes is still lacking for these important human parasites. Here, benefiting from in-depth biochemical fractionation, we systematically interrogated the co-complex interactions of more than 3354 protein groups in procyclic life stage of Trypanosoma brucei, the protozoan parasite responsible for human African trypanosomiasis. Using a rigorous methodology, our analysis led to identification of 128 high-confidence complexes encompassing 716 protein groups, including 635 protein groups that lacked experimental annotation. These complexes correlate well with known pathways as well as for proteins co-expressed across the T. brucei life cycle, and provide potential functions for a large number of previously uncharacterized proteins. We validated the functions of several novel proteins associated with the RNA-editing machinery, identifying a candidate potentially involved in the mitochondrial post-transcriptional regulation of T. brucei. Our data provide an unprecedented view of the protein complex map of T. brucei, and serve as a reliable resource for further characterization of trypanosomatid proteins. The presented results in this study are available at: www.TrypsNetDB.org. PMID:26991453

  7. Co-translational assembly of protein complexes.

    PubMed

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2015-12-01

    The interaction of biological macromolecules is a fundamental attribute of cellular life. Proteins, in particular, often form stable complexes with one another. Although the importance of protein complexes is widely recognized, we still have only a very limited understanding of the mechanisms underlying their assembly within cells. In this article, we review the available evidence for one such mechanism, namely the coupling of protein complex assembly to translation at the polysome. We discuss research showing that co-translational assembly can occur in both prokaryotic and eukaryotic organisms and can have important implications for the correct functioning of the complexes that result. Co-translational assembly can occur for both homomeric and heteromeric protein complexes and for both proteins that are translated directly into the cytoplasm and those that are translated into or across membranes. Finally, we discuss the properties of proteins that are most likely to be associated with co-translational assembly.

  8. The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica

    PubMed Central

    Kakoschke, Tamara Katharina; Kakoschke, Sara Carina; Zeuzem, Catharina; Bouabe, Hicham; Adler, Kristin; Heesemann, Jürgen; Rossier, Ombeline

    2016-01-01

    In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies. PMID:27387855

  9. The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica.

    PubMed

    Kakoschke, Tamara Katharina; Kakoschke, Sara Carina; Zeuzem, Catharina; Bouabe, Hicham; Adler, Kristin; Heesemann, Jürgen; Rossier, Ombeline

    2016-07-08

    In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies.

  10. Identification of Coli Surface Antigen 23, a Novel Adhesin of Enterotoxigenic Escherichia coli

    PubMed Central

    Del Canto, Felipe; Botkin, Douglas J.; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P.; Levine, Myron M.; Stine, O. Colin; Pop, Mihai

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  11. Identification of Coli Surface Antigen 23, a novel adhesin of enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; Botkin, Douglas J; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P; Levine, Myron M; Stine, O Colin; Pop, Mihai; Torres, Alfredo G; Vidal, Roberto

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains. PMID:22645287

  12. Identification of Coli Surface Antigen 23, a novel adhesin of enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; Botkin, Douglas J; Valenzuela, Patricio; Popov, Vsevolod; Ruiz-Perez, Fernando; Nataro, James P; Levine, Myron M; Stine, O Colin; Pop, Mihai; Torres, Alfredo G; Vidal, Roberto

    2012-08-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains.

  13. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction.

    PubMed

    Chae, Keun; Gonong, Benedict J; Kim, Seung-Chul; Kieslich, Chris A; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M

    2010-10-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction.

  14. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction

    PubMed Central

    Chae, Keun; Gonong, Benedict J.; Kim, Seung-Chul; Kieslich, Chris A.; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M.

    2010-01-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction. PMID:20667964

  15. Complex Reconstitution from Individual Protein Modules.

    PubMed

    Basquin, Jérôme; Taschner, Michael; Lorentzen, Esben

    2016-01-01

    Cellular function relies on protein complexes that work as nano-machines. The structure and function of protein complexes is an outcome of the specific combination of protein subunits, or modules, within the complex. A major focus of molecular biology is thus to understand how protein subunits assemble to form complexes with distinct biological function. To this end, in vitro reconstitution of complexes from individual subunits to study their assembly, structure and activity is of central importance. With purified individual subunits and sub-modules at hand one can systematically dissect the hierarchical assembly of larger complexes using direct protein-protein interaction assays. Furthermore, activity assays can be carried out with individual subunits or smaller sub-complexes and compared to those of the fully assembled complex to precisely map functional sites and provide a molecular basis for in vivo observations. In this chapter we review methods for protein complex assembly from individual subunits and provide examples of advantages and potential pitfalls to this approach. PMID:27165333

  16. Ontology integration to identify protein complex in protein interaction networks

    PubMed Central

    2011-01-01

    Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches. PMID:22165991

  17. 3D complex: a structural classification of protein complexes.

    PubMed

    Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A

    2006-11-17

    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  18. Protein complexes that control renal epithelial polarity

    PubMed Central

    Pieczynski, Jay

    2011-01-01

    Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions. PMID:21228104

  19. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins.

    PubMed

    Gómez-Molero, Emilia; de Boer, Albert D; Dekker, Henk L; Moreno-Martínez, Ana; Kraneveld, Eef A; Ichsan; Chauhan, Neeraj; Weig, Michael; de Soet, Johannes J; de Koster, Chris G; Bader, Oliver; de Groot, Piet W J

    2015-12-01

    Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections. PMID:26546455

  20. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens

    PubMed Central

    2011-01-01

    Background The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients. Description We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics

  1. Distribution and degree of heterogeneity of the afimbrial-adhesin-encoding operon (afa) among uropathogenic Escherichia coli isolates.

    PubMed

    Labigne-Roussel, A; Falkow, S

    1988-03-01

    The afimbrial adhesin (AFA-I) from a pyelonephritic Escherichia coli isolate (KS52) is a mannose-resistant, P-independent, X-binding adhesin, expressed by the afa-1 operon. It is distinct from the E. coli X-binding adhesins with M and S specificity. A total of 138 E. coli isolates belonging to various serotypes, mostly from urinary tract infections, were screened for the presence of DNA sequences related to the afa operon and for the expression of an X-adhesin able to mediate mannose-resistant hemagglutination (MRHA) and adhesion to uroepithelial cells. Fifteen strains were shown to harbor DNA sequences related to the AFA-I-encoding operon, and 13 of them expressed an X-adhesin. Using as probes different DNA segments of the AFA-I-encoding operon in Southern experiments, we demonstrated that only three of these clinical isolates contained genetic determinants closely related to those identified in the original afa prototype strain (KS52): presence of the afaA, afaB, afaC, afaD, and afaE genes associated with the expression of a 16,000-dalton hemagglutinin-adhesin which strongly cross-reacted with AFA-I-specific antibodies. The other E. coli isolates harbored DNA sequences homologous to the afaA, afaB, afaC, and afaD genes, but lacked the sequence corresponding to the adhesin-producing gene afaE; Western blots allowed the detection of polypeptides (15,000, 15,500, or 16,000 daltons) in these strains which cross-reacted with variable intensity with antibodies raised against the denatured AFA-I protein, but did not cross-react with native AFA-I-specific antibodies. Following DNA cloning experiments from chromosomal DNA of two of those strains (A22 and A30), we demonstrated that although the AFA-related operon in A22 and A30 strains lacked the AFA-I adhesin-encoding gene, they synthesized a functional X-adhesin. Thus, strains A22 and A30 encode adhesins designated AFA-II and AFA-III, which were cloned on recombinant plasmids pILL72 and pILL61, respectively. Southern

  2. Neisseria adhesin A variation and revised nomenclature scheme.

    PubMed

    Bambini, Stefania; De Chiara, Matteo; Muzzi, Alessandro; Mora, Marirosa; Lucidarme, Jay; Brehony, Carina; Borrow, Ray; Masignani, Vega; Comanducci, Maurizio; Maiden, Martin C J; Rappuoli, Rino; Pizza, Mariagrazia; Jolley, Keith A

    2014-07-01

    Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/.

  3. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract

  4. FimH adhesin of Escherichia coli K1 type 1 fimbriae activates BV-2 microglia

    SciTech Connect

    Lee, Jongseok; Shin, Sooan; Teng, C.-H.; Hong, Suk Jin; Kim, Kwang Sik . E-mail: kwangkim@jhmi.edu

    2005-09-02

    The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-{alpha}. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-{kappa}B were involved in FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.

  5. Complementary Proteomic Analysis of Protein Complexes

    PubMed Central

    Greco, Todd M.; Miteva, Yana; Conlon, Frank L.; Cristea, Ileana M.

    2013-01-01

    Proteomic characterization of protein complexes leverages the versatile platform of liquid chromatography-tandem mass spectrometry to elucidate molecular and cellular signaling processes underlying the dynamic regulation of macromolecular assemblies. Here, we describe a complementary proteomic approach optimized for immunoisolated protein complexes. As the relative complexity, abundance, and physiochemical properties of proteins can vary significantly between samples, we have provided (1) complementary sample preparation workflows, (2) detailed steps for HPLC and mass spectrometric method development, and (3) a bioinformatic workflow that provides confident peptide/protein identification paired with unbiased functional gene ontology analysis. This protocol can also be extended for characterization of larger complexity samples from whole cell or tissue Xenopus proteomes. PMID:22956100

  6. The Claudin Megatrachea Protein Complex*

    PubMed Central

    Jaspers, Martin H. J.; Nolde, Kai; Behr, Matthias; Joo, Seol-hee; Plessmann, Uwe; Nikolov, Miroslav; Urlaub, Henning; Schuh, Reinhard

    2012-01-01

    Claudins are integral transmembrane components of the tight junctions forming trans-epithelial barriers in many organs, such as the nervous system, lung, and epidermis. In Drosophila three claudins have been identified that are required for forming the tight junctions analogous structure, the septate junctions (SJs). The lack of claudins results in a disruption of SJ integrity leading to a breakdown of the trans-epithelial barrier and to disturbed epithelial morphogenesis. However, little is known about claudin partners for transport mechanisms and membrane organization. Here we present a comprehensive analysis of the claudin proteome in Drosophila by combining biochemical and physiological approaches. Using specific antibodies against the claudin Megatrachea for immunoprecipitation and mass spectrometry, we identified 142 proteins associated with Megatrachea in embryos. The Megatrachea interacting proteins were analyzed in vivo by tissue-specific knockdown of the corresponding genes using RNA interference. We identified known and novel putative SJ components, such as the gene product of CG3921. Furthermore, our data suggest that the control of secretion processes specific to SJs and dependent on Sec61p may involve Megatrachea interaction with Sec61 subunits. Also, our findings suggest that clathrin-coated vesicles may regulate Megatrachea turnover at the plasma membrane similar to human claudins. As claudins are conserved both in structure and function, our findings offer novel candidate proteins involved in the claudin interactome of vertebrates and invertebrates. PMID:22930751

  7. Interaction proteomics of synapse protein complexes

    PubMed Central

    Klemmer, Patricia; Smit, August B.

    2010-01-01

    The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein–protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome. PMID:20361179

  8. Surfactant Protein A (SP-A)-mediated Clearance of Staphylococcus aureus Involves Binding of SP-A to the Staphylococcal Adhesin Eap and the Macrophage Receptors SP-A Receptor 210 and Scavenger Receptor Class A*

    PubMed Central

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.

    2011-01-01

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169

  9. Binding Forces of Streptococcus mutans P1 Adhesin

    PubMed Central

    Sullan, Ruby May A.; Li, James K.; Crowley, Paula J.; Brady, L. Jeannine; Dufrêne, Yves F.

    2015-01-01

    Streptococcus mutans is a Gram-positive oral bacterium that is a primary etiological agent associated with human dental caries. In the oral cavity, S. mutans adheres to immobilized salivary agglutinin (SAG) contained within the salivary pellicle on the tooth surface. Binding to SAG is mediated by cell surface P1, a multifunctional adhesin that is also capable of interacting with extracellular matrix proteins. This may be of particular importance outside of the oral cavity as S. mutans has been associated with infective endocarditis and detected in atherosclerotic plaque. Despite the biomedical importance of P1, its binding mechanisms are not completely understood. In this work, we use atomic force microscopy-based single-molecule and single-cell force spectroscopy to quantify the nanoscale forces driving P1-mediated adhesion. Single-molecule experiments show that full-length P1, as well as fragments containing only the P1 globular head or C-terminal region, binds to SAG with relatively weak forces (~50 pN). In contrast, single-cell analyses reveal that adhesion of a single S. mutans cell to SAG is mediated by strong (~500 pN) and long-range (up to 6000 nm) forces. This is likely due to the binding of multiple P1 adhesins to self-associated gp340 glycoproteins. Such a cooperative, long-range character of the S. mutans–SAG interaction would therefore dramatically increase the strength and duration of cell adhesion. We also demonstrate, at single-molecule and single-cell levels, the interaction of P1 with fibronectin and collagen, as well as with hydrophobic, but not hydrophilic, substrates. The binding mechanism (strong forces, cooperativity, broad specificity) of P1 provides a molecular basis for its multifunctional adhesion properties. Our methodology represents a valuable approach to probe the binding forces of bacterial adhesins and offers a tractable methodology to assess anti-adhesion therapy. PMID:25671413

  10. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  11. Membrane Protein Solubilization and Composition of Protein Detergent Complexes.

    PubMed

    Duquesne, Katia; Prima, Valérie; Sturgis, James N

    2016-01-01

    Membrane proteins are typically expressed in heterologous systems with a view to in vitro characterization. A critical step in the preparation of membrane proteins after expression in any system is the solubilization of the protein in aqueous solution, typically using detergents and lipids, to obtain the protein in a form suitable for purification, structural or functional analysis. This process is particularly difficult as the objective is to prepare the protein in an unnatural environment, a protein detergent complex, separating it from its natural lipid partners while causing the minimum destabilization or modification of the structure. Although the process is difficult, and relatively hard to master, an increasing number of membrane proteins have been successfully isolated after expression in a wide variety of systems. In this chapter we give a general protocol for preparing protein detergent complexes that is aimed at guiding the reader through the different critical steps. In the second part of the chapter we illustrate how to analyze the composition of protein detergent complexes; this analysis is important as it has been found that compositional variation often causes irreproducible results. PMID:27485340

  12. Optimization of the electrostatic interactions in protein-protein complexes

    NASA Astrophysics Data System (ADS)

    Alexov, Emil; Brock, Kelly; Kundrotas, Petras

    2007-03-01

    Electrostatic energy is one of the driving forces of protein-protein association. Understanding the role of the energy components on the energetics of protein-protein association will help us in engineering protein-protein interactions and could lead to development of scoring functions that can rank alternative models and decoys. Here we investigate whether the components of the electrostatic energy of protein-protein complexes is optimized in respect to random distribution of the charged residues. We report a clear tendency that coulombic electrostatic interactions are optimized, while the reaction field energy is inversely optimized. It was found that the maximum of the coulombic energy Z-score is shifted 3 units away from the origin and the maximum of the reaction field energy by 2 units. Such a large shift of the Z-score of both coulombic and reaction field energies indicates that wild-type protein-protein interactions are in most cases optimized in terms of coulombic interactions while compromising reaction field energy. Based on these finding a scoring function was developed as a linear combination of the Z-score of the coulombic interactions minus Z-score of the reaction field energy. The scoring function was tested against the decoy sets and it was shown that in majority of the cases we can identify the wild-type complex among hundreds of decoys.

  13. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  14. Measuring the functional sequence complexity of proteins

    PubMed Central

    Durston, Kirk K; Chiu, David KY; Abel, David L; Trevors, Jack T

    2007-01-01

    Background Abel and Trevors have delineated three aspects of sequence complexity, Random Sequence Complexity (RSC), Ordered Sequence Complexity (OSC) and Functional Sequence Complexity (FSC) observed in biosequences such as proteins. In this paper, we provide a method to measure functional sequence complexity. Methods and Results We have extended Shannon uncertainty by incorporating the data variable with a functionality variable. The resulting measured unit, which we call Functional bit (Fit), is calculated from the sequence data jointly with the defined functionality variable. To demonstrate the relevance to functional bioinformatics, a method to measure functional sequence complexity was developed and applied to 35 protein families. Considerations were made in determining how the measure can be used to correlate functionality when relating to the whole molecule and sub-molecule. In the experiment, we show that when the proposed measure is applied to the aligned protein sequences of ubiquitin, 6 of the 7 highest value sites correlate with the binding domain. Conclusion For future extensions, measures of functional bioinformatics may provide a means to evaluate potential evolving pathways from effects such as mutations, as well as analyzing the internal structural and functional relationships within the 3-D structure of proteins. PMID:18062814

  15. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  16. A two-plasmid Escherichia coli system for expression of Dr adhesins.

    PubMed

    Kur, Marta; Piatek, Rafał; Kur, Józef

    2007-10-01

    This paper presents a very efficient expression system for production of Dr adhesins. The system consists of two plasmids. One is the pACYCpBAD-DraC-C-His, which contains the draC gene under the control of the arabinose promoter (pBAD), encoding the DraC usher. The second is the pET30b-syg-DraBE, which contains the draB and draE genes under the control of the T7lac promoter, encoding the DraB chaperone and the DraE adhesin, respectively. Those plasmids have different origin of replication and can therefore coexist in one cell. Since different promoters are present, the protein expression can be controlled. The Dr adhesion expression system constructed opens up a lot of possibilities, and could be very useful in experiments focusing on understanding the biogenesis of Gram-negative bacteria adhesins. For this purpose we showed that the AfaE-III adhesin (98.1% identity between the DraE and the AfaE-III adhesins, with three divergent amino acids within the sequences) was able to pass through the DraC channel in the Escherichia coli BL21(DE3) strain. Immunoblotting analysis and immunofluorescence microscopy showed the presence of AfaE-III on the bacterial cell surface. In addition, the system described can be useful for displaying the immune-relevant sectors of foreign proteins on the bacterial cell. The heterologous epitope sequence of the HSV1 glycoprotein D was inserted into the draE gene in place of the N-terminal region of surface exposed domain 2. Chimeric proteins were exposed on the bacterial surface as evidenced by immunoblotting and immunofluorescence microscopy. The effective display of peptide segments on Dr fimbriae expressed at the bacterial cell surface, can be used for the development of a fimbrial vaccine.

  17. Complex micropatterning of proteins within microfluidic channels.

    PubMed

    Kim, Miju; Doh, Junsang

    2014-01-01

    Microfluidic channels containing protein micropatterned surfaces are useful in many bioanalytical and biological applications. In this study, we developed a new method to integrate microfluidics and protein micropatterning by attaching poly(dimethylsiloxane) (PDMS) microfluidic channels to bio-friendly photoresist films via poly(dopamine) (PDA) adhesive. A bio-friendly photoresist poly(2,2-dimethoxy nitrobenzyl methacrylate-r-methyl methacrylate-r-poly(ethylene glycol) methacrylate) (PDMP) was synthesized and used. By performing microscope projection photolithography (MPP) to the PDMP thin films within PDMS microchannels, complex micropatterns of proteins were successfully generated within microfluidic channels. PMID:25570075

  18. New Anthocyanin-Human Salivary Protein Complexes.

    PubMed

    Ferrer-Gallego, Raúl; Soares, Susana; Mateus, Nuno; Rivas-Gonzalo, Julián; Escribano-Bailón, M Teresa; de Freitas, Victor

    2015-08-01

    The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.

  19. Peroxisome protein import: a complex journey

    PubMed Central

    Baker, Alison; Hogg, Thomas Lanyon; Warriner, Stuart L.

    2016-01-01

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor–cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. PMID:27284042

  20. On protein abundance distributions in complex mixtures

    PubMed Central

    2013-01-01

    Mass spectrometry, an analytical technique that measures the mass-to-charge ratio of ionized atoms or molecules, dates back more than 100 years, and has both qualitative and quantitative uses for determining chemical and structural information. Quantitative proteomic mass spectrometry on biological samples focuses on identifying the proteins present in the samples, and establishing the relative abundances of those proteins. Such protein inventories create the opportunity to discover novel biomarkers and disease targets. We have previously introduced a normalized, label-free method for quantification of protein abundances under a shotgun proteomics platform (Griffin et al., 2010). The introduction of this method for quantifying and comparing protein levels leads naturally to the issue of modeling protein abundances in individual samples. We here report that protein abundance levels from two recent proteomics experiments conducted by the authors can be adequately represented by Sichel distributions. Mathematically, Sichel distributions are mixtures of Poisson distributions with a rather complex mixing distribution, and have been previously and successfully applied to linguistics and species abundance data. The Sichel model can provide a direct measure of the heterogeneity of protein abundances, and can reveal protein abundance differences that simpler models fail to show. PMID:23360617

  1. Recognition of bacterial lipopolysaccharide using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Śmietana, Mateusz; Koba, Marcin; Górska, Sabina; Pawlik, Krzysztof; Gamian, Andrzej; Bock, Wojtek J

    2015-05-15

    In this paper we present a new type of highly sensitive label-free sensor based on long-period gratings (LPG) coated with T4 bacteriophage (phage) adhesin. The adhesin (gp37) binds Escherichia coli B (E. coli B) by recognizing its bacterial lipopolysaccharide (LPS). The LPG biofunctionalization methodology is based on coating LPG surface with nickel ions capable of gp37 histidine tag reversible binding. For the first time recombinant adhesive phage protein has been used as a receptor molecule in biosensing scheme. The specificity of LPS binding by adhesin has been tested with LPG-based device and confirmed using Western blot, Enzyme-Linked Immunosorbent Assay (ELISA) and BIACORE methods. The LPG-based sensor can measure bacterial contamination in real time and with a high accuracy. We show that T4 phage adhesin binds E. coli B LPS in its native or denatured form. The binding is highly specific and irreversible. The applied procedure allows for obtaining reusable biosensors. PMID:25067838

  2. Dynamic interactions of proteins in complex networks

    SciTech Connect

    Appella, E.; Anderson, C.

    2009-10-01

    Recent advances in techniques such as NMR and EPR spectroscopy have enabled the elucidation of how proteins undergo structural changes to act in concert in complex networks. The three minireviews in this series highlight current findings and the capabilities of new methodologies for unraveling the dynamic changes controlling diverse cellular functions. They represent a sampling of the cutting-edge research presented at the 17th Meeting of Methods in Protein Structure Analysis, MPSA2008, in Sapporo, Japan, 26-29 August, 2008 (http://www.iapsap.bnl.gov). The first minireview, by Christensen and Klevit, reports on a structure-based yeast two-hybrid method for identifying E2 ubiquitin-conjugating enzymes that interact with the E3 BRCA1/BARD1 heterodimer ligase to generate either mono- or polyubiquitinated products. This method demonstrated for the first time that the BRCA1/BARD1 E3 can interact with 10 different E2 enzymes. Interestingly, the interaction with multiple E2 enzymes displayed unique ubiquitin-transfer properties, a feature expected to be common among other RING and U-box E3s. Further characterization of new E3 ligases and the E2 enzymes that interact with them will greatly enhance our understanding of ubiquitin transfer and facilitate studies of roles of ubiquitin and ubiquitin-like proteins in protein processing and trafficking. Stein et al., in the second minireview, describe recent progress in defining the binding specificity of different peptide-binding domains. The authors clearly point out that transient peptide interactions mediated by both post-translational modifications and disordered regions ensure a high level of specificity. They postulate that a regulatory code may dictate the number of combinations of domains and post-translational modifications needed to achieve the required level of interaction specificity. Moreover, recognition alone is not enough to obtain a stable complex, especially in a complex cellular environment. Increasing

  3. Isolation of proteins and protein complexes by immunoprecipitation.

    PubMed

    Kaboord, Barbara; Perr, Maria

    2008-01-01

    Immunoprecipitation (IP) uses the specificity of antibodies to isolate target proteins (antigens) out of complex sample mixtures. Three different approaches for performing IP will be discussed; traditional (classical) method, oriented affinity method and direct affinity method. The traditional method of incubating the IP antibody with the sample and sequentially binding to Protein A or G agarose beads (resin) facilitates the most efficient target antigen recovery. However, this approach results in the target protein becoming contaminated with the IP antibody that can interfere with downstream analyses. The orientated affinity method uses Protein A or G beads to serve as an anchor to which the IP antibody is crosslinked thereby preventing the antibody from co-eluting with the target protein. Similarly, the direct affinity method also immobilizes the IP antibody except in this case it is directly attached to a chemically activated support. Both methods prevent co-elution of the IP antibody enabling reuse of the immunomatrix. All three approaches have unique advantages and can also be used for co-immunoprecipitation to study protein:protein interactions and investigate the functional proteome.

  4. Neisseria meningitidis adhesin NadA targets beta1 integrins: functional similarity to Yersinia invasin.

    PubMed

    Nägele, Virginie; Heesemann, Jürgen; Schielke, Stephanie; Jiménez-Soto, Luisa F; Kurzai, Oliver; Ackermann, Nikolaus

    2011-06-10

    Meningococci are facultative-pathogenic bacteria endowed with a set of adhesins allowing colonization of the human upper respiratory tract, leading to fulminant meningitis and septicemia. The Neisseria adhesin NadA was identified in about 50% of N. meningitidis isolates and is closely related to the Yersinia adhesin YadA, the prototype of the oligomeric coiled-coil adhesin (Oca) family. NadA is known to be involved in cell adhesion, invasion, and induction of proinflammatory cytokines. Because of the enormous diversity of neisserial cell adhesins the analysis of the specific contribution of NadA in meningococcal host interactions is limited. Therefore, we used a non-invasive Y. enterocolitica mutant as carrier to study the role of NadA in host cell interaction. NadA was shown to be efficiently produced and localized in its oligomeric form on the bacterial surface of Y. enterocolitica. Additionally, NadA mediated a β1 integrin-dependent adherence with subsequent internalization of yersiniae by a β1 integrin-positive cell line. Using recombinant NadA(24-210) protein and human and murine β1 integrin-expressing cell lines we could demonstrate the role of the β1 integrin subunit as putative receptor for NadA. Subsequent inhibition assays revealed specific interaction of NadA(24-210) with the human β1 integrin subunit. Cumulatively, these results indicate that Y. enterocolitica is a suitable toolbox system for analysis of the adhesive properties of NadA, revealing strong evidence that β1 integrins are important receptors for NadA. Thus, this study demonstrated for the first time a direct interaction between the Oca-family member NadA and human β1 integrins.

  5. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci.

    PubMed Central

    Lowe, A M; Lambert, P A; Smith, A W

    1995-01-01

    Serum from a patient with Enterococcus faecalis endocarditis was used to identify the gene efaA cloned in Lambda ZapII in Escherichia coli. Nucleotide sequence analysis revealed a 924-bp open reading frame encoding a protein with a predicted molecular weight of 34,768. The amino acid sequence of EfaA shows 55 to 60% homology to a group of streptococcal proteins, FimA from Streptococcus parasanguis, SsaB from Streptococcus sanguis, ScaA from Streptococcus gordonii, and PsaA from Streptococcus pneumoniae. Members of this group have been shown to be adhesins, and we hypothesize that EfaA may function as an adhesin in endocarditis. PMID:7822045

  6. The Soluble Recombinant Neisseria meningitidis Adhesin NadAΔ351–405 Stimulates Human Monocytes by Binding to Extracellular Hsp90

    PubMed Central

    Cecchini, Paola; Tavano, Regina; Polverino de Laureto, Patrizia; Franzoso, Susanna; Mazzon, Cristina; Montanari, Paolo; Papini, Emanuele

    2011-01-01

    The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadAΔ351–405, devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadAΔ351–405 cellular effects in monocytes. We show that NadAΔ351–405 (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadAΔ351–405 cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadAΔ351–405 /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadAΔ351–405 and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadAΔ351–405 determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadAΔ351–405 alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by

  7. The soluble recombinant Neisseria meningitidis adhesin NadA(Δ351-405) stimulates human monocytes by binding to extracellular Hsp90.

    PubMed

    Cecchini, Paola; Tavano, Regina; Polverino de Laureto, Patrizia; Franzoso, Susanna; Mazzon, Cristina; Montanari, Paolo; Papini, Emanuele

    2011-01-01

    The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadA(Δ351-405,) devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadA(Δ351-405) cellular effects in monocytes. We show that NadA(Δ351-405) (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadA(Δ351-405) cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadA(Δ351-405) /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadA(Δ351-405) and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadA(Δ351-405) determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadA(Δ351-405) alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by

  8. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG.

    PubMed

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; de Vos, Willem M; Palva, Airi

    2011-07-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic.

  9. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG.

    PubMed

    von Ossowski, Ingemar; Satokari, Reetta; Reunanen, Justus; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; de Vos, Willem M; Palva, Airi

    2011-07-01

    In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic. PMID:21602388

  10. Radiation damage to DNA-protein complexes

    NASA Astrophysics Data System (ADS)

    Spotheim-Maurizot, M.; Davídková, M.

    2011-01-01

    We review here the advances in understanding the effects of ionizing radiations on DNA, proteins and their complexes, resulting from the collaboration of the authors' teams. It concerns the preponderant indirect effect of low LET ionizing radiations, thus the attack of the macromolecules in aqueous solution by the most aggressive product of water radiolysis, the hydroxyl radical. A model of simulation of the reaction of these radicals with the macromolecules (called RADACK) was developed and was used for calculating the probabilities of damage of each constituent of DNA or proteins (nucleotide or amino-acid). The calculations allowed to draw conclusions from electrophoresis, mutagenesis, spectroscopic (fluorescence, circular dichroïsm) and mass spectrometry experiments. Thus we have shown that the extent and location of the lesions are strongly dependent on the 3D structure of the macromolecules, which in turns is modulated by their sequence and by the binding of some ligands. Molecular dynamics simulation completed our studies in showing the consequences of each lesion on the stability and structure of the proteins and their complexes with DNA.

  11. Description of a Novel Adhesin of Mycobacterium avium Subsp. paratuberculosis

    PubMed Central

    Viale, Mariana Noelia; Echeverria-Valencia, Gabriela; Romasanta, Pablo; Mon, María Laura; Fernandez, Marisa; Malchiodi, Emilio; Romano, María Isabel; Gioffré, Andrea Karina; Santangelo, María de la Paz

    2014-01-01

    The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the μM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding. PMID:25136616

  12. Description of a novel adhesin of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Viale, Mariana Noelia; Echeverria-Valencia, Gabriela; Romasanta, Pablo; Mon, María Laura; Fernandez, Marisa; Malchiodi, Emilio; Romano, María Isabel; Gioffré, Andrea Karina; Santangelo, María de la Paz

    2014-01-01

    The binding and ingestion of Mycobacterium avium subsp. paratuberculosis (MAP) by host cells are fibronectin (FN) dependent. In several species of mycobacteria, a specific family of proteins allows the attachment and internalization of these bacteria by epithelial cells through interaction with FN. Thus, the identification of adhesion molecules is essential to understand the pathogenesis of MAP. The aim of this study was to identify and characterize FN binding cell wall proteins of MAP. We searched for conserved adhesins within a large panel of surface immunogenic proteins of MAP and investigated a possible interaction with FN. For this purpose, a cell wall protein fraction was obtained and resolved by 2D electrophoresis. The immunoreactive spots were identified by MALDI-TOF MS and a homology search was performed. We selected elongation factor Tu (EF-Tu) as candidate for further studies. We demonstrated the FN-binding capability of EF-Tu using a ligand blot assay and also confirmed the interaction with FN in a dose-dependent manner by ELISA. The dissociation constant of EF-Tu was determined by surface plasmon resonance and displayed values within the μM range. These data support the hypothesis that this protein could be involved in the interaction of MAP with epithelial cells through FN binding. PMID:25136616

  13. Quality Control of a Cytoplasmic Protein Complex

    PubMed Central

    Scazzari, Mario; Amm, Ingo; Wolf, Dieter H.

    2015-01-01

    For the assembly of protein complexes in the cell, the presence of stoichiometric amounts of the respective protein subunits is of utmost importance. A surplus of any of the subunits may trigger unspecific and harmful protein interactions and has to be avoided. A stoichiometric amount of subunits must finally be reached via transcriptional, translational, and/or post-translational regulation. Synthesis of saturated 16 and 18 carbon fatty acids is carried out by fatty acid synthase: in yeast Saccharomyces cerevisiae, a 2.6-MDa molecular mass assembly containing six protomers each of two different subunits, Fas1 (β) and Fas2 (α). The (α)6(β)6 complex carries six copies of all eight enzymatic activities required for fatty acid synthesis. The FAS1 and FAS2 genes in yeast are unlinked and map on two different chromosomes. Here we study the fate of the α-subunit of the complex, Fas2, when its partner, the β-subunit Fas1, is absent. Individual subunits of fatty acid synthase are proteolytically degraded when the respective partner is missing. Elimination of Fas2 is achieved by the proteasome. Here we show that a ubiquitin transfer machinery is required for Fas2 elimination. The major ubiquitin ligase targeting the superfluous Fas2 subunit to the proteasome is Ubr1. The ubiquitin-conjugating enzymes Ubc2 and Ubc4 assist the degradation process. The AAA-ATPase Cdc48 and the Hsp70 chaperone Ssa1 are crucially involved in the elimination of Fas2. PMID:25564609

  14. Prioritizing protein complexes implicated in human diseases by network optimization

    PubMed Central

    2014-01-01

    Background The detection of associations between protein complexes and human inherited diseases is of great importance in understanding mechanisms of diseases. Dysfunctions of a protein complex are usually defined by its member disturbance and consequently result in certain diseases. Although individual disease proteins have been widely predicted, computational methods are still absent for systematically investigating disease-related protein complexes. Results We propose a method, MAXCOM, for the prioritization of candidate protein complexes. MAXCOM performs a maximum information flow algorithm to optimize relationships between a query disease and candidate protein complexes through a heterogeneous network that is constructed by combining protein-protein interactions and disease phenotypic similarities. Cross-validation experiments on 539 protein complexes show that MAXCOM can rank 382 (70.87%) protein complexes at the top against protein complexes constructed at random. Permutation experiments further confirm that MAXCOM is robust to the network structure and parameters involved. We further analyze protein complexes ranked among top ten for breast cancer and demonstrate that the SWI/SNF complex is potentially associated with breast cancer. Conclusions MAXCOM is an effective method for the discovery of disease-related protein complexes based on network optimization. The high performance and robustness of this approach can facilitate not only pathologic studies of diseases, but also the design of drugs targeting on multiple proteins. PMID:24565064

  15. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    SciTech Connect

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M.

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  16. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.

    PubMed

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-01-01

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex. PMID:27535582

  17. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking

    PubMed Central

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-01-01

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex. PMID:27535582

  18. Probing nanoparticle effect in protein-surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, V. K.; Kohlbrecher, J.

    2015-06-01

    SANS experiments have been carried to probe the role of anionic silica nanoparticles in the anionic BSA protein-cationic DTAB surfactant complexes. In protein-surfactant complex, surfactant molecules aggregate to form micelle-like clusters along the unfolded polypeptide chains of the protein. The nanoparticle aggregation mediated by oppositely charged protein-surfactant complex coexists with the free protein-surfactant complexes in the nanoparticle-protein-surfactant system. There is rearrangement of micelles in adsorbed protein-surfactant complex on nanoparticles in leading to their (nanoparticle) aggregation. On the other hand, the unfolding of protein in free protein-surfactant complex is found to be significantly enhanced in presence of nanoparticles.

  19. Heterologous expression in Tritrichomonas foetus of functional Trichomonas vaginalis AP65 adhesin

    PubMed Central

    Kucknoor, Ashwini S; Mundodi, Vasanthakrishna; Alderete, JF

    2005-01-01

    Background Trichomonosis, caused by Trichomonas vaginalis, is the number one, nonviral sexually transmitted infection that has adverse consequences for the health of women and children. The interaction of T. vaginalis with vaginal epithelial cells (VECs), a step preparatory to infection, is mediated in part by the prominent surface protein AP65. The bovine trichomonad, Tritrichomonas foetus, adheres poorly to human VECs. Thus, we established a transfection system for heterologous expression of the T. vaginalis AP65 in T. foetus, as an alternative approach to confirm adhesin function for this virulence factor. Results In this study, we show stable transfection and expression of the T. vaginalis ap65 gene in T. foetus from an episomal pBS-ap65-neo plasmid. Expression of the gene and protein was confirmed by RT-PCR and immunoblots, respectively. AP65 in transformed T. foetus bound to host cells. Specific mAbs revealed episomally-expressed AP65 targeted to the parasite surface and hydrogenosome organelles. Importantly, surface-expression of AP65 in T. foetus paralleled increased levels of adherence of transfected bovine trichomonads to human VECs. Conclusion The T. vaginalis AP65 adhesin was stably expressed in T. foetus, and the data obtained using this heterologous system strongly supports the role of AP65 as a prominent adhesin for T. vaginalis. In addition, the heterologous expression in T. foetus of a T. vaginalis gene offers an important, new approach for confirming and characterizing virulence factors. PMID:15748280

  20. Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin

    PubMed Central

    Heiniger, Ryan W.; Winther-Larsen, Hanne C.; Pickles, Raymond J.; Koomey, Michael; Wolfgang, Matthew C.

    2010-01-01

    Summary Tissue damage predisposes humans to life-threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibers. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus-associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fiber retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces. PMID:20331639

  1. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.

    PubMed

    Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-04-01

    Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site.

  2. Engineering of complex protein sialylation in plants.

    PubMed

    Kallolimath, Somanath; Castilho, Alexandra; Strasser, Richard; Grünwald-Gruber, Clemens; Altmann, Friedrich; Strubl, Sebastian; Galuska, Christina Elisabeth; Zlatina, Kristina; Galuska, Sebastian Peter; Werner, Stefan; Thiesler, Hauke; Werneburg, Sebastian; Hildebrandt, Herbert; Gerardy-Schahn, Rita; Steinkellner, Herta

    2016-08-23

    Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions. PMID:27444013

  3. Engineering of complex protein sialylation in plants

    PubMed Central

    Kallolimath, Somanath; Castilho, Alexandra; Strasser, Richard; Grünwald-Gruber, Clemens; Altmann, Friedrich; Strubl, Sebastian; Galuska, Christina Elisabeth; Zlatina, Kristina; Galuska, Sebastian Peter; Werner, Stefan; Thiesler, Hauke; Werneburg, Sebastian; Hildebrandt, Herbert; Gerardy-Schahn, Rita; Steinkellner, Herta

    2016-01-01

    Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions. PMID:27444013

  4. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  5. FimH adhesin from host unrestricted Salmonella Enteritidis binds to different glycoprotein ligands expressed by enterocytes from sheep, pig and cattle than FimH adhesins from host restricted Salmonella Abortus-ovis, Salmonella Choleraesuis and Salmonella Dublin.

    PubMed

    Grzymajło, Krzysztof; Ugorski, Maciej; Kolenda, Rafał; Kędzierska, Anna; Kuźmińska-Bajor, Marta; Wieliczko, Alina

    2013-10-25

    Adhesion to gut tissues and colonization of the alimentary tract, two important stages in the pathogenesis of Salmonella, are mediated by FimH adhesin of type 1 fimbriae. It was suggested that minor differences in the structure of FimH are most likely associated with differences in adhesion specificities, and may determine the tropism of various Salmonella serovars to different species and tissues. We investigated this hypothesis by comparing the binding properties of FimH proteins from three Salmonella enterica serovars with limited (Choleraesuis, Dublin) or restricted (Abortusovis) host ranges to FimH from broad host range S. Enteritidis and mannose inactive FimH from S. Gallinarum. Although all active variants of FimH protein were able to bind mannose-rich glycoproteins (RNase B, HRP and Man-BSA) with comparable affinity measured by surface plasmon resonance, there were significant differences in the binding profiles of the FimH proteins from host restricted serovars and host unrestricted serovar Enteritidis, to glycoproteins from enterocyte cell lines established in vitro and derived from sheep, pig and cattle. When low-binding FimH adhesin from S. Enteritidis was subjected to Western blot analysis, it bound to surface membrane protein of about 130 kDa, and high-binding FimH adhesins from S. Abortusovis, S. Choleraesuis and S. Dublin bound to surface membrane protein of about 55 kDa present in each cell line. Differential binding of FimH proteins from host-restricted and broad-host-range Salmonella to intestinal receptors was confirmed using mutant FimH adhesins obtained by site-directed mutagenesis. It was found that the low-binding variant of FimH from S. Choleraesuis with mutation Leu57Pro lost the ability to bind protein band of 55 kDa, but instead interacted with glycoprotein of about 130 kDa. On the other hand, the high-binding variant of FimH adhesin from S. Enteritids with mutation Asn101Ser did not bind to its receptor of 130 kDa, but instead it

  6. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure

    PubMed Central

    Yoshimoto, Shogo; Nakatani, Hajime; Iwasaki, Keita; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs), cell surface proteins of Gram-negative bacteria, mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific, high adhesiveness to abiotic material surfaces as well as to biotic surfaces. AtaA is a homotrimer of polypeptides comprising 3,630 amino acids and forms long nanofibers; therefore, it is too large and structurally complex to be produced as a recombinant protein. In this study, we isolated AtaA’s passenger domain (AtaA PSD), which is translocated to the cell surface through the C-terminal transmembrane domain and exhibits biological functions, using a new method. We introduced a protease recognition site and reaped AtaA nanofibers 225 nm in length from the cell surface through proteolytic cleavage with a specific protease. Biochemical and biophysical analyses of the purified native AtaA PSD revealed that it has a stable structure under alkaline and acidic conditions. Temperatures above 80 °C, which disrupted AtaA’s higher-order structure but maintained the full-length AtaA polypeptide, inactivated AtaA’s nonspecific adhesiveness, suggesting that the stickiness of AtaA requires its 3D structure. This finding refutes the widespread but vague speculation that large unfolded polypeptides readily stick to various surfaces. PMID:27305955

  7. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.

    PubMed

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel

    2007-02-23

    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional

  8. A complex-centric view of protein network evolution.

    PubMed

    Yosef, Nir; Kupiec, Martin; Ruppin, Eytan; Sharan, Roded

    2009-07-01

    The recent availability of protein-protein interaction networks for several species makes it possible to study protein complexes in an evolutionary context. In this article, we present a novel network-based framework for reconstructing the evolutionary history of protein complexes. Our analysis is based on generalizing evolutionary measures for single proteins to the level of whole subnetworks, comprehensively considering a broad set of computationally derived complexes and accounting for both sequence and interaction changes. Specifically, we compute sets of orthologous complexes across species, and use these to derive evolutionary rate and age measures for protein complexes. We observe significant correlations between the evolutionary properties of a complex and those of its member proteins, suggesting that protein complexes form early in evolution and evolve as coherent units. Additionally, our approach enables us to directly quantify the extent to which gene duplication has played a role in the evolution of complexes. We find that about one quarter of the sets of orthologous complexes have originated from evolutionary cores of homodimers that underwent duplication and divergence, testifying to the important role of gene duplication in protein complex evolution. PMID:19465379

  9. Identification of Mycobacterium tuberculosis adherence-mediating components: a review of key methods to confirm adhesin function

    PubMed Central

    Ramsugit, Saiyur; Pillay, Manormoney

    2016-01-01

    Anti-adhesion therapy represents a potentially promising avenue for the treatment and prevention of tuberculosis in a post-antibiotic era. Adhesins are surface-exposed microbial structures or molecules that enable pathogenic organisms to adhere to host surfaces, a fundamental step towards host infection. Although several Mycobacterium tuberculosis adhesins have been identified, it is predicted that numerous additional adherence-mediating components contribute to the virulence and success of this pathogen. Significant further research to discern and characterize novel M. tuberculosis adhesins is, therefore, required to gain a holistic account of M. tuberculosis adhesion to the host. This would enable the identification of potential drug and vaccine targets for attenuating M. tuberculosis adherence and infectivity. Several methods have been successfully applied to the study and identification of M. tuberculosis adhesins. In this manuscript, we review these methods, which include adherence assays that utilize wild-type and gene knockout mutant strains, epitope masking and competitive inhibition analyses, extracellular matrix protein binding assays, microsphere adhesion assays, M. tuberculosis auto-aggregation assays, and in silico analyses. PMID:27482337

  10. Affinity Purification of Protein Complexes Using TAP Tags

    PubMed Central

    Gerace, Erica; Moazed, Danesh

    2016-01-01

    This protocol is used for the isolation and analysis of protein complexes using the tandem affinity purification (TAP) tag system. The protocol describes the purification of a protein fused to a TAP tag comprised of two protein A domains and the calmodulin binding peptide separated by a TEV cleavage site. This is a powerful technique for rapid purification of protein complexes and the analysis of their stoichiometric composition, posttranslational modifications, structure, and functional activities. PMID:26096502

  11. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo

    PubMed Central

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  12. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo.

    PubMed

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  13. The role of Hsp90 in protein complex assembly.

    PubMed

    Makhnevych, Taras; Houry, Walid A

    2012-03-01

    Hsp90 is a ubiquitous and essential molecular chaperone that plays central roles in many signaling and other cellular pathways. The in vivo and in vitro activity of Hsp90 depends on its association with a wide variety of cochaperones and cofactors, which form large multi-protein complexes involved in folding client proteins. Based on our proteomic work mapping the molecular chaperone interaction networks in yeast, especially that of Hsp90, as well as, on experiments and results presented in the published literature, one major role of Hsp90 appears to be the promotion and maintenance of proper assembly of protein complexes. To highlight this role of Hsp90, the effect of the chaperone on the assembly of the following seven complexes is discussed in this review: snoRNP, RNA polymerase II, phosphatidylinositol-3 kinase-related protein kinase (PIKK), telomere complex, kinetochore, RNA induced silencing complexes (RISC), and 26S proteasome. For some complexes, it is observed that Hsp90 mediates complex assembly by stabilizing an unstable protein subunit and facilitating its incorporation into the complex; for other complexes, Hsp90 promotes change in the composition of that complex. In all cases, Hsp90 does not appear to be part of the final assembled complex. This article is part of a Special Issue entitled:Heat Shock Protein 90 (HSP90). PMID:21945180

  14. Structure and copy number of gene clusters related to the pap P-adhesin operon of uropathogenic Escherichia coli.

    PubMed

    Arthur, M; Campanelli, C; Arbeit, R D; Kim, C; Steinbach, S; Johnson, C E; Rubin, R H; Goldstein, R

    1989-02-01

    The structurally related pap and prs operons of the uropathogenic Escherichia coli isolate J96 encode a P and an F adhesin that mediate bacterial attachment to the human P blood group antigen and the Forssman antigen, respectively. Using probes prepared from different segments of the pap operon, Southern blot hybridizations were performed to characterize pap-related sequences of 30 E. coli clinical isolates expressing different adhesin phenotypes. Gene clusters encoding P and F adhesins displayed no restriction site polymorphism in sequences homologous to the papH, papC, and papD genes that encode proteins essential to the transport and polymerization of the subunits of the P-pilus adhesin. In contrast, pap-related genetic elements associated with a null phenotype either lacked homology to the papH, papC, and papD genes or displayed a restriction site polymorphism in this region. Sequences within and surrounding the J96 papG and prsG adhesin genes that determine the binding specificities to the P and F antigens, respectively, were not conserved. However, gene clusters encoding different binding specificities could not be distinguished based on such restriction site polymorphisms. The majority of clinical isolates had more than one copy of pap-related sequences that involved gene clusters similar to the J96 pap operon, as well as genetic elements that were related only to a part of this operon. The implications of this unexpected copy number polymorphism with respect to possible recombination events involving pap-related sequences are discussed.

  15. Design and characterization of complex protein films

    NASA Astrophysics Data System (ADS)

    Bui, Holt P.

    Once a biomaterial is implanted into biological system, a layer of protein is immediately deposited on the surface of that material. The newly formed protein film will dictate how the implanted material will interact with the surrounding biological environment and lead to either the acceptance or rejection of the biomaterial. One method to enhance performance involves the activation the surface of the biomaterial with one or more proteins to direct specific interactions with the host environment. The focus of my dissertation was to develop and characterize model biomaterials surfaces that are activated with one or more proteins to help understand how the protein films may affect biological processes and a biomaterial's performance. One model system consisted of a patterned film of two proteins on a gold surface. Characterization of this protein pattern indicated that patterning protein films with a focused ion beam produced protein patterns with high biological contrast and high spatial control. The second model protein film involved the adsorption of fibronectin on surfaces with different surface energies. The characterization of the adsorbed fibronectin films suggest that fibronectin adsorbed on a hydrophilic surface is in an orientation that projects hydrophilic amino acid residues towards surface of the protein and dehydration causes reorientation to project hydrophobic amino acids towards the surface. In contrast, fibronectin is adsorbed onto a hydrophobic surface in a manner that resulted in dehydration and denaturation during the adsorption process. The last model protein film studied in this work consisted of fibronectin patterned in a manner so that the film consisted of spatially controlled domains of fibronectin adsorbed onto a hydrophilic surface as well as a hydrophobic surface. Lateral characterization of this pattern demonstrated a difference in secondary structure of fibronectin adsorbed on the two domains with varying surface energies.

  16. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  17. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. PMID:26659058

  18. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described.

  19. Multi-LZerD: Multiple protein docking for asymmetric complexes

    PubMed Central

    Esquivel-Rodríguez, Juan; Yang, Yifeng David; Kihara, Daisuke

    2012-01-01

    The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi-LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero-multimeric complexes resulted in near native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared to our approach. Multi-LZerD was able to predict near native structures for multimeric complexes of various topologies. PMID:22488467

  20. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering.

  1. Studying protein complexes by the yeast two-hybrid system.

    PubMed

    Rajagopala, Seesandra V; Sikorski, Patricia; Caufield, J Harry; Tovchigrechko, Andrey; Uetz, Peter

    2012-12-01

    Protein complexes are typically analyzed by affinity purification and subsequent mass spectrometric analysis. However, in most cases the structure and topology of the complexes remains elusive from such studies. Here we investigate how the yeast two-hybrid system can be used to analyze direct interactions among proteins in a complex. First we tested all pairwise interactions among the seven proteins of Escherichia coli DNA polymerase III as well as an uncharacterized complex that includes MntR and PerR. Four and seven interactions were identified in these two complexes, respectively. In addition, we review Y2H data for three other complexes of known structure which serve as "gold-standards", namely Varicella Zoster Virus (VZV) ribonucleotide reductase (RNR), the yeast proteasome, and bacteriophage lambda. Finally, we review an Y2H analysis of the human spliceosome which may serve as an example for a dynamic mega-complex.

  2. Immersion freezing of ice nucleating active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Voigtländer, J.; Niedermeier, D.; Wex, H.; Stratmann, F.

    2012-08-01

    Biological particles, e.g. bacteria and their Ice Nucleating Active (INA) protein complexes, might play an important role for the ice formation in atmospheric mixed-phase clouds. Therefore, the immersion freezing behavior of INA protein complexes generated from a SnomaxTM solution/suspension was investigated as function of temperature in a range of -5 °C to -38 °C at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The immersion freezing of droplets containing small numbers of INA protein complexes occurs in a temperature range of -7 °C and -10 °C. The experiments performed in the lower temperature range, where all droplets freeze which contain at least one INA protein complex, are used to determine the average number of INA protein complexes present, assuming that the INA protein complexes are Poisson distributed over the droplet ensemble. Knowing the average number of INA protein complexes, the heterogeneous ice nucleation rate and rate coefficient of a single INA protein complex is determined by using the newly-developed CHESS model (stoCHastic model of idEntical poiSSon distributed ice nuclei). Therefore, we assume the ice nucleation process to be of stochastic nature, and a parameterization of the INA protein complex's nucleation rate. Analyzing the results of immersion freezing experiments from literature (SnomaxTM and Pseudomonas syringae bacteria), to results gained in this study, demonstrates that first, a similar temperature dependence of the heterogeneous ice nucleation rate for a single INA protein complex was found in all experiments, second, the shift of the ice fraction curves to higher temperatures can be explained consistently by a higher average number of INA protein complexes being present in the droplet ensemble, and finally the heterogeneous ice nucleation rate of one single INA protein complex might be also applicable for intact Pseudomonas syringae bacteria cells. The results obtained in this study allow a new perspective on the

  3. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects

    PubMed Central

    Arciola, Carla Renata; Campoccia, Davide; Ravaioli, Stefano; Montanaro, Lucio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection. PMID

  4. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.

    PubMed

    Arciola, Carla Renata; Campoccia, Davide; Ravaioli, Stefano; Montanaro, Lucio

    2015-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are the leading etiologic agents of implant-related infections. Biofilm formation is the main pathogenetic mechanism leading to the chronicity and irreducibility of infections. The extracellular polymeric substances of staphylococcal biofilms are the polysaccharide intercellular adhesin (PIA), extracellular-DNA, proteins, and amyloid fibrils. PIA is a poly-β(1-6)-N-acetylglucosamine (PNAG), partially deacetylated, positively charged, whose synthesis is mediated by the icaADBC locus. DNA sequences homologous to ica locus are present in many coagulase-negative staphylococcal species, among which S. lugdunensis, however, produces a biofilm prevalently consisting of proteins. The product of icaA is an N-acetylglucosaminyltransferase that synthetizes PIA oligomers from UDP-N-acetylglucosamine. The product of icaD gives optimal efficiency to IcaA. The product of icaC is involved in the externalization of the nascent polysaccharide. The product of icaB is an N-deacetylase responsible for the partial deacetylation of PIA. The expression of ica locus is affected by environmental conditions. In S. aureus and S. epidermidis ica-independent alternative mechanisms of biofilm production have been described. S. epidermidis and S. aureus undergo to a phase variation for the biofilm production that has been ascribed, in turn, to the transposition of an insertion sequence in the icaC gene or to the expansion/contraction of a tandem repeat naturally harbored within icaC. A role is played by the quorum sensing system, which negatively regulates biofilm formation, favoring the dispersal phase that disseminates bacteria to new infection sites. Interfering with the QS system is a much debated strategy to combat biofilm-related infections. In the search of vaccines against staphylococcal infections deacetylated PNAG retained on the surface of S. aureus favors opsonophagocytosis and is a potential candidate for immune-protection. PMID

  5. Accumulation of small protein molecules in a macroscopic complex coacervate.

    PubMed

    Lindhoud, Saskia; Claessens, Mireille M A E

    2016-01-14

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a function of the mixing ratio, protein concentration and ionic strength. Maximal protein enrichment of the complex coacervate phase was observed to require the presence of all three macromolecules. Under optimized conditions the protein concentrations in the complex coacervate were as high as 200 g L(-1). Such high concentrations are comparable to the protein concentration in the cytosol, suggesting that these interesting liquid phases may serve a suitable model system for the phase behavior of the cytosol and genesis and function of membrane-less organelles. The high stability of the complexes and the salt dependent uptake of protein suggest that complex coacervates may provide a way to store hydrated proteins at high concentrations and might therefore be of interest in the formulation of high protein foods.

  6. Recording information on protein complexes in an information management system

    PubMed Central

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  7. Mass Spectrometry of Protein Complexes: From Origins to Applications

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Allison, Timothy M.; Robinson, Carol V.

    2015-04-01

    Now routine is the ability to investigate soluble and membrane protein complexes in the gas phase of a mass spectrometer while preserving folded structure and ligand-binding properties. Several recent transformative developments have occurred to arrive at this point. These include advances in mass spectrometry instrumentation, particularly with respect to resolution; the ability to study intact membrane protein complexes released from detergent micelles; and the use of protein unfolding in the gas phase to obtain stability parameters. Together, these discoveries are providing unprecedented information on the compositional heterogeneity of biomacromolecules, the unfolding trajectories of multidomain proteins, and the stability imparted by ligand binding to both soluble and membrane-embedded protein complexes. We review these recent breakthroughs, highlighting the challenges that had to be overcome and the physicochemical insight that can now be gained from studying proteins and their assemblies in the gas phase.

  8. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.

  9. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms.

    PubMed

    Ng, Filomena; Kittelmann, Sandra; Patchett, Mark L; Attwood, Graeme T; Janssen, Peter H; Rakonjac, Jasna; Gagic, Dragana

    2016-09-01

    Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein. PMID:26643468

  10. Protein camouflage in cytochrome c-calixarene complexes

    NASA Astrophysics Data System (ADS)

    McGovern, Róise E.; Fernandes, Humberto; Khan, Amir R.; Power, Nicholas P.; Crowley, Peter B.

    2012-07-01

    Small molecules that recognize protein surfaces are important tools for modifying protein interaction properties. Since the 1980s, several thousand studies concerning calixarenes and host-guest interactions have been published. Although there is growing interest in protein-calixarene interactions, only limited structural information has been available to date. We now report the crystal structure of a protein-calixarene complex. The water-soluble p-sulfonatocalix[4]arene is shown to bind the lysine-rich cytochrome c at three different sites. Binding curves obtained from NMR titrations reveal an interaction process that involves two or more binding sites. Together, the data indicate a dynamic complex in which the calixarene explores the surface of cytochrome c. In addition to providing valuable information on protein recognition, the data also indicate that the calixarene is a mediator of protein-protein interactions, with potential applications in generating assemblies and promoting crystallization.

  11. Embracing proteins: structural themes in aptamer-protein complexes.

    PubMed

    Gelinas, Amy D; Davies, Douglas R; Janjic, Nebojsa

    2016-02-01

    Understanding the structural rules that govern specific, high-affinity binding characteristic of aptamer-protein interactions is important in view of the increasing use of aptamers across many applications. From the modest number of 16 aptamer-protein structures currently available, trends are emerging. The flexible phosphodiester backbone allows folding into precise three-dimensional structures using known nucleic acid motifs as scaffolds that orient specific functional groups for target recognition. Still, completely novel motifs essential for structure and function are found in modified aptamers with diversity-enhancing side chains. Aptamers and antibodies, two classes of macromolecules used as affinity reagents with entirely different backbones and composition, recognize protein epitopes of similar size and with comparably high shape complementarity. PMID:26919170

  12. Affinity purification of protein complexes for analysis by multidimensional protein identification technology.

    PubMed

    Banks, Charles A S; Kong, Stephanie E; Washburn, Michael P

    2012-12-01

    Characterizing protein complexes and identifying their subunits promote our understanding of the machinery involved in many in vivo processes. Proteomic studies can identify a protein's binding partners, and this can provide insight into how protein complexes function and how they are regulated. In addition, the composition of a protein complex within an organism can be investigated as a function of time, as a function of location, or during the response of an organism to a change in environment. There are many ways to isolate a complex and identify its constituents. This review will focus on complex isolation using affinity purification and will address issues that biochemists should bear in mind as they isolate protein complexes for mass spectrometric analysis by multidimensional protein identification technology (MudPIT)(1). Protein complex analysis by mass spectrometry frequently involves the collaborative efforts of biochemists or biologists who purify protein complexes and proteomic specialists who analyze the samples - for fruitful collaborations it can be helpful for these specialized groups to be acquainted with basic principles of their collaborator's discipline. With this in mind, we first review the variety of affinity purification methods which might be considered for preparing complexes for analysis, and then provide brief primers on the principles of MudPIT mass spectrometry and data analysis. From this foundation, we then discuss how these techniques are integrated and optimized and suggest salient points to consider when preparing purified samples for protein identification, performing mass spectrometry runs, and analyzing the resulting data.

  13. Protein Connectivity in Chemotaxis Receptor Complexes

    PubMed Central

    Eismann, Stephan; Endres, Robert G.

    2015-01-01

    The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET) measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures. PMID:26646441

  14. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum

    SciTech Connect

    Nithianantham, Stanley; Xu, Minghua; Wu, Nan; Han, Yiping W.; Shoham, Menachem

    2006-12-01

    The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: the intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.

  15. Structural study of coacervation in protein-polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Chodankar, S.; Aswal, V. K.; Kohlbrecher, J.; Vavrin, R.; Wagh, A. G.

    2008-09-01

    Coacervation is a dense liquid-liquid phase separation and herein we report coacervation of protein bovine serum albumin (BSA) in the presence of polyelectrolyte sodium polystyrene sulfonate (NaPSS) under varying solution conditions. Small-angle neutron scattering (SANS) measurements have been performed on above protein-polyelectrolyte complexes to study the structural evolution of the process that leads to coacervation and the phase separated coacervate as a function of solution pH , protein-polyelectrolyte ratio and ionic strength. SANS study prior to phase separation on the BSA-NaPSS complex shows a fractal structure representing a necklace model of protein macromolecules randomly distributed along the polystyrene sulfonate chain. The fractal dimension of the complex decreases as pH is shifted away from the isoelectric point (˜4.7) of BSA protein, which indicates the decrease in the compactness of the complex structure due to increase in the charge repulsion between the protein macromolecules bound to the polyelectrolyte. Concentration-dependence studies of the polyelectrolyte in the complex suggest coexistence of two populations of polyelectrolytes, first one fully saturated with proteins and another one free from proteins. Coacervation phase has been obtained through the turbidity measurement by varying pH of the aqueous solution containing protein and polyelectrolyte from neutral to acidic regime to get them to where the two components are oppositely charged. The spontaneous formation of coacervates is observed for pH values less than 4. SANS study on coacervates shows two length scales related to complex aggregations (mesh size and overall extent of the complex) hierarchically branched to form a larger network. The mesh size represents the distance between cross-linked points in the primary complex, which decreases with increase in ionic strength and remains the same on varying the protein-polyelectrolyte ratio. On the other hand, the overall extent of the

  16. Blotting protein complexes from native gels to electron microscopy grids.

    PubMed

    Knispel, Roland Wilhelm; Kofler, Christine; Boicu, Marius; Baumeister, Wolfgang; Nickell, Stephan

    2012-01-08

    We report a simple and generic method for the direct transfer of protein complexes separated by native gel electrophoresis to electron microscopy grids. After transfer, sufficient material remains in the gel for identification and characterization by mass spectrometry. The method should facilitate higher-throughput single-particle analysis by substantially reducing the time needed for protein purification, as demonstrated for three complexes from Thermoplasma acidophilum.

  17. Identification of Post-translational Modifications of Plant Protein Complexes

    PubMed Central

    Piquerez, Sophie J. M.; Balmuth, Alexi L.; Sklenář, Jan; Jones, Alexandra M.E.; Rathjen, John P.; Ntoukakis, Vardis

    2014-01-01

    Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein. PMID:24637539

  18. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes.

  19. Structure of the Head of the Bartonella Adhesin BadA

    PubMed Central

    Szczesny, Pawel; Linke, Dirk; Ursinus, Astrid; Bär, Kerstin; Schwarz, Heinz; Riess, Tanja M.; Kempf, Volkhard A. J.; Lupas, Andrei N.; Martin, Jörg; Zeth, Kornelius

    2008-01-01

    Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 Å. Both domains are β-prisms, the N-terminal one formed by interleaved, five-stranded β-meanders parallel to the trimer axis and the C-terminal one by five-stranded β-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens. PMID:18688279

  20. Visualizing active membrane protein complexes by electron cryotomography

    PubMed Central

    Gold, Vicki A.M.; Ieva, Raffaele; Walter, Andreas; Pfanner, Nikolaus; van der Laan, Martin; Kühlbrandt, Werner

    2014-01-01

    Unravelling the structural organization of membrane protein machines in their active state and native lipid environment is a major challenge in modern cell biology research. Here we develop the STAMP (Specifically TArgeted Membrane nanoParticle) technique as a strategy to localize protein complexes in situ by electron cryotomography (cryo-ET). STAMP selects active membrane protein complexes and marks them with quantum dots. Taking advantage of new electron detector technology that is currently revolutionizing cryotomography in terms of achievable resolution, this approach enables us to visualize the three-dimensional distribution and organization of protein import sites in mitochondria. We show that import sites cluster together in the vicinity of crista membranes, and we reveal unique details of the mitochondrial protein import machinery in action. STAMP can be used as a tool for site-specific labelling of a multitude of membrane proteins by cryo-ET in the future. PMID:24942077

  1. Biochemical isolation of Argonaute protein complexes by Ago-APP

    PubMed Central

    Hauptmann, Judith; Schraivogel, Daniel; Bruckmann, Astrid; Manickavel, Sudhir; Jakob, Leonhard; Eichner, Norbert; Pfaff, Janina; Urban, Marc; Sprunck, Stefanie; Hafner, Markus; Tuschl, Thomas; Deutzmann, Rainer; Meister, Gunter

    2015-01-01

    During microRNA (miRNA)-guided gene silencing, Argonaute (Ago) proteins interact with a member of the TNRC6/GW protein family. Here we used a short GW protein-derived peptide fused to GST and demonstrate that it binds to Ago proteins with high affinity. This allows for the simultaneous isolation of all Ago protein complexes expressed in diverse species to identify associated proteins, small RNAs, or target mRNAs. We refer to our method as “Ago protein Affinity Purification by Peptides“ (Ago-APP). Furthermore, expression of this peptide competes for endogenous TNRC6 proteins, leading to global inhibition of miRNA function in mammalian cells. PMID:26351695

  2. The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification.

    PubMed

    Xu, Xiaoli; Song, Yuan; Li, Yuhua; Chang, Jianfeng; Zhang, Hua; An, Lizhe

    2010-08-01

    Isolation and identification of protein partners in multi-protein complexes are important in gaining further insights into the cellular roles of proteins and determining the possible mechanisms by which proteins have an effect in the molecular environment. The tandem affinity purification (TAP) method was originally developed in yeast for the purification of protein complexes and identification of protein-protein interactions. With modifications to this method and many variations in the original tag made over the past few years, the TAP system could be applied in mammalian, plant, bacteria and other systems for protein complex analysis. In this review, we describe the application of the TAP method in various organisms, the modification in the tag, the disadvantages, the developments and the future prospects of the TAP method. PMID:20399864

  3. A Diatom Light-Harvesting Pigment-Protein Complex 1

    PubMed Central

    Friedman, Alan L.; Alberte, Randall S.

    1984-01-01

    A light-harvesting pigment-protein complex was isolated from the diatom Phaeodactylum tricornutum using the zwitterionic detergent CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Detergent-solubilized membranes were fractionated by sucrose density gradient centrifugation into three components. The medium density fraction contained chlorophyll a, chlorophyll c, and fucoxanthin. This fraction was purified by DEAE-ion exchange chromatography, and contained chlorophyll a, chlorophyll c, and fucoxanthin in a molar ratio of 2.4:1.0:4.8. Fluorescence emission and excitation spectra of the isolated complex demonstrated that light energy absorbed by chlorophyll c and fucoxanthin was coupled to chlorophyll a fluorescence. Upon denaturation, the apoprotein yielded a polypeptide doublet at 17.5 to 18.0 kilodaltons which accounted for 30 to 40% of the toal membrane protein. These findings indicate that this pigment-protein complex is a major component of the diatom photosynthetic lammellae. The quantitative amino acid composition of the apoprotein was very similar to those reported for other membrane-bound pigment-protein complexes. Based on the protein to chlorophyll a ratio of 7700 grams protein per mole chlorophyll a for the complex, each apoprotein molecule contains, to the nearest integer, two chlorophyll a, one chlorophyll c, and five fucoxanthin molecules. Polyclonal antibodies raised against the 17.5 to 18.0 kilodaltons apoprotein showed a monospecific reaction with only the 17.5 to 18.0 protein zone from denatured P. tricornutum membranes as well as to the nondenatured pigment-protein complex. It appears that this complex is common to other diatom species. Images Fig. 2 Fig. 3 PMID:16663869

  4. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    PubMed

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like.

  5. Protein Complex Production from the Drug Discovery Standpoint.

    PubMed

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  6. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    PubMed Central

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  7. Transcriptional regulation of protein complexes within and across species.

    PubMed

    Tan, Kai; Shlomi, Tomer; Feizi, Hoda; Ideker, Trey; Sharan, Roded

    2007-01-23

    Yeast two-hybrid and coimmunoprecipitation experiments have defined large-scale protein-protein interaction networks for many model species. Separately, systematic chromatin immunoprecipitation experiments have enabled the assembly of large networks of transcriptional regulatory interactions. To investigate the functional interplay between these two interaction types, we combined both within a probabilistic framework that models the cell as a network of transcription factors regulating protein complexes. This framework identified 72 putative coregulated complexes in yeast and allowed the prediction of 120 previously uncharacterized transcriptional interactions. Several predictions were tested by new microarray profiles, yielding a confirmation rate (58%) comparable with that of direct immunoprecipitation experiments. Furthermore, we extended our framework to a cross-species setting, identifying 24 coregulated complexes that were conserved between yeast and fly. Analyses of these conserved complexes revealed different conservation levels of their regulators and provided suggestive evidence that protein-protein interaction networks may evolve more slowly than transcriptional interaction networks. Our results demonstrate how multiple molecular interaction types can be integrated toward a global wiring diagram of the cell, and they provide insights into the evolutionary dynamics of protein complex regulation.

  8. Proteins associated with RNase E in a multicomponent ribonucleolytic complex.

    PubMed Central

    Miczak, A; Kaberdin, V R; Wei, C L; Lin-Chao, S

    1996-01-01

    The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed. Images Fig. 1 Fig. 2 PMID:8632981

  9. Genetic analysis of the gene cluster encoding nonfimbrial adhesin I from an Escherichia coli uropathogen.

    PubMed Central

    Ahrens, R; Ott, M; Ritter, A; Hoschützky, H; Bühler, T; Lottspeich, F; Boulnois, G J; Jann, K; Hacker, J

    1993-01-01

    The chromosomally encoded nonfimbrial adhesion I (NFA-I) from Escherichia coli urinary tract isolate 827 (O83:K1:H4) mediates agglutination of human erythrocytes. Subclones were constructed from an NFA-I-expressing recombinant E. coli K-12 clone, derived from a genomic library of E. coli 827. Minicell analysis and nucleotide sequencing revealed that proteins of 30.5, 9, 80, 15, and 19 kDa encoded on a stretch of approximately 6 kb are involved in the expression of NFA-I. NFA-I exhibits a polymeric structure, which disintegrates with elevated temperature into a 19-kDa monomer but with some relatively stable dimers. By using gold-conjugated monoclonal antibodies directed against NFA-I in electron microscopy, the adhesin could be localized on the outer surface of the recombinant E. coli K-12 bacteria. The nucleotide sequence of the nfaA gene encoding the monomeric structural subunit of the adhesin was determined. An open reading frame of 184 amino acids encoding the NfaA precursor, which is processed to the mature protein, was found; it consisted of 156 amino acids with a calculated molecular weight of 16,000. Peptide sequencing of the NFA-I subunit protein confirmed that this open reading frame corresponds to the NfaA coding locus. Furthermore, the nucleotide sequence of the open reading frame termed NfaE, located at the proximal part of the DNA stretch responsible for NFA-I expression, was elaborated. NfaE consists of 247 amino acids, including a presumptive 29-amino-acid signal peptide, leading to a molecular weight of 24,000 for the mature protein. The nfaE sequence shares homology with the 27-kDa CS3 protein, which is involved in the assembly of CS3 fibrillae, and might encode the 30.5-kDa protein, detected in minicells. Images PMID:8099066

  10. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  11. The dynamics and pH-dependence of Ag43 adhesins' self-association probed by atomic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacquot, Adrien; Sakamoto, Chizuko; Razafitianamarahavo, Angelina; Caillet, Céline; Merlin, Jenny; Fahs, Ahmad; Ghigo, Jean-Marc; Duval, Jérôme F. L.; Beloin, Christophe; Francius, Grégory

    2014-10-01

    Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed light on the possible mechanism governing the self-recognition of SAAT adhesins, in particular the importance of trans-interactions between the L shaped β-helical scaffold of two α-domains of neighboring adhesins. In this study, we use single-molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to unravel the dynamics of Ag43-self association under various pH and molecular elongation rate conditions that mimic the situations encountered by E. coli in its natural environment. Results evidenced an important stretchability of Ag43α with unfolding of sub-domains leading to molecular extension as long as 150 nm. Nanomechanical analysis of molecular stretching data suggested that self-association of Ag43 can lead to the formation of dimers and tetramers driven by rapid and weak cis- as well as slow but strong trans-interaction forces with a magnitude as large as 100-250 pN. The dynamics of cis- and trans-interactions were demonstrated to be strongly influenced by pH and applied shear force, thus suggesting that environmental conditions can modulate Ag43-mediated aggregation of bacteria at the molecular level.Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed

  12. Detecting Protein Complexes in Protein Interaction Networks Modeled as Gene Expression Biclusters

    PubMed Central

    Hanna, Eileen Marie; Zaki, Nazar; Amin, Amr

    2015-01-01

    Developing suitable methods for the detection of protein complexes in protein interaction networks continues to be an intriguing area of research. The importance of this objective originates from the fact that protein complexes are key players in most cellular processes. The more complexes we identify, the better we can understand normal as well as abnormal molecular events. Up till now, various computational methods were designed for this purpose. However, despite their notable performance, questions arise regarding potential ways to improve them, in addition to ameliorative guidelines to introduce novel approaches. A close interpretation leads to the assent that the way in which protein interaction networks are initially viewed should be adjusted. These networks are dynamic in reality and it is necessary to consider this fact to enhance the detection of protein complexes. In this paper, we present “DyCluster”, a framework to model the dynamic aspect of protein interaction networks by incorporating gene expression data, through biclustering techniques, prior to applying complex-detection algorithms. The experimental results show that DyCluster leads to higher numbers of correctly-detected complexes with better evaluation scores. The high accuracy achieved by DyCluster in detecting protein complexes is a valid argument in favor of the proposed method. DyCluster is also able to detect biologically meaningful protein groups. The code and datasets used in the study are downloadable from https://github.com/emhanna/DyCluster. PMID:26641660

  13. Human monocytes/macrophages are a target of Neisseria meningitidis Adhesin A (NadA).

    PubMed

    Franzoso, Susanna; Mazzon, Cristina; Sztukowska, Maryta; Cecchini, Paola; Kasic, Tihana; Capecchi, Barbara; Tavano, Regina; Papini, Emanuele

    2008-05-01

    Specific surface proteins of Neisseria meningitidis have been proposed to stimulate leukocytes during tissue invasion and septic shock. In this study, we demonstrate that the adhesin N. meningitidis Adhesin A (NadA) involved in the colonization of the respiratory epithelium by hypervirulent N. meningitidis B strains also binds to and activates human monocytes/macrophages. Expression of NadA on the surface on Escherichia coli does not increase bacterial-monocyte association, but a NadA-positive strain induced a significantly higher amount of TNF-alpha and IL-8 compared with the parental NadA-negative strain, suggesting that NadA has an intrinsic stimulatory action on these cells. Consistently, highly pure, soluble NadA(Delta351-405), a proposed component of an antimeningococcal vaccine, efficiently stimulates monocytes/macrophages to secrete a selected pattern of cytokines and chemotactic factors characterized by high levels of IL-8, IL-6, MCP-1, and MIP-1alpha and low levels of the main vasoactive mediators TNF-alpha and IL-1. NadA(Delta351-405) also inhibited monocyte apoptosis and determined its differentiation into a macrophage-like phenotype.

  14. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria.

  15. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings.

    PubMed

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J

    2016-03-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests - ELISA and BIAcore - the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  16. Label-free Gram-negative bacteria detection using bacteriophage-adhesin-coated long-period gratings

    PubMed Central

    Brzozowska, Ewa; Koba, Marcin; Śmietana, Mateusz; Górska, Sabina; Janik, Monika; Gamian, Andrzej; Bock, Wojtek J.

    2016-01-01

    This paper presents a novel application of a highly sensitive sensor based on long-period gratings (LPGs) coated with T4 bacteriophage adhesin for Gram-negative bacteria detection. We show here, that the sensor evidently recognizes Escherichia coli K-12 (PCM2560), whereas in the reference tests – ELISA and BIAcore – the results are questionable. For LPGs sensor the resonant wavelength shift observed for E. coli K-12 was approximately half of that measured for E.coli B (positive control). The BIAcore readings (RU) for E. coli K-12 were at 10% level of the signal obtained for E .coli B. These results confirm the improved sensitivity of the LPGs sensor. Moreover, we also show that application of adhesin may allow for efficient detection of E. coli O111 (PCM418), Klebsiella pneumoniae O1 (PCM1) and Yersinia enterocolitica O1 (PCM1879). The specificity of binding bacteria by the adhesin is discussed and it is determined by a distinct region of lipopolysaccharide receptors and/or by the presence of outer-membrane protein C in an outer membrane of Gram-negative bacteria. PMID:27231592

  17. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  18. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  19. Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics

    PubMed Central

    Hyung, Suk-Joon; Ruotolo, Brandon T.

    2013-01-01

    Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037

  20. G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction?

    PubMed

    Roberts, David J; Waelbroeck, Magali

    2004-09-01

    G protein coupled receptors catalyze the GDP/GTP exchange on G proteins, thereby activating them. The ternary complex model, designed to describe agonist binding in the absence of GTP, is often extended to G protein activation. This is logically unsatisfactory as the ternary complex does not accumulate when G proteins are activated by GTP. Extended models taking into account nucleotide binding exist, but fail to explain catalytic G protein activation. This review puts forward an enzymatic model of G protein activation and compares its predictions with the ternary complex model and with observed receptor phenomenon. This alternative model does not merely provide a new set of formulae but leads to a new philosophical outlook and more readily accommodates experimental observations. The ternary complex model implies that, HRG being responsible for efficient G protein activation, it should be as stable as possible. In contrast, the enzyme model suggests that although a limited stabilization of HRG facilitates GDP release, HRG should not be "too stable" as this might trap the G protein in an inactive state and actually hinder G protein activation. The two models also differ completely in the definition of the receptor "active state": the ternary complex model implies that the active state corresponds to a single active receptor conformation (HRG); in contrast, the catalytic model predicts that the active receptor state is mobile, switching smoothly through various conformations with high and low affinities for agonists (HR, HRG, HRGGDP, HRGGTP, etc.).

  1. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Kansal, Rita; Bartels, Scott R; Hamilton, David J; Shaaban, Salwa; Fleckenstein, James M

    2011-08-26

    Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development. PMID:21757737

  2. Synthetic RNA-protein complex shaped like an equilateral triangle

    NASA Astrophysics Data System (ADS)

    Ohno, Hirohisa; Kobayashi, Tetsuhiro; Kabata, Rinko; Endo, Kei; Iwasa, Takuma; Yoshimura, Shige H.; Takeyasu, Kunio; Inoue, Tan; Saito, Hirohide

    2011-02-01

    Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches. In particular, Watson-Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA, which allows the RNA to bend by ~60° at three positions to form a triangle. Functional RNA-protein complexes constructed with this approach could have applications in nanomedicine and synthetic biology.

  3. Solid-State NMR Spectroscopy of Protein Complexes

    PubMed Central

    Sun, Shangjin; Han, Yun; Paramasivam, Sivakumar; Yan, Si; Siglin, Amanda E.; Williams, John C.; Byeon, In-Ja L.; Ahn, Jinwoo; Gronenborn, Angela M.; Polenova, Tatyana

    2016-01-01

    Protein-protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR based methods to study several protein complexes. In this chapter, we discuss the general solid-state NMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection and data analysis. PMID:22167681

  4. Structural and evolutionary versatility in protein complexes with uneven stoichiometry.

    PubMed

    Marsh, Joseph A; Rees, Holly A; Ahnert, Sebastian E; Teichmann, Sarah A

    2015-03-16

    Proteins assemble into complexes with diverse quaternary structures. Although most heteromeric complexes of known structure have even stoichiometry, a significant minority have uneven stoichiometry--that is, differing numbers of each subunit type. To adopt this uneven stoichiometry, sequence-identical subunits must be asymmetric with respect to each other, forming different interactions within the complex. Here we first investigate the occurrence of uneven stoichiometry, demonstrating that it is common in vitro and is likely to be common in vivo. Next, we elucidate the structural determinants of uneven stoichiometry, identifying six different mechanisms by which it can be achieved. Finally, we study the frequency of uneven stoichiometry across evolution, observing a significant enrichment in bacteria compared with eukaryotes. We show that this arises due to a general increased tendency for bacterial proteins to self-assemble and form homomeric interactions, even within the context of a heteromeric complex.

  5. Conformal Nanopatterning of Extracellular Matrix Proteins onto Topographically Complex Surfaces

    PubMed Central

    Sun, Yan; Jallerat, Quentin; Szymanski, John M.

    2015-01-01

    We report a method for conformal nanopatterning of extracellular matrix proteins onto engineered surfaces independent of underlying microtopography. This enables fibronectin, laminin, and other proteins to be applied to biomaterial surfaces in complex geometries inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface, used here to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment. PMID:25506720

  6. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    SciTech Connect

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimization problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.

  7. Architecture and function of IFT complex proteins in ciliogenesis.

    PubMed

    Taschner, Michael; Bhogaraju, Sagar; Lorentzen, Esben

    2012-02-01

    Cilia and flagella (interchangeable terms) are evolutionarily conserved organelles found on many different types of eukaryotic cells where they fulfill important functions in motility, sensory reception and signaling. The process of Intraflagellar Transport (IFT) is of central importance for both the assembly and maintenance of cilia, as it delivers building blocks from their site of synthesis in the cell body to the ciliary assembly site at the tip of the cilium. A key player in this process is the multi-subunit IFT-complex, which acts as an adapter between the motor proteins required for movement and the ciliary cargo proteins. Since the discovery of IFT more than 15 years ago, considerable effort has gone into the purification and characterization of the IFT complex proteins. Even though this has led to very interesting findings and has greatly improved our knowledge of the IFT process, we still know very little about the overall architecture of the IFT complex and the specific functions of the various subunits. In this review we will give an update on the knowledge of the structure and function of individual IFT proteins, and the way these proteins interact to form the complex that facilitates IFT. PMID:22118932

  8. Native Elution of Yeast Protein Complexes Obtained by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Rout, Michael P

    2016-01-01

    This protocol describes two options for the native (nondenaturing) elution of protein complexes obtained by affinity capture. The first approach involves the elution of complexes purified through a tag that includes a human rhinovirus 3C protease (PreScission protease) cleavage site sequence between the protein of interest and the tag. Incubation with the protease cleaves immobilized complexes from the affinity medium. The second approach involves the release of protein A-tagged protein complexes using a competitive elution reagent called PEGylOx. The degree of purity of the native assemblies eluted is sample dependent and strongly influenced by the affinity capture. It should be noted that the efficiency of native elution is commonly lower than that of elution by a denaturing agent (e.g., SDS) and the release of the complex will be limited by the activity of the protease or the inhibition constant (Ki) of the competitive release agent. However, an advantage of native release is that some nonspecifically bound materials tend to stay adsorbed to the affinity medium, providing an eluted fraction of higher purity. Finally, keep in mind that the presence of the protease or elution peptide could potentially affect downstream applications; thus, their removal should be considered. PMID:27371597

  9. That's my story, and I'm sticking to it—an update on B. burgdorferi adhesins

    PubMed Central

    Brissette, Catherine A.; Gaultney, Robert A.

    2014-01-01

    Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins. PMID:24772392

  10. Discovery of host-viral protein complexes during infection

    PubMed Central

    Rowles, Daniell L.; Terhune, Scott S.; Cristea, Ileana M.

    2014-01-01

    Summary Viruses have co-evolved with their hosts, developing effective approaches for hijacking and manipulating host cellular processes. Therefore, for their efficient replication and spread, viruses depend on dynamic and temporally-regulated interactions with host proteins. The rapid identification of host proteins targeted by viral proteins during infection provides significant insights into mechanisms of viral protein function. The resulting discoveries often lead to unique and innovative hypotheses on viral protein function. Here, we describe a robust method for identifying virus-host protein interactions and protein complexes, which we have successfully utilized to characterize spatial-temporal protein interactions during infections with either DNA or RNA viruses, including human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), pseudorabies virus (PRV), human immunodeficiency virus (HIV-1), Sindbis, and West Nile virus (WNV). This approach involves cryogenic cell lysis, rapid immunoaffinity purification targeting a virus or host protein, followed by identification of associated proteins using mass spectrometry. Like most proteomic approaches, this methodology has evolved over the past few years and continues to evolve. We are presenting here the updated approaches for each step, and discuss alternative strategies allowing for the protocol to be optimized for different biological systems. PMID:23996249

  11. Protein corona - from molecular adsorption to physiological complexity.

    PubMed

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  12. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors.

    PubMed

    Tastan Bishop, Ozlem; Kroon, Matthys

    2011-12-01

    This paper develops and evaluates large-scale calculation of 3D structures of protein complexes by homology modeling as a promising new approach for protein docking. The complexes investigated were papain-like cysteine proteases and their protein inhibitors, which play numerous roles in human and parasitic metabolisms. The structural modeling was performed in two parts. For the first part (evaluation set), nine crystal structure complexes were selected, 1325 homology models of known complexes were rebuilt by various templates including hybrids, allowing an analysis of the factors influencing the accuracy of the models. The important considerations for modeling the interface were protease coverage and inhibitor sequence identity. In the second part (study set), the findings of the evaluation set were used to select appropriate templates to model novel cysteine protease-inhibitor complexes from human and malaria parasites Plasmodium falciparum and Plasmodium vivax. The energy scores, considering the evaluation set, indicate that the models are of high accuracy. PMID:21365221

  13. Immunoprecipitation and Characterization of Membrane Protein Complexes from Yeast

    ERIC Educational Resources Information Center

    Parra-Belky, Karlett; McCulloch, Kathryn; Wick, Nicole; Shircliff, Rebecca; Croft, Nicolas; Margalef, Katrina; Brown, Jamie; Crabill, Todd; Jankord, Ryan; Waldo, Eric

    2005-01-01

    In this undergraduate biochemistry laboratory experiment, the vacuolar ATPase protein complex is purified from yeast cell extracts by doing immunoprecipitations under nondenaturing conditions. Immunoprecipitations are performed using monoclonal antibodies to facilitate data interpretation, and subunits are separated on the basis of their molecular…

  14. How to Build a Complex, Functional Propeller Protein, From Parts.

    PubMed

    Clark, Patricia L

    2016-04-01

    By combining ancestral sequence reconstruction and in vitro evolution, Smock et al. identified single motifs that assemble into a functional five-bladed β-propeller, and a likely route for conversion into the more complex, extant single chain fusion. Interestingly, although sequence diversification destabilized five-motif fusions, it also destabilized aggregation-prone intermediates, increasing the level of functional protein in vivo.

  15. Protein import and the origin of red complex plastids.

    PubMed

    Gould, Sven B; Maier, Uwe-G; Martin, William F

    2015-06-15

    The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event. PMID:26079086

  16. Protein import and the origin of red complex plastids.

    PubMed

    Gould, Sven B; Maier, Uwe-G; Martin, William F

    2015-06-15

    The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event.

  17. DOCK/PIERR: web server for structure prediction of protein-protein complexes.

    PubMed

    Viswanath, Shruthi; Ravikant, D V S; Elber, Ron

    2014-01-01

    In protein docking we aim to find the structure of the complex formed when two proteins interact. Protein-protein interactions are crucial for cell function. Here we discuss the usage of DOCK/PIERR. In DOCK/PIERR, a uniformly discrete sampling of orientations of one protein with respect to the other, are scored, followed by clustering, refinement, and reranking of structures. The novelty of this method lies in the scoring functions used. These are obtained by examining hundreds of millions of correctly and incorrectly docked structures, using an algorithm based on mathematical programming, with provable convergence properties.

  18. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  19. Computational large-scale mapping of protein-protein interactions using structural complexes.

    PubMed

    Shoemaker, Benjamin; Wuchty, Stefan; Panchenko, Anna R

    2013-01-01

    Although the identification of protein interactions by high-throughput methods progresses at a fast pace, "interactome" datasets still suffer from high rates of false positives and low coverage. To map the interactome of any organism, this unit presents a computational framework to predict protein-protein or gene-gene interactions utilizing experimentally determined evidence of structural complexes, atomic details of binding interfaces and evolutionary conservation.

  20. Proteins Connecting the Nuclear Pore Complex with the Nuclear Interior

    PubMed Central

    Strambio-de-Castillia, Caterina; Blobel, Günter; Rout, Michael P.

    1999-01-01

    While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC. PMID:10085285

  1. Transmembrane protein 147 (TMEM147) is a novel component of the Nicalin-NOMO protein complex.

    PubMed

    Dettmer, Ulf; Kuhn, Peer-Hendrik; Abou-Ajram, Claudia; Lichtenthaler, Stefan F; Krüger, Marcus; Kremmer, Elisabeth; Haass, Christian; Haffner, Christof

    2010-08-20

    Nicastrin and its relative Nicalin (Nicastrin-like protein) are both members of larger protein complexes, namely gamma-secretase and the Nicalin-NOMO (Nodal modulator) complex. The gamma-secretase complex, which contains Presenilin, APH-1, and PEN-2 in addition to Nicastrin, catalyzes the proteolytic cleavage of the transmembrane domain of various proteins including the beta-amyloid precursor protein and Notch. Nicalin and its binding partner NOMO form a complex that was shown to modulate Nodal signaling in developing zebrafish embryos. Because its experimentally determined native size (200-220 kDa) could not be satisfyingly explained by the molecular masses of Nicalin (60 kDa) and NOMO (130 kDa), we searched in affinity-purified complex preparations for additional components in the low molecular mass range. A approximately 22-kDa protein was isolated and identified by mass spectrometry as transmembrane protein 147 (TMEM147), a novel, highly conserved membrane protein with a putative topology similar to APH-1. Like Nicalin and NOMO, it localizes to the endoplasmic reticulum and is expressed during early zebrafish development. Overexpression and knockdown experiments in cultured cells demonstrate a close relationship between the three proteins and suggest that they are components of the same complex. We present evidence that, similar to gamma-secretase, its assembly is hierarchical starting with the formation of a Nicalin-NOMO intermediate. Nicalin appears to represent the limiting factor regulating the assembly rate by stabilizing the other two components. We conclude that TMEM147 is a novel core component of the Nicalin-NOMO complex, further emphasizing its similarity with gamma-secretase. PMID:20538592

  2. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    PubMed

    Yen, Eric A; Tsay, Aaron; Waldispuhl, Jerome; Vogel, Jackie

    2014-05-01

    Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and visualization of the hidden

  3. Modeling of Protein Binary Complexes Using Structural Mass Spectrometry Data

    SciTech Connect

    Amisha Kamal,J.; Chance, M.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints--positive and/or negative--in the docking step and are also used to decide the type of energy filter--electrostatics or desolvation--in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure.

  4. Changes in protein structure at the interface accompanying complex formation.

    PubMed

    Chakravarty, Devlina; Janin, Joël; Robert, Charles H; Chakrabarti, Pinak

    2015-11-01

    Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein-Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial.

  5. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  6. Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood

    PubMed Central

    Deng, Lingquan; Bensing, Barbara A.; Thamadilok, Supaporn; Yu, Hai; Lau, Kam; Chen, Xi; Ruhl, Stefan; Sullam, Paul M.; Varki, Ajit

    2014-01-01

    Damaged cardiac valves attract blood-borne bacteria, and infective endocarditis is often caused by viridans group streptococci. While such bacteria use multiple adhesins to maintain their normal oral commensal state, recognition of platelet sialoglycans provides an intermediary for binding to damaged valvular endocardium. We use a customized sialoglycan microarray to explore the varied binding properties of phylogenetically related serine-rich repeat adhesins, the GspB, Hsa, and SrpA homologs from Streptococcus gordonii and Streptococcus sanguinis species, which belong to a highly conserved family of glycoproteins that contribute to virulence for a broad range of Gram-positive pathogens. Binding profiles of recombinant soluble homologs containing novel sialic acid-recognizing Siglec-like domains correlate well with binding of corresponding whole bacteria to arrays. These bacteria show multiple modes of glycan, protein, or divalent cation-dependent binding to synthetic glycoconjugates and isolated glycoproteins in vitro. However, endogenous asialoglycan-recognizing clearance receptors are known to ensure that only fully sialylated glycans dominate in the endovascular system, wherein we find these particular streptococci become primarily dependent on their Siglec-like adhesins for glycan-mediated recognition events. Remarkably, despite an excess of alternate sialoglycan ligands in cellular and soluble blood components, these adhesins selectively target intact bacteria to sialylated ligands on platelets, within human whole blood. These preferred interactions are inhibited by corresponding recombinant soluble adhesins, which also preferentially recognize platelets. Our data indicate that circulating platelets may act as inadvertent Trojan horse carriers of oral streptococci to the site of damaged endocardium, and provide an explanation why it is that among innumerable microbes that gain occasional access to the bloodstream, certain viridans group streptococci have a

  7. Mechanism of action of regulatory proteins encoded by complex retroviruses.

    PubMed Central

    Cullen, B R

    1992-01-01

    Complex retroviruses are distinguished by their ability to control the expression of their gene products through the action of virally encoded regulatory proteins. These viral gene products modulate both the quantity and the quality of viral gene expression through regulation at both the transcriptional and posttranscriptional levels. The most intensely studied retroviral regulatory proteins, termed Tat and Rev, are encoded by the prototypic complex retrovirus human immunodeficiency virus type 1. However, considerable information also exists on regulatory proteins encoded by human T-cell leukemia virus type I, as well as several other human and animal complex retroviruses. In general, these data demonstrate that retrovirally encoded transcriptional trans-activators can exert a similar effect by several very different mechanisms. In contrast, posttranscriptional regulation of retroviral gene expression appears to occur via a single pathway that is probably dependent on the recruitment of a highly conserved cellular cofactor. These two shared regulatory pathways are proposed to be critical to the ability of complex retroviruses to establish chronic infections in the face of an ongoing host immune response. Images PMID:1406488

  8. Subtractive hybridization and identification of putative adhesins in a Shiga toxin-producing eae-negative Escherichia coli.

    PubMed

    Vidal, Maricel; Prado, Valeria; Whitlock, Gregory C; Solari, Aldo; Torres, Alfredo G; Vidal, Roberto M

    2008-12-01

    Adherence to epithelial cells by specific adhesins is a characteristic of Shiga toxin-producing Escherichia coli (STEC) strains. The eae-encoded protein intimin is the main adhesin implicated in intestinal colonization in vivo. We recently showed that STEC strains isolated in Chile displayed a wide variety of adhesins; here we demonstrate that some of these STEC strains are eae-negative and still adhere to epithelial cells at a level 100-fold higher than enterohaemorrhagic E. coli (EHEC) O157 : H7 prototype strain EDL933. This phenotype is associated with the presence of adherence factors different from the intimin protein. Subtractive hybridization between EHEC EDL933 and STEC eae-negative strain 472-1 was used to identify regions implicated in adhesion. In addition to the saa gene, we identified 18 specific genes in STEC 472-1, 16 of which had nucleotide identity to Salmonella ST46 phage genes; the two remaining ones shared identity to a gene encoding a hypothetical protein of uropathogenic E. coli. The DNA sequence of the STEC 472-1 psu-int region identified five open reading frames with homology to phage genes. We constructed mutant strains in the saa gene and the psu-int region to study the participation of these genes in the adherence to epithelial cells and our results demonstrated that STECDeltasaa and STECDeltapsu-int mutants displayed a 10-fold decrease in adherence as compared to the STEC 472-1 wild-type strain. Overall, our results suggest that STEC strain 472-1 adheres to epithelial cells in an eae-independent matter and that saa and psu-int participate in this adhesion process.

  9. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data. PMID:27165321

  10. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  11. Ca2+-stabilized adhesin helps an Antarctic bacterium reach out and bind ice

    PubMed Central

    Vance, Tyler D. R.; Olijve, Luuk L. C.; Campbell, Robert L.; Voets, Ilja K.; Davies, Peter L.; Guo, Shuaiqi

    2014-01-01

    The large size of a 1.5-MDa ice-binding adhesin [MpAFP (Marinomonas primoryensis antifreeze protein)] from an Antarctic Gram-negative bacterium, M. primoryensis, is mainly due to its highly repetitive RII (Region II). MpAFP_RII contains roughly 120 tandem copies of an identical 104-residue repeat. We have previously determined that a single RII repeat folds as a Ca2+-dependent immunoglobulin-like domain. Here, we solved the crystal structure of RII tetra-tandemer (four tandem RII repeats) to a resolution of 1.8 Å. The RII tetra-tandemer reveals an extended (~190-Å × ~25-Å), rod-like structure with four RII-repeats aligned in series with each other. The inter-repeat regions of the RII tetra-tandemer are strengthened by Ca2+ bound to acidic residues. SAXS (small-angle X-ray scattering) profiles indicate the RII tetra-tandemer is significantly rigidified upon Ca2+ binding, and that the protein's solution structure is in excellent agreement with its crystal structure. We hypothesize that >600 Ca2+ help rigidify the chain of ~120 104-residue repeats to form a ~0.6 μm rod-like structure in order to project the ice-binding domain of MpAFP away from the bacterial cell surface. The proposed extender role of RII can help the strictly aerobic, motile bacterium bind ice in the upper reaches of the Antarctic lake where oxygen and nutrients are most abundant. Ca2+-induced rigidity of tandem Ig-like repeats in large adhesins might be a general mechanism used by bacteria to bind to their substrates and help colonize specific niches. PMID:24892750

  12. Mannitol promotes adherence of an outbreak strain of Burkholderia multivorans via an exopolysaccharide-independent mechanism that is associated with upregulation of newly identified fimbrial and afimbrial adhesins.

    PubMed

    Denman, Carmen C; Brown, Alan R

    2013-04-01

    Burkholderia multivorans, a member of the Burkholderia cepacia complex (Bcc), is an important pathogen of the cystic fibrosis (CF) lung. Mannitol, approved as an inhaled osmolyte therapy for use in CF patients, promotes exopolysaccharide (EPS) production by the Bcc. In the present study, we investigated the role of mannitol-induced EPS in the adherence of B. multivorans. We report that mannitol promoted adherence of two representative B. multivorans strains. However, whilst this enhanced adherence was largely EPS-dependent in an environmental isolate, it was EPS-independent within a CF outbreak strain, suggesting strain-to-strain variation in adhesins. Genome sequencing of the outbreak strain enabled the identification of two distinct loci encoding putative fimbrial and afimbrial adhesins. The putative fimbriae-encoding locus was found to be widely distributed amongst clinical and environmental B. multivorans. In contrast, the locus encoding the putative afimbrial adhesin (of the filamentous haemagglutinin family, FHA) was restricted to clinical isolates. Both loci contributed to biofilm formation and mucin adherence. Furthermore, we report that mannitol promoted expression of both loci, and that the locus encoding the putative FHA-family adhesin is a key determinant of the enhanced adherence observed following growth in mannitol. Our studies provide the first characterization, to our knowledge, of B. multivorans adhesins, and in so doing highlight the strain-dependent role of EPS in the Bcc and the difficulties in assigning phenotypic traits to Bcc EPS due to the wider response to mannitol. Our observations also highlight the need to monitor the microbiological effects of inhaled mannitol therapy in Bcc-infected CF patients.

  13. Efficient Prediction of Co-Complexed Proteins Based on Coevolution

    PubMed Central

    de Vienne, Damien M.; Azé, Jérôme

    2012-01-01

    The prediction of the network of protein-protein interactions (PPI) of an organism is crucial for the understanding of biological processes and for the development of new drugs. Machine learning methods have been successfully applied to the prediction of PPI in yeast by the integration of multiple direct and indirect biological data sources. However, experimental data are not available for most organisms. We propose here an ensemble machine learning approach for the prediction of PPI that depends solely on features independent from experimental data. We developed new estimators of the coevolution between proteins and combined them in an ensemble learning procedure. We applied this method to a dataset of known co-complexed proteins in Escherichia coli and compared it to previously published methods. We show that our method allows prediction of PPI with an unprecedented precision of 95.5% for the first 200 sorted pairs of proteins compared to 28.5% on the same dataset with the previous best method. A close inspection of the best predicted pairs allowed us to detect new or recently discovered interactions between chemotactic components, the flagellar apparatus and RNA polymerase complexes in E. coli. PMID:23152796

  14. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles

    PubMed Central

    2013-01-01

    Background Protein interaction networks (PINs) are known to be useful to detect protein complexes. However, most available PINs are static, which cannot reflect the dynamic changes in real networks. At present, some researchers have tried to construct dynamic networks by incorporating time-course (dynamic) gene expression data with PINs. However, the inevitable background noise exists in the gene expression array, which could degrade the quality of dynamic networkds. Therefore, it is needed to filter out contaminated gene expression data before further data integration and analysis. Results Firstly, we adopt a dynamic model-based method to filter noisy data from dynamic expression profiles. Then a new method is proposed for identifying active proteins from dynamic gene expression profiles. An active protein at a time point is defined as the protein the expression level of whose corresponding gene at that time point is higher than a threshold determined by a standard variance involved threshold function. Furthermore, a noise-filtered active protein interaction network (NF-APIN) is constructed. To demonstrate the efficiency of our method, we detect protein complexes from the NF-APIN, compared with those from other dynamic PINs. Conclusion A dynamic model based method can effectively filter out noises in dynamic gene expression data. Our method to compute a threshold for determining the active time points of noise-filtered genes can make the dynamic construction more accuracy and provide a high quality framework for network analysis, such as protein complex prediction. PMID:24565281

  15. The mammalian autophagy initiator complex contains 2 HORMA domain proteins

    PubMed Central

    Michel, Max; Schwarten, Melanie; Decker, Christina; Nagel-Steger, Luitgard; Willbold, Dieter; Weiergräber, Oliver H

    2015-01-01

    ATG101 is an essential component of the ULK complex responsible for initiating cellular autophagy in mammalian cells; its 3-dimensional structure and molecular function, however, are currently unclear. Here we present the X-ray structure of human ATG101. The protein displays an open HORMA domain fold. Both structural properties and biophysical evidence indicate that ATG101 is locked in this conformation, in contrast to the prototypical HORMA domain protein MAD2. Moreover, we discuss a potential mode of dimerization with ATG13 as a fundamental aspect of ATG101 function. PMID:26236954

  16. Dark dyes-bright complexes: fluorogenic protein labeling.

    PubMed

    Bruchez, Marcel P

    2015-08-01

    Complexes formed between organic dyes and genetically encoded proteins combine the advantages of stable and tunable fluorescent molecules and targetable, biologically integrated labels. To overcome the challenges imposed by labeling with bright fluorescent dyes, a number of approaches now exploit chemical or environmental changes to control the properties of a bound dye, converting dyes from a weakly fluorescent state to a bright, easily detectable complex. Optimized, such approaches avoid the need for removal of unbound dyes, facilitate rapid and simple assays in cultured cells and enable hybrid labeling to function more robustly in living model organisms.

  17. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations

    PubMed Central

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I.; Kudla, Jörg

    2014-01-01

    Summary The analyses of protein-protein interactions is crucial for understanding cellular processes including signal transduction, protein trafficking and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms, and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  18. Immersion freezing of ice nucleation active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  19. Erythrocyte gangliosides act as receptors for Neisseria subflava: identification of the Sia-1 adhesin.

    PubMed Central

    Nyberg, G; Strömberg, N; Jonsson, A; Karlsson, K A; Normark, S

    1990-01-01

    Neisseria gonorrhoeae was recently shown to bind to a subset of lactose-containing glycolipids (N. Strömberg, C. Deal, G. Nyberg, S. Normark, M. So, and K.-A. Karlsson, Proc. Natl. Acad. Sci. USA 85:4902-4906, 1988). A number of commensal Neisseria strains were also shown to be lactose binders. In addition, Neisseria subflava bound to immobilized gangliosides, such as hematoside and sialosyl paragloboside, carrying the NeuAc alpha 2-3Gal beta 1-4Glc sequence. To a lesser extent, N. gonorrhoeae also bound to this receptor in vitro. In N. subflava GN01, this binding property mediated agglutination of human erythrocytes in a neuraminidase-sensitive fashion. Nitrosoguanidine-induced nonhemagglutinative mutants of N. subflava GN01 had lost the ability to bind hematoside and sialosylparagloboside but remained able to bind lactosylceramide and gangliotetraosylceramide. These mutants fell into three classes with respect to their outer membrane protein profiles in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Class 1 mutants were identical to the parent strain save for the loss of a 27-kilodalton (kDa) protein. Class 2 mutants showed an outer membrane protein profile identical to that of the wild type, whereas mutants belonging to class 3 showed a number of changes, including the apparent absence of the 27-kDa protein. The 27-kDa protein from N. subflava GN01 was purified from the supernatant. A polyclonal antiserum to the purified Sia-1 protein as well as a Sia-1-specific monoclonal antibody inhibited hemagglutination by strain GN01. The purified Sia-1 protein in the presence of diluted anti-Sia-1 antiserum mediated a neuraminidase-sensitive hemagglutination. The purified Sia protein from a class 2 mutant was not able to hemagglutinate when cross-linked with antibodies, suggesting that it is a mutant form of Sia-1 affected in the receptor-binding site. Immunoelectron microscopy with a Sia-1-specific monoclonal antibody revealed that the adhesin was

  20. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics.

    PubMed

    Freedman, Kevin J; Bastian, Arangassery R; Chaiken, Irwin; Kim, Min Jun

    2013-03-11

    Protein conjugation provides a unique look into many biological phenomena and has been used for decades for molecular recognition purposes. In this study, the use of solid-state nanopores for the detection of gp120-associated complexes are investigated. They exhibit monovalent and multivalent binding to anti-gp120 antibody monomer and dimers. In order to investigate the feasibility of many practical applications related to nanopores, detection of specific protein complexes is attempted within a heterogeneous protein sample, and the role of voltage on complexed proteins is researched. It is found that the electric field within the pore can result in unbinding of a freely translocating protein complex within the transient event durations measured experimentally. The strong dependence of the unbinding time with voltage can be used to improve the detection capability of the nanopore system by adding an additional level of specificity that can be probed. These data provide a strong framework for future protein-specific detection schemes, which are shown to be feasible in the realm of a 'real-world' sample and an automated multidimensional method of detecting events.

  1. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  2. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces.

    PubMed

    Sun, Yan; Jallerat, Quentin; Szymanski, John M; Feinberg, Adam W

    2015-02-01

    Our Patterning on Topography (PoT) printing technique enables fibronectin, laminin and other proteins to be applied to biomaterial surfaces in complex geometries that are inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface. Here, we used this method to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment.

  3. Rational stabilization of complex proteins: a divide and combine approach

    PubMed Central

    Lamazares, Emilio; Clemente, Isabel; Bueno, Marta; Velázquez-Campoy, Adrián; Sancho, Javier

    2015-01-01

    Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones). PMID:25774740

  4. RNA-protein complexes identified by crosslinking of polysomes.

    PubMed

    Sköld, S E

    1981-01-01

    The bifunctional cleavable reagent diepoxybutane was used to investigate the crosslinking of proteins to the 16S and 23S RNA in Escherichia coli ribosomes. The crosslinking patterns from polysomes, accumulated in the absence and presence of oxytetracycline, as well as reassociated 70S ribosomes were compared. The 30S proteins: S3, S4, S5, S7, S8, S9, S12, S13, S14 and S18 were recovered crosslinked to the 16S RNA and the 50S: proteins L1, L2, L4, L13, L14-L21, L15, L16, L17, L18-L23, L19-22-24, L27 and L28 were recovered crosslinked to the 23S RNA, in all three associated states. Proteins crosslinked to the RNA of the heterologous subunit and therefore considered to be at or near the ribosomal subunit interface were, for all three states, proteins S1, S4, S6, S9, S12, S13, S14 and S18 from the small subunit and proteins L16, L17, L20 and L27 from the large subunit. Finally, the recovery of intrasubunit crosslinks was measured for the isolated subunits. Additional crosslinked complexes were observed between 16S RNA and S1, S2 as well as S6 from the 30S subunit; and between 23S RNA and L10, L11, L7/12 from the 50S subunit.

  5. DMS Footprinting of Structured RNAs and RNA-Protein Complexes

    PubMed Central

    Tijerina, Pilar; Mohr, Sabine; Russell, Rick

    2008-01-01

    We describe a protocol in which dimethyl sulfate (DMS) modification of the base-pairing faces of unpaired adenosine and cytidine nucleotides is used for structural analysis of RNAs and RNA-protein complexes (RNPs). The protocol is optimized for RNAs of small to moderate size (≤500 nucleotides). The RNA or RNP is first exposed to DMS under conditions that promote formation of the folded structure or complex, as well as ‘control’ conditions that do not allow folding or complex formation. The positions and extents of modification are then determined by primer extension, polyacrylamide gel electrophoresis (PAGE), and quantitative analysis. From changes in the extent of modification upon folding or protein binding (appearance of a ‘footprint’), it is possible to detect local changes in RNA secondary and tertiary structure, as well as the formation of RNA-protein contacts. This protocol takes 1.5–3 days to complete, depending on the type of analysis used. PMID:17948004

  6. A secretory kinase complex regulates extracellular protein phosphorylation

    PubMed Central

    Cui, Jixin; Xiao, Junyu; Tagliabracci, Vincent S; Wen, Jianzhong; Rahdar, Meghdad; Dixon, Jack E

    2015-01-01

    Although numerous extracellular phosphoproteins have been identified, the protein kinases within the secretory pathway have only recently been discovered, and their regulation is virtually unexplored. Fam20C is the physiological Golgi casein kinase, which phosphorylates many secreted proteins and is critical for proper biomineralization. Fam20A, a Fam20C paralog, is essential for enamel formation, but the biochemical function of Fam20A is unknown. Here we show that Fam20A potentiates Fam20C kinase activity and promotes the phosphorylation of enamel matrix proteins in vitro and in cells. Mechanistically, Fam20A is a pseudokinase that forms a functional complex with Fam20C, and this complex enhances extracellular protein phosphorylation within the secretory pathway. Our findings shed light on the molecular mechanism by which Fam20C and Fam20A collaborate to control enamel formation, and provide the first insight into the regulation of secretory pathway phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.06120.001 PMID:25789606

  7. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins

    PubMed Central

    Tiong, Hung King; Hartson, Steven D.; Muriana, Peter M.

    2016-01-01

    The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins. PMID:27196934

  8. Development of a Split SNAP-CLIP Double Labeling System for Tracking Proteins Following Dissociation from Protein-Protein Complexes in Living Cells.

    PubMed

    Mie, Masayasu; Naoki, Tatsuhiko; Kobatake, Eiry

    2016-08-16

    The split SNAP-tag protein-fragment complementation assay (PCA) is a useful tool for imaging protein-protein interactions (PPIs) in living cells. In contrast to conventional methods employed for imaging PPIs, the split SNAP-tag PCA enables tracking of proteins following dissociation from protein-protein complexes. A limitation of this system, however, is that it only allows for labeling and tracking of one of the proteins forming the protein-protein complex. To track both proteins forming a protein-protein complex, each protein needs to be appropriately labeled. In this study, a split SNAP-CLIP double labeling system is developed and applied for tracking of each protein forming a protein-protein complex. As a proof-of concept, FM protein for PPIs and protein kinase C alpha (PKCα) for translocation are introduced to a split SNAP-CLIP double labeling system. The results show a split SNAP-CLIP double labeling system enables labeling of both proteins in a protein-protein complex and subsequent tracking of each of the proteins following dissociation from the protein-protein complexes in living cells.

  9. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    SciTech Connect

    Lipfert, Jan; Doniach, Sebastian; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

    2007-09-18

    Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of algorithms for the reconstruction of 3-D electron density maps from 1-D scattering profiles have made possible the generation of useful low-resolution molecular models from SAXS data. Furthermore, SAXS is well suited for the study of unfolded or partially folded conformational ensembles as a function of time or solution conditions. Here, we review recently developed algorithms for 3-D structure modeling and applications to protein complexes. Furthermore, we discuss the emerging use of SAXS as a tool to study membrane protein-detergent complexes. SAXS is proving useful to study the folding of functional RNA molecules, and finally we discuss uses of SAXS to study ensembles of denatured proteins.

  10. Modular Broad-Host-Range Expression Vectors for Single-Protein and Protein Complex Purification

    PubMed Central

    Fodor, Barna D.; Kovács, Ákos T.; Csáki, Róbert; Hunyadi-Gulyás, Éva; Klement, Éva; Maróti, Gergely; Mészáros, Lívia S.; Medzihradszky, Katalin F.; Rákhely, Gábor; Kovács, Kornél L.

    2004-01-01

    A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species. PMID:14766546

  11. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells

    PubMed Central

    Shivshankar, Pooja; Sanchez, Carlos; Rose, Lloyd F.; Orihuela, Carlos J.

    2009-01-01

    Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that mediates attachment to lung cells. It is a member of the Serine-rich repeat protein (SRRP) family and the largest bacterial protein known. PsrP production by S. pneumoniae was confirmed by immunoblotting and a truncated version of the protein was determined to be glycosylated. Using isogenic psrP mutants complemented with various PsrP constructs and competitive inhibition assays with recombinant proteins, we determined that PsrP requires an extended SRR2 domain for function and that adhesion is mediated through amino acids 273-341 of its Basic Region (BR) domain. Affinity chromatography, immunoprecipitation, ELISA, FACS, and immunofluorescent co-localization studies determined that PsrP binds to Keratin 10 (K10) on the surface of lung but not nasopharyngeal epithelial cells. Unglycosylated K10 bound to wild type but not psrP deficient pneumococci; suggesting that unlike other SRRPs, PsrP-mediated adhesion was independent of lectin activity. Finally, mice immunized with recombinant (r)PsrPBR had significantly less bacteria in their blood and improved survival versus controls following intranasal challenge. We conclude that the BR domain of PsrP binds to K10 in a lectin-independent manner; that K10 is expressed on lung cells; and that vaccination with rPsrPBR is protective against pneumococcal disease. PMID:19627498

  12. Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

    PubMed Central

    Tanny, Jason C.; Kirkpatrick, Donald S.; Gerber, Scott A.; Gygi, Steven P.; Moazed, Danesh

    2004-01-01

    Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo. PMID:15282295

  13. Biodegradation of the chitin-protein complex in crustacean cuticle

    USGS Publications Warehouse

    Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.

    1998-01-01

    Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative

  14. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes.

    PubMed

    Kühlmann, U C; Pommer, A J; Moore, G R; James, R; Kleanthous, C

    2000-09-01

    Bacteria producing endonuclease colicins are protected against their cytotoxic activity by virtue of a small immunity protein that binds with high affinity and specificity to inactivate the endonuclease. DNase binding by the immunity protein occurs through a "dual recognition" mechanism in which conserved residues from helix III act as the binding-site anchor, while variable residues from helix II define specificity. We now report the 1.7 A crystal structure of the 24.5 kDa complex formed between the endonuclease domain of colicin E9 and its cognate immunity protein Im9, which provides a molecular rationale for this mechanism. Conserved residues of Im9 form a binding-energy hotspot through a combination of backbone hydrogen bonds to the endonuclease, many via buried solvent molecules, and hydrophobic interactions at the core of the interface, while the specificity-determining residues interact with corresponding specificity side-chains on the enzyme. Comparison between the present structure and that reported recently for the colicin E7 endonuclease domain in complex with Im7 highlights how specificity is achieved by very different interactions in the two complexes, predominantly hydrophobic in nature in the E9-Im9 complex but charged in the E7-Im7 complex. A key feature of both complexes is the contact between a conserved tyrosine residue from the immunity proteins (Im9 Tyr54) with a specificity residue on the endonuclease directing it toward the specificity sites of the immunity protein. Remarkably, this tyrosine residue and its neighbour (Im9 Tyr55) are the pivots of a 19 degrees rigid-body rotation that relates the positions of Im7 and Im9 in the two complexes. This rotation does not affect conserved immunity protein interactions with the endonuclease but results in different regions of the specificity helix being presented to the enzyme.

  15. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    SciTech Connect

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S. E-mail: mkukrishna@rediffmail.com

    2005-08-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V{sub M}) of 3.3 Å{sup 3} Da{sup −1}, corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin.

  16. Contractile vacuole complex--its expanding protein inventory.

    PubMed

    Plattner, Helmut

    2013-01-01

    The contractile vacuole complex (CVC) of some protists serves for the osmotic equilibration of water and ions, notably Ca(2+), by chemiosmotic exploitation of a H(+) gradient generated by the organelle-resident V-type H(+)-ATPase. Ca(2+) is mostly extruded, but there is also some reflux into the cytosol via Ca(2+)-release channels. Most data available are from Dictyostelium and Paramecium. In Paramecium, the major parts of CVC contain several v-/R-SNARE (synaptobrevins) and t-/Q-SNARE (syntaxins) proteins. This is complemented by Rab-type GTPases (shown in Tetrahymena) and exocyst components (Chlamydomonas). All this reflects a multitude of membrane interactions and fusion processes. Ca(2+)/H(+) and other exchangers are to be postulated, as are aquaporins and mechanosensitive Ca(2+) channels. From the complexity of the organelle, many more proteins may be expected. For instance, the pore is endowed with its own set of proteins. We may now envisage the regulation of membrane dynamics (reversible tubulation) and the epigenetic control of organelle shape, size and positioning. New aspects about organelle function and biogenesis are sketched in Section 7. The manifold regulators currently known from CVC suggest the cooperation of widely different mechanisms to maintain its dynamic function and to drive its biogenesis.

  17. Assembly and solution structure of the core retromer protein complex.

    PubMed

    Norwood, Suzanne J; Shaw, Daniel J; Cowieson, Nathan P; Owen, David J; Teasdale, Rohan D; Collins, Brett M

    2011-01-01

    Retromer is a peripheral membrane protein complex that has pleiotropic roles in endosomal membrane trafficking. The core of retromer possesses three subunits, VPS35, VPS29 and VPS26, that play different roles in binding to cargo, regulatory proteins and complex stabilization. We have performed an investigation of the thermodynamics of core retromer assembly using isothermal titration calorimetry (ITC) demonstrating that VPS35 acts as the central subunit to which VPS29 and VPS26 bind independently. Furthermore, we confirm that the conserved PRLYL motif of the large VPS35 subunit is critical for direct VPS26 interaction. Heat capacity measurements of VPS29 and VPS26 binding to VPS35 indicate extensive binding interfaces and suggest conformational alterations in VPS29 or VPS35 upon complex formation. Solution studies of the retromer core using small-angle X-ray scattering allow us to propose a model whereby VPS35 forms an extended platform with VPS29 and VPS26 bound at distal ends, with the potential for forming dimeric assemblies. PMID:20875039

  18. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  19. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  20. Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR.

    PubMed Central

    Clore, G. M.; Gronenborn, A. M.

    1994-01-01

    The recent development of a whole panoply of multidimensional heteronuclear-edited and -filtered NMR experiments has revolutionized the field of protein structure determination by NMR, making it possible to extend the methodology from the 10-kDa limit of conventional 2-dimensional NMR to systems up to potentially 35-40 kDa. The basic strategy for solving 3-dimensional structures of larger proteins and protein-ligand complexes in solution using 3- and 4-dimensional NMR spectroscopy is summarized, and the power of these methods is illustrated using 3 examples: interleukin-1 beta, the complex of calmodulin with a target peptide, and the specific complex of the transcription factor GATA-1 with its cognate DNA target site. PMID:8019409

  1. Modeling and fitting protein-protein complexes to predict change of binding energy

    PubMed Central

    Dourado, Daniel F.A.R.; Flores, Samuel Coulbourn

    2016-01-01

    It is possible to accurately and economically predict change in protein-protein interaction energy upon mutation (ΔΔG), when a high-resolution structure of the complex is available. This is of growing usefulness for design of high-affinity or otherwise modified binding proteins for therapeutic, diagnostic, industrial, and basic science applications. Recently the field has begun to pursue ΔΔG prediction for homology modeled complexes, but so far this has worked mostly for cases of high sequence identity. If the interacting proteins have been crystallized in free (uncomplexed) form, in a majority of cases it is possible to find a structurally similar complex which can be used as the basis for template-based modeling. We describe how to use MMB to create such models, and then use them to predict ΔΔG, using a dataset consisting of free target structures, co-crystallized template complexes with sequence identify with respect to the targets as low as 44%, and experimental ΔΔG measurements. We obtain similar results by fitting to a low-resolution Cryo-EM density map. Results suggest that other structural constraints may lead to a similar outcome, making the method even more broadly applicable. PMID:27173910

  2. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  3. Targeting protein–protein interactions in complexes organized by A kinase anchoring proteins

    PubMed Central

    Calejo, Ana I.; Taskén, Kjetil

    2015-01-01

    Cyclic AMP is a ubiquitous intracellular second messenger involved in the regulation of a wide variety of cellular processes, a majority of which act through the cAMP – protein kinase A (PKA) signaling pathway and involve PKA phosphorylation of specific substrates. PKA phosphorylation events are typically spatially restricted and temporally well controlled. A-kinase anchoring proteins (AKAPs) directly bind PKA and recruit it to specific subcellular loci targeting the kinase activity toward particular substrates, and thereby provide discrete spatiotemporal control of downstream phosphorylation events. AKAPs also scaffold other signaling molecules into multi-protein complexes that function as crossroads between different signaling pathways. Targeting AKAP coordinated protein complexes with high-affinity peptidomimetics or small molecules to tease apart distinct protein–protein interactions (PPIs) therefore offers important means to disrupt binding of specific components of the complex to better understand the molecular mechanisms involved in the function of individual signalosomes and their pathophysiological role. Furthermore, development of novel classes of small molecules involved in displacement of AKAP-bound signal molecules is now emerging. Here, we will focus on mechanisms for targeting PPI, disruptors that modulate downstream cAMP signaling and their role, especially in the heart. PMID:26441649

  4. GeLC-MS/MS Analysis of Complex Protein Mixtures

    PubMed Central

    Dzieciatkowska, Monika; Hill, Ryan; Hansen, Kirk C.

    2015-01-01

    Discovery-based proteomics has found its place in nearly every facet of biological research. A key objective of this approach is to maximize sequence coverage for proteins across a wide concentration range. Fractionating samples at the protein level is one of the most common ways to circumvent challenges due to sample complexity and improve proteome coverage. Of the available methods, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) is a robust and reproducible method for qualitative and quantitative proteomic analysis. Here we describe a general GeLC-MS/MS protocol and include technical advice and outline caveats to increase the probability of a successful analysis. PMID:24791981

  5. Force-induced remodelling of proteins and their complexes

    PubMed Central

    Chen, Yun; Radford, Sheena E; Brockwell, David J

    2015-01-01

    Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study. PMID:25710390

  6. Integration of genomic datasets to predict protein complexes in yeast.

    PubMed

    Jansen, Ronald; Lan, Ning; Qian, Jiang; Gerstein, Mark

    2002-01-01

    The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental strategies that aim to characterize gene function on a genomic scale. It is clear that the goal of functional genomics can only be achieved by integrating information and data sources from the variety of these different experiments. Integration of different data is thus an important challenge for bioinformatics. The integration of different data sources often helps to uncover non-obvious relationships between genes, but there are also two further benefits. First, it is likely that whenever information from multiple independent sources agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experiments, but also necessary for many of the results from genome-wide experiments since they are often confined to certain (although sizable) subsets of the genome. In this paper, we explore an example of such a data integration procedure. We focus on the prediction of membership in protein complexes for individual genes. For this, we recruit six different data sources that include expression profiles, interaction data, essentiality and localization information. Each of these data sources individually contains some weakly predictive information with respect to protein complexes, but we show how this prediction can be improved by combining all of them. Supplementary information is available at http:// bioinfo.mbb.yale.edu/integrate/interactions/. PMID:12836664

  7. The Complex Energy Landscape of the Protein IscU.

    PubMed

    Bothe, Jameson R; Tonelli, Marco; Ali, Ibrahim K; Dai, Ziqi; Frederick, Ronnie O; Westler, William M; Markley, John L

    2015-09-01

    IscU, the scaffold protein for iron-sulfur (Fe-S) cluster biosynthesis in Escherichia coli, traverses a complex energy landscape during Fe-S cluster synthesis and transfer. Our previous studies showed that IscU populates two interconverting conformational states: one structured (S) and one largely disordered (D). Both states appear to be functionally important because proteins involved in the assembly or transfer of Fe-S clusters have been shown to interact preferentially with either the S or D state of IscU. To characterize the complex structure-energy landscape of IscU, we employed NMR spectroscopy, small-angle x-ray scattering (SAXS), and differential scanning calorimetry. Results obtained for IscU at pH 8.0 show that its S state is maximally populated at 25°C and that heating or cooling converts the protein toward the D state. Results from NMR and DSC indicate that both the heat- and cold-induced S→D transitions are cooperative and two-state. Low-resolution structural information from NMR and SAXS suggests that the structures of the cold-induced and heat-induced D states are similar. Both states exhibit similar (1)H-(15)N HSQC spectra and the same pattern of peptidyl-prolyl peptide bond configurations by NMR, and both appear to be similarly expanded compared with the S state based on analysis of SAXS data. Whereas in other proteins the cold-denatured states have been found to be slightly more compact than the heat-denatured states, these two states occupy similar volumes in IscU.

  8. The Complex Energy Landscape of the Protein IscU

    PubMed Central

    Bothe, Jameson R.; Tonelli, Marco; Ali, Ibrahim K.; Dai, Ziqi; Frederick, Ronnie O.; Westler, William M.; Markley, John L.

    2015-01-01

    IscU, the scaffold protein for iron-sulfur (Fe-S) cluster biosynthesis in Escherichia coli, traverses a complex energy landscape during Fe-S cluster synthesis and transfer. Our previous studies showed that IscU populates two interconverting conformational states: one structured (S) and one largely disordered (D). Both states appear to be functionally important because proteins involved in the assembly or transfer of Fe-S clusters have been shown to interact preferentially with either the S or D state of IscU. To characterize the complex structure-energy landscape of IscU, we employed NMR spectroscopy, small-angle x-ray scattering (SAXS), and differential scanning calorimetry. Results obtained for IscU at pH 8.0 show that its S state is maximally populated at 25°C and that heating or cooling converts the protein toward the D state. Results from NMR and DSC indicate that both the heat- and cold-induced S→D transitions are cooperative and two-state. Low-resolution structural information from NMR and SAXS suggests that the structures of the cold-induced and heat-induced D states are similar. Both states exhibit similar 1H-15N HSQC spectra and the same pattern of peptidyl-prolyl peptide bond configurations by NMR, and both appear to be similarly expanded compared with the S state based on analysis of SAXS data. Whereas in other proteins the cold-denatured states have been found to be slightly more compact than the heat-denatured states, these two states occupy similar volumes in IscU. PMID:26331259

  9. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  10. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis

    PubMed Central

    Kern, Justin; Schneewind, Olaf

    2010-01-01

    Summary Microbial pathogens use adhesive surface proteins to bind to and interact with host tissues, events that are universal for the pathogenesis of infectious diseases. A surface adhesin of Bacillus anthracis, the causative agent of anthrax, required to mediate these steps has not been discovered. Previous work identified BslA, an S-layer protein, to be necessary and sufficient for adhesion of the anthrax vaccine strain, Bacillus anthracis Sterne, to host cells. Here we asked whether encapsulated bacilli require BslA for anthrax pathogenesis in guinea pigs. Compared with the highly virulent parent strain B. anthracis Ames, bslA mutants displayed a dramatic increase in the lethal dose and in mean time-to-death. Whereas all tissues of animals infected with B. anthracis Ames contained high numbers of bacilli, only few vegetative forms could be recovered from internal organs of animals infected with the bslA mutant. Surface display of BslA occurred at the poles of encapsulated bacilli and enabled the binding of vegetative forms to host cells. Together these results suggest that BslA functions as the surface adhesin of the anthrax pathogen B. anthracis strain Ames. PMID:19906175

  11. Identification of proteins that form specific complexes with the highly conserved protein Translin in Schizosaccharomyces pombe.

    PubMed

    Eliahoo, Elad; Litovco, Phyana; Ben Yosef, Ron; Bendalak, Keren; Ziv, Tamar; Manor, Haim

    2014-04-01

    Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin-TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin-TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes ¹⁵N and ¹⁴N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein-protein interactions and provides a clear distinction between false positive vs. truly interacting proteins.

  12. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    PubMed

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs. PMID:27499021

  13. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    SciTech Connect

    Nielsen, Anders Lade

    2009-10-23

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of {gamma}-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as {beta}-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  14. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    PubMed

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.

  15. Adhesins and host serum factors drive Yop translocation by yersinia into professional phagocytes during animal infection.

    PubMed

    Maldonado-Arocho, Francisco J; Green, Carlos; Fisher, Michael L; Paczosa, Michelle K; Mecsas, Joan

    2013-01-01

    Yersinia delivers Yops into numerous types of cultured cells, but predominantly into professional phagocytes and B cells during animal infection. The basis for this cellular tropism during animal infection is not understood. This work demonstrates that efficient and specific Yop translocation into phagocytes by Yersinia pseudotuberculosis (Yptb) is a multi-factorial process requiring several adhesins and host complement. When WT Yptb or a multiple adhesin mutant strain, ΔailΔinvΔyadA, colonized tissues to comparable levels, ΔailΔinvΔyadA translocated Yops into significantly fewer cells, demonstrating that these adhesins are critical for translocation into high numbers of cells. However, phagocytes were still selectively targeted for translocation, indicating that other bacterial and/or host factors contribute to this function. Complement depletion showed that complement-restricted infection by ΔailΔinvΔyadA but not WT, indicating that adhesins disarm complement in mice either by prevention of opsonophagocytosis or by suppressing production of pro-inflammatory cytokines. Furthermore, in the absence of the three adhesins and complement, the spectrum of cells targeted for translocation was significantly altered, indicating that Yersinia adhesins and complement direct Yop translocation into neutrophils during animal infection. In summary, these findings demonstrate that in infected tissues, Yersinia uses adhesins both to disarm complement-dependent killing and to efficiently translocate Yops into phagocytes.

  16. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  17. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  18. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria

    PubMed Central

    Berne, Cécile; Ducret, Adrien; Hardy, Gail G; Brun, Yves V.

    2015-01-01

    During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending upon the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or non-specific adhesion under various environmental conditions. This chapter will review the recent advances in our understanding of the secretion, assembly and regulation of the bacterial adhesins during biofilm formation with a particular emphasis on the fimbrial, non-fimbrial and discrete polysaccharide adhesins in Gram-negative bacteria. PMID:26350310

  19. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs

    PubMed Central

    Schneider, Tim; Hung, Lee-Hsueh; Schreiner, Silke; Starke, Stefan; Eckhof , Heinrich; Rossbach, Oliver; Reich, Stefan; Medenbach, Jan; Bindereif , Albrecht

    2016-01-01

    Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component. PMID:27510448

  20. CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs.

    PubMed

    Schneider, Tim; Hung, Lee-Hsueh; Schreiner, Silke; Starke, Stefan; Eckhof, Heinrich; Rossbach, Oliver; Reich, Stefan; Medenbach, Jan; Bindereif, Albrecht

    2016-01-01

    Circular RNAs (circRNAs) constitute a new class of noncoding RNAs in higher eukaryotes generated from pre-mRNAs by alternative splicing. Here we investigated in mammalian cells the association of circRNAs with proteins. Using glycerol gradient centrifugation, we characterized in cell lysates circRNA-protein complexes (circRNPs) of distinct sizes. By polysome-gradient fractionation we found no evidence for efficient translation of a set of abundant circRNAs in HeLa cells. To identify circRNPs with a specific protein component, we focused on IMP3 (IGF2BP3, insulin-like growth factor 2 binding protein 3), a known tumor marker and RNA-binding protein. Combining RNA-seq analysis of IMP3-co-immunoprecipitated RNA and filtering for circular-junction reads identified a set of IMP3-associated circRNAs, which were validated and characterized. In sum, our data suggest that specific circRNP families exist defined by a common protein component. In addition, this provides a general approach to identify circRNPs with a given protein component. PMID:27510448

  1. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis.

    PubMed

    Gonzalez, Nathalie; Pauwels, Laurens; Baekelandt, Alexandra; De Milde, Liesbeth; Van Leene, Jelle; Besbrugge, Nienke; Heyndrickx, Ken S; Cuéllar Pérez, Amparo; Durand, Astrid Nagels; De Clercq, Rebecca; Van De Slijke, Eveline; Vanden Bossche, Robin; Eeckhout, Dominique; Gevaert, Kris; Vandepoele, Klaas; De Jaeger, Geert; Goossens, Alain; Inzé, Dirk

    2015-08-01

    Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls. PMID:26232487

  2. A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis

    PubMed Central

    Gonzalez, Nathalie; Pauwels, Laurens; Baekelandt, Alexandra; De Milde, Liesbeth; Van Leene, Jelle; Besbrugge, Nienke; Heyndrickx, Ken S.; Pérez, Amparo Cuéllar; Durand, Astrid Nagels; De Clercq, Rebecca; Van De Slijke, Eveline; Vanden Bossche, Robin; Eeckhout, Dominique; Gevaert, Kris; Vandepoele, Klaas; De Jaeger, Geert; Goossens, Alain; Inzé, Dirk

    2015-01-01

    Cell number is an important determinant of final organ size. In the leaf, a large proportion of cells are derived from the stomatal lineage. Meristemoids, which are stem cell-like precursor cells, undergo asymmetric divisions, generating several pavement cells adjacent to the two guard cells. However, the mechanism controlling the asymmetric divisions of these stem cells prior to differentiation is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only transcriptional regulators known to negatively regulate meristemoid division. PPD proteins interact with KIX8 and KIX9, which act as adaptor proteins for the corepressor TOPLESS. D3-type cyclin encoding genes were identified among direct targets of PPD2, being negatively regulated by PPDs and KIX8/9. Accordingly, kix8 kix9 mutants phenocopied PPD loss-of-function producing larger leaves resulting from increased meristemoid amplifying divisions. The identified conserved complex might be specific for leaf growth in the second dimension, since it is not present in Poaceae (grasses), which also lack the developmental program it controls. PMID:26232487

  3. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.

    PubMed

    Heim, Markus; Römer, Lin; Scheibel, Thomas

    2010-01-01

    Biopolymers fulfil a variety of different functions in nature. They conduct various processes inside and outside cells and organisms, with a functionality ranging from storage of information to stabilization, protection, shaping, transport, cellular division, or movement of whole organisms. Within the plethora of biopolymers, the most sophisticated group is of proteinaceous origin: the cytoskeleton of a cell is made of protein filaments that aid in pivotal processes like intracellular transport, movement, and cell division; geckos use a distinct arrangement of keratin-like filaments on their toes which enable them to walk up smooth surfaces, such as walls, and even upside down across ceilings; and spiders spin silks that are extra-corporally used for protection of offspring and construction of complex prey traps. The following tutorial review describes the hierarchical organization of protein fibers, using spider dragline silk as an example. The properties of a dragline silk thread originate from the strictly controlled assembly of the underlying protein chains. The assembly procedure leads to protein fibers showing a complex hierarchical organization comprising three different structural phases. This structural organization is responsible for the outstanding mechanical properties of individual fibers, which out-compete even those of high-performance artificial fibers like Kevlar. Web-weaving spiders produce, in addition to dragline silk, other silks with distinct properties, based on slightly variant constituent proteins--a feature that allows construction of highly sophisticated spider webs with well designed architectures and with optimal mechanical properties for catching prey.

  4. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex.

    PubMed

    Dyall, Sabrina D; Yan, Weihong; Delgadillo-Correa, Maria G; Lunceford, Adam; Loo, Joseph A; Clarke, Catherine F; Johnson, Patricia J

    2004-10-28

    Trichomonas vaginalis is a unicellular microaerophilic eukaryote that lacks mitochondria yet contains an alternative organelle, the hydrogenosome, involved in pyruvate metabolism. Pathways between the two organelles differ substantially: in hydrogenosomes, pyruvate oxidation is catalysed by pyruvate:ferredoxin oxidoreductase (PFOR), with electrons donated to an [Fe]-hydrogenase which produces hydrogen. ATP is generated exclusively by substrate-level phosphorylation in hydrogenosomes, as opposed to oxidative phosphorylation in mitochondria. PFOR and hydrogenase are found in eubacteria and amitochondriate eukaryotes, but not in typical mitochondria. Analyses of mitochondrial genomes indicate that mitochondria have a single endosymbiotic origin from an alpha-proteobacterial-type progenitor. The absence of a genome in trichomonad hydrogenosomes precludes such comparisons, leaving the endosymbiotic history of this organelle unclear. Although phylogenetic reconstructions of a few proteins indicate that trichomonad hydrogenosomes share a common origin with mitochondria, others do not. Here we describe a novel NADH dehydrogenase module of respiratory complex I that is coupled to the central hydrogenosomal fermentative pathway to form a hydrogenosomal oxidoreductase complex that seems to function independently of quinones. Phylogenetic analyses of hydrogenosomal complex I-like proteins Ndh51 and Ndh24 reveal that neither has a common origin with mitochondrial homologues. These studies argue against a vertical origin of trichomonad hydrogenosomes from the proto-mitochondrial endosymbiont.

  5. Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex.

    PubMed

    Dyall, Sabrina D; Yan, Weihong; Delgadillo-Correa, Maria G; Lunceford, Adam; Loo, Joseph A; Clarke, Catherine F; Johnson, Patricia J

    2004-10-28

    Trichomonas vaginalis is a unicellular microaerophilic eukaryote that lacks mitochondria yet contains an alternative organelle, the hydrogenosome, involved in pyruvate metabolism. Pathways between the two organelles differ substantially: in hydrogenosomes, pyruvate oxidation is catalysed by pyruvate:ferredoxin oxidoreductase (PFOR), with electrons donated to an [Fe]-hydrogenase which produces hydrogen. ATP is generated exclusively by substrate-level phosphorylation in hydrogenosomes, as opposed to oxidative phosphorylation in mitochondria. PFOR and hydrogenase are found in eubacteria and amitochondriate eukaryotes, but not in typical mitochondria. Analyses of mitochondrial genomes indicate that mitochondria have a single endosymbiotic origin from an alpha-proteobacterial-type progenitor. The absence of a genome in trichomonad hydrogenosomes precludes such comparisons, leaving the endosymbiotic history of this organelle unclear. Although phylogenetic reconstructions of a few proteins indicate that trichomonad hydrogenosomes share a common origin with mitochondria, others do not. Here we describe a novel NADH dehydrogenase module of respiratory complex I that is coupled to the central hydrogenosomal fermentative pathway to form a hydrogenosomal oxidoreductase complex that seems to function independently of quinones. Phylogenetic analyses of hydrogenosomal complex I-like proteins Ndh51 and Ndh24 reveal that neither has a common origin with mitochondrial homologues. These studies argue against a vertical origin of trichomonad hydrogenosomes from the proto-mitochondrial endosymbiont. PMID:15510149

  6. Identifying dynamic protein complexes based on gene expression profiles and PPI networks.

    PubMed

    Li, Min; Chen, Weijie; Wang, Jianxin; Wu, Fang-Xiang; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of "closeness" and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  7. Docking and scoring protein complexes: CAPRI 3rd Edition.

    PubMed

    Lensink, Marc F; Méndez, Raúl; Wodak, Shoshana J

    2007-12-01

    The performance of methods for predicting protein-protein interactions at the atomic scale is assessed by evaluating blind predictions performed during 2005-2007 as part of Rounds 6-12 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). These Rounds also included a new scoring experiment, where a larger set of models contributed by the predictors was made available to groups developing scoring functions. These groups scored the uploaded set and submitted their own best models for assessment. The structures of nine protein complexes including one homodimer were used as targets. These targets represent biologically relevant interactions involved in gene expression, signal transduction, RNA, or protein processing and membrane maintenance. For all the targets except one, predictions started from the experimentally determined structures of the free (unbound) components or from models derived by homology, making it mandatory for docking methods to model the conformational changes that often accompany association. In total, 63 groups and eight automatic servers, a substantial increase from previous years, submitted docking predictions, of which 1994 were evaluated here. Fifteen groups submitted 305 models for five targets in the scoring experiment. Assessment of the predictions reveals that 31 different groups produced models of acceptable and medium accuracy-but only one high accuracy submission-for all the targets, except the homodimer. In the latter, none of the docking procedures reproduced the large conformational adjustment required for correct assembly, underscoring yet again that handling protein flexibility remains a major challenge. In the scoring experiment, a large fraction of the groups attained the set goal of singling out the correct association modes from incorrect solutions in the limited ensembles of contributed models. But in general they seemed unable to identify the best models, indicating that current scoring

  8. CCM1 and the second life of proteins in adhesion complexes

    PubMed Central

    van den Berg, Maaike CW; Burgering, Boudewijn MT

    2014-01-01

    It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life. PMID:24714220

  9. Quantitative characterization of protein-protein complexes involved in base excision DNA repair.

    PubMed

    Moor, Nina A; Vasil'eva, Inna A; Anarbaev, Rashid O; Antson, Alfred A; Lavrik, Olga I

    2015-07-13

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein-protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process.

  10. [Role of Bacterial Adhesin RAPA1 in Formation of Efficient Symbiosis of Rhizobium leguminosarum with Bean Plants].

    PubMed

    Nigmatullina, L R; Lavina, A M; Vershinina, Z R; Baimiev, Al Kh

    2015-01-01

    Bacterial adhesins, the proteins responsible for attachment of plant growth-promoting rhizobacteria to plant roots, are involved in formation of stable associative symbioses. In the present work enhanced expression of the rapA1 adhesin gene in Rhizobium leguminosarum PVu5 was shown to improve the efficiency of nodulation on bean roots inoculated with the modified strain. The rapA1 gene was cloned into the pJN105Turbo plasmid, this construct was used for transformation of R. leguminosarum PVu5, bean plants were inoculated by this transgenic strain, and efficiency of root nodule formation was determined. In the plants treated with rapA1-transgenic rhizobia, the number of root nodules was on average two times higher than in the plants inoculated with the original strain. Aggregation of R. leguminosarum was achieved when the rapA1 gene expression was enhanced either in rhizobia or in the co-cultured modified strain E. coli pJN105TurboRapA1.

  11. In vitro effect of temperature on the conformational structure and collagen binding of SdrF, a Staphylococcus epidermidis adhesin.

    PubMed

    Di Poto, Antonella; Papi, Massimiliano; Trivedi, Sheetal; Maiorana, Alessandro; Gavazzo, Paola; Vassalli, Massimo; Lowy, Franklin D; De Spirito, Marco; Montanaro, Lucio; Imbriani, Marcello; Arciola, Carla Renata; Visai, Livia

    2015-07-01

    Staphylococcus epidermidis is the leading etiologic agent of device-related infections. S. epidermidis is able to bind, by means of the adhesins of its cell wall, the host matrix proteins filming the artificial surfaces. Thence, bacteria cling to biomaterials and infection develops. The effect of temperature on integrity, structure, and biological activity of the collagen-binding adhesin (SdrF) of S. epidermidis has been here investigated. By cloning in E. coli XL1-Blue, a recombinant of the SdrF binding domain B (rSdrFB), carrying an N-terminal polyhistidine, was obtained. Purification was by HiTrap(TM) Chelating HP columns. Assessment of purity, molecular weight, and integrity was by SDS-PAGE. The rSdrFB-collagen binding was investigated by ELISA. A full three-dimensional reconstruction of rSdrFB was achieved by small-angle X-ray scattering (SAXS). At 25 °C, rSdrFB bound to type I collagen in a dose-dependent, saturable manner, with a Kd of 2.48 × 10(-7) M. When temperature increased from 25 to 37 °C, a strong conformational change occurred, together with the abolition of the rSdrFB-collagen binding. The rSdrFB integrity was not affected by temperature variation. SdrFB-collagen binding is switched on/off depending on the temperature. Implications with the infection pathogenesis are enlightened.

  12. [Role of Bacterial Adhesin RAPA1 in Formation of Efficient Symbiosis of Rhizobium leguminosarum with Bean Plants].

    PubMed

    Nigmatullina, L R; Lavina, A M; Vershinina, Z R; Baimiev, Al Kh

    2015-01-01

    Bacterial adhesins, the proteins responsible for attachment of plant growth-promoting rhizobacteria to plant roots, are involved in formation of stable associative symbioses. In the present work enhanced expression of the rapA1 adhesin gene in Rhizobium leguminosarum PVu5 was shown to improve the efficiency of nodulation on bean roots inoculated with the modified strain. The rapA1 gene was cloned into the pJN105Turbo plasmid, this construct was used for transformation of R. leguminosarum PVu5, bean plants were inoculated by this transgenic strain, and efficiency of root nodule formation was determined. In the plants treated with rapA1-transgenic rhizobia, the number of root nodules was on average two times higher than in the plants inoculated with the original strain. Aggregation of R. leguminosarum was achieved when the rapA1 gene expression was enhanced either in rhizobia or in the co-cultured modified strain E. coli pJN105TurboRapA1. PMID:26964360

  13. Heterodimeric protein complex identification by naïve Bayes classifiers

    PubMed Central

    2013-01-01

    Background Protein complexes are basic cellular entities that carry out the functions of their components. It can be found that in databases of protein complexes of yeast like CYC2008, the major type of known protein complexes is heterodimeric complexes. Although a number of methods for trying to predict sets of proteins that form arbitrary types of protein complexes simultaneously have been proposed, it can be found that they often fail to predict heterodimeric complexes. Results In this paper, we have designed several features characterizing heterodimeric protein complexes based on genomic data sets, and proposed a supervised-learning method for the prediction of heterodimeric protein complexes. This method learns the parameters of the features, which are embedded in the naïve Bayes classifier. The log-likelihood ratio derived from the naïve Bayes classifier with the parameter values obtained by maximum likelihood estimation gives the score of a given pair of proteins to predict whether the pair is a heterodimeric complex or not. A five-fold cross-validation shows good performance on yeast. The trained classifiers also show higher predictability than various existing algorithms on yeast data sets with approximate and exact matching criteria. Conclusions Heterodimeric protein complex prediction is a rather harder problem than heteromeric protein complex prediction because heterodimeric protein complex is topologically simpler. However, it turns out that by designing features specialized for heterodimeric protein complexes, predictability of them can be improved. Thus, the design of more sophisticate features for heterodimeric protein complexes as well as the accumulation of more accurate and useful genome-wide data sets will lead to higher predictability of heterodimeric protein complexes. Our tool can be downloaded from http://imi.kyushu-u.ac.jp/~om/. PMID:24299017

  14. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex.

    PubMed Central

    Gell, D; Jackson, S P

    1999-01-01

    In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80. PMID:10446239

  15. Atomistic Simulation of Lignocellulosic Biomass and Associated Cellulosomal Protein Complexes

    SciTech Connect

    Petridis, Loukas; Crowley, Michael F; Smith, Jeremy C

    2010-01-01

    Computer simulations have been performed to obtain an atomic-level understanding of lignocellulose structure and the assembly of its associated cellulosomal protein complexes. First, a CHARMM molecular mechanics force field for lignin is derived and validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this work provides the basis for full simulations of lignocellulose. Second, the underlying molecular mechanism governing the assembly of various cellulosomal modules is investigated by performing a novel free-energy calculation of the cohesin-dockerin dissociation. Our calculation indicates a free-energy barrier of ~17 kcal/mol and further reveals a stepwise dissociation pathway involving both the central -sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the -barrel structure.

  16. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    PubMed Central

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-01-01

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model. PMID:27763556

  17. Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (Asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins.

    PubMed Central

    Yu, L; Lee, K K; Hodges, R S; Paranchych, W; Irvin, R T

    1994-01-01

    Pseudomonas aeruginosa, a gram-negative bacterium, and Candida albicans, a dimorphic yeast, are evolutionarily distant microorganisms which can utilize filamentous structures termed pili and fimbriae, respectively, to mediate adherence to glycosphingolipids (asialoganglioside-GM1) receptors. The mechanism of adherence to glycosphingolipid receptors was investigated in these studies. By using monoclonal antibodies (MAbs) against purified pili of P. aeruginosa PAK (PK99H) and monospecific anti-peptide antibodies against the PAK pilin peptides [anti-PAK(128-144) and anti-PAK(134-140)], we demonstrated that these antibodies agglutinated C. albicans whole cells and cross-reacted with C. albicans fimbriae in immunoblots. A control MAb, PKL1, and anti-PAK(75-84) peptide antibodies failed to agglutinate C. albicans whole cells or cross-react with the fimbrial proteins. Conversely, the anti-C. albicans fimbrial MAb Fm16, but not Fm34, agglutinated P. aeruginosa PAK whole cells and Western blots (immunoblots). The interactions between PK99H and Fm16 and their respective homologous antigens were competitively inhibited by heterologous antigens; this demonstrated that the interactions between the antibodies and the heterologous antigens, i.e., PK99H with C. albicans fimbriae and Fm16 with P. aeruginosa pili, were highly specific and suggested that both adhesins share a common antigenic determinant. The immunological cross-reactivity between Fm16 and P. aeruginosa PAK pilin is localized onto the PAK(134-140) region as shown by a competitive enzyme-linked immunosorbent assay. The PAK(134-140) region of PAK pilin contains the epitope recognized by PK99H and also constitutes part of the receptor-binding domain of the pilus adhesin. Thus, the results from these studies suggest that common cell surface receptors are recognized by the P. aeruginosa and C. albicans adhesins because of a conserved receptor-binding domain on the adhesins. Images PMID:7525482

  18. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences.

    PubMed Central

    Garcia, M I; Labigne, A; Le Bouguenec, C

    1994-01-01

    The afa gene clusters encode afimbrial adhesins (AFAs) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains. The plasmid-borne afa-3 gene cluster is responsible for the biosynthesis of the AFA-III adhesin that belongs to the Dr family of hemagglutinins. Reported in this work is the nucleotide sequence of the 9.2-kb insert of the recombinant plasmid pILL61, which contains the afa-3 gene cluster cloned from a cystitis-associated E. coli strain (A30). The afa-3 gene cluster was shown to contain six open reading frames, designated afaA to afaF. It was organized in two divergent transcriptional units. Five of the six Afa products showed marked homologies with proteins encoded by previously described adhesion systems that allowed us to attribute to each of them a putative function in the biogenesis of the AFA-III adhesin. AfaE was identified as the structural adhesin product, whereas AfaB and AfaC were recognized as periplasmic chaperone and outer membrane anchor proteins, respectively. The AfaA and AfaF products were shown to be homologous to the PapI-PapB transcriptional regulatory proteins. No function could be attributed to the AfaD product, the gene of which was previously shown to be dispensable for the synthesis of a functional adhesin. Upstream of the afa-3 gene cluster, a 1.2-kb region was found to be 96% identical to the RepFIB sequence of one of the enterotoxigenic E. coli plasmids (P307), suggesting a common ancestor plasmid. This region contains an integrase-like gene (int). Sequence analysis revealed the presence of an IS1 element between the int gene and the afa-3 gene cluster. Two other IS1 elements were detected and located in the vicinity of the afa-3 gene cluster by hybridization experiments. The afa-3 gene cluster was therefore found to be flanked by two IS1 elements in direct orientation and two in opposite orientations. The afa-3 gene cluster, flanked by two directly oriented IS1 elements, was shown to translocate

  19. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed Central

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-01-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions. PMID:10049302

  20. RNA and protein complexes of trp RNA-binding attenuation protein characterized by mass spectrometry.

    PubMed

    Akashi, Satoko; Watanabe, Masahiro; Heddle, Jonathan G; Unzai, Satoru; Park, Sam-Yong; Tame, Jeremy R H

    2009-03-15

    We have characterized both wild-type and mutant TRAP (trp RNA-binding attenuation protein) from Bacillus stearothermophilus , and their complexes with RNA or its regulator anti-TRAP protein (AT), by electrospray ionization mass spectrometry (ESI-MS). Wild-type TRAP mainly forms homo-11mer rings. The mutant used carries three copies of the TRAP monomer on a single polypeptide chain so that it associates to form a 12mer ring with four polypeptide molecules. Mass spectra showed that both the wild-type TRAP 11mer and the mutant TRAP 12mer can bind a cognate single-stranded RNA molecule with a molar ratio of 1:1. The crystal structure of wild-type TRAP complexed with AT shows a TRAP 12mer ring surrounded by six AT trimers. However, nanoESI-MS of wild-type TRAP mixed with AT shows four species with different binding stoichiometries, and the complex observed by crystallography represents only a minor species in solution; most of the TRAP remains in an 11mer ring form. Mass spectra of mutant TRAP showed only a single species, TRAP 12mer + six copies of AT trimer, which is observed by crystallography. These results suggest that crystallization selects only the most symmetrical TRAP-AT complex from the solution, whereas ESI-MS can take a "snapshot" of all the species in solution. PMID:19219981

  1. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  2. Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli.

    PubMed

    Torres, Alfredo G; Tutt, Christopher B; Duval, Lisabeth; Popov, Vsevolod; Nasr, Abdelhakim Ben; Michalski, Jane; Scaletsky, Isabel C A

    2007-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are frequently implicated in infant diarrhoea in developing countries. Not much is known about the adherence properties of aEPEC; however, it has been shown that these strains can adhere to tissue-cultured cells. A chromosomal region designated the locus for diffuse adherence (LDA) confers aEPEC strain 22 the ability to adhere to culture cells. LDA is an afimbrial adhesin that contains a major subunit, LdaG, whose expression is induced on MacConkey agar at 37 degrees C. We hypothesized that the bile salts found in this culture media induce the expression of LdaG. Strain 22 and the LdaG mutant were grown in Luria-Bertani (LB) media in the presence or absence of bile salts and heat-extracted surface-expressed proteins were separated by SDS-PAGE to determine whether expression of the 25 kDa LdaG protein was induced. Western blot analysis with anti-LdaG confirmed that bile salts enhance LdaG expression at 37 degrees C. Adhesion assays on HeLa cells revealed that adhesion in a diffuse pattern of strain 22 increased in the presence of bile salts. We also confirmed that expression of the localized adherence pattern observed in the ldaG mutant required the presence of a large cryptic plasmid found in strain 22 and that this phenotype was not induced by bile salts. At the transcriptional level, the ldaG-lacZ promoter fusion displayed maximum beta-galactosidase activity when the parent strain was grown in LB supplemented with bile salts. Fluorescence Activated Cell Sorting analysis, immunogold labelling electron microscopy and immunofluorescence using anti-LdaG sera confirmed that LDA is a bile salts-inducible surface-expressed afimbrial adhesin. Finally, LdaG expression was induced in presence of individual bile salts but not by other detergents. We concluded that bile salts increase expression of LDA, conferring a diffuse adherence pattern and having an impact on the adhesion properties of this aEPEC strain.

  3. Complex interactions of HIV-1 nucleocapsid protein with oligonucleotides.

    PubMed

    Fisher, Robert J; Fivash, Matthew J; Stephen, Andrew G; Hagan, Nathan A; Shenoy, Shilpa R; Medaglia, Maxine V; Smith, Lindsey R; Worthy, Karen M; Simpson, John T; Shoemaker, Robert; McNitt, Karen L; Johnson, Donald G; Hixson, Catherine V; Gorelick, Robert J; Fabris, Daniele; Henderson, Louis E; Rein, Alan

    2006-01-01

    The HIV-1 nucleocapsid (NC) protein is a small, basic protein containing two retroviral zinc fingers. It is a highly active nucleic acid chaperone; because of this activity, it plays a crucial role in virus replication as a cofactor during reverse transcription, and is probably important in other steps of the replication cycle as well. We previously reported that NC binds with high-affinity to the repeating sequence d(TG)n. We have now analyzed the interaction between NC and d(TG)4 in considerable detail, using surface plasmon resonance (SPR), tryptophan fluorescence quenching (TFQ), fluorescence anisotropy (FA), isothermal titration calorimetry (ITC) and electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). Our results show that the interactions between these two molecules are surprisngly complex: while the K(d) for binding of a single d(TG)4 molecule to NC is only approximately 5 nM in 150 mM NaCl, a single NC molecule is capable of interacting with more than one d(TG)4 molecule, and conversely, more than one NC molecule can bind to a single d(TG)4 molecule. The strengths of these additional binding reactions are quantitated. The implications of this multivalency for the functions of NC in virus replication are discussed.

  4. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  5. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.

    PubMed

    Li, Zhan-Chao; Lai, Yan-Hua; Chen, Li-Li; Zhou, Xuan; Dai, Zong; Zou, Xiao-Yong

    2012-03-01

    In the post-genomic era, one of the most important and challenging tasks is to identify protein complexes and further elucidate its molecular mechanisms in specific biological processes. Previous computational approaches usually identify protein complexes from protein interaction network based on dense sub-graphs and incomplete priori information. Additionally, the computational approaches have little concern about the biological properties of proteins and there is no a common evaluation metric to evaluate the performance. So, it is necessary to construct novel method for identifying protein complexes and elucidating the function of protein complexes. In this study, a novel approach is proposed to identify protein complexes using random forest and topological structure. Each protein complex is represented by a graph of interactions, where descriptor of the protein primary structure is used to characterize biological properties of protein and vertex is weighted by the descriptor. The topological structure features are developed and used to characterize protein complexes. Random forest algorithm is utilized to build prediction model and identify protein complexes from local sub-graphs instead of dense sub-graphs. As a demonstration, the proposed approach is applied to protein interaction data in human, and the satisfied results are obtained with accuracy of 80.24%, sensitivity of 81.94%, specificity of 80.07%, and Matthew's correlation coefficient of 0.4087 in 10-fold cross-validation test. Some new protein complexes are identified, and analysis based on Gene Ontology shows that the complexes are likely to be true complexes and play important roles in the pathogenesis of some diseases. PCI-RFTS, a corresponding executable program for protein complexes identification, can be acquired freely on request from the authors.

  6. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis.

    PubMed Central

    Patti, J M; Bremell, T; Krajewska-Pietrasik, D; Abdelnour, A; Tarkowski, A; Rydén, C; Höök, M

    1994-01-01

    The importance of a collagen-binding adhesin in the pathogenesis of septic arthritis has been examined by comparing the virulence of two sets of Staphylococcus aureus mutants in an animal model. Collagen adhesin-negative mutant PH100 was constructed by replacing the chromosomal collagen adhesin gene (cna) in a clinical strain, Phillips, with an inactivated copy of the gene. Collagen adhesin-positive mutant S. aureus CYL574 was generated by introducing the cna gene into CYL316, a strain that normally lacks the cna gene. Biochemical, immunological, and functional analyses of the generated mutants and their respective parent strains showed that binding of 125I-labeled collagen, expression of an immunoreactive collagen adhesin, and bacterial adherence to cartilage were directly correlated with the presence of a functional cna gene. Greater than 70% of the mice injected with the Cna+ strains developed clinical signs of arthritis, whereas less than 27% of the animals injected with Cna- strains showed symptoms of disease. Furthermore, mice injected with the Cna+ strain Phillips had remarkably elevated levels of immunoglobulin G1 and interleukin-6 compared with mice injected with the Cna- mutant PH100. Taken together, these results demonstrate that collagen adhesin plays an important role in the pathogenesis of septic arthritis induced by S. aureus. Images PMID:8262622

  7. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes

    PubMed Central

    Qin, Chao; Sun, Yongqi; Dong, Yadong

    2016-01-01

    Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we introduce the common centrality measures; second, we propose the densities Den1(v) and Den2(v) of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality (SC), eigenvector centrality (EC), network centrality (NC), and the local average connectivity-based method (LAC). LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC. PMID:27529423

  8. A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes.

    PubMed

    Qin, Chao; Sun, Yongqi; Dong, Yadong

    2016-01-01

    Essential proteins are indispensable to the viability and reproduction of an organism. The identification of essential proteins is necessary not only for understanding the molecular mechanisms of cellular life but also for disease diagnosis, medical treatments and drug design. Many computational methods have been proposed for discovering essential proteins, but the precision of the prediction of essential proteins remains to be improved. In this paper, we propose a new method, LBCC, which is based on the combination of local density, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we introduce the common centrality measures; second, we propose the densities Den1(v) and Den2(v) of a node v to describe its local properties in the network; and finally, the combined strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The experimental results demonstrate that LBCC outperforms traditional topological measures for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality (SC), eigenvector centrality (EC), network centrality (NC), and the local average connectivity-based method (LAC). LBCC also improves the prediction precision by approximately 10 percent on the YMIPS and YMBD datasets compared to the most recently developed method, LIDC. PMID:27529423

  9. Functional Mapping of Protein-Protein Interactions in an Enzyme Complex by Directed Evolution

    PubMed Central

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes. PMID:25551646

  10. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions.

  11. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes

    PubMed Central

    Liu, Quanzhong; Song, Jiangning; Li, Jinyan

    2016-01-01

    Most protein complex detection methods utilize unsupervised techniques to cluster densely connected nodes in a protein-protein interaction (PPI) network, in spite of the fact that many true complexes are not dense subgraphs. Supervised methods have been proposed recently, but they do not answer why a group of proteins are predicted as a complex, and they have not investigated how to detect new complexes of one species by training the model on the PPI data of another species. We propose a novel supervised method to address these issues. The key idea is to discover emerging patterns (EPs), a type of contrast pattern, which can clearly distinguish true complexes from random subgraphs in a PPI network. An integrative score of EPs is defined to measure how likely a subgraph of proteins can form a complex. New complexes thus can grow from our seed proteins by iteratively updating this score. The performance of our method is tested on eight benchmark PPI datasets and compared with seven unsupervised methods, two supervised and one semi-supervised methods under five standards to assess the quality of the predicted complexes. The results show that in most cases our method achieved a better performance, sometimes significantly. PMID:26868667

  12. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes.

    PubMed

    Liu, Quanzhong; Song, Jiangning; Li, Jinyan

    2016-01-01

    Most protein complex detection methods utilize unsupervised techniques to cluster densely connected nodes in a protein-protein interaction (PPI) network, in spite of the fact that many true complexes are not dense subgraphs. Supervised methods have been proposed recently, but they do not answer why a group of proteins are predicted as a complex, and they have not investigated how to detect new complexes of one species by training the model on the PPI data of another species. We propose a novel supervised method to address these issues. The key idea is to discover emerging patterns (EPs), a type of contrast pattern, which can clearly distinguish true complexes from random subgraphs in a PPI network. An integrative score of EPs is defined to measure how likely a subgraph of proteins can form a complex. New complexes thus can grow from our seed proteins by iteratively updating this score. The performance of our method is tested on eight benchmark PPI datasets and compared with seven unsupervised methods, two supervised and one semi-supervised methods under five standards to assess the quality of the predicted complexes. The results show that in most cases our method achieved a better performance, sometimes significantly.

  13. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  14. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  15. EXPERIMENT-GUIDED MOLECULAR MODELING OF PROTEIN-PROTEIN COMPLEXES INVOLVING GPCRS

    PubMed Central

    Kufareva, Irina; Handel, Tracy M.

    2015-01-01

    Summary Experimental structure determination for G protein coupled receptors (GPCRs) and especially their complexes with protein and peptide ligands is at its infancy. In the absence of complex structures, molecular modeling and docking play a large role not only by providing a proper 3D context for interpretation of biochemical and biophysical data, but also by prospectively guiding experiments. Experimentally confirmed restraints may help improve the accuracy and information content of the computational models. Here we present a hybrid molecular modeling protocol that integrates heterogeneous experimental data with force field-based calculations in the stochastic global optimization of the conformations and relative orientations of binding partners. Some experimental data, such as pharmacophore-like chemical fields or disulfide-trapping restraints, can be seamlessly incorporated in the protocol, while other types of data are more useful at the stage of solution filtering. The protocol was successfully applied to modeling and design of a stable construct that resulted in crystallization of the first complex between a chemokine and its receptor. Examples from this work are used to illustrate the steps of the protocol. The utility of different types of experimental data for modeling and docking is discussed and caveats associated with data misinterpretation are highlighted. PMID:26260608

  16. Identifying functions of protein complexes based on topology similarity with random forest.

    PubMed

    Li, Zhan-Chao; Lai, Yan-Hua; Chen, Li-Li; Xie, Yun; Dai, Zong; Zou, Xiao-Yong

    2014-03-01

    Elucidating the functions of protein complexes is critical for understanding disease mechanisms, diagnosis and therapy. In this study, based on the concept that protein complexes with similar topology may have similar functions, we firstly model protein complexes as weighted graphs with nodes representing the proteins and edges indicating interaction between proteins. Secondly, we use topology features derived from the graphs to characterize protein complexes based on the graph theory. Finally, we construct a predictor by using random forest and topology features to identify the functions of protein complexes. Effectiveness of the current method is evaluated by identifying the functions of mammalian protein complexes. And then the predictor is also utilized to identify the functions of protein complexes retrieved from human protein-protein interaction networks. We identify some protein complexes with significant roles in the occurrence of tumors, vesicles and retinoblastoma. It is anticipated that the current research has an important impact on pathogenesis and the pharmaceutical industry. The source code of Matlab and the dataset are freely available on request from the authors. PMID:24389559

  17. Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription.

    PubMed

    Harvey, Vivian C; Acio, Catherine R; Bredehoft, Amy K; Zhu, Laurence; Hallinger, Daniel R; Quinlivan-Repasi, Vanessa; Harvey, Samuel E; Forsyth, Mark H

    2014-10-01

    The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.

  18. Assembly and export of a Toxoplasma microneme complex in Giardia lamblia.

    PubMed

    Gaechter, Verena; Hehl, Adrian B

    2005-11-01

    The microneme proteins of Toxoplasma gondii belong to a large family of adhesins of apicomplexan parasites involved in motility and host cell invasion. During secretory transport, soluble micronemes associate with membrane-bound carriers/escorters and become exposed on the parasite surface as complexes with an array of adhesive domains. Previously, we have exploited the intestinal protozoan Giardia lamblia as an expression system to produce correctly folded and unglycosylated monomeric surface proteins of T. gondii. Here, we report assembly and export of a trimeric microneme (MIC1/4/6) adhesin complex from Toxoplasma. Co-expressed, recombinant microneme proteins were used to investigate structural requirements for microneme complex formation. In addition, export of a microneme subunit induced development of novel Golgi-like compartments demonstrating the existence of post endoplasmic reticulum structures involved in constitutive secretion in this 'Golgi-less' cell. Recreation of the trimeric microneme escorter-cargo system in Giardia is a versatile tool to analyse universal requirements for complex assembly, receptor-ligand interactions and Golgi neogenesis in the basal Giardia secretory system. PMID:16188260

  19. Assessment of Adhesins as an Indicator of Pathovar-Associated Virulence Factors in Bovine Escherichia coli.

    PubMed

    Valat, Charlotte; Forest, Karine; Auvray, Frédéric; Métayer, Véronique; Méheut, Thomas; Polizzi, Charlène; Gay, Emilie; Haenni, Marisa; Oswald, Eric; Madec, Jean-Yves

    2014-12-01

    The CS31A, F17, and F5 adhesins are usually targeted by serology-based methods to detect pathogenic Escherichia coli associated with calf enteritis. However, the virulence traits of the selected isolates are still poorly described. Here, from a set of 349 diarrheagenic E. coli isolates from cattle, we demonstrated a 70.8% concordance rate (Cohen's kappa, 0.599) between serology- and PCR-based approaches for the detection of adhesins under field conditions. A 79% to 82.4% correspondence between the two methods was found for fimbrial adhesins, whereas major discrepancies (33%) were observed for CS31A-type antigens. Various F17A variants were found, such as F17Ac (20K) (50%), F17Aa (FY) (18.9%), F17Ab (8.1%), and F17Ad (111K) (5.4%), including a high proportion (17.6%) of new F17A internal combinations (F17Aab, F17Aac, and F17Abc) or untypeable variants. In addition, the highest proportion of pathovar-associated virulence factor (VF) genes was observed among E. coli isolates that produced F5/F41 adhesins. A specific link between the heat-stable toxins related to the enterotoxigenic E. coli (ETEC) pathovar and adhesins was identified. STa was significantly linked to F5/F41 and EAST1 to CS31A adhesins (P < 0.001), respectively, whereas NTEC was associated with F17 adhesin (P = 0.001). Clustering between phylogroups according to the adhesin types was also observed. Also, few Shiga toxin-producing E. coli (STEC) or enteropathogenic E. coli (EPEC) pathovars were identified. Finally, no statistically significant difference was observed in the occurrence of extended-spectrum beta lactamase (ESBL) production according to the adhesins expressed by the isolates (P = 0.09). Altogether, this study gives new insights into the relationship between adhesins, VF, and antimicrobial resistance in calf enteritis and supports the need for further standardization of methodologies for such approaches. PMID:25217019

  20. Piezo dispensed microarray of multivalent chelating thiols for dissecting complex protein-protein interactions.

    PubMed

    Klenkar, Goran; Valiokas, Ramûnas; Lundström, Ingemar; Tinazli, Ali; Tampé, Robert; Piehler, Jacob; Liedberg, Bo

    2006-06-01

    The fabrication of a novel biochip, designed for dissection of multiprotein complex formation, is reported. An array of metal chelators has been produced by piezo dispensing of a bis-nitrilotriacetic acid (bis-NTA) thiol on evaporated gold thin films, prestructured with a microcontact printed grid of eicosanethiols. The bis-NTA thiol is mixed in various proportions with an inert, tri(ethylene glycol) hexadecane thiol, and the thickness and morphological homogeneity of the dispensed layers are characterized by imaging ellipsometry before and after back-filling with the same inert thiol and subsequent rinsing. It is found that the dispensed areas display a monotonic increase in thickness with increasing molar fraction of bis-NTA in the dispensing solution, and they are consistently a few Angströms thicker than those prepared at the same molar fraction by solution self-assembly under equilibrium-like conditions. The bulkiness of the bis-NTA tail group and the short period of time available for chemisorption and in-plane organization of the dispensed thiols are most likely responsible for the observed difference in thickness. Moreover, the functional properties of this biochip are demonstrated by studying multiple protein-protein interactions using imaging surface plasmon resonance. The subunits of the type I interferon receptor are immobilized as a composition array determined by the surface concentration of bis-NTA in the array elements. Ligand dissociation kinetics depends on the receptor surface concentration, which is ascribed to the formation of a ternary complex by simultaneous interaction of the ligand with the two receptor subunits. Thus, multiplexed monitoring of binding phenomena at various compositions (receptor densities) offers a powerful tool to dissect protein-protein interactions.

  1. A Drosophila ESC-E(Z) protein complex is distinct from other polycomb group complexes and contains covalently modified ESC.

    PubMed

    Ng, J; Hart, C M; Morgan, K; Simon, J A

    2000-05-01

    The extra sex combs (ESC) and Enhancer of zeste [E(Z)] proteins, members of the Polycomb group (PcG) of transcriptional repressors, interact directly and are coassociated in fly embryos. We report that these two proteins are components of a 600-kDa complex in embryos. Using gel filtration and affinity chromatography, we show that this complex is biochemically distinct from previously described complexes containing the PcG proteins Polyhomeotic, Polycomb, and Sex comb on midleg. In addition, we present evidence that ESC is phosphorylated in vivo and that this modified ESC is preferentially associated in the complex with E(Z). Modified ESC accumulates between 2 and 6 h of embryogenesis, which is the developmental time when esc function is first required. We find that mutations in E(z) reduce the ratio of modified to unmodified ESC in vivo. We have also generated germ line transformants that express ESC proteins bearing site-directed mutations that disrupt ESC-E(Z) binding in vitro. These mutant ESC proteins fail to provide esc function, show reduced levels of modification in vivo, and are still assembled into complexes. Taken together, these results suggest that ESC phosphorylation normally occurs after assembly into ESC-E(Z) complexes and that it contributes to the function or regulation of these complexes. We discuss how biochemically separable ESC-E(Z) and PC-PH complexes might work together to provide PcG repression. PMID:10757791

  2. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii.

    PubMed

    Barelli, Larissa; Padilla-Guerrero, Israel Enrique; Bidochka, Michael J

    2011-11-01

    Metarhizium robertsii is an entomopathogenic fungus that is also plant rhizosphere competent. Two adhesin-encoding genes, Metarhizium adhesin-like protein 1 (Mad1) and Mad2, are involved in insect pathogenesis or plant root colonization, respectively. Here we examined the differential expression of the Mad genes when grown on a variety of soluble (carbohydrates and plant root exudate) and insoluble substrates (locust, tobacco hornworm, and cockroach cuticle, chitin, tomato stems, cellulose, and starch) and during insect, Plutella xylostella, infection. On insect cuticles Mad1 was up regulated, whereas bean root exudate and tomato stems resulted in the up regulation of Mad2. During the early stages of insect infection Mad1 was expressed while Mad2 was not expressed until fungal hyphae emerged and conidiated on the insect cadaver. The regulation of Mad2 was compared to that of other stress-related genes (heat shock protein (Hsp)30, Hsp70, and starvation stress gene A (ssgA)). Mad2 was generally up regulated by nutrient starvation (similar to ssgA) but not by pH, temperature, oxidative or osmotic stresses. Whereas Hsp30 and Hsp70 were generally up regulated at 37 °C or by oxidative stress even under nutrient enriched conditions. We fused the promoter of the Mad2 gene to a marker gene (green fluorescent protein (GFP)) and confirmed that Mad2 was up regulated when M. robertsii was grown in the presence of nutrient starvation. Examination of the promoter region of Mad2 revealed that it possessed two copies of a stress-response element (STRE) known to be regulated under the general stress-response pathway. PMID:22036295

  3. sae is essential for expression of the staphylococcal adhesins Eap and Emp.

    PubMed

    Harraghy, Niamh; Kormanec, Jan; Wolz, Christiane; Homerova, Dagmar; Goerke, Christiane; Ohlsen, Knut; Qazi, Saara; Hill, Philip; Herrmann, Mathias

    2005-06-01

    Eap and Emp are two Staphylococcus aureus adhesins initially described as extracellular matrix binding proteins. Eap has since emerged as being important in adherence to and invasion of eukaryotic cells, as well as being described as an immunomodulator and virulence factor in chronic infections. This paper describes the mapping of the transcription start point of the eap and emp promoters. Moreover, using reporter-gene assays and real-time PCR in defined regulatory mutants, environmental conditions and global regulators affecting expression of eap and emp were investigated. Marked differences were found in expression of eap and emp between strain Newman and the 8325 derivatives SH1000 and 8325-4. Moreover, both genes were repressed in the presence of glucose. Analysis of expression of both genes in various regulatory mutants revealed that sarA and agr were involved in their regulation, but the data suggested that there were additional regulators of both genes. In a sae mutant, expression of both genes was severely repressed. sae expression was also reduced in the presence of glucose, suggesting that repression of eap and emp in glucose-containing medium may, in part, be a consequence of a decrease in expression of sae.

  4. Catch-bond mechanism of the bacterial adhesin FimH

    PubMed Central

    Sauer, Maximilian M.; Jakob, Roman P.; Eras, Jonathan; Baday, Sefer; Eriş, Deniz; Navarra, Giulio; Bernèche, Simon; Ernst, Beat; Maier, Timm; Glockshuber, Rudi

    2016-01-01

    Ligand–receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell–cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins. Here we establish peptide-complemented FimH as a model system for fimbrial FimH function. We reveal a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction and molecular dynamics simulations. In the absence of tensile force, the FimH pilin domain allosterically accelerates spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity. Separation of the FimH domains under stress abolishes allosteric interplay and increases the affinity of the lectin domain. Cell tracking demonstrates that rapid ligand dissociation from FimH supports motility of piliated E. coli on mannosylated surfaces in the absence of shear force. PMID:26948702

  5. Folding analysis of the most complex Stevedore's protein knot.

    PubMed

    Wang, Iren; Chen, Szu-Yu; Hsu, Shang-Te Danny

    2016-01-01

    DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures. PMID:27527519

  6. Evidence for a vasopressin receptor-GTP binding protein complex

    SciTech Connect

    Fitzgerald, T.J.; Uhing, R.J.; Exton, J.H.

    1986-05-01

    Plasma membranes from the livers of rats were able to hydrolyze the ..gamma..-phosphate from guanosine-5'-triphosphate (GTP). The rate of GTP hydrolysis could be decreased to 10% of its initial rate by the addition of adenosine-5'-triphosphate with a concomitant decrease in the K/sub m/ for GTP from approx. 10/sup -3/ M to 10/sup -6/ M. The low K/sub m/ GTPase activity was inhibited by the addition of nonhydrolyzable analogs of GTP. In addition, the GTPase activity was stimulated from 10 to 30% over basal by the addition of vasopressin. A dose dependency curve showed that the maximum stimulation was obtained with 10/sup -8/ M vasopressin. Identical results were obtained from plasma membranes that had been solubilized with 1% digitonin. When membranes that had been solubilized in the presence of (Phenylalanyl-3,4,5-/sup 3/H(N))vasopressin were subjected to sucrose gradient centrifugation, the majority of bound (/sup 3/H)vasopressin migrated with an approximate molecular weight of 300,000. Moreover, there was a GTPase activity that migrated with the bound (/sup 3/H)vasopressin. This peak of bound (/sup 3/H)vasopressin was decreased by 90% when the sucrose gradient centrifugation was run in the presence of 10/sup -5/ M guanosine-5'-O-(3-thiotriphosphate). These results support the conclusion that liver plasma membranes contain a GTP-binding protein that can complex with the vasopressin receptor.

  7. Stability and Immunogenicity of Hypoallergenic Peanut Protein-Polyphenol Complexes During In Vitro Pepsin Digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated d...

  8. Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli.

    PubMed

    Arthur, M; Johnson, C E; Rubin, R H; Arbeit, R D; Campanelli, C; Kim, C; Steinbach, S; Agarwal, M; Wilkinson, R; Goldstein, R

    1989-02-01

    The pap, prs, pil, and hly operons of the pyelonephritic Escherichia coli isolate J96 code for the expression of P, F, and type 1 adhesins and the production of hemolysin, respectively; the afaI operon of the pyelonephritic E. coli KS52 encodes an X adhesin. Using different segments of these operons as probes, colony hybridizations were performed on 97 E. coli urinary tract and 40 fecal clinical isolates to determine (i) the presence in the infecting bacteria of nucleotide sequences related to virulence operons, and (ii) the phenotypic properties associated with such sequences. Coexpression of P and F adhesins encoded by pap-related sequences was detected more frequently among isolates from patients with pyelonephritis (32 of 49, 65%) than among those with cystitis (11 of 48, 23%; P less than 0.0001) or from fecal specimens (6 of 40, 15%; P less than 0.0001). Therefore, the expression of both adhesins appears to be critical in the colonization of the upper urinary tract. In contrast, afaI-related sequences were detected significantly more frequently among isolates from patients with cystitis, suggesting that this class of X adhesin may have a role in lower urinary tract infections. Urinary tract isolates differed from fecal isolates by a low incidence of type 1 adhesin expression among pil probe-positive isolates. hly-related sequences were only detected in pap probe-positive isolates. The frequency of hemolysin production among pap probe-positive isolates was not associated with a particular pattern of infection. The distribution of these virulence factors was similar in the presence or absence of reflux, indicating that structural abnormalities of the urinary tract did not facilitate colonization by adhesin-negative isolates.

  9. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  10. 193 nm Ultraviolet Photodissociation Mass Spectrometry of Tetrameric Protein Complexes Provides Insight into Quaternary and Secondary Protein Topology.

    PubMed

    Morrison, Lindsay J; Brodbelt, Jennifer S

    2016-08-31

    Protein-protein interfaces and architecture are critical to the function of multiprotein complexes. Mass spectrometry-based techniques have emerged as powerful strategies for characterization of protein complexes, particularly for heterogeneous mixtures of structures. In the present study, activation and dissociation of three tetrameric protein complexes (streptavidin, transthyretin, and hemoglobin) in the gas phase was undertaken by 193 nm ultraviolet photodissociation (UVPD) for the characterization of higher order structure. High pulse energy UVPD resulted in the production of dimers and low charged monomers exhibiting symmetrical charge partitioning among the subunits (the so-called symmetrical dissociation pathways), consistent with the subunit organization of the complexes. In addition, UVPD promoted backbone cleavages of the monomeric subunits, the abundances of which corresponded to the more flexible loop regions of the proteins. PMID:27480400

  11. Protein complex prediction via improved verification methods using constrained domain-domain matching.

    PubMed

    Zhao, Yang; Hayashida, Morihiro; Nacher, Jose C; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2012-01-01

    Identification of protein complexes within protein-protein interaction networks is one of the important objectives in functional genomics. Ozawa et al. proposed a verification method of protein complexes by introducing a structural constraint. In this paper, we propose an improved integer programming-based method based on the idea that a candidate complex should not be divided into many small complexes, and combination methods with maximal components and extreme sets. The results of computational experiments suggest that our methods outperform the method by Ozawa et al. We prove that the verification problems are NP-hard, which justifies the use of integer programming. PMID:22961452

  12. The Staphylococcal Biofilm: Adhesins, regulation, and host response

    PubMed Central

    Paharik, Alexandra E.; Horswill, Alexander R.

    2015-01-01

    The Staphylococci comprise a diverse genus of Gram-positive, non-motile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, Staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. S. aureus and S. epidermidis are a major source of hospital-acquired infections and are the most common causes of surgical site infections and central line-associated bloodstream infections. The ability of Staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device implants, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of Staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how Staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the Staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  13. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response.

    PubMed

    Paharik, Alexandra E; Horswill, Alexander R

    2016-04-01

    The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  14. Qualitative and Quantitative Protein Complex Prediction Through Proteome-Wide Simulations.

    PubMed

    Rizzetto, Simone; Priami, Corrado; Csikász-Nagy, Attila

    2015-10-01

    Despite recent progress in proteomics most protein complexes are still unknown. Identification of these complexes will help us understand cellular regulatory mechanisms and support development of new drugs. Therefore it is really important to establish detailed information about the composition and the abundance of protein complexes but existing algorithms can only give qualitative predictions. Herein, we propose a new approach based on stochastic simulations of protein complex formation that integrates multi-source data--such as protein abundances, domain-domain interactions and functional annotations--to predict alternative forms of protein complexes together with their abundances. This method, called SiComPre (Simulation based Complex Prediction), achieves better qualitative prediction of yeast and human protein complexes than existing methods and is the first to predict protein complex abundances. Furthermore, we show that SiComPre can be used to predict complexome changes upon drug treatment with the example of bortezomib. SiComPre is the first method to produce quantitative predictions on the abundance of molecular complexes while performing the best qualitative predictions. With new data on tissue specific protein complexes becoming available SiComPre will be able to predict qualitative and quantitative differences in the complexome in various tissue types and under various conditions.

  15. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  16. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  17. Tandem Affinity Purification of Protein Complexes in Mouse Embryonic Stem Cells Using In Vivo Biotinylation

    PubMed Central

    Wang, Jianlong; Cantor, Alan B.; Orkin, Stuart H.

    2009-01-01

    In dissecting the pluripotent state in mouse embryonic stem (ES) cells, we have employed in vivo biotinylation of critical transcription factors for streptavidin affinity purification of protein complexes and constructed a protein-protein interaction network. This has facilitated discovery of novel pluripotency factors and a better understanding of stem cell pluripotency. Here we describe detailed procedures for in vivo biotinylation system setup in mouse ES cells and affinity purification of multi-protein complexes using in vivo biotinylation. In addition, we present a protocol employing SDS-PAGE fractionation to reduce sample complexity prior to submission for mass spectrometry (MS) protein identification. PMID:19306258

  18. Protein tyrosine phosphatase σ targets apical junction complex proteins in the intestine and regulates epithelial permeability.

    PubMed

    Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela

    2014-01-14

    Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ(-/-) mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper-tyrosine-phosphorylated in the PTPσ(-/-) mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ(-/-) mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD.

  19. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  20. ConPlex: a server for the evolutionary conservation analysis of protein complex structures.

    PubMed

    Choi, Yoon Sup; Han, Seong Kyu; Kim, Jinho; Yang, Jae-Seong; Jeon, Jouhyun; Ryu, Sung Ho; Kim, Sanguk

    2010-07-01

    Evolutionary conservation analyses are important for the identification of protein-protein interactions. For protein complex structures, sequence conservation has been applied to determine protein oligomerization states, to characterize native interfaces from non-specific crystal contacts, and to discriminate near-native structures from docking artifacts. However, a user-friendly web-based service for evolutionary conservation analysis of protein complexes has not been available. Therefore, we developed ConPlex (http://sbi.postech.ac.kr/ConPlex/) a web application that enables evolutionary conservation analyses of protein interactions within protein quaternary structures. Users provide protein complex structures; ConPlex automatically identifies protein interfaces and carries out evolutionary conservation analyses for the interface regions. Moreover, ConPlex allows the results of the residue-specific conservation analysis to be displayed on the protein complex structure and provides several options to customize the display output to fit each user's needs. We believe that ConPlex offers a convenient platform to analyze protein complex structures based on evolutionary conservation of protein-protein interface residues.

  1. Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection.

    PubMed

    Deuschle, Eva; Keller, Birgit; Siegfried, Alexandra; Manncke, Birgit; Spaeth, Tanja; Köberle, Martin; Drechsler-Hake, Doreen; Reber, Julia; Böttcher, Ralph T; Autenrieth, Stella E; Autenrieth, Ingo B; Bohn, Erwin; Schütz, Monika

    2016-02-01

    Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors.

  2. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, Sugam; Aswal, V. K.

    2014-04-01

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  3. Observation of two different fractal structures in nanoparticle, protein and surfactant complexes

    SciTech Connect

    Mehan, Sumit Kumar, Sugam Aswal, V. K.

    2014-04-24

    Small angle neutron scattering has been carried out from a complex of nanoparticle, protein and surfactant. Although all the components are similarly (anionic) charged, we have observed strong interactions in their complex formation. It is characterized by the coexistence of two different mass fractal structures. The first fractal structure is originated from the protein and surfactant interaction and second from the depletion effect of first fractal structure leading the nanoparticle aggregation. The fractal structure of protein-surfactant complex represents to bead necklace structure of micelle-like clusters of surfactant formed along the unfolded protein chain. Its fractal dimension depends on the surfactant to protein ratio (r) and decreases with the increase in r. However, fractal dimension of nanoparticle aggregates in nanoparticle-protein complex is found to be independent of protein concentration and governed by the diffusion limited aggregation like morphology.

  4. Detection and identification of protein citrullination in complex biological systems.

    PubMed

    Clancy, Kathleen W; Weerapana, Eranthie; Thompson, Paul R

    2016-02-01

    Protein citrullination is a post-translational modification of arginine that is catalyzed by the Protein Arginine Deiminase (PAD) family of enzymes. Aberrantly increased citrullination is associated with a host of inflammatory diseases and cancer and PAD inhibitors have shown remarkable efficacy in a range of diseases including rheumatoid arthritis, lupus, atherosclerosis, and ulcerative colitis. In rheumatoid arthritis, citrullinated proteins serve as key antigens for rheumatoid arthritis-associated autoantibodies. These data suggest that citrullinated proteins may serve more generally as biomarkers of specific disease states, however, the identification of citrullinated residues remains challenging due to the small 1Da mass change that occurs upon citrullination. Herein, we highlight the available techniques to identify citrullinated proteins/residues focusing on advanced MS techniques as well as chemical derivatization strategies that are currently being employed to identify citrullinated proteins as well as the specific residues modified within those proteins.

  5. Toluene 4-Monooxygenase and its Complex with Effector Protein T4moD

    SciTech Connect

    Bailey, Lucas J.; Fox, Brian G.

    2012-10-16

    Toluene 4-monooxygenase (T4MO) is a multiprotein diiron enzyme complex that catalyzes the regiospecific oxidation of toluene to p-cresol. Catalytic function requires the presence of a small protein, called the effector protein. Effector protein exerts substantial control on the diiron hydroxylase catalytic cycle through protein-protein interactions. High-resolution crystal structures of the stoichometric hydroxylase and effector protein complex described here reveal how protein-protein interactions and reduction of the diiron center produce an active site configuration poised for reaction with O{sub 2}. Further information from crystal structures of mutated isoforms of the hydroxylase and a peroxo adduct is combined with catalytic results to give a fuller picture of the geometry of the enzyme-substrate complex used for the high fidelity oxidation of hydrocarbon substrates.

  6. Tuning structure of oppositely charged nanoparticle and protein complexes

    SciTech Connect

    Kumar, Sugam Aswal, V. K.; Callow, P.

    2014-04-24

    Small-angle neutron scattering (SANS) has been used to probe the structures of anionic silica nanoparticles (LS30) and cationic lyszyme protein (M.W. 14.7kD, I.P. ∼ 11.4) by tuning their interaction through the pH variation. The protein adsorption on nanoparticles is found to be increasing with pH and determined by the electrostatic attraction between two components as well as repulsion between protein molecules. We show the strong electrostatic attraction between nanoparticles and protein molecules leads to protein-mediated aggregation of nanoparticles which are characterized by fractal structures. At pH 5, the protein adsorption gives rise to nanoparticle aggregation having surface fractal morphology with close packing of nanoparticles. The surface fractals transform to open structures of mass fractal morphology at higher pH (7 and 9) on approaching isoelectric point (I.P.)

  7. Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix.

    PubMed

    Tiwari, Ananya; Bindal, Sonal; Bohidar, H B

    2009-01-12

    Turbidimetric titration was used to initiate associative intermolecular interactions between a pair of protein molecules, gelatin-A and gelatin-B, having complementary charges that led to pH-induced liquid-liquid phase separation and the formation of complex coacervate. The stoichiometric binding ratio was found to be [gelatin-A]/[gelatin-B]=3:2. The size of soluble intermolecular aggregates present in the supernatant exhibited interesting time-dependent coacervation because of residual electrostatic interactions. Dynamic light scattering and turbidity studies provided a systematic account of coacervation behavior. Rheology studies attributed the softening of the coacervate matrix to the presence of encapsulated salbutamol sulfate. The in vitro drug release kinetics was probed in simulated gastric fluid medium at physiological temperature (37 degrees C), which showed biphasic behavior. The initial release kinetics exhibited an exponential growth to saturation behavior, followed by a slower logarithmic release process.

  8. A 1 MDa protein complex containing critical components of the Escherichia coli divisome

    PubMed Central

    Trip, Erik N.; Scheffers, Dirk-Jan

    2015-01-01

    Cell division in bacteria is an essential process that is carried out at mid-cell by a group of cell division proteins referred to as the divisome. In Escherichia coli, over two dozen cell division proteins have been identified of which ten are essential. These division proteins localize sequentially and interdependently to the division site, after which constriction eventually produces two daughter cells. Various genetic and biochemical techniques have identified many interactions amongst cell division proteins, however the existence of the divisome as a large multi-protein complex has never been shown. Here, we identify a 1 MDa protein complex by native page that contains seven essential cell division proteins (FtsZ, ZipA, FtsK, FtsQ, FtsB, FtsL, and FtsN). The 1 MDa complex is present in rapidly dividing cells, but absent when cultures enter the stationary growth phase. Slight overexpression of the ftsQ D237N mutation that blocks cell division prevents formation of this 1 MDa complex. In cells depleted of FtsN, the 1 MDa complex is not assembled. Combined, our findings indicate that a large protein complex containing many different cell division proteins indeed exists. We note that this complex is very fragile and sensitive to the expression of tagged versions of FtsQ. PMID:26643979

  9. A Proteomic Strategy for Global Analysis of Plant Protein Complexes[W][OPEN

    PubMed Central

    Aryal, Uma K.; Xiong, Yi; McBride, Zachary; Kihara, Daisuke; Xie, Jun; Hall, Mark C.; Szymanski, Daniel B.

    2014-01-01

    Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions. PMID:25293756

  10. Theory of polyelectrolyte adsorption on heterogeneously charged surfaces applied to soluble protein-polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    de Vries, R.; Weinbreck, F.; de Kruif, C. G.

    2003-03-01

    Existing theoretical approaches to polymer adsorption on heterogeneous surfaces are applied to the problems of polyelectrolyte and polyampholyte adsorption on randomly charged surfaces. Also, analytical estimates are developed for the critical pH at which weakly charged polyelectrolytes and globular proteins start forming soluble complexes. Below a critical salt concentration, soluble complexes form "on the wrong side" of the protein isoelectric point due to the heterogeneity of the protein surface charge distribution. The analytical estimates are consistent with experimental data on soluble complexes in mixtures of gum arabic and whey protein isolate.

  11. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  12. Structural Features of the Pseudomonas fluorescens Biofilm Adhesin LapA Required for LapG-Dependent Cleavage, Biofilm Formation, and Cell Surface Localization

    PubMed Central

    Boyd, Chelsea D.; Smith, T. Jarrod; El-Kirat-Chatel, Sofiane; Newell, Peter D.; Dufrêne, Yves F.

    2014-01-01

    The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins. PMID:24837291

  13. Production of unstable proteins through the formation of stable core complexes.

    PubMed

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  14. Production of unstable proteins through the formation of stable core complexes

    PubMed Central

    Levy, Nicolas; Eiler, Sylvia; Pradeau-Aubreton, Karine; Maillot, Benoit; Stricher, François; Ruff, Marc

    2016-01-01

    Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes. PMID:26983699

  15. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates.

    PubMed

    Sincock, Stephanie A; Hall, Eric R; Woods, Colleen M; O'Dowd, Aisling; Poole, Steven T; McVeigh, Annette L; Nunez, Gladys; Espinoza, Nereyda; Miller, Milagros; Savarino, Stephen J

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach. PMID:26597148

  16. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates.

    PubMed

    Sincock, Stephanie A; Hall, Eric R; Woods, Colleen M; O'Dowd, Aisling; Poole, Steven T; McVeigh, Annette L; Nunez, Gladys; Espinoza, Nereyda; Miller, Milagros; Savarino, Stephen J

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.

  17. Structural Basis for the Coevolution of a Viral RNA-Protein Complex

    SciTech Connect

    Chao,J.; Patskovsky, Y.; Almo, S.; Singer, R.

    2008-01-01

    The cocrystal structure of the PP7 bacteriophage coat protein in complex with its translational operator identifies a distinct mode of sequence-specific RNA recognition when compared to the well-characterized MS2 coat protein-RNA complex. The structure reveals the molecular basis of the PP7 coat protein's ability to selectively bind its cognate RNA, and it demonstrates that the conserved beta-sheet surface is a flexible architecture that can evolve to recognize diverse RNA hairpins.

  18. Determination of the structure and morphology of gold nanoparticle-HSA protein complexes.

    PubMed

    Capomaccio, Robin; Jimenez, Isaac Ojea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Rossi, François; Calzolai, Luigi

    2015-11-14

    We propose a simple method to determine the structure and morphology of nanoparticle protein complexes. By combining a separation method with online size measurements, density measurements and circular dichroism, we could identify the number of proteins bound to each nanoparticle and their secondary structure changes in the complex. This method provides much-needed experimental information on the interaction of proteins with nanoparticles and on the behavior of nanoparticles in biological systems. PMID:26462441

  19. Protein Nanocages for Delivery and Release of Luminescent Ruthenium(II) Polypyridyl Complexes.

    PubMed

    Li, Xiao; Zhang, Yajie; Chen, Hong; Sun, Jian; Feng, Fude

    2016-09-01

    In this report, noncovalent encapsulation of hydrophobic ruthenium(II) polyridyl complexes, Ru(bpy)2dppz(2+) and Ru(phen)2dppz(2+), into apoferritin cavity was achieved with high loading contents by effective prevention of Ru complex-induced protein aggregation, without disruption of protein native architecture. The Ru-loaded luminescent nanocomposites have demonstrated improved water solubility, easy manipulation, reduced cytotoxicity, and enhanced cellular uptake as compared to the nontreated Ru complexes. PMID:27547981

  20. The heat-resistant agglutinin family includes a novel adhesin from enteroaggregative Escherichia coli strain 60A.

    PubMed

    Mancini, Justin; Weckselblatt, Brooke; Chung, Yoonjie K; Durante, Julia C; Andelman, Steven; Glaubman, Jessica; Dorff, Justin D; Bhargava, Samhita; Lijek, Rebeccah S; Unger, Katherine P; Okeke, Iruka N

    2011-09-01

    Heat-resistant agglutinin 1 (Hra1) is an accessory colonization factor of enteroaggregative Escherichia coli (EAEC) strain 042. Tia, a close homolog of Hra1, is an invasin and adhesin that has been described in enterotoxigenic E. coli. We devised a PCR-restriction fragment length polymorphism screen for the associated genes and found that they occur among 55 (36.7%) of the enteroaggregative E. coli isolates screened, as well as lower proportions of enterotoxigenic, enteropathogenic, enterohemorrhagic, and commensal E. coli isolates. Overall, 25%, 8%, and 3% of 150 EAEC strains harbored hra1 alone, tia alone, or both genes, respectively. One EAEC isolate, 60A, produced an amplicon with a unique restriction profile, distinct from those of hra1 and tia. We cloned and sequenced the full-length agglutinin gene from strain 60A and have designated it hra2. The hra2 gene was not detected in any of 257 diarrheagenic E. coli isolates in our collection but is present in the genome of Salmonella enterica serovar Heidelberg strain SL476. The cloned hra2 gene from strain 60A, which encodes a predicted amino acid sequence that is 64% identical to that of Hra1 and 68% identical to that of Tia, was sufficient to confer adherence on E. coli K-12. We constructed an hra2 deletion mutant of EAEC strain 60A. The mutant was deficient in adherence but not autoaggregation or invasion, pointing to a functional distinction from the autoagglutinin Hra1 and the Tia invasin. Hra1, Tia, and the novel accessory adhesin Hra2 are members of a family of integral outer membrane proteins that confer different colonization-associated phenotypes. PMID:21764925

  1. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.

    PubMed

    Kharazian, B; Hadipour, N L; Ejtehadi, M R

    2016-06-01

    Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions.

  2. Removal of lipopolysaccharides from protein-lipopolysaccharide complexes by nonflammable solvents.

    PubMed

    Lin, Miao-Fang; Williams, Christie; Murray, Michael V; Ropp, Philip A

    2005-02-25

    During the recovery of recombinant proteins from gram negative bacteria, many of the methods used to extract proteins from cells release lipopolysaccharides (LPS, endotoxin) along with the protein of interest. In many instances, LPS will co-purify with the target protein due to specific or non-specific protein-LPS interactions. We have investigated the ability of alkanediols to effect the separation of LPS from protein-LPS complexes while the complexes are immobilized on ion exchange chromatographic resins. Proteins were complexed with fluorescently labeled LPS and bound to ion exchange resin. Alkanediol washes of the resins were preformed and the proteins eluted. Column eluates were monitored for LPS and protein by fluorescence and UV spectroscopy, respectively. Alkanediols were effective agents for dissociating LPS from protein-LPS complexes. The efficiency of LPS removal increased with increasing alkanediol chain length. The 1,2-alkanediol isomers were more effective than terminal alkanediol isomers in the separation of LPS from protein-LPS complexes, while the separation of LPS from protein-LPS complexes was more efficient on cation exchangers than on anion exchangers. In addition, it was noted during these investigations that the 1,2-alkanediols increased the retention time of the proteins on the ion exchange resins. Alkanediols provide a safer alternative to the use of other organics such as alcohols or acetonitrile for the separation of LPS from protein due to their lower toxicity and decreased inflammability. In addition, they are less costly than many of the detergents that have been used for similar purposes.

  3. GPCR: G protein complexes--the fundamental signaling assembly.

    PubMed

    Jastrzebska, Beata

    2013-12-01

    G protein coupled receptors (GPCR) constitute the largest group of cell surface receptors that transmit various signals across biological membranes through the binding and activation of heterotrimeric G proteins, which amplify the signal and activate downstream effectors leading to the biological responses. Thus, the first critical step in this signaling cascade is the interaction between receptor and its cognate G protein. Understanding this critical event at the molecular level is of high importance because abnormal function of GPCRs is associated with many diseases. Thus, these receptors are targets for drug development.

  4. A single Sec61-complex functions as a protein-conducting channel.

    PubMed

    Kalies, Kai-Uwe; Stokes, Vivica; Hartmann, Enno

    2008-12-01

    During cotranslational translocation of proteins into the endoplasmic reticulum (ER) translating ribosomes bind to Sec61-complexes. Presently two models exist how these membrane protein complexes might form protein-conducting channels. While electron microscopic data suggest that a ring-like structure consisting of four Sec61-complexes build the channel, the recently solved crystal structure of a homologous bacterial protein complex led to the speculation that the actual tunnel is formed by just one individual Sec61-complex. Using protease protection assays together with quantitative immunoblotting we directly examined the structure of mammalian protein-conducting channels. We found that in native ER-membranes one single Sec61alpha-molecule is preferentially protected by a membrane bound ribosome, both, in the presence and absence of nascent polypeptides. In addition we present evidence that the nascent polypeptide destabilizes the ring-like translocation apparatus formed by four Sec61-complexes. Moreover, we found that after solubilization of ER-membranes a single Sec61-complex is sufficient to protect the nascent polypeptide chain against added proteases. Finally, we could show that this single Sec61-complex allows the movement of the nascent chain, when it has been released from the ribosome by puromycin treatment. Collectively, our data suggest that the active protein-conducting channel in the ER is formed by a single Sec61-complex.

  5. PRI-Modeler: extracting RNA structural elements from PDB files of protein-RNA complexes.

    PubMed

    Han, Kyungsook; Nepal, Chirag

    2007-05-01

    A complete understanding of protein and RNA structures and their interactions is important for determining the binding sites in protein-RNA complexes. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA, due in part to the very limited structural data so far available. We have developed a set of algorithms for extracting and visualizing secondary and tertiary structures of RNA and for analyzing protein-RNA complexes. These algorithms have been implemented in a web-based program called PRI-Modeler (protein-RNA interaction modeler). Given one or more protein data bank files of protein-RNA complexes, PRI-Modeler analyzes the conformation of the RNA, calculates the hydrogen bond (H bond) and van der Waals interactions between amino acids and nucleotides, extracts secondary and tertiary RNA structure elements, and identifies the patterns of interactions between the proteins and RNAs. This paper presents PRI-Modeler and its application to the hydrogen bond and van der Waals interactions in the most representative set of protein-RNA complexes. The analysis reveals several interesting interaction patterns at various levels. The information provided by PRI-Modeler should prove useful for determining the binding sites in protein-RNA complexes. PRI-Modeler is accessible at http://wilab.inha.ac.kr/primodeler/, and supplementary materials are available in the analysis results section at http://wilab.inha.ac.kr/primodeler/.

  6. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids.

    PubMed

    Lau, Julia B; Stork, Simone; Moog, Daniel; Schulz, Julian; Maier, Uwe G

    2016-04-01

    Most secondary plastids of red algal origin are surrounded by four membranes and nucleus-encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD-(ER-associated degradation) derived machinery termed SELMA (symbiont-specific ERAD-like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD. Here we investigated, via protein-protein interaction studies, if the composition of SELMA is comparable to the known ERAD complex. As a result, our data suggest that the membrane proteins of SELMA, the derlin proteins, are linked to the soluble sCdc48 complex via the UBX protein sUBX. This is similar to the ERAD machinery whereas the additional SELMA components, sPUB und a second Cdc48 copy might indicate the influence of functional constraints in developing a translocation machinery from ERAD-related factors. In addition, we show for the first time that a rhomboid protease is a central interaction partner of the membrane proteins of the SELMA system in complex plastids.

  7. Structural insights into yeast histone chaperone Hif1: a scaffold protein recruiting protein complexes to core histones.

    PubMed

    Liu, Hejun; Zhang, Mengying; He, Wei; Zhu, Zhongliang; Teng, Maikun; Gao, Yongxiang; Niu, Liwen

    2014-09-15

    Yeast Hif1 [Hat1 (histone acetyltransferase 1)-interacting factor], a homologue of human NASP (nuclear autoantigenic sperm protein), is a histone chaperone that is involved in various protein complexes which modify histones during telomeric silencing and chromatin reassembly. For elucidating the structural basis of Hif1, in the present paper we demonstrate the crystal structure of Hif1 consisting of a superhelixed TPR (tetratricopeptide repeat) domain and an extended acid loop covering the rear of TPR domain, which represent typical characteristics of SHNi-TPR [Sim3 (start independent of mitosis 3)-Hif1-NASP interrupted TPR] proteins. Our binding assay indicates that Hif1 could bind to the histone octamer via histones H3 and H4. The acid loop is shown to be crucial for the binding of histones and may also change the conformation of the TPR groove. By binding to the core histone complex Hif1 may recruit functional protein complexes to modify histones during chromatin reassembly.

  8. Folding and self-assembly of a small protein complex

    PubMed Central

    Sieradzan, Adam K.; Liwo, Adam; Hansmann, Ulrich H.E.

    2012-01-01

    The synthetic homotetrameric ββα (BBAT1) protein possesses a stable quaternary structure with a ββα fold. Because of its small size (a total of 84 residues), the homotetramer is an excellent model system with which to study the self-assembly and protein-protein interactions. We find from replica exchange molecular dynamics simulations with the coarse-grain UNRES force field that the folding and association pathway consists of three well-separated steps, where that association to a tetramer precedes and facilitates folding of the four chains. At room temperature the tetramer exists in an ensemble of diverse structures. The crystal structure becomes energetically favored only when the molecule is put in a dense and crystal-like environment. The observed picture of folding promoted by association may mirror the mechanism according to which intrinsically unfolded proteins assume their functional structure. PMID:24039552

  9. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  10. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    PubMed

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  11. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery.

    PubMed

    Jin, Kwang-Mi; Kim, Yong-Hee

    2008-05-01

    Injectable and thermo-reversible physical combination gels were formed in aqueous solution by preparing complex coacervate with two oppositely charged biomacromolecules that composed of negatively charged chondroitin 6-sulfate and positively charged high molecular weight gelatin type A and co-formulating with a negative, thermo-sensitive polysaccharide, methylcellulose containing a salting-out salt, ammonium sulfate. The combination of complex coacervation and a thermo-reversible gel demonstrated synergistic effects on the complex coacervate formation the release rates of model proteins and in situ gel depot formation. Gels indicated sustained release patterns of the protein over 25 days with minimal initial bursts. Optimized novel in situ gel depot systems containing dual advantages of complex coacervation and temperature responsiveness demonstrated a potential for efficient protein drug delivery in terms of high protein loading, sustained protein release, ease of administration, an aqueous environment without toxic organic solvents, and a simple fabrication method.

  12. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point

    NASA Astrophysics Data System (ADS)

    de Vries, R.

    2004-02-01

    Electrostatic complexation of flexible polyanions with the whey proteins α-lactalbumin and β-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Hückel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that α-lactalbumin complexes much more strongly than β-lactoglobulin. For α-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for β-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.

  13. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye

    PubMed Central

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie JH; Kim, Seonhee; Cho, Seo-Hee

    2016-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. PMID:25636444

  14. PepX: a structural database of non-redundant protein-peptide complexes.

    PubMed

    Vanhee, Peter; Reumers, Joke; Stricher, Francois; Baeten, Lies; Serrano, Luis; Schymkowitz, Joost; Rousseau, Frederic

    2010-01-01

    Although protein-peptide interactions are estimated to constitute up to 40% of all protein interactions, relatively little information is available for the structural details of these interactions. Peptide-mediated interactions are a prime target for drug design because they are predominantly present in signaling and regulatory networks. A reliable data set of nonredundant protein-peptide complexes is indispensable as a basis for modeling and design, but current data sets for protein-peptide interactions are often biased towards specific types of interactions or are limited to interactions with small ligands. In PepX (http://pepx.switchlab.org), we have designed an unbiased and exhaustive data set of all protein-peptide complexes available in the Protein Data Bank with peptide lengths up to 35 residues. In addition, these complexes have been clustered based on their binding interfaces rather than sequence homology, providing a set of structurally diverse protein-peptide interactions. The final data set contains 505 unique protein-peptide interface clusters from 1431 complexes. Thorough annotation of each complex with both biological and structural information facilitates searching for and browsing through individual complexes and clusters. Moreover, we provide an additional source of data for peptide design by annotating peptides with naturally occurring backbone variations using fragment clusters from the BriX database.

  15. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids.

    PubMed

    Di Silvio, Desirè; Rigby, Neil; Bajka, Balazs; Mayes, Andrew; Mackie, Alan; Baldelli Bombelli, Francesca

    2015-07-28

    Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.

  16. Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes.

    PubMed

    Takei, Yodai; Iizuka, Ryo; Ueno, Taro; Funatsu, Takashi

    2012-11-30

    The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding. PMID:23048033

  17. Structural basis of pyrimidine specificity in the MS2 RNA hairpin-coat-protein complex.

    PubMed Central

    Grahn, E; Moss, T; Helgstrand, C; Fridborg, K; Sundaram, M; Tars, K; Lago, H; Stonehouse, N J; Davis, D R; Stockley, P G; Liljas, L

    2001-01-01

    We have determined the X-ray structures of six MS2 RNA hairpin-coat-protein complexes having five different substitutions at the hairpin loop base -5. This is a uracil in the wild-type hairpin and contacts the coat protein both by stacking on to a tyrosine side chain and by hydrogen bonding to an asparagine side chain. The RNA consensus sequence derived from coat protein binding studies with natural sequence variants suggested that the -5 base needs to be a pyrimidine for strong binding. The five -5 substituents used in this study were 5-bromouracil, pyrimidin-2-one, 2-thiouracil, adenine, and guanine. The structure of the 5-bromouracil complex was determined to 2.2 A resolution, which is the highest to date for any MS2 RNA-protein complex. All the complexes presented here show very similar conformations, despite variation in affinity in solution. The results suggest that the stacking of the -5 base on to the tyrosine side chain is the most important driving force for complex formation. A number of hydrogen bonds that are present in the wild-type complex are not crucial for binding, as they are missing in one or more of the complexes. The results also reveal the flexibility of this RNA-protein interface, with respect to functional group variation, and may be generally applicable to other RNA-protein complexes. PMID:11720290

  18. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in

  19. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization

    PubMed Central

    Lin, Yi-Pin; Chen, Qiang; Ritchie, Jennifer A.; Dufour, Nicholas P.; Fischer, Joshua R.; Coburn, Jenifer; Leong, John M.

    2014-01-01

    SUMMARY Microbial pathogens that colonize multiple tissues commonly produce adhesive surface proteins that mediate attachment to cells and/or extracellular matrix in target organs. Many of these ‘adhesins’ bind to multiple ligands, complicating efforts to understand the role of each ligand-binding activity. Borrelia burgdorferi, the causative agent of Lyme disease, produces BBK32, first identified as a fibronectin-binding adhesin that promotes skin and joint colonization. BBK32 also binds to glycosaminoglycan (GAG), which, like fibronectin is ubiquitously present on cell surfaces. To determine which binding activity is relevant for BBK32-promoted infectivity, we generated a panel of BBK32 truncation and internal deletion mutants, and identified variants specifically defective for binding to either fibronectin or GAG. These variants promoted bacterial attachment to different mammalian cell types in vitro, suggesting that fibronectin and GAG binding may play distinct roles during infection. Intravenous inoculation of mice with a high-passage non-infectious B. burgdorferi strain that produced wild type BBK32 or BBK32 mutants defective for GAG or fibronectin binding, revealed that only GAG-binding activity was required for significant localization to joints at 60 minutes post-infection. An otherwise infectious B. burgdorferi strain producing BBK32 specifically deficient in fibronectin binding was fully capable of both skin and joint colonization in the murine model, whereas a strain producing BBK32 selectively attenuated for GAG binding colonized the inoculation site but not knee or tibiotarsus joints. Thus, the BBK32 fibronectin- and GAG-binding activities are separable in vivo, and BBK32-mediated GAG binding, but not fibronectin binding, contributes to joint colonization. PMID:25486989

  20. Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation

    PubMed Central

    Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd

    2016-01-01

    Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380

  1. MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae

    PubMed Central

    Robinson, Mark W.; Buchtmann, Kyle A.; Jenkins, Cheryl; Tacchi, Jessica L.; Raymond, Benjamin B. A.; To, Joyce; Roy Chowdhury, Piklu; Woolley, Lauren K.; Labbate, Maurizio; Turnbull, Lynne; Whitchurch, Cynthia B.; Padula, Matthew P.; Djordjevic, Steven P.

    2013-01-01

    Bacterial aminopeptidases play important roles in pathogenesis by providing a source of amino acids from exogenous proteins, destroying host immunological effector peptides and executing posttranslational modification of bacterial and host proteins. We show that MHJ_0125 from the swine respiratory pathogen Mycoplasma hyopneumoniae represents a new member of the M42 class of bacterial aminopeptidases. Despite lacking a recognizable signal sequence, MHJ_0125 is detectable on the cell surface by fluorescence microscopy and LC-MS/MS of (i) biotinylated surface proteins captured by avidin chromatography and (ii) peptides released by mild trypsin shaving. Furthermore, surface-associated glutamyl aminopeptidase activity was detected by incubation of live M. hyopneumoniae cells with the diagnostic substrate H-Glu-AMC. MHJ_0125 moonlights as a multifunctional adhesin, binding to both heparin and plasminogen. Native proteomics and comparative modelling studies suggest MHJ_0125 forms a dodecameric, homopolymeric structure and provide insight into the positions of key residues that are predicted to interact with heparin and plasminogen. MHJ_0125 is the first aminopeptidase shown to both bind plasminogen and facilitate its activation by tissue plasminogen activator. Plasmin cleaves host extracellular matrix proteins and activates matrix metalloproteases, generating peptide substrates for MHJ_0125 and a source of amino acids for growth of M. hyopneumoniae. This unique interaction represents a new paradigm in microbial pathogenesis. PMID:23594879

  2. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex

    NASA Astrophysics Data System (ADS)

    Wang, Haoyong; Chong, Shaorong

    2003-01-01

    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors and , and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein-protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins.

  3. Analysis of the Mycoplasma genitalium MgpB Adhesin to Predict Membrane Topology, Investigate Antibody Accessibility, Characterize Amino Acid Diversity, and Identify Functional and Immunogenic Epitopes

    PubMed Central

    Iverson-Cabral, Stefanie L.; Wood, Gwendolyn E.; Totten, Patricia A.

    2015-01-01

    Mycoplasma genitalium is a sexually transmitted pathogen and is associated with reproductive tract disease that can be chronic in nature despite the induction of a strong antibody response. Persistent infection exacerbates the likelihood of transmission, increases the risk of ascension to the upper tract, and suggests that M. genitalium may possess immune evasion mechanism(s). Antibodies from infected patients predominantly target the MgpB adhesin, which is encoded by a gene that recombines with homologous donor sequences, thereby generating sequence variation within and among strains. We have previously characterized mgpB heterogeneity over the course of persistent infection and have correlated the induction of variant-specific antibodies with the loss of that particular variant from the infected host. In the current study, we examined the membrane topology, antibody accessibility, distribution of amino acid diversity, and the location of functional and antigenic epitopes within the MgpB adhesin. Our results indicate that MgpB contains a single transmembrane domain, that the majority of the protein is surface exposed and antibody accessible, and that the attachment domain is located within the extracellular C-terminus. Not unexpectedly, amino acid diversity was concentrated within and around the three previously defined variable regions (B, EF, and G) of MgpB; while nonsynonymous mutations were twice as frequent as synonymous mutations in regions B and G, region EF had equal numbers of nonsynonymous and synonymous mutations. Interestingly, antibodies produced during persistent infection reacted predominantly with the conserved C-terminus and variable region B. In contrast, infection-induced antibodies reacted poorly with the N-terminus, variable regions EF and G, and intervening conserved regions despite the presence of predicted B cell epitopes. Overall, this study provides an important foundation to define how different segments of the MgpB adhesin contribute to

  4. Protein Crystal Eco R1 Endonulease-DNA Complex

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  5. Prediction of protein complexes using empirical free energy functions.

    PubMed Central

    Weng, Z.; Vajda, S.; Delisi, C.

    1996-01-01

    A long sought goal in the physical chemistry of macromolecular structure, and one directly relevant to understanding the molecular basis of biological recognition, is predicting the geometry of bimolecular complexes from the geometries of their free monomers. Even when the monomers remain relatively unchanged by complex formation, prediction has been difficult because the free energies of alternative conformations of the complex have been difficult to evaluate quickly and accurately. This has forced the use of incomplete target functions, which typically do no better than to provide tens of possible complexes with no way of choosing between them. Here we present a general framework for empirical free energy evaluation and report calculations, based on a relatively complete and easily executable free energy function, that indicate that the structures of complexes can be predicted accurately from the structures of monomers, including close sequence homologues. The calculations also suggest that the binding free energies themselves may be predicted with reasonable accuracy. The method is compared to an alternative formulation that has also been applied recently to the same data set. Both approaches promise to open new opportunities in macromolecular design and specificity modification. PMID:8845751

  6. Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA.

    PubMed Central

    Hannah, J H; Menozzi, F D; Renauld, G; Locht, C; Brennan, M J

    1994-01-01

    Filamentous hemagglutinin (FHA) is a major adhesin present on the surface of the gram-negative respiratory pathogen Bordetella pertussis. A number of binding mechanisms have been described for the interaction of FHA with eukaryotic cells. We have focused on its function as a sulfated polysaccharide-binding protein and on identifying potential receptors for FHA on the epithelial cell surface. Using a thin-layer overlay technique, we found that FHA binds specifically to sulfated glycolipids but not to gangliosides or other neutral glycolipids. These results suggest that epithelial cell surface sulfated glycolipids function as receptors for FHA. Further studies demonstrated that a Chinese hamster ovary (CHO) cell strain deficient in glycosaminoglycan expression exhibits greatly diminished attachment to FHA. By FHA-Affi-Gel chromatography, a putative receptor for FHA that has characteristics consistent with a heparan sulfate proteoglycan was isolated from epithelial cell extracts. In addition, by using recombinant FHA fusion proteins, a specific glycosaminoglycan-binding domain located near the N terminus of the FHA molecule was identified. Our results indicate that the B. pertussis adhesin FHA may utilize sulfated glycolipids and proteoglycans commonly found on the surface of human cells and tissues to initiate infection. Images PMID:7927782

  7. Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut

    PubMed Central

    Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli

    2015-01-01

    Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735

  8. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  9. Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii.

    PubMed

    Liu, Jun; Wetzel, Laura; Zhang, Ying; Nagayasu, Eiji; Ems-McClung, Stephanie; Florens, Laurence; Hu, Ke

    2013-12-01

    Microtubules are versatile biopolymers that support numerous vital cellular functions in eukaryotes. The specific properties of microtubules are dependent on distinct microtubule-associated proteins, as the tubulin subunits and microtubule structure are exceptionally conserved. Highly specialized microtubule-containing assemblies are often found in protists, which are rich sources for novel microtubule-associated proteins. A protozoan parasite, Toxoplasma gondii, possesses several distinct tubulin-containing structures, including 22 microtubules closely associated with the cortical membrane. Early ultrastructural studies have shown that the cortical microtubules are heavily decorated with associating proteins. However, little is known about the identities of these proteins. Here, we report the discovery of a novel protein, TrxL1 (for Thioredoxin-Like protein 1), and an associating complex that coats the cortical microtubules. TrxL1 contains a thioredoxin-like fold. To visualize its localization in live parasites by fluorescence, we replaced the endogenous TrxL1 gene with an mEmeraldFP-TrxL1 fusion gene. Structured illumination-based superresolution imaging of this parasite line produced a detailed view of the microtubule cytoskeleton. Despite its stable association with the cortical microtubules in the parasite, TrxL1 does not seem to bind to microtubules directly. Coimmunoprecipitation experiments showed that TrxL1 associates with a protein complex containing SPM1, a previously reported microtubule-associated protein in T. gondii. We also found that SPM1 recruits TrxL1 to the cortical microtubules. Besides SPM1, several other novel proteins are found in the TrxL1-containing complex, including TrxL2, a close homolog of TrxL1. Thus, our results reveal for the first time a microtubule-associated complex in T. gondii.

  10. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.

  11. Bcl-2 proteins and calcium signaling: complexity beneath the surface.

    PubMed

    Vervliet, T; Parys, J B; Bultynck, G

    2016-09-29

    Antiapoptotic Bcl-2-family members are well known for their 'mitochondrial' functions as critical neutralizers of proapoptotic Bcl-2-family members, including the executioner multidomain proteins Bax and Bak and the BH3-only proteins. It has been clear for more than 20 years that Bcl-2 proteins can impact intracellular Ca(2+) homeostasis and dynamics. Moreover, altered Ca(2+) signaling is increasingly linked to oncogenic behavior. Specifically targeting the Ca(2+)-signaling machinery may thus prove to be a valuable strategy for cancer treatment. Over 10 years ago a major controversy was recognized concerning whether or not Bcl-2 proteins exerted their antiapoptotic functions via Ca(2+) signaling through lowering the filling state of the endoplasmic reticulum (ER) Ca(2+) stores or by suppressing Ca(2+) release from the ER without affecting the filling state of this Ca(2+) store. Further research from different laboratories indicated a wide variety of mechanisms by which Bcl-2-family members can impact Ca(2+) signaling. In this review, we propose that antiapoptotic Bcl-2-family members are multimodal regulators of intracellular Ca(2+)-signaling events in cell survival and cell death. We will discuss how different Bcl-2-family members impact cell survival and cell death by regulating Ca(2+) transport systems at the ER, mitochondria and plasma membrane and by impacting the organization of organelles and how these insights can be exploited for causing cell death in cancer cells. Finally, we propose that the existing controversy reflects the diversity of links between Bcl-2 proteins and Ca(2+) signaling, as certainly not all targets or mechanisms will be operative in every cell type and every condition.

  12. Stability and immunogenicity of hypoallergenic peanut protein-polyphenol complexes during in vitro pepsin digestion.

    PubMed

    Plundrich, Nathalie J; White, Brittany L; Dean, Lisa L; Davis, Jack P; Foegeding, E Allen; Lila, Mary Ann

    2015-07-01

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated during simulated in vitro gastric digestion. When digested with pepsin, the basic subunit of the peanut allergen Ara h 3 was more rapidly hydrolyzed in peanut protein-cranberry or green tea polyphenol complexes compared to uncomplexed peanut flour. Ara h 2 was also hydrolyzed more quickly in the peanut protein-cranberry polyphenol complex than in uncomplexed peanut flour. Peptides from peanut protein-cranberry polyphenol complexes and peanut protein-green tea polyphenol complexes were substantially less immunoreactive (based on their capacity to bind to peanut-specific IgE from patient plasma) compared to peptides from uncomplexed peanut flour. These results suggest that peanut protein-polyphenol complexes may be less immunoreactive passing through the digestive tract in vivo, contributing to their attenuated allergenicity.

  13. Supramolecular complexes of the Agrobacterium tumefaciens virulence protein VirE2.

    PubMed

    Volokhina, I V; Gusev, Yu S; Mazilov, S I; Chumakov, M I

    2011-11-01

    Virulence protein VirE2 from Agrobacterium tumefaciens is involved in plant infection by transferring a fragment of agrobacterial Ti plasmid ssT-DNA in complex with VirE2-VirD2 proteins into the plant cell nucleus. The VirE2 protein interactions with ssDNA and formation of VirE2 protein complexes in vitro and in silico have been studied. Using dynamic light scattering we found that purified recombinant protein VirE2 exists in buffer solution in the form of complexes of 2-4 protein molecules of 12-18 nm size. We used computer methods to design models of complexes consisting of two and four individual VirE2 proteins, and their dimensions were estimated. Dimensions of VirE2 complexes with ssDNA (550 and 700 nucleotide residues) were determined using transmission electron microscopy and dynamic light scattering. We found that in vitro, upon interaction with ssDNA recombinant protein, VirE2 is able to alter conformation of the latter by shortening the initial length of the ssDNA. PMID:22117554

  14. Sequence co-evolution gives 3D contacts and structures of protein complexes

    PubMed Central

    Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S

    2014-01-01

    Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213

  15. Combination of MS protein identification and bioassay of chromatographic fractions to identify biologically active substances from complex protein sources.

    PubMed

    Kuromitsu, Sadao; Yokota, Hiroyuki; Hiramoto, Masashi; Yuri, Masatoshi; Naitou, Masanori; Nakamura, Naoto; Kawabata, Shigeki; Kobori, Masato; Katoh, Masao; Furuchi, Kiyoshi; Mita, Haruhisa; Yamada, Tetsuo

    2009-06-01

    Purification of biologically active proteins from complex biological sources is a difficult task, usually requiring large amounts of sample and many separation steps. We found an active substance in a serum response element-dependent luciferase reporter gene bioassay in interstitial cystitis urine that we attempted to purify with column chromatography and the bioassay. With anion-exchange Mono Q and C4 reversed-phase columns, apparently sharp active peaks were obtained. However, more than 20 kinds of proteins were identified from the active fractions with MS, indicating that the purification was not complete. As further purification was difficult, we chose a candidate molecule by means of studying the correlation between MS protein identification scores and bioassay responses of chromatographic fractions near the active peaks. As a result, epidermal growth factor (EGF) was nominated as a candidate molecule among the identified proteins because the elution profile of EGF was consistent with that of the bioassay, and the correlation coefficient of EGF between MS protein identification scores and bioassay responses was the highest among all the identified proteins. With recombinant EGF and anti-EGF and anti-EGF receptor antibodies, EGF was confirmed to be the desired substance in interstitial cystitis urine. This approach required only 20 ml of urine sample and two column chromatographic steps. The combination of MS protein identification and bioassay of chromatographic fractions may be useful for identifying biologically active substances from complex protein sources.

  16. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  17. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins.

    PubMed Central

    Parkkinen, J; Virkola, R; Korhonen, T K

    1988-01-01

    Earlier studies on the binding of Escherichia coli adhesins to the human urinary tract have indicated that the ability to recognize binding sites on the urinary tract epithelial cells is not a characteristic for P fimbriae only, but is also shared by some other adhesins that are not associated with pyelonephritis, especially S fimbriae. In the present study we have investigated whether human urine contains inhibitors of the binding of E. coli adhesins. Normal human urine was found to inhibit hemagglutination by S and type 1 fimbriae but not P fimbriae. The major inhibitor of S fimbriae in normal urine was identified as Tamm-Horsfall glycoprotein, and the interaction with S fimbriae is probably mediated by its sialyloligosaccharide chains. No significant variation was observed in the inhibitory effect of T-H glycoprotein preparations originating from different individuals. In contrast to S fimbriae, the major inhibitors of type 1 fimbriae in urine were identified as low-molecular-weight compounds. Gel filtration and ion-exchange chromatography and alpha-mannosidase treatment indicated that they were neutral alpha-mannosides, probably manno-oligosaccharides with three to five saccharides. Studies of urine samples collected from several individuals indicated the common occurrence of these inhibitory alpha-mannosides. Type 1 fimbriae bound to immobilized T-H glycoprotein, but, unlike S fimbriae, their binding was poorly inhibited by soluble T-H glycoprotein. Some urine samples were also found to contain low-molecular-weight inhibitors for the O75X adhesin of E. coli. These results emphasize that to function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptor structures at the infection sites that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type 1 or S fimbriae. PMID:2901405

  18. Molecular recognition of DNA-protein complexes: a straightforward method combining scanning force and fluorescence microscopy.

    PubMed

    Sanchez, Humberto; Kanaar, Roland; Wyman, Claire

    2010-06-01

    Combining scanning force and fluorescent microscopy allows simultaneous identification of labeled biomolecules and analysis of their nanometer level architectural arrangement. Fluorescent polystyrene nano-spheres were used as reliable objects for alignment of optical and topographic images. This allowed the precise localization of different fluorescence particles within complex molecular assemblies whose structure was mapped in nanometer detail topography. Our experiments reveal the versatility of this method for analysis of proteins and protein-DNA complexes.

  19. Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes.

    PubMed

    Grishaeva, Tatiana M; Bogdanov, Yuri F

    2014-01-01

    The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants. PMID:25147749

  20. Conservation and Variability of Synaptonemal Complex Proteins in Phylogenesis of Eukaryotes

    PubMed Central

    Grishaeva, Tatiana M.; Bogdanov, Yuri F.

    2014-01-01

    The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants. PMID:25147749

  1. Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes.

    PubMed

    Grishaeva, Tatiana M; Bogdanov, Yuri F

    2014-01-01

    The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.

  2. Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of [alpha]- and PPII-helices

    SciTech Connect

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.; Robinette, Rebekah A.; Crowley, Paula J.; Michalek, Suzanne; Brady, L. Jeannine; Deivanayagam, Champion

    2010-08-18

    Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{sub 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.

  3. Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila.

    PubMed

    Calvo-Martín, J M; Librado, P; Aguadé, M; Papaceit, M; Segarra, C

    2016-02-01

    Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.

  4. Correlation of mRNA and protein in complex biological samples.

    PubMed

    Maier, Tobias; Güell, Marc; Serrano, Luis

    2009-12-17

    The correlation between mRNA and protein abundances in the cell has been reported to be notoriously poor. Recent technological advances in the quantitative analysis of mRNA and protein species in complex samples allow the detailed analysis of this pathway at the center of biological systems. We give an overview of available methods for the identification and quantification of free and ribosome-bound mRNA, protein abundances and individual protein turnover rates. We review available literature on the correlation of mRNA and protein abundances and discuss biological and technical parameters influencing the correlation of these central biological molecules.

  5. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-01-01

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  6. Application of model bread baking in the examination of arabinoxylan-protein complexes in rye bread.

    PubMed

    Buksa, Krzysztof

    2016-09-01

    The changes in molecular mass of arabinoxylan (AX) and protein caused by bread baking process were examined using a model rye bread. Instead of the normal flour, the dough contained starch, water-extractable AX and protein which were isolated from rye wholemeal. From the crumb of selected model breads, starch was removed releasing AX-protein complexes, which were further examined by size exclusion chromatography. On the basis of the research, it was concluded that optimum model mix can be composed of 3-6% AX and 3-6% rye protein isolate at 94-88% of rye starch meaning with the most similar properties to low extraction rye flour. Application of model rye bread allowed to examine the interactions between AX and proteins. Bread baked with a share of AX, rye protein and starch, from which the complexes of the highest molar mass were isolated, was characterized by the strongest structure of the bread crumb. PMID:27185141

  7. Application of model bread baking in the examination of arabinoxylan-protein complexes in rye bread.

    PubMed

    Buksa, Krzysztof

    2016-09-01

    The changes in molecular mass of arabinoxylan (AX) and protein caused by bread baking process were examined using a model rye bread. Instead of the normal flour, the dough contained starch, water-extractable AX and protein which were isolated from rye wholemeal. From the crumb of selected model breads, starch was removed releasing AX-protein complexes, which were further examined by size exclusion chromatography. On the basis of the research, it was concluded that optimum model mix can be composed of 3-6% AX and 3-6% rye protein isolate at 94-88% of rye starch meaning with the most similar properties to low extraction rye flour. Application of model rye bread allowed to examine the interactions between AX and proteins. Bread baked with a share of AX, rye protein and starch, from which the complexes of the highest molar mass were isolated, was characterized by the strongest structure of the bread crumb.

  8. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    PubMed Central

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; Szydlowska, Anna; Kossiakoff, Anthony A.; Hegde, Ramanujan S.; Keenan, Robert J.

    2015-01-01

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved GET pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. We reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans the Get3 homodimer. Our data elucidate the mechanism of TA protein recognition and shielding by Get3, and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors. PMID:25745174

  9. Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay

    NASA Astrophysics Data System (ADS)

    Choi, Sojoong; Kim, Hyunju; Kim, So Yeon; Yang, Eun Gyeong

    2016-06-01

    Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells.Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells. Electronic supplementary information (ESI) available: Materials, experimental methods and Fig. S1-S8. See DOI: 10.1039/c6nr00171h

  10. Transient HMGB protein interactions with B-DNA duplexes and complexes

    PubMed Central

    Zimmerman, Jeff; Maher, L. James

    2008-01-01

    HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved “HMG boxes” and can be sequence specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly-interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex. PMID:18413230

  11. Uncoupling proteins: a complex journey to function discovery.

    PubMed

    Cioffi, Federica; Senese, Rosalba; de Lange, Pieter; Goglia, Fernando; Lanni, Antonia; Lombardi, Assunta

    2009-01-01

    Since their discovery, uncoupling proteins have aroused great interest due to the crucial importance of energy-dissipating system for cellular physiology. The uncoupling effect and the physiological role of UCP1 (the first-described uncoupling protein) are well established. However, the reactions catalyzed by UCP1 homologues (UCPs), and their physiological roles are still under debate, with the literature containing contrasting results. Current hypothesis propose several physiological functions for novel UCPs, such as: (i) attenuation of reactive oxygen species production and protection against oxidative damage, (ii) thermogenic function, although UCPs do not generally seem to affect thermogenesis, UCP3 can be thermogenic under certain conditions, (iii) involvement in fatty acid handling and/or transport, although recent experimental evidence argues against the previously hypothesized role for UCPs in the export of fatty acid anions, (iv) fatty acid hydroperoxide export, although this function, due to the paucity of the experimental evidence, remains hypothetical, (v) Ca(2+) uptake, although results for and against a role in Ca(2+) uptake are still emerging, (vi) a signaling role in pancreatic beta cells, where it attenuates glucose-induced insulin secretion. From the above, it is evident that more research will be needed to establish universally accepted functions for UCPs.

  12. An informatic framework for decoding protein complexes by top-down mass spectrometry

    PubMed Central

    Skinner, Owen S.; Havugimana, Pierre C.; Haverland, Nicole A.; Fornelli, Luca; Early, Bryan P.; Greer, Joseph B.; Fellers, Ryan T.; Durbin, Kenneth R.; Do Vale, Luis H. F.; Melani, Rafael D.; Seckler, Henrique S.; Nelp, Micah T.; Belov, Mikhail E.; Horning, Stevan R.; Makarov, Alexander A.; LeDuc, Richard D.; Bandarian, Vahe; Compton, Philip D.; Kelleher, Neil L.

    2015-01-01

    Efforts to map the human protein interactome have resulted in information about hundreds to thousands of multi-protein assemblies housed in public repositories, but the molecular characterization and stoichiometry of their protein subunits remains largely unknown. Here, we combined the CORUM and UniProt databases to create candidates for an error-tolerant search engine designed for hierarchical top-down analyses, identification, and scoring of multi-proteoform complexes by native mass spectrometry. PMID:26780093

  13. Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes

    PubMed Central

    Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.

    2005-01-01

    Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465

  14. Multiple barriers in forced rupture of protein complexes

    NASA Astrophysics Data System (ADS)

    Hyeon, Changbong; Thirumalai, D.

    2012-08-01

    Curvatures in the most probable rupture force (f*) versus log-loading rate (log rf) observed in dynamic force spectroscopy (DFS) on biomolecular complexes are interpreted using a one-dimensional free energy profile with multiple barriers or a single barrier with force-dependent transition state. Here, we provide a criterion to select one scenario over another. If the rupture dynamics occurs by crossing a single barrier in a physical free energy profile describing unbinding, the exponent ν, from (1 - f*/fc)1/ν ˜ (log rf) with fc being a critical force in the absence of force, is restricted to 0.5 ⩽ ν ⩽ 1. For biotin-ligand complexes and leukocyte-associated antigen-1 bound to intercellular adhesion molecules, which display large curvature in the DFS data, fits to experimental data yield ν < 0.5, suggesting that if ligand unbinding is assumed to proceed along one-dimensional pulling coordinate, the dynamics should occur in a energy landscape with multiple-barriers.

  15. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    PubMed

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  16. Visualizing Proteins and Macromolecular Complexes by Negative Stain EM: from Grid Preparation to Image Acquisition

    PubMed Central

    Booth, David S.; Avila-Sakar, Agustin; Cheng, Yifan

    2011-01-01

    Single particle electron microscopy (EM), of both negative stained or frozen hydrated biological samples, has become a versatile tool in structural biology 1. In recent years, this method has achieved great success in studying structures of proteins and macromolecular complexes 2, 3. Compared with electron cryomicroscopy (cryoEM), in which frozen hydrated protein samples are embedded in a thin layer of vitreous ice 4, negative staining is a simpler sample preparation method in which protein samples are embedded in a thin layer of dried heavy metal salt to increase specimen contrast 5. The enhanced contrast of negative stain EM allows examination of relatively small biological samples. In addition to determining three-dimensional (3D) structure of purified proteins or protein complexes 6, this method can be used for much broader purposes. For example, negative stain EM can be easily used to visualize purified protein samples, obtaining information such as homogeneity/heterogeneity of the sample, formation of protein complexes or large assemblies, or simply to evaluate the quality of a protein preparation. In this video article, we present a complete protocol for using an EM to observe negatively stained protein sample, from preparing carbon coated grids for negative stain EM to acquiring images of negatively stained sample in an electron microscope operated at 120kV accelerating voltage. These protocols have been used in our laboratory routinely and can be easily followed by novice users. PMID:22215030

  17. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    PubMed Central

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; Hancock, William O.

    2014-01-01

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. These procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry. PMID:25232006

  18. Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation

    NASA Astrophysics Data System (ADS)

    Eren, Necla Mine; Narsimhan, Ganesan; Campanella, Osvaldo H.

    2016-02-01

    Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic contribution compared to the second type. The observed favorable enthalpy gain in both modes is attributed to non-covalent complexation whereas the entropy gain is associated with the re-organization of the silica surface including not only the solvent and counter ion release, but also the protein's conformational changes. Possible mechanisms are proposed to explain non-covalent complexations for each binding mode by relating the changes in the zeta potential and hydrodynamic radius to the obtained adsorption isotherms and calorimetry profile. Based on all these findings, it is proposed that lysozyme adsorption on nano-silica is the result of protein-nanoparticle and protein-protein interactions that further leads to spontaneous, non-directional and random complexation of silica through bridging flocculation.Lysozyme-silica interactions and the resulting complexation were investigated through adsorption isotherms, dynamic and electrophoretic light scattering, circular dichroism (CD), and isothermal titration calorimetry (ITC). A thermodynamic analysis of ITC data revealed the existence of two binding modes during protein-nanoparticle complexation. Both binding modes are driven by the cooperation of a favorable enthalpy in the presence of a dominating entropy gain. The first binding mode has a higher binding affinity, a lower equilibrium stoichiometry and is driven by a higher entropic

  19. Examination of tyrosine/adenine stacking interactions in protein complexes.

    PubMed

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S

    2013-11-14

    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  20. Protein Targeting and Transport as a Necessary Consequence of Increased Cellular Complexity

    PubMed Central

    Sommer, Maik S.; Schleiff, Enrico

    2014-01-01

    With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity. PMID:25085907

  1. The HMW1 and HMW2 Adhesins Enhance the Ability of Nontypeable Haemophilus influenzae To Colonize the Upper Respiratory Tract of Rhesus Macaques.

    PubMed

    Rempe, Katherine A; Porsch, Eric A; Wilson, Jolaine M; St Geme, Joseph W

    2016-10-01

    Nontypeable Haemophilus influenzae (NTHi) initiates infection by colonizing the upper respiratory tract and is a common cause of localized respiratory tract disease. Previous work has established that the NTHi HMW1 and HMW2 proteins are potent adhesins that mediate efficient in vitro adherence to cultured human respiratory epithelial cells. In this study, we used a rhesus macaque model to assess the contributions of HMW1 and HMW2 to in vivo colonization. In experiments involving inoculation of individual isogenic derivatives of NTHi strain 12, the parent strain expressing both HMW1 and HMW2 and the mutant strains expressing either HMW1 or HMW2 were able to colonize more frequently than the double mutant strain lacking HMW1 and HMW2. In competition experiments, the parent strain efficiently outcompeted the double mutant lacking HMW1 and HMW2. Colonization with strains expressing HMW2 resulted in development of antibody against HMW2 in a number of the animals, demonstrating that colonization can stimulate an antibody response. In conclusion, we have established that the HMW1 and HMW2 adhesins play a major role in facilitating colonization of the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response.

  2. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization

    SciTech Connect

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability. - Highlights: • KCTD5 nuclear translocation depends upon M phase and protein oligomerization. • Identification of MCM7, ZNF711 and FAM193 as KCTD5 interaction partners. • Formation of trimeric complexes of KCTD5/cullin3 with MCM7, ZNF711 and FAM193B. • KCTD5 is not involved in polyubiquitylation of MCM7 replication factor. • The KCTD5/cullin3 complex stabilizes ZNF711 transcription factor.

  3. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR).

    PubMed

    Laszlo, Kenneth J; Bush, Matthew F

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures. Graphical Abstract ᅟ.

  4. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    NASA Astrophysics Data System (ADS)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  5. Node sampling for protein complex estimation in bait-prey graphs.

    PubMed

    Scholtens, Denise M; Spencer, Bruce D

    2015-08-01

    In cellular biology, node-and-edge graph or "network" data collection often uses bait-prey technologies such as co-immunoprecipitation (CoIP). Bait-prey technologies assay relationships or "interactions" between protein pairs, with CoIP specifically measuring protein complex co-membership. Analyses of CoIP data frequently focus on estimating protein complex membership. Due to budgetary and other constraints, exhaustive assay of the entire network using CoIP is not always possible. We describe a stratified sampling scheme to select baits for CoIP experiments when protein complex estimation is the main goal. Expanding upon the classic framework in which nodes represent proteins and edges represent pairwise interactions, we define generalized nodes as sets of adjacent nodes with identical adjacency outside the set and use these as strata from which to select the next set of baits. Strata are redefined at each round of sampling to incorporate accumulating data. This scheme maintains user-specified quality thresholds for protein complex estimates and, relative to simple random sampling, leads to a marked increase in the number of correctly estimated complexes at each round of sampling. The R package seqSample contains all source code and is available at http://vault.northwestern.edu/~dms877/Rpacks/.

  6. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres.

    PubMed

    Lee, Eun Seong; Park, Keun-Hong; Kang, Dongmin; Park, In Suh; Min, Hyo Young; Lee, Don Haeng; Kim, Sungwon; Kim, Jong Ho; Na, Kun

    2007-06-01

    Chondroitin sulfate (CsA) is an acidic mucopolysaccharide, which is able to form ionic complexes with positively charged proteins. In this study, a protein-CsA complex was constructed to nano-sized particles. Zeta potential measurements revealed that a CsA-to-protein fraction of greater than 0.1 results in a neutralization of the positive charge on lysozyme (Lys). Based on this preliminary study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring Lys/CsA complexes via the multi-emulsion method. Protein stability in the PLGA microspheres was preserved during both microsphere preparation and protein release. The profiles of Lys release from the PLGA microspheres evidenced nearly zero-order kinetics, depending on the quantity of CsA. An in vivo fluorescent image of experimental mouse tissue showed that the PLGA microspheres with the Lys/CsA complex had released the entirety of their Lys without no residual amount after 23 days, but microspheres without the complex harbored a great deal of residual Lys, which is attributable to its degradation by acidic PLGA degradates. The tissue reaction evidenced by the PLGA microspheres stabilized with CsA showed minimal foreign body reaction and little configuration of immune cells including neutrophils and macrophages, but the reactions of the PLGA microspheres without CsA were characterized by a relatively elevated inflammation. These results show that CsA is a viable candidate for long-acting micro-particular protein delivery. PMID:17337049

  7. Technical tip: high-resolution isolation of nanoparticle-protein corona complexes from physiological fluids

    NASA Astrophysics Data System (ADS)

    di Silvio, Desirè; Rigby, Neil; Bajka, Balazs; Mayes, Andrew; Mackie, Alan; Baldelli Bombelli, Francesca

    2015-07-01

    Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without

  8. Macromolecular composition dictates receptor and G protein selectivity of regulator of G protein signaling (RGS) 7 and 9-2 protein complexes in living cells.

    PubMed

    Masuho, Ikuo; Xie, Keqiang; Martemyanov, Kirill A

    2013-08-30

    Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.

  9. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato

    2015-03-01

    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  10. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins.

    PubMed Central

    Machesky, L M; Reeves, E; Wientjes, F; Mattheyse, F J; Grogan, A; Totty, N F; Burlingame, A L; Hsuan, J J; Segal, A W

    1997-01-01

    Human neutrophils contain a complex of proteins similar to the actin-related protein 2/3 (Arp2/3) complex of Acanthamoeba. We have obtained peptide sequence information for each member of the putative seven-protein complex previously described for Acanthamoeba and human platelets. From the peptide sequences we have identified cDNA species encoding three novel proteins in this complex. We find that in addition to Arp2 and Arp3, this complex contains a relative of the human (Suppressor of Profilin) SOP2Hs protein and four previously unknown proteins. These proteins localize in the cytoplasm of fibroblasts that lack lamellipodia, but are enriched in lamellipodia on stimulation with serum or platelet-derived growth factor. We propose a conserved and dynamic role for this complex in the organization of the actin cytoskeleton. PMID:9359840

  11. The P-700-chlorophyl alpha-protein complex and two major light-harvesting complexes of Acrocarpia paniculata and other brown seaweeds.

    PubMed

    Barrett, J; Anderson, J M

    1980-05-01

    Acrocarpia paniculata thylakoids were fragmented with Triton X-100 and the pigment-protein complexes so released were isolated by sucrose density gradient centrifugation. Three main chlorophyll-carotenoid-protein complexes with distinct pigment compositions were isolated. (1) A P-700-chlorophyll a-protein complex, with a ratio of 1 P-700: 38 chlorophyll a: 4 beta-carotene molecules, had similar absorption and fluorescence characteristics to the chlorophyll-protein complex 1 isolated with Triton X-100 from higher plants, green algae and Ecklonia radiata. (2) an orange-brown complex had a chlorophyll a : c2 : fucoxanthin molar ratio of 2 : 1 : 2. this complex had no chlorophyll c1 and contained most of the fucoxanthin present in the chloroplasts. This pigment complex is postulated to be the main light-harvesting complex of brown seaweeds. (3) A green complex had a chlorophyll a : c1 : c2 : violaxanthin molar ratio of 8 : 1 : 1. This also is a light-harvesting complex. the absorption and fluorescence spectral characteristics and other physical properties were consistent with the pigments of these three major complexes being bound to protein. Differential extraction of brown algal thylakoids with Triton X-100 showed that a chlorophyll c2-fucoxanthin-protein complex was a minor pigment complex of these thylakoids. PMID:7378391

  12. A complex standard for protein identification, designed by evolution.

    PubMed

    Vaudel, Marc; Burkhart, Julia M; Breiter, Daniela; Zahedi, René P; Sickmann, Albert; Martens, Lennart

    2012-10-01

    Shotgun proteomic investigations rely on the algorithmic assignment of mass spectra to peptides. The quality of these matches is therefore a cornerstone in the analysis and has been the subject of numerous recent developments. In order to establish the benefits of novel algorithms, they are applied to reference samples of known content. However, these were recently shown to be either too simple to resemble typical real-life samples or as leading to results of lower accuracy as the method itself. Here, we describe how to use the proteome of Pyrococcus furiosus , a hyperthermophile, as a standard to evaluate proteomics identification workflows. Indeed, we prove that the Pyrococcus furiosus proteome provides a valid method for detecting random hits, comparable to the decoy databases currently in popular use, but we also prove that the Pyrococcus furiosus proteome goes squarely beyond the decoy approach by also providing many hundreds of highly reliable true positive hits. Searching the Pyrococcus furiosus proteome can thus be used as a unique test that provides the ability to reliably detect both false positives as well as proteome-scale true positives, allowing the rigorous testing of identification algorithms at the peptide and protein level.

  13. Monte Carlo Modeling of Spectral Diffusion Employing Multiwell Protein Energy Landscapes: Application to Pigment-Protein Complexes Involved in Photosynthesis.

    PubMed

    Najafi, Mehdi; Zazubovich, Valter

    2015-06-25

    We are reporting development and initial applications of the light-induced and thermally induced spectral diffusion modeling software, covering nonphotochemical spectral hole burning (NPHB), hole recovery, and single-molecule spectroscopy and involving random generation of the multiwell protein energy landscapes. The model includes tunneling and activated barrier-hopping in both ground and excited states of a protein-chromophore system. Evolution of such a system is predicted by solving the system of rate equations. Using the barrier parameters from the range typical for the energy landscapes of the pigment-protein complexes involved in photosynthesis, we (a) show that realistic cooling of the sample must result in proteins quite far from thermodynamic equilibrium, (b) demonstrate hole evolution in the cases of burning, fixed-temperature recovery and thermocycling that mostly agrees with the experiment and modeling based on the NPHB master equation, and (c) explore the effects of different protein energy landscapes on the antihole shape. Introducing the multiwell energy landscapes and starting the hole burning experiments in realistic nonequilibrium conditions are not sufficient to explain all experimental observations even qualitatively. Therefore, for instance, one is required to invoke the modified NPHB mechanism where a complex interplay of several small conformational changes is poising the energy landscape of the pigment-protein system for downhill tunneling.

  14. Application of linker technique to trap transiently interacting protein complexes for structural studies

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.

    2016-01-01

    Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443

  15. Expression of the meningococcal adhesin NadA is controlled by a transcriptional regulator of the MarR family.

    PubMed

    Schielke, Stephanie; Huebner, Claudia; Spatz, Carolin; Nägele, Virginie; Ackermann, Nikolaus; Frosch, Matthias; Kurzai, Oliver; Schubert-Unkmeir, Alexandra

    2009-05-01

    Two closely related pathogenic species have evolved in the genus Neisseria: N. meningitidis and N. gonorrhoeae, which occupy different host niches and cause different clinical entities. In contrast to the pathogen N. gonorrhoeae, N. meningitidis is a commensal and only rarely becomes invasive. Little is known about the genetic background of the entirely different lifestyles in these closely related species. Meningococcal NMB1843 encodes a transcriptional regulator of the MarR family. The gonococcal homologue FarR regulates expression of farAB, mediating fatty acid resistance. We show that NmFarR also directly interacts with NmfarAB. Yet, by contrast to N. gonorrhoeae, no significant sensitivity to fatty acids was observed in a DeltafarR mutant due to intrinsic resistance of meningococci. Further analyses identified an NmFarR-repressed protein absent from N. gonorrhoeae. This protein is the meningococcus-specific adhesin and vaccine component NadA that has most likely been acquired by horizontal gene transfer. NmFarR binds to a 16 base pair palindromic repeat within the nadA promoter. De-repression of nadA resulted in significantly higher association of a DeltafarR strain with epithelial cells. Hence NmFarR has gained control over a meningococcus-specific gene involved in host colonization and thus contributed to divergent niche adaptation in pathogenic Neisseriae.

  16. BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes

    PubMed Central

    Lakizadeh, Amir; Jalili, Saeed

    2016-01-01

    Considering the roles of protein complexes in many biological processes in the cell, detection of protein complexes from available protein-protein interaction (PPI) networks is a key challenge in the post genome era. Despite high dynamicity of cellular systems and dynamic interaction between proteins in a cell, most computational methods have focused on static networks which cannot represent the inherent dynamicity of protein interactions. Recently, some researchers try to exploit the dynamicity of PPI networks by constructing a set of dynamic PPI subnetworks correspondent to each time-point (column) in a gene expression data. However, many genes can participate in multiple biological processes and cellular processes are not necessarily related to every sample, but they might be relevant only for a subset of samples. So, it is more interesting to explore each subnetwork based on a subset of genes and conditions (i.e., biclusters) in a gene expression data. Here, we present a new method, called BiCAMWI to employ dynamicity in detecting protein complexes. The preprocessing phase of the proposed method is based on a novel genetic algorithm that extracts some sets of genes that are co-regulated under some conditions from input gene expression data. Each extracted gene set is called bicluster. In the detection phase of the proposed method, then, based on the biclusters, some dynamic PPI subnetworks are extracted from input static PPI network. Protein complexes are identified by applying a detection method on each dynamic PPI subnetwork and aggregating the results. Experimental results confirm that BiCAMWI effectively models the dynamicity inherent in static PPI networks and achieves significantly better results than state-of-the-art methods. So, we suggest BiCAMWI as a more reliable method for protein complex detection. PMID:27462706

  17. BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes.

    PubMed

    Lakizadeh, Amir; Jalili, Saeed

    2016-01-01

    Considering the roles of protein complexes in many biological processes in the cell, detection of protein complexes from available protein-protein interaction (PPI) networks is a key challenge in the post genome era. Despite high dynamicity of cellular systems and dynamic interaction between proteins in a cell, most computational methods have focused on static networks which cannot represent the inherent dynamicity of protein interactions. Recently, some researchers try to exploit the dynamicity of PPI networks by constructing a set of dynamic PPI subnetworks correspondent to each time-point (column) in a gene expression data. However, many genes can participate in multiple biological processes and cellular processes are not necessarily related to every sample, but they might be relevant only for a subset of samples. So, it is more interesting to explore each subnetwork based on a subset of genes and conditions (i.e., biclusters) in a gene expression data. Here, we present a new method, called BiCAMWI to employ dynamicity in detecting protein complexes. The preprocessing phase of the proposed method is based on a novel genetic algorithm that extracts some sets of genes that are co-regulated under some conditions from input gene expression data. Each extracted gene set is called bicluster. In the detection phase of the proposed method, then, based on the biclusters, some dynamic PPI subnetworks are extracted from input static PPI network. Protein complexes are identified by applying a detection method on each dynamic PPI subnetwork and aggregating the results. Experimental results confirm that BiCAMWI effectively models the dynamicity inherent in static PPI networks and achieves significantly better results than state-of-the-art methods. So, we suggest BiCAMWI as a more reliable method for protein complex detection. PMID:27462706

  18. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes

    PubMed Central

    Kravets, Elisabeth; Degrandi, Daniel; Ma, Qijun; Peulen, Thomas-Otavio; Klümpers, Verena; Felekyan, Suren; Kühnemuth, Ralf; Weidtkamp-Peters, Stefanie; Seidel, Claus AM; Pfeffer, Klaus

    2016-01-01

    GBPs are essential for immunity against intracellular pathogens, especially for Toxoplasma gondii control. Here, the molecular interactions of murine GBPs (mGBP1/2/3/5/6), homo- and hetero-multimerization properties of mGBP2 and its function in parasite killing were investigated by mutational, Multiparameter Fluorescence Image Spectroscopy, and live cell microscopy methodologies. Control of T. gondii replication by mGBP2 requires GTP hydrolysis and isoprenylation thus, enabling reversible oligomerization in vesicle-like structures. mGBP2 undergoes structural transitions between monomeric, dimeric and oligomeric states visualized by quantitative FRET analysis. mGBPs reside in at least two discrete subcellular reservoirs and attack the parasitophorous vacuole membrane (PVM) as orchestrated, supramolecular complexes forming large, densely packed multimers comprising up to several thousand monomers. This dramatic mGBP enrichment results in the loss of PVM integrity, followed by a direct assault of mGBP2 upon the plasma membrane of the parasite. These discoveries provide vital dynamic and molecular perceptions into cell-autonomous immunity. DOI: http://dx.doi.org/10.7554/eLife.11479.001 PMID:26814575

  19. Proteomics analysis of Thermoplasma acidophilum with a focus on protein complexes.

    PubMed

    Sun, Na; Beck, Florian; Knispel, Roland Wilhelm; Siedler, Frank; Scheffer, Beatrix; Nickell, Stephan; Baumeister, Wolfgang; Nagy, István

    2007-03-01

    Two-dimensional gel electrophoresis (2DE) and MALDI-TOF MS were used to obtain a global view of the cytoplasmic proteins expressed by Thermoplasma acidophilum. In addition, glycerol gradient ultracentrifugation coupled to 2DE-MALDI-TOF MS analysis was used to identify subunits of macromolecular complexes. With the 2DE proteomics approach, over 900 spots were resolved of which 271 proteins were identified. A significant number of these form macromolecular complexes, among them the ribosome, proteasome, and thermosome, which are expressed at high levels. In the glycerol gradient heavy fractions, 10 as yet uncharacterized proteins (besides the well known ribosomal subunits, translation initiation factor eIF-6-related protein, elongation factor 1, and DNA-dependent RNA polymerase) were identified that are putative building blocks of protein complexes. These proteins belong to the categories of hypothetical or conserved hypothetical proteins, and they are present in the cytosol at low concentrations. Although these proteins exhibit homology to known sequences, their structures, subunit compositions, and biological functions are not yet known.

  20. Ciliary membrane tubulin and associated proteins: a complex stable to Triton X-114 dissociation.

    PubMed

    Stephens, R E

    1985-12-19

    When either membranes from scallop gill cilia or reconstituted membranes from the same source are solubilized with Triton X-114 and the detergent is condensed by warming, no significant fraction of any major membrane protein partitions into the micellar detergent. Rather, most of the membrane lipids condense with the detergent phase, forming mixed micelles from which nearly pure lipid vesicles may be produced by adsorption of detergent with polystyrene beads. One minor membrane protein, with a molecular weight of about 20 000, is associated consistently with these vesicles. The aqueous phase contains a fairly homogeneous protein-Triton X-114 micelle sedimenting at 2.6 S in the analytical ultracentrifuge. Sucrose gradient velocity analysis in a detergent-free gradient indicates moderate size polydispersity but constant polypeptide composition throughout the sedimenting protein zone. Sucrose gradient equilibrium analysis (also in a detergent-free gradient) results in a protein-detergent complex banding at a density of 1.245 g/cm3. Sedimentation of the protein-detergent complex in the ultracentrifuge, followed by fixation and normal processing for electron microscopy, reveals a fine, reticular material consisting of 5-10-nm granules. These data are consistent with previous evidence that membrane tubulin and most other membrane proteins exist together as a discrete lipid-protein complex in molluscan gill ciliary membranes.

  1. Disassembly of synthetic Agrobacterium T-DNA–protein complexes via the host SCFVBF ubiquitin–ligase complex pathway

    PubMed Central

    Zaltsman, Adi; Lacroix, Benoît; Gafni, Yedidya; Citovsky, Vitaly

    2013-01-01

    One the most intriguing, yet least studied, aspects of the bacterium–host plant interaction is the role of the host ubiquitin/proteasome system (UPS) in the infection process. Increasing evidence indicates that pathogenic bacteria subvert the host UPS to facilitate infection. Although both mammalian and plant bacterial pathogens are known to use the host UPS, the first prokaryotic F-box protein, an essential component of UPS, was identified in Agrobacterium. During its infection, which culminates in genetic modification of the host cell, Agrobacterium transfers its T-DNA—as a complex (T-complex) with the bacterial VirE2 and host VIP1 proteins—into the host cell nucleus. There the T-DNA is uncoated from its protein components before undergoing integration into the host genome. It has been suggested that the host UPS mediates this uncoating process, but there is no evidence indicating that this activity can unmask the T-DNA molecule. Here we provide support for the idea that the plant UPS uncoats synthetic T-complexes via the Skp1/Cullin/F-box protein VBF pathway and exposes the T-DNA molecule to external enzymatic activity. PMID:23248273

  2. Probabilistic Prediction of Contacts in Protein-Ligand Complexes

    PubMed Central

    Hakulinen, Riku; Puranen, Santeri; Lehtonen, Jukka V.; Johnson, Mark S.; Corander, Jukka

    2012-01-01

    We introduce a statistical method for evaluating atomic level 3D interaction patterns of protein-ligand contacts. Such patterns can be used for fast separation of likely ligand and ligand binding site combinations out of all those that are geometrically possible. The practical purpose of this probabilistic method is for molecular docking and scoring, as an essential part of a scoring function. Probabilities of interaction patterns are calculated conditional on structural x-ray data and predefined chemical classification of molecular fragment types. Spatial coordinates of atoms are modeled using a Bayesian statistical framework with parametric 3D probability densities. The parameters are given distributions a priori, which provides the possibility to update the densities of model parameters with new structural data and use the parameter estimates to create a contact hierarchy. The contact preferences can be defined for any spatial area around a specified type of fragment. We compared calculated contact point hierarchies with the number of contact atoms found near the contact point in a reference set of x-ray data, and found that these were in general in a close agreement. Additionally, using substrate binding site in cathechol-O-methyltransferase and 27 small potential binder molecules, it was demonstrated that these probabilities together with auxiliary parameters separate well ligands from decoys (true positive rate 0.75, false positive rate 0). A particularly useful feature of the proposed Bayesian framework is that it also characterizes predictive uncertainty in terms of probabilities, which have an intuitive interpretation from the applied perspective. PMID:23155467

  3. Chloroplast isolation and affinity chromatography for enrichment of low-abundant proteins in complex proteomes.

    PubMed

    Bayer, Roman G; Stael, Simon; Teige, Markus

    2015-01-01

    Detailed knowledge of the proteome is crucial to advance the biological sciences. Low-abundant proteins are of particular interest to many biologists as they include, for example those proteins involved in signal transduction. Recent technological advances resulted in a tremendous increase in protein identification sensitivity by mass spectrometry (MS). However, the dynamic range in protein abundance still forms a fundamental problem that limits the detection of low-abundant proteins in complex proteomes. These proteins will typically escape detection in shotgun MS experiments due to the presence of other proteins at an abundance several-fold higher in order of magnitude. Therefore, specific enrichment strategies are required to overcome this technical limitation of MS-based protein discovery. We have searched for novel signal transduction proteins, more specifically kinases and calcium-binding proteins, and here we describe different approaches for enrichment of these low-abundant proteins from isolated chloroplasts from pea and Arabidopsis for subsequent proteomic analysis by MS. These approaches could be extended to include other signal transduction proteins and target different organelles. PMID:25820724

  4. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in

  5. Interactions of cullin3/KCTD5 complexes with both cytoplasmic and nuclear proteins: Evidence for a role in protein stabilization.

    PubMed

    Rutz, Natalja; Heilbronn, Regine; Weger, Stefan

    2015-08-28

    Based on its specific interaction with cullin3 mediated by an N-terminal BTB/POZ homologous domain, KCTD5 has been proposed to function as substrate adapter for cullin3 based ubiquitin E3 ligases. In the present study we tried to validate this hypothesis through identification and characterization of additional KCTD5 interaction partners. For the replication protein MCM7, the zinc finger protein ZNF711 and FAM193B, a yet poorly characterized cytoplasmic protein, we could demonstrate specific interaction with KCTD5 both in yeast two-hybrid and co-precipitation studies in mammalian cells. Whereas trimeric complexes of cullin3 and KCTD5 with the respective KCTD5 binding partner were formed, KCTD5/cullin3 induced polyubiquitylation and/or proteasome-dependent degradation of these binding partners could not be demonstrated. On the contrary, KCTD5 or Cullin3 overexpression increased ZNF711 protein stability.

  6. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death.

    PubMed

    Nilsson, I M; Patti, J M; Bremell, T; Höök, M; Tarkowski, A

    1998-06-15

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. Morbidity and mortality due to infections such as sepsis, osteomyelitis, septic arthritis, and invasive endocarditis remain high despite the use of antibiotics. The emergence of antibiotic resistant super bugs mandates that alternative strategies for the prevention and treatment of S. aureus infections are developed. We investigated the ability of vaccination with a recombinant fragment of the S. aureus collagen adhesin to protect mice against sepsis-induced death. Actively immunized NMRI mice were intravenously inoculated with the S. aureus clinical isolate strain Phillips. 14 d after inoculation, mortality in the collagen adhesin-vaccinated group was only 13%, compared with 87% in the control antigen immunized group (P < 0.001). To determine if the protective effect was antibody mediated, we passively immunized naive mice with collagen adhesin-specific antibodies. Similar to the active immunization strategy, passive transfer of collagen adhesin-specific antibodies protected mice against sepsis-induced death. In vitro experiments indicated that S. aureus opsonized with sera from collagen adhesin immunized mice promoted phagocytic uptake and enhanced intracellular killing compared with bacteria opsonized with sera from control animals. These results indicate that the collagen adhesin is a viable target in the development of immunotherapeutics against S. aureus.

  7. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea. PMID:27228947

  8. Coarse-Grained Structure-Based Model for RNA-Protein Complexes Developed by Fluctuation Matching.

    PubMed

    Hori, Naoto; Takada, Shoji

    2012-09-11

    RNA and RNA-protein complexes have recently been intensively studied in experiments, but the corresponding molecular simulation work is much less abundant, primarily due to its large system size and the long time scale involved. Here, to overcome these bottlenecks, we develop a coarse-grained (CG) structure-based simulation model for RNA and RNA-protein complexes and test it for several molecular systems. The CG model for RNA contains three particles per nucleotide, each for phosphate, sugar, and a base. Focusing on RNA molecules that fold to well-defined native structures, we employed a structure-based potential, which is similar to the Go-like potential successfully used in CG modeling of proteins. In addition, we tested three means to approximate electrostatic interactions. Many parameters involved in the CG potential were determined via a multiscale method: We matched the native fluctuation of the CG model with that by all-atom simulations for 16 RNA molecules and 10 RNA-protein complexes, from which we derived a generic set of CG parameters. We show that the derived parameters can reproduce native fluctuations well for four RNA and two RNA-protein complexes. For tRNA, the native fluctuation in solution includes large-amplitude motions that reach conformations nearly corresponding to the hybrid state P/E and EF-Tu-bound state A/T seen in the complexes with ribosome. Finally, large-amplitude modes of ribosome are briefly described.

  9. Subunit Interactions and Organization of the Chlamydomonas reinhardtii Intraflagellar Transport Complex A Proteins*

    PubMed Central

    Behal, Robert H.; Miller, Mark S.; Qin, Hongmin; Lucker, Ben F.; Jones, Alexis; Cole, Douglas G.

    2012-01-01

    Chlamydomonas reinhardtii intraflagellar transport (IFT) particles can be biochemically resolved into two smaller assemblies, complexes A and B, that contain up to six and 15 protein subunits, respectively. We provide here the proteomic and immunological analyses that verify the identity of all six Chlamydomonas A proteins. Using sucrose density gradient centrifugation and antibody pulldowns, we show that all six A subunits are associated in a 16 S complex in both the cell bodies and flagella. A significant fraction of the cell body IFT43, however, exhibits a much slower sedimentation of ∼2 S and is not associated with the IFT A complex. To identify interactions between the six A proteins, we combined exhaustive yeast-based two-hybrid analysis, heterologous recombinant protein expression in Escherichia coli, and analysis of the newly identified complex A mutants, ift121 and ift122. We show that IFT121 and IFT43 interact directly and provide evidence for additional interactions between IFT121 and IFT139, IFT121 and IFT122, IFT140 and IFT122, and IFT140 and IFT144. The mutant analysis further allows us to propose that a subset of complex A proteins, IFT144/140/122, can form a stable 12 S subcomplex that we refer to as the IFT A core. Based on these results, we propose a model for the spatial arrangement of the six IFT A components. PMID:22170070

  10. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination.

    PubMed

    Kantake, Noriko; Madiraju, Murty V V M; Sugiyama, Tomohiko; Kowalczykowski, Stephen C

    2002-11-26

    We present biochemical evidence for the functional similarity of Escherichia coli RecO protein and bacteriophage T4 UvsY protein to eukaryotic Rad52 protein. Although Rad52 protein is conserved in eukaryotes, no sequence homologue has been found in prokaryotes or archeabacteria. Rad52 protein has two unique activities: facilitation of replication protein-A (RPA) displacement by Rad51 protein and annealing of RPA-single-stranded DNA (ssDNA) complexes. Both activities require species-specific interaction between Rad52 protein and RPA. Both RecO and UvsY proteins also possess the former property with regard to their cognate ssDNA-binding protein. Here, we report that RecO protein anneals ssDNA that is complexed with only its cognate ssDNA-binding protein, suggesting the involvement of species-specific interactions. Optimal activity for RecO protein occurs after formation of a 1:1 complex with SSB protein. RecR protein, which is known to stimulate RecO protein to facilitate SSB protein displacement by RecA protein, inhibits annealing by RecO protein, suggesting that RecR protein may regulate the choice between the DNA strand invasion versus annealing pathways. In addition, we show that UvsY protein anneals ssDNA; furthermore, ssDNA, which is complexed only with its cognate ssDNA-binding protein, is annealed in the presence of UvsY protein. These results indicate that RecO and possibly UvsY proteins are functional counterparts of Rad52 protein. Based on the conservation of these functions, we propose a modified double-strand break repair model that includes DNA annealing as an important intermediate step. PMID:12438681

  11. Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization.

    PubMed

    Ou-Yang, Le; Dai, Dao-Qing; Zhang, Xiao-Fei

    2013-01-01

    Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ substantially, even the same method may have different performance on networks with different topological characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization (NMF)-based weighted Ensemble Clustering algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF provides an effective way to integrate different clustering results for more accurate and reliable complex detection. Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing clustering methods to identify protein complexes.

  12. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis.

    PubMed

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M; Liu, Jie; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2011-12-27

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (V(max)/k(m)) for any of the complexes is 70-6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex-mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis.

  13. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    SciTech Connect

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  14. The solution structural ensembles of RNA kink-turn motifs and their protein complexes.

    PubMed

    Shi, Xuesong; Huang, Lin; Lilley, David M J; Harbury, Pehr B; Herschlag, Daniel

    2016-03-01

    With the growing number of crystal structures of RNA and RNA-protein complexes, a critical next step is understanding the dynamic solution behavior of these entities in terms of conformational ensembles and energy landscapes. To this end, we have used X-ray scattering interferometry (XSI) to probe the ubiquitous RNA kink-turn motif and its complexes with the canonical kink-turn binding protein L7Ae. XSI revealed that the folded kink-turn is best described as a restricted conformational ensemble. The ions present in solution alter the nature of this ensemble, and protein binding can perturb the kink-turn ensemble without collapsing it to a unique state. This study demonstrates how XSI can reveal structural and ensemble properties of RNAs and RNA-protein complexes and uncovers the behavior of an important RNA-protein motif. This type of information will be necessary to understand, predict and engineer the behavior and function of RNAs and their protein complexes. PMID:26727239

  15. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

    PubMed Central

    Funnell, Barbara E.

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs “spread,” that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  16. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

    PubMed Central

    Funnell, Barbara E.

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs “spread,” that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites.

  17. The Solution Structural Ensembles of RNA Kink-turn Motifs and Their Protein Complexes

    PubMed Central

    Huang, Lin; Lilley, David M. J.

    2015-01-01

    With the growing number of crystal structures of RNA and RNA/protein complexes, a critical next step is understanding the dynamic behavior of these entities in solution in terms of conformational ensembles and energy landscapes. To this end, we have used X-ray scattering interferometry (XSI) to probe the widespread RNA kink-turn motif and its complexes with the canonical kink-turn binding protein L7Ae. XSI revealed that the folded kink-turn is best described as a restricted conformational ensemble. The ions present in solution alter the nature of this ensemble, and protein binding can perturb the kink-turn ensemble without collapsing it to a unique state. This study demonstrates how XSI can reveal structural and ensemble properties of RNAs and RNA/protein complexes in solution and uncovers the behavior of an important RNA/protein motif. This type of information will be necessary to understand, predict, and engineer the behavior and function of RNAs and their protein complexes. PMID:26727239

  18. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres.

    PubMed

    Funnell, Barbara E

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  19. Luminescent Alkyne-Bearing Terbium(III) Complexes and Their Application to Bioorthogonal Protein Labeling.

    PubMed

    O'Malley, William I; Abdelkader, Elwy H; Aulsebrook, Margaret L; Rubbiani, Riccardo; Loh, Choy-Theng; Grace, Michael R; Spiccia, Leone; Gasser, Gilles; Otting, Gottfried; Tuck, Kellie L; Graham, Bim

    2016-02-15

    Two new bifunctional macrocyclic chelate ligands that form luminescent terbium(III) complexes featuring an alkyne group for conjugation to (bio)molecules via the Cu(I)-catalyzed "click" reaction were synthesized. Upon ligation, the complexes exhibit a significant luminescent enhancement when excited at the λ(max) of the "clicked" products. To demonstrate the utility of the complexes for luminescent labeling, they were conjugated in vitro to E. coli aspartate/glutamate-binding protein incorporating a genetically encoded p-azido-L-phenylalanine or p-(azidomethyl)-L-phenylalanine residue. The complexes may prove useful for time-gated assay applications.

  20. Identification of cytochrome P450 2C2 protein complexes in mouse liver.

    PubMed

    Li, Bin; Yau, Peter; Kemper, Byron

    2011-08-01

    Interactions of microsomal cytochromes P450 (CYPs) with other proteins in the microsomal membrane are important for their function. In addition to their redox partners, CYPs have been reported to interact with other proteins not directly involved in their enzymatic function. In this study, proteins were identified that interact with CYP2C2 in vivo in mouse liver. Flag-tagged CYP2C2 was expressed exogenously in mouse liver and was affinity purified, along with associated proteins which were identified by MS and confirmed by Western blotting. Over 20 proteins reproducibly copurified with CYP2C2. The heterogeneous sedimentation velocity of CYP2C2 and associated proteins by centrifugation in sucrose gradients and sequential immunoprecipitation analysis were consistent with multiple CYP2C2 complexes of differing composition. The abundance of CYPs and other drug metabolizing enzymes and NAD/NADP requiring enzymes associated with CYP2C2 suggest that complexes of these proteins may improve enzymatic efficiency or facilitate sequential metabolic steps. Chaperones, which may be important for maintaining CYP function, and reticulons, endoplasmic reticulum proteins that shape the morphology of the endoplasmic reticulum and are potential endoplasmic reticulum retention proteins for CYPs, were also associated with CYP2C2.

  1. Computational analysis of interactions in structurally available protein-glycosaminoglycan complexes.

    PubMed

    Samsonov, Sergey A; Pisabarro, M Teresa

    2016-08-01

    Glycosaminoglycans represent a class of linear anionic periodic polysaccharides, which play a key role in a variety of biological processes in the extracellular matrix via interactions with their protein targets. Computationally, glycosaminoglycans are very challenging due to their high flexibility, periodicity and electrostatics-driven nature of the interactions with their protein counterparts. In this work, we carry out a detailed computational characterization of the interactions in protein-glycosaminoglycan complexes from the Protein Data Bank (PDB), which are split into two subsets accounting for their intrinsic nature: non-enzymatic-protein-glycosaminoglycan and enzyme-glycosaminoglycan complexes. We apply molecular dynamics to analyze the differences in these two subsets in terms of flexibility, retainment of the native interactions in the simulations, free energy components of binding and contributions of protein residue types to glycosaminoglycan binding. Furthermore, we systematically demonstrate that protein electrostatic potential calculations, previously found to be successful for glycosaminoglycan binding sites prediction for individual systems, are in general very useful for proposing protein surface regions as putative glycosaminoglycan binding sites, which can be further used for local docking calculations with these particular polysaccharides. Finally, the performance of six different docking programs (Autodock 3, Autodock Vina, MOE, eHiTS, FlexX and Glide), some of which proved to perform well for particular protein-glycosaminoglycan complexes in previous work, is evaluated on the complete protein-glycosaminoglycan data set from the PDB. This work contributes to widen our knowledge of protein-glycosaminoglycan molecular recognition and could be useful to steer a choice of the strategies to be applied in theoretical studies of these systems. PMID:27496767

  2. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and

  3. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex.

    PubMed

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B

    2016-02-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.

  4. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes.

    PubMed

    Gómez, Sara; López-Estepa, Miguel; Fernández, Francisco J; Suárez, Teresa; Vega, M Cristina

    2016-01-01

    Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms. PMID:27165325

  5. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes.

    PubMed

    Gómez, Sara; López-Estepa, Miguel; Fernández, Francisco J; Suárez, Teresa; Vega, M Cristina

    2016-01-01

    Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms.

  6. Programming Controlled Adhesion of E. coli to Target Surfaces, Cells, and Tumors with Synthetic Adhesins

    PubMed Central

    2014-01-01

    In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires. SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a robust, fast, and specific adhesion of bacteria to target antigenic surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E. coli, lower doses of engineered E. coli are sufficient to colonize solid tumors expressing an antigen recognized by the SA. In addition, lower levels of engineered bacteria were found in non-target tissues. Therefore, SAs provide stable and specific adhesion capabilities to E. coli against target surfaces of interest for diverse applications using live bacteria. PMID:25045780

  7. Bacteriophage adhesin-coated long-period gratings for bacterial lipopolysaccharide recognition

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; Śmietana, Mateusz; Brzozowska, Ewa; Górska, Sabina; Mikulic, Predrag; Bock, Wojtek J.

    2014-05-01

    In this work we report an application of the optical fiber long-period gratings (LPGs) working near the dispersion turning point of higher order cladding modes for bacterial lipopolysaccharide (LPS) recognition. We show that when the LPG is functionalized with the bacteriophage adhesin, it is capable of very specific LPS detection. Thus, we compare label-free binding effect for specific to the adhesin LPS-positive and non-specific LPS-negative. The resonance wavelength shift induced by the LPS-positive reaches 2.9 nm, while for LPS-negative the shift is negligible. The LPG-based sensing structure allows for monitoring of the binding phenomenon in real time and with good accuracy.

  8. TULP1 Missense Mutations Induces the Endoplasmic Reticulum Unfolded Protein Response Stress Complex (ER-UPR).

    PubMed

    Lobo, Glenn P; Ebke, Lindsey A; Au, Adrian; Hagstrom, Stephanie A

    2016-01-01

    Mutations in the TULP1 gene are associated with early-onset retinitis pigmentosa (RP); however, the molecular mechanisms related to the deleterious effects of TULP1 mutations remains unknown. Several studies have shown that misfolded proteins secondary to genetic mutations can accumulate within the endoplasmic reticulum (ER), causing activation of the unfolded protein response (UPR) complex followed by cellular apoptosis. We hypothesize that TULP1 mutations produce misfolded protein products that accumulate in the ER and induce cellular apoptosis via the UPR. To test our hypothesis, we first performed three in-silico analyses of TULP1 missense mutations (I459K, R420P and F491L), which predicted misfolded protein products. Subsequently, the three mutant TULP1-GFP constructs and wild-type (wt) TULP1-GFP were transiently transfected into hTERT-RPE-1 cells. Staining of cells using ER tracker followed by confocal microscopy showed wt-TULP1 localized predominantly to the cytoplasm and plasma membrane. In contrast, all three mutant TULP1 proteins revealed cytoplasmic punctate staining which co-localized with the ER. Furthermore, western blot analysis of cells expressing mutant TULP1 proteins revealed induction of downstream targets of the ER-UPR complex, including BiP/GPR-78, phosphorylated-PERK (Thr980) and CHOP. Our in-vitro analyses suggest that mutant TULP1 proteins are misfolded and accumulate within the ER leading to induction of the UPR stress response complex. PMID:26427415

  9. Interaction network containing conserved and essential protein complexes in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Butland, Gareth; Peregrín-Alvarez, José Manuel; Li, Joyce; Yang, Wehong; Yang, Xiaochun; Canadien, Veronica; Starostine, Andrei; Richards, Dawn; Beattie, Bryan; Krogan, Nevan; Davey, Michael; Parkinson, John; Greenblatt, Jack; Emili, Andrew

    2005-02-01

    Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames (~ 23% of the genome). A total of 857 proteins, including 198 of the most highly conserved, soluble non-ribosomal proteins essential in at least one bacterial species, were tagged successfully, whereas 648 could be purified to homogeneity and their interacting protein partners identified by mass spectrometry. An interaction network of protein complexes involved in diverse biological processes was uncovered and validated by sequential rounds of tagging and purification. This network includes many new interactions as well as interactions predicted based solely on genomic inference or limited phenotypic data. This study provides insight into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.

  10. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8

    SciTech Connect

    Wang, Chengliang; Zhang, Qiongdi; Hang, Tianrong; Tao, Yue; Ma, Xukai; Wu, Minhao; Zhang, Xuan Zang, Jianye

    2015-08-28

    The structure of the complex of NO66 and Rpl8 was solved in the native state and NO66 recognizes the consensus motif NHXH . Tetramerization is required for efficient substrate binding and catalysis by NO66. The JmjC domain-containing proteins belong to a large family of oxygenases possessing distinct substrate specificities which are involved in the regulation of different biological processes, such as gene transcription, RNA processing and translation. Nucleolar protein 66 (NO66) is a JmjC domain-containing protein which has been reported to be a histone demethylase and a ribosome protein 8 (Rpl8) hydroxylase. The present biochemical study confirmed the hydroxylase activity of NO66 and showed that oligomerization is required for NO66 to efficiently catalyze the hydroxylation of Rpl8. The structures of NO66{sup 176–C} complexed with Rpl8{sup 204–224} in a tetrameric form and of the mutant protein M2 in a dimeric form were solved. Based on the results of structural and biochemical analyses, the consensus sequence motif NHXH recognized by NO66 was confirmed. Several potential substrates of NO66 were found by a BLAST search according to the consensus sequence motif. When binding to substrate, the relative positions of each subunit in the NO66 tetramer shift. Oligomerization may facilitate the motion of each subunit in the NO66 tetramer and affect the catalytic activity.

  11. The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants1[OPEN

    PubMed Central

    Carr, Craig; Asensi-Fabado, Maria A.; Donald, Naomi A.; Hannah, Matthew A.; Amtmann, Anna

    2016-01-01

    Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes. PMID:26951436

  12. The Histone Deacetylase Complex 1 Protein of Arabidopsis Has the Capacity to Interact with Multiple Proteins Including Histone 3-Binding Proteins and Histone 1 Variants.

    PubMed

    Perrella, Giorgio; Carr, Craig; Asensi-Fabado, Maria A; Donald, Naomi A; Páldi, Katalin; Hannah, Matthew A; Amtmann, Anna

    2016-05-01

    Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes.

  13. A pearl protein self-assembles to form protein complexes that amplify mineralization.

    PubMed

    Perovic, Iva; Mandal, Trinanjana; Evans, John Spencer

    2013-08-20

    The formation of the nacre pearl in marine invertebrates represents an on-demand production of mineralization in response to an irritant or parasite threat to the mantle organ. In the Japanese pearl oyster (Pinctada fucata), this process is mediated by a 12-member protein family known as PFMG (Pinctada fucata mantle gene). One of these proteins, PFGM1, has been implicated in modulating calcium carbonate crystal growth and has been reported to possess an EF-hand-like domain. In this report, we establish that the recombinant PFMG1 (rPFMG1) is an intrinsically disordered "imitator" EF-hand protein that increases the number of calcium carbonate mineral crystals that form relative to control scenarios and does not induce aragonite formation. This protein possesses a modified pseudo-EF-hand sequence at the C-terminal end which exhibits low homology (30-40%) to the pseudo-EF-hand mitochondrial SCaMCs buffering/solute transport proteins. This low sequence homology is the result of the inclusion of disorder-promoting amino acids and short amyloid-like aggregation-prone cross-β-strand sequences within the putative PFMG1 pseudo-EF-hand sequence region. Similar to other nacre proteins, rPFMG1 oligomerizes to form amorphous, heterogeneously sized protein oligomers and films in vitro, and this process is enhanced by Ca(2+), which promotes the format